WorldWideScience

Sample records for acetaminophen

  1. Acetaminophen

    Science.gov (United States)

    Apra® ... Acetaminophen is used to relieve mild to moderate pain from headaches, muscle aches, menstrual periods, colds and ... reactions to vaccinations (shots), and to reduce fever. Acetaminophen may also be used to relieve the pain ...

  2. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    Directory of Open Access Journals (Sweden)

    Laura James

    Full Text Available Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001, glycodeoxycholic acid (R=0.581; p<0.001, and glycochenodeoxycholic acid (R=0.571; p<0.001. Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  3. False positive acetaminophen concentrations in icteric serum

    Directory of Open Access Journals (Sweden)

    L. de Jong

    2016-04-01

    Full Text Available Introduction: Serum concentrations of acetaminophen are measured to predict the risk of hepatotoxicity in cases of acetaminophen overdose and to identify acetaminophen use in patients with acute liver injury without a known cause. The acetaminophen concentration determines if treatment with N-acetyl cysteine, the antidote for acetaminophen poisoning, is warranted. Description: A 49-year-old woman was admitted to our hospital with a hepatic encephalopathy and a total serum bilirubin concentration of 442 µmol/l. The acetaminophen concentration of 11.5 mg/l was measured with an enzymatic-colorimetric assay, thus treatment with N-acetyl cysteine was started. Interestingly, the acetaminophen concentration remained unchanged (11.5–12.3 mg/l during a period of 4 consecutive days. In contrast, the acetaminophen concentration measured by HPLC, a chromatographic technique, remained undetectable Discussion: In the presented case, elevated bilirubin was the most likely candidate to interfere with acetaminophen assay causing false positive results. Bilirubin has intense absorbance in the ultraviolet and visible regions of the electromagnetic spectrum and for that reason it causes interference in an enzymatic-colorimetric assay. Conclusion: False positive acetaminophen laboratory test results may be found in icteric serum, when enzymatic-colorimetric assays are used for determination of an acetaminophen concentration. Questionable acetaminophen results in icteric serum should be confirmed by a non-enzymatic method, by means of ultrafiltration of the serum, or by dilution studies. Keywords: Acetaminophen, Enzymatic-colorimetric assays, HPLC, Bilirubin, Interference, Paracetamol, Liver failure, Jaundice

  4. Acetaminophen use during pregnancy

    DEFF Research Database (Denmark)

    Rebordosa, Cristina; Kogevinas, Manolis; Horváth-Puhó, Erzsébet

    2008-01-01

    information on acetaminophen use during the first trimester of pregnancy. We used the National Hospital Registry to identify 3784 (4.3%) children from the cohort diagnosed with 5847 congenital abnormalities. RESULTS: Children exposed to acetaminophen during the first trimester of pregnancy (n = 26,424) did...

  5. The Social Side Effects of Acetaminophen

    Science.gov (United States)

    Mischkowski, Dominik

    About 23% of all adults in the US take acetaminophen during an average week (Kaufman, Kelly, Rosenberg, Anderson, & Mitchell, 2002) because acetaminophen is an effective physical painkiller and easily accessible over the counter. The physiological side effects of acetaminophen are well documented and generally mild when acetaminophen is consumed in the appropriate dosage. In contrast, the psychological and social side effects of acetaminophen are largely unknown. Recent functional neuroimaging research suggests that the experience of physical pain is fundamentally related to the experience of empathy for the pain of other people, indicating that pharmacologically reducing responsiveness to physical pain also reduces cognitive, affective, and behavioral responsiveness to the pain of others. I tested this hypothesis across three double-blind between-subjects drug intervention studies. Two experiments showed that acetaminophen had moderate effects on empathic affect, specifically personal distress and empathic concern, and a small effect on empathic cognition, specifically perceived pain, when facing physical and social pain of others. The same two experiments and a third experiment also showed that acetaminophen can increase the willingness to inflict pain on other people, i.e., actual aggressive behavior. This effect was especially pronounced among people low in dispositional empathic concern. Together, these findings suggest that the physical pain system is more involved in the regulation of social cognition, affect, and behavior than previously assumed and that the experience of physical pain and responsiveness to the pain of others share a common neurochemical basis. Furthermore, these findings suggest that acetaminophen has unappreciated but serious social side effects, and that these side effects may depend on psychological characteristics of the drug consumer. This idea is consistent with recent theory and research on the context-dependency of neurochemical

  6. Acetaminophen overdose associated with double serum concentration peaks

    Directory of Open Access Journals (Sweden)

    Cristian Papazoglu

    2015-12-01

    Full Text Available Acetaminophen is the most commonly used analgesic–antipyretic medication in the United States. Acetaminophen overdose, a frequent cause of drug toxicity, has been recognized as the leading cause of fatal and non-fatal hepatic necrosis. N-Acetylcysteine is the recommended antidote for acetaminophen poisoning. Despite evidence on the efficacy of N-acetylcysteine for prevention of hepatic injury, controversy persists about the optimal duration of the therapy. Here, we describe the case of a 65-year-old male with acetaminophen overdose and opioid co-ingestion who developed a second peak in acetaminophen serum levels after completing the recommended 21-hour intravenous N-acetylcysteine protocol and when the standard criteria for monitoring drug levels was achieved. Prolongation of N-acetylcysteine infusion beyond the standard protocol, despite a significant gap in treatment, was critical for successful avoidance of hepatotoxicity. Delay in acetaminophen absorption may be associated with a second peak in serum concentration following an initial declining trend, especially in cases of concomitant ingestion of opioids. In patients with acetaminophen toxicity who co-ingest other medications that may potentially delay gastric emptying or in those with risk factors for delayed absorption of acetaminophen, we recommend close monitoring of aminotransferase enzyme levels, as well as trending acetaminophen concentrations until undetectable before discontinuing the antidote therapy.

  7. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose

    Directory of Open Access Journals (Sweden)

    Judge Bryan S

    2011-03-01

    Full Text Available Abstract Background Acetaminophen-cysteine adducts (APAP-CYS are a specific biomarker of acetaminophen exposure. APAP-CYS concentrations have been described in the setting of acute overdose, and a concentration >1.1 nmol/ml has been suggested as a marker of hepatic injury from acetaminophen overdose in patients with an ALT >1000 IU/L. However, the concentrations of APAP-CYS during therapeutic dosing, in cases of acetaminophen toxicity from repeated dosing and in cases of hepatic injury from non-acetaminophen hepatotoxins have not been well characterized. The objective of this study is to describe APAP-CYS concentrations in these clinical settings as well as to further characterize the concentrations observed following acetaminophen overdose. Methods Samples were collected during three clinical trials in which subjects received 4 g/day of acetaminophen and during an observational study of acetaminophen overdose patients. Trial 1 consisted of non-drinkers who received APAP for 10 days, Trial 2 consisted of moderate drinkers dosed for 10 days and Trial 3 included subjects who chronically abuse alcohol dosed for 5 days. Patients in the observational study were categorized by type of acetaminophen exposure (single or repeated. Serum APAP-CYS was measured using high pressure liquid chromatography with electrochemical detection. Results Trial 1 included 144 samples from 24 subjects; Trial 2 included 182 samples from 91 subjects and Trial 3 included 200 samples from 40 subjects. In addition, we collected samples from 19 subjects with acute acetaminophen ingestion, 7 subjects with repeated acetaminophen exposure and 4 subjects who ingested another hepatotoxin. The mean (SD peak APAP-CYS concentrations for the Trials were: Trial 1- 0.4 (0.20 nmol/ml, Trial 2- 0.1 (0.09 nmol/ml and Trial 3- 0.3 (0.12 nmol/ml. APAP-CYS concentrations varied substantially among the patients with acetaminophen toxicity (0.10 to 27.3 nmol/ml. No subject had detectable APAP

  8. Dipyrone and acetaminophen: correct dosing by parents?

    Directory of Open Access Journals (Sweden)

    João Guilherme Bezerra Alves

    Full Text Available CONTEXT AND OBJECTIVE: Several studies in developed countries have documented that a significant percentage of children are given inappropriate doses of acetaminophen and ibuprofen. The objective of this paper was to investigate parents’ accuracy in giving dipyrone and acetaminophen to their children, in a poor region. DESIGN AND SETTING: Cross-sectional study at the pediatric emergency department of Instituto Materno-Infantil Prof. Fernando Figueira, a teaching hospital in Pernambuco. METHODS: The inclusion criteria were age between 3 and 36 months, main complaint of fever and at least one dose of dipyrone or acetaminophen given to the child during the 24 hours preceding their arrival at the emergency department. The mothers were asked for demographic information and about the antipyretic doses given, which were compared with the recommended dosage. RESULTS: Among the 200 patients studied, 117 received dipyrone and 83 received acetaminophen. Overall, 75 % received an incorrect dose of antipyretic. Of the patients who received dipyrone, 105 (89.7% were given an incorrect dose; 16 (15.2% received too little dipyrone, and 89 (84.8% received too much. Of the patients who received acetaminophen, 45 (54.2% were given an incorrect dose; 38 (84.4% received too little acetaminophen, and 7 (15.6% received too much. There were no differences in maternal and child characteristics between the groups receiving correct and incorrect doses of medication, except for the type of medication (dipyrone versus acetaminophen. CONCLUSIONS: Most of the children treated were given inappropriate doses, mainly dipyrone overdosing and acetaminophen underdosing.

  9. Use of Arctium lappa Extract Against Acetaminophen-Induced Hepatotoxicity in Rats.

    Science.gov (United States)

    El-Kott, Attalla Farag; Bin-Meferij, Mashael Mohammed

    2015-12-01

    Severe destructive hepatic injuries can be induced by acetaminophen overdose and may lead to acute hepatic failure. To investigate the ameliorative effects of Arctium lappa root extract on acetaminophen-induced hepatotoxicity. Rats were divided into 4 groups: normal control group, Arctium lappa extract group, acetaminophen-injected group, and acetaminophen treated with Arctium lappa extract group. The treatment with Arctium lappa extract reduced serum alanine transaminase, aspartate aminotransferase, and alkaline phosphatase in the acetaminophen group when compared with the control group. DNA fragments in the acetaminophen-injected group were also significantly increased (P Arctium lappa treatment (12.97±0.89 nmol/mg) when compared with the acetaminophen-treated-only group (12.97±0.89 nmol/mg). Histopathologic examination revealed that acetaminophen administration produced hepatic cell necrosis, infiltrate of lymphocytes, and vacuolation that were associated with the acetaminophen-treated animal group, but the degree of acetaminophen-induced hepatotoxicity was mediated by treatment with Arctium lappa extract. Arctium lappa can prevent most of the hepatic tissue damage caused by acetaminophen overdose in rats.

  10. Compound list: acetaminophen [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available acetaminophen APAP 00001 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/acetam...inophen.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/acetam...inophen.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/i...cedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/acetaminophen.Rat.in_vivo.Liver.Repeat.zip ftp...://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/acetaminophen.Rat.in_vivo.Kidn

  11. Acetaminophen (paracetamol) for the common cold in adults.

    Science.gov (United States)

    Li, Siyuan; Yue, Jirong; Dong, Bi Rong; Yang, Ming; Lin, Xiufang; Wu, Taixiang

    2013-07-01

    Acetaminophen is frequently prescribed for treating patients with the common cold, but there is little evidence as to whether it is effective. To determine the efficacy and safety of acetaminophen in the treatment of the common cold in adults. We searched CENTRAL 2013, Issue 1, Ovid MEDLINE (1950 to January week 5, 2013), EMBASE (1980 to February 2013), CINAHL (1982 to February 2013) and LILACS (1985 to February 2013). We included randomised controlled trials (RCTs) comparing acetaminophen to placebo or no treatment in adults with the common cold. Studies were included if the trials used acetaminophen as one ingredient of a combination therapy. We excluded studies in which the participants had complications. Primary outcomes included subjective symptom score and duration of common cold symptoms. Secondary outcomes were overall well being, adverse events and financial costs. Two review authors independently screened studies for inclusion, assessed risk of bias and extracted data. We performed standard statistical analyses. We included four RCTs involving 758 participants. We did not pool data because of heterogeneity in study designs, outcomes and time points. The studies provided sparse information about effects longer than a few hours, as three of four included studies were short trials of only four to six hours. Participants treated with acetaminophen had significant improvements in nasal obstruction in two of the four studies. One study showed that acetaminophen was superior to placebo in decreasing rhinorrhoea severity, but was not superior for treating sneezing and coughing. Acetaminophen did not improve sore throat or malaise in two of the four studies. Results were inconsistent for some symptoms. Two studies showed that headache and achiness improved more in the acetaminophen group than in the placebo group, while one study showed no difference between the acetaminophen and placebo group. None of the included studies reported the duration of common cold

  12. Opioid use in knee arthroplasty after receiving intravenous acetaminophen.

    Science.gov (United States)

    Kelly, Jennifer S; Opsha, Yekaterina; Costello, Jennifer; Schiller, Daryl; Hola, Eric T

    2014-12-01

    Intravenous (IV) acetaminophen may be an effective component of multimodal postoperative pain management. The primary objective of this study was to evaluate the impact of IV acetaminophen on total opioid use in postoperative patients. The secondary objective was to evaluate the effect of IV acetaminophen on hospital length of stay. This retrospective, case-control study evaluated the impact of IV acetaminophen on total opioid use in surgical patients. Patients were included if they received at least one perioperative dose of IV acetaminophen and underwent a surgical knee procedure. Controls were matched and randomly selected based on procedure type, age, and severity of illness. Postoperative opioids were converted into oral morphine equivalents, and overall use was compared between groups. One hundred patients were enrolled, with 25 patients receiving IV acetaminophen and 75 matched controls. A total of 135 mg versus 112.5 mg oral morphine equivalents were used in the IV acetaminophen group and control group, respectively (p=0.987). There were 45 mg/day oral morphine equivalents used in the IV acetaminophen group versus 37.5 mg in the control group (p=0.845). The median hospital length of stay in both groups was 3 days (p=0.799). IV acetaminophen did not significantly decrease postoperative opioid use in patients who underwent surgical knee procedures. In addition, there was a nonsignificant trend toward increased opioid use in the IV acetaminophen group. There was no significant difference in hospital length of stay between the IV acetaminophen group and the control group. These findings require further study in larger patient populations and in other orthopedic procedures that typically require longer hospital stays. © 2014 Pharmacotherapy Publications, Inc.

  13. Exacerbation of acetaminophen hepatotoxicity by the anthelmentic drug fenbendazole.

    Science.gov (United States)

    Gardner, Carol R; Mishin, Vladimir; Laskin, Jeffrey D; Laskin, Debra L

    2012-02-01

    Fenbendazole is a broad-spectrum anthelmintic drug widely used to prevent or treat nematode infections in laboratory rodent colonies. Potential interactions between fenbendazole and hepatotoxicants such as acetaminophen are unknown, and this was investigated in this study. Mice were fed a control diet or a diet containing fenbendazole (8-12 mg/kg/day) for 7 days prior to treatment with acetaminophen (300 mg/kg) or phosphate buffered saline. In mice fed a control diet, acetaminophen administration resulted in centrilobular hepatic necrosis and increases in serum transaminases, which were evident within 12 h. Acetaminophen-induced hepatotoxicity was markedly increased in mice fed the fenbendazole-containing diet, as measured histologically and by significant increases in serum transaminase levels. Moreover, in mice fed the fenbendazole-containing diet, but not the control diet, 63% mortality was observed within 24 h of acetaminophen administration. Fenbendazole by itself had no effect on liver histology or serum transaminases. To determine if exaggerated hepatotoxicity was due to alterations in acetaminophen metabolism, we analyzed sera for the presence of free acetaminophen and acetaminophen-glucuronide. We found that there were no differences in acetaminophen turnover. We also measured cytochrome P450 (cyp) 2e1, cyp3a, and cyp1a2 activity. Whereas fenbendazole had no effect on the activity of cyp2e1 or cyp3a, cyp1a2 was suppressed. A prolonged suppression of hepatic glutathione (GSH) was also observed in acetaminophen-treated mice fed the fenbendazole-containing diet when compared with the control diet. These data demonstrate that fenbendazole exacerbates the hepatotoxicity of acetaminophen, an effect that is related to persistent GSH depletion. These findings are novel and suggest a potential drug-drug interaction that should be considered in experimental protocols evaluating mechanisms of hepatotoxicity in rodent colonies treated with fenbendazole.

  14. Factors influencing circadian rhythms in acetaminophen lethality.

    Science.gov (United States)

    Schnell, R C; Bozigian, H P; Davies, M H; Merrick, B A; Park, K S; McMillan, D A

    1984-01-01

    Experiments were conducted to examine the effects of changes in lighting schedules and food consumption on circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice. Under a normal lighting schedule (light: 06.00-18.00 h), male mice exhibited a circadian rhythm in acetaminophen lethality (peak: 18.00 h; nadir: 06.00, 10.00 h) and an inverse rhythm in hepatic glutathione concentrations (peak: 06.00, 10.00 h; nadir: 18.00 h). Under a reversed lighting schedule (light: 18.00-06.00 h) the glutathione rhythm was reversed and the rhythm in acetaminophen lethality was altered showing greater sensitivity to the drug. Under continuous light, there was a shift in the acetaminophen lethality and the hepatic glutathione rhythms. Under continuous dark, both rhythms were abolished. Under a normal lighting regimen, hepatic glutathione levels were closely correlated with food consumption; i.e., both were increased during the dark phase and decreased during the light phase. Fasting the mice for 12 h abolished the rhythms in acetaminophen lethality and hepatic glutathione levels; moreover, the lethality was increased and the hepatic glutathione levels were decreased. These experiments show that both lighting schedules and feeding can alter the circadian rhythms in acetaminophen lethality and hepatic glutathione levels in male mice.

  15. Acetaminophen overdose

    Science.gov (United States)

    ... of Drugs . 16th ed. Waltham, MA: Elsevier; 2016:474-493. Hendrickson RG, McKeown, MJ. Acetaminophen. In: Marx ... RSS Follow us Disclaimers Copyright Privacy Accessibility Quality Guidelines Viewers & Players MedlinePlus Connect for EHRs For Developers ...

  16. Autoprotection in acetaminophen intoxication in rats

    DEFF Research Database (Denmark)

    Dalhoff, K; Laursen, H; Bangert, K

    2001-01-01

    and liver tissue were collected before and 12, 24, 36, and 48 hr after the toxic dose and were analysed for hepatic glutathione and cysteine contents, hepatic glutathione-S-transferase and blood alanine aminotransferase activity, as well as acetaminophen concentration in plasma. Steady-state mRNA levels......Autoprotection by acetaminophen, i.e. increased resistance to toxic effects caused by pretreatment, is a well-known phenomenon. The purpose of the present work was to identify mechanisms for increased acetaminophen tolerance induced by pretreatment of rats. One group of female Wistar rats...... (pretreated rats) received acetaminophen orally in increasing doses (1 to 4.3 g/kg) twice a week for 3 weeks, one group (naïve rats) received the vehicle. At time zero pretreated rats received a toxic dose of 7.5 g/kg (100% lethal in naïve rats), and naïve rats received a toxic dose of 4.3 g/kg. Blood...

  17. Interventions for paracetamol (acetaminophen) overdoses

    DEFF Research Database (Denmark)

    Brok, J; Buckley, N; Gluud, C

    2002-01-01

    Self-poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Interventions for paracetamol poisoning encompass inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation.......Self-poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Interventions for paracetamol poisoning encompass inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation....

  18. Acetaminophen (paracetamol) oral absorption and clinical influences.

    Science.gov (United States)

    Raffa, Robert B; Pergolizzi, Joseph V; Taylor, Robert; Decker, John F; Patrick, Jeffrey T

    2014-09-01

    Acetaminophen (paracetamol) is a widely used nonopioid, non-NSAID analgesic that is effective against a variety of pain types, but the consequences of overdose can be severe. Because acetaminophen is so widely available as a single agent and is increasingly being formulated in fixed-ratio combination analgesic products for the potential additive or synergistic analgesic effect and/or reduced adverse effects, accidental cumulative overdose is an emergent concern. This has rekindled interest in the sites, processes, and pharmacokinetics of acetaminophen oral absorption and the clinical factors that can influence these. The absorption of oral acetaminophen occurs primarily along the small intestine by passive diffusion. Therefore, the rate-limiting step is the rate of gastric emptying into the intestines. Several clinical factors can affect absorption per se or the rate of gastric emptying, such as diet, concomitant medication, surgery, pregnancy, and others. Although acetaminophen does not have the abuse potential of opioids or the gastrointestinal bleeding or organ adverse effects of NSAIDs, excess amounts can produce serious hepatic injury. Thus, an understanding of the sites and features of acetaminophen absorption--and how they might be influenced by factors encountered in clinical practice--is important for pain management using this agent. It can also provide insight for design of formulations that would be less susceptible to clinical variables. © 2013 World Institute of Pain.

  19. Effect of surfactants on the mechanical properties of acetaminophen ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the effect of non ionic surfactant on the mechanical properties of acetaminophen-wax matrix tablet and hence its implication on dissolution profile. Acetaminophen-wax matrix granules were prepared by melt granulation technique. This was formed by triturating acetaminophen ...

  20. [Acetaminophen (paracetamol) causing renal failure: report on 3 pediatric cases].

    Science.gov (United States)

    Le Vaillant, J; Pellerin, L; Brouard, J; Eckart, P

    2013-06-01

    Renal failure secondary to acetaminophen poisoning is rare and occurs in approximately 1-2 % of patients with acetaminophen overdose. The pathophysiology is still being debated, and renal acetaminophen toxicity consists of acute tubular necrosis, without complication if treated promptly. Renal involvement can sometimes occur without prior liver disease, and early renal manifestations usually occur between the 2nd and 7th day after the acute acetaminophen poisoning. While therapy is exclusively symptomatic, sometimes serious metabolic complications can be observed. The monitoring of renal function should therefore be considered as an integral part of the management of children with acute, severe acetaminophen intoxication. We report 3 cases of adolescents who presented with acute renal failure as a result of voluntary drug intoxication with acetaminophen. One of these 3 girls developed severe renal injury without elevated hepatic transaminases. None of the 3 girls' renal function required hemodialysis, but one of the 3 patients had metabolic complications after her acetaminophen poisoning. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-01

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  2. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  3. Acetaminophen (Paracetamol) Induces Hypothermia During Acute Cold Stress.

    Science.gov (United States)

    Foster, Josh; Mauger, Alexis R; Govus, Andrew; Hewson, David; Taylor, Lee

    2017-11-01

    Acetaminophen is an over-the-counter drug used to treat pain and fever, but it has also been shown to reduce core temperature (T c ) in the absence of fever. However, this side effect is not well examined in humans, and it is unknown if the hypothermic response to acetaminophen is exacerbated with cold exposure. To address this question, we mapped the thermoregulatory responses to acetaminophen and placebo administration during exposure to acute cold (10 °C) and thermal neutrality (25 °C). Nine healthy Caucasian males (aged 20-24 years) participated in the experiment. In a double-blind, randomised, repeated measures design, participants were passively exposed to a thermo-neutral or cold environment for 120 min, with administration of 20 mg/kg lean body mass acetaminophen or a placebo 5 min prior to exposure. T c , skin temperature (T sk ), heart rate, and thermal sensation were measured every 10 min, and mean arterial pressure was recorded every 30 min. Data were analysed using linear mixed effects models. Differences in thermal sensation were analysed using a cumulative link mixed model. Acetaminophen had no effect on T c in a thermo-neutral environment, but significantly reduced T c during cold exposure, compared with a placebo. T c was lower in the acetaminophen compared with the placebo condition at each 10-min interval from 80 to 120 min into the trial (all p  0.05). This preliminary trial suggests that acetaminophen-induced hypothermia is exacerbated during cold stress. Larger scale trials seem warranted to determine if acetaminophen administration is associated with an increased risk of accidental hypothermia, particularly in vulnerable populations such as frail elderly individuals.

  4. Acetaminophen Toxicosis in a Cat

    OpenAIRE

    Özkan, Burçak

    2017-01-01

    Acetaminophen causes serious problems as toxication in cats in spite of being an effective and reliable analgesic and antipyretic in humans. A six months-old female cat suffering from cough was presented to examination to International Pet Hospital/Tirana/Albania when no result was obtained after one  acetaminophen tablet had been administered in order to heal the disease. Depression, grey and cyanotic mucous membranes and tongue, tachypnea, tachycardia, hypothermia were primary clinical sign...

  5. Use of Arctium lappa Extract Against Acetaminophen-Induced Hepatotoxicity in Rats

    OpenAIRE

    El-Kott, Attalla Farag; Bin-Meferij, Mashael Mohammed

    2015-01-01

    Background: Severe destructive hepatic injuries can be induced by acetaminophen overdose and may lead to acute hepatic failure. Objective: To investigate the ameliorative effects of Arctium lappa root extract on acetaminophen-induced hepatotoxicity. Methods: Rats were divided into 4 groups: normal control group, Arctium lappa extract group, acetaminophen-injected group, and acetaminophen treated with Arctium lappa extract group. Results: The treatment with Arctium lappa extract reduc...

  6. Underdosing of acetaminophen by parents and emergency department utilization.

    Science.gov (United States)

    Goldman, Ran D; Scolnik, Dennis

    2004-02-01

    Fever is a common reason for parents to seek medical attention for their children. We conducted this study to document accuracy of parental administration of acetaminophen and to identify if parents who did not give an optimal dose would have decided not to come to the emergency department (ED) if the fever had diminished at home. A cross-sectional study including 248 caregivers of children who had a chief complaint of fever and had been given acetaminophen in the preceding 24 hours were interviewed. Enrollment was 86%. One hundred parents (47%) gave acetaminophen in the recommended dose, 26 parents (12%) gave an overdose, and 87 (41%) gave an underdose of acetaminophen. Half of the parents (54%) would not have come to the ED if the fever had subsided after using the antipyretic treatment at home. Children with significantly higher maximal temperature at home would not have been taken to the ED if fever had subsided. Parents who speak English as the primary language at home gave the recommended dose of acetaminophen more frequently than non-English-speaking parents. A significant portion of our population gives an underdose of acetaminophen, reflecting lack of knowledge or misuse. Based on parental reports, the majority of visits for fever might have been prevented, if parents had been successful in their effort to reduce temperature to below of what they considered as fever, but factors other than underdosing of acetaminophen probably encourage parents of febrile children to visit the ED.

  7. The biochemistry of acetaminophen hepatotoxicity and rescue: a mathematical model

    Directory of Open Access Journals (Sweden)

    Ben-Shachar Rotem

    2012-12-01

    Full Text Available Abstract Background Acetaminophen (N-acetyl-para-aminophenol is the most widely used over-the-counter or prescription painkiller in the world. Acetaminophen is metabolized in the liver where a toxic byproduct is produced that can be removed by conjugation with glutathione. Acetaminophen overdoses, either accidental or intentional, are the leading cause of acute liver failure in the United States, accounting for 56,000 emergency room visits per year. The standard treatment for overdose is N-acetyl-cysteine (NAC, which is given to stimulate the production of glutathione. Methods We have created a mathematical model for acetaminophen transport and metabolism including the following compartments: gut, plasma, liver, tissue, urine. In the liver compartment the metabolism of acetaminophen includes sulfation, glucoronidation, conjugation with glutathione, production of the toxic metabolite, and liver damage, taking biochemical parameters from the literature whenever possible. This model is then connected to a previously constructed model of glutathione metabolism. Results We show that our model accurately reproduces published clinical and experimental data on the dose-dependent time course of acetaminophen in the plasma, the accumulation of acetaminophen and its metabolites in the urine, and the depletion of glutathione caused by conjugation with the toxic product. We use the model to study the extent of liver damage caused by overdoses or by chronic use of therapeutic doses, and the effects of polymorphisms in glucoronidation enzymes. We use the model to study the depletion of glutathione and the effect of the size and timing of N-acetyl-cysteine doses given as an antidote. Our model accurately predicts patient death or recovery depending on size of APAP overdose and time of treatment. Conclusions The mathematical model provides a new tool for studying the effects of various doses of acetaminophen on the liver metabolism of acetaminophen and

  8. Acetaminophen hepatotoxicity in mice: Effect of age, frailty and exposure type

    Science.gov (United States)

    Kane, Alice E.; Mitchell, Sarah J.; Mach, John; Huizer-Pajkos, Aniko; McKenzie, Catriona; Jones, Brett; Cogger, Victoria; Le Couteur, David G.; de Cabo, Rafael; Hilmer, Sarah N.

    2018-01-01

    Acetaminophen is a commonly used analgesic that can cause severe hepatotoxicity in overdose. Despite old age and frailty being associated with extensive and long-term utilization of acetaminophen and a high prevalence of adverse drug reactions, there is limited information on the risks of toxicity from acetaminophen in old age and frailty. This study aimed to assess changes in the risk and mechanisms of hepatotoxicity from acute, chronic and sub-acute acetaminophen exposure with old age and frailty in mice. Young and old male C57BL/6 mice were exposed to either acute (300 mg/kg via oral gavage), chronic (100 mg/kg/day in diet for six weeks) or sub-acute (250 mg/kg, t.i.d., for three days) acetaminophen, or saline control. Pre-dosing mice were scored for the mouse clinical frailty index, and after dosing serum and liver tissue were collected for assessment of toxicity and mechanisms. There were no differences with old age or frailty in the degree of hepatotoxicity induced by acute, chronic or subacute acetaminophen exposure as assessed by serum liver enzymes and histology. Age-related changes in the acetaminophen toxicity pathways included increased liver GSH concentrations, increased NQO1 activity and an increased pro- and anti-inflammatory response to acetaminophen in old age. Frailty-related changes included a negative correlation between frailty index and serum protein, albumin and ALP concentrations for some mouse groups. In conclusion, although there were changes in some pathways that would be expected to influence susceptibility to acetaminophen toxicity, there was no overall increase in acetaminophen hepatotoxicity with old age or frailty in mice. PMID:26615879

  9. Chronic acetaminophen overdosing in children: risk assessment and management.

    Science.gov (United States)

    Sztajnkrycer, M J; Bond, G R

    2001-04-01

    Acetaminophen is currently the pediatric analgesic and antipyretic of choice. Although children appear to tolerate single, high-dose ingestions well, the literature is replete with reports of significant morbidity and mortality after repeated supra-therapeutic dosing. Proposed risk factors for injury with chronic use include age, total dose, duration, presence of intercurrent febrile illness, starvation, co-administration of cytochrome P450-inducing drugs, underlying hepatic disease, and unique genetic makeup. Evaluation of these children should include serum acetaminophen concentration, prothrombin time, and serum bilirubin and transaminase concentrations. The Rumack-Mathew nomogram should not be used to estimate the risk of hepatotoxicity in cases of chronic ingestion. Based on history, clinical examination, and laboratory findings, patients may be placed in three categories: those without hepatic injury and with no residual acetaminophen to be metabolized, those without injury but with some acetaminophen to be metabolized, and those with hepatotoxicity. Those without injury and no residual acetaminophen need not be treated or followed. Patients with hepatotoxicity or potential for hepatotoxicity based on residual acetaminophen should be treated with N-acetylcysteine. Most importantly, because so many parents are unaware of the potential risk of inappropriate dosing, education is the key to preventing future cases.

  10. Evaluation of adsorption capacity of acetaminophen on activated ...

    African Journals Online (AJOL)

    Purpose: To investigate varying dosage forms of activated charcoal obtained from community pharmacy outlets in Nigeria for their adsorption capacity when challenged with acetaminophen. Methods: Equilibruim kinetics of acetaminophen adsorption onto activated charcoal surface was determined via batch studies at ...

  11. Effect of Acetaminophen Ingestion on Thermoregulation of Normothermic, Non-Febrile Humans.

    Directory of Open Access Journals (Sweden)

    Josh eFoster

    2016-03-01

    Full Text Available In non-febrile mouse models, high dose acetaminophen administration causes profound hypothermia. However, this potentially hazardous side-effect has not been confirmed in non-febrile humans. Thus, we sought to ascertain whether an acute therapeutic dose (20 mg·kg lean body mass of acetaminophen would reduce non-febrile human core temperature in a sub-neutral environment. Ten apparently healthy (normal core temperature, no musculoskeletal injury, no evidence of acute illness Caucasian males participated in a preliminary study (Study one to determine plasma acetaminophen concentration following oral ingestion of 20 mg·kg lean body mass acetaminophen. Plasma samples (every 20 minutes up to 2-hours post ingestion were analysed via enzyme linked immunosorbent assay. Thirteen (eight recruited from Study one apparently healthy Caucasian males participated in Study two, and were passively exposed to 20°C, 40% r.h. for 120 minutes on two occasions in a randomised, repeated measures, crossover design. In a double blind manner, participants ingested acetaminophen (20 mg·kg lean body mass or a placebo (dextrose immediately prior to entering the environmental chamber. Rectal temperature, skin temperature, heart rate, and thermal sensation were monitored continuously and recorded every ten minutes. In Study one, the peak concentration of acetaminophen (14 ± 4 µg/ml in plasma arose between 80 and 100 minutes following oral ingestion. In Study two, acetaminophen ingestion reduced the core temperature of all participants, whereas there was no significant change in core temperature over time in the placebo trial. Mean core temperature was significantly lower in the acetaminophen trial compared with that of a placebo (p 0.05. The results indicate oral acetaminophen reduces core temperature of humans exposed to an environment beneath the thermal neutral zone. These results suggest that acetaminophen may inhibit the thermogenic mechanisms required to regulate

  12. Transplacental Passage of Acetaminophen in Term Pregnancy.

    Science.gov (United States)

    Nitsche, Joshua F; Patil, Avinash S; Langman, Loralie J; Penn, Hannah J; Derleth, Douglas; Watson, William J; Brost, Brian C

    2017-05-01

    Objective  The objective of this study was to determine the maternal and fetal pharmacokinetic (PK) profiles of acetaminophen after administration of a therapeutic oral dose. Study Design  After obtaining Institutional Review Board approval and their written informed consent, pregnant women were given a single oral dose (1,000 mg) of acetaminophen upon admission for scheduled cesarean delivery. Maternal venous blood and fetal cord blood were obtained at the time of delivery and acetaminophen levels were measured using gas chromatography-mass spectroscopy. PK parameters were calculated by noncompartmental analysis. Nonparametric correlation of maternal/fetal acetaminophen levels and PK curves were calculated. Results  In this study, 34 subjects were enrolled (median, 32 years; range, 25-39 years). The median maternal weight was 82 kg (range, 62-100 kg). All but two subjects were delivered beyond 39 weeks' gestation. The median newborn birth weight was 3,590 g (interquartile range, 3,403-3,848 g). Noncompartmental analysis described similar PK parameters in the maternal ( T 1/2 , 84 minutes; apparent clearance [Cl/F], 28.8 L/h; apparent volume of distribution [V d /F], 57.5 L) and fetal compartments ( T 1/2 , 82 minutes; Cl/F, 31.2 L/h; V d /F, 61.2 L). Paired maternal/fetal acetaminophen levels were highly correlated ( p  surrogate for fetal exposure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Exacerbation of Acetaminophen Hepatotoxicity by the Anthelmentic Drug Fenbendazole

    OpenAIRE

    Gardner, Carol R.; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-01-01

    Fenbendazole is a broad-spectrum anthelmintic drug widely used to prevent or treat nematode infections in laboratory rodent colonies. Potential interactions between fenbendazole and hepatotoxicants such as acetaminophen are unknown, and this was investigated in this study. Mice were fed a control diet or a diet containing fenbendazole (8–12 mg/kg/day) for 7 days prior to treatment with acetaminophen (300 mg/kg) or phosphate buffered saline. In mice fed a control diet, acetaminophen administra...

  14. Acetaminophen developmental pharmacokinetics in premature neonates and infants

    DEFF Research Database (Denmark)

    Anderson, Brian J; van Lingen, Richard A; Hansen, Tom G

    2002-01-01

    The aim of this study was to describe acetaminophen developmental pharmacokinetics in premature neonates through infancy to suggest age-appropriate dosing regimens.......The aim of this study was to describe acetaminophen developmental pharmacokinetics in premature neonates through infancy to suggest age-appropriate dosing regimens....

  15. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    International Nuclear Information System (INIS)

    Jetten, Marlon J.A.; Gaj, Stan; Ruiz-Aracama, Ainhoa; Kok, Theo M. de; Delft, Joost H.M. van; Lommen, Arjen; Someren, Eugene P. van; Jennen, Danyel G.J.; Claessen, Sandra M.; Peijnenburg, Ad A.C.M.; Stierum, Rob H.; Kleinjans, Jos C.S.

    2012-01-01

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2 g dose) and oxidative stress responses (4 g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites. -- Highlights: ► 'Omics techniques outperformed

  16. Study of Nephrotoxic Potential of Acetaminophen in Birds

    Science.gov (United States)

    Jayakumar, K.; Mohan, K.; Swamy, H. D. Narayana; Shridhar, N. B.; Bayer, M. D.

    2010-01-01

    The present study was designed to evaluate the effect of acetaminophen on kidneys of birds by comparison with diclofenac that is used as positive control. The birds of Group I served as negative control and received normal saline, whereas Group II birds received diclofenac injection (2.5 mg/kg IM) and Group III birds received acetaminophen injection (10 mg/kg IM) for a period of seven days daily. The birds treated with diclofenac showed severe clinical signs of toxicity accompanied with high mortality and significant increase (P<0.001) in serum creatinine and uric acid concentration. The creatinine and uric acid concentrations were consistent with gross and histopathological findings. The negative control and acetaminophen-treated groups showed no adverse clinical signs, serum creatinine and uric acid concentrations were normal, and no gross or histopathological changes in kidneys were observed. Thus, it was concluded that acetaminophen can be used for treatment in birds without any adverse effect on kidneys. PMID:21170252

  17. Hepatoprotective Effect of Metadoxine on Acetaminophen-induced Liver Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Parvin Mazraati

    2018-01-01

    Full Text Available Background: Metadoxine (pyridoxine pyrrolidone carboxylate is considered to be a beneficial agent for the treatment of experimental hepatotoxicity due to alcohol, CCl4, and bile duct ligation. Hence, the therapeutic effect of metadoxine and N-acetylcysteine (NAC as reference drug was investigated in mice exposed to acute hepatotoxicity induced by a single oral toxic dose of acetaminophen (650 mg/kg. Materials and Methods: Metadoxine (200 and 400 mg/kg and NAC (300 mg/kg were given orally (p. o., 2 h after acetaminophen administration. Serum aminotransferases, aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP, total bilirubin, hepatic glutathione (GSH, and malondialdehyde (MDA levels were determined for evaluating the extent of hepatotoxicity due to acetaminophen and its protection by metadoxine. Results: Findings indicated that metadoxine significantly reduced the level of serum ALT, AST, and ALP but not total bilirubin which increased by acetaminophen intoxication. Administration of metadoxine also attenuated oxidative stress by suppressing lipid peroxidation (MDA and prevented the depletion of reduced GSH level which caused by acetaminophen toxicity. Besides, metadoxine ameliorated histopathological hepatic tissue injury induced by acetaminophen. Conclusion: In most parameters examined, the effect of metadoxine was comparable to NAC. Hence, metadoxine could be considered as a beneficial therapeutic candidate to protect against acute acetaminophen hepatotoxicity.

  18. Acute pain management: acetaminophen and ibuprofen are often under-dosed.

    Science.gov (United States)

    Milani, Gregorio P; Benini, Franca; Dell'Era, Laura; Silvagni, Davide; Podestà, Alberto F; Mancusi, Rossella Letizia; Fossali, Emilio F

    2017-07-01

    Most children with pain are managed by either acetaminophen or ibuprofen. However, no study has so far investigated if children are prescribed adequate doses of acetaminophen or ibuprofen in emergency department. Aim of this retrospective study was to investigate the prevalence of under-dosage of these drugs in children presenting with pain in emergency department. Children initially prescribed with acetaminophen or ibuprofen for pain management were included. The χ 2 automatic interaction detection method was used considering the percentage variation from the minimum of the appropriate dose as dependent variable while prescribed drug, age, gender, body weight, type of hospital (pediatric or general), and availability of internal guidelines on pediatric pain management in the emergency department as independent variables. Data on 1471 children managed for pain were available. Under-dosage was prescribed in 893 subjects (61%), of whom 577 were prescribed acetaminophen and 316 ibuprofen. The use of acetaminophen suppositories, body weight 40 kg, and the use of oral ibuprofen identified clusters of children associated with under-dosage prescription. Prescription of acetaminophen and ibuprofen was frequently under-dosed. The use of suppositories, lower and higher body weight, and the use of ibuprofen were associated with under-dosage. Under-dosing may reflect prescription of anti-pyretic doses. Agenzia Italiana del Farmaco-Observational Study Register (RSO). Registration code: PIERRE/1 What is Known: • Pain is frequent in children presented to emergency department. • International recommendations on pain management are often not implemented. What is New: • Acetaminophen and ibuprofen were frequently underdosed in children prescribed for pain in the Italian emergency departments. • Under-dosage may be related to the habit of using acetaminophen and ibuprofen in the recommended range for fever treatment.

  19. Association of prenatal exposure to acetaminophen and coffee with childhood asthma

    DEFF Research Database (Denmark)

    Liu, Xiaoqin; Liew, Zeyan; Olsen, Jørn

    2016-01-01

    PurposeSome studies have suggested that maternal acetaminophen use during pregnancy is associated with asthma in the offspring, and coffee consumption may modify the toxicity of acetaminophen. We aim to examine whether pregnancy maternal acetaminophen use increases the risk for offspring asthma......, and whether such a potential association could be modified by maternal coffee consumption. MethodsWe included 63 652 live-born singletons enrolled in the Danish National Birth Cohort. Maternal acetaminophen use and coffee consumption during pregnancy were assessed prospectively via the enrolment questionnaire...... and three computer-assisted telephone interviews. Asthma cases were identified by using the Danish National Patient Register and the Danish National Prescription Registry. We estimated the hazard ratios (HRs) for asthma according to prenatal acetaminophen and coffee exposure using Cox proportional hazards...

  20. Interaction of Aldehyde dehydrogenase with acetaminophen as examined by spectroscopies and molecular docking

    Directory of Open Access Journals (Sweden)

    Ayodele O. Kolawole

    2017-07-01

    Full Text Available The interaction of acetaminophen, a non-substrate anionic ligand, with Aldehyde Dehydrogenase was studied by fluorescence, UV–Vis absorption, and circular dichroism spectroscopies under simulated physiological conditions. The fluorescence spectra and data generated showed that acetaminophen binding to ALDH is purely dynamic quenching mechanism. The acetaminophen-ALDH is kinetically rapid reversible interaction with a binding constant, Ka, of 4.91×103 L mol−1. There was an existence of second binding site of ALDH for acetaminophen at saturating acetaminophen concentration. The binding sites were non-cooperative. The thermodynamic parameters obtained suggest that Van der Waal force and hydrogen bonding played a major role in the binding of acetaminophen to ALDH. The interaction caused perturbation of the ALDH structures with an obvious reduction in the α-helix. The binding distance of 4.43 nm was obtained between Acetaminophen and ALDH. Using Ficoll 400 as macro-viscosogen and glycerol as micro-viscosogen, Stoke-Einstein empirical plot demonstrated that acetaminophen-ALDH binding was diffusion controlled. Molecular docking showed the participation of some amino acids in the complex formation with −5.3 kcal binding energy. With these, ALDH might not an excipient detoxifier of acetaminophen but could be involved in its pegylation/encapsulation.

  1. [Efficacy of tramadol/acetaminophen medication for central post-stroke pain].

    Science.gov (United States)

    Tanei, Takafumi; Kajita, Yasukazu; Noda, Hiroshi; Takebayashi, Shigenori; Hirano, Masaki; Nakahara, Norimoto; Wakabayashi, Toshihiko

    2013-08-01

    Central post-stroke pain(CPSP)is the most difficult type of central neuropathic pain to control with medical treatment. Opioids are commonly used for chronic neuropathic pain, but their efficacy in treating central neuropathic pain, particularly CPSP, is not clear. Tramadol is an opioid analgesic that, in combination with acetaminophen, has been approved since 2011 for the treatment of non-cancer pain in Japan. In this study we evaluated the efficacy of tramadol/acetaminophen medication for CPSP. We retrospectively reviewed nine cases of CPSP that received oral tramadol/acetaminophen medication. All cases received tramadol/acetaminophen medication after first taking pregabalin then antidepressant medication. Pain levels were assessed before tramadol/acetaminophen medication began and one month after a maintenance dose was reached, using a visual analogue scale(VAS)and the McGill pain questionnaire(MPQ). The mean dose of tramadol was 121±61.6 mg/day. Tramadol/acetaminophen medication was effective in reducing pain in seven of nine cases(77.8%). The VAS improved 32.9±13.8% from pre-to post-medication, and the MPQ improved from 15.4±9.1 pre-medication to 8.1±4.7 post-medication(ppain levels in patients with CPSP, and is a medication option for the treatment of CPSP.

  2. Randomized, placebo-controlled trial of acetaminophen for the reduction of oxidative injury in severe sepsis: the Acetaminophen for the Reduction of Oxidative Injury in Severe Sepsis trial.

    Science.gov (United States)

    Janz, David R; Bastarache, Julie A; Rice, Todd W; Bernard, Gordon R; Warren, Melissa A; Wickersham, Nancy; Sills, Gillian; Oates, John A; Roberts, L Jackson; Ware, Lorraine B

    2015-03-01

    This trial evaluated the efficacy of acetaminophen in reducing oxidative injury, as measured by plasma F2-isoprostanes, in adult patients with severe sepsis and detectable plasma cell-free hemoglobin. Single-center, randomized, double-blind, placebo-controlled phase II trial. Medical ICU in a tertiary, academic medical center. Critically ill patients 18 years old or older with severe sepsis and detectable plasma cell-free hemoglobin. Patients were randomized 1:1 to enteral acetaminophen 1 g every 6 hours for 3 days (n = 18) or placebo (n = 22) with the same dosing schedule and duration. F2-Isoprostanes on study day 3, the primary outcome, did not differ between acetaminophen (30 pg/mL; interquartile range, 24-41) and placebo (36 pg/mL; interquartile range, 25-80; p = 0.35). However, F2-isoprostanes were significantly reduced on study day 2 in the acetaminophen group (24 pg/mL; interquartile range, 19-36) when compared with placebo (36 pg/mL; interquartile range, 23-55; p = 0.047). Creatinine on study day 3, a secondary outcome, was significantly lower in the acetaminophen group (1.0 mg/dL; interquartile range, 0.6-1.4) when compared with that in the placebo (1.3 mg/dL; interquartile range, 0.83-2.0; p = 0.039). There was no statistically significant difference in hospital mortality (acetaminophen 5.6% vs placebo 18.2%; p = 0.355) or adverse events (aspartate aminotransferase or alanine aminotransferase > 400; acetaminophen 9.5% vs placebo 4.3%; p = 0.599). In adults with severe sepsis and detectable plasma cell-free hemoglobin, treatment with acetaminophen within 24 hours of ICU admission may reduce oxidative injury and improve renal function. Additional study is needed to confirm these findings and determine the effect of acetaminophen on patient-centered outcomes.

  3. Acetaminophen and codeine overdose

    Science.gov (United States)

    ... and is not helped by other types of painkillers. Acetaminophen and codeine overdose occurs when someone takes ... a vein) A laxative Medicine to reverse the effects of the poison and treat symptoms Tube through ...

  4. TRPV1 in brain is involved in acetaminophen-induced antinociception.

    Directory of Open Access Journals (Sweden)

    Christophe Mallet

    2010-09-01

    Full Text Available Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular over-the-counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl-5Z,8Z,11Z,14Z -eicosatetraenamide (AM404 by fatty acid amide hydrolase (FAAH in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV(1 in vitro. Pharmacological activation of TRPV(1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV(1 in the brain contributes to the analgesic effect of acetaminophen.Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV(1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E(2 (PGE(2 and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV(1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV(1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test.This study shows that TRPV(1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV(1 in the brain.

  5. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    Energy Technology Data Exchange (ETDEWEB)

    Jetten, Marlon J.A.; Gaj, Stan [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Ruiz-Aracama, Ainhoa [RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen (Netherlands); Kok, Theo M. de [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Delft, Joost H.M. van, E-mail: j.vandelft@maastrichtuniversity.nl [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Lommen, Arjen [RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen (Netherlands); Someren, Eugene P. van [Research Group Microbiology and Systems Biology, TNO, PO Box 360 3700 AJ Zeist (Netherlands); Jennen, Danyel G.J.; Claessen, Sandra M. [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Peijnenburg, Ad A.C.M. [RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen (Netherlands); Stierum, Rob H. [Research Group Microbiology and Systems Biology, TNO, PO Box 360 3700 AJ Zeist (Netherlands); Kleinjans, Jos C.S. [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands)

    2012-03-15

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2 g dose) and oxidative stress responses (4 g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites. -- Highlights: ► 'Omics techniques

  6. An evaluation on consumers' usage pattern of acetaminophen (paracetamol: A multicenter study from Penang, Malaysia

    Directory of Open Access Journals (Sweden)

    Chee Ping Chong

    2017-01-01

    Full Text Available Background: Acetaminophen poisoning is becoming an increasingly common social problem in Malaysia. An understanding of consumers' usage pattern of acetaminophen is essential in addressing the issue of accidental acetaminophen poisoning. This study was therefore aimed to evaluate the usage pattern of acetaminophen among the consumers in the state of Penang, Malaysia. Methods: A survey using a questionnaire was carried out in Health Clinic of University Sciences Malaysia (USM, Outpatient Clinic of Advance Medical and Dental Institute, USM, and five selected community pharmacies in the state of Penang from February 2013 to April 2013. A convenient sample of 400 Malaysian consumers was involved in this study. Results: Majority (98.0% of the consumers had ever taken acetaminophen. The consumers mostly used acetaminophen for headache (75.0% and fever (72.8%. The 500 mg acetaminophen tablet was more commonly used among the consumers (94.3% then the 650 mg tablet (44.3%. A total of 1.1% of the consumers had taken more than two tablets of acetaminophen 500 mg tablet per intake. Meanwhile, 24.4% of the consumers had taken two tablets or more of acetaminophen 650 mg tablet per intake. The consumers mostly consumed acetaminophen in a frequency of either 4 hourly (29.5%, 8 hourly (17.3% or 6 hourly (14.8%. However, 6.3% and 7.0% of the consumers would increase the dosage or frequency of acetaminophen consumption, respectively, when their conditions or symptoms persisted after taking the acetaminophen. Conclusions: The use of acetaminophen is prevalent among the surveyed consumers. The risks of acetaminophen overdose were found among the consumers.

  7. Acute versus chronic alcohol consumption in acetaminophen-induced hepatotoxicity

    DEFF Research Database (Denmark)

    Schmidt, L.E.; Dalhoff, K.P.; Poulsen, Henrik E.

    2002-01-01

    . With a time to NAC less than 12 hours, the mortality rate was 0.42% (95% CI, 0.05-2.7). When time to NAC exceeded 12, 24, and 48 hours, the mortality rate increased to 6.1%, 13%, and 19%, respectively. Chronic alcohol abuse was an independent risk factor of mortality (odds ratio [OR], 3.52; 95% CI, 1...... was confirmed as the major risk factor in acetaminophen-induced hepatotoxicity and mortality. Chronic alcohol abuse was an independent risk factor that could be counteracted by concomitant acute alcohol ingestion. We suggest that patients with chronic alcoholism and suspected acetaminophen poisoning due......The aim of this study was to determine by multivariate analysis how alcohol and other factors affect the clinical course and outcome in patients with acetaminophen (paracetamol) poisoning. A total of 645 consecutive patients admitted from 1994 to 2000 with single-dose acetaminophen poisoning were...

  8. Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: Method validation and application to a neonatal pharmacokinetic study.

    Science.gov (United States)

    Cook, Sarah F; King, Amber D; van den Anker, John N; Wilkins, Diana G

    2015-12-15

    Drug metabolism plays a key role in acetaminophen (paracetamol)-induced hepatotoxicity, and quantification of acetaminophen metabolites provides critical information about factors influencing susceptibility to acetaminophen-induced hepatotoxicity in clinical and experimental settings. The aims of this study were to develop, validate, and apply high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) methods for simultaneous quantification of acetaminophen, acetaminophen-glucuronide, acetaminophen-sulfate, acetaminophen-glutathione, acetaminophen-cysteine, and acetaminophen-N-acetylcysteine in small volumes of human plasma and urine. In the reported procedures, acetaminophen-d4 and acetaminophen-d3-sulfate were utilized as internal standards (IS). Analytes and IS were recovered from human plasma (10μL) by protein precipitation with acetonitrile. Human urine (10μL) was prepared by fortification with IS followed only by sample dilution. Calibration concentration ranges were tailored to literature values for each analyte in each biological matrix. Prepared samples from plasma and urine were analyzed under the same HPLC-ESI-MS/MS conditions, and chromatographic separation was achieved through use of an Agilent Poroshell 120 EC-C18 column with a 20-min run time per injected sample. The analytes could be accurately and precisely quantified over 2.0-3.5 orders of magnitude. Across both matrices, mean intra- and inter-assay accuracies ranged from 85% to 112%, and intra- and inter-assay imprecision did not exceed 15%. Validation experiments included tests for specificity, recovery and ionization efficiency, inter-individual variability in matrix effects, stock solution stability, and sample stability under a variety of storage and handling conditions (room temperature, freezer, freeze-thaw, and post-preparative). The utility and suitability of the reported procedures were illustrated by analysis of pharmacokinetic samples

  9. PULMONARY AND LIVER DAMAGE DURING TREATMENT WITH ACETAMINOPHEN (PARACETAMOL

    Directory of Open Access Journals (Sweden)

    L. I. Dvoretski

    2016-01-01

    Full Text Available This is a case report of pulmonary damage in the form of intestinal pneumonitis with severe respiratory failure during administration of acetaminophen (paracetamol. In addition, significant increase of ALT and AST levels without clinical signs of liver damage was observed in this patient. After glucocorticoids administration regression of radiological abnormal findings in the lungs along with normalization of liver enzymes values were registered. The rarity of interstitial pneumonitis induced by acetaminophen (paracetamol, especially in combination with liver damage, is emphasized. The presented patient history is the first case report of drug-induced hepatopulmonary syndrome during acetaminophen (paracetamol administration.

  10. Acetaminophen inhibits neuronal inflammation and protects neurons from oxidative stress

    Directory of Open Access Journals (Sweden)

    Grammas Paula

    2009-03-01

    Full Text Available Abstract Background Recent studies have demonstrated a link between the inflammatory response, increased cytokine formation, and neurodegeneration in the brain. The beneficial effects of anti-inflammatory drugs in neurodegenerative diseases, such as Alzheimer's disease (AD, have been documented. Increasing evidence suggests that acetaminophen has unappreciated anti-oxidant and anti-inflammatory properties. The objectives of this study are to determine the effects of acetaminophen on cultured brain neuronal survival and inflammatory factor expression when exposed to oxidative stress. Methods Cerebral cortical cultured neurons are pretreated with acetaminophen and then exposed to the superoxide-generating compound menadione (5 μM. Cell survival is assessed by MTT assay and inflammatory protein (tumor necrosis factor alpha, interleukin-1, macrophage inflammatory protein alpha, and RANTES release quantitated by ELISA. Expression of pro- and anti-apoptotic proteins is assessed by western blots. Results Acetaminophen has pro-survival effects on neurons in culture. Menadione, a superoxide releasing oxidant stressor, causes a significant (p Conclusion These data show that acetaminophen has anti-oxidant and anti-inflammatory effects on neurons and suggest a heretofore unappreciated therapeutic potential for this drug in neurodegenerative diseases such as AD that are characterized by oxidant and inflammatory stress.

  11. Hepatic disposition of the acyl glucuronide 1-O-gemfibrozil-beta-D-glucuronide: effects of clofibric acid, acetaminophen, and acetaminophen glucuronide.

    Science.gov (United States)

    Sabordo, L; Sallustio, B C; Evans, A M; Nation, R L

    2000-10-01

    Glucuronidation of carboxylic acid compounds results in the formation of electrophilic acyl glucuronides. Because of their polarity, carrier-mediated hepatic transport systems play an important role in determining both intra- and extrahepatic exposure to these reactive conjugates. We have previously shown that the hepatic membrane transport of 1-O-gemfibrozil-beta-D-glucuronide (GG) is carrier-mediated and inhibited by the organic anion dibromosulfophthalein. In this study, we examined the influence of 200 microM acetaminophen, acetaminophen glucuronide, and clofibric acid on the disposition of GG (3 microM) in the recirculating isolated perfused rat liver preparation. GG was taken up by the liver, excreted into bile, and hydrolyzed within the liver to gemfibrozil, which appeared in perfusate but not in bile. Mean +/- S. D. hepatic clearance, apparent intrinsic clearance, hepatic extraction ratio, and biliary excretion half-life of GG were 10.4 +/- 1.4 ml/min, 94.1 +/- 17.9 ml/min, 0.346 +/- 0.046, and 30.9 +/- 4.9 min, respectively, and approximately 73% of GG was excreted into bile. At the termination of the experiment (t = 90 min), the ratio of GG concentrations in perfusate, liver, and bile was 1:35:3136. Acetaminophen and acetaminophen glucuronide had no effect on the hepatic disposition of GG, suggesting relatively low affinities of acetaminophen conjugates for hepatic transport systems or the involvement of multiple transport systems for glucuronide conjugates. In contrast, clofibric acid increased the hepatic clearance, extraction ratio, and apparent intrinsic clearance of GG (P clofibric acid glucuronide at the level of hepatic transport. However, the transporter protein(s) involved remains to be identified.

  12. Acetaminophen versus Ibuprofen in Young Children with Mild Persistent Asthma.

    Science.gov (United States)

    Sheehan, William J; Mauger, David T; Paul, Ian M; Moy, James N; Boehmer, Susan J; Szefler, Stanley J; Fitzpatrick, Anne M; Jackson, Daniel J; Bacharier, Leonard B; Cabana, Michael D; Covar, Ronina; Holguin, Fernando; Lemanske, Robert F; Martinez, Fernando D; Pongracic, Jacqueline A; Beigelman, Avraham; Baxi, Sachin N; Benson, Mindy; Blake, Kathryn; Chmiel, James F; Daines, Cori L; Daines, Michael O; Gaffin, Jonathan M; Gentile, Deborah A; Gower, W Adam; Israel, Elliot; Kumar, Harsha V; Lang, Jason E; Lazarus, Stephen C; Lima, John J; Ly, Ngoc; Marbin, Jyothi; Morgan, Wayne J; Myers, Ross E; Olin, J Tod; Peters, Stephen P; Raissy, Hengameh H; Robison, Rachel G; Ross, Kristie; Sorkness, Christine A; Thyne, Shannon M; Wechsler, Michael E; Phipatanakul, Wanda

    2016-08-18

    Studies have suggested an association between frequent acetaminophen use and asthma-related complications among children, leading some physicians to recommend that acetaminophen be avoided in children with asthma; however, appropriately designed trials evaluating this association in children are lacking. In a multicenter, prospective, randomized, double-blind, parallel-group trial, we enrolled 300 children (age range, 12 to 59 months) with mild persistent asthma and assigned them to receive either acetaminophen or ibuprofen when needed for the alleviation of fever or pain over the course of 48 weeks. The primary outcome was the number of asthma exacerbations that led to treatment with systemic glucocorticoids. Children in both groups received standardized asthma-controller therapies that were used in a simultaneous, factorially linked trial. Participants received a median of 5.5 doses (interquartile range, 1.0 to 15.0) of trial medication; there was no significant between-group difference in the median number of doses received (P=0.47). The number of asthma exacerbations did not differ significantly between the two groups, with a mean of 0.81 per participant with acetaminophen and 0.87 per participant with ibuprofen over 46 weeks of follow-up (relative rate of asthma exacerbations in the acetaminophen group vs. the ibuprofen group, 0.94; 95% confidence interval, 0.69 to 1.28; P=0.67). In the acetaminophen group, 49% of participants had at least one asthma exacerbation and 21% had at least two, as compared with 47% and 24%, respectively, in the ibuprofen group. Similarly, no significant differences were detected between acetaminophen and ibuprofen with respect to the percentage of asthma-control days (85.8% and 86.8%, respectively; P=0.50), use of an albuterol rescue inhaler (2.8 and 3.0 inhalations per week, respectively; P=0.69), unscheduled health care utilization for asthma (0.75 and 0.76 episodes per participant, respectively; P=0.94), or adverse events. Among

  13. Tramadol and acetaminophen tablets for dental pain.

    OpenAIRE

    Medve, R. A.; Wang, J.; Karim, R.

    2001-01-01

    The purpose of this work was to compare the efficacy and time to analgesia of a new tramadol/acetaminophen combination tablet to those of tramadol or acetaminophen (APAP) alone. A meta-analysis was performed of 3 separate single-dose, double-blind, parallel-group trials in patients with moderate or severe pain following extraction of 2 or more third molars. Patients in each study were evenly randomized to a single dose of tramadol/APAP (75 mg/650 mg), tramadol 75 mg, APAP 650 mg, ibuprofen 40...

  14. Infant Sleep After Immunization: Randomized Controlled Trial of Prophylactic Acetaminophen

    Science.gov (United States)

    Gay, Caryl L.; Lynch, Mary; Lee, Kathryn A.

    2011-01-01

    OBJECTIVE: To determine the effects of acetaminophen and axillary temperature responses on infant sleep duration after immunization. METHODS: We conducted a prospective, randomized controlled trial to compare the sleep of 70 infants monitored by using ankle actigraphy for 24 hours before and after their first immunization series at ∼2 months of age. Mothers of infants in the control group received standard care instructions from their infants' health care provider, and mothers of infants in the intervention group were provided with predosed acetaminophen and instructed to administer a dose 30 minutes before the scheduled immunization and every 4 hours thereafter, for a total of 5 doses. Infant age and birth weight and immunization factors, such as acetaminophen use and timing of administration, were evaluated for changes in infant sleep times after immunization. RESULTS: Sleep duration in the first 24 hours after immunization was increased, particularly for infants who received their immunizations after 1:30 pm and for those who experienced elevated temperatures in response to the vaccines. Infants who received acetaminophen at or after immunization had smaller increases in sleep duration than did infants who did not. However, acetaminophen use was not a significant predictor of sleep duration when other factors were controlled. CONCLUSIONS: If further research confirms the relationship between time of day of vaccine administration, increased sleep duration after immunization, and antibody responses, then our findings suggest that afternoon immunizations should be recommended to facilitate increased sleep in the 24 hours after immunization, regardless of acetaminophen administration. PMID:22123869

  15. From painkiller to empathy killer: acetaminophen (paracetamol) reduces empathy for pain.

    Science.gov (United States)

    Mischkowski, Dominik; Crocker, Jennifer; Way, Baldwin M

    2016-09-01

    Simulation theories of empathy hypothesize that empathizing with others' pain shares some common psychological computations with the processing of one's own pain. Support for this perspective has largely relied on functional neuroimaging evidence of an overlap between activations during the experience of physical pain and empathy for other people's pain. Here, we extend the functional overlap perspective to the neurochemical level and test whether a common physical painkiller, acetaminophen (paracetamol), can reduce empathy for another's pain. In two double-blind placebo-controlled experiments, participants rated perceived pain, personal distress and empathic concern in response to reading scenarios about another's physical or social pain, witnessing ostracism in the lab, or visualizing another study participant receiving painful noise blasts. As hypothesized, acetaminophen reduced empathy in response to others' pain. Acetaminophen also reduced the unpleasantness of noise blasts delivered to the participant, which mediated acetaminophen's effects on empathy. Together, these findings suggest that the physical painkiller acetaminophen reduces empathy for pain and provide a new perspective on the neurochemical bases of empathy. Because empathy regulates prosocial and antisocial behavior, these drug-induced reductions in empathy raise concerns about the broader social side effects of acetaminophen, which is taken by almost a quarter of adults in the United States each week. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Dental pain as a risk factor for accidental acetaminophen overdose: a case-control study.

    Science.gov (United States)

    Vogel, Jody; Heard, Kennon J; Carlson, Catherine; Lange, Chad; Mitchell, Garrett

    2011-11-01

    Patients frequent take acetaminophen to treat dental pain. One previous study found a high rate of overuse of nonprescription analgesics in an emergency dental clinic. The purpose of this study is to determine if patients with dental pain are more likely to be treated for accidental acetaminophen poisoning than patients with other types of pain. We conducted a case-control study at 2 urban hospitals. Cases were identified by chart review of patients who required treatment for accidental acetaminophen poisoning. Controls were self-reported acetaminophen users taking therapeutic doses identified during a survey of emergency department patients. For our primary analysis, the reason for taking acetaminophen was categorized as dental pain or not dental pain. Our primary outcome was the odds ratio of accidental overdose to therapeutic users after adjustment for age, sex, alcoholism, and use of combination products using logistic regression. We identified 73 cases of accidental acetaminophen poisoning and 201 therapeutic users. Fourteen accidental overdose patients and 4 therapeutic users reported using acetaminophen for dental pain. The adjusted odds ratio for accidental overdose due to dental pain compared with other reasons for use was 12.8 (95% confidence interval, 4.2-47.6). We found that patients with dental pain are at increased risk to accidentally overdose on acetaminophen compared with patients taking acetaminophen for other reasons. Emergency physicians should carefully question patients with dental pain about overuse of analgesics. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Pharmacokinetics of acetaminophen and ibuprofen when coadministered with telmisartan in healthy volunteers.

    Science.gov (United States)

    Stangier, J; Su, C A; Fraunhofer, A; Tetzloff, W

    2000-12-01

    Two open-label, two-way, crossover studies were performed to assess any pharmacokinetic interaction of telmisartan with either acetaminophen or ibuprofen. Healthy male adult volunteers (n = 12) received a single oral dose of acetaminophen 1 g alone and with oral telmisartan 120 mg in one study. Oral ibuprofen 400 mg three times daily with and without oral once-daily telmisartan 120 mg was given for 7 days in the other study conducted in 6 males and 6 females. In both studies, there was a washout period of > or = 13 days between single and combination medication administration. The primary end points Cmax and AUC were compared between combination (acetaminophen or ibuprofen + telmisartan) and single-agent medication (acetaminophen or ibuprofen). Pharmacokinetic drug interaction was assessed by analysis of variance (ANOVA) and calculation of 90% confidence intervals (CI) for treatment ratios using log-transformed parameters. Bioequivalence (i.e., lack of interaction) was concluded if the 90% CI of the ratios for both Cmax and AUC were within the acceptance limit of 0.80 to 1.25. Geometric mean Cmax values for acetaminophen and R-(-)- and S-(+)-ibuprofen enantiomers were similar with and without telmisartan coadministration (12.6 micrograms/mL vs. 14.1 micrograms/mL; 17.3 micrograms/mL vs. 16.7 micrograms/mL; 19.4 micrograms/mL vs. 19.5 micrograms/mL, respectively), and values for R-(-)- as well as S-(+)-ibuprofen were bioequivalent. Geometric mean AUC values for acetaminophen and R-(-)- and S-(+)-ibuprofen were also bioequivalent with and without telmisartan. The distribution and elimination parameters of both acetaminophen and ibuprofen were comparable in the presence or absence of telmisartan. The concomitant and single-agent medications were all well tolerated. In conclusion, the long half-life and excellent safety profile of telmisartan were unaffected by concurrent acetaminophen or ibuprofen medication; thus, once-daily dosing of telmisartan can be maintained

  18. Conjugation of nitrated acetaminophen to Der p1 amplifies peripheral blood monocyte response to Der p1.

    Directory of Open Access Journals (Sweden)

    Ryan G Thomas

    Full Text Available An association of acetaminophen use and asthma was observed in the International Study of Asthma and Allergies in Childhood study. However there are no clear mechanisms to explain an association between acetaminophen use and immunologic pathology. In acidic conditions like those in the stomach and inflamed airway, tyrosine residues are nitrated by nitrous and peroxynitrous acids. The resulting nitrotyrosine is structurally similar to 2,4-dinitrophenol and 2,4-dinitrochlorobenzene, known haptens that enhance immune responses by covalently binding proteins. Nitrated acetaminophen shares similar molecular structure.We hypothesized the acetaminophen phenol ring undergoes nitration under acidic conditions, producing 3-nitro-acetaminophen which augments allergic responses by acting as a hapten for environmental allergens.3-nitro-acetaminophen was formed from acetaminophen in the presence of acidified nitrite, purified by high performance liquid chromatography, and assayed by gas-chromatography mass spectrometry. Purified 3-nitro-acetaminophen was reacted with Dermatophagoides pteronyssinus (Der p1 and analyzed by mass spectrometry to identify the modification site. Human peripheral blood mononuclear cells proliferation response was measured in response to 3-nitro-acetaminophen and to 3-nitro-acetaminophen-modified Der p1.Acetaminophen was modified by nitrous acid forming 3-nitro-acetaminophen over a range of different acidic conditions consistent with airway inflammation and stomach acidity. The Der p1 protein-hapten adduct creation was confirmed by liquid chromatography-mass spectrometry proteomics modifying cysteine 132. Peripheral blood mononuclear cells exposed to 3-nitro-acetaminophen-modified Der p1 had increased proliferation and cytokine production compared to acetaminophen and Der p1 alone (n = 7; p < 0.05.These data suggests 3-nitro-acetaminophen formation and reaction with Der p1 provides a mechanism by which stomach acid or infection

  19. "Nifedipine in the treatment of liver toxicity induced by Acetaminophen overdose in mice "

    Directory of Open Access Journals (Sweden)

    Kalantari H

    2000-11-01

    Full Text Available Acetaminophen is an analgesic and antipyretic drug, which is widely used by public and poisoning with this drug, is common. One of the most important adverse effects of acetaminophen poisoning is centrilobullar necrosis in hepatic cells, which depends on activity of microsomal cytochrome P-450 (CYP enzymes. The aim of this investigation was to find out the protective effect of nifedipine against liver toxicity caused by acetaminophen overdose (700 mg/kg as calcium channel blocker. In this study doses of 5, 50, 100, 250, 500 mg/kg of nifedipine were administered to mice orally one hour before acetaminophen administration. The negative control group receive normal saline. The positive control group was administered with acetaminophen at a dose of 700 mg/kg one hour after nifedipine administration. After 24 hours, enzyme activity (ALT, AST, histopathological examination and liver weight were compared with the control groups. The results revealed that nifedipine at dose of 500 mg/kg was the most effective and protected damage from acetaminophen toxicity.

  20. Postoperative analgesia using diclofenac and acetaminophen in children.

    Science.gov (United States)

    Hannam, Jacqueline A; Anderson, Brian J; Mahadevan, Murali; Holford, Nick H G

    2014-09-01

    Diclofenac dosing in children for analgesia is currently extrapolated from adult data. Oral diclofenac 1.0 mg·kg(-1) is recommended for children aged 1-12 years. Analgesic effect from combination diclofenac/acetaminophen is unknown. Children (n = 151) undergoing tonsillectomy (c. 1995) were randomized to receive acetaminophen elixir 40 mg·kg(-1) before surgery and 20 mg·kg(-1) rectally at the end of surgery with diclofenac suspension 0.1 mg·kg(-1) , 0.5 mg·kg(-1) , or 2.0 mg·kg(-1) before surgery or placebo. A further 93 children were randomized to receive diclofenac 0.1 mg·kg(-1) , 0.5 mg·kg(-1) , or 2.0 mg·kg(-1) only. Postoperative pain was assessed (visual analogue score, VAS 0-10) at half-hourly intervals from waking until discharge. Data were pooled with those from a further 222 children and 30 adults. One-compartment models with first-order absorption and elimination described the pharmacokinetics of both medicines. Combined drug effects were described using a modified EMAX model with an interaction term. An interval-censored model described the hazard of study dropout. Analgesia onset had an equilibration half-time of 0.496 h for acetaminophen and 0.23 h for diclofenac. The maximum effect (EMAX ) was 4.9. The concentration resulting in 50% of EMAX (C50 ) was 1.23 mg·l(-1) for diclofenac and 13.3 mg·l(-1) for acetaminophen. A peak placebo effect of 6.8 occurred at 4 h. Drug effects were additive. The hazard of dropping out was related to pain (hazard ratio of 1.35 per unit change in pain). Diclofenac 1.0 mg·kg(-1) with acetaminophen 15 mg·kg(-1) achieves equivalent analgesia to acetaminophen 30 mg·kg(-1) . Combination therapy can be used to achieve similar analgesia with lower doses of both drugs. © 2014 John Wiley & Sons Ltd.

  1. Preemptive Analgesia with Ibuprofen and Acetaminophen in Pediatric Lower Abdominal Surgery

    Directory of Open Access Journals (Sweden)

    P Kashefi

    2005-07-01

    Full Text Available Background: Postoperative pain is a significant problem in pediatrics. Preemptive administration of analgesics has recently emerged as a method to enhance pain management associated with surgery. The objective of this study was to compare the analgesic efficacy of a single-dose of preoperative oral ibuprofen versus acetaminophen in preventing pain after lower abdominal surgery in pediatrics. Methods: In this randomized, double-blind study, following lower abdominal surgery, 75 children, aging 3 to 12 years, were assigned to receive either ibuprofen 20 mg /kg (n=25 or acetaminophen 35 mg/kg (n=25 or placebo (n=25 2 hours before surgery. Agitation in recovery was measured and postoperative pain was quantified 3 and 24 hours after surgery by Oucher’s scale. The amount of postoperative analgesic needed in the ward was also assessed. Results: It was found that preoperative administration of ibuprofen and acetaminophen can reduce agitation in recovery but there was no difference in the agitation score between ibuprofen and acetaminophen groups (P=0.145. Agitation score was significantly lower in ibuprofen group compared to placebo (P>0.005. Similarly, patients in the acetaminophen group were considerably less agitated than those in the placebo group (P=0.002. No significant difference was observed in pain intensity 3 and 24 hours after operation between the three groups [(P=0.495 and (P=0.582 respectively]. The amount of postoperative analgesic needed during ward hospitalization was not significantly different among the three groups (P>0.005. Conclusion: These results provide evidence that preemptive acetaminophen and ibuprofen may reduce agitation during recovery but they neither improve the postoperative pain nor reduce analgesics consumption in ward Key words: Postoperative analgesia, Acetaminophen, Ibuprofen, Preemptive analgesia

  2. Gastric emptying in rats with acetaminophen-induced hepatitis

    Directory of Open Access Journals (Sweden)

    G. Hessel

    1998-09-01

    Full Text Available The objective of this work was to study the gastric emptying (GE of liquids in fasted and sucrose-fed rats with toxic hepatitis induced by acetaminophen. The GE of three test meals (saline, glucose and mayonnaise was evaluated in Wistar rats. For each meal, the animals were divided into two groups (N = 24 each. Group I was fed a sucrose diet throughout the experiment (66 h while group II was fasted. Forty-two hours after the start of the experiment, each group was divided into two subgroups (N = 12 each. Subgroup A received a placebo and subgroup B was given acetaminophen (1 g/kg. Twenty-four hours later, the GE of the three test meals was assessed and blood samples were collected to measure the serum levels of alanine aminotransferase (ALT, aspartate aminotransferase (AST and acetaminophen. In group IB, the mean AST and ALT values were 515 and 263 IU/l, respectively, while for group IIB they were 4014 and 2472 IU/l, respectively. The mean serum acetaminophen levels were higher in group IIB (120 µg/ml than in group IB (87 µg/ml. The gastric retention values were significantly higher in group IIB than in group IIA for all three test meals: saline, 51 vs 35%; glucose, 52 vs 38% and mayonnaise, 51 vs 29% (median values. The correlation between gastric retention and AST levels was significant (P<0.05 for group IIB for the three test meals: r = 0.73, 0.67 and 0.68 for saline, glucose and mayonnaise, respectively. We conclude that GE is altered in rats with hepatic lesions induced by acetaminophen, and that these alterations may be related to the liver cell necrosis caused by the drug.

  3. The effect of acetaminophen nanoparticles on liver toxicity in a rat model

    Directory of Open Access Journals (Sweden)

    Esmaeil Biazar

    2010-03-01

    Full Text Available Esmaeil Biazar1, S Mahdi Rezayat2, Naser Montazeri1, Khalil Pourshamsian1, Reza Zeinali3, Azadeh Asefnejad3, Mehdi Rahimi3, Mohammadmajid Zadehzare3, Mehran Mahmoudi3, Rohollah Mazinani3, Mehdi Ziaei31Department of Chemistry, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran; 2Department of Pharmacology, School of Medicine, Tehran University of Medical Science, Tehran, Iran; 3Biomedical Engineering, Islamic Azad University, Research and Science Branch, Tehran, IranAbstract: Acetaminophen, a pain-reliever, is one of the most widely used medications in the world. Acetaminophen with normal dosage is considered a nontoxic drug for therapeutic applications, but when taken at overdose levels it produces liver damage in human and various animal species. By a high energy mechanically activated method, we produced acetaminophen in a nanometer crystalline size (24 nm. Forty-eight hours after injection of crystalline particles with normal and reduced size of our drug, the effect of liver toxicity was compared by determination of liver transferase enzymes such as alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase (ALT. These enzymes were examined by routine colorimetric methods using commercial kits and pathologic investigations. Statistical analysis and pathological figures indicated that ALT delivery and toxicity in reduced size acetaminophen was significantly reduced when compared with normal size acetaminophen. Pathology figures exhibited reduced necrosis effects, especially the confluent necrosis, in the central part of the lobule in the reduced size acetaminophen samples when compared with the normal samples.Keywords: acetaminophen, size reduction, pathological and enzymatic investigations, toxicity

  4. Sleep Disruption and Proprioceptive Delirium due to Acetaminophen in a Pediatric Patient

    Directory of Open Access Journals (Sweden)

    Carla Carnovale

    2013-01-01

    Full Text Available We present the case of a 7-year-old boy, who received acetaminophen for the treatment of hyperpyrexia, due to an infection of the superior airways. 13 mg/kg (260 mg of acetaminophen was administered orally before bedtime, and together with the expected antipyretic effect, the boy experienced sleep disruption and proprioceptive delirium. The symptoms disappeared within one hour. In the following six months, acetaminophen was administered again twice, and the reaction reappeared with similar features. Potential alternative explanations were excluded, and analysis with the Naranjo algorithm indicated a “probable” relationship between acetaminophen and this adverse reaction. We discuss the potential mechanisms involved, comprising imbalances in prostaglandin levels, alterations of dopamine, and cannabinoid and serotonin signalings.

  5. Metabolite kinetics: formation of acetaminophen from deuterated and nondeuterated phenacetin and acetanilide on acetaminophen sulfation kinetics in the perfused rat liver preparation

    International Nuclear Information System (INIS)

    Pang, K.S.; Waller, L.; Horning, M.G.; Chan, K.K.

    1982-01-01

    The role of hepatic intrinsic clearance for metabolite formation from various precursors on subsequent metabolite elimination was was investigated in the once-through perfused rat liver preparation. Two pairs of acetaminophen precursors: [ 14 C] phenacetin-d5 and [ 3 H] phenacetin-do, [ 14 C] acetanilide and [ 3 H] phenacetin were delivered by constant flow (10 ml/min/liver) either by normal or retrograde perfusion to the rat liver preparations. The extents of acetaminophen sulfation were compared within the same preparation. The data showed that the higher the hepatocellular activity (intrinsic clearance) for acetaminophen formation, the greater the extent of subsequent acetaminophen sulfation. The findings were explained on the basis of blood transit time and metabolite duration time. Because of blood having only a finite transit time in liver, the longer the drug requires for metabolite formation, the less time will remain for metabolite sulfation and the less will be the degree of subsequent sulfation. Conversely, when the drug forms the primary metabolite rapidly, a longer time will remain for the metabolite to be sulfated in liver to result in a greater degree of metabolite sulfation. Finally, the effects of hepatic intrinsic clearances for metabolite formation and zonal distribution of enzyme systems for metabolite formation and elimination in liver are discussed

  6. Hepatoprotective effects of Arctium lappa on carbon tetrachloride- and acetaminophen-induced liver damage.

    Science.gov (United States)

    Lin, S C; Chung, T C; Lin, C C; Ueng, T H; Lin, Y H; Lin, S Y; Wang, L Y

    2000-01-01

    The root of Arctium lappa Linne (A. lappa) (Compositae), a perennial herb, has been cultivated for a long time as a popular vegetable. In order to investigate the hepatoprotective effects of A. lappa, male ICR mice were injected with carbon tetrachloride (CCl4, 32 microl/kg, i.p.) or acetaminophen (600 mg/kg, i.p.). A. lappa suppressed the SGOT and SGPT elevations induced by CCl4 or acetaminophen in a dose-dependent manner and alleviated the severity of liver damage based on histopathological observations. In an attempt to elucidate the possible mechanism(s) of this hepatoprotective effect, glutathione (GSH), cytochrome P-450 (P-450) and malondialdehyde (MDA) contents were studied. A. lappa reversed the decrease in GSH and P-450 induced by CCl4 and acetaminophen. It was also found that A. lappa decreased the malondialdehyde (MDA) content in CCl4 or acetaminophen-intoxicated mice. From these results, it was suggested that A. lappa could protect the liver cells from CCl4 or acetaminophen-induced liver damages, perhaps by its antioxidative effect on hepatocytes, hence eliminating the deleterious effects of toxic metabolites from CCl4 or acetaminophen.

  7. Biowaiver monographs for immediate release solid oral dosage forms: acetaminophen (paracetamol).

    NARCIS (Netherlands)

    Kalantzi, L; Reppas, C; Dressman, J B; Amidon, G L; Junginger, H E; Midha, K K; Shah, V P; Stavchansky, S A; Barends, Dirk M

    2006-01-01

    Literature data are reviewed on the properties of acetaminophen (paracetamol) related to the biopharmaceutics classification system (BCS). According to the current BCS criteria, acetaminophen is BCS Class III compound. Differences in composition seldom, if ever, have an effect on the extent of

  8. Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Nesreen E.M. Mohammed

    2016-11-01

    Conclusion: Amlodipine, lisinopril or allopurinol can protect against acetaminophen-induced hepatotoxicity, showing mechanistic roles of calcium channels, angiotensin converting enzyme and xanthine oxidase enzyme in the pathogenesis of hepatotoxicity induced by acetaminophen.

  9. Protective effect of zinc aspartate against acetaminophen induced hepato-renal toxicity in albino rats

    International Nuclear Information System (INIS)

    Mohamed, E.T.; Said, A.I.; El-Sayed, S.A.

    2011-01-01

    Zinc is an essential nutrient that is required in humans and animals for many physiological functions, including antioxidant functions. The evidence to date indicates that zinc is an important element that links antioxidant system and tissue damage. Acetaminophen (AP), a widely used analgesic and antipyretic, produces hepatocyte and renal tubular necrosis in human and animals following overdose. In human, AP is one of the most common causes of acute liver failure as a result of accidental or deliberate overdose. Moreover, the initial event in AP toxicity is a toxic metabolic injury with the release of free radicals and subsequent cellular death by necrosis and apoptosis. This study was designed to evaluate the potential protective role of zinc aspartate in case of acetaminophen induced hepato-renal toxicity in rats. A total number of 32 adult male albino rats were divided into 4 equal groups: group I (control group), group II (zinc aspartate treated group), group III (acetaminophen treated group; by a single oral dose of 750 mg/kg body weight) and group IV acetaminophen plus zinc treated group; (zinc aspartate was intraperitoneally given one hour after acetaminophen administration in a dose of 30 mg/kg body weight). Serum levels of: alanine aminotransferase, aspartate aminotransferase, direct bilirubin, blood urea nitrogen, creatinine, uric acid, xanthine oxidase (XO), glutathione (GSH), malonaldehyde (MDA) and nitric oxide (NO) were assessed in all groups. The results of this study showed that treatment with acetaminophen alone (group III) produced a significant increase in serum levels of the liver enzymes and direct bilirubin. Moreover, in the same group there was a significant increase in the blood urea nitrogen and serum creatinine compared to the control group. In addition, there was a significant increase in XO and MDA and a significant decrease in GSH and NO level. Injection of rats with zinc aspartate after acetaminophen treatment could produce a

  10. Eucalyptus globulus extract protects upon acetaminophen-induced kidney damages in male rat

    Science.gov (United States)

    Dhibi, Sabah; Mbarki, Sakhria; Elfeki, Abdelfettah; Hfaiedh, Najla

    2014-01-01

    Plants have historically been used in treating many diseases. Eucalyptus globules, a rich source of bioactive compounds, and have been shown to possess antioxidative properties. The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of Eucalyptus globulus extract upon acetaminophen-induced damages in kidney. Our study is realized in the Department of Biology, Faculty of Sciences of Sfax (Tunisia). 32 Wistar male rats; were divided into 4 batches: a control group (n=8), a group of rats treated with acetaminophen (goomg/kg) by intraperitoneal injection during 4 days (n=8), a group receiving Eucalyptus globulus extract (130 mg of dry leaves/kg/day) in drinking water during 42 days after 2 hours of acetaminophen administration (during 4 days) (n=8) and group received only Eucalyptus (n=8) during 42 days. After 6 weeks, animals from each group were rapidly sacrificed by decapitation. Blood serum was obtained by centrifugation. Under our experimental conditions, acetaminophen poisoning resulted in an oxidative stress evidenced by statistically significant losses in the activities of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPX) activities and an increase in lipids peroxidation level in renal tissue of acetaminophen-treated group compared with the control group. Acetaminophen also caused kidney damage as evident by statistically significant (p<0.05) increase in levels of creatinine and urea and decreased levels of uric acid and proteins in blood. Histological analysis demonstrated alteration of proximal tubules, atrophy of the glomerule and dilatation of urinary space. Previous administration of plant extract is found to alleviate this acetaminophen-induced damage. PMID:24856382

  11. Perioperative intravenous acetaminophen attenuates lipid peroxidation in adults undergoing cardiopulmonary bypass: a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Frederic T Billings

    Full Text Available Cardiopulmonary bypass (CPB lyses erythrocytes and induces lipid peroxidation, indicated by increasing plasma concentrations of free hemoglobin, F2-isoprostanes, and isofurans. Acetaminophen attenuates hemeprotein-mediated lipid peroxidation, reduces plasma and urine concentrations of F2-isoprostanes, and preserves kidney function in an animal model of rhabdomyolysis. Acetaminophen also attenuates plasma concentrations of isofurans in children undergoing CPB. The effect of acetaminophen on lipid peroxidation in adults has not been studied. This was a pilot study designed to test the hypothesis that acetaminophen attenuates lipid peroxidation in adults undergoing CPB and to generate data for a clinical trial aimed to reduce acute kidney injury following cardiac surgery.In a prospective double-blind placebo-controlled clinical trial, sixty adult patients were randomized to receive intravenous acetaminophen or placebo starting prior to initiation of CPB and for every 6 hours for 4 doses. Acetaminophen concentrations measured 30 min into CPB and post-CPB were 11.9 ± 0.6 μg/mL (78.9 ± 3.9 μM and 8.7 ± 0.3 μg/mL (57.6 ± 2.0 μM, respectively. Plasma free hemoglobin increased more than 15-fold during CPB, and haptoglobin decreased 73%, indicating hemolysis. Plasma and urinary markers of lipid peroxidation also increased during CPB but returned to baseline by the first postoperative day. Acetaminophen reduced plasma isofuran concentrations over the duration of the study (P = 0.05, and the intraoperative plasma isofuran concentrations that corresponded to peak hemolysis were attenuated in those subjects randomized to acetaminophen (P = 0.03. Perioperative acetaminophen did not affect plasma concentrations of F2-isoprostanes or urinary markers of lipid peroxidation.Intravenous acetaminophen attenuates the increase in intraoperative plasma isofuran concentrations that occurs during CPB, while urinary markers were unaffected.ClinicalTrials.gov NCT

  12. Acute acetaminophen (paracetamol) ingestion improves time to exhaustion during exercise in the heat.

    Science.gov (United States)

    Mauger, Alexis R; Taylor, Lee; Harding, Christopher; Wright, Benjamin; Foster, Josh; Castle, Paul C

    2014-01-01

    Acetaminophen (paracetamol) is a commonly used over-the-counter analgesic and antipyretic and has previously been shown to improve exercise performance through a reduction in perceived pain. This study sought to establish whether its antipyretic action may also improve exercise capacity in the heat by moderating the increase in core temperature. On separate days, 11 recreationally active participants completed two experimental time-to-exhaustion trials on a cycle ergometer in hot conditions (30°C, 50% relative humidity) after ingesting a placebo control or an oral dose of acetaminophen in a randomized, double-blind design. Following acetaminophen ingestion, participants cycled for a significantly longer period of time (acetaminophen, 23 ± 15 min versus placebo, 19 ± 13 min; P = 0.005; 95% confidence interval = 90-379 s), and this was accompanied by significantly lower core (-0.15°C), skin (-0.47°C) and body temperatures (0.19°C; P 0.05). This is the first study to demonstrate that an acute dose of acetaminophen can improve cycling capacity in hot conditions, and that this may be due to the observed reduction in core, skin and body temperature and the subjective perception of thermal comfort. These findings suggest that acetaminophen may reduce the thermoregulatory strain elicited from exercise, thus improving time to exhaustion.

  13. Interventions for paracetamol (acetaminophen) overdoses. Protocol for a Cochrane Review

    DEFF Research Database (Denmark)

    Brok, J; Buckley, N; Gluud, C

    2001-01-01

    Poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation are interventions for paracetamol poisoning.......Poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation are interventions for paracetamol poisoning....

  14. Acute interstitial nephritis with acetaminophen and alcohol intoxication

    Directory of Open Access Journals (Sweden)

    Alexopoulou Iakovina

    2011-04-01

    Full Text Available Abstract Drug-induced acute interstitial nephritis (AIN represents a growing cause of renal failure in current medical practice. While antimicrobials and non-steroidal anti-inflammatory drugs are typically associated with drug-induced AIN, few reports have been made on the involvement of other analgesics. We report our experience in managing a 17-year-old female with AIN and subsequent renal injury following an acetaminophen overdose in conjunction with acute alcohol intoxication. It is well established that acetaminophen metabolism, particularly at high doses, produces reactive metabolites that may induce renal and hepatic toxicity. It is also plausible however, that such reactive species could instead alter renal peptide immunogenicity, thereby inducing AIN. In the following report, we review a possible mechanism for the acetaminophen-induced AIN observed in our patient and also discuss the potential involvement of acute alcohol ingestion in disease onset. The objective of our report is to increase awareness of healthcare professionals to the potential involvement of these commonly used agents in AIN pathogenesis.

  15. PROTECTIVE EFFECT OF MORINGA PEREGRINA LEAVES EXTRACT ON ACETAMINOPHEN -INDUCED LIVER TOXICITY IN ALBINO RATS.

    Science.gov (United States)

    Azim, Samy Abdelfatah Abdel; Abdelrahem, Mohamed Taha; Said, Mostafa Mohamed; Khattab, Alshaimaa

    2017-01-01

    Acetaminophen is a common antipyretic drug but at overdose can cause severe hepatotoxicity that may further develop into liver failure and hepatic centrilobular necrosis in experimental animals and humans. This study was undertaken to assess the ameliorative role of Moringa peregrina leaves extract against acetaminophen toxicity in rats. Induction of hepatotoxicity was done by chronic oral administration of acetaminophen (750 mg/kg bwt) for 4 weeks. To study the possible hepatoprotective effect, Moringa peregrina leaves extract (200 mg/kg bwt) or Silymarin (50 mg/kg bwt) was administered orally, for 4 weeks, along with acetaminophen. acetaminophen significantly increased serum liver enzymes and caused oxidative stress, evidenced by significantly increased tissue malondialdehyde, glutathione peroxidase, hepatic DNA fragmentation, and significant decrease of glutathione and antioxidant enzymes in liver, blood and brain. On the other hand, administration of Moringa peregrina leaves extract reversed acetaminophen-related toxic effects through: powerful malondialdehyde suppression, glutathione peroxidase normalization and stimulation of the cellular antioxidants synthesis represented by significant increase of glutathione, catalase and superoxide dismutase in liver, blood and brain, besides, DNA fragmentation was significantly decreased in the liver tissue. acetaminophen induced oxidative damage can be improved by Moringa peregrina leaves extract-treatment, due to its antioxidant potential.

  16. [Determination of serum acetaminophen based on the diazo reaction and its application in the evaluation of gastric emptying].

    Science.gov (United States)

    Li, Cai-na; Sun, Su-juan; Shen, Zhu-fang

    2015-05-01

    This study aims to establish a method to determine the serum acetaminophen concentration based on diazo reaction, and apply it in the gastric emptying evaluation. Theoretically, acetaminophen could take hydrolysis reaction in hydrochloric acid solution to produce p-aminophenol, which could then take diazo reaction resulting in a product with special absorption peak at 312 nm. Then the serum acetaminophen concentration and recovery rate were calculated according to the standard curve drawn with absorbance at 312 nm. ICR mice were given a dose of acetaminophen (500 mg x kg(-1)) by gavage and the serum acetaminophen was dynamically measured through the diazo reaction. Besides, ICR mice were subcutaneously injected with the long-acting GLP-1 analog GW002 before the gavage of acetaminophen, and serum acetaminophen concentration was measured as above to study how GW002 could influence the gastric emptying. The data showed acetaminophen ranging from 0 to 160 μg x mL(-1) could take diazo reaction with excellent linear relationship, and the regression equation was y = 0.0181 x +0.0104, R2 = 0.9997. The serum acetaminophen was also measured with good linear relationship (y = 0.0045 x + 0.0462, R = 0.9982) and the recovery rate was 97.4%-116.7%. The serum concentration of acetaminophen reached peak at about 0.5 h after gavage, and then gradually decreased. GW002 could significantly lower the serum acetaminophen concentration and make the area under the concentration-time curve (AUC) decrease by 28.4%. In conclusion, a method for the determination of serum acetaminophen based on the diazo reaction was established with good accuracy and could be used in the evaluation of gastric emptying.

  17. Experimental type 2 diabetes mellitus and acetaminophen toxic lesions: glutathione system indices changes

    Directory of Open Access Journals (Sweden)

    Olga Furka

    2017-11-01

    Full Text Available Background. The goal of the research was to study the effect of acetaminophen on major glutathione part of antioxidant system indices in liver homogenate of rats with type 2 diabetes mellitus in time dynamics. Materials and methods. We conducted two series of experiments. In the first series toxic lesion was caused by a single intragastric administration of acetaminophen suspension in 2 % starch solution to animals in a dose of 1250 mg/kg (1/2 LD50. In the second series  the suspension of acetaminophen in 2 % starch solution in a dose of 55 mg/kg was given, which corresponds to the highest therapeutic dose during 7 days. Non-genetic form of experimental type 2 diabetes mellitus was modeled by Islam S., Choi H. method (2007. Activity of glutathione peroxidase (GPx and glutathione reductase (GR, and contents of reduced glutathione (GSH were determined in liver homogenate. Results. The obtained results have shown that GR and GPx activity actively decreased after acetaminophen administration in higher therapeutic doses to rats with type 2 DM. However, the changes were less pronounced than in rats with type 2 DM and acute acetaminophen toxic lesions. Conclusion. Results of the research have shown that acetaminophen administration to rats with type 2 DM causes a significant violation of compensatory mechanisms, especially of the enzyme and nonenzyme parts of antioxidant system.

  18. Post hemorrhoidectomy pain control: rectal Diclofenac versus Acetaminophen

    Directory of Open Access Journals (Sweden)

    Rahimi M

    2009-03-01

    Full Text Available "nBackground: Anal surgeries are prevalent, but they didn't perform as outpatient surgeries because of concerns about postoperative pain. The aim of the present study was to compare the effects of rectal acetaminophen and diclofenac on postoperative analgesia after anal surgeries in adult patients. "nMethods: In a randomized, double-blinded, placebo-controlled study 60 ASA class I or II scheduled for haemorrhoidectomy, anal fissure or fistula repair, were randomized (with block randomization method to receive either a single dose of 650 mg rectal acetaminophen (n=20, 100 mg rectal diclofenac (n=20 or placebo suppositories (n=20 after the operation. The severity of pain, time to first request of analgesic agent after administration of suppositories and complications were compared between three groups. Pain scores were evaluated in patients by Visual Analogue Scale (VAS in 0 (after complete consciousness in recovery, 2, 4, 12 and 24 hours after surgery. The period between administration of the suppositories and the patients' first request to receive analgesic was compared between groups. "nResults: Pain scores were lower significantly in rectal diclofenac than the other groups. The period between administration of the suppositories and the patients' first request to receive analgesic in diclofenac group was 219±73 minutes, was significantly longer compared with placebo (153±47 minutes and acetaminophen (178±64 minutes groups. No complications were reported. "nConclusions: Diclofenac suppository is more effective than acetaminophen suppository in post hemorrhoidectomy pain management.

  19. Extracorporeal treatment for acetaminophen poisoning

    DEFF Research Database (Denmark)

    Gosselin, S; Juurlink, D N; Kielstein, J T

    2014-01-01

    BACKGROUND: The Extracorporeal Treatments in Poisoning (EXTRIP) workgroup was created to provide evidence-based recommendations on the use of extracorporeal treatments (ECTR) in poisoning and the results are presented here for acetaminophen (APAP). METHODS: After a systematic review of the litera...... of NAC has not been definitively demonstrated....

  20. Effects of acetaminophen and ibuprofen in children with migraine receiving preventive treatment with magnesium.

    Science.gov (United States)

    Gallelli, Luca; Avenoso, Tiziana; Falcone, Daniela; Palleria, Caterina; Peltrone, Francesco; Esposito, Maria; De Sarro, Giovambattista; Carotenuto, Marco; Guidetti, Vincenzo

    2014-02-01

    The purpose of this study was to evaluate both the effects of ibuprofen and/or acetaminophen for the acute treatment of primary migraine in children in or out prophylactic treatment with magnesium. Children ranging from the ages of 5 to 16 years with at least 4 attack/month of primary migraine were eligible for participation the study. A visual analog scale was used to evaluate pain intensity at the moment of admission to the study (start of the study) and every month up to 18 months later (end of the study). One hundred sixty children of both sexes aged 5-16 years were enrolled and assigned in 4 groups to receive a treatment with acetaminophen or ibuprofen without or with magnesium. Migraine pain endurance and monthly frequency were similar in the 4 groups. Both acetaminophen and ibuprofen induced a significant decrease in pain intensity (P < .01), without a time-dependent correlation, but did not modify its frequency. Magnesium pretreatment induced a significant decrease in pain intensity (P < .01) without a time-dependent correlation in both acetaminophen- and ibuprofen-treated children and also significantly reduced (P < .01) the pain relief timing during acetaminophen but not during ibuprofen treatment (P < .01). In both acetaminophen and ibuprofen groups, magnesium pretreatment significantly reduced the pain frequency (P < .01). Magnesium increased the efficacy of ibuprofen and acetaminophen with not age-related effects. © 2013 American Headache Society.

  1. Comparison of Intravenous Metoclopramide and Acetaminophen in Primary Headaches: a Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Gholamreza Faridaalaee

    2015-05-01

    Full Text Available Introduction: Headache is the most common neurologic symptom among referees to the emergency department (ED, while the best treatment has not yet been found. Therefore, in the present study pain relief effects of metoclopramide and acetaminophen were compared in patients suffered acute primary headache. Methods: This study was a double-blind randomized clinical trial performed in Imam Khomeini Hospital, Urmia, Iran, through July to October 2014.  All adult patients, with acute primary (migraine, tension type and cluster headache referred to the ED were included in this study. Pain Severity was measured with 10 centimeters numeric rating scales. The patients were randomized in to two groups of intravenous (IV metoclopramide (10 milligrams and acetaminophen (1 gram. Pain score, success rate, and complication of drugs were compared within administration time and 15, 30, 60, as well as 120 minutes after medication. Results: 100 patients were equally categorized in to two groups (mean age of 32 ± 13.2 years; 51.2% male. Initial pain score in metoclopramide and acetaminophen groups were 9.1 and 9.4, respectively (p=0.46. IV metoclopramide did not have any analgesic effect at 15 minutes, but had good effect at 30 minutes. While, the analgesic effect of acetaminophen initiated after 15 minutes. After 2 hours, both drugs had good treatment effect on primary headaches (p<0.001. Conclusion: The present study demonstrated that efficacy of metoclopramide for pain relief in primary headaches is lower than acetaminophen.  In this regard, success rate of acetaminophen was 42.0% versus 0% for metoclopramide within 15 minutes. The efficacy of acetaminophen continued until 60 minutes.

  2. Association Between Prenatal Acetaminophen Exposure and Future Risk of Attention Deficit/Hyperactivity Disorder in Children.

    Science.gov (United States)

    Hoover, Rebecca M; Hayes, V Autumn Gombert; Erramouspe, John

    2015-12-01

    To evaluate the effect of prenatal acetaminophen exposure on the future development of attention deficit/hyperactivity disorder (ADHD) in children. Literature searches of MEDLINE (1975 to June 2015), International Pharmaceutical Abstracts (1975 to June 2015), and Cochrane Database (publications through June 2015) for prospective clinical trials assessing the relationship of prenatal acetaminophen exposure and the development of attention deficit disorders or hyperactivity. Studies comparing self-reported maternal acetaminophen use during pregnancy to development of ADHD or ADHD-like behaviors in offspring between the ages of 3 and 12 years. Four studies examining the effects of prenatal acetaminophen exposure on subsequent ADHD behaviors were identified. Of these, one early study found no link to ADHD behaviors while the other studies found statistically significant correlations with the most prominent being a study finding a higher risk for using ADHD medications (hazard ratio = 1.29; 95% CI, 1.15-1.44) or having ADHD-like behaviors at age 7 years as determined by the Strengths and Difficulties Questionnaire (risk ratio = 1.13; 95% CI, 1.01-1.27) in children whose mothers used acetaminophen during pregnancy. While there does appear to be a mild correlation between prenatal acetaminophen use and the development of ADHD symptoms in children, current data do not provide sufficient evidence that prenatal acetaminophen exposure leads to development of ADHD symptoms late in life. Acetaminophen is a preferred option for pain management during pregnancy when compared with other medications such as nonsteroidal anti-inflammatory drugs or opioids for pyretic or pain relief. © The Author(s) 2015.

  3. Profile of extended-release oxycodone/acetaminophen for acute pain

    Directory of Open Access Journals (Sweden)

    Bekhit MH

    2015-10-01

    Full Text Available Mary Hanna Bekhit1–51David Geffen School of Medicine, 2Ronald Reagan UCLA Medical Center, 3UCLA Ambulatory Surgery Center, 4UCLA Wasserman Eye Institute, 5UCLA Martin Luther King Community Hospital, University of California Los Angeles, Los Angeles, CA, USA Abstract: This article provides a historical and pharmacological overview of a new opioid analgesic that boasts an extended-release (ER formulation designed to provide both immediate and prolonged analgesia for up to 12 hours in patients who are experiencing acute pain. This novel medication, ER oxycodone/acetaminophen, competes with current US Food and Drug Administration (FDA-approved opioid formulations available on the market in that it offers two benefits concurrently: a prolonged duration of action, and multimodal analgesia through a combination of an opioid (oxycodone with a nonopioid component. Current FDA-approved combination analgesics, such as Percocet (oxycodone/acetaminophen, are available solely in immediate-release (IR formulations. Keywords: opioid, analgesic, xartemis, acute postsurgical pain, substance abuse, acetaminophen, extended release 

  4. Aerial Application of Acetaminophen treated Baits for Control of Brown Treesnakes

    Science.gov (United States)

    2016-01-22

    This procedure followed NWRC Analytical Method 96B -Determination of Acetaminophen in Tablets. Brown tree snake and non-target animal carcasses ...274 viii ACRONYM LIST APHIS Animal and Plant Health Inspection Service ATOC Aviation and Training Operations Center...native rodent abundance, and impacts to non-target animals . TECHNOLOGY DESCRIPTION Thawed DNM were treated by inserting an 80 mg acetaminophen

  5. Use of acetaminophen (paracetamol) during pregnancy and the risk of autism spectrum disorder in the offspring.

    Science.gov (United States)

    Andrade, Chittaranjan

    2016-02-01

    Acetaminophen (paracetamol) is available over the counter in most countries and is widely considered to be safe for use during pregnancy; studies report gestational exposures to acetaminophen that lie in the 46%-65% range. Acetaminophen influences inflammatory and immunologic mechanisms and may predispose to oxidative stress; these and other effects are hypothesized to have the potential to compromise neurodevelopment in the fetal and infant brain. Two ecological studies suggested that population-level trends in the use of acetaminophen were associated with trends in the incidence/prevalence of autism; one of these studies specifically examined acetaminophen use during pregnancy. One large prospective observational cohort study found that gestational exposure to acetaminophen (especially when the duration of exposure was 28 days or more) was associated with motor milestone delay, gross and fine motor impairments, communication impairment, impairments in internalizing and externalizing behaviors, and hyperactivity, all at age 3 years; however, social and emotional developmental behaviors were mostly unaffected. A very recent large cohort study with a 12.7-year follow-up found that gestational exposure to acetaminophen was associated with an increased risk of autism spectrum disorder, but only when a hyperkinetic disorder was also present. In the light of existing data associating acetaminophen use during pregnancy and subsequent risk of attention-deficit/hyperactivity disorder, this new finding suggests that the predisposition, if any, is toward the hyperkinetic syndrome rather than to autism. In summary, the empirical data are very limited, but whatever empirical data exist do not support the suggestion that the use of acetaminophen during pregnancy increases the risk of autism in the offspring. © Copyright 2016 Physicians Postgraduate Press, Inc.

  6. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell

    International Nuclear Information System (INIS)

    Luna, Mark Daniel G. de; Veciana, Mersabel L.; Su, Chia-Chi; Lu, Ming-Chun

    2012-01-01

    Highlights: ► The electro-Fenton reactor using a double cathode electrochemical cell was applied. ► The initial Fe 2+ concentration was the most significant parameter for the acetaminophen degradation. ► Thirteen intermediates were identified and a degradation pathway was proposed. - Abstract: Acetaminophen is a widely used drug worldwide and is one of the most frequently detected in bodies of water making it a high priority trace pollutant. This study investigated the applicability of the electro-Fenton and photoelectro-Fenton processes using a double cathode electrochemical cell in the treatment of acetaminophen containing wastewater. The Box–Behnken design was used to determine the effects of initial Fe 2+ and H 2 O 2 concentrations and applied current density. Results showed that all parameters positively affected the degradation efficiency of acetaminophen with the initial Fe 2+ concentration being the most significant parameter for both processes. The acetaminophen removal efficiency for electro-Fenton was 98% and chemical oxygen demand (COD) removal of 43% while a 97% acetaminophen removal and 42% COD removal were observed for the photoelectro-Fenton method operated at optimum conditions. The electro-Fenton process was only able to obtain 19% total organic carbon (TOC) removal while the photoelectro-Fenton process obtained 20%. Due to negligible difference between the treatment efficiencies of the two processes, the electro-Fenton method was proven to be more economically advantageous. The models obtained from the study were applicable to a wide range of acetaminophen concentrations and can be used in scale-ups. Thirteen different types of intermediates were identified and a degradation pathway was proposed.

  7. Effect of paracetamol (acetaminophen) on body temperature in acute stroke: A meta-analysis.

    Science.gov (United States)

    Fang, Junjie; Chen, Chensong; Cheng, Hongsen; Wang, Ren; Ma, Linhao

    2017-10-01

    The objective of this study was to assess the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Medline, Cochrane Central Register of Controlled Trials, EMBASE, Chinese BioMedical Literature Database, China National Knowledge Infrastructure, and the World Health Organization (WHO) International Clinical Trials Registry Platform were searched electronically. Relevant journals and references of studies included were hand-searched for randomized controlled trials (RCT) and controlled clinical trials (CCT) regarding the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Two reviewers independently performed data extraction and quality assessment. Data were analyzed using RevMan 5.3 software by the Cochrane Collaboration. Five studies were included. To compare the efficacy of paracetamol (acetaminophen) in acute stroke, the pooled RR (Risk Ratio) and its 95% CI of body temperature reduction at 24h from the start of treatment were -0.3 (95% CI: -0.52 to -0.08), with statistical significance (P=0.007). Consistently, the pooled RR (Risk Ratio) and its 95% CI of body temperature at 24h from the start of treatment were -0.22 (-0.29, -0.15), with statistical significance (PParacetamol (acetaminophen) is one of the most commonly used antipyretic drugs and has some capability to reduce body temperature through acting on central nervous system. Acetaminophen showed some capability to decrease body temperature for acute stroke. Acetaminophen could not improve functional outcome and reduce adverse events of patients with acute stroke. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Associations between acetaminophen use during pregnancy and ADHD symptoms measured at ages 7 and 11 years.

    Directory of Open Access Journals (Sweden)

    John M D Thompson

    Full Text Available OBJECTIVE: Our aim was to replicate and extend the recently found association between acetaminophen use during pregnancy and ADHD symptoms in school-age children. METHODS: Participants were members of the Auckland Birthweight Collaborative Study, a longitudinal study of 871 infants of European descent sampled disproportionately for small for gestational age. Drug use during pregnancy (acetaminophen, aspirin, antacids, and antibiotics were analysed in relation to behavioural difficulties and ADHD symptoms measured by parent report at age 7 and both parent- and child-report at 11 years of age. The analyses included multiple covariates including birthweight, socioeconomic status and antenatal maternal perceived stress. RESULTS: Acetaminophen was used by 49.8% of the study mothers during pregnancy. We found significantly higher total difficulty scores (Strengths and Difficulty Questionnaire parent report at age 7 and child report at age 11 if acetaminophen was used during pregnancy, but there were no significant differences associated with any of the other drugs. Children of mothers who used acetaminophen during pregnancy were also at increased risk of ADHD at 7 and 11 years of age (Conners' Parent Rating Scale-Revised. CONCLUSIONS: These findings strengthen the contention that acetaminophen exposure in pregnancy increases the risk of ADHD-like behaviours. Our study also supports earlier claims that findings are specific to acetaminophen.

  9. Associations between Acetaminophen Use during Pregnancy and ADHD Symptoms Measured at Ages 7 and 11 Years

    Science.gov (United States)

    Thompson, John M. D.; Waldie, Karen E.; Wall, Clare R.; Murphy, Rinky; Mitchell, Edwin A.

    2014-01-01

    Objective Our aim was to replicate and extend the recently found association between acetaminophen use during pregnancy and ADHD symptoms in school-age children. Methods Participants were members of the Auckland Birthweight Collaborative Study, a longitudinal study of 871 infants of European descent sampled disproportionately for small for gestational age. Drug use during pregnancy (acetaminophen, aspirin, antacids, and antibiotics) were analysed in relation to behavioural difficulties and ADHD symptoms measured by parent report at age 7 and both parent- and child-report at 11 years of age. The analyses included multiple covariates including birthweight, socioeconomic status and antenatal maternal perceived stress. Results Acetaminophen was used by 49.8% of the study mothers during pregnancy. We found significantly higher total difficulty scores (Strengths and Difficulty Questionnaire parent report at age 7 and child report at age 11) if acetaminophen was used during pregnancy, but there were no significant differences associated with any of the other drugs. Children of mothers who used acetaminophen during pregnancy were also at increased risk of ADHD at 7 and 11 years of age (Conners’ Parent Rating Scale-Revised). Conclusions These findings strengthen the contention that acetaminophen exposure in pregnancy increases the risk of ADHD-like behaviours. Our study also supports earlier claims that findings are specific to acetaminophen. PMID:25251831

  10. LC-MS/MS method development for quantitative analysis of acetaminophen uptake by the aquatic fungus Mucor hiemalis.

    Science.gov (United States)

    Esterhuizen-Londt, Maranda; Schwartz, Katrin; Balsano, Evelyn; Kühn, Sandra; Pflugmacher, Stephan

    2016-06-01

    Acetaminophen is a pharmaceutical, frequently found in surface water as a contaminant. Bioremediation, in particular, mycoremediation of acetaminophen is a method to remove this compound from waters. Owing to the lack of quantitative analytical method for acetaminophen in aquatic organisms, the present study aimed to develop a method for the determination of acetaminophen using LC-MS/MS in the aquatic fungus Mucor hiemalis. The method was then applied to evaluate the uptake of acetaminophen by M. hiemalis, cultured in pellet morphology. The method was robust, sensitive and reproducible with a lower limit of quantification of 5 pg acetaminophen on column. It was found that M. hiemalis internalize the pharmaceutical, and bioaccumulate it with time. Therefore, M. hiemalis was deemed a suitable candidate for further studies to elucidate its pharmaceutical tolerance and the longevity in mycoremediation applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Influence of organic amendment on fate of acetaminophen and sulfamethoxazole in soil

    International Nuclear Information System (INIS)

    Li, Juying; Ye, Qingfu; Gan, Jay

    2015-01-01

    Land application of biosolids or compost constitutes an important route of soil contamination by emerging contaminants such as acetaminophen and sulfamethoxazole. Using "1"4C labeling, we evaluated the influence of biosolids and compost on individual fate processes of acetaminophen and sulfamethoxazole in soil. The amendment of biosolids or compost consistently inhibited the mineralization of both compounds but simultaneously enhanced the dissipation of their extractable residues or parent form. Immediately after treatment, the majority of "1"4C-residue became non-extractable, reaching 80.3–92.3% of the applied amount at the end of 84-d incubation. Addition of biosolids or compost appreciably accelerated the formation of bound residue, likely due to the fact that the organic material provided additional sites for binding interactions or introduced exogenous microorganisms facilitating chemical transformations. This effect of biosolids or compost should be considered in risk assessment of these and other emerging contaminants. - Highlights: • "1"4C Labeling was used to understand the fate processes of acetaminophen and sulfamethoxazole in aerobic soil. • Majority of acetaminophen and sulfamethoxazole quickly became non-extractable or mineralized. • Biosolids or compost amendment inhibited mineralization. • Biosolids or compost appreciably enhanced the formation of bound residue. - Biosolids or compost amendment inhibited mineralization of acetaminophen and sulfamethoxazole and appreciably enhanced the formation of bound residue.

  12. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    Science.gov (United States)

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  13. Discrepancies between N-Acetyl Cysteine Prescription based on Patient’s History and Plasma Acetaminophen Level

    Directory of Open Access Journals (Sweden)

    Fakhreddin Taghaddosi-Nejad

    2012-11-01

    Full Text Available Background: Fatalities from acetaminophen poisoning are common, but they are preventable by timely treatment with N-acetyl cysteine (NAC. In many medical centers, NAC is prescribed in keeping with the ingested dose of the drug as revealed through medical history. It seems to significantly differ from the real indications of NAC administration based on plasma level of acetaminophen. Overtreatment increases adverse drug reactions and it is time- consuming and costly. Methods: Acetaminophen plasma level was checked by HPLC method in 170 admitted patients who had history of acute ingestion of more than 7.5 g acetaminophen within 4 to 24 hours prior to hospital admission. Indications for NAC prescription according to patient’s history and adaptation from acetaminophen plasma level in Romack-Mathew nomogram were matched. Data were analyzed by SPSS software version 16.0. Results: Mean age of the patients was 21.8±6.05 years. In 75.8% of the patients, poisoning had occurred after suicidal attempts. Acetaminophen plasma level was between less than 2 and 265 μg/ml (18.7±28.88, mean± SD. Only in 18 (10.6% cases, overtreatment had been performed. Multiple logistic regression analysis showed that the number of suicidal attempts, number of ingested pills, and time of referral had positive relationships with acetaminophen plasma level. Conclusion: If NAC is prescribed only based on patient's medical history, overtreatment may take place.

  14. Evaluation of a 12-Hour Sustained-Release Acetaminophen (Paracetamol) Formulation: A Randomized, 3-Way Crossover Pharmacokinetic and Safety Study in Healthy Volunteers.

    Science.gov (United States)

    Yue, Yong; Collaku, Agron; Liu, Dongzhou J

    2018-01-01

    Acetaminophen (paracetamol) is a first-line treatment for mild and moderate pain. A twice-daily sustained-release (SR) formulation may be more convenient for chronic users than standard immediate-release (IR) acetaminophen. This randomized, 3-way crossover study evaluated pharmacokinetics and safety of single-dose 1500- and 2000-mg SR acetaminophen formulations and 2 doses of IR acetaminophen 1000 mg given 6 hours apart in healthy adults (n = 14). Primary outcome was time that plasma acetaminophen concentration was ≥4 μg/mL (T C≥4μg/mL ). Key secondary outcomes were area under the plasma concentration-time curve (AUC) from time 0 to time t, when plasma acetaminophen was detectable (AUC 0-t ), AUC from 0 to infinity (AUC 0-inf ), and maximum plasma acetaminophen concentration (C max ). T C≥4μg/mL from 2000-mg SR acetaminophen was similar to that from 2 doses of IR acetaminophen, whereas T C≥4μg/mL for 1500-mg SR acetaminophen was significantly shorter than that for IR acetaminophen (P = .004). The extent of acetaminophen absorption from 2000-mg SR and 2 doses of the IR formulation was similar and within bioequivalence limits with regard to AUC 0-12 , AUC 0-t , and AUC 0-inf . The extent of acetaminophen absorption from 1500-mg SR was significantly lower than that from IR acetaminophen. The 2000-mg SR represents a potential candidate formulation for 12-hour dosing with acetaminophen. © 2017, The American College of Clinical Pharmacology.

  15. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen

    International Nuclear Information System (INIS)

    Tao, Hong; Liang, Xiao; Zhang, Qian; Chang, Chang-Tang

    2015-01-01

    Highlights: • TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a simple hydrothermal method. • And its application to removal acetaminophen, degradation efficiency is more than 96%. • The photocatalytic degradation results indicated that the sample with 5% GO in GR-TNT nanocomposites for 3 h had the highest degradation rate. • The degradation intermediates of acetaminophen by the composites were invested by GC-MS and the possible pathways were invested. - Abstract: Acetaminophen is commonly used as an antipyretic or analgesics agent and poses threat to human health. In this research, TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a hydrothermal method. FT-IR, UV-Vis, XRD, and TGA were used to characterize the catalysts. The acetaminophen degradation rate can reach up to 96% under UV light irradiation for 3 h and with the 5% GR-TNT dosage of 0.1 g L −1 . Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by the GR-TNT composite. EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process. This study provides a new prospect for acetaminophen degradation by using high efficiency catalysts

  16. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Mark Daniel G. de [Department of Chemical Engineering, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Environmental Engineering Graduate Program, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Veciana, Mersabel L. [Environmental Engineering Graduate Program, University of the Philippines, 1011 Diliman, Quezon City (Philippines); Su, Chia-Chi [Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China); Lu, Ming-Chun, E-mail: mmclu@mail.chan.edu.tw [Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer The electro-Fenton reactor using a double cathode electrochemical cell was applied. Black-Right-Pointing-Pointer The initial Fe{sup 2+} concentration was the most significant parameter for the acetaminophen degradation. Black-Right-Pointing-Pointer Thirteen intermediates were identified and a degradation pathway was proposed. - Abstract: Acetaminophen is a widely used drug worldwide and is one of the most frequently detected in bodies of water making it a high priority trace pollutant. This study investigated the applicability of the electro-Fenton and photoelectro-Fenton processes using a double cathode electrochemical cell in the treatment of acetaminophen containing wastewater. The Box-Behnken design was used to determine the effects of initial Fe{sup 2+} and H{sub 2}O{sub 2} concentrations and applied current density. Results showed that all parameters positively affected the degradation efficiency of acetaminophen with the initial Fe{sup 2+} concentration being the most significant parameter for both processes. The acetaminophen removal efficiency for electro-Fenton was 98% and chemical oxygen demand (COD) removal of 43% while a 97% acetaminophen removal and 42% COD removal were observed for the photoelectro-Fenton method operated at optimum conditions. The electro-Fenton process was only able to obtain 19% total organic carbon (TOC) removal while the photoelectro-Fenton process obtained 20%. Due to negligible difference between the treatment efficiencies of the two processes, the electro-Fenton method was proven to be more economically advantageous. The models obtained from the study were applicable to a wide range of acetaminophen concentrations and can be used in scale-ups. Thirteen different types of intermediates were identified and a degradation pathway was proposed.

  17. Fetal programming of mental health by acetaminophen? Response to the SMFM statement: prenatal acetaminophen use and ADHD.

    Science.gov (United States)

    Olsen, Jørn; Liew, Zeyan

    2017-12-01

    A number of studies indicate that acetaminophen taken during pregnancy may have a programming effect on the fetal brain development. The potential adverse consequences may only surface to clinical detection years later. Should we act on these findings now or do we wait for additional evidence? Areas covered: We argue for action inspired by these well analyzed studies that are based on five prospective cohorts data collected from different countries. Several analytical options have been employed especially to address confounding, and all analyses have consistently suggested that confounding alone is an unlikely explanation for this disturbing observation. Expert opinion: Acetaminophen is often used for minor symptom or discomfort where the treatment has no strong indication and carries little, if any risk for the pregnant women. The harm of doing nothing may well exceed the harm for taking precautionary actions considering the consequences at stake.

  18. Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    NARCIS (Netherlands)

    Jetten, M.J.A.; Gaj, S.; Ruiz-Aracama, A.; Kok, T.M. de; Delft, J.H.M. van; Lommen, A.; Someren, E.P. van; Jennen, D.G.J.; Claessen, S.M.; Peijnenburg, A.A.C.M.; Stierum, R.H.; Kleinjans, J.C.S.

    2012-01-01

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure

  19. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    NARCIS (Netherlands)

    Jetten, M.J.A.; Gaj, S.; Ruiz Aracama, A.; Kok, de T.M.; Delft, van J.H.M.; Lommen, A.; Someren, van E.P.; Jennen, D.; Claessen, S.M.; Peijnenburg, A.A.C.M.; Stierum, R.; Kleinjans, J.C.S.

    2012-01-01

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure

  20. Acetaminophen modulates the transcriptional response to recombinant interferon-beta.

    Directory of Open Access Journals (Sweden)

    Aaron Farnsworth

    Full Text Available BACKGROUND: Recombinant interferon treatment can result in several common side effects including fever and injection-site pain. Patients are often advised to use acetaminophen or other over-the-counter pain medications as needed. Little is known regarding the transcriptional changes induced by such co-administration. METHODOLOGY/PRINCIPAL FINDINGS: We tested whether the administration of acetaminophen causes a change in the response normally induced by interferon-beta treatment. CD-1 mice were administered acetaminophen (APAP, interferon-beta (IFN-beta or a combination of IFN-beta+APAP and liver and serum samples were collected for analysis. Differential gene expression was determined using an Agilent 22 k whole mouse genome microarray. Data were analyzed by several methods including Gene Ontology term clustering and Gene Set Enrichment Analysis. We observed a significant change in the transcription profile of hepatic cells when APAP was co-administered with IFN-beta. These transcriptional changes included a marked up-regulation of genes involved in signal transduction and cell differentiation and down-regulation of genes involved in cellular metabolism, trafficking and the IkappaBK/NF-kappaB cascade. Additionally, we observed a large decrease in the expression of several IFN-induced genes including Ifit-3, Isg-15, Oasl1, Zbp1 and predicted gene EG634650 at both early and late time points. CONCLUSIONS/SIGNIFICANCE: A significant change in the transcriptional response was observed following co-administration of IFN-beta+APAP relative to IFN-beta treatment alone. These results suggest that administration of acetaminophen has the potential to modify the efficacy of IFN-beta treatment.

  1. Fulminate Hepatic Failure in a 5 Year Old Female after Inappropriate Acetaminophen Treatment

    Directory of Open Access Journals (Sweden)

    Irena Kasmi

    2015-09-01

    CONCLUSION: Healthcare providers should considered probable acetaminophen toxicity in any child who has received the drug and presented with liver failure. When there is a high index of suspicion of acetaminophen toxicity NAC should be initiated and continued until there are no signs of hepatic dysfunction.

  2. Don't Double Up on Acetaminophen

    Science.gov (United States)

    ... re at the store deciding which product to buy, check the 'Drug Facts' label of OTC cold, cough and flu ... If you’re still not sure which to buy, ask the pharmacist for advice. FDA has an ... medicines containing acetaminophen accounted for nearly half of all ...

  3. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    International Nuclear Information System (INIS)

    Bisby, R.H.; Tabassum, N.

    1988-01-01

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k 2 ) of (2.2 ± 0.4) x 10 9 M -1 sec -1 . In alkaline solutions the radical deprotonates with a pK of 11.1 ± 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 ± 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10 6 M -1 sec -1 at pH7 and 2.7 x 10 8 M -1 sec -1 at pH 11.3 were obtained. The reaction of O 2 with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed. (author)

  4. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Bisby, R H; Tabassum, N

    1988-07-15

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k/sub 2/) of (2.2 +- 0.4) x 10/sup 9/ M/sup -1/ sec/sup -1/. In alkaline solutions the radical deprotonates with a pK of 11.1 +- 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 +- 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10/sup 6/ M/sup -1/ sec/sup -1/ at pH7 and 2.7 x 10/sup 8/ M/sup -1/ sec/sup -1/ at pH 11.3 were obtained. The reaction of O/sub 2/ with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed.

  5. High-performance liquid chromatographic assay for acetaminophen and phenacetin in the presence of their metabolites in biological fluids

    International Nuclear Information System (INIS)

    Pang, K.S.; Taburet, A.M.; Hinson, J.A.; Gillette, J.R.

    1979-01-01

    The authors propose a method in which tracer amounts of a radiolabeled compound are used as the internal standard for the same unlabeled compound in high-performance liquid chromatography. The approach is valuable when a response from the internal standard becomes undesirable due to the presence of interference by the metabolites. The authors tested their approach with phenacetin and its metabolites, 2-hydroxyphenacetin, N-hydroxyphenacetin, phenetidine, acetaminophen sulfate conjugate and acetaminophen glucuronide conjugate in biological fluids with the use of [ 14 C] phenacetin and [ 3 H] acetaminophen as the internal standards, and were able to quantitate both phenacetin and acetaminophen simultaneously. They also tested the alternative approach in which the unlabeled drug was used as internal standard for tracer amounts of the same radiolabeled compound, with phenacetin and acetaminophen as the internal standards for tracer amounts of [ 14 C] phenacetin and [ 3 H] acetaminophen. Again, they were able to quantiate the two tracer radiolabeled compounds simultaneously. (Auth.)

  6. Use of intravenous acetaminophen (paracetamol) in a pediatric patient at the end of life: case report.

    Science.gov (United States)

    Marks, Adam D; Keefer, Patricia; Saul, D'Anna

    2013-12-01

    For the better part of 100 years, acetaminophen (or paracetamol as it is known outside of the United States) has been a common first-line analgesic in pediatrics and is typically well tolerated with minimal side effects. Its use as an anti-pyretic is also well-documented and thus it is used broadly for symptom control in the general pediatric population. In pediatric palliative care, acetaminophen is also used as an adjuvant to opioid therapy for pain as well as an anti-pyretic. For many pediatric patients near end-of-life, however, the ability to tolerate oral intake is diminished and rectal suppository administration can be distressing or contraindicated as in the setting of neutropenia, thus limiting use of acetaminophen by its usual routes. In Europe and Australia, an intravenous formulation of acetaminophen has been used for many years and has only recently become available in the United States. Here, we describe a case using intravenous acetaminophen in a pediatric patient at the end of life.

  7. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  8. Serum phosphate is an early predictor of outcome in severe acetaminophen-induced hepatotoxicity

    DEFF Research Database (Denmark)

    Schmidt, Lars E; Dalhoff, Kim

    2002-01-01

    Hypophosphatemia is frequently observed in acetaminophen-induced hepatotoxicity and may be involved in the pathogenesis of hepatic failure. The aim of the study was to evaluate the prognostic value of serial measurements of serum phosphate in patients with severe acetaminophen poisoning. Prospect......Hypophosphatemia is frequently observed in acetaminophen-induced hepatotoxicity and may be involved in the pathogenesis of hepatic failure. The aim of the study was to evaluate the prognostic value of serial measurements of serum phosphate in patients with severe acetaminophen poisoning...... Hospital (KCH) criteria. Phosphate concentrations were significantly higher in nonsurvivors than in survivors at 48 to 72 hours after overdose (mean 2.65 +/- 1.18 mmol/L vs. 0.68 +/- 0.22 mmol/L, P L vs. 0.59 +/- 0.23 mmol/L, P ...). A threshold phosphate concentration of 1.2 mmol/L at 48 to 96 hours after overdose had sensitivity 89%, specificity 100%, accuracy 98%, positive predictive value 100%, and negative predictive value 98%. The phosphate criteria had higher sensitivity, accuracy, and positive and negative predictive values than...

  9. Reversal of acetaminophen-generated oxidative stress and concomitant hepatotoxicity by a phytopharmaceutical product

    Directory of Open Access Journals (Sweden)

    Afolabi C. Akinmoladun

    2017-03-01

    Full Text Available The increasing popularity of herbal medicine and the well-established health benefits of phytochemicals have spurred the multiplicity of nutraceutical and phytopharmaceutical products. In this study, Trévo™, a nutraceutical and phytopharmaceutical product, was evaluated for beneficial effects in acetaminophen-induced hepatic toxicity in Wistar rats. Animals received Trévo™ (1.5 mL/kg, 3.0 mL/kg or 4.5 mL/kg orally for 14 days. Hepatotoxicity was induced by the oral administration of acetaminophen (2 g/kg, 24 h prior to sacrifice. Biochemical liver function tests, oxidative stress indicators and histoarchitectural changes were evaluated. Acetaminophen administration occasioned significant increase (P < 0.05 in serum bilirubin level and activities of the aminotransferases, alkaline phosphatase, γ-glutamyltransferase and lactate dehydrogenase accompanied by a significant decrease (P < 0.05 in albumin level as well as histopathological alterations in liver sections. Promotion of hepatic oxidative stress by acetaminophen was revealed by significant (P < 0.05 increase in lipid peroxidation, depletion of reduced glutathione, and decrease in superoxide dismutase and catalase activities. Administration of Trévo™ remarkably ameliorated acetaminophen-induced histopathological alterations and changes in serum and tissue biochemical markers. The protective effect of Trévo™ (4.5 mL/kg was at par with that of Silymarin (25 mg/kg. The present study indicates that Trévo™ has notable salubrious effects.

  10. Hepatoprotective activity of Tribulus terrestris extract against acetaminophen-induced toxicity in a freshwater fish (Oreochromis mossambicus).

    Science.gov (United States)

    Kavitha, P; Ramesh, R; Bupesh, G; Stalin, A; Subramanian, P

    2011-12-01

    The potential protective role of Tribulus terrestris in acetaminophen-induced hepatotoxicity in Oreochromis mossambicus was investigated. The effect of oral exposure of acetaminophen (500 mg/kg) in O. mossambicus at 24-h duration was evaluated. The plant extract (250 mg/kg) showed a remarkable hepatoprotective activity against acetaminophen-induced hepatotoxicity. It was judged from the tissue-damaging level and antioxidant levels in liver, gill, muscle and kidney tissues. Further acetaminophen impact induced a significant rise in the tissue-damaging level, and the antioxidant level was discernible from the enzyme activity modulations such as glutamate oxaloacetic transaminase, glutamate pyruvic transaminase, alkaline phosphatase, acid phosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, lipid peroxidase and reduced glutathione. The levels of all these enzymes have significantly (p terrestris extract (250 kg/mg). Histopathological changes of liver, gill and muscle samples were compared with respective controls. The results of the present study specify the hepatoprotective and antioxidant properties of T. terrestris against acetaminophen-induced toxicity in freshwater fish, O. mossambicus.

  11. Acetaminophen and acetone sensing capabilities of nickel ferrite nanostructures

    Science.gov (United States)

    Mondal, Shrabani; Kumari, Manisha; Madhuri, Rashmi; Sharma, Prashant K.

    2017-07-01

    Present work elucidates the gas sensing and electrochemical sensing capabilities of sol-gel-derived nickel ferrite (NF) nanostructures based on the electrical and electrochemical properties. In current work, the choices of target species (acetone and acetaminophen) are strictly governed by their practical utility and concerning the safety measures. Acetone, the target analyte for gas sensing measurement is a common chemical used in varieties of application as well as provides an indirect way to monitor diabetes. The gas sensing experiments were performed within a homemade sensing chamber designed by our group. Acetone gas sensor (NF pellet sensor) response was monitored by tracking the change in resistance both in the presence and absence of acetone. At optimum operating temperature 300 °C, NF pellet sensor exhibits selective response for acetone in the presence of other common interfering gases like ethanol, benzene, and toluene. The electrochemical sensor fabricated to determine acetaminophen is prepared by coating NF onto the surface of pre-treated/cleaned pencil graphite electrode (NF-PGE). The common name of target analyte acetaminophen is paracetamol (PC), which is widespread worldwide as a well-known pain killer. Overdose of PC can cause renal failure even fatal diseases in children and demand accurate monitoring. Under optimal conditions NF-PGE shows a detection limit as low as 0.106 μM with selective detection ability towards acetaminophen in the presence of ascorbic acid (AA), which co-exists in our body. Use of cheap and abundant PGE instead of other electrodes (gold/Pt/glassy carbon electrode) can effectively reduce the cost barrier of such sensors. The obtained results elucidate an ample appeal of NF-sensors in real analytical applications viz. in environmental monitoring, pharmaceutical industry, drug detection, and health monitoring.

  12. Effect of corn silk extract on acetaminophen induced renal damage in mice

    International Nuclear Information System (INIS)

    Mehboob, F.; Tahir, M.

    2015-01-01

    To evaluate the protective role of Corn Silk extract on Acetaminophen induced nephrotoxicity in albino mice. Study Design: Laboratory based randomized controlled trials. Place and Duration of Study: The study was carried out in experimental research laboratory University of Health Sciences and Anatomy department, Lahore. The study duration was one year from February 2012 to February 2013. Material and Methods: Twenty seven male albino mice, 6-8 weeks old weighing 30 + 5 gm, were used; these animals were randomly divided into three groups having nine mice in each group. Group A served as control and was given 16.6ml/kg normal saline intraperitoneally on first day of experiment and was sacrificed on 10th day of the experiment. Group B was treated with acetaminophen 600 mg/kg dissolved in 16.6 ml of normal saline intraperitoneally on 1st day of experiment and was sacrificed after 48 hours. Group C was given acetaminophen at a dose of 600 mg/kg intraperitoneally on first day of experiment and then corn silk extract was given by oral route at a dose of 400 mg/kg for next 8 days. The animals were sacrificed on 10th day of the experiment, the kidneys were removed; 3mm three tissue pieces were fixed in 10% formaline; processed and stained with H and E for histological study. Results: It was observed on microscopic examination that Corn silk extract reduced deleterious effects of acetaminophen on tubules of kidney as evidenced by reduction of tubular vacuolation and necrosis, absence of protein casts, vascular congestion and inflammation. Conclusion: It is concluded from current results that corn silk extract protects acetaminophen induced nephrotoxicity. (author)

  13. The protection of glycyrrhetinic acid (GA) towards acetaminophen ...

    African Journals Online (AJOL)

    induced toxicity partially through fatty acids metabolic pathway. ... Abstract. Background: Acetaminophen (APAP)-induced liver toxicity remains the key factor limiting the clinical application of APAP, and herbs are the important sources for isolation of ...

  14. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status.

    Science.gov (United States)

    Ajith, T A; Hema, U; Aswathy, M S

    2007-11-01

    A large number of xenobiotics are reported to be potentially hepatotoxic. Free radicals generated from the xenobiotic metabolism can induce lesions of the liver and react with the basic cellular constituents - proteins, lipids, RNA and DNA. Hepatoprotective activity of aqueous ethanol extract of Zingiber officinale was evaluated against single dose of acetaminophen-induced (3g/kg, p.o.) acute hepatotoxicity in rat. Aqueous extract of Z. officinale significantly protected the hepatotoxicity as evident from the activities of serum transaminase and alkaline phosphatase (ALP). Serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and ALP activities were significantly (pHepatic lipid peroxidation was enhanced significantly (pofficinale (200 and 400mg/kg, p.o.) prior to acetaminophen significantly declines the activities of serum transaminases and ALP. Further the hepatic antioxidant status was enhanced in the Z. officinale plus acetaminophen treated group than the control group. The results of the present study concluded that the hepatoprotective effect of aqueous ethanol extract of Z. officinale against acetaminophen-induced acute toxicity is mediated either by preventing the decline of hepatic antioxidant status or due to its direct radical scavenging capacity.

  15. Acetaminophen Toxicosis in a Cat

    OpenAIRE

    Anvik, J. O.

    1984-01-01

    A seven month old domestic shorthaired male cat was presented with a known history of acetaminophen ingestion. Clinical findings included icterus, depression, hypothermia, tachypnea and pronounced edema of the head and neck. Treatment was aimed at providing substrate to assist in conjugation of the drug and reversing methemoglobinemia. Administration of oral acetylcysteine, ascorbic acid and IV fluids was insufficient in this case due to a delay in initiation of treatment. The salient postmor...

  16. Efficacy of tramadol-acetaminophen tablets in low back pain patients with depression.

    Science.gov (United States)

    Tetsunaga, Tomoko; Tetsunaga, Tomonori; Tanaka, Masato; Ozaki, Toshifumi

    2015-03-01

    Tramadol-acetaminophen tablets are currently used to treat pain, including that of degenerative lumbar disease. Although there are many reports on tramadol-acetaminophen tablets, treatment outcomes in low back pain (LBP) patients with depression remain uncertain. This study investigated the outcomes of LBP patients with depression treated with tramadol-acetaminophen tablets. Of 95 patients with chronic LBP, 70 (26 men, 44 women; mean age 64 years) who were judged as having depression by the Self-Rating Depression Scale (SDS) were included in this study. In this trial, patients received one of two randomly assigned 8-week treatment regimes: tramadol-acetaminophen (Tramadol group, n = 35) and non-steroidal anti-inflammatory drugs (NSAIDs) (NSAID group, n = 35). In addition to completing self-report questionnaires, patients provided demographic and clinical information. All patients were assessed using a Numerical Rating Scale (NRS), Oswestry Disability Index (ODI), Pain Disability Assessment Scale (PDAS), Hospital Anxiety and Depression Scale (HADS), SDS, and Pain Catastrophizing Scale (PCS). After 8 weeks' treatment, the NRS and SDS scores were lower in the Tramadol group than in the NSAID group (p < 0.05). There were no significant differences in the ODI, PDAS, and PCS scores between the groups (p = 0.47, 0.09, 0.47). Although there was no difference in the anxiety component of the HADS between the groups (p = 0.36), the depression component was lower in the Tramadol group than in the NSAID group (p < 0.05). There was no significant difference between groups in the percentage of patients with treatment-associated adverse events. This investigation found that tramadol-acetaminophen is effective for reducing LBP and provided a prophylactic antidepressant effect in chronic LBP patients with depression.

  17. Efficacy and safety of tramadol/acetaminophen in the treatment of breakthrough pain in cancer patients

    International Nuclear Information System (INIS)

    Ming-Lin Ho; Chih-Yuan Chung

    2010-01-01

    We evaluated the analgesic efficacy and safety of tramadol 37.5 mg/acetaminophen 325 mg combination tablet, for the treatment of breakthrough pain in cancer patients. This study was conducted at Changhua Christian Hospital, Changhua, Taiwan from January 2006 to February 2007. The single-center and open-label study enrolled 59 opioid-treated cancer patients with at least moderate breakthrough pain (visual analog scale [VAS] score >/=40mm on a 100-mm scale). The efficacy measures included VAS scores and adverse effect assessment 10, 30, and 60 minutes after the administration of tramadol/acetaminophen. Visual analog scale score at time of pain relief was reported. The mean VAS score when the breakthrough pain episode began (0 minute) was 77.8. Analysis showed significant better mean pain VAS scores at 10, 30, and 60 minutes after the administration of tramadol/acetaminophen (p Tramadol/acetaminophen might be efficacious and safe in the treatment of breakthrough pain in cancer (Author).

  18. A sensor for acetaminophen in a blood medium using a Cu(II)-conducting polymer complex modified electrode

    International Nuclear Information System (INIS)

    Boopathi, Mannan; Won, Mi-Sook; Shim, Yoon-Bo

    2004-01-01

    Complexation of Cu ions in a terthiophene carboxylic acid (TTCA) polymer film resulted an enhanced anodic current for acetaminophen oxidation when compared to polymer coated and bare glassy carbon electrodes in human blood and buffer media. Scanning electron microscopy (SEM) and ESCA experiments indicate the involvement of copper in the electrocatalytic oxidation of acetaminophen. No interference was observed from other biologically important and phenolic compounds used with this modified electrode. Especially, the non-interference from N-acetylcysteine, an antidote for the treatment of acetaminophen poisoning, reveals the proposed method's superiority in medicinal applications. In addition, the present modified electrode avoids surface fouling at higher concentrations of acetaminophen. The calibration range obtained with CV was based between 2.0x10 -5 and 5.0x10 -3 M [r 2 =0.997 (n=5, R.S.D.=2.5%); DL=5.0x10 -6 M (S/N=3)]. The analytical utility of the modified electrode was achieved by analyzing the content of acetaminophen in different drugs without pretreatment using CV and amperometric techniques

  19. A gargantuan acetaminophen level in an acidemic patient treated solely with intravenous N-acetylcysteine.

    Science.gov (United States)

    Zell-Kanter, Michele; Coleman, Patrick; Whiteley, Patrick M; Leikin, Jerrold B

    2013-01-01

    The objective of this report is to describe an acidemic patient with one of the largest recorded acetaminophen ingestions in a patient with acidemia who was treated with supportive care and intravenous (IV) N-acetylcysteine. A 59-year-old female with a history of depression was found comatose. In the Emergency Department, she was obtunded with agonal respirations and immediately intubated. Activated charcoal was given through a nasogastric tube. An initial acetaminophen serum level was 1141 mg/L. The patient was started on IV N-acetylcysteine. The acetaminophen level peaked 2 hours later at 1193 mg/L. She was continued on the IV N-acetylcysteine protocol. The next day her aspartate aminotransferase was 3150 U/L, alanine aminotransferase was 2780 U/L, and creatinine phosphokinase was 16,197 U/L. There was no elevation in bilirubin or international normalized ratio (INR). Transaminase levels decreased on day 3 and normalized by day 4 when she was transferred to a psychiatric unit. Few cases have been reported of strikingly elevated acetaminophen levels in poisoned patients who did not receive hemodialysis. These patients did have increased lactate levels, and some had normal liver function tests. All of these patients received N-acetylcysteine and survived the poisoning without sequelae. This patient in this report was unique in that she had the highest reported serum acetaminophen level with acidosis and was treated successfully with only IV N-acetylcysteine and supportive care.

  20. Possible fatal acetaminophen intoxication with atypical clinical presentation

    NARCIS (Netherlands)

    de-Giorgio, Fabio; Lodise, Maria; Chiarotti, Marcello; d'Aloja, Ernesto; Carbone, Arnaldo; Valerio, Luca

    2013-01-01

    Acetaminophen or paracetamol, a commonly used over-the-counter analgesic, is known to elicit severe adverse reactions when taken in overdose, chronically at therapeutic dosage or, sporadically, following single assumptions of a therapeutic dose. Damage patterns including liver damage and, rarely,

  1. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique

    Science.gov (United States)

    Sadeghi, Fatemeh; Torab, Mansour; Khattab, Mostafa; Homayouni, Alireza; Afrasiabi Garekani, Hadi

    2013-01-01

    Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen. Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape) to spherical microparticle. Differential scanning calorimetery (DSC) and x-ray powder diffraction (XRPD) studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties. PMID:24379968

  2. Non-Steroid Anti-Inflammatory Drugs Are Better than Acetaminophen on Fever Control at Acute Stage of Fracture.

    Directory of Open Access Journals (Sweden)

    Kuang-Ting Yeh

    Full Text Available In addition to adequate surgical fixation and an aggressive rehabilitation program, pain relief is one of the most critical factors in the acute stage of fracture treatment. The most common analgesics are nonsteroid anti-inflammatory drugs and Acetaminophen, both of which relieve pain and reduce body temperature. In clinical experiences, they exhibit effective pain control; however, their influence on body temperature remains controversial. This study is aimed at determining the effects of analgesics at the acute stage of traumatic fracture by performing a clinical retrospective study of patients with fractures and a fracture animal model. The retrospective study revealed that, in the acetaminophen group, the mean value of postmedication body temperature (BT was significantly higher than that of the premedication BT. The change in BT was highly related with the medication rather than other risk factors. Forty eight 12-week-old male Wistar rats were divided into 6 groups: a control group, fracture group, fracture-Acetaminophen group, Acetaminophen group, fracture-Arcoxia group, and Arcoxia group. Fracture rats were prepared by breaking their unilateral tibia and fibula. Their inflammation conditions were evaluated by measuring their serum cytokine level and their physiological status was evaluated by estimating their central temperature, heart rate, and mean blood pressure. The hepatic adverse effects were assessed by measuring the serum levels of aspartate aminotransferase (sGOT and alanine aminotransferase (sGPT. The central temperature in the fracture-Acetaminophen group exceeded that in the groups fed normal saline water or Arcoxia. Accumulated hepatic injury was presented as steadily ascending curves of sGOT and sGPT. Inflammation-related cytokine levels were not higher in the Acetaminophen fracture group and were significantly lower in the fracture-Arcoxia group. Fever appeared to be aggravated by acetaminophen and more related to the

  3. Effect of Tramadol/Acetaminophen on Motivation in Patients with Chronic Low Back Pain.

    Science.gov (United States)

    Tetsunaga, Tomoko; Tetsunaga, Tomonori; Tanaka, Masato; Nishida, Keiichiro; Takei, Yoshitaka; Ozaki, Toshifumi

    2016-01-01

    Background. The contribution of apathy, frequently recognized in individuals with neurodegenerative diseases, to chronic low back pain (LBP) remains unclear. Objectives. To investigate levels of apathy and clinical outcomes in patients with chronic LBP treated with tramadol-acetaminophen. Methods. A retrospective case-control study involving 73 patients with chronic LBP (23 male, 50 female; mean age 71 years) treated with tramadol-acetaminophen (n = 36) and celecoxib (n = 37) was performed. All patients were assessed using the self-reported questionnaires. A mediation model was constructed using a bootstrapping method to evaluate the mediating effects of pain relief after treatment. Results. A total of 35 (55.6%) patients met the criteria for apathy. A four-week treatment regimen in the tramadol group conferred significant improvements in the Apathy scale and numerical rating scale but not in the Rolland-Morris Disability Questionnaire, Pain Disability Assessment Scale, or Pain Catastrophizing Scale. The depression component of the Hospital Anxiety and Depression Scale was lower in the tramadol group than in the celecoxib group. The mediation analysis found that the impact of tramadol-acetaminophen on the change in apathy was not mediated by the pain relief. Conclusions. Tramadol-acetaminophen was effective at reducing chronic LBP and conferred a prophylactic motivational effect in patients with chronic LBP.

  4. Measurement uncertainty of dissolution test of acetaminophen immediate release tablets using Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Daniel Cancelli Romero

    2017-10-01

    Full Text Available ABSTRACT Analytical results are widely used to assess batch-by-batch conformity, pharmaceutical equivalence, as well as in the development of drug products. Despite this, few papers describing the measurement uncertainty estimation associated with these results were found in the literature. Here, we described a simple procedure used for estimating measurement uncertainty associated with the dissolution test of acetaminophen tablets. A fractionate factorial design was used to define a mathematical model that explains the amount of acetaminophen dissolved (% as a function of time of dissolution (from 20 to 40 minutes, volume of dissolution media (from 800 to 1000 mL, pH of dissolution media (from 2.0 to 6.8, and rotation speed (from 40 to 60 rpm. Using Monte Carlo simulations, we estimated measurement uncertainty for dissolution test of acetaminophen tablets (95.2 ± 1.0%, with a 95% confidence level. Rotation speed was the most important source of uncertainty, contributing about 96.2% of overall uncertainty. Finally, it is important to note that the uncertainty calculated in this paper reflects the expected uncertainty to the dissolution test, and does not consider variations in the content of acetaminophen.

  5. Short day photoperiod protects against acetaminophen-induced ...

    African Journals Online (AJOL)

    Prof. Ogunji

    blood was collected by cardiac puncture for the estimation of liver enzymes activities. Liver ... revealed the protective effects of short photoperiod against acetaminophen-induced hepatotoxicity and lipid .... homogenized in ice cold KCl (100mM) containing. 0.003M ... This was followed by the addition of 1.0ml water and 5.0ml ...

  6. Comparison of the preventive analgesic effect of rectal ketamine and rectal acetaminophen after pediatric tonsillectomy

    Directory of Open Access Journals (Sweden)

    S Morteza Heidari

    2012-01-01

    Full Text Available Objectives: There is a little data about rectal administration of Ketamine as a postoperative analgesic, so we compared the efficacy of rectal ketamine with rectal acetaminophen, which is applied routinely for analgesia after painful surgeries like tonsillectomy. Methods: In this single-blinded comparative trial, we enrolled 70 children undergoing elective tonsillectomy, and divided them randomly in two groups. Patients received rectal ketamine (2 mg / kg or rectal acetaminophen (20 mg / kg at the end of surgery. The children′s Hospital of Eastern Ontario Pain scale was used to estimate pain in children. Also the vital signs, Wilson sedation scale, and side effects in each group were noted and compared for 24 hours. Results: The ketamine group had a lower pain score at 15 minutes and 60 minutes after surgery in Recovery (6.4 ± 0.8, 7.4 ± 1 vs. 7.1 ± 1.2, 7.8 ± 1.2 in the acetaminophen group, P < 0.05 and one hour and two hours in the ward (7.2 ± 0.7, 7 ± 0.5 vs. 7.9 ± 1.2, 7.5 ± 1.2 in the acetaminophen group, P < 0.05, with no significant differences till 24 hours. Dreams and hallucinations were not reported in the ketamine group. Systolic blood pressure was seen to be higher in the ketamine group (104.4 ± 7.9 vs. 99.8 ± 7.7 in the acetaminophen group and nystagmus was reported only in the ketamine group (14.2%. Other side effects were equivalent in both the groups. Conclusions: With low complications, rectal ketamine has analgesic effects, especially in the first hours after surgery in comparison with acetaminophen, and it can be an alternative analgesic with easy administration in children after tonsillectomy.

  7. Use of acetaminophen (paracetamol) during pregnancy and the risk of attention-deficit/hyperactivity disorder in the offspring.

    Science.gov (United States)

    Andrade, Chittaranjan

    2016-03-01

    Prenatal exposure to acetaminophen may result in compromised neurodevelopment through inflammatory and immunologic mechanisms, through predisposition to oxidative stress, and through endocrine, endogenous cannabinoid, and other mechanisms. Several small and large prospective studies have found an association between gestational acetaminophen exposure and attention-deficit/hyperactivity disorder (ADHD)-like behaviors, use of ADHD medication, and ADHD diagnoses in offspring during childhood; the only negative study was a small investigation that examined only one aspect of attention as an outcome. Creditably, most of the studies adjusted analyses for many (but not all) confounds associated with ADHD risk. Importantly, one pivotal study also adjusted for pain, infection, inflammation, and fever to reduce confounding by indication; this study found a dose-dependent risk. In the light of the finding of a single study that infection and fever during pregnancy by themselves do not raise the ADHD risk, it appears possible that the use of acetaminophen during pregnancy is itself responsible for the increased risk of ADHD. This suggests that acetaminophen may not be as safe in pregnancy as is widely believed. However, since fever during pregnancy may itself be associated with adverse gestational outcomes, given the present level of uncertainty about the ADHD risk with acetaminophen, it is suggested that, until more data are available, the use of acetaminophen in pregnancy should not be denied in situations in which the need for the drug is clear. © Copyright 2016 Physicians Postgraduate Press, Inc.

  8. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    Science.gov (United States)

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  9. Frequency of Poison Center Exposures for Pediatric Accidental Unsupervised Ingestions of Acetaminophen after the Introduction of Flow Restrictors.

    Science.gov (United States)

    Brass, Eric P; Reynolds, Kate M; Burnham, Randy I; Green, Jody L

    2018-04-02

    To assess the temporal association of flow restrictor introduction and the rate of accidental unsupervised ingestions (AUIs) of liquid acetaminophen products. The National Poison Data System was used to identify AUIs of single ingredient acetaminophen in patients aged poison centers obtained additional information using a structured telephone survey. Pediatric AUIs involving acetaminophen averaged 30 000 exposures per year between 2007 and 2012. From 2012 to 2015, after flow restrictor introduction, exposures steadily decreased at a rate of 2400 fewer exposures annually, reaching 21 877 exposures in 2015. Normalized to sales volume, exposures involving liquid acetaminophen products decreased by 40% from 2010 to 2015. Exposures involving products with flow restrictors tended to have a lower estimated ingestion per exposure, fewer exposures exceeding a 150 mg/kg acetaminophen threshold, and were associated with lower rates of hospital admissions when compared with products without restrictors. Caregivers reported improper storage and child confusion of the medicine with treats as common contributing factors to exposures. The introduction of flow restrictors was associated with a decrease in pediatric AUIs of liquid acetaminophen products. Decreases in the dose ingested and risk of hospital admission per exposure may also have resulted. Efforts to optimize flow restrictors and increase their use with medicines associated with high pediatric overdose risk should be encouraged. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Reducing Fever in Children: Safe Use of Acetaminophen

    Science.gov (United States)

    ... label or you can’t tell how much to give, ask your pharmacist or doctor what to do. Never give more of an acetaminophen-containing medicine than directed. If the medicine doesn’t help your child feel better, talk to your doctor, nurse, or pharmacist. If the ...

  11. Synergistic protective effect of picrorhiza with honey in acetaminophen induced hepatic injury.

    Science.gov (United States)

    Gupta, Prashant; Tripathi, Alok; Agrawal, Tripti; Narayan, Chandradeo; Singh, B M; Kumar, Mohan; Kumar, Arvind

    2016-08-01

    Rhizome of picrorhiza along with honey prevents hepatic damage and cure the acetaminophen (paracetamol) induced hepatotoxicity by modulating the activity of hepatic enzymes. Here, we studied the in vivo effects of Picrorhiza kurroa and honey on acetaminophen induced hepatotoxicity Balb/c mice model. Hepatic histopathological observations of acetaminophen fed (day-6) group showed more congestion, hemorrhage, necrosis, distorted hepatic architecture and nuclear inclusion. Such damages were recompensed to normal by picrorhiza or honey alone or both in combinations. We observed increased activity of SGPT and SGOT in injured liver tissues, and that too was compensated to normal with picrorhiza or honey alone or both in combinations. We observed 1.27 and 1.23-fold enhanced activity of SGPT in serum and liver lysate, respectively while SGOT showed 1.66 and 1.11 fold enhanced activity. These two enzymes are signature enzymes of liver damage. Thus, our results support that honey may be used with drug picrorhiza due to its synergistic role to enhance hepatoprotective and hepatoregenerative ability along with allopathic drugs to mitigate the hepatotoxic effects.

  12. Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations.

    Science.gov (United States)

    Felix, Fabiana S; Brett, Christopher M A; Angnes, Lúcio

    2007-04-11

    Flow injection analysis (FIA) with amperometric detection was employed for acetaminophen quantification in pharmaceutical formulations using a carbon film resistor electrode. This sensor exhibited sharp and reproducible current peaks for acetaminophen without chemical modification of its surface. A wide linear working range (8.0x10(-7) to 5.0x10(-4) mol L(-1)) in phosphate buffer solution as well as high sensitivity (0.143 A mol(-1) L cm(-2)) and low submicromolar detection limit (1.36x10(-7) mol L(-1)) were achieved. The repeatability (R.S.D. for 10 successive injections of 5.0x10(-6) and 5.0x10(-5) mol L(-1) acetaminophen solutions) was 3.1 and 1.3%, respectively, without any memory effect between injections. The new procedure was applied to the analyses of commercial pharmaceutical products and the results were in good agreement with those obtained utilizing a spectrophotometric method. Consequently, this amperometric method has been shown to be very suitable for quality control analyses and other applications with similar requirements.

  13. the effect of acetaminophen (paracetamol ) on tear production abstract

    African Journals Online (AJOL)

    LIVINGSTON

    cox-1 and cox-2 has long been known to be the mechanism of action ... effects typical of NSAIDS . Chronic excessive alcohol consumption can ... The effect of acetaminophen (paracetamol ) on the tear production of 100 young healthy subjects ...

  14. Maternal use of acetaminophen, ibuprofen, and acetylsalicylic acid during pregnancy and risk of cryptorchidism

    DEFF Research Database (Denmark)

    Jensen, Morten Søndergaard; Rebordosa, Cristina; Thulstrup, Ane Marie

    2010-01-01

    Cyclooxygenase (COX) inhibitors-acetaminophen, ibuprofen and acetylsalicylic acid-have endocrine-disruptive properties in the rainbow trout. In humans, aspirin blocks the androgen response to human chorionic gonadotropin (hCG), and, because hCG-stimulated androgen production in utero is crucial...... for normal testicular descent, exposure to COX inhibitors at vulnerable times during gestation may impair testicular descent. We examined whether prenatal exposure to acetaminophen, ibuprofen, and acetylsalicylic acid was associated with increased occurrence of cryptorchidism....

  15. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver.

    Science.gov (United States)

    Papageorgiou, Ioannis; Freytsis, Marina; Court, Michael H

    2016-10-01

    Acetaminophen is the leading cause of acute liver failure (ALF) in many countries including the United States. Hepatic glucuronidation by UDP-glucuronosyltransferase (UGT) 1A subfamily enzymes is the major route of acetaminophen elimination. Reduced glucuronidation may predispose some individuals to acetaminophen-induced ALF, but mechanisms underlying reduced glucuronidation are poorly understood. We hypothesized that specific microRNAs (miRNAs) may reduce UGT1A activity by direct effects on the UGT1A 3'-UTR shared by all UGT1A enzyme transcripts, or by indirect effects on transcription factors regulating UGT1A expression. We performed an unbiased miRNA whole transcriptome association analysis using a bank of human livers with known acetaminophen glucuronidation activities. Of 754 miRNAs evaluated, 9 miRNAs were identified that were significantly overexpressed (p2-fold) in livers with low acetaminophen glucuronidation activities compared with those with high activities. miR-375 showed the highest difference (>10-fold), and was chosen for further mechanistic validation. We demonstrated using in silico analysis and luciferase reporter assays that miR-375 has a unique functional binding site in the 3'-UTR of the aryl hydrocarbon receptor (AhR) gene. Furthermore overexpression of miR-375 in LS180 cells demonstrated significant repression of endogenous AhR protein (by 40%) and mRNA (by 10%), as well as enzyme activity and/or mRNA of AhR regulated enzymes including UGT1A1, UGT1A6, and CYP1A2, without affecting UGT2B7, which is not regulated by AhR. Thus miR-375 is identified as a novel repressor of UGT1A-mediated hepatic acetaminophen glucuronidation through reduced AhR expression, which could predispose some individuals to increased risk for acetaminophen-induced ALF. Published by Elsevier Inc.

  16. Efficacy and safety of a fixed combination of tramadol and paracetamol (acetaminophen) as pain therapy within palliative medicine.

    Science.gov (United States)

    Husic, Samir; Izic, Senad; Matic, Srecko; Sukalo, Aziz

    2015-02-01

    The goal of the research was to determine the efficacy of a fixed combination of tramadol and paracetamol (acetaminophen) in the treatment of pain of patients with the advanced stage of cancer. A prospective study was conducted at the Center for Palliative Care, University Clinical Center Tuzla, Bosnia and Herzegovina, from January 1(st) to December 31(st) 2013. A total of 353 patients who were treated with a fixed combination of tramadol and acetaminophen (37.5 mg and 325 mg) at the initial dosage 3x1 tablet (112.5 mg tramadol and 975 mg acetaminophen) for pain intensity 4, up to 4x2 tablets (300 mg of tramadol and 2600 mg paracetamol) for pain intensity 7 and 8. If the patient during previous day has two or more pain episodes that required a "rescue dose" of tramadol, increased was the dose of fixed combination tramadol and acetaminophen to a maximum of 8 tablets daily (300 mg of tramadol and 2600 mg paracetamol). Statistical analysis was performed by biomedical software MedCalc for Windows version 9.4.2.0. The difference was considered significant for Pparacetamol). Side effects, in the treatment of pain with a fixed combination tramadol and acetaminophen, were found in 29.18% of patients, with a predominance of nausea and vomiting. Fixed combination of tramadol and acetaminophen can be used as an effective combination in the treatment of chronic cancer pain, with frequent dose evaluation and mild side effects.

  17. [Good use and knowledge of paracetamol (acetaminophen) among self-medicated patients: Prospective study in community pharmacies].

    Science.gov (United States)

    Severin, Anne-Elise; Petitpain, Nadine; Scala-Bertola, Julien; Latarche, Clotilde; Yelehe-Okouma, Melissa; Di Patrizio, Paolo; Gillet, Pierre

    2016-06-01

    Acetaminophen (paracetamol), the highest over-the-counter (OTC) selling drug in France, is also the first cause of acute hepatic failure. We aimed to assess the good use and the knowledge of acetaminophen in a setting of urban self-medicated patients. We conducted a prospective observational study in randomly selected community pharmacies of Metz (France) agglomeration. Patients coming to buy OTC acetaminophen for themselves or their family had to answer to an anonymous autoquestionnaire. Responses were individually and concomitantly analyzed through 3 scores: good use, knowledge and overdosage. Twenty-four community pharmacies participated and 302 patients were interviewed by mean of a dedicated questionnaire. Most of patients (84.4%) could be considered as "good users" and independent factors of good use were (i) a good knowledge of acetaminophen (OR=5.3; P<0.0001) and more surprisingly; (ii) the fact of having no children (parentality: OR=0.1; P=0.006). Responses corresponding to involuntary overdosage were mostly due to a too short interval between drug intakes (3hours). Only 30.8% of patients were aware of liver toxicity of acetaminophen and only 40.7% knew the risk of the association with alcohol. Both good use and knowledge were significantly higher in patients looking for information from their pharmacist, physician and package leaflet. Patients should definitely be better informed about acetaminophen to warrant a better safety of its consumption. Pharmacists and physicians have to remind patients the risk factors of unintentional overdose and liver toxicity. Package leaflets have also to be more informative. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  18. A randomized, double-blind, placebo-controlled trial on the role of preemptive analgesia with acetaminophen [paracetamol] in reducing headache following electroconvulsive therapy [ECT].

    Science.gov (United States)

    Isuru, Amila; Rodrigo, Asiri; Wijesinghe, Chamara; Ediriweera, Dileepa; Premadasa, Shan; Wijesekara, Carmel; Kuruppuarachchi, Lalith

    2017-07-28

    Electroconvulsive therapy (ECT) is a safe and efficient treatment for several severe psychiatric disorders, but its use is limited by side effects. Post-ECT headache is one of the commonest side effects. Preemptive analgesia is effective in post-surgical pain management. The most commonly used analgesic is acetaminophen (paracetamol). However, acetaminophen as a preemptive analgesic for post-ECT headache has not been studied adequately. This study was conducted to compare the incidence and severity of post-ECT headache in patients who were administered acetaminophen pre-ECT with a placebo group. This study was a randomised, double-blind, placebo-controlled trial. Sixty-three patients received 1 g acetaminophen and 63 patients received a placebo identical to acetaminophen. The incidence and severity of headache 2 h before and after ECT were compared between placebo and acetaminophen groups. The severity was measured using a visual analog scale. Generalised linear models were used to evaluate variables associated with post ECT headache. Demographic and clinical variables of placebo and acetaminophen groups were comparable except for the energy level used to induce a seizure. Higher proportion of the placebo group (71.4%) experienced post-ECT headache when compared to the acetaminophen group (p < 0.001). The median pain score for headache was 0 (Inter quartile range: 0-2) in acetaminophen group whereas the score was 2 (IQR: 0-4) in placebo group (P < 0.001). Model fitting showed that the administration of acetaminophen is associated with less post-ECT headache (odds ratio = 0.23, 95% CI: 0.11-0.48, P < 0.001). A significant reduction was seen in both the incidence and severity of post-ECT headache with preemptive analgesia with acetaminophen. Ethical approval was granted by an Ethic review committee, University of Kelaniya, Sri Lanka (P/166/10/2015) and the trial was registered in the Sri Lanka Clinical Trials Registry ( SLCTR/2015/27 ).

  19. Competing Mechanistic Hypotheses of Acetaminophen-Induced Hepatotoxicity Challenged by Virtual Experiments.

    Directory of Open Access Journals (Sweden)

    Andrew K Smith

    2016-12-01

    Full Text Available Acetaminophen-induced liver injury in mice is a model for drug-induced liver injury in humans. A precondition for improved strategies to disrupt and/or reverse the damage is a credible explanatory mechanism for how toxicity phenomena emerge and converge to cause hepatic necrosis. The Target Phenomenon in mice is that necrosis begins adjacent to the lobule's central vein (CV and progresses outward. An explanatory mechanism remains elusive. Evidence supports that location dependent differences in NAPQI (the reactive metabolite formation within hepatic lobules (NAPQI zonation are necessary and sufficient prerequisites to account for that phenomenon. We call that the NZ-mechanism hypothesis. Challenging that hypothesis in mice is infeasible because 1 influential variables cannot be controlled, and 2 it would require sequential intracellular measurements at different lobular locations within the same mouse. Virtual hepatocytes use independently configured periportal-to-CV gradients to exhibit lobule-location dependent behaviors. Employing NZ-mechanism achieved quantitative validation targets for acetaminophen clearance and metabolism but failed to achieve the Target Phenomenon. We posited that, in order to do so, at least one additional feature must exhibit zonation by decreasing in the CV direction. We instantiated and explored two alternatives: 1 a glutathione depletion threshold diminishes in the CV direction; and 2 ability to repair mitochondrial damage diminishes in the CV direction. Inclusion of one or the other feature into NZ-mechanism failed to achieve the Target Phenomenon. However, inclusion of both features enabled successfully achieving the Target Phenomenon. The merged mechanism provides a multilevel, multiscale causal explanation of key temporal features of acetaminophen hepatotoxicity in mice. We discovered that variants of the merged mechanism provide plausible quantitative explanations for the considerable variation in 24-hour

  20. Pre-emptive analgesia with paracetamol (acetaminophen) in postoperative pain

    International Nuclear Information System (INIS)

    Afhami, M.R.; Hassanzadeh, J.P.; Panahea, J.R.

    2007-01-01

    To evaluate efficacy and safety of preoperative paracetamol for postoperative pain relief. The study population consisted of 40 adult female patients scheduled for tubectomy as an elective surgery who were in ASA class I. Patients were allocated randomly to receive 325mg of acetaminophen orally half an hour before surgery. Pain was assessed by verbal rating scale in three situations (resting, moving and coughing). Data was collection done using the questionnaire and data analysis done using descriptive statistical methods. The patients who received oral paracetamol experienced moderate and mild pain in 50% of the cases when they were in resting position. Feeling mild and moderate pain with movement was in 40% and 60% respectively. While coughing, 100% of the cases felt only moderate pain and none experienced severe pain. Administration of a single dose of acetaminophen in preoperative period is effective for acute postoperative pain relief. (author)

  1. Lycopene pretreatment improves hepatotoxicity induced by acetaminophen in C57BL/6 mice.

    Science.gov (United States)

    Bandeira, Ana Carla Balthar; da Silva, Rafaella Cecília; Rossoni, Joamyr Victor; Figueiredo, Vivian Paulino; Talvani, André; Cangussú, Silvia Dantas; Bezerra, Frank Silva; Costa, Daniela Caldeira

    2017-02-01

    Acetaminophen (APAP) is an antipyretic and analgesic drug that, in high doses, leads to severe liver injury and potentially death. Oxidative stress is an important event in APAP overdose. Researchers are looking for natural antioxidants with the potential to mitigate the harmful effects of reactive oxygen species in different models. Lycopene has been widely studied for its antioxidant properties. The aim of this study was to evaluate the antioxidant potential of lycopene pretreatment in APAP-induced liver injury in C57BL/6 mice. C57BL/6 male mice were divided into the following groups: control (C); sunflower oil (CO); acetaminophen 500mg/kg (APAP); acetaminophen 500mg/kg+lycopene 10mg/kg (APAP+L10), and acetaminophen 500mg/kg+lycopene 100mg/kg (APAP+L100). Mice were pretreated with lycopene for 14 consecutive days prior to APAP overdose. Analyses of blood serum and livers were performed. Lycopene was able to improve redox imbalance, decrease thiobarbituric acid reactive species level, and increase CAT and GSH levels. In addition, it decreased the IL-1β expression and the activity of MMP-2. This study revealed that preventive lycopene consumption in C57BL/6 mice can attenuate the effects of APAP-induced liver injury. Furthermore, by improving the redox state, and thus indicating its potential antioxidant effect, lycopene was also shown to have an influence on inflammatory events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of Exposure to Acetaminophen and Ibuprofen on Fetal Germ Cell Development in Both Sexes in Rodent and Human Using Multiple Experimental Systems

    DEFF Research Database (Denmark)

    Hurtado-Gonzalez, Pablo; Anderson, Richard A; Macdonald, Joni

    2018-01-01

    /ovaries using in vitro and xenograft approaches. METHODS: Gonocyte (TFAP2C+) number was reduced relative to controls in first-trimester human fetal testes exposed in vitro to acetaminophen (-28%) or ibuprofen (-22%) and also in ovaries exposed to acetaminophen (-43%) or ibuprofen (-49%). Acetaminophen exposure...

  3. Evaluation of Hepatoprotective Activity of Adansonia digitata Extract on Acetaminophen-Induced Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Abeer Hanafy

    2016-01-01

    Full Text Available The methanol extract of the fruit pulp of Adansonia digitata L. (Malvaceae was examined for its hepatoprotective activity against liver damage induced by acetaminophen in rats. The principle depends on the fact that administration of acetaminophen will be associated with development of oxidative stress. In addition, hepatospecific serum markers will be disturbed. Treatment of the rats with the methanol extract of the fruit pulp of Adansonia digitata L. prior to administration of acetaminophen significantly reduced the disturbance in liver function. Liver functions were measured by assessment of total protein, total bilirubin, ALP, ALT, and AST. Oxidative stress parameter and antioxidant markers were also evaluated. Moreover, histopathological evaluation was performed in order to assess liver case regarding inflammatory infiltration or necrosis. Animals were observed for any symptoms of toxicity after administration of extract of the fruit pulp of Adansonia digitata L. to ensure safety of the fruit extract.

  4. Effect of Momordica charantia (bitter melon on serum glucose level and various protein parameters in acetaminophen intoxicated rabbits

    Directory of Open Access Journals (Sweden)

    Kanwal Zahra

    2012-02-01

    Full Text Available Aim: Liver function tests, including total plasma proteins, albumin, bilirubin and glucose were analyzed to find out the hepatocurative and hepatoprotective effects of Momordica charantia. Method: The study was divided into two categories. In first category, the livers of rabbits were intoxicated with acetaminophen, and then Momordica fruit extract was given to observe its hepatocurative effects. Results: The results indicated significant changes in concentrations of the parameters in acetaminophen-challenged rabbits. In the second category, treatment was started by giving Momordica fruit extract dose orally for 10 days and 15 days to two groups of rabbits, respectively. Then, livers of rabbits were damaged with acetaminophen and hepatoprotective effects of Momordica were observed. Conclusion: The results showed that the animals treated with Momordica fruit extract experienced less liver damage due to acetaminophen intoxication, indicating that Momordica has hepatoprotective properties. [J Intercult Ethnopharmacol 2012; 1(1.000: 7-12

  5. Efficacy and Safety of a Fixed Combination of Tramadol and Paracetamol (Acetaminophen) as Pain Therapy Within Palliative Medicine

    Science.gov (United States)

    Husic, Samir; Izic, Senad; Matic, Srecko; Sukalo, Aziz

    2015-01-01

    Goal: The goal of the research was to determine the efficacy of a fixed combination of tramadol and paracetamol (acetaminophen) in the treatment of pain of patients with the advanced stage of cancer. Material and methods: A prospective study was conducted at the Center for Palliative Care, University Clinical Center Tuzla, Bosnia and Herzegovina, from January 1st to December 31st 2013. A total of 353 patients who were treated with a fixed combination of tramadol and acetaminophen (37.5 mg and 325 mg) at the initial dosage 3x1 tablet (112.5 mg tramadol and 975 mg acetaminophen) for pain intensity 4, up to 4x2 tablets (300 mg of tramadol and 2600 mg paracetamol) for pain intensity 7 and 8. If the patient during previous day has two or more pain episodes that required a “rescue dose” of tramadol, increased was the dose of fixed combination tramadol and acetaminophen to a maximum of 8 tablets daily (300 mg of tramadol and 2600 mg paracetamol). Statistical analysis was performed by biomedical software MedCalc for Windows version 9.4.2.0. The difference was considered significant for Ppain score was significantly lower (ppain with a fixed combination tramadol and acetaminophen, were found in 29.18% of patients, with a predominance of nausea and vomiting. Conclusion: Fixed combination of tramadol and acetaminophen can be used as an effective combination in the treatment of chronic cancer pain, with frequent dose evaluation and mild side effects. PMID:25870531

  6. Ibuprofen versus acetaminophen as a post-partum analgesic for women with severe pre-eclampsia: randomized clinical study.

    Science.gov (United States)

    Vigil-De Gracia, Paulino; Solis, Valentin; Ortega, Nelson

    2017-06-01

    To compare differences in blood pressure levels between patients with severe post-partum pre-eclampsia using ibuprofen or acetaminophen. A randomized controlled trial was made in women with severe pre-eclampsia or superimposed pre-eclampsia after vaginal birth. The patient was randomly selected to receive either 400 mg of ibuprofen every 8 h or 1 g of acetaminophen every 6 h during the post-partum. The primary variable was systolic hypertension ≥150 mmHg and/or diastolic hypertension ≥100 mmHg after the first 24 h post-partum. Secondary variables were the arterial blood pressure readings at 24, 48, 72, and 96 h post-partum and maternal complications. A total of 113 patients were studied: 56 in the acetaminophen group and 57 in the ibuprofen group. With regard to the primary outcome, more cases were significantly hypertensive in the ibuprofen group (36/57; 63.1%) than in the acetaminophen group (16/56; 28.6%). Severe hypertension (≥160/110 mmHg) was not significantly different between the groups, 14.5% (acetaminophen) and 24.5% (ibuprofen). The levels of arterial blood pressure show a hammock-shaped curve independent of the drug used, however, is more noticeable with ibuprofen. This study shows that ibuprofen significantly elevates blood pressure in women with severe pre-eclampsia during the post-partum period.

  7. Comparison of the Effects of Oral Diclofenac Sodium Versus Acetaminophen Codein on Pain During Extracorporeal Shock Wave Lithotrypsy

    Directory of Open Access Journals (Sweden)

    Karkhanehei B

    2017-09-01

    Full Text Available Introduction: Urinary calculi is the second common chronic renal disease. Todays, the extracorporeal shock wave lithotripsy (ESWL is the most common method of treatment of kidney calculi, though this method was invented 30 years ago. This study was conducted to compare the effects of oral diclofenac sodium versus acetaminophen codein on pain during ESWL. Methods: After signing informed consent, 90 patients with urinary calculi were randomly allocated into three equal groups (n = 30. In this study, one hour before the ESWL, 30 patients received the acetaminophen codeine (acetaminophen 650 mg plus codeine 20 mg orally and 30 patients received diclofenac sodium 50 mg orally and 30 patients did not receive any drug. Severity of pain was assessed by the four-point scale during the procedure. Results: The results of our study showed that there was no statistically significant difference among the three groups regarding gender, weight, age, overall satisfaction, and pain severity during ESWL. Although morphine consumption and pain severity in groups of acetaminophen codeine and diclofenac sodium was lower than in the third group, this different was not statistically significant (P = 0.086. Conclusion: Oral prescription of acetaminophen codeine and diclofenac sodium, one hour before ESWL, has a similar effect on pain management.

  8. Quantitative Evaluation of Acetaminophen in Oral Solutions by Dispersive Raman Spectroscopy for Quality Control

    OpenAIRE

    Borio, Viviane G.; Vinha, RubensJr.; Nicolau, Renata A.; de Oliveira, Hueder Paulo M.; de Lima, Carlos J.; Silveira, LandulfoJr.

    2012-01-01

    This work used dispersive Raman spectroscopy to evaluate acetaminophen in commercially available formulations as an analytical methodology for quality control in the pharmaceutical industry. Raman spectra were collected using a near-infrared dispersive Raman spectrometer (830 nm, 50 mW, 20 s exposure time) coupled to a fiber optic probe. Solutions of acetaminophen diluted in excipient (70 to 120% of the commercial concentration of 200 mg/mL) were used to develop a calibration model based on p...

  9. Spondias mombin L. (Anacardiaceae) enhances detoxification of hepatic and macromolecular oxidants in acetaminophen-intoxicated rats.

    Science.gov (United States)

    Saheed, Sabiu; Taofik, Sunmonu Olatunde; Oladipo, Ajani Emmanuel; Tom, Ashafa Anofi Omotayo

    2017-11-01

    Oxidative stress is a common pathological condition associated with drug-induced hepatotoxicity. This study investigated Spondias mombin L. aqueous leaf extract on reactive oxygen species and acetaminophen-mediated oxidative onslaught in rats' hepatocytes. Hepatotoxic rats were orally administered with the extract and vitamin C for 4 weeks. The extract dose-dependently scavenged DPPH, hydrogen peroxide and hydroxyl radicals, with IC 50 values of 0.13, 0.66, and 0.64 mg/mL, and corresponding % inhibitions of 89, 80, and 90%, respectively at 1.0 mg/mL. Ferric ion was also significantly reduced. The marked (p<0.05) increases in the activities of alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase were reduced following treatment with the extract. The extract also significantly (p<0.05) induced the activities of antioxidant enzymes. These inductions reversed the acetaminophen-enhanced reduction in the specific activities of these enzymes as well as attenuated the observed elevated concentrations of autooxidized products and rived DNA in the acetaminophen-intoxicated animals. The observed effects competed with those of vitamin C and are suggestive of hepatoprotective and antioxidative attributes of the extract. Overall, the data from the present findings suggest that S. Mombin aqueous leaf extract is capable of ameliorating acetaminophen-mediated oxidative hepatic damage via enhancement of antioxidant defense systems.

  10. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-01-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  11. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  12. Influence of acetaminophen and ibuprofen on in vivo patellar tendon adaptations to knee extensor resistance exercise in older adults

    DEFF Research Database (Denmark)

    Carroll, Chad C; Dickinson, Jared M; Lemoine, Jennifer K

    2011-01-01

    Millions of older individuals consume acetaminophen or ibuprofen daily and these same individuals are encouraged to participate in resistance training. Several in vitro studies suggest that cyclooxygenase-inhibiting drugs can alter tendon metabolism and may influence adaptations to resistance...... training. Thirty-six individuals were randomly assigned to a Placebo (67±2y), Acetaminophen (64±1y; 4000mg(.)d(-1)), or Ibuprofen (64±1y; 1200mg(.)d(-1)) group in a double-blind manner and completed 12-weeks of knee extensor resistance-training. Before and after training in vivo patellar tendon properties......, and this response was not influenced with ibuprofen consumption. Mean tendon CSA increased with training in the Acetaminophen group (3%, p0.05) with training in the Placebo group. These responses were generally uninfluenced by ibuprofen consumption. In the Acetaminophen group, tendon deformation and strain...

  13. Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba.

    Science.gov (United States)

    Nunes, Bruno; Pinto, Glória; Martins, Liliana; Gonçalves, Fernando; Antunes, Sara C

    2014-09-01

    Acetaminophen is globally one of the most prescribed drugs due to its antipyretic and analgesic properties. However, it is highly toxic when the dosage surpasses the detoxification capability of an exposed organism, with involvement of an already described oxidative stress pathway. To address the issue of the ecotoxicity of acetaminophen, we performed acute exposures of two aquatic plant species, Lemna gibba and Lemna minor, to this compound. The selected biomarkers were number of fronds, biomass, chlorophyll content, lipid peroxidation (TBARS assay), and proline content. Our results showed marked differences between the two species. Acetaminophen caused a significant decrease in the number of fronds (EC50 = 446.6 mg/L), and the establishment of a dose-dependent peroxidative damage in L. minor, but not in L. gibba. No effects were reported in both species for the indicative parameters chlorophyll content and total biomass. However, the proline content in L. gibba was substantially reduced. The overall conclusions point to the occurrence of an oxidative stress scenario more prominent for L. minor. However, the mechanisms that allowed L. gibba to cope with acetaminophen exposure were distinct from those reported for L. minor, with the likely involvement of proline as antioxidant.

  14. Gold nanoparticles ameliorate acetaminophen induced hepato-renal injury in rats.

    Science.gov (United States)

    Reshi, Mohd Salim; Shrivastava, Sadhana; Jaswal, Amita; Sinha, Neelu; Uthra, Chhavi; Shukla, Sangeeta

    2017-04-04

    Valuable effects of gold particles have been reported and used in complementary medicine for decades. The aim of this study was to evaluate the therapeutic efficacy of gold nanoparticles (AuNPs) against acetaminophen (APAP) induced toxicity. Albino rats were administered APAP at a dose of 2g/kg p.o. once only. After 24h of APAP intoxication, animals were treated with three different doses of AuNPs (50μg/kg, 100μg/kg, 150μg/kg) orally or silymarin at a dose of 50mg/kg p.o., once only. Animals of all the groups were sacrificed after 24h of last treatment. APAP administered group showed a significant rise in the AST, ALT, SALP, LDH, cholesterol, bilirubin, albumin, urea and creatinine in serum which indicated the hepato-renal damage. A significantly enhanced LPO and a depleted level of GSH were observed in APAP intoxicated rats. Declined activities of SOD and Catalase, after acetaminophen exposure indicated oxidative stress in liver and kidney. The activities of ATPase and glucose-6-Phosphatase were significantly inhibited after APAP administration. AuNPs treatment reversed all variables significantly towards normal level and was found nontoxic. Thus it is concluded that gold nanoparticles played a beneficial role in reducing acetaminophen induced toxicity and can be used in the development of drug against hepatic as well as renal diseases, after further preclinical and clinical studies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Treatment strategies for early presenting acetaminophen overdose: a survey of medical directors of poison centers in North America and Europe.

    Science.gov (United States)

    Kozer, E; McGuigan, M

    2002-03-01

    Acetaminophen is frequently used in self-poisoning in Western countries. Although treatment with N-acetylcysteine (NAC) reduces liver injury, no consensus exists on the preferred management of acetaminophen toxicity. To describe the approach taken by toxicologists in North America and Europe toward the management of acetaminophen toxicity. Medical directors of poison centers in the US, Canada, and Europe were surveyed by means of a questionnaire presenting two clinical scenarios of acetaminophen overdose: a healthy adolescent with no risk factors who had an acute ingestion of acetaminophen, and an adult with both acute ingestion and possible risk factors. For each case, several questions about the management of these patients were asked. Questionnaires were sent to medical directors of 76 poison centers in North America and 48 in Europe, with response rates of 62% and 44%, respectively. Forty percent of responders suggested using charcoal 4 hours after ingestion of a potential toxic dose of acetaminophen, and 90% recommended treatment with NAC when levels were above 150 microg/mL but below 200 microg/mL 4 hours after ingestion. Duration of treatment with oral NAC ranged from 24 to 96 hours; 38 responders suggested a duration of 72 hours. Of 49 centers recommending oral NAC, 18 (36.7%) said they might consider treatment for less than 72 hours. Eleven of 29 (37.9%) responders suggested treatment with intravenous NAC for more than 20 hours as their usual protocol or a protocol for specific circumstances. Our study showed large variability in the management of acetaminophen overdose. Variations in treatment protocols should be addressed in clinical trials to optimize the treatment for this common problem.

  16. Electrochemical fabrication of TiO2 nanoparticles/[BMIM]BF4 ionic liquid hybrid film electrode and its application in determination of p-acetaminophen

    International Nuclear Information System (INIS)

    Wang, Bin; Li, Yuan; Qin, Xianjing; Zhan, Guoqing; Ma, Ming; Li, Chunya

    2012-01-01

    A water soluble ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF 4 ), was incorporated into TiO 2 nanoparticles to fabricate a hybrid film modified glassy carbon electrode (nano‐TiO 2 /[BMIM]BF 4 /GCE) through electrochemical deposition in a tetrabutyltitanate sol solution containing [BMIM]BF 4 . The obtained nano‐TiO 2 /[BMIM]BF 4 /GCEs were characterized scanning electronic microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). Electrochemical behaviors of p‐acetaminophen at the nano‐TiO 2 /[BMIM]BF 4 /GCEs were thoroughly investigated. Compared to the redox reaction of p‐acetaminophen using an unmodified electrode under the same conditions, a new reduction peak was observed clearly at 0.26 V with the modified electrode. In addition, the peak potential for the oxidation of p‐acetaminophen was found to shift negatively about 90 mV and the current response increased significantly. These changes indicate that the nano‐TiO 2 /[BMIM]BF 4 hybrid film can improve the redox reactions of p‐acetaminophen in aqueous medium. Under optimum conditions, a linear relationship was obtained for the p‐acetaminophen solutions with concentration in the range from 5.0 × 10 −8 to 5.0 × 10 −5 M. The estimated detection limit was 1.0 × 10 −8 M (S/N = 3). The newly developed method was applied for the determination of p-acetaminophen in urine samples. - Highlights: ► Nano-TiO 2 /[BMIM]BF 4 hybrid film electrode was fabricated with electrodeposition. ► Voltammetric behavior of p-acetaminophen at the obtained electrode was investigated. ► The hybrid film electrode shows good electrocatalytic response to p-acetaminophen. ► p-acetaminophen in urine samples was successfully determined.

  17. Pharmacokinetics of Acetaminophen in Hind Limbs Unloaded Mice: A Model System Simulating the Effects of Low Gravity on Astronauts in Space

    Science.gov (United States)

    Peterson, Amanda; Risin, Semyon A.; Ramesh, Govindarajan T.; Dasgupta, Amitava; Risin, Diana

    2008-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in Space. Low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration in astronauts. Acquiring of such knowledge has inherent difficulties due to limited opportunities for experimenting in Space. One of the approaches is to use model systems that simulate some of the Space conditions on Earth. In this study we used hind limbs unloaded mice (HLU) to investigate the possible changes in PK of acetaminophen, a widely used analgesic with high probability of use by astronauts. The HLU is recognized as an appropriate model for simulating the effects of low gravity on hemodynamic parameters. Mice were tail suspended (n = 24) for 24-96 hours prior to introduction of acetaminophen (150 - 300 mg/kg). The drug (in aqueous solution containing 10% ethyl alcohol by volume) was given orally by a gavage procedure and after the administration of acetaminophen mice were additionally suspended for 30 min, 1 and 2 hours. Control mice (n = 24) received the same dose of acetaminophen and were kept freely all the time. Blood specimens were obtained either from retroorbital venous sinuses or from heart. Acetaminophen concentration was measured in plasma by the fluorescent polarization immunoassay and the AxSYM analyzer (Abbott Laboratories). In control mice peak acetaminophen concentration was achieved at 30 min. By 1 hour the concentration decreased to less than 50% of the peak level and at 2 hours the drug was almost undetectable in the serum. HLU for 24 hours significantly altered the acetaminophen pharmacokinetic: at 30 min the acetaminophen concentrations were significantly (both statistically and medically significant) lower than in control mice. The concentrations also reduced less

  18. Prophylactic Acetaminophen or Ibuprofen Results in Equivalent Acute Mountain Sickness Incidence at High Altitude: A Prospective Randomized Trial.

    Science.gov (United States)

    Kanaan, Nicholas C; Peterson, Alicia L; Pun, Matiram; Holck, Peter S; Starling, Jennifer; Basyal, Bikash; Freeman, Thomas F; Gehner, Jessica R; Keyes, Linda; Levin, Dana R; O'Leary, Catherine J; Stuart, Katherine E; Thapa, Ghan B; Tiwari, Aditya; Velgersdyk, Jared L; Zafren, Ken; Basnyat, Buddha

    2017-06-01

    Recent trials have demonstrated the usefulness of ibuprofen in the prevention of acute mountain sickness (AMS), yet the proposed anti-inflammatory mechanism remains unconfirmed. Acetaminophen and ibuprofen were tested for AMS prevention. We hypothesized that a greater clinical effect would be seen from ibuprofen due to its anti-inflammatory effects compared with acetaminophen's mechanism of possible symptom reduction by predominantly mediating nociception in the brain. A double-blind, randomized trial was conducted testing acetaminophen vs ibuprofen for the prevention of AMS. A total of 332 non-Nepali participants were recruited at Pheriche (4371 m) and Dingboche (4410 m) on the Everest Base Camp trek. The participants were randomized to either acetaminophen 1000 mg or ibuprofen 600 mg 3 times a day until they reached Lobuche (4940 m), where they were reassessed. The primary outcome was AMS incidence measured by the Lake Louise Questionnaire score. Data from 225 participants who met inclusion criteria were analyzed. Twenty-five participants (22.1%) in the acetaminophen group and 18 (16.1%) in the ibuprofen group developed AMS (P = .235). The combined AMS incidence was 19.1% (43 participants), 14 percentage points lower than the expected AMS incidence of untreated trekkers in prior studies at this location, suggesting that both interventions reduced the incidence of AMS. We found little evidence of any difference between acetaminophen and ibuprofen groups in AMS incidence. This suggests that AMS prevention may be multifactorial, affected by anti-inflammatory inhibition of the arachidonic-acid pathway as well as other analgesic mechanisms that mediate nociception. Additional study is needed. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  19. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    International Nuclear Information System (INIS)

    Blazquez, Alba G.; Briz, Oscar; Gonzalez-Sanchez, Ester; Perez, Maria J.; Ghanem, Carolina I.; Marin, Jose J.G.

    2014-01-01

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug

  20. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, Alba G., E-mail: albamgb@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Briz, Oscar, E-mail: obriz@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Gonzalez-Sanchez, Ester, E-mail: u60343@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); Perez, Maria J., E-mail: mjperez@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); University Hospital of Salamanca, IECSCYL-IBSAL, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Ghanem, Carolina I., E-mail: cghanem@ffyb.uba.ar [Instituto de Investigaciones Farmacologicas, Facultad de Farmacia y Bioquimica, CONICET, Universidad de Buenos Aires, Buenos Aires (Argentina); Marin, Jose J.G., E-mail: jjgmarin@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain)

    2014-05-15

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug.

  1. Evaluation of hepatoprotective effect of methanolic extract of Clitoria ternatea (Linn. flower against acetaminophen-induced liver damage

    Directory of Open Access Journals (Sweden)

    Kuppan Nithianantham

    2013-08-01

    Full Text Available Objective: To evaluate the hepatoprotective and antioxidant activity of Clitoria ternatea (C. ternatea flower extract against acetaminophen-induced liver toxicity. Methods: The antioxidant property of C. ternatea flower extract was investigated by employing established in vitro antioxidant assay. The C. ternatea flower extract was studied in this work for its hepatoprotective effect against acetaminophen-induced liver toxicity in mice. Activity was measured by monitoring the levels of aspartate aminotransferase, alanine aminotransferase, billirubin and glutathione with histopathological analysis. Results: The amount of total phenolics and flavonoids were estimated to be 105.40依2.47 mg/g gallic acid equivalent and 72.21依0.05 mg/g catechin equivalent respectively. The antioxidant activity of C. ternatea flower extract was 68.9% at a concentration of 1 mg/mL and was also concentration dependant, with an IC 50 value of 327.00 µg/mL. The results of acetaminophen-induced liver toxicity experiment showed that mice treated with the extract (200 mg/kg showed a significant decrease in alanine aminotransferase, aspartate aminotransferase, and bilirubin levels, which were all elevated in the paracetamol group (P<0.05. Meanwhile, the level of glutathione was found to be restored in extract treated animals compared to the groups treated with acetaminophen alone (P<0.05. Therapy of extract also showed its protective effect on histopathological alterations and supported the biochemical finding. Conclusion: The present work confirmed the hepatoprotective effect of C. ternatea flower against model hepatotoxicant acetaminophen.

  2. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    Science.gov (United States)

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David; Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Sharpe, Matthew R. [Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS (United States); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2014-03-01

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear

  4. Evaluation of the Hepatoprotective Effects of Lantadene A, a Pentacyclic Triterpenoid of Lantana Plants against Acetaminophen-induced Liver Damage

    Directory of Open Access Journals (Sweden)

    Sreenivasan Sasidharan

    2012-11-01

    Full Text Available The aim of the present study was to evaluate the hepatoprotective activity of lantadene A against acetaminophen-induced liver toxicity in mice was studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (ALP and bilirubin, along with histo-pathological analysis. Silymarin was used as positive control. A bimodal pattern of behavioural toxicity was exhibited by the lantadene A-treated group at the beginning of the treatment. However, treatment with lantadene A and silymarin resulted in an increase in the liver weight compared with the acetaminophen treated group. The results of the acetaminophen-induced liver toxicity experiments showed that mice treated with lantadene A (500 mg/kg showed a significant decrease in the activity of ALT, AST and ALP and the level of bilirubin, which were all elevated in the acetaminophen treated group (p < 0.05. Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen. The lantadene A-treated group showed remarkable protective effects against histopathological alterations, with comparable results to the silymarin treated group. The current study confirmed the hepatoprotective effects of lantadene A against the model hepatotoxicant acetaminophen, which is likely related to its potent antioxidative activity.

  5. [Acetaminophen: Knowledge, use and overdose risk in urban patients consulting their general practitioner. A prospective, descriptive and transversal study].

    Science.gov (United States)

    Cipolat, Lauriane; Loeb, Ouriel; Latarche, Clotilde; Pape, Elise; Gillet, Pierre; Petitpain, Nadine

    2017-09-01

    Acetaminophen is the most involved active substance in both unintentional and intentional drug poisoning. However, its availability outside community pharmacies is being debated in France. We made, via a self-administered questionnaire, a prospective assessment of knowledge, use and acetaminophen overdose risk in patients consulting their general practitioner, in the Metz Métropole urban area, between May 2015 and February 2016. We estimated the prevalence of potential unintentional overdosage by capture-recapture method. Among 819 responding patients, only 17.9 % had a sufficient knowledge and 20.3 % were at risk for potential unintentional overdose. The risk was higher for patients aged over 55 years or belonging to socioprofessional categories of laborers and inactive. A good knowledge score was a protective factor for overdose risk (P<0.0001). The liver toxicity of acetaminophen was particularly unknown. The prevalence of potential unintentional acetaminophen overdose was estimated at 1 to2 % of the population. Proposing acetaminophen outside of pharmacies cannot be recommended in France in such conditions. Information campaigns are needed to limit the risk of unintentional overdose and its consequences on liver toxicity. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  6. Alternating ibuprofen and acetaminophen in the treatment of febrile children: a pilot study [ISRCTN30487061

    Directory of Open Access Journals (Sweden)

    Sabra Ramzi

    2006-03-01

    Full Text Available Abstract Background Alternating ibuprofen and acetaminophen for the treatment of febrile children is a prevalent practice among physicians and parents, despite the lack of evidence on effectiveness or safety. This randomized, double-blind and placebo-controlled clinical trial aims at comparing the antipyretic effectiveness and safety of a single administration of alternating ibuprofen and acetaminophen doses to that of ibuprofen mono-therapy in febrile children. Methods Seventy febrile children were randomly allocated to receive either a single oral dose of 10 mg/kg ibuprofen and 15 mg/kg oral acetaminophen after 4 hours, or a similar dose of ibuprofen and placebo at 4 hours. Rectal temperature was measured at baseline, 4, 5, 6, 7 and 8 hours later. Endpoints included proportions of afebrile children at 6, 7 and 8 hours, maximum decline in temperature, time to recurrence of fever, and change in temperature from baseline at each time point. Intent-to-treat analysis was planned with statistical significance set at P Results A higher proportion of subjects in the intervention group (83.3% became afebrile at 6 hours than in the control group (57.6%; P = 0.018. This difference was accentuated at 7 and 8 hours (P Conclusion A single dose of alternating ibuprofen and acetaminophen appears to be a superior antipyretic regimen than ibuprofen mono-therapy. Further studies are needed to confirm these findings.

  7. Hepatoprotective potential of three sargassum species from Karachi coast against carbon tetrachloride and acetaminophen intoxication

    Directory of Open Access Journals (Sweden)

    Khan Hira

    2016-01-01

    Full Text Available Objective: To assess the hepatoprotective effect of ethanol extracts of Sargassum variegatum (S. variegatum, Sargassum tenerrimum (S. tenerrimum and Sargassum binderi occurring at Karachi coast against carbon tetrachloride (CCl4 and acetaminophen intoxication in rats. Methods: Sargassum species were collected at low tide from Buleji beach at Karachi coast. Effect of ethanol extracts of Sargassum spp., on lipid parameter, serum glucose and kidney function was examined. Liver damage in rats was induced by CCl4 or acetaminophen. Rats were administered with ethanol extracts of S. tenerrimum, S. variegatum and Sargassum binderi at 200 mg/kg body weight daily for 14 days separately. Hepatotoxicity was determined in terms of cardiac and liver enzymes and other biochemical parameters. Results: S. variegatum showed highest activity by reducing the elevated level of hepatic enzymes, bilirubin, serum glucose, triglyceride with restoration of cholesterol. Urea and creatinine concentrations were also significantly (P < 0.05 reduced as compared to acetaminophen intoxicated rats. S. tenerrimum and S. variegatum showed moderate activity against CCl4 hepatic toxicity. Conclusions: The protective role of S. variegatum against acetaminophen liver damage and its positive impact on disturbed lipid, glucose metabolism, kidney dysfunction and S. tenerrimum against CCl4 liver toxicity suggest that Sargassum species offer a non-chemical means for the treatment of toxicity mediated liver damage.

  8. Ibuprofen versus Acetaminophen in Controlling Postoperative Impacted Third Molar Tooth Extraction Pain

    International Nuclear Information System (INIS)

    Khan, I.; Bukhari, S. G. A.; Ahmad, W.; Rubbab,; Junaid, M.

    2013-01-01

    Objectives: To compare the efficacy of ibuprofen and acetaminophen in reducing postoperative third molar extraction pain in patients reporting to Armed Forces Institute of Dentistry. Study design: Randomized controlled trial. Place and duration of study: The study was carried out on patients who presented for surgical removal of impacted teeth at Armed Forces Institute of Dentistry Rawalpindi (AFID) from February 2008 to March 2--9 at the Department of Oral Surgery, Armed Forces Institute of Dentistry Rawalpindi. Patients and methods: One hundred and forty patients requiring surgical removal of mandibular impacted teeth were equally divided into two groups. Surgical extraction of third molar tooth was performed under local anesthesia. Patients in group A were given ibuprofen and in group B were given acetaminophen at 6 hourly intervals. First dose was given 3 hours postoperatively. Each patient rated pain on a visual analog scale at baseline and then at 12, 24, 48 and 72 hours postoperatively. Results: There was statistically significant difference (p=0.025) during first 12 hours with ibuprofen group showing better efficacy but afterwards there was no significant difference in the efficacy of both drugs. Conclusions: Ibuprofen is more effective in controlling severe third molar extraction pain as compared to acetaminophen but has similar efficacy in controlling moderate pain. (author)

  9. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films.

    Science.gov (United States)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Correction: PAIS: paracetamol (acetaminophen in stroke; protocol for a randomized, double blind clinical trial. [ISCRTN74418480

    Directory of Open Access Journals (Sweden)

    Kappelle L Jaap

    2008-11-01

    Full Text Available Abstract Background The Paracetamol (Acetaminophen In Stroke (PAIS study is a phase III multicenter, double blind, randomized, placebo-controlled clinical trial of high-dose acetaminophen in patients with acute stroke. The trial compares treatment with a daily dose of 6 g acetaminophen, started within 12 hours after the onset of symptoms, with matched placebo. The purpose of this study is to assess whether treatment with acetaminophen for 3 days will result in improved functional outcome through a modest reduction in body temperature and prevention of fever. The previously planned statistical analysis based on a dichotomization of the scores on the modified Rankin Scale (mRS may not make the most efficient use of the available baseline information. Therefore, the planned primary analysis of the PAIS study has been changed from fixed dichotomization of the mRS to a sliding dichotomy analysis. Methods Instead of taking a single definition of good outcome for all patients, the definition is tailored to each individual patient's baseline prognosis on entry into the trial. Conclusion The protocol change was initiated because of both advances in statistical approaches and to increase the efficiency of the trial by improving statistical power. Trial Registration Current Controlled Trials [ISCRTN74418480

  11. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Huseinovic, A.; van Leeuwen, Jolanda; van Welsem, Tibor; Stulemeijer, Iris; van Leeuwen, Fred; Vermeulen, N.P.E.; Kooter, J.M.; Vos, J.C.

    2017-01-01

    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity,

  12. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats

    Directory of Open Access Journals (Sweden)

    Chien-Chun Li

    2018-01-01

    Full Text Available The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg and 400 LO (400 mg/kg and its major component, citral (240 mg/kg, on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(PH:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5′-diphospho (UDP glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen.

  13. Expression of liver functions following sub-lethal and non-lethal doses of allyl alcohol and acetaminophen in the rat

    DEFF Research Database (Denmark)

    Tygstrup, N; Jensen, S A; Krog, B

    1997-01-01

    BACKGROUND/AIMS: To relate severity of intoxication with allyl alcohol and acetaminophen to modulated hepatic gene expression of liver functions and regeneration. METHODS: Rats fasted for 12 h received acetaminophen 3.5 or 5.6 g per kg body weight, or allyl alcohol 100 or 125 microl by gastric tu...

  14. Treatment with acetaminophen/paracetamol or ibuprofen alleviates post-dose symptoms related to intravenous infusion with zoledronic acid 5 mg.

    Science.gov (United States)

    Wark, J D; Bensen, W; Recknor, C; Ryabitseva, O; Chiodo, J; Mesenbrink, P; de Villiers, T J

    2012-02-01

    Patients treated with intravenous zoledronic acid 5 mg for osteoporosis may experience post-dose influenza-like symptoms. Oral acetaminophen/paracetamol or ibuprofen administered 4 h post-infusion reduced the proportion of patients with increased oral temperature and worsening post-infusion symptom scores vs. placebo, thus providing an effective strategy for the treatment of such symptoms. Once-yearly intravenous zoledronic acid 5 mg is a safe and effective treatment for postmenopausal osteoporosis. This study assessed whether transient influenza-like post-dose symptoms associated with intravenous infusion of zoledronic acid can be reduced by post-dose administration of acetaminophen/paracetamol or ibuprofen. In an international, multicenter, randomized, double-blind, double-dummy parallel-group study, bisphosphonate-naïve postmenopausal women with osteopenia (n = 481) were randomized to receive zoledronic acid 5 mg + acetaminophen/paracetamol (n = 135), ibuprofen (n = 137) or placebo (n = 137), or placebo + placebo (n = 72). Acetaminophen/paracetamol and ibuprofen were administered every 6 h for 3 days beginning 4 h post-infusion. The proportion of patients with increased oral temperature (≥1°C above 37.5°C) and with worsening post-infusion symptom scores over 3 days was significantly lower in patients receiving ibuprofen (36.8% and 48.5%) or acetaminophen/paracetamol (37.3% and 46.3%) vs. those receiving placebo (63.5% and 75.9%, respectively; all p paracetamol or ibuprofen. Oral acetaminophen/paracetamol or ibuprofen effectively managed the transient influenza-like symptoms associated with zoledronic acid 5 mg.

  15. Degradation of Acetaminophen and Its Transformation Products in Aqueous Solutions by Using an Electrochemical Oxidation Cell with Stainless Steel Electrodes

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López Zavala

    2016-09-01

    Full Text Available In this study, a novel electrochemical oxidation cell using stainless steel electrodes was found to be effective in oxidizing acetaminophen and its transformation products in short reaction times. Aqueous solutions of 10 mg/L-acetaminophen were prepared at pH 3, 5, 7, and 9. These solutions were electrochemically treated at direct current (DC densities of 5.7 mA/cm2, 7.6 mA/cm2, and 9.5 mA/cm2. The pharmaceutical and its intermediates/oxidation products were determined by using high pressure liquid chromatography (HPLC. The results showed that electrochemical oxidation processes occurred in the cell. Acetaminophen degradation rate constants increased proportionally with the increase of current intensity. High current densities accelerated the degradation of acetaminophen; however, this effect diminished remarkably at pH values greater than 5. At pH 3 and 9.5 mA/cm2, the fastest degradation of acetaminophen and its intermediates/oxidation products was achieved. To minimize the wear down of the electrodes, a current density ramp is recommended, first applying 9.5 mA/cm2 during 2.5 min or 7.6 mA/cm2 during 7.5 min and then continuing the electrochemical oxidation process at 5.7 mA/cm2. This strategy will hasten the acetaminophen oxidation, extend the electrode’s life, and shorten the reaction time needed to degrade the pharmaceutical and its intermediates/oxidation products. DC densities up to 9.5 mA/cm2 can be supplied by photovoltaic cells.

  16. Careful: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    Science.gov (United States)

    ... Pain Relievers and Fever Reducers Careful: Acetaminophen in pain relief medicines can cause liver damage Share Tweet Linkedin Pin it More sharing options Linkedin Pin ... ingredient in many over-the-counter and prescription medicines that help relieve pain and reduce fever. More than 600 over-the- ...

  17. Fetal growth and adverse birth outcomes in women receiving prescriptions for acetaminophen during pregnancy

    DEFF Research Database (Denmark)

    Thulstrup, Ane Marie; Sørensen, Henrik Toft; Nielsen, Gunnar Lauge

    1999-01-01

    not receive any prescription at all. We found more malformations among those who received a prescription with an odds ratio of 2.3 (95% CI 1.0-5.4), but the type of malformations did not indicate a causal link. When restricting the study to first time pregnancies, we identified 58 women who received......We studied the association between acetaminophen exposure during pregnancy and the prevalence of congenital abnormalities and fetal growth. Our study included 123 women who had received a prescription of acetaminophen during pregnancy and/or 30 days before conception and 13,329 controls who did...

  18. Use of aspirin, non-steroidal anti-inflammatory drugs, and acetaminophen (paracetamol), and risk of psoriasis and psoriatic arthritis: a cohort study.

    Science.gov (United States)

    Wu, Shaowei; Han, Jiali; Qureshi, Abrar A

    2015-02-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been reported to induce or exacerbate psoriasis. We aimed to evaluate the association between several widely used analgesics, including aspirin, non-aspirin NSAIDs, and acetaminophen (paracetamol), and risk of psoriasis and psoriatic arthritis (PsA) in a large cohort of US women, the Nurses' Health Study II (1991-2005). Information on regular use of aspirin, NSAIDs, and acetaminophen was collected for 95,540 participants during the follow-up. During 1,321,280 person-years of follow-up, we documented 646 incident psoriasis cases and 165 concomitant PsA cases. Compared to women who reported no use, regular acetaminophen and NSAIDs users with more than 10 years of use had multivariate hazard ratios of 3.60 [95% confidence interval (CI): 2.02-6.41] and 2.10 (95% CI: 1.11-3.96) for PsA, respectively. There was no clear association between aspirin and risk of psoriasis or PsA. In conclusion, long-term acetaminophen and NSAIDs use may be associated with an increased risk of PsA. Special attention on psoriasis and PsA screening may be needed for those who are prescribed for acetaminophen and NSAIDs for long-term periods.

  19. Encapsulating acetaminophen into poly(L-lactide) microcapsules by solvent-evaporation technique in an O/W emulsion.

    Science.gov (United States)

    Lai, M-K; Tsiang, R C-C

    2004-05-01

    Microencapsulation of acetaminophen in poly(L-lactide) was studied using the oil-in-water emulsification solvent-evaporation technique. Methylene chloride was used as the dispersed medium and water as the dispersing medium. The thermogravimetric analysis and differential scanning calorimetry data indicated that the acetaminophen was encapsulated and uniformly distributed in the poly(L-lactide) microcapsules. The addition of either gelatin or polyvinyl alcohol as the protective colloid to the emulsion was found to have a significant impact on the resulting microcapsules. Increasing the concentration of either protective colloid in the dispersing medium increased the recovery and the release rate of acetaminophen, but reduced the particle size and loading efficiency of the microcapsules. Scanning electron micrographs manifested that all the microcapsules attained a nearly round shape. While gelatin imparted a smooth topography to the surface of the microcapsules, PVA made the surface of the microcapsules bumpy and humped.

  20. Efficacy and safety of tramadol/acetaminophen in the treatment of breakthrough pain in cancer patients.

    Science.gov (United States)

    Ho, Ming-Lin; Chung, Chih-Yuan; Wang, Chuan-Cheng; Lin, Hsuan-Yu; Hsu, Nicholas C; Chang, Cheng-Shyong

    2010-12-01

    We evaluated the analgesic efficacy and safety of tramadol 37.5 mg/acetaminophen 325 mg combination tablet, for the treatment of breakthrough pain in cancer patients. This study was conducted at Changhua Christian Hospital, Changhua, Taiwan from January 2006 to February 2007. The single-center and open-label study enrolled 59 opioid-treated cancer patients with at least moderate breakthrough pain (visual analog scale [VAS] score ≥40mm on a 100-mm scale). The efficacy measures included VAS scores and adverse effect assessment 10, 30, and 60 minutes after the administration of tramadol/acetaminophen. Visual analog scale score at time of pain relief was reported. The mean VAS score when the breakthrough pain episode began (0 minute) was 77.8. Analysis showed significant better mean pain VAS scores at 10, 30, and 60 minutes after the administration of tramadol/acetaminophen (p≤0.001 versus 0 min for all 3 time points). The mean time to pain relief was 597.2 seconds and the mean VAS score at time of relief was 43.4. The effective rates, defined by more than 30% reduction of the VAS score, after 10 minutes of administration was 74.6%, 30 minutes 86.4%, and one hour 94.9% (p≤0.001 versus 0 minute for all 3 time points). Two cases of drowsiness were reported. Tramadol/acetaminophen might be efficacious and safe in the treatment of breakthrough pain in cancer.

  1. Comparison of the efficacy of low doses of methylprednisolone, acetaminophen, and dexketoprofen trometamol on the swelling developed after the removal of impacted third molar.

    Science.gov (United States)

    Eroglu, Cennet-Neslihan; Ataoglu, Hanife; Yildirim, Gulsun; Kiresi, Demet

    2015-09-01

    The aim of the present study was to compare the efficacy of low doses of methylprednisolone, acetaminophen and dexketoprofen trometamol, which are among the drug groups used in our clinic, on postoperative swelling developing after removal of impacted third molar. The three group of patients received either 40 mg methylprednisolone or 300 mg acetaminophen or 12.5 mg dexketoprofen trometamol one hour before the procedure, according to the patient groups. The patients in the methylprednisolone group were injected with methylprednisolone at a dose of 20 mg 24 hour after the procedure and prescribed 300 mg acetaminophen as rescue analgesic. During the postoperative period, the doses that were given before the procedure were continued 3 times a day for 2 days in the acetaminophen and dexketoprofen trometamol groups. Maximal swelling was assessed preoperatively and at the postoperative 48 hours by ultrasound images. Swelling was 34% lower in the methylprednisolone than in the other groups; however, no statistically significant difference was found between the groups. The acetaminophen and dexketoprofen trometamol groups exhibited clinical results close to each other. Combination of low doses of methylprednisolone and acetaminophen provide a safe and adequate clinical success on swelling.

  2. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Science.gov (United States)

    Kim, Hyunseong; Keum, Dong June; Kwak, Jung won; Chung, Hwan-Suck; Bae, Hyunsu

    2014-01-01

    The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2) from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg) in mice. Acetaminophen (APAP) is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/-) mice were injected with PLA2 once a day for five days and sacrificed 24 h (h) after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO) compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  3. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Directory of Open Access Journals (Sweden)

    Hyunseong Kim

    Full Text Available The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2 from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg in mice. Acetaminophen (APAP is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/- mice were injected with PLA2 once a day for five days and sacrificed 24 h (h after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST and alanine aminotransferase (ALT. PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  4. Ginkgolide A contributes to the potentiation of acetaminophen toxicity by Ginkgo biloba extract in primary cultures of rat hepatocytes

    International Nuclear Information System (INIS)

    Rajaraman, Ganesh; Chen, Jie; Chang, Thomas K.H.

    2006-01-01

    The present cell culture study investigated the effect of Ginkgo biloba extract pretreatment on acetaminophen toxicity and assessed the role of ginkgolide A and cytochrome P450 3A (CYP3A) in hepatocytes isolated from adult male Long-Evans rats provided ad libitum with a standard diet. Acetaminophen (7.5-25 mM for 24 h) conferred hepatocyte toxicity, as determined by the lactate dehydrogenase (LDH) assay. G. biloba extract alone increased LDH leakage in hepatocytes at concentrations ≥ 75 μg/ml and ≥ 750 μg/ml after a 72 h and 24 h treatment period, respectively. G. biloba extract (25 or 50 μg/ml once every 24 h for 72 h) potentiated LDH leakage by acetaminophen (10 mM for 24 h; added at 48 h after initiation of extract pretreatment). The effect was confirmed by a decrease in [ 14 C]-leucine incorporation. At the level present in a modulating concentration (50 μg/ml) of the extract, ginkgolide A (0.55 μg/ml), which increased CYP3A23 mRNA levels and CYP3A-mediated enzyme activity, accounted for part but not all of the potentiating effect of the extract on acetaminophen toxicity. This occurred as a result of CYP3A induction by ginkgolide A because triacetyloleandomycin (TAO), a specific inhibitor of CYP3A catalytic activity, completely blocked the effect of ginkgolide A. Ginkgolide B, ginkgolide C, ginkgolide J, quercetin, kaempferol, isorhamnetin, and isorhamnetin-3-O-rutinoside did not alter the extent of LDH leakage by acetaminophen. In summary, G. biloba pretreatment potentiated acetaminophen toxicity in cultured rat hepatocytes and ginkgolide A contributed to this novel effect of the extract by inducing CYP3A

  5. A comparative study on Benzydamine HCL 0.5% and Acetaminophen Codeine in pain reduction following periodontal surgery

    Directory of Open Access Journals (Sweden)

    Khoshkhoonejad AA.

    2004-07-01

    Full Text Available Statement of Problem: Systemic analgesics are frequently prescribed for pain reduction following periodontal surgery. This type of treatment, however, brings about some disadvantages due to its late effect and inherent side effects. Benzydamine hydrochloride mouth wash is a non steroidal anti-inflammatory drug with local anaesthetic properties. Side effects of benzydamine are minor such as tissue numbness, burning and stinging. It brings relief to pain and inflammation rapidly. Purpose: The goal of this study was to compare benzydamine HCL 0.15% and Acetaminophen codeine as analgesics following periodontal surgery. Materials and Methods: This clinical study was performed on 18 patients referred to periodontics Department, Faculty of Dentistry, Tehran University of Medical Sciences. All patients were affected with chronic mild or moderate periodontitis and required surgery at least at two oral sites with similar lesions. Each patient received benzdamine HCL after first surgery and Acetaminophen codein following second operation. Pain reduction was evaluated by Visual Analog Scale (VAS. Data were analyzed with Wilcoxon-Signed and Mann-Whitney non-parametric tests. Results: Analgesic effect of Acetaminophene codeine was significantly more than that of benzydamine HCL following Reriodontal surgery (P=0.008. No significant difference was found between analgesic effects of Acetaminophene codeine and benzydamine HCL in patients with chronic mild periodontitis (P=0.9, and in cases that osteoplasty (P=0-31 or no osseous surgery (P=0.18 were performed. Conclusion: In cases with mild post-operative pain following periodontal surgery, Benzydamine HCL and be prescribed as an analgesic. However, in other cases this mouth wash should be prescribed along with Acetaminophene codein to reduce systemic drugs consumption.

  6. Protective Effect of Hydroalcoholic Extract of Salvia officinalis L. against Acute Liver Toxicity of Acetaminophen in Mice

    Directory of Open Access Journals (Sweden)

    H. Foruozandeh

    2016-09-01

    Full Text Available Aims: The medical herbs play important roles in the treatment of liver diseases. In the traditional medicine, Salvia officinalis is highly used to heal a wide range of diseases. The aim of this study was to investigate the treatment effects of Saliva officinalis on hepatotoxicity due to acetaminophen. Materials & Methods: In the experimental study, 60 albino mice were studied. The rats were divided into 6 groups. The first, second, and third groups were physiological serum, crude extract of Saliva officinalis, and 500mg acetaminophen per 1Kg consumed as single dose, respectively. The fourth, fifth, and sixth groups received 5-day 125, 250, and 500mg per 1Kg extract of Saliva officinalis, respectively. Then, they received 500mg acetaminophen one hour after the last administration of extract. Blood sampling was done from the carotids of the rats 24hour later, and the levels of bilirubin and liver enzymes were measured. In addition, their liver tissues were studied. Data was analyzed by SPSS 16 software using one-way ANOVA. Findings: There were significant increases in the direct and complete bilirubin concentration and liver enzymes due to acetaminophen compared to control group (p<0.05. There were significant reductions in the direct and complete bilirubin and liver enzymes due to 125, 250, and 500mg per 1Kg of the extract of Saliva officinalis compared to control group (p<0.05. The results were confirmed by the histology studies. Conclusion: 250 and 500mg per 1Kg of Saliva officinalis potentially protect the damages caused by acetaminophen. In addition, they considerably improve the tissue damage and the biochemical indices in the liver damages.

  7. [Effect of paracetamol (acetaminophen) on blood pressure in patients with coronary heart disease].

    Science.gov (United States)

    Sudano, I; Roas, S; Flammer, A J; Noll, G; Ruschitzka, F

    2012-06-06

    Analgesic drugs, non-steroidal anti-inflammatory drugs and paracetamol (acetaminophen) in particular, belong to the most widely prescribed therapeutic agents. Beside their efficacy in pain relief, these drugs were recently linked to increased cardiovascular risk. Indeed, epidemiological and clinical studies showed that non-selective non-steroidal anti-inflammatory drugs, as well as selective cyclooxygenase-2 inhibitors both may increase blood pressure and cardiovascular events. However, the effect of paracetamol (acetaminophen) on blood pressure and cardiovascular health should not be neglected, too. Unfortunately, long-term randomized controlled trials appropriately powered to evaluate cardiovascular outcomes are lacking. This review summarizes the available data about the effect of paracetamol in particular, on blood pressure and other cardiovascular outcomes.

  8. Gene expression data from acetaminophen-induced toxicity in human hepatic in vitro systems and clinical liver samples

    Directory of Open Access Journals (Sweden)

    Robim M. Rodrigues

    2016-06-01

    Full Text Available This data set is composed of transcriptomics analyses of (i liver samples from patients suffering from acetaminophen-induced acute liver failure (ALF and (ii hepatic cell systems exposed to acetaminophen and their respective controls. The in vitro systems include widely employed cell lines i.e. HepaRG and HepG2 cells as well as a novel stem cell-derived model i.e. human skin-precursors-derived hepatocyte-like cells (hSKP-HPC. Data from primary human hepatocytes was also added to the data set “Open TG-GATEs: a large-scale toxicogenomics database” (Igarashi et al., 2015 [1]. Changes in gene expression due to acetaminophen intoxication as well as comparative information between human in vivo and in vitro samples are provided. The microarray data have been deposited in NCBI׳s Gene Expression Omnibus and are accessible through GEO Series accession number GEO: GSE74000. The provided data is used to evaluate the predictive capacity of each hepatic in vitro system and can be directly compared with large-scale publically available toxicogenomics databases. Further interpretation and discussion of these data feature in the corresponding research article “Toxicogenomics-based prediction of acetaminophen-induced liver injury using human hepatic cell systems” (Rodrigues et al., 2016 [2].

  9. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats.

    Science.gov (United States)

    Li, Chien-Chun; Yu, Hsiang-Fu; Chang, Chun-Hua; Liu, Yun-Ta; Yao, Hsien-Tsung

    2018-01-01

    The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO)] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg) and 400 LO (400 mg/kg) and its major component, citral (240 mg/kg), on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(P)H:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5'-diphospho (UDP) glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen. Copyright © 2017. Published by Elsevier B.V.

  10. Comparison of the Analgesic Effect of Intravenous Acetaminophen and Morphine Sulfate in Rib Fracture; a Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mehrdad Esmailian

    2015-07-01

    Full Text Available Introduction: Rib fracture is one of the common causes of trauma disabilities in many events and the outcome of these patients are very extensive from temporary pain management to long-term significant disability. Control and management of the pain in such patients is one of the most important challenges in emergency departments. Thus, the aim of the present study was assessing the efficacy of IV acetaminophen in pain control of patients with rib fracture. Methods: In this double-blind study, 54 patients over 18 years of age, referred to two educational hospitals with rib fracture, were entered. Patients were randomly categorized in two groups of morphine sulfate (0.1 milligram per kilogram of body weight and IV acetaminophen (1gram, as single-dose infused in 100 cc normal saline. The pain severity was measured by Numeric Rating Scale on arrival and 30 minutes after drug administration. At least three scores reduction was reported as therapeutic success. Results: The mean and standard deviation of patients’ age was 41.2 ± 14.1 years. There is no difference in gender (p=0.24 and age frequency (p=0.77 between groups. 30 minutes after drug administration the mean of pain severity were 5.5 ± 2.3 and 4.9 ± 1.7 in morphine and acetaminophen groups, respectively (p=0.23. Success rate in morphine and acetaminophen groups were 58.6% (95% Cl: 39.6-77.7 and 80% (95% Cl: 63.2-96.7, respectively, (p=0.09. Only 3 (5.6% patients had dizziness (p=0.44 and other effects were not seen in any of patients. Conclusion: The findings of the present study shows that intravenous acetaminophen and morphine have the same therapeutic value in relieving the pain of rib fracture. The success rate after 30 minutes drug administration were 80% and 58.6% in acetaminophen and morphine groups, respectively. Presentation of side effects was similar in both groups.

  11. Intravenous acetaminophen is superior to ketamine for postoperative pain after abdominal hysterectomy: results of a prospective, randomized, double-blind, multicenter clinical trial

    Directory of Open Access Journals (Sweden)

    Faiz HR

    2014-01-01

    Full Text Available Hamid Reza Faiz,1 Poupak Rahimzadeh,1 Ognjen Visnjevac,2 Behzad Behzadi,1 Mohammad Reza Ghodraty,1 Nader D Nader2 1Iran University of Medical Sciences, Tehran, Iran; 2VA Western NY Healthcare System, University at Buffalo, Buffalo, NY, USA Background: In recent years, intravenously (IV administered acetaminophen has become one of the most common perioperative analgesics. Despite its now-routine use, IV acetaminophen's analgesic comparative efficacy has never been compared with that of ketamine, a decades-old analgesic familiar to obstetricians, gynecologists, and anesthesiologists alike. This double-blind clinical trial aimed to evaluate the analgesic effects of ketamine and IV acetaminophen on postoperative pain after abdominal hysterectomy. Methods: Eighty women aged 25–70 years old and meeting inclusion and exclusion criteria were randomly allocated into two groups of 40 to receive either IV acetaminophen or ketamine intraoperatively. Postoperatively, each patient had patient-controlled analgesia. Pain and sedation (Ramsay Sedation Scale were documented based on the visual analog scale in the recovery room and at 4 hours, 6 hours, 12 hours, and 24 hours after the surgery. Hemodynamic changes, adverse medication effects, and the need for breakthrough meperidine were also recorded for both groups. Data were analyzed by repeated-measures analysis of variance. Results: Visual analog scale scores were significantly lower in the IV acetaminophen group at each time point (P<0.05, and this group required significantly fewer doses of breakthrough analgesics compared with the ketamine group (P=0.039. The two groups had no significant differences in terms of adverse effects. Conclusion: Compared with ketamine, IV acetaminophen significantly improved postoperative pain after abdominal hysterectomy. Keywords: intravenous acetaminophen, abdominal hysterectomy, ketamine, analgesia, postoperative pain

  12. Expression of liver-specific functions in rat hepatocytes following sublethal and lethal acetaminophen poisoning

    DEFF Research Database (Denmark)

    Tygstrup, N; Jensen, S A; Krog, B

    1996-01-01

    AIM: In order to study the short-term effect of moderate and severe reduction of liver function by acetaminophen poisoning of different severity on gene expression for liver-specific functions, rats were given 3.75 and 7.5 g per kg body weight acetaminophen intragastrically. The lower dose...... is associated with low mortality; after the higher dose, most rats die at between 12 and 24 h. METHODS: In the morning, 1 1/2, 3, 6, 9, and 12 h after the injection, the rats were killed and RNA was extracted from liver tissue. By slot-blot hybridization mRNA steady-state levels were determined for enzymes...

  13. Effect of Intravenous Acetaminophen on Postoperative Opioid Use in Bariatric Surgery Patients

    OpenAIRE

    Wang, Shan; Saha, Ronik; Shah, Neal; Hanna, Adel; DeMuro, Jonas; Calixte, Rose; Brathwaite, Collin

    2015-01-01

    Opioids are often used to relieve pain after surgery, but they are associated with serious adverse effects. In this retrospective chart-review analysis, the use of intravenous acetaminophen did not reduce opioid use following bariatric surgery.

  14. Interventions for paracetamol (acetaminophen) overdose

    DEFF Research Database (Denmark)

    Chiew, Angela L; Gluud, Christian; Brok, Jesper

    2018-01-01

    BACKGROUND: Paracetamol (acetaminophen) is the most widely used non-prescription analgesic in the world. Paracetamol is commonly taken in overdose either deliberately or unintentionally. In high-income countries, paracetamol toxicity is a common cause of acute liver injury. There are various...... of paracetamol. Acetylcysteine should be given to people at risk of toxicity including people presenting with liver failure. Further randomised clinical trials with low risk of bias and adequate number of participants are required to determine which regimen results in the fewest adverse effects with the best...... was abandoned due to low numbers recruited), assessing several different interventions in 700 participants. The variety of interventions studied included decontamination, extracorporeal measures, and antidotes to detoxify paracetamol's toxic metabolite; which included methionine, cysteamine, dimercaprol...

  15. Acetaminophen Versus Liquefied Ibuprofen for Control of Pain During Separation in Orthodontic Patients: A Randomized Triple Blinded Clinical Trial

    Directory of Open Access Journals (Sweden)

    Tahereh Hosseinzadeh Nik

    2016-07-01

    Full Text Available The aim of this randomized clinical study was to investigate the effectiveness of acetaminophen 650 mg or liquefied ibuprofen 400 mg in pain control of orthodontic patients during separation with an elastic separator. A total of 101 patients with specific inclusion criteria were divided randomly into three groups (acetaminophen, liquefied ibuprofen, and placebo. They were instructed to take their drugs one hour before separator placement and every six hours afterward (five doses in total. They recorded their discomfort on visual analog scales immediately after separator placement, 2 hours later, 6 hours later, at bedtime, and 24 hours after separator placement. Repeated measure analysis of variance (ANOVA was used to compare the mean pain scores between the three groups. Data were collected from 89 patients. The pain increased with time in all groups. Pain scores were statistically lower in the analgesic groups compared with the placebo group (P.value<0.001, but no statistically significant difference was found in mean pain scores between the two drug groups (acetaminophen and liquefied ibuprofen (P.value=1. Acetaminophen and liquefied ibuprofen have similar potential in pain reduction during separation.

  16. Acetaminophen and non-steroidal anti-inflammatory drugs interact with morphine and tramadol analgesia for the treatment of neuropathic pain in rats.

    Science.gov (United States)

    Shinozaki, Tomonari; Yamada, Toshihiko; Nonaka, Takahiro; Yamamoto, Tatsuo

    2015-06-01

    Although non-steroidal anti-inflammatory drugs and acetaminophen have no proven efficacy against neuropathic pain, they are frequently prescribed for neuropathic pain patients. We examined whether the combination of opioids (tramadol and morphine) with indomethacin or acetaminophen produce favorable effects on neuropathic pain and compared the efficacy for neuropathic pain with that for inflammatory pain. The carrageenan model was used as the inflammatory pain model while the tibial neuroma transposition (TNT) model was used as the neuropathic pain model. The tibial nerve is transected in the TNT model, with the tibial nerve stump then transpositioned to the lateral aspect of the hindlimb. Neuropathic pain (mechanical allodynia and neuroma pain) is observed after TNT injury. Drugs were administered orally. In the carrageenan model, all drugs produced anti-allodynic effects and all drug combinations, but not tramadol + indomethacin combination, produced synergistic anti-allodynic effects. In the TNT model, tramadol and morphine, but not acetaminophen and indomethacin, produced anti-neuropathic pain effects. In the combination, with the exception of morphine + acetaminophen combination, both acetaminophen and indomethacin reduced the 50% effective dose (ED50) of tramadol and morphine as compared with the ED50s for the single drug study in the TNT model. The ED50s of tramadol and morphine in the carrageenan combination test were not statistically significantly different from the ED50s in the TNT model combination study. The combination of opioids with indomethacin or acetaminophen produced a synergistic analgesic effect both in inflammatory and neuropathic pain with some exceptions. The efficacy of these combinations for neuropathic pain was not different from that for inflammatory pain.

  17. Alpha-fetoprotein is a predictor of outcome in acetaminophen-induced liver injury

    DEFF Research Database (Denmark)

    Schmidt, Lars E; Dalhoff, Kim

    2005-01-01

    An increase in alpha-fetoprotein (AFP) following hepatic necrosis is considered indicative of hepatic regeneration. This study evaluated the prognostic value of serial AFP measurements in patients with severe acetaminophen-induced liver injury. Prospectively, serial measurements of AFP were...

  18. Acute liver failure after recommended doses of acetaminophen in patients with myopathies

    NARCIS (Netherlands)

    I. Ceelie (Ilse); L.P. James (Laura); V.M.G.J. Gijsen (Violette); R.A.A. Mathôt (Ron); S. Ito (Shinya); C.D. Tesselaar (Coranne); D. Tibboel (Dick); G. Koren (Gideon); S.N. de Wildt (Saskia)

    2011-01-01

    textabstractObjective: To determine the likelihood that recommended doses of acetaminophen are associated with acute liver failure in patients with myopathies. Design: Retrospective analysis. Setting: Level III pediatric intensive care unit. Patients: Two pediatric patients with myopathies and acute

  19. Acute liver failure after recommended doses of acetaminophen in patients with myopathies

    NARCIS (Netherlands)

    Ceelie, Ilse; James, Laura P.; Gijsen, Violette; Mathot, Ron A. A.; Ito, Shinya; Tesselaar, Coranne D.; Tibboel, Dick; Koren, Gideon; de Wildt, Saskia N.

    2011-01-01

    To determine the likelihood that recommended doses of acetaminophen are associated with acute liver failure in patients with myopathies. Retrospective analysis. Level III pediatric intensive care unit. Two pediatric patients with myopathies and acute liver failure. CLINICAL INVESTIGATIONS: We

  20. Acrolein scavengers, cysteamine and N-benzylhydroxylamine, reduces the mouse liver damage after acetaminophen overdose.

    Science.gov (United States)

    Koyama, Ryo; Mizuta, Ryushin

    2017-01-10

    Our previous study suggested that the highly toxic α,β-unsaturated aldehyde acrolein, a byproduct of oxidative stress, plays a major role in acetaminophen-induced liver injury. In this study, to determine the involvement of acrolein in the liver injury and to identify novel therapeutic options for the liver damage, we examined two putative acrolein scavengers, a thiol compound cysteamine and a hydroxylamine N-benzylhydroxylamine, in cell culture and in mice. Our results showed that cysteamine and N-benzylhydroxylamine effectively prevented the cell toxicity of acrolein in vitro and acetaminophen-induced liver injury in vivo, which suggested that acrolein is involved in the liver damage, and these two drugs can be potential therapeutic options for this condition.

  1. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Directory of Open Access Journals (Sweden)

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  2. Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Howie Forbes

    2010-03-01

    Full Text Available Abstract Background The development of effective therapies for acute liver failure (ALF is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF. Method 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased. Results Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein. Control pigs (n = 4 survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8 +/- 5.9 vs 59 +/- 2.0 mmHg, increased cardiac output (7.26 +/- 1.86 vs 3.30 +/- 0.40 l/min and decreased systemic vascular resistance (8.48 +/- 2.75 vs 16.2 +/- 1.76 mPa/s/m3. Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636 +/- 95 vs 301 +/- 26.9 mPa/s/m3 observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23 +/- 0.05 vs 7.45 +/- 0.02 and prothrombin time (36 +/- 2 vs 8.9 +/- 0.3 seconds compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5 +/- 210 vs 42 +/- 8.14 coincided with a marked reduction in serum albumin (11.5 +/- 1.71 vs 25 +/- 1 g/dL in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2 +/- 36.5 vs 131.6 +/- 9.33 μmol/l. Liver histology revealed evidence of severe centrilobular necrosis

  3. Alternating Acetaminophen and Ibuprofen versus Monotherapies in Improvements of Distress and Reducing Refractory Fever in Febrile Children: A Randomized Controlled Trial.

    Science.gov (United States)

    Luo, Shuanghong; Ran, Mengdong; Luo, Qiuhong; Shu, Min; Guo, Qin; Zhu, Yu; Xie, Xiaoping; Zhang, Chongfan; Wan, Chaomin

    2017-10-01

    No evidence can be found in the medical literature about the efficacy of alternating acetaminophen and ibuprofen treatment in children with refractory fever. Our objective was to assess the effect of alternating acetaminophen and ibuprofen therapy on distress and refractory fever compared with acetaminophen or ibuprofen as monotherapy in febrile children. A total of 474 febrile children with axillary temperature ≥38.5 °C and fever history ≤3 days in a tertiary hospital were randomly assigned to receive either (1) alternating acetaminophen and ibuprofen (acetaminophen 10 mg/kg per dose with shortest interval of 4 h and ibuprofen 10 mg/kg per dose with shortest interval of 6 h and the shortest interval between acetaminophen and ibuprofen ≥2 h; n = 158), (2) acetaminophen monotherapy (10 mg/kg per dose with shortest interval of 4 h; n = 158), or (3) ibuprofen monotherapy (10 mg/kg per dose with shortest interval of 6 h; n = 158). The mean Non-Communicating Children's Pain Checklist (NCCPC) score was measured every 4 h, and axillary temperatures were measured every 2 h. In total, 471 children were included in an intention-to-treat analysis. No significant clinical or statistical difference was found in mean NCCPC score or temperature during the 24-h treatment period in all febrile children across the three groups. Although the proportion of children with refractory fever for 4 h and 6 h was significantly lower in the alternating group than in the monotherapy groups (4 h: 11.54% vs. 26.58% vs. 21.66%, respectively [p = 0.003]; 6 h: 3.85% vs. 10.13% vs. 17.83%, respectively [p ibuprofen can reduce the proportion of children with refractory fever, but if one cycle of alternating therapy cannot reduce febrile distress as defined by NCCPC score, two or more cycles of alternating therapy may have minimal to no clinical efficacy in some cases. The trial was registered with the Chinese Clinical Trial Registry as ChiCTR-TRC-13003440 and the WHO

  4. Gastric emptying in rats following administration of a range of different fats measured as acetaminophen concentration in plasma

    DEFF Research Database (Denmark)

    Porsgaard, Trine; Straarup, Ellen Marie; Høy, Carl-Erik

    2003-01-01

    an indirect measure of gastric emptying. Emulsified fats with added acetaminophen were fed by gavage to rats, and the plasma concentration of acetaminophen was followed for 3 h by repeated blood sampling from the carotid artery. The fats administered included rapeseed, corn, and fish oils, lard, and cocoa...... in gastric emptying between the groups fed the different fats, except for the emptying of tridecanoin (tri-10:0) that was statistically significantly slower than that of randomized oil, cocoa butter, and rapeseed oil (p

  5. Prophylactic Use of Oral Acetaminophen or IV Dexamethasone and Combination of them on Prevention Emergence Agitation in Pediatric after Adenotonsillectomy

    Directory of Open Access Journals (Sweden)

    Parvin Sajedi

    2014-01-01

    Full Text Available Background: The present study was aimed to evaluate the efficacy of acetaminophen plus dexamethasone on post-operative emergence agitation in pediatric adenotonsillectomy. Methods: A total of 128 patients were randomized and assigned among four groups as: Intravenous (IV dexamethasone, oral acetaminophen, IV dexamethasone plus oral acetaminophen, placebo. Group 1 received 0.2 mg/kg dexamethasone plus 0.25 mg/kg strawberry syrup 2 h before surgery. Group 2 received 20 mg/kg oral acetaminophen (0.25 ml/kg with 0.05 ml/kg IV normal saline. Group 3 received 20 mg/kg acetaminophen and 0.2 mg/kg dexamethasone intravenously. Group 4 received 0.25 ml/kg strawberry syrup and 0.05 ml/kg normal saline. Agitation was measured according to Richmond agitation sedation score in the post anesthetic care unit (PACU after admission, 10, 20 and 30 min after extubation. Pain score was measured with FACE scale. Nurse satisfaction was measured with verbal analog scale. If agitation scale was 3 ≥ or pain scale was 4 ≥ meperidine was prescribed. If symptoms did not control wit in 15 min midazolam was prescribed. Patients were discharged from PACU according Modified Alderet Score. Data were analyzed with ANOVA, Chi-square, and Kruskal-Wallis among four groups. P < 0.05 was considered statistically significant. Results: A total of 140 patients were recruited in the study, which 12 of them were excluded. Thus, 128 patients were randomized and assigned among four groups. The four treatment groups were generally matched at baseline data. Median of pain score in 0, 10, 20 and 30 min after extubation were different between each study group with the control group (<0.001, 0.003 respectively. Also median of agitation score in 0, 10, 20 and 30 min after extubation were different between each study group with the control group (<0.001. Incidence of pain and incidence of agitation after extubation were not statistically identical among groups (P < 0.001 and P = 0

  6. Missed paracetamol (acetaminophen) overdose due to confusion regarding drug names.

    Science.gov (United States)

    Hewett, David G; Shields, Jennifer; Waring, W Stephen

    2013-07-01

    Immediate management of drug overdose relies upon the patient account of what was ingested and how much. Paracetamol (acetaminophen) is involved in around 40% of intentional overdose episodes, and remains the leading cause of acute liver failure in many countries including the United Kingdom. In recent years, consumers have had increasing access to medications supplied by international retailers via the internet, which may have different proprietary or generic names than in the country of purchase. We describe a patient that presented to hospital after intentional overdose involving 'acetaminophen' purchased via the internet. The patient had difficulty recalling the drug name, which was inadvertently attributed to 'Advil', a proprietary non-steroidal anti-inflammatory drug. The error was later recognised when the drug packaging became available, but the diagnosis of paracetamol overdose and initiation of acetylcysteine antidote were delayed. This case illustrates the benefit of routinely measuring paracetamol concentrations in all patients with suspected poisoning, although this is not universally accepted in practice. Moreover, it highlights the importance of the internet as a source of medications for intentional overdose, and emphasises the need for harmonisation of international drug names to improve patient safety.

  7. Acetaminophen and zinc phosphide for lethal management of invasive lizards Ctenosaura similis

    Directory of Open Access Journals (Sweden)

    Michael L. AVERY, John D. EISEMANN, Kandy L. KEACHER,Peter J. SAVARIE

    2011-10-01

    Full Text Available Reducing populations of invasive lizards through trapping and shooting is feasible in many cases but effective integrated management relies on a variety of tools, including toxicants. In Florida, using wild-caught non-native black spiny-tailed iguanas Ctenosaura similis, we screened acetaminophen and zinc phosphide to determine their suitability for effective population management of this prolific invasive species. Of the animals that received acetaminophen, none died except at the highest test dose, 240 mg per lizard, which is not practical for field use. Zinc phosphide produced 100% mortality at dose levels as little as 25 mg per lizard, equivalent to about 0.5% in bait which is lower than currently used in commercial baits for commensal rodent control. We conclude that zinc phosphide has potential as a useful tool for reducing populations of invasive lizards such as the black spiny-tailed iguana provided target-selective delivery methods are developed [Current Zoology 57 (5: 625–629, 2011].

  8. Comparison of the Efficacy and Safety of 2 Acetaminophen Dosing Regimens in Febrile Infants and Children: A Report on 3 Legacy Studies.

    Science.gov (United States)

    Temple, Anthony R; Zimmerman, Brenda; Gelotte, Cathy; Kuffner, Edwin K

    2017-01-01

    Compare efficacy and safety of 10 to 15 mg/kg with 20 to 30 mg/kg acetaminophen in febrile children 6 months to ≤ 11 years from 3 double-blind, randomized, single or multiple dose studies. Doses were compared on sum of the temperature differences (SUMDIFF), maximum temperature difference (MAXDIFF), temperature differences at each time point, and dose by time interactions. Alanine aminotransferase (ALT) was evaluated in the 72-hour duration study. A single dose of acetaminophen 20 to 30 mg/kg produced a greater effect on temperature decrement and duration of antipyretic effect over 8 hours than a single dose of 10 to 15 mg/kg. When equivalent total doses (i.e., 2 doses of 10 to 15 mg/kg given at 4-hour intervals and 1 dose of 20 to 30 mg/kg) were given over the initial 8-hour period, there were no significant temperature differences. Over a 72-hour period, 10 to 15 mg/kg acetaminophen administered every 4 hours maintained a more consistent temperature decrement than 20 to 30 mg/kg acetaminophen administered every 8 hours. Following doses of 60 to 90 mg/kg/day for up to 72 hours, no child had a clinically important increase in ALT from baseline. The number of children with reported adverse events was similar between doses. Data demonstrate the antipyretic effect of acetaminophen is dependent on total dose over a given time interval. These 3 studies provide clinical evidence that the recommended standard acetaminophen dose of 10 to 15 mg/kg is a safe and effective dose for treating fever in pediatric patients when administered as a single dose or as multiple doses for up to 72 hours.

  9. Evaluation of N-Acetyl Cysteine performance in acetaminophen poisoning using certain liver and renal factors in plasma

    Directory of Open Access Journals (Sweden)

    Armin Salek Maghsoudi

    2014-10-01

    Full Text Available Background: Annually, acetaminophen poisoning causes probable acute liver and renal failures in different societies. N-acetyl cystein (NAC, first suggested as an effective antidote to fight against acetaminophen poisoning in 1970, prevents the binding of NAPQI to hepatic cells. Methods: In the present study 30 patients with the average age of 27 and acetaminophen poisoning who referred to the poisons unit of Sina hospital in Tabriz were selected as the study sample. During the 24 hours of hospitalization, the blood samples of the patients were taken and collected in heparinized tubes. The plasma was separated by centrifuge and kept in tubes in -70°C until it was analyzed by a high performance liquid chromatography method (HPLC and laboratory analytical kits. Results: the glutathione peroxidase (GPX activity difference between the patients and control group was significant at first (P0.05. Conclusion: The activity level of GPX changed before a tangible change in regular liver enzymes. Urea level increased after 24 hours of treatment despite serum therapy and hydration condition.

  10. The Effect of Piroxicam Administration before Surgical Removal of Mandibular Mesioangular Third Molar Compared with Acetaminophen.

    Directory of Open Access Journals (Sweden)

    Refoua Y

    2000-05-01

    Full Text Available : 32 patients were entered in randomized double blind clinical research. The patients were"ndivided into two groups. Group A(18 patients were given a single dose of 20 mg Piroxicam one hour"npre-surgery. Group B(14 patients were received 325 mg Acetaminophen every six hours immediately"nafter surgery. The mouth opening was measured pre-surgical treatment. Pain relief was evaluated in both"ngroups lsl and 8th hour after surgery. The mouth opening was measured lsl and 7,b day after surgery. The"nresults showed that the analgesic effects of Piroxicam were higher than acetaminophen, however, the"ncomparison of trismus means revealed no significant difference.

  11. Single dose systemic acetaminophen to improve patient reported quality of recovery after ambulatory segmental mastectomy: A prospective, randomized, double-blinded, placebo controlled, clinical trial.

    Science.gov (United States)

    De Oliveira, Gildasio S; Rodes, Meghan E; Bialek, Jane; Kendall, Mark C; McCarthy, Robert J

    2017-11-15

    Few systemic drug interventions are efficacious to improve patient reported quality of recovery after ambulatory surgery. We aimed to evaluate whether a single dose systemic acetaminophen improve quality of recovery in female patients undergoing ambulatory breast surgery. We hypothesized that patients receiving a single dose systemic acetaminophen at the end of the surgical procedure would have a better global quality of postsurgical recovery compared to the ones receiving saline. The study was a prospective randomized double blinded, placebo controlled, clinical trial. Healthy female subjects were randomized to receive 1 g single dose systemic acetaminophen at the end of the surgery or the same volume of saline. The primary outcome was the Quality of Recovery 40 (QOR-40) questionnaire at 24 hours after surgery. Other data collected included opioid consumption and pain scores. Data were analyzed using group t tests and the Wilcoxon exact test. The association between opioid consumption and quality of recovery was evaluated using Spearman rho. P quality of recovery, P = .007. A single dose of systemic acetaminophen improves patient reported quality of recovery after ambulatory breast surgery. The use of systemic acetaminophen is an efficacious strategy to improve patient perceived quality of postsurgical recovery and analgesic outcomes after hospital discharge for ambulatory breast surgery. © 2017 Wiley Periodicals, Inc.

  12. In vitro antioxidant and hepatoprotective potential of Azolla microphylla phytochemically synthesized gold nanoparticles on acetaminophen - induced hepatocyte damage in Cyprinus carpio L.

    Science.gov (United States)

    Kunjiappan, Selvaraj; Bhattacharjee, Chiranjib; Chowdhury, Ranjana

    2015-06-01

    The present study aims to evaluate the hepatoprotective and antioxidant effects of gold nanoparticles (GNaP) biosynthesized through the mediation of Azolla microphylla and A. microphylla extract on acetaminophen-induced hepatocyte damage in common carp fish (Cyprinus carpio L.). The gold nanoparticles (100, 150, 200 μg/ml) and A. microphylla extract powder (100, 200, 400 μg/ml) were added to the primary hepatocytes in different conditions: treatment I (before 12 mM acetaminophen), treatment II (after 12 mM acetaminophen), and treatment III (both before and after 12 mM acetaminophen), and incubated. Among these, control group treated with 12 mM acetaminophen produced significantly elevated levels (50-80%) of lactate dehydrogenase (LDH), catalase (CAT), glutamate oxalate transaminase (GOT), glutamate pyruvate transaminase (GPT), and malondialdehyde (MDA), and significantly decreased the levels (60-75%) of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Treatment with methanol extract of A. microphylla phytochemically biosynthesized gold nanoparticles (100, 150, 200 μg/ml) and A. microphylla methanol extract powder (100, 200, 400 μg/ml) significantly improved the viability of cells in a culture medium. It also significantly reduced the levels of LDH, CAT, GOT, GPT, and MDA, and significantly increased the levels of SOD and GSH-Px. In conclusion, gold nanoparticles biosynthesized through A. microphylla demonstrated effective hepatoprotective and antioxidant effects than methanol extract of A. microphylla.

  13. Association of antioxidant nutraceuticals and acetaminophen (paracetamol): Friend or foe?

    OpenAIRE

    Mohamed Abdel-Daim; Abdelrahman Ibrahim Abushouk; Raffaella Reggi; Nagendra Sastry Yarla; Maura Palmery; Ilaria Peluso

    2018-01-01

    Acetaminophen (paracetamol or APAP) is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of...

  14. Amplified nanostructure electrochemical sensor for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide

    Energy Technology Data Exchange (ETDEWEB)

    Karimi-Maleh, Hassan, E-mail: h.karimi.maleh@gmail.com [Department of Chemistry, Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Ganjali, Mohammad R.; Norouzi, Parviz; Bananezhad, Asma [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2017-04-01

    A novel nanomaterial-based voltammetric sensor has been developed for use a highly sensitive tool for the simultaneous determination of captopril (CA), acetaminophen (AC), tyrosine (TY) and hydrochlorothiazide (HCTZ). The device is based on the application of NiO/CNTs and (2-(3,4-dihydroxyphenethyl)isoindoline-1,3-dione) (DPID) to modify carbon paste electrodes. The NiO/CNTs nanocomposite was synthesized through a direct chemical precipitation approach and was characterized with X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The NiO/CNTs/DPID/CPEs were found to facilitate the analysis of CA, AC, TY and HCTZ in the concentration ranges of 0.07–200.0, 0.8–550.0, 5.0–750.0 and 10.0–600.0 μM with the respective detection limits of 9.0 nM, 0.3 μM, 1.0 μM and 5.0 μM. The developed NiO/CNTs/DPID/CPEs were used for the determination of the mentioned analytes in pharmaceutical and biological real samples. - Graphical abstract: In this study a novel sensor based on NiO/CNTs and (2-(3,4-dihydroxyphenethyl)isoindoline-1,3-dione) (DPID) modified carbon paste electrode fabricated for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide for the first time. - Highlights: • Fabrication of NiO/CNTs and new catechol derivative modified carbon paste electrode • Good ability of proposed sensor for biological and pharmaceutical analysis • Simultaneous determination captopril, acetaminophen, tyrosine and hydrochlorothiazide.

  15. The effects of indomethacin, diclofenac, and acetaminophen suppository on pain and opioids consumption after cesarean section

    Directory of Open Access Journals (Sweden)

    Godrat Akhavanakbari

    2013-01-01

    Full Text Available Background: Cesarean section is one of the common surgeries of women. Acute post-operative pain is one of the recognized post-operative complications. Aims: This study was planned to compare the effects of suppositories, indomethacin, diclofenac and acetaminophen, on post-operative pain and opioid usage after cesarean section. Materials and Methods: In this double-blind clinical trial study, 120 candidates of cesarean with spinal anesthesia and American Society of Anesthesiologists (ASA I-II were randomly divided into four groups. Acetaminophen, indomethacin, diclofenac, and placebo suppositories were used in groups, respectively, after operation and the dosage was repeated every 6 h and pain score and opioid usage were compared 24 h after the surgery. The severity of pain was recorded on the basis of Visual Analog Scale (VAS and if severe pain (VAS > 5 was observed, 0.5 mg/kg intramuscular pethidine had been used. Statistical Analysis Used: The data were analyzed in SPSS software version 15 and analytical statistics such as ANOVA, Chi-square, and Tukey′s honestly significant difference (HSD post-hoc. Results : Pain score was significantly higher in control group than other groups, and also pain score in acetaminophen group was higher than indomethacin and diclofenac. The three intervention groups received the first dose of pethidine far more than control group and the distance for diclofenac and indomethacin were significantly longer (P < 0.001. The use of indomethacin, diclofenac, and acetaminophen significantly reduces the amount of pethidine usage in 24 h after the surgery relation to control group. Conclusions : Considering the significant decreasing pain score and opioid usage especially in indomethacin and diclofenac groups rather than control group, it is suggested using of indomethacin and diclofenac suppositories for post-cesarean section analgesia.

  16. An Experiment in Physical Chemistry: Polymorphism and Phase Stability in Acetaminophen (Paracetamol)

    Science.gov (United States)

    Myrick, Michael L.; Baranowski, Megan; Profeta, Luisa T. M.

    2010-01-01

    Differential scanning calorimetry analyses of two easily prepared polymorphs of acetaminophen (also known as paracetamol) are recorded. The density of the forms can be found in the literature. Rules for heats of transition, heats of fusion, and density, as well as methods for determining the solid-solid transition temperature between the forms,…

  17. Does acetaminophen/hydrocodone affect cold pulpal testing in patients with symptomatic irreversible pulpitis? A prospective, randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    Fowler, Sara; Fullmer, Spencer; Drum, Melissa; Reader, Al

    2014-12-01

    The purpose of this prospective randomized, double-blind, placebo-controlled study was to determine the effects of a combination dose of 1000 mg acetaminophen/10 mg hydrocodone on cold pulpal testing in patients experiencing symptomatic irreversible pulpitis. One hundred emergency patients in moderate to severe pain diagnosed with symptomatic irreversible pulpitis of a mandibular posterior tooth randomly received, in a double-blind manner, identical capsules of either a combination of 1000 mg acetaminophen/10 hydrocodone or placebo. Cold testing with Endo-Ice (1,1,1,2 tetrafluoroethane; Hygenic Corp, Akron, OH) was performed at baseline and every 10 minutes for 60 minutes. Pain to cold testing was recorded by the patient using a Heft-Parker visual analog scale. Patients' reaction to the cold application was also rated. Cold testing at baseline and at 10 minutes resulted in severe pain for both the acetaminophen/hydrocodone and placebo groups. Although pain ratings decreased from 20-60 minutes, the ratings still resulted in moderate pain. Patient reaction to cold testing showed that 56%-62% had a severe reaction. Although the reactions decreased in severity over the 60 minutes, 20%-34% still had severe reactions at 60 minutes. Regarding pain and patients' reactions to cold testing, there were no significant differences between the combination acetaminophen/hydrocodone and placebo groups at any time period. A combination dose of 1000 mg of acetaminophen/10 mg of hydrocodone did not statistically affect cold pulpal testing in patients presenting with symptomatic irreversible pulpitis. Patients experienced moderate to severe pain and reactions to cold testing. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. l-Methionine and silymarin: A comparison of prophylactic protective capabilities in acetaminophen-induced injuries of the liver, kidney and cerebral cortex.

    Science.gov (United States)

    Onaolapo, Olakunle J; Adekola, Moses A; Azeez, Taiwo O; Salami, Karimat; Onaolapo, Adejoke Y

    2017-01-01

    We compared the relative protective abilities of silymarin and l-methionine pre-treatment in acetaminophen overdose injuries of the liver, kidney and cerebral cortex by assessing behaviours, antioxidant status, tissue histological changes and biochemical parameters of hepatic/renal function. Rats were divided into six groups of ten each; animals in five of these groups were pre-treated with oral distilled water, silymarin (25mg/kg) or l-methionine (2.5, 5 and 10mg/kg body weight) for 14days; and then administered intraperitoneal (i.p.) acetaminophen at 800mg/kg/day for 3days. Rats in the sixth group (normal control) received distilled water orally for 14days and then i.p. for 3days. Neurobehavioural tests were conducted 7days after last i.p treatment, and animals sacrificed on the 8th day. Plasma was assayed for biochemical markers of liver/kidney function; while sections of the liver, kidney and cerebral cortex were either homogenised for assay of antioxidant status or processed for histology. Acetaminophen overdose resulted in locomotor retardation, excessive self-grooming, working-memory impairment, anxiety, derangement of liver/kidney biochemistry, antioxidant imbalance, and histological changes in the liver, kidney and cerebral cortex. Administration of silymarin or increasing doses of l-methionine counteracted the behavioural changes, reversed biochemical indices of liver/kidney injury, and improved antioxidant activity. Silymarin and l-methionine also conferred variable degrees of tissue protection, on histology. Either silymarin or l-methionine can protect vulnerable tissues from acetaminophen overdose injury; however, each offers variable protection to different tissues. This study highlights an obstacle to seeking the 'ideal' protective agent against acetaminophen overdose. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Acetaminophen influence on change of endogenous intoxication indices status of plasmatic membranes in rats with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Olga Furka

    2017-08-01

    Full Text Available Introduction: Accumulation of excessive amounts of exo- and endotoxins in the body leads to the inevitable occurrence endogenous intoxication. This status is accompanied by a different type of inflammatory processes in the tissues. Middle mass molecules are products of catabolism of endo- and exogenous proteins. Separate fractions of middle molecular peptides have neurotoxic activity, change the membranes permeability, disturb the sodium-potassium balance, transport amino acids, creatinine excretion, protein biosynthesis, tissue respiration, cause microcirculation disorders, and have cytotoxic activity. Transaminases are enzymes that catalyze biochemical reactions progress. Aminotransferases influence on reaction of the formation and decomposition of amino acids and carbohydrates. The aim of the study: The aim of our work was to study endogenous intoxication and status of plasmatic membranes in animals with type 2 diabetes mellitus and acetaminophen toxic lesions. Research materials and methods: We conducted two series of experiments. In the first series toxic lesion was caused by a single intragastric administration of acetaminophen suspension in 2 % starch solution to animals in a dose of 1250 mg/kg (1/2 LD50. In the second series the suspension of acetaminophen in 2 % starch solution in a dose of 55 mg/kg was given. Non-genetic form of experimental type 2 diabetes mellitus was modeled by a single intraperitoneal administration of streptozotocin solution in doses 65 mg/kg, which was diluted by citrate buffer (pH 4.5 with the previous intraperitoneal nicotinamide administration in doses of 230 mg/kg. Rats, which were given the same amount of solvent (citrate buffer pH 4.5, were used as the control group. Results and discussion: Content of middle mass molecules and erythrocyte intoxication index were determined for research of endogenous intoxication status of rats with type 2 diabetes at single administration of acetaminophen. The experimental

  20. Clinical efficacy of hydrocodone-acetaminophen and tramadol for control of postoperative pain in dogs following tibial plateau leveling osteotomy.

    Science.gov (United States)

    Benitez, Marian E; Roush, James K; McMurphy, Rose; KuKanich, Butch; Legallet, Claire

    2015-09-01

    To evaluate clinical efficacy of hydrocodone-acetaminophen and tramadol for treatment of postoperative pain in dogs undergoing tibial plateau leveling osteotomy (TPLO). ANIMALS 50 client-owned dogs. Standardized anesthetic and surgical protocols were followed. Each patient was randomly assigned to receive either tramadol hydrochloride (5 to 7 mg/kg, PO, q 8 h; tramadol group) or hydrocodone bitartrate-acetaminophen (0.5 to 0.6 mg of hydrocodone/kg, PO, q 8 h; hydrocodone group) for analgesia after surgery. The modified Glasgow composite measure pain scale was used to assess signs of postoperative pain at predetermined intervals by an investigator who was blinded to treatment group. Scoring commenced with the second dose of the assigned study analgesic. Pain scores and rates of treatment failure (ie, dogs requiring rescue analgesia according to a predetermined protocol) were compared statistically between groups. 12 of 42 (29%; 5/19 in the hydrocodone-acetaminophen group and 7/23 in the tramadol group) dogs required rescue analgesic treatment on the basis of pain scores. Median pain score for the hydrocodone group was significantly lower than that of the tramadol group 2 hours after the second dose of study analgesic. The 2 groups had similar pain scores at all other time points. Overall, differences in pain scores between dogs that received hydrocodone-acetaminophen or tramadol were minor. The percentage of dogs with treatment failure in both groups was considered unacceptable.

  1. The Effect of Polymer Content on the Non-Newtonian Behavior of Acetaminophen Suspension

    Directory of Open Access Journals (Sweden)

    Eskandar Moghimipour

    2013-01-01

    Full Text Available Acetaminophen is used as an analgesic and antipyretic agent. The aim of the study was evaluation of the effect of different polymers on rheological behavior of acetaminophen suspension. In order to achieve controlled flocculation, sodium chloride was added. Then structural vehicles such as carboxymethyl cellulose (CMC, polyvinyl pyrrolidone (PVP, tragacanth, and magnesium aluminum silicate (Veegum were evaluated individually and in combination. Physical stability parameters such as sedimentation volume (F, redispersibility (n, and growth of crystals of the suspensions were determined. Also, the rheological properties of formulations were studied. The results of this study showed that the combination of suspending agents had the most physical stability and pseudoplastic behavior with some degree of thixotropy. Viscosity of suspensions was increased by adding NaCl 0.02%. Presence of PVP is necessary for improving rheological behavior of suspensions by NaCl. This may be related to the cross-linking between the carbonyl group in the PVP segment and Na+ ions.

  2. The Effect of Polymer Content on the Non-Newtonian Behavior of Acetaminophen Suspension

    Science.gov (United States)

    Moghimipour, Eskandar; Kouchak, Maryam; Salimi, Anayatollah; Bahrampour, Saeed; Handali, Somayeh

    2013-01-01

    Acetaminophen is used as an analgesic and antipyretic agent. The aim of the study was evaluation of the effect of different polymers on rheological behavior of acetaminophen suspension. In order to achieve controlled flocculation, sodium chloride was added. Then structural vehicles such as carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), tragacanth, and magnesium aluminum silicate (Veegum) were evaluated individually and in combination. Physical stability parameters such as sedimentation volume (F), redispersibility (n), and growth of crystals of the suspensions were determined. Also, the rheological properties of formulations were studied. The results of this study showed that the combination of suspending agents had the most physical stability and pseudoplastic behavior with some degree of thixotropy. Viscosity of suspensions was increased by adding NaCl 0.02%. Presence of PVP is necessary for improving rheological behavior of suspensions by NaCl. This may be related to the cross-linking between the carbonyl group in the PVP segment and Na+ ions. PMID:24109512

  3. Ethanol extract from portulaca oleracea L. attenuated acetaminophen-induced mice liver injury

    Science.gov (United States)

    Liu, Xue-Feng; Zheng, Cheng-Gang; Shi, Hong-Guang; Tang, Gu-Sheng; Wang, Wan-Yin; Zhou, Juan; Dong, Li-Wei

    2015-01-01

    Acetaminophen-induced liver injury represents the most frequent cause of drug-induced liver failure in the world. Portulaca oleracea L., a widely distributed weed, has been used as a folk medicine in many countries. Previously, we reported that the ethanol extracts of Portulaca oleracea L. (PO) exhibited significant anti-hypoxic activity. In the present study, we investigated the role of PO on acetaminophen (APAP) induced hepatotoxicity. The results demonstrated that PO was an effective anti-oxidative agent, which could, to some extent, reverse APAP-induced hepatotoxicity by regulating the reactive oxygen species (ROS) in the liver of mice. At the same time, PO treatment significantly decreased mice serum levels of IL-6 and TNFα and their mRNA expression in liver tissue IL-α and TNFα play an important role during APAP-induced liver injury. Furthermore, PO inhibited APAP and TNFα-induced activation of JNK, whose activation play an important effect during APAP induced liver injury. These findings suggested that administration of PO may be an effective strategy to prevent or treat liver injury induced by APAP. PMID:25901199

  4. Effect of paracetamol (acetaminophen and ibuprofen on body temperature in acute ischemic stroke PISA, a phase II double-blind, randomized, placebo-controlled trial [ISRCTN98608690

    Directory of Open Access Journals (Sweden)

    Meijer Ron J

    2003-02-01

    Full Text Available Abstract Background Body temperature is a strong predictor of outcome in acute stroke. In a previous randomized trial we observed that treatment with high-dose acetaminophen (paracetamol led to a reduction of body temperature in patients with acute ischemic stroke, even when they had no fever. The purpose of the present trial was to study whether this effect of acetaminophen could be reproduced, and whether ibuprofen would have a similar, or even stronger effect. Methods Seventy-five patients with acute ischemic stroke confined to the anterior circulation were randomized to treatment with either 1000 mg acetaminophen, 400 mg ibuprofen, or placebo, given 6 times daily during 5 days. Treatment was started within 24 hours from the onset of symptoms. Body temperatures were measured at 2-hour intervals during the first 24 hours, and at 6-hour intervals thereafter. Results No difference in body temperature at 24 hours was observed between the three treatment groups. However, treatment with high-dose acetaminophen resulted in a 0.3°C larger reduction in body temperature from baseline than placebo treatment (95% CI: 0.0 to 0.6 °C. Acetaminophen had no significant effect on body temperature during the subsequent four days compared to placebo, and ibuprofen had no statistically significant effect on body temperature during the entire study period. Conclusions Treatment with a daily dose of 6000 mg acetaminophen results in a small, but potentially worthwhile decrease in body temperature after acute ischemic stroke, even in normothermic and subfebrile patients. Further large randomized clinical trials are needed to study whether early reduction of body temperature leads to improved outcome.

  5. Tramadol suppositories are less suitable for post-operative pain relief than rectal acetaminophen/codeine

    NARCIS (Netherlands)

    Pluim, M. A.; Wegener, J. T.; Rupreht, J.; Vulto, A. G.

    1999-01-01

    The suitability of tramadol suppositories for inclusion in our hospital formulary for the treatment of mild to moderate post-operative pain was evaluated. In an open randomized trial, rectal tramadol was compared with our standard treatment acetaminophen/codeine suppositories. We expected tramadol

  6. Comparison of the quantification of acetaminophen in plasma, cerebrospinal fluid and dried blood spots using high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Taylor, Rachel R; Hoffman, Keith L; Schniedewind, Björn; Clavijo, Claudia; Galinkin, Jeffrey L; Christians, Uwe

    2013-09-01

    Acetaminophen (paracetamol, N-(4-hydroxyphenyl) acetamide) is one of the most commonly prescribed drugs for the management of pain in children. Quantification of acetaminophen in pre-term and term neonates and small children requires the availability of highly sensitive assays in small volume blood samples. We developed and validated an LC-MS/MS assay for the quantification of acetaminophen in human plasma, cerebro-spinal fluid (CSF) and dried blood spots (DBS). Reconstitution in water (DBS only) and addition of a protein precipitation solution containing the deuterated internal standard were the only manual steps. Extracted samples were analyzed on a Kinetex 2.6 μm PFP column using an acetonitrile/formic acid gradient. The analytes were detected in the positive multiple reaction mode. Alternatively, DBS were automatically processed using direct desorption in a sample card and preparation (SCAP) robotic autosampler in combination with online extraction. The range of reliable response in plasma and CSF was 3.05-20,000 ng/ml (r(2)>0.99) and 27.4-20,000 ng/ml (r(2)>0.99) for DBS (manual extraction and automated direct desorption). Inter-day accuracy was always within 85-115% and inter-day precision for plasma, CSF and manually extracted DBS were less than 15%. Deming regression analysis comparing 167 matching pairs of plasma and DBS samples showed a correlation coefficient of 0.98. Bland Altman analysis indicated a 26.6% positive bias in DBS, most likely reflecting the blood: plasma distribution ratio of acetaminophen. DBS are a valid matrix for acetaminophen pharmacokinetic studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The Lipid Lowering and Cardioprotective Effects of Vernonia calvoana Ethanol Extract in Acetaminophen-Treated Rats

    Directory of Open Access Journals (Sweden)

    Godwin Eneji Egbung

    2017-12-01

    Full Text Available Background: Paracetamol overdose/abuse as a result of self-medication is a common occurrence amongst people living in low/middle income countries. The present study was designed to investigate the hypolipidemic and cardioprotective potentials of Vernonia calvoana (VC ethanol extract in acetaminophen (paracetamol-treated rats. Methods: Thirty-five Wistar rats weighing 100–150 g were randomly assigned into five groups of seven rats each. Groups 2–5 received high doses of paracetamol to induce liver damage, while group 1 was used as normal control. Afterwards, they were allowed to receive varying doses of VC (group 3 and 4 or vitamin E (group 5, whilst groups 1 and 2 were left untreated. The treatment period lasted for twenty one days after which sera were harvested and assayed for serum lipid indices using standard methods. Results: Groups 3 to 5 treated animals indicated significant decrease (p < 0.001 in low density lipoprotein cholesterol (LDL-c, total cholesterol (TC and triacylglycerol (TG levels relative to the normal and acetaminophen-treated controls, the atherogenic index showed a significant decrease (p < 0.001 in all treated groups compared with normal and acetaminophen-treated controls. However, the VC- and vitamin E-treated groups showed significant (p < 0.001 increase in high density lipoprotein cholesterol (HDL-C relative to the controls. Conclusions: Data from our study suggest that ethanol leaf extract of VC possesses probable hypolipidemic and cardioprotective effects.

  8. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    Science.gov (United States)

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Aging-associated dysfunction of Akt/protein kinase B: S-nitrosylation and acetaminophen intervention.

    Directory of Open Access Journals (Sweden)

    Miaozong Wu

    Full Text Available BACKGROUND: Aged skeletal muscle is characterized by an increased incidence of metabolic and functional disorders, which if allowed to proceed unchecked can lead to increased morbidity and mortality. The mechanism(s underlying the development of these disorders in aging skeletal muscle are not well understood. Protein kinase B (Akt/PKB is an important regulator of cellular metabolism and survival, but it is unclear if aged muscle exhibits alterations in Akt function. Here we report a novel dysfunction of Akt in aging muscle, which may relate to S-nitrosylation and can be prevented by acetaminophen intervention. PRINCIPAL FINDINGS: Compared to 6- and 27-month rats, the phosphorylation of Akt (Ser473 and Thr308 was higher in soleus muscles of very aged rats (33-months. Paradoxically, these increases in Akt phosphorylation were associated with diminished mammalian target of rapamycin (mTOR phosphorylation, along with decreased levels of insulin receptor beta (IR-beta, phosphoinositide 3-kinase (PI3K, phosphatase and tensin homolog deleted on chromosome 10 (PTEN and phosphorylation of phosphoinositide-dependent kinase-1 (PDK1 (Ser241. In vitro Akt kinase measurements and ex vivo muscle incubation experiments demonstrated age-related impairments of Akt kinase activity, which were associated with increases in Akt S-nitrosylation and inducible nitric oxide synthase (iNOS. Impairments in Akt function occurred parallel to increases in myocyte apoptosis and decreases in myocyte size and the expression of myosin and actin. These age-related disorders were attenuated by treating aged (27-month animals with acetaminophen (30 mg/kg body weight/day for 6-months. CONCLUSIONS: These data demonstrate that Akt dysfunction and increased S-nitrosylation of Akt may contribute to age-associated disorders in skeletal muscle and that acetaminophen may be efficacious for the treatment of age-related muscle dysfunction.

  10. The role of intrahepatic CD3 +/CD4 −/CD8 − double negative T (DN T) cells in enhanced acetaminophen toxicity

    International Nuclear Information System (INIS)

    Getachew, Yonas; Cusimano, Frank A.; James, Laura P.; Thiele, Dwain L.

    2014-01-01

    The role of the immune system, specifically NK, NKT and CD3 cells, in acetaminophen (APAP) induced liver injury remains inconsistently defined. In the present study, wild type (C57BL/6J) mice and granzyme B deficient (GrB −/−) mice were treated with acetaminophen to assess the role of the immune system in acute liver injury. Doses of acetaminophen that induced sub lethal liver injury in wild type mice unexpectedly produced fatal hepatotoxicity in granzyme B deficient (GrB −/−) mice. Analysis revealed that GrB −/− mice had an increased population of intrahepatic CD3 (+), CD4 (−), and CD8 (−) lymphocytes expressing the CD69 activation marker and Fas ligand. Depletion of these cells in the GrB −/− and wild type mice made them less susceptible to APAP injury, while depletion of NK1.1 (+) cells or both CD4 (+) and CD8 (+) T cells failed to provide the same hepatoprotection. Transfer of the GrB −/− IHLs further exacerbated liver injury and increased mortality in wild type mice but not in LRP/LPR mice, lacking fas expression. Conclusions: Acetaminophen toxicity is enhanced by the presence of activated, FasL expressing intrahepatic CD3 (+), CD4 (−), CD8 (−), NK1.1 (−) T cells. Depletion of these cells from GrB −/− mice and wild type mice greatly reduces mortality and improves the course of liver injury recovery. - Highlights: • Intrahepatic lymphocytes (IHLs) from GrB −/− mice harbor activated DNT cells. • IHLs from GrB −/− mice exhibit enhanced Fas ligand expression. • Acetaminophen toxicity is enhanced by activated, FasL expressing DNT cells

  11. The role of intrahepatic CD3 +/CD4 −/CD8 − double negative T (DN T) cells in enhanced acetaminophen toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Getachew, Yonas, E-mail: yonas.getachew@utsouthwestern.edu [Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151 (United States); Cusimano, Frank A. [Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151 (United States); James, Laura P. [Department of Pediatrics, University of Arkansas, Little Rock, AR (United States); Thiele, Dwain L. [Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151 (United States)

    2014-10-15

    The role of the immune system, specifically NK, NKT and CD3 cells, in acetaminophen (APAP) induced liver injury remains inconsistently defined. In the present study, wild type (C57BL/6J) mice and granzyme B deficient (GrB −/−) mice were treated with acetaminophen to assess the role of the immune system in acute liver injury. Doses of acetaminophen that induced sub lethal liver injury in wild type mice unexpectedly produced fatal hepatotoxicity in granzyme B deficient (GrB −/−) mice. Analysis revealed that GrB −/− mice had an increased population of intrahepatic CD3 (+), CD4 (−), and CD8 (−) lymphocytes expressing the CD69 activation marker and Fas ligand. Depletion of these cells in the GrB −/− and wild type mice made them less susceptible to APAP injury, while depletion of NK1.1 (+) cells or both CD4 (+) and CD8 (+) T cells failed to provide the same hepatoprotection. Transfer of the GrB −/− IHLs further exacerbated liver injury and increased mortality in wild type mice but not in LRP/LPR mice, lacking fas expression. Conclusions: Acetaminophen toxicity is enhanced by the presence of activated, FasL expressing intrahepatic CD3 (+), CD4 (−), CD8 (−), NK1.1 (−) T cells. Depletion of these cells from GrB −/− mice and wild type mice greatly reduces mortality and improves the course of liver injury recovery. - Highlights: • Intrahepatic lymphocytes (IHLs) from GrB −/− mice harbor activated DNT cells. • IHLs from GrB −/− mice exhibit enhanced Fas ligand expression. • Acetaminophen toxicity is enhanced by activated, FasL expressing DNT cells.

  12. Comparative Analysis of Inpatient Costs for Obstetrics and Gynecology Surgery Patients Treated With IV Acetaminophen and IV Opioids Versus IV Opioid-only Analgesia for Postoperative Pain.

    Science.gov (United States)

    Hansen, Ryan N; Pham, An T; Lovelace, Belinda; Balaban, Stela; Wan, George J

    2017-10-01

    Recovery from obstetrics and gynecology (OB/GYN) surgery, including hysterectomy and cesarean section delivery, aims to restore function while minimizing hospital length of stay (LOS) and medical expenditures. Our analyses compare OB/GYN surgery patients who received combination intravenous (IV) acetaminophen and IV opioid analgesia with those who received IV opioid-only analgesia and estimate differences in LOS, hospitalization costs, and opioid consumption. We performed a retrospective analysis of the Premier Database between January 2009 and June 2015, comparing OB/GYN surgery patients who received postoperative pain management with combination IV acetaminophen and IV opioids with those who received only IV opioids starting on the day of surgery and continuing up to the second postoperative day. We performed instrumental variable 2-stage least-squares regressions controlling for patient and hospital covariates to compare the LOS, hospitalization costs, and daily opioid doses (morphine equivalent dose) of IV acetaminophen recipients with that of opioid-only analgesia patients. We identified 225 142 OB/GYN surgery patients who were eligible for our study of whom 89 568 (40%) had been managed with IV acetaminophen and opioids. Participants averaged 36 years of age and were predominantly non-Hispanic Caucasians (60%). Multivariable regression models estimated statistically significant differences in hospitalization cost and opioid use with IV acetaminophen associated with $484.4 lower total hospitalization costs (95% CI = -$760.4 to -$208.4; P = 0.0006) and 8.2 mg lower daily opioid use (95% CI = -10.0 to -6.4), whereas the difference in LOS was not significant, at -0.09 days (95% CI = -0.19 to 0.01; P = 0.07). Compared with IV opioid-only analgesia, managing post-OB/GYN surgery pain with the addition of IV acetaminophen is associated with decreased hospitalization costs and reduced opioid use.

  13. Effectiveness of FDA's new over-the-counter acetaminophen warning label in improving consumer risk perception of liver damage.

    Science.gov (United States)

    Goyal, R K; Rajan, S S; Essien, E J; Sansgiry, S S

    2012-12-01

    The Food and Drug Administration (FDA) issued new organ-specific warning label requirements for over-the-counter (OTC) analgesic products in order to make consumers aware of the risk of liver damage when using acetaminophen. However, awareness of a health risk alone cannot ensure consumers' engagement in safe and preventive behaviour. In this study, we attempted to: (i) measure consumer risk perception of liver damage due to the OTC acetaminophen products and (ii) analyse the effectiveness of the new organ-specific warning label in improving consumer risk perception of liver damage and intention to perform protective behaviours while using OTC acetaminophen products. This within-subject experimental study used a convenience sample of English-speaking adults visiting OTC segments of selected pharmacy stores in Houston. Participants were randomly exposed to the old and new warning labels and their respective risk perception (measured on a visual analogue scale, 0%, no risk, to 100%, extreme risk) and behavioural intention (measured on a 7-point Likert scale) were recorded using a validated, self-administered questionnaire. Descriptive statistics and non-parametric Wilcoxon signed-rank tests were performed using sas statistical software (v 9.2) at a priori significance level of 0.05. Majority of participants (74.4%) were not aware of the new warnings; however, majority (67.8%) had prior knowledge of the risk. The mean risk perception score for the new warning label was found to be significantly higher (72.2% vs. 65.9%, P risk perception of potential liver damage and may encourage protective behaviour. However, future studies are essential to assess the impact of the new label on actual changes in consumer behaviour and subsequent reduction in acetaminophen-related morbidity and mortality. © 2012 Blackwell Publishing Ltd.

  14. Interindividual variation in gene expression responses and metabolite formation in acetaminophen-exposed primary human hepatocytes

    NARCIS (Netherlands)

    Jetten, M.J.A.; Blanco Garcia, Ainhoa; Coonen, M.L.J.; Claessen, Sandra; Herwijnen, van M.H.M.; Lommen, Arjen; Delft, van J.H.M.; Peijnenburg, A.A.C.M.; Kleinjans, J.C.S.

    2016-01-01

    Acetaminophen (APAP) is a readily available over-the-counter drug and is one of the most commonly used analgesics/antipyretics worldwide. Large interindividual variation in susceptibility toward APAP-induced liver failure has been reported. However, the exact underlying factors causing this

  15. Paracetamol (acetaminophen) attenuates in vitro mast cell and peripheral blood mononucleocyte cell histamine release induced by N-acetylcysteine.

    Science.gov (United States)

    Coulson, James; Thompson, John Paul

    2010-02-01

    The treatment of acute paracetamol (acetaminophen) poisoning with N-acetylcysteine (NAC) is frequently complicated by an anaphylactoid reaction to the antidote. The mechanism that underlies this reaction is unclear. We used the human mast cell line 1 (HMC-1) and human peripheral blood mononucleocytes (PBMCs) to investigate the effects of NAC and paracetamol on histamine secretion in vitro. HMC-1 and human PBMCs were incubated in the presence of increasing concentrations of NAC +/- paracetamol. Cell viability was determined by the Trypan Blue Assay, and histamine secretion was measured by ELISA. NAC was toxic to HMC-1 cells at 100 mg/mL and to PBMCs at 67 mg/mL. NAC increased HMC-1 and PBMC histamine secretion at concentrations of NAC from 20 to 50 mg/mL and 2.5 to 100 mg/mL, respectively. NAC-induced histamine secretion by both cell types was reduced by co-incubation with 2.5 mg/mL of paracetamol. Paracetamol (acetaminophen) is capable of modifying histamine secretion in vitro. This may explain the clinical observation of a lower incidence of adverse reactions to NAC in vivo when higher concentrations of paracetamol are present than when paracetamol concentrations are low. Paracetamol (acetaminophen) attenuates in vitro mast cell and PBMC cell histamine release induced by NAC.

  16. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial : a multicentre, randomised, placebo-controlled, phase III trial

    NARCIS (Netherlands)

    den Hertog, Heleen M.; van der Worp, H. Bart; van Gemert, H. Maarten A.; Algra, Ate; Kappelle, L. Jaap; Van Gijn, Jan; Koudstaal, Peter J.; Dippel, Diederik W. J.

    Background High body temperature in the first 12-24 h after stroke onset is associated with poor functional outcome. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial aimed to assess whether early treatment with paracetamol improves functional outcome in patients with acute stroke by reducing

  17. Application of as-synthesised MCM-41 and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and aspirin from aqueous system.

    Science.gov (United States)

    Akpotu, Samson O; Moodley, Brenda

    2018-03-01

    In this study, ASM41 (as-synthesised MCM-41), MCM-41, MCM-41 encapsulated with graphene oxide (MCM-41-GO) and reduced graphene oxide (MCM-41-G) were fabricated and utilized in the remediation of acetaminophen and aspirin from water. A surfactant template (cetyltrimethylammonium bromide) was added to ASM41 to make it more hydrophobic and its effects on the remediation of acetaminophen and aspirin from wastewater was studied. To further improve the adsorption capacity of the adsorbent, MCM-41 was encapsulated with GO and G which also aided in easy separation of the adsorbent from the aqueous solution. Comparative studies of the adsorption of acetaminophen and aspirin on all four adsorbents were investigated. Batch adsorption studies of acetaminophen and aspirin were carried out to determine the effects of pH, initial concentration, time and adsorbent dose. Adsorption mechanism was through EDA, π-π interactions, and hydrophobic effects. Data from sorption kinetics showed ASM41 had the highest q m value for aspirin (909.1 mg/g) and MCM-41-G had the highest q m value for acetaminophen (555.6 mg/g). The significant adsorption by ASM41 can be attributed to increased hydrophobicity due to the retention of the surfactant template. Thermodynamic studies revealed the adsorption process as spontaneous and exothermic. Desorption studies revealed that adsorbents could be regenerated and reused for adsorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Acute ethanol administration reduces the antidote effect of N-acetylcysteine after acetaminophen overdose in mice

    DEFF Research Database (Denmark)

    Dalhoff, K; Hansen, P B; Ott, P

    1991-01-01

    given ethanol or saline alone only 7% and 3%, respectively, survived 96 h. 4. The data suggest that the protective effect of N-acetylcysteine on acetaminophen-induced toxicity in fed mice is reduced by concomitant administration of ethanol. This may explain the clinical observation that ingestion...

  19. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage

    NARCIS (Netherlands)

    Gonzalez Ponce, Herson Antonio; Consolacion Martinez-Saldana, Maria; Rosa Rincon-Sanchez, Ana; Teresa Sumaya-Martinez, Maria; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han; Jaramillo-Juarez, Fernando

    2016-01-01

    Acetaminophen (APAP)-induced acute liver failure (ALF) is a serious health problem in developed countries. N-acetyl-L-cysteine (NAC), the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients

  20. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model

    DEFF Research Database (Denmark)

    van den Driesche, Sander; Macdonald, Joni; Anderson, Richard A

    2015-01-01

    Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons...

  1. Preparation of NiFe₂O₄/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Khoshsafar, Hosein [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Bagheri, Hasan [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Madrakian, Tayyebeh [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2014-06-01

    Highlights: • A new modified electrochemical sensor was constructed and used. • NiFe₂O₄/graphene was used as the modifier. • The sensor was used for the determination of tramadol and acetaminophen in real samples. • Modification improved the sensitivity and detection limit of the method. • The oxidation of tramadol and acetaminophen at the surface of the electrode was studied. Abstract: An effective electrochemical sensor for the rapid and simultaneous determination of tramadol and acetaminophen based on carbon paste electrode (CPE) modified with NiFe₂O₄/graphene nanoparticles was developed. The structures of the synthesized NiFe₂O₄/graphene nanocomposite and the electrode composition were confirmed by X-ray diffraction (XRD) spectrometry, Fourier transform infrared (FT-IR) spectrometry and scanning electron microscopy (SEM). The peak currents of square wave voltammetry of tramadol and acetaminophen increased linearly with their concentration in the range of 0.01–9 μmol L⁻¹. The detection limit for their determination was found to be 0.0036 and 0.0030 μmol L⁻¹, respectively. The results show that the combination of graphene and NiFe₂O₄ nanoparticles causes a dramatic enhancement in the sensitivity of the sensor. The fabricated sensor exhibited high sensitivity and good stability, and would be valuable for the clinical assay of tramadol and acetaminophen.

  2. Formulation and Characterization of Acetaminophen Nanoparticles in Orally Disintegrating Films

    Science.gov (United States)

    AI-Nemrawi, Nusaiba K.

    The purpose of this study is to prepare acetaminophen loaded nanoparticles to be cast directly, while still in the emulsion form, into Orally Disintegrating Films (ODF). By casting the nanoparticles in the films, we expected to keep the particles in a stable form where the nanoparticles would be away from each other to prevent their aggregation. Once the films are applied on the buccal mucosa, they are supposed to dissolve within seconds, releasing the nanoparticles. Then the nanoparticles could be directly absorbed through the mucosa to the blood stream and deliver acetaminophen there. The oral cavity mucosa is one of the most attractive sites for systemic drug delivery due to its high permeability and blood supply. Furthermore, it is robust and shows short recovery times after stress or damage, and the drug bypasses first pass effect and avoids presystemic elimination in the GI tract. Nanoencapsulation increases drug efficacy, specificity, tolerability and therapeutic index. These Nanocapsules have several advantages in the protection of premature degradation and interaction with the biological environment, enhancement of absorption into a selected tissue, bioavailability, retention time and improvement of intracellular penetration. The most important characteristics of nanoparticles are their size, encapsulation efficiency (EE), zeta potential (surface charge), and the drug release profiles. Unfortunately, nanoparticles tend to precipitate or aggregate into larger particles within a short time after preparation or during storage. Some solutions for this problem were mentioned in literature including lyophilization and spray drying. These methods are usually expensive and give partial solutions that might have secondary problems; such as low re-dispersion efficacy of the lyophilized NPs. Furthermore, most of the formulations of NPs are invasive or topical. Few formulas are available to be given orally. Fast disintegrating films (ODFs) are rapidly gaining interest

  3. Metabolism of acetaminophen (paracetamol) in plants--two independent pathways result in the formation of a glutathione and a glucose conjugate.

    Science.gov (United States)

    Huber, Christian; Bartha, Bernadett; Harpaintner, Rudolf; Schröder, Peter

    2009-03-01

    Pharmaceuticals and their metabolites are detected in the aquatic environment and our drinking water supplies. The need for high quality drinking water is one of the most challenging problems of our times, but still only little knowledge exists on the impact of these compounds on ecosystems, animals, and man. Biological waste water treatment in constructed wetlands is an effective and low-cost alternative, especially for the treatment of non-industrial, municipal waste water. In this situation, plants get in contact with pharmaceutical compounds and have to tackle their detoxification. The mechanisms for the detoxification of xenobiotics in plants are closely related to the mammalian system. An activation reaction (phase I) is followed by a conjugation (phase II) with hydrophilic molecules like glutathione or glucose. Phase III reactions can be summarized as storage, degradation, and transport of the xenobiotic conjugate. Until now, there is no information available on the fate of pharmaceuticals in plants. In this study, we want to investigate the fate and metabolism of N-acetyl-4-aminophenol (paracetamol) in plant tissues using the cell culture of Armoracia rusticana L. as a model system. A hairy root culture of A. rusticana was treated with acetaminophen in a liquid culture. The formation and identification of metabolites over time were analyzed using HPLC-DAD and LC-MSn techniques. With LC-MS technique, we were able to detect paracetamol and identify three of its metabolites in root cells of A. rusticana. Six hours after incubation with 1 mM of acetaminophen, the distribution of acetaminophen and related metabolites in the cells resulted in 18% paracetamol, 64% paracetamol-glucoside, 17% paracetamol glutathione, and 1% of the corresponding cysteine conjugate. The formation of two independently formed metabolites in plant root cells again revealed strong similarities between plant and mammalian detoxification systems. The detoxification mechanism of

  4. Lack of Direct Cytotoxicity of Extracellular ATP against Hepatocytes: Role in the Mechanism of Acetaminophen Hepatotoxicity

    NARCIS (Netherlands)

    Xie, Yuchao; Woolbright, Benjamin L.; Kos, Milan; McGill, Mitchell R.; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Jaeschke, Hartmut

    2015-01-01

    Acetaminophen (APAP) hepatotoxicity is a major cause of acute liver failure in many countries. Mechanistic studies in mice and humans have implicated formation of a reactive metabolite, mitochondrial dysfunction and oxidant stress as critical events in the pathophysiology of APAP-induced liver cell

  5. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats.

    Science.gov (United States)

    Maharaj, D S; Saravanan, K S; Maharaj, H; Mohanakumar, K P; Daya, S

    2004-04-01

    We assessed the antioxidant activity of non-narcotic analgesics, acetaminophen and aspirin in rat brain homogenates and neuroprotective effects in vivo in rats intranigrally treated with 1-methyl-4-phenyl pyridinium (MPP+). Both drugs inhibited cyanide-induced superoxide anion generation, as well as lipid peroxidation in rat brain homogenates, the combination of the agents resulting in a potentiation of this effect. Acetaminophen or aspirin when administered alone or in combination, did not alter dopamine (DA) levels in the forebrain or in the striatum. Intranigral infusion of MPP+ in rats caused severe depletion of striatal DA levels in the ipsilateral striatum in rats by the third day. Systemic post-treatment of acetaminophen afforded partial protection, whereas similar treatment of aspirin resulted in complete blockade of MPP+-induced striatal DA depletion. While these findings suggest usefulness of non-narcotic analgesics in neuroprotective therapy in neurodegenerative diseases, aspirin appears to be a potential candidate in prophylactic as well as in adjuvant therapy in Parkinson's disease.

  6. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite

    International Nuclear Information System (INIS)

    Zheng, Meixia; Gao, Feng; Wang, Qingxiang; Cai, Xili; Jiang, Shulian; Huang, Lizhang; Gao, Fei

    2013-01-01

    The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (k s ), diffusion coefficient (D) and the surface adsorption amount (Γ ⁎ ) of ACOP on GR–CS/GCE were determined to be 0.25 s −1 , 3.61 × 10 −5 cm 2 s −1 and 1.09 × 10 −9 mol cm −2 , respectively. Additionally, a 2e − /2H + electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10 −6 to 1.0 × 10 −4 M with a low detection limit of 3.0 × 10 −7 M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations. Highlights: ► A chitosan–graphene nanocomposite modified glassy carbon electrode was prepared. ► The modified electrode was electrochemically characterized by CV and EIS. ► Electro-oxidation of acetaminophen was examined on the modified electrode. ► Sensing analysis of the modified electrode toward acetaminophen was studied

  7. AMAP, the alleged non-toxic isomer of acetaminophen, is toxic in rat and human liver

    NARCIS (Netherlands)

    Hadi, M; Dragovic, S.; van Swelm, R; Herpers, B; van de Water, B.; Russel, RG; Commandeur, J.N.M.; Groothuis, G.M.

    2013-01-01

    N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the wellknown hepatotoxicant acetaminophen (APAP). However, so far, AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in rat

  8. Acetaminophen-induced S-nitrosylation and S-sulfenylation signalling in 3D cultured hepatocarcinoma cell spheroids

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna; Wrzesinski, Krzysztof; Williamson, James

    2016-01-01

    Acetaminophen (APAP) is possibly the most widely used medication globally and yet little is known of its molecular effects at therapeutic doses. Using a novel approach, we have analysed the redox proteome of the hepatocellular cell line HepG2/C3A treated with therapeutic doses of APAP and quantit...

  9. Bioavailability of suppository acetaminophen in healthy and hospitalized ill dogs.

    Science.gov (United States)

    Sikina, E R; Bach, J F; Lin, Z; Gehring, R; KuKanich, B

    2018-05-13

    To determine the plasma pharmacokinetics of suppository acetaminophen (APAP) in healthy dogs and clinically ill dogs. This prospective study used six healthy client-owned and 20 clinically ill hospitalized dogs. The healthy dogs were randomized by coin flip to receive APAP orally or as a suppository in crossover study design. Blood samples were collected up to 10 hr after APAP dosing. The hospitalized dogs were administered APAP as a suppository, and blood collected at 2 and 6 hr after dosing. Plasma samples were analyzed by ultra-performance liquid chromatography with triple quadrupole mass spectrometry. In healthy dogs, oral APAP maximal concentration (C MAX =2.69 μg/ml) was reached quickly (T MAX =1.04 hr) and eliminated rapidly (T1/2 = 1.81 hr). Suppository APAP was rapidly, but variably absorbed (C MAX =0.52 μg/ml T MAX =0.67 hr) and eliminated (T 1/2  = 3.21 hr). The relative (to oral) fraction of the suppository dose absorbed was 30% (range <1%-67%). In hospitalized ill dogs, the suppository APAP mean plasma concentration at 2 hr and 6 hr was 1.317 μg/ml and 0.283 μg/ml. Nonlinear mixed-effects modeling did not identify significant covariates affecting variability and was similar to noncompartmental results. Results supported that oral and suppository acetaminophen in healthy and clinical dogs did not reach or sustain concentrations associated with efficacy. Further studies performed on different doses are needed. © 2018 John Wiley & Sons Ltd.

  10. The Decline in Hydrocodone/Acetaminophen Prescriptions in Emergency Departments in the Veterans Health Administration Between 2009 to 2015

    Directory of Open Access Journals (Sweden)

    Michael A. Grasso

    2016-06-01

    Full Text Available Introduction: The purpose of the study was to measure national prescribing patterns for hydrocodone/acetaminophen among veterans seeking emergency medical care, and to see if patterns have changed since this medication became a Schedule II controlled substance. Methods: We conducted a retrospective cohort study of emergency department (ED visits within the Veterans Health Administration (VA between January 2009 and June 2015. We looked at demographics, comorbidities, utilization measures, diagnoses, and prescriptions. Results: During the study period, 1,709,545 individuals participated in 6,270,742 ED visits and received 471,221 prescriptions for hydrocodone/acetaminophen (7.5% of all visits. The most common diagnosis associated with a prescription was back pain. Prescriptions peaked at 80,776 in 2011 (8.7% of visits, and declined to 35,031 (5.6% during the first half of 2015 (r=‒0.99, p<0.001. The percentage of hydrocodone/acetaminophen prescriptions limited to 12 pills increased from 22% (13,949 in 2009 to 31% (11,026 in the first half of 2015. A prescription was more likely written for patients with a pain score≥7 (OR 3.199, CI [3.192‒3.205], a musculoskeletal (OR 1.622, CI [1.615‒1.630] or soft tissue (OR 1.656, CI [1.649‒1.664] diagnosis, and those below the first quartile for total ED visits (OR 1.282, CI [1.271‒1.293] and total outpatient ICD 9 codes (OR 1.843, CI [1.833‒1.853]. Conclusion: Hydrocodone/acetaminophen is the most frequently prescribed ED medication in the VA. The rate of prescribing has decreased since 2011, with the rate of decline remaining unchanged after it was classified as a Schedule II controlled substance. The proportion of prescriptions falling within designated guidelines has increased but is not at goal. [West J Emerg Med. 2016;17(4:396-403.

  11. AMAP, the alleged non-toxic isomer of acetaminophen, is toxic in rat and human liver

    NARCIS (Netherlands)

    Hadi, Mackenzie; Dragovic, Sanja; van Swelm, Rachel; Herpers, Bram; van de Water, Bob; Russel, Frans G. M.; Commandeur, Jan N. M.; Groothuis, Geny M. M.

    N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the well-known hepatotoxicant acetaminophen (APAP). However, so far, AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in rat

  12. Comparison of the analgesic effect of intravenous acetaminophen with that of flurbiprofen axetil on post-breast surgery pain: a randomized controlled trial.

    Science.gov (United States)

    Nonaka, Takahiro; Hara, Marie; Miyamoto, Chisato; Sugita, Michiko; Yamamoto, Tatsuo

    2016-06-01

    Acetaminophen is known to be a relatively weak analgesic with fewer side effects than nonsteroidal anti-inflammatory drugs (NSAIDs). This study aimed to determine whether intravenous (iv) acetaminophen produces comparable analgesic effects to those of flurbiprofen (positive control drug), an intravenously injectable NSAID, after partial mastectomies. The primary outcome assessed was pain intensity during the first 24 h after the operation, and the secondary outcome was the satisfaction rating at discharge. After obtaining Institutional Ethics Committee approval, a series of 40 consecutive female patients who were scheduled for partial mastectomies were enrolled. Participants were randomly divided into two groups: an acetaminophen (1000 mg × 3) group (group A) and a flurbiprofen (50 mg × 3) group (group F). Each drug was administered 15 min before the end of surgery, and at 6 and 12 h after the operation. Postoperative pain was evaluated using a 100-mm visual analog scale (VAS) at 3, 6, and 24 h postoperatively. Satisfaction rating was evaluated on a 5-point scale (very good, good, well, bad, and very bad). VAS scores (mm) with movement in groups A and F at 3, 6, and 24 h after the surgery were 22 vs. 28, 14 vs. 24, and 12 vs. 20.5 (median), respectively, with no significant differences between the two groups. Eighteen of 20 patients in group A and 20 of 20 patients in group F expressed a satisfaction rating of greater than good. Acetaminophen produces an equivalent analgesic effect to flurbiprofen in post-partial mastectomy patients.

  13. Cooperativity in CYP2E1 Metabolism of Acetaminophen and Styrene Mixtures

    OpenAIRE

    Hartman, Jessica H.; Letzig, Lynda G.; Robertsc, Dean W.; James, Laura P.; Fifer, E. Kim; Miller, Grover P.

    2015-01-01

    Risk assessment for exposure to mixtures of drugs and pollutants relies heavily on in vitro characterization of their bioactivation and/or metabolism individually and extrapolation to mixtures assuming no interaction. Herein, we demonstrated that in vitro CYP2E1 metabolic activation of acetaminophen and styrene mixtures could not be explained through the Michaelis-Menten mechanism or any models relying on that premise. As a baseline for mixture studies with styrene, steady-state analysis of a...

  14. Influence of acetaminophen and ibuprofen on in vivo patellar tendon adaptations to knee extensor resistance exercise in older adults

    DEFF Research Database (Denmark)

    Carroll, C C; Dickinson, J M; LeMoine, J K

    2011-01-01

    adults induces modest changes in the mechanical properties of the patellar tendon. Over-the-counter doses of acetaminophen, but not ibuprofen, have a strong influence on tendon mechanical and material property adaptations to resistance training. These findings add to a growing body of evidence......Millions of older individuals consume acetaminophen or ibuprofen daily and these same individuals are encouraged to participate in resistance training. Several in vitro studies suggest that cyclooxygenase-inhibiting drugs can alter tendon metabolism and may influence adaptations to resistance...... tendon properties were assessed with MRI [cross-sectional area (CSA) and signal intensity] and ultrasonography of patellar tendon deformation coupled with force measurements to obtain stiffness, modulus, stress, and strain. Mean patellar tendon CSA was unchanged (P > 0.05) with training in the placebo...

  15. Hepatoprotective effects of Iranian Hypericum scabrum essential oils against oxidative stress induced by acetaminophen in rats

    Directory of Open Access Journals (Sweden)

    Abolfazl Dadkhah

    2014-06-01

    Full Text Available This studied examined the protective role of Hypericum scabrum oils (100 and 200 mg/kg b.w, i.p on acetaminophen-induced liver damages in the rat. The hepatic oxidative/antioxidant parameters such as lipid peroxidation (LP, glutathione (GSH, superoxide dismutase (SOD, catalase (CAT and ferric reducing ability of plasma (FRAP were measured 2, 4, 8, 16 and 24h after the treatments confirmed by histopathological consideration. The results indicated that increased levels of hepatic LP and FRAP and SOD activity were reversed in the rats treated with oils. In addition, the depleted GSH were compensated with the oil treatments. The protective effect of the oils was further confirmed by the histophatological examination carried out on liver biopsies. The data pointed out that H. scabrum oil could modulate the hepatic toxicity induced by the APAP through adjusting the oxidative stress/antioxidant parameters and could be of potential candidate for the treatment of acetaminophen induced oxidative stress liver damages.

  16. Pharmacokinetic Study of Intravenous Acetaminophen Administered to Critically Ill Multiple-Trauma Patients at the Usual Dosage and a New Proposal for Administration.

    Science.gov (United States)

    Fuster-Lluch, Oscar; Zapater-Hernández, Pedro; Gerónimo-Pardo, Manuel

    2017-10-01

    The pharmacokinetic profile of intravenous acetaminophen administered to critically ill multiple-trauma patients was studied after 4 consecutive doses of 1 g every 6 hours. Eleven blood samples were taken (predose and 15, 30, 45, 60, 90, 120, 180, 240, 300, and 360 minutes postdose), and urine was collected (during 6-hour intervals between doses) to determine serum and urine acetaminophen concentrations. These were used to calculate the following pharmacokinetic parameters: maximum and minimum concentrations, terminal half-life, area under serum concentration-time curve from 0 to 6 hours, mean residence time, volume of distribution, and serum and renal clearance of acetaminophen. Daily doses of acetaminophen required to obtain steady-state minimum (bolus dosing) and average plasma concentrations (continuous infusion) of 10 μg/mL were calculated (10 μg/mL is the presumed lower limit of the analgesic range). Data are expressed as median [interquartile range]. Twenty-two patients were studied, mostly young (age 44 [34-64] years) males (68%), not obese (weight 78 [70-84] kg). Acetaminophen concentrations and pharmacokinetic parameters were these: maximum concentration 33.6 [25.7-38.7] μg/mL and minimum concentration 0.5 [0.2-2.3] μg/mL, all values below 10 μg/mL and 8 below the detection limit; half-life 1.2 [1.0-1.9] hours; area under the curve for 6 hours 34.7 [29.7-52.7] μg·h/mL; mean residence time 1.8 [1.3-2.6] hours; steady-state volume of distribution 50.8 [42.5-66.5] L; and serum and renal clearance 28.8 [18.9-33.7] L/h and 15 [11-19] mL/min, respectively. Theoretically, daily doses for a steady-state minimum concentration of 10 μg/mL would be 12.2 [7.8-16.4] g/day (166 [112-202] mg/[kg·day]); for an average steady-state concentration of 10 μg/mL, they would be 6.9 [4.5-8.1] g/day (91 [59-111] mg/[kg·day]). In conclusion, administration of acetaminophen at the recommended dosage of 1 g per 6 hours to critically ill multiple-trauma patients yields

  17. Preparation of NiFe2O4/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Khoshsafar, Hosein; Bagheri, Hasan; Madrakian, Tayyebeh

    2014-01-01

    Highlights: • A new modified electrochemical sensor was constructed and used. • NiFe 2 O 4 /graphene was used as the modifier. • The sensor was used for the determination of tramadol and acetaminophen in real samples. • Modification improved the sensitivity and detection limit of the method. • The oxidation of tramadol and acetaminophen at the surface of the electrode was studied. - Abstract: An effective electrochemical sensor for the rapid and simultaneous determination of tramadol and acetaminophen based on carbon paste electrode (CPE) modified with NiFe 2 O 4 /graphene nanoparticles was developed. The structures of the synthesized NiFe 2 O 4 /graphene nanocomposite and the electrode composition were confirmed by X-ray diffraction (XRD) spectrometry, Fourier transform infrared (FT-IR) spectrometry and scanning electron microscopy (SEM). The peak currents of square wave voltammetry of tramadol and acetaminophen increased linearly with their concentration in the range of 0.01–9 μmol L −1 . The detection limit for their determination was found to be 0.0036 and 0.0030 μmol L −1 , respectively. The results show that the combination of graphene and NiFe 2 O 4 nanoparticles causes a dramatic enhancement in the sensitivity of the sensor. The fabricated sensor exhibited high sensitivity and good stability, and would be valuable for the clinical assay of tramadol and acetaminophen

  18. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Koerner, Michael R., E-mail: mkoern2@illinois.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Lampe, Jed N. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Farhood, Anwar [Department of Pathology, Brackenridge Hospital, Austin, TX 78701 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2011-12-15

    The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice. The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only < 0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, > 20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. Conclusion: Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change. -- Highlights: Black-Right-Pointing-Pointer During acetaminophen overdose caspase-3 can be activated in fed mice of certain outbred strains. Black-Right-Pointing-Pointer Hepatic ATP levels are not the determining factor for caspase

  19. Childhood suicide attempts with acetaminophen in Denmark

    DEFF Research Database (Denmark)

    Hedeland, Rikke; Jørgensen, Marianne H; Teilmann, Grete

    2013-01-01

    Aims: To explore: (1) The relationship between children admitted to our paediatric department as a result of suicide attempts with acetaminophen and their parents and friends. (2) The extent to which the children had attempted to speak to their parents about their problems before their suicide...... Hospital, Denmark, 2006-2011. Study group: 107 children, 11 to 15 years old. Control group: 59 age- and gender-matched children. Results: 43.5% experienced a dissociated parental relationship characterized by the inability to speak to their parents about any problems, compared with 2% in the control group.......02). Prior to their suicide attempts, 41.5% of the children had attempted to speak to their parents about their problems but felt that they were not heard. There was a significant association among 'the feeling of not being heard' and the purpose of the suicide attempt (p = 0.002) and self-mutilation (p = 0...

  20. Early predictors of severe acetaminophen-induced hepatotoxicity in a paediatric population referred to a tertiary paediatric department

    DEFF Research Database (Denmark)

    Hedeland, Rikke Lindgaard; Andersen, Jesper; Askbo, Natasha Louise Friis

    2014-01-01

    -acetylcysteine treatment on hepatotoxicity and the incidence of nephrotoxicity. METHODS: We carried out a retrospective case study on 25 children aged 11-16 years with severe acetaminophen poisoning. RESULTS: Initial biochemical parameters predicted hepatotoxicity, defined as the maximum levels of the international...

  1. Paracetamol (acetaminophen) for chronic non-cancer pain in children and adolescents.

    Science.gov (United States)

    Cooper, Tess E; Fisher, Emma; Anderson, Brian; Wilkinson, Nick Mr; Williams, David G; Eccleston, Christopher

    2017-08-02

    Pain is a common feature of childhood and adolescence around the world, and for many young people, that pain is chronic. The World Health Organization guidelines for pharmacological treatments for children's persisting pain acknowledge that pain in children is a major public health concern of high significance in most parts of the world. While in the past, pain was largely dismissed and was frequently left untreated, views on children's pain have changed over time, and relief of pain is now seen as important.We designed a suite of seven reviews on chronic non-cancer pain and cancer pain (looking at antidepressants, antiepileptic drugs, non-steroidal anti-inflammatory drugs, opioids, and paracetamol as priority areas) in order to review the evidence for children's pain utilising pharmacological interventions in children and adolescents.As the leading cause of morbidity in children and adolescents in the world today, chronic disease (and its associated pain) is a major health concern. Chronic pain (lasting three months or longer) can arise in the paediatric population in a variety of pathophysiological classifications: nociceptive, neuropathic, idiopathic, visceral, nerve damage pain, chronic musculoskeletal pain, and chronic abdominal pain, and other unknown reasons.Paracetamol (acetaminophen) is one of the most widely used analgesics in both adults and children. The recommended dosage in the UK, Europe, Australia, and the USA for children and adolescents is generally 10 to 15 mg/kg every four to six hours, with specific age ranges from 60 mg (6 to 12 months old) up to 500 to 1000 mg (over 12 years old). Paracetamol is the only recommended analgesic for children under 3 months of age. Paracetamol has been proven to be safe in appropriate and controlled dosages, however potential adverse effects of paracetamol if overdosed or overused in children include liver and kidney failure. To assess the analgesic efficacy and adverse events of paracetamol (acetaminophen) used

  2. Association of antioxidant nutraceuticals and acetaminophen (paracetamol: Friend or foe?

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Daim

    2018-04-01

    Full Text Available Acetaminophen (paracetamol or APAP is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT. Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP. Keywords: Acetaminophen, Antioxidants, Food-drug interaction, Nutraceuticals, Paracetamol

  3. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: moussavi@modares.ac.ir; Shekoohiyan, Sakine

    2016-11-15

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N{sub 2} was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N{sub 2} selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  4. The Effect of Intravenous Acetaminophen on Postoperative Pain and Narcotic Consumption After Vaginal Reconstructive Surgery: A Double-Blind Randomized Placebo-Controlled Trial.

    Science.gov (United States)

    Crisp, Catrina C; Khan, Madiha; Lambers, Donna L; Westermann, Lauren B; Mazloomdoost, Donna M; Yeung, Jennifer J; Kleeman, Steven D; Pauls, Rachel N

    This study aimed to determine the effect of intravenous acetaminophen versus placebo on postoperative pain, satisfaction with pain control, and narcotic use after vaginal reconstructive surgery. This was an institutional review board-approved, double-blind placebo-controlled randomized trial. Women scheduled for reconstructive surgery including vaginal hysterectomy and vaginal vault suspension were enrolled. Subjects received 1000 mg of intravenous acetaminophen or 100 mL placebo every 6 hours for 24 hours. Pain and satisfaction with pain control were assessed using visual analog scales and a numeric rating scale. Visual analog scales were collected at 18 and 24 hours postoperatively and at discharge. A sample size calculation determined 90 subjects would be required to detect a 30% reduction in postoperative narcotic use with 80% power and significance level of 0.05. One hundred subjects were enrolled. There were no differences in demographics or surgical data and no difference in narcotic consumption at multiple evaluation points. At 18 hours postoperative, median pain scores at rest were 27.0 (interquartile range, 35.0) for acetaminophen and 35.0 (interquartile range, 44.5) for placebo, finding no difference (P = 0.465). Furthermore, pain with activity and numeric rating scale-assessed pain scales were similar (P = 0.328; P = 0.597). Although satisfaction with pain control was high overall (91.5), no difference was noted. Patients undergoing vaginal reconstructive surgery receiving perioperative intravenous acetaminophen did not experience a decrease in narcotic requirements or postoperative pain when compared with placebo. Reassuringly, pain scores were low and satisfaction with pain control was high for all subjects. The general use of this medication is not supported in these surgical patients.

  5. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    International Nuclear Information System (INIS)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-01-01

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N_2 was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N_2 selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  6. Combining paracetamol (acetaminophen) with nonsteroidal antiinflammatory drugs: a qualitative systematic review of analgesic efficacy for acute postoperative pain

    NARCIS (Netherlands)

    Ong, Cliff K. S.; Seymour, Robin A.; Lirk, Phillip; Merry, Alan F.

    2010-01-01

    BACKGROUND: There has been a trend over recent years for combining a nonsteroidal antiinflammatory drug (NSAID) with paracetamol (acetaminophen) for pain management. However, therapeutic superiority of the combination of paracetamol and an NSAID over either drug alone remains controversial. We

  7. Ultra Low-Dose Naloxone and Tramadol/Acetaminophen in Elderly Patients Undergoing Joint Replacement Surgery: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ngozi N Imasogie

    2009-01-01

    Full Text Available OBJECTIVE: A pilot study was conducted to assess whether both the rationale and feasibility exist for future randomized clinical trials to evaluate the combined use of naloxone infusion and tramadol/acetaminophen as opioid-sparing drugs in elderly patients undergoing lower extremity joint replacement surgery.

  8. Effect of acetaminophen administration to rats chronically exposed to depleted uranium

    International Nuclear Information System (INIS)

    Gueguen, Y.; Grandcolas, L.; Baudelin, C.; Grison, S.; Tissandie, E.; Jourdain, J.R.; Paquet, F.; Voisin, P.; Aigueperse, J.; Gourmelon, P.; Souidi, M.

    2007-01-01

    The extensive use of depleted uranium (DU) in both civilian and military applications results in the increase of the number of human beings exposed to this compound. We previously found that DU chronic exposure induces the expression of CYP enzymes involved in the metabolism of xenobiotics (drugs). In order to evaluate the consequences of these changes on the metabolism of a drug, rats chronically exposed to DU (40 mg/l) were treated by acetaminophen (APAP, 400 mg/kg) at the end of the 9-month contamination. Acetaminophen is considered as a safe drug within the therapeutic range but in the case of overdose or in sensitive animals, hepatotoxicity and nephrotoxicity could occur. In the present work, plasma concentration of APAP was higher in the DU group compared to the non-contaminated group. In addition, administration of APAP to the DU-exposed rats increased plasma ALT (p < 0.01) and AST (p < 0.05) more rapidly than in the control group. Nevertheless, no histological alteration of the liver was observed but renal injury characterized by incomplete proximal tubular cell necrosis was higher for the DU-exposed rats. Moreover, in the kidney, CYP2E1 gene expression, an important CYP responsible for APAP bioactivation and toxicity, is increased (p < 0.01) in the DU-exposed group compared to the control group. In the liver, CYP's activities were decreased between control and DU-exposed rats. These results could explain the worse elimination of APAP in the plasma and confirm our hypothesis of a modification of the drug metabolism following a DU chronic contamination

  9. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    Science.gov (United States)

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice

    OpenAIRE

    Martinić, Roko; Šošić, Hrvoje; Turčić, Petra; Konjevoda, Paško; Fučić, Aleksandra; Stojković, Ranko; Aralica, Gorana; Gabričević, Mario; Weitner, Tin; Štambuk, Nikola

    2014-01-01

    Recent histopathological investigations in patients with hepatitis suggested possible involvement of Met-enkephalin and its receptors in the pathophysiology of hepatitis. Consequently, we evaluated the potential hepatoprotective effects of this endogenous opioid pentapeptide in the experimental model of acetaminophen induced hepatotoxicity in male CBA mice. Met-enkephalin exhibited strong hepatoprotective effects in a dose of 7.5 mg/kg, which corresponds to the protective dose reported for se...

  11. Acetaminophen (Paracetamol) Use, Measles-Mumps-Rubella Vaccination, and Autistic Disorder: The Results of a Parent Survey

    Science.gov (United States)

    Schultz, Stephen T.; Klonoff-Cohen, Hillary S.; Wingard, Deborah L.; Akshoomoff, Natacha A.; Macera, Caroline A.; Ji, Ming

    2008-01-01

    The present study was performed to determine whether acetaminophen (paracetamol) use after the measles-mumps-rubella vaccination could be associated with autistic disorder. This case-control study used the results of an online parental survey conducted from 16 July 2005 to 30 January 2006, consisting of 83 children with autistic disorder and 80…

  12. Pre-emptive administration of intravenous acetaminophen with transversus abdominis plane block (tap-blocke in the prevention of fentanil-induced hyperalgesia in pediatric oncological patient undergoing abdominal surgery

    Directory of Open Access Journals (Sweden)

    Dmytro Dmytriiev

    2015-10-01

      Abstract Background: Acetaminophen is a selective COX-2 agonist that has been shown to decrease the intensity of opioid-induced hyperalgesia (OIH in children. We aimed to investigate the effects of preemptive administration of intravenous acitomenofen  in the prevention of high-dose fentanil-induced hyperalgesia in pediatric patients. Methods: 45 patients of  American Society of Anesthesiologists physical status 1-3 undergoing abdominal surgery were randomly assigned to one of the following three groups. each of which received either IV acetaminophen  (an initial dose of 1.5 ml/kg for 40 min before before the induction of anesthesia or placebo saline 40 min before the induction of anesthesia and intraoperative fentanil infusion: group LFH received a placebo and 0.05 μg/kg/min fentanil; group FH received a placebo and 0.3 μg/kg/min fentanil; and group AFH received IV preemptive administration acetaminophen  and TAP-blocke bupivacaine 0,3 mg/kg.             Results: The mechanical hyperalgesia threshold 12 hr after surgery was significantly lower in group FH than in the other two groups. Postoperative pain intensity using visual analog scale (VAS and cumulative volume of a patient controlled analgesia (PCA containing morphine over 12 hr were significantly greater in group FH than in group AFH. The time to the first postoperative analgesic requirement was significantly shorter in group RH than in the other two groups. The sevoflurane requirement was significantly greater in group LFH than in the other groups. The frequency of hypotension and bradycardia was significantly higher, but shivering and postoperative nausea and vomiting were significantly lower in group AFH than in the other two groups. Conclusions: High-doses of fentanil induced hyperalgesia, which presented a decreased mechanical hyperalgesia threshold, enhanced pain intensity, a shorter time to first postoperative analgesic requirement, and greater morphine consumption, but IV

  13. Comparing the analgesic effect of intravenous acetaminophen and morphine on patients with renal colic pain referring to the emergency department: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Reza Azizkhani

    2013-01-01

    Full Text Available Background: Kidney stone is normally treated by opioids with a variety of side-effects including hypotension, respiratory depression and apnea, nausea and vomiting. Regarding less complications of intravenous acetaminophen, we aimed to compare it with intravenous morphine in management of renal colic pain. Materials and Methods: A randomized controlled clinical trial was applied with a convenience sampling method, as 124 patients suffering from renal colic pain were randomly assigned into two groups of 62 patients. Pain was assessed using visual analog scale ruler. Results were analyzed by SPSS.18 using the descriptive statistic, Chi-square, ANOVA, independent t-test and logistic regression. Results: According to the findings, 84 subjects (67.7% were male. The mean age of participants were 39.06 (11.58. The mean of pain scores were not significantly different between two groups before administration of drugs (P = 0.415, while the more pain relief was achieved in morphine group after the intervention. Sex and age as influencing factors did not develop a significant difference in both groups. About the adverse effects, morphine had more complications and both groups showed a significant difference in occurrence of dizziness (P = 0.000 and hypotension (P = 0.014. Conclusion: Comparing intravenous morphine and acetaminophen in renal colic pain reviled that morphine can develop greater pain relief, but more complications such as dizziness and hypotension. Acetaminophen can be also be effective in renal colic pain, so it is concluded that acetaminophen can be administered as a less harmful drug for patients with renal colic pain.

  14. Comparison of the Effects of Acetaminophen Plus Ibuprofen to Treat Fever Than any of the Two Alone in Febrile Children

    Directory of Open Access Journals (Sweden)

    Noor Mohammad Noori

    2016-07-01

    Full Text Available Background Fever is a natural response of the host to infection and a normal part of children's infectious disease. Objectives The purpose of the study was comparison of the combined treatment of acetaminophen and ibuprofen compact with each treatment alone. Methods This Double-blind clinical trial study was done on 540 children with 38°C to 41°C as body temperature. Eligible children after considering inclusion criteria divided in three groups randomly. First group of 183 patients administrated with acetaminophen, the second and the third groups of 178 and 179 patients with ibuprofen and combination. The first dose of antipyretic drug was administered to the patient under the supervision of a physician or nurse. After explanation of benefits and marginal effects to the parents if they accepted the conditions their children were admitted to the study. Parents were free if they wish to withdraw the study before completing. Information of each patient was recorded on a form. The data were analyzed by descriptive statistic, one-way ANOVA and SPSS software version 16. Results Out of sample 60.6% were boy. The mean age of children treated with acetaminophen, ibuprofen and combination therapy was 2.21 ± 2.49, 3.00 ± 2.92 and 2.22 ± 2.33 years in the order given. The results showed statistical difference in two (F = 4.45 and P = 0.012 and four hours (F = 3.11 and P = 0.045 after taking drug. A significant difference not observed in the value of temperature decrease within 2 - 4 hours after drug intake, (F = 2.49, P=0.084 but in the time of 0-2 (P = 0.012 and 4-6 hours (P = 0.001 was observed. Conclusions The findings of this study showed that acetaminophen is more effective for a short time but the combination in the long time when ibuprofen placed in the middle position with the respect of time.

  15. Human plasma concentrations of tolbutamide and acetaminophen extrapolated from in vivo animal pharmacokinetics using in vitro human hepatic clearances and simple physiologically based pharmacokinetic modeling for radio-labeled microdose clinical studies

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Kunikane, Eriko; Nishiyama, Sayako; Murayama, Norie; Shimizu, Makiko; Sugiyama, Yuichi; Chiba, Koji; Ikeda, Toshihiko

    2015-01-01

    The aim of the current study was to extrapolate the pharmacokinetics of drug substances orally administered in humans from rat pharmacokinetic data using tolbutamide and acetaminophen as model compounds. Adjusted animal biomonitoring equivalents from rat studies based on reported plasma concentrations were scaled to human biomonitoring equivalents using known species allometric scaling factors. In this extrapolation, in vitro metabolic clearance data were obtained using liver preparations. Rates of tolbutamide elimination were roughly similar in rat and human liver microsome experiments, but acetaminophen elimination by rat liver microsomes and cytosolic preparations showed a tendency to be faster than those in humans. Using a simple physiologically based pharmacokinetic (PBPK) model, estimated human plasma concentrations of tolbutamide and acetaminophen were consistent with reported concentrations. Tolbutamide cleared in a roughly similar manner in humans and rats, but medical-dose levels of acetaminophen cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in rats. The data presented here illustrate how pharmacokinetic data in combination with a simple PBPK model can be used to assist evaluations of the pharmacological/toxicological potential of new drug substances and for estimating human radiation exposures from radio-labeled drugs when planning human studies. (author)

  16. Effect of preoperative acetaminophen/hydrocodone on the efficacy of the inferior alveolar nerve block in patients with symptomatic irreversible pulpitis: a prospective, randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    Fullmer, Spencer; Drum, Melissa; Reader, Al; Nusstein, John; Beck, Mike

    2014-01-01

    The purpose of this prospective, randomized, double-blind, placebo-controlled study was to determine the effect of the administration of the combination acetaminophen/hydrocodone on the anesthetic success of mandibular posterior teeth in patients experiencing symptomatic irreversible pulpitis. One hundred emergency patients in moderate to severe pain diagnosed with symptomatic irreversible pulpitis of a mandibular posterior tooth randomly received, in a double-blind manner, identical capsules of either a combination dose of 1000 mg acetaminophen/10 mg hydrocodone or placebo 60 minutes before the administration of a conventional inferior alveolar nerve (IAN) block. Endodontic access was begun 15 minutes after completion of the block, and all patients used for data analysis had profound lip numbness. Success was defined as no or mild pain (visual analog scale recordings) on pulpal access or instrumentation. The success rate for the IAN block was 32% for the combination dose of 1000 mg acetaminophen/10 hydrocodone and 28% for the placebo dose, with no statistically significant difference between the 2 groups (P = .662). A combination dose of 1000 mg acetaminophen/10 mg hydrocodone given 60 minutes before the administration of the IAN block did not result in a statistically significant increase in anesthetic success for mandibular posterior teeth in patients experiencing symptomatic irreversible pulpitis. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Effect of venous dexamethasone, oral caffeine and acetaminophen on relative frequency and intensity of postdural puncture headache after spinal anesthesia.

    Science.gov (United States)

    Masoudifar, Mehrdad; Aghadavoudi, Omid; Adib, Sajjad

    2016-01-01

    Postdural puncture headache (PDPH) is a relatively common complication after regional anesthesia, especially in younger people, bothersome to patients and needs prophylaxis to prevent this complication. This study was conducted aiming to determine the preventive effect of dexamethasone plus caffeine and acetaminophen on relative frequency and intensity of PDPH after spinal anesthesia. In a clinical trial study, 90 candidates for the lower extremities orthopedic elective operation were divided into two groups of 45 individuals each. Intervention group received the compound of 500 mg acetaminophen +65 mg oral caffeine +8 mg venous dexamethasone an hour before spinal blocking, and the control group received placebo tablets + a dexamethasone equivalent volume of venous normal saline. The level of postoperative headache at the time of entrance to recovery and discharge, 6, 12, 24, 48, and 72 h postoperatively were measured based on Visual Analog Scale criterion in the two groups and then compared with each other. During the study, 24 patients in the control group and 17 patients in the intervention group were afflicted with headache; however, with no significant difference (P = 0.14). Total frequency of headache incidence was 35 times in the control group and 27 times in the intervention group (P = 0.32). Though the taking of acetaminophen + caffeine + dexamethasone is associated with a decrease in headache intensity and duration and decrease in PDPH incidence, compared with placebo, however, no essentially and statistically significant effect was produced.

  18. Dynamic and accurate assessment of acetaminophen-induced hepatotoxicity by integrated photoacoustic imaging and mechanistic biomarkers in vivo.

    Science.gov (United States)

    Brillant, Nathalie; Elmasry, Mohamed; Burton, Neal C; Rodriguez, Josep Monne; Sharkey, Jack W; Fenwick, Stephen; Poptani, Harish; Kitteringham, Neil R; Goldring, Christopher E; Kipar, Anja; Park, B Kevin; Antoine, Daniel J

    2017-10-01

    The prediction and understanding of acetaminophen (APAP)-induced liver injury (APAP-ILI) and the response to therapeutic interventions is complex. This is due in part to sensitivity and specificity limitations of currently used assessment techniques. Here we sought to determine the utility of integrating translational non-invasive photoacoustic imaging of liver function with mechanistic circulating biomarkers of hepatotoxicity with histological assessment to facilitate the more accurate and precise characterization of APAP-ILI and the efficacy of therapeutic intervention. Perturbation of liver function and cellular viability was assessed in C57BL/6J male mice by Indocyanine green (ICG) clearance (Multispectral Optoacoustic Tomography (MSOT)) and by measurement of mechanistic (miR-122, HMGB1) and established (ALT, bilirubin) circulating biomarkers in response to the acetaminophen and its treatment with acetylcysteine (NAC) in vivo. We utilised a 60% partial hepatectomy model as a situation of defined hepatic functional mass loss to compared acetaminophen-induced changes to. Integration of these mechanistic markers correlated with histological features of APAP hepatotoxicity in a time-dependent manner. They accurately reflected the onset and recovery from hepatotoxicity compared to traditional biomarkers and also reported the efficacy of NAC with high sensitivity. ICG clearance kinetics correlated with histological scores for acute liver damage for APAP (i.e. 3h timepoint; r=0.90, P<0.0001) and elevations in both of the mechanistic biomarkers, miR-122 (e.g. 6h timepoint; r=0.70, P=0.005) and HMGB1 (e.g. 6h timepoint; r=0.56, P=0.04). For the first time we report the utility of this non-invasive longitudinal imaging approach to provide direct visualisation of the liver function coupled with mechanistic biomarkers, in the same animal, allowing the investigation of the toxicological and pharmacological aspects of APAP-ILI and hepatic regeneration. Copyright © 2017

  19. Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Shubhra, E-mail: SCHAUDHURI@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); McCullough, Sandra S., E-mail: mcculloughsandras@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Hennings, Leah, E-mail: lhennings@uams.edu [Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Brown, Aliza T., E-mail: brownalizat@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Li, Shun-Hwa [Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI (United States); Simpson, Pippa M., E-mail: psimpson@mcw.edu [Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI (United States); Hinson, Jack A., E-mail: hinsonjacka@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); James, Laura P., E-mail: jameslaurap@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Arkansas Children' s Hospital Research Institute, Little Rock, AR (United States)

    2012-10-15

    Oxidative stress and mitochondrial permeability transition (MPT) are important mechanisms in acetaminophen (APAP) toxicity. The MPT inhibitor trifluoperazine (TFP) reduced MPT, oxidative stress, and toxicity in freshly isolated hepatocytes treated with APAP. Since hypoxia inducible factor-one alpha (HIF-1α) is induced very early in APAP toxicity, a role for oxidative stress in the induction has been postulated. In the present study, the effect of TFP on toxicity and HIF-1α induction in B6C3F1 male mice treated with APAP was examined. Mice received TFP (10 mg/kg, oral gavage) prior to APAP (200 mg/kg IP) and at 7 and 36 h after APAP. Measures of metabolism (hepatic glutathione and APAP protein adducts) were comparable in the two groups of mice. Toxicity was decreased in the APAP/TFP mice at 2, 4, and 8 h, compared to the APAP mice. At 24 and 48 h, there were no significant differences in toxicity between the two groups. TFP lowered HIF-1α induction but also reduced the expression of proliferating cell nuclear antigen, a marker of hepatocyte regeneration. TFP can also inhibit phospholipase A{sub 2}, and cytosolic and secretory PLA{sub 2} activity levels were reduced in the APAP/TFP mice compared to the APAP mice. TFP also lowered prostaglandin E{sub 2} expression, a known mechanism of cytoprotection. In summary, the MPT inhibitor TFP delayed the onset of toxicity and lowered HIF-1α induction in APAP treated mice. TFP also reduced PGE{sub 2} expression and hepatocyte regeneration, likely through a mechanism involving PLA{sub 2}. -- Highlights: ► Trifluoperazine reduced acetaminophen toxicity and lowered HIF-1α induction. ► Trifluoperazine had no effect on the metabolism of acetaminophen. ► Trifluoperazine reduced hepatocyte regeneration. ► Trifluoperazine reduced phospholipase A{sub 2} activity and prostaglandin E{sub 2} levels.

  20. The neuronal nitric oxide synthase inhibitor NANT blocks acetaminophen toxicity and protein nitration in freshly isolated hepatocytes.

    Science.gov (United States)

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; Letzig, Lynda G; James, Laura P; Hinson, Jack A

    2015-12-01

    3-Nitrotyrosine (3NT) in liver proteins of mice treated with hepatotoxic doses of acetaminophen (APAP) has been postulated to be causative in toxicity. Nitration is by a reactive nitrogen species formed from nitric oxide (NO). The source of the NO is unclear. iNOS knockout mice were previously found to be equally susceptible to APAP toxicity as wildtype mice and iNOS inhibitors did not decrease toxicity in mice or in hepatocytes. In this work we examined the potential role of nNOS in APAP toxicity in hepatocytes using the specific nNOS inhibitor NANT (10 µM)(N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidinetris (trifluoroacetate)). Primary hepatocytes (1 million/ml) from male B6C3F1 mice were incubated with APAP (1mM). Cells were removed and assayed spectrofluorometrically for reactive nitrogen and oxygen species using diaminofluorescein (DAF) and Mitosox red, respectively. Cytotoxicity was determined by LDH release into media. Glutathione (GSH, GSSG), 3NT, GSNO, acetaminophen-cysteine adducts, NAD, and NADH were measured by HPLC. APAP significantly increased cytotoxicity at 1.5-3.0 h. The increase was blocked by NANT. NANT did not alter APAP mediated GSH depletion or acetaminophen-cysteine adducts in proteins which indicated that NANT did not inhibit metabolism. APAP significantly increased spectroflurometric evidence of reactive nitrogen and oxygen formation at 0.5 and 1.0 h, respectively, and increased 3NT and GSNO at 1.5-3.0 h. These increases were blocked by NANT. APAP dramatically increased NADH from 0.5-3.0 h and this increase was blocked by NANT. Also, APAP decreased the Oxygen Consumption Rate (OCR), decreased ATP production, and caused a loss of mitochondrial membrane potential, which were all blocked by NANT. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behaviour

    OpenAIRE

    Hay-Schmidt , Anders; Finkielman , Olivia T. Ejlstrup; Jensen , Benjamin A. H.; Høgsbro , Christine F.; Bak Holm , Jacob; Johansen , Kristoffer Haurum; Jensen , Tina Kold; Andrade , Anderson Martino; Swan , Shanna H.; Bornehag , Carl-Gustaf; Brunak , Soren; Jégou , Bernard; Kristiansen , Karsten; Kristensen , David Møbjerg

    2017-01-01

    International audience; Paracetamol/acetaminophen (N-Acetyl-p-Aminophenol; APAP) is the preferred analgesic for pain relief and fever during pregnancy. It has therefore caused concern that several studies have reported that prenatal exposure to APAP results in developmental alterations in both the reproductive tract and the brain. Genitals and nervous system of male mammals are actively masculinised during foetal development and early postnatal life by the combined actions of prostaglandins a...

  2. Acetaminophen, antibiotics, ear infection, breastfeeding, vitamin D drops, and autism: an epidemiological study

    Directory of Open Access Journals (Sweden)

    Bittker SS

    2018-05-01

    Full Text Available Seth Scott Bittker,1 Kathleen Roberta Bell2 1Interdisciplinary Center for Innovative Theory and Empirics (INCITE, Columbia University, New York, NY, USA; 2Independent Contractor, Waterloo, ON, Canada Background: While many studies have examined environmental risk factors for autism spectrum disorder (ASD, much of the research focus has been on prenatal or perinatal factors. Yet, the postnatal environment may affect the risk of ASD as well. Objective: To determine whether a set of five postnatal variables are associated with ASD. These variables are: acetaminophen exposure, antibiotic exposure, incidence of ear infection, decreased duration of breastfeeding, and decreased consumption of oral vitamin D drops. Materials and methods: An Internet-based survey was conducted. Participants were parents living in the USA with at least one biological child between 3 and 12 years of age. Potential participants were informed about the survey via postings on social media, websites, and listservs and were offered an opportunity to participate in a raffle as well. Participants were also recruited through the Interactive Autism Network. Results: There were 1,741 completed survey responses. After exclusions, there remained 1,001 responses associated with children with ASD (cases and 514 responses associated with children who do not have ASD (controls. In this data set, doses of postnatal acetaminophen (adjusted odds ratio [aOR] 1.016, CI: 1.003–1.032, p=0.026, courses of postnatal antibiotics (aOR 1.103, CI: 1.046–1.168, p<0.001, incidence of postnatal ear infection (aOR 1.137, CI: 1.046–1.236, p=0.003, and decreased duration of breastfeeding (aOR 0.948, CI: 0.932–0.965, p<0.001 are all associated with ASD when adjusted for eight demographic variables. A weak association between oral vitamin D drop exposure and ASD was also found when adjusted for breastfeeding and demographics (aOR 1.025, CI: 0.995–1.056, p=0.102. Conclusion: This study adds to

  3. Comparative Hepatoprotective Activity of Ethanolic Extracts of Cuscuta australis against Acetaminophen Intoxication in Wistar Rats.

    Science.gov (United States)

    Folarin, Rachael O; Omirinde, Jamiu O; Bejide, Ronald; Isola, Tajudeen O; Usende, Levi I; Basiru, Afisu

    2014-01-01

    This study investigates the comparative hepatoprotective activity of crude ethanol extracts of Cuscuta australis against acetaminophen (APAP) intoxication. Thirty-six rats were randomly divided into six groups of 6 replicates: Group 1 which served as control received water. Group 2 was orally administered 835 mg/kg body wt. of paracetamol on day 8. Groups 3 and 4 were orally administered ethanolic extracts of the seed of Cuscuta australis in doses of 125 mg/kg and 250 mg/kg, respectively, for 7 days and then intoxicated as in Group 2 on the 8th day. Groups 5 and 6 received similar oral doses of Cuscuta australis stem extracts for 7 days and then intoxicated as in Groups 3 and 4. Group 2 rats showed severe periportal hepatic necrosis, significantly elevated serum hepatic injury markers, markedly increased lipid peroxidation, and decreased hepatic antioxidant enzymes activities. Remarkably, Cuscuta australis (seed and stem) extract pretreatments in Groups 3, 4, 5, and 6, most especially, the stem extract pretreatment in Groups 5 and 6, improved better the hepatic histoarchitecture, the hepatocellular, and the oxidative stress injury markers in a dose-dependent manner. Conclusively, ethanol extractions of Cuscuta australis stem appear to protect the liver from acetaminophen intoxication better than the seed counterpart.

  4. Acetaminophen (Paracetamol induced acute liver failure – A social problem in an era of increasing tendency to self-treatment

    Directory of Open Access Journals (Sweden)

    Tadeusz Wróblewski

    2015-12-01

    Paracetamol is the cause of many poisonings resulting from the lack of public awareness about toxic interactions with alcohol, and suicide attempts. Acetaminophen-induced acute liver failure concerns a small percentage of patients but can be successfully treated with albumin dialysis, and in extreme cases by liver transplantation.

  5. Integrated proteomic and transcriptomic investigation of the acetaminophen toxicity in liver microfluidic biochip.

    Directory of Open Access Journals (Sweden)

    Jean Matthieu Prot

    Full Text Available Microfluidic bioartificial organs allow the reproduction of in vivo-like properties such as cell culture in a 3D dynamical micro environment. In this work, we established a method and a protocol for performing a toxicogenomic analysis of HepG2/C3A cultivated in a microfluidic biochip. Transcriptomic and proteomic analyses have shown the induction of the NRF2 pathway and the related drug metabolism pathways when the HepG2/C3A cells were cultivated in the biochip. The induction of those pathways in the biochip enhanced the metabolism of the N-acetyl-p-aminophenol drug (acetaminophen-APAP when compared to Petri cultures. Thus, we observed 50% growth inhibition of cell proliferation at 1 mM in the biochip, which appeared similar to human plasmatic toxic concentrations reported at 2 mM. The metabolic signature of APAP toxicity in the biochip showed similar biomarkers as those reported in vivo, such as the calcium homeostasis, lipid metabolism and reorganization of the cytoskeleton, at the transcriptome and proteome levels (which was not the case in Petri dishes. These results demonstrate a specific molecular signature for acetaminophen at transcriptomic and proteomic levels closed to situations found in vivo. Interestingly, a common component of the signature of the APAP molecule was identified in Petri and biochip cultures via the perturbations of the DNA replication and cell cycle. These findings provide an important insight into the use of microfluidic biochips as new tools in biomarker research in pharmaceutical drug studies and predictive toxicity investigations.

  6. The role of the glutathione S-transferase genes GSTT1, GSTM1, and GSTP1 in acetaminophen-poisoned patients

    DEFF Research Database (Denmark)

    Buchard, Anders; Eefsen, Martin; Semb, Synne

    2012-01-01

    The aim of this study was to assess if genetic variants in the glutathione-S-transferase genes GST-T1, M1, and P1 reflect risk factors in acetaminophen (APAP)-poisoned patients assessed by investigation of the relation to prothrombin time (PT), which is a sensitive marker of survival in these pat...

  7. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae), Stigma maydis

    Science.gov (United States)

    Sabiu, S.; O'Neill, F. H.

    2016-01-01

    This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction's ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms. PMID:27579048

  8. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae, Stigma maydis

    Directory of Open Access Journals (Sweden)

    S. Sabiu

    2016-01-01

    Full Text Available This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction’s ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms.

  9. Efficacy and Safety of Transdermal Buprenorphine versus Oral Tramadol/Acetaminophen in Patients with Persistent Postoperative Pain after Spinal Surgery.

    Science.gov (United States)

    Lee, Jae Hyup; Kim, Jin-Hyok; Kim, Jin-Hwan; Kim, Hak-Sun; Min, Woo-Kie; Park, Ye-Soo; Lee, Kyu-Yeol; Lee, Jung-Hee

    2017-01-01

    Control of persistent pain following spinal surgery is an unmet clinical need. This study compared the efficacy and safety of buprenorphine transdermal system (BTDS) to oral tramadol/acetaminophen (TA) in Korean patients with persistent, moderate pain following spinal surgery. Open-label, interventional, randomized multicenter study. Adults with persistent postoperative pain (Numeric Rating Scale [NRS] ≥ 4 at 14-90 days postsurgery) were enrolled. Patients received once-weekly BTDS ( n = 47; 5  μ g/h titrated to 20  μ g/h) or twice-daily TA ( n = 40; tramadol 37.5 mg/acetaminophen 325 mg, one tablet titrated to 4 tablets) for 6 weeks. The study compared pain reduction with BTDS versus TA at week 6. Quality of life (QoL), treatment satisfaction, medication compliance, and adverse events (AEs) were assessed. At week 6, both groups reported significant pain reduction (mean NRS change: BTDS -2.02; TA -2.76, both P pain following spinal surgery, BTDS is an alternative to TA for reducing pain and supports medication compliance. This trial is registered with Clinicaltrials.gov: NCT01983111.

  10. Effectiveness of diclofenac versus acetaminophen in primary care patients with knee osteoarthritis: [NTR1485], DIPA-Trial: Design of a randomized clinical trial

    NARCIS (Netherlands)

    S.P.J. Verkleij (Saskia ); P.A.J. Luijsterburg (Pim); B.W. Koes (Bart); A.M. Bohnen (Arthur); S.M. Bierma-Zeinstra (Sita)

    2010-01-01

    textabstractBackground. Osteoarthritis is the most frequent chronic joint disease which causes pain and disability of especially hip and knee. According to international guidelines and the Dutch general practitioners guidelines for non-traumatic knee symptoms, acetaminophen should be the pain

  11. Mitochondrial–Lysosomal Axis in Acetaminophen Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Anna Moles

    2018-05-01

    Full Text Available Acetaminophen (APAP toxicity is the most common cause of acute liver failure and a major indication for liver transplantion in the United States and Europe. Although significant progress has been made in understanding the molecular mechanisms underlying APAP hepatotoxicity, there is still an urgent need to find novel and effective therapies against APAP-induced acute liver failure. Hepatic APAP metabolism results in the production of the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI, which under physiological conditions is cleared by its conjugation with glutathione (GSH to prevent its targeting to mitochondria. APAP overdose or GSH limitation leads to mitochondrial NAPQI-protein adducts formation, resulting in oxidative stress, mitochondrial dysfunction, and necrotic cell death. As mitochondria are a major target of APAP hepatotoxicity, mitochondrial quality control and clearance of dysfunctional mitochondria through mitophagy, emerges as an important strategy to limit oxidative stress and the engagement of molecular events leading to cell death. Recent evidence has indicated a lysosomal–mitochondrial cross-talk that regulates APAP hepatotoxicity. Moreover, as lysosomal function is essential for mitophagy, impairment in the fusion of lysosomes with autophagosomes-containing mitochondria may compromise the clearance of dysfunctional mitochondria, resulting in exacerbated APAP hepatotoxicity. This review centers on the role of mitochondria in APAP hepatotoxicity and how the mitochondrial/lysosomal axis can influence APAP-induced liver failure.

  12. Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice

    OpenAIRE

    Yi, Ruo-Kun; Song, Jia-Le; Lim, Yaung-Iee; Kim, Yong-Kyu; Park, Kun-Young

    2015-01-01

    This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphata...

  13. Effect of ibuprofen vs acetaminophen on postpartum hypertension in preeclampsia with severe features: a double-masked, randomized controlled trial.

    Science.gov (United States)

    Blue, Nathan R; Murray-Krezan, Cristina; Drake-Lavelle, Shana; Weinberg, Daniel; Holbrook, Bradley D; Katukuri, Vivek R; Leeman, Lawrence; Mozurkewich, Ellen L

    2018-06-01

    Nonsteroidal antiinflammatory drug use has been shown to increase blood pressure in nonpregnant adults. Because of this, the American College of Obstetricians and Gynecologists suggests avoiding their use in women with postpartum hypertension; however, evidence to support this recommendation is lacking. Our goal was to test the hypothesis that nonsteroidal antiinflammatory drugs, such as ibuprofen, adversely affect postpartum blood pressure control in women with preeclampsia with severe features. At delivery, we randomized women with preeclampsia with severe features to receive around-the-clock oral dosing with either 600 mg of ibuprofen or 650 mg of acetaminophen every 6 hours. Dosing began within 6 hours after delivery and continued until discharge, with opioid analgesics available as needed for breakthrough pain. Study drugs were encapsulated in identical capsules such that patients, nurses, and physicians were masked to study allocation. Exclusion criteria were serum aspartate aminotransferase or alanine aminotransferase >200 mg/dL, serum creatinine >1.0 mg/dL, infectious hepatitis, gastroesophageal reflux disease, age <18 years, or current incarceration. Our primary outcome was the duration of severe-range hypertension, defined as the time (in hours) from delivery to the last blood pressure ≥160/110 mm Hg. Secondary outcomes were time from delivery to last blood pressure ≥150/100 mm Hg, mean arterial pressure, need for antihypertensive medication at discharge, prolongation of hospital stay for blood pressure control, postpartum use of short-acting antihypertensives for acute blood pressure control, and opioid use for breakthrough pain. We analyzed all outcome data according to intention-to-treat principles. We assessed 154 women for eligibility, of whom 100 met entry criteria, agreed to participate, and were randomized to receive postpartum ibuprofen or acetaminophen for first-line pain control. Seven patients crossed over or did not receive their

  14. Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: Application to acetaminophen injury

    International Nuclear Information System (INIS)

    Prot, Jean-Matthieu; Bunescu, Andrei; Elena-Herrmann, Bénédicte; Aninat, Caroline; Snouber, Leila Choucha; Griscom, Laurent; Razan, Florence; Bois, Frederic Y.; Legallais, Cécile

    2012-01-01

    We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treated biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology. -- Highlights: ► We cultivated liver cells in microfluidic biochips ► We integrated transcriptomic, proteomic and metabolomics profiles ► Pathways reconstructions were proposed in control and acetaminophen treated cultures ► Biomarkers were identified ► Comparisons with in vivo studies were proposed.

  15. Application of toxicogenomics in hepatic systems toxicology for risk assessment: Acetaminophen as a case study

    International Nuclear Information System (INIS)

    Kienhuis, Anne S.; Bessems, Jos G.M.; Pennings, Jeroen L.A.; Driessen, Marja; Luijten, Mirjam; Delft, Joost H.M. van

    2011-01-01

    Hepatic systems toxicology is the integrative analysis of toxicogenomic technologies, e.g., transcriptomics, proteomics, and metabolomics, in combination with traditional toxicology measures to improve the understanding of mechanisms of hepatotoxic action. Hepatic toxicology studies that have employed toxicogenomic technologies to date have already provided a proof of principle for the value of hepatic systems toxicology in hazard identification. In the present review, acetaminophen is used as a model compound to discuss the application of toxicogenomics in hepatic systems toxicology for its potential role in the risk assessment process, to progress from hazard identification towards hazard characterization. The toxicogenomics-based parallelogram is used to identify current achievements and limitations of acetaminophen toxicogenomic in vivo and in vitro studies for in vitro-to-in vivo and interspecies comparisons, with the ultimate aim to extrapolate animal studies to humans in vivo. This article provides a model for comparison of more species and more in vitro models enhancing the robustness of common toxicogenomic responses and their relevance to human risk assessment. To progress to quantitative dose-response analysis needed for hazard characterization, in hepatic systems toxicology studies, generation of toxicogenomic data of multiple doses/concentrations and time points is required. Newly developed bioinformatics tools for quantitative analysis of toxicogenomic data can aid in the elucidation of dose-responsive effects. The challenge herein is to assess which toxicogenomic responses are relevant for induction of the apical effect and whether perturbations are sufficient for the induction of downstream events, eventually causing toxicity.

  16. Hepatoprotective and antioxidant effects of Azolla microphylla based gold nanoparticles against acetaminophen induced toxicity in a fresh water common carp fish (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Selvaraj Kunjiappan

    2015-04-01

    Conclusion: Azolla microphylla phytochemically synthesized GNaP protects liver against oxidative damage and tissue damaging enzyme activities and could be used as an effective protector against acetaminophen-induced hepatic damage in fresh water common carp fish.

  17. N-acetyl-meta-aminophenol, the alleged nontoxic isomer of acetaminophen, is toxic in both rat and human precision-cut liver slices

    NARCIS (Netherlands)

    Hadi, Mackenzie; Herpers, Bram; Dragovic, Sanja; van Swelm, Rachel P. L.; Russel, Frans G. M.; Commandeur, Jan N. M.; van de Water, Bob; Groothuis, Genoveva

    N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the well-known hepatotoxicant acetaminophen (APAP). However, so far AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in

  18. Effects of α-Melanocortin Enantiomers on Acetaminophen-Induced Hepatotoxicity in CBA Mice

    Directory of Open Access Journals (Sweden)

    Dražen Vikić-Topić

    2009-12-01

    Full Text Available Proteins and peptides in mammals are based exclusively on L-amino acids. Recent investigations show that D-amino acids exhibit physiological effects in vivo, despite of their very small quantities. We have investigated the hepatoprotective effects of the Land D-enantiomers of α-melanocortin peptide (α-MSH. The results showed that peptideenantiomerism is related to the protective effects of melanocortin peptides in vivo. L-α-MSH exhibited potent hepatoprotective effect in the experimental model of acetaminophen induced hepatotoxicity in male CBA mice, while its D-mirror image was inefficient. Furthermore, the antibody to the L-peptide did not recognize the D-structure. The results indicate that the opposite peptide configuration may be used to modulate its function and metabolism in vivo and in vitro.

  19. Acetaminophen hepatotoxicity and HIF-1α induction in acetaminophen toxicity in mice occurs without hypoxia

    International Nuclear Information System (INIS)

    Chaudhuri, Shubhra; McCullough, Sandra S.; Hennings, Leah; Letzig, Lynda; Simpson, Pippa M.; Hinson, Jack A.; James, Laura P.

    2011-01-01

    HIF-1α is a nuclear factor important in the transcription of genes controlling angiogenesis including vascular endothelial growth factor (VEGF). Both hypoxia and oxidative stress are known mechanisms for the induction of HIF-1α. Oxidative stress and mitochondrial permeability transition (MPT) are mechanistically important in acetaminophen (APAP) toxicity in the mouse. MPT may occur as a result of oxidative stress and leads to a large increase in oxidative stress. We previously reported the induction of HIF-1α in mice with APAP toxicity and have shown that VEGF is important in hepatocyte regeneration following APAP toxicity. The following study was performed to examine the relative contribution of hypoxia versus oxidative stress to the induction of HIF-1α in APAP toxicity in the mouse. Time course studies using the hypoxia marker pimonidazole showed no staining for pimonidazole at 1 or 2 h in B6C3F1 mice treated with APAP. Staining for pimonidazole was present in the midzonal to periportal regions at 4, 8, 24 and 48 h and no staining was observed in centrilobular hepatocytes, the sites of the toxicity. Subsequent studies with the MPT inhibitor cyclosporine A showed that cyclosporine A (CYC; 10 mg/kg) reduced HIF-1α induction in APAP treated mice at 1 and 4 h and did not inhibit the metabolism of APAP (depletion of hepatic non-protein sulfhydryls and hepatic protein adduct levels). The data suggest that HIF-1α induction in the early stages of APAP toxicity is secondary to oxidative stress via a mechanism involving MPT. In addition, APAP toxicity is not mediated by a hypoxia mechanism.

  20. Effect of the mechanical activation on size reduction of crystalline acetaminophen drug particles

    Directory of Open Access Journals (Sweden)

    Esmaeil Biazar1

    2009-12-01

    Full Text Available Esmaeil Biazar1, Ali Beitollahi2, S Mehdi Rezayat3, Tahmineh Forati4, Azadeh Asefnejad4, Mehdi Rahimi4, Reza Zeinali4, Mahmoud Ardeshir4, Farhad Hatamjafari1, Ali Sahebalzamani4, Majid Heidari41Chemistry Department, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran; 2Material Department, Iran University of Science and Technology, Tehran, Iran; 3Department of Pharmacology, School of Medicine, Tehran University of Medical sciences, Tehran, Iran; 4Biomedicall Department, Islamic Azad University, Science and Research Branch, Tehran, IranAbstract: The decrease in particle size may offer new properties to drugs. In this study, we investigated the size reduction influence of the acetaminophen (C8H9O2N particles by mechanical activation using a dry ball mill. The activated samples with the average size of 1 µm were then investigated in different time periods with the infrared (IR, inductively coupled plasma (ICP, atomic force microscopy (AFM, and X-ray diffraction (XRD methods. The results of the IR and XRD images showed no change in the drug structure after the mechanical activation of all samples. With the peak height at full width at half maximum from XRD and the Scherrer equation, the size of the activated crystallite samples illustrated that the AFM images were in sound agreement with the Scherrer equation. According to the peaks of the AFM images, the average size of the particles in 30 hours of activation was 24 nm with a normal particle distribution. The ICP analysis demonstrated the presence of tungsten carbide particle impurities after activation from the powder sample impacting with the ball and jar. The greatest reduction in size was after milling for 30 hours.Keywords: acetaminophen, mechanical activation, structure investigation, nanoparticles, ball mill

  1. Enduring large use of acetaminophen suppositories for fever management in children: a national survey of French parents and healthcare professionals' practices.

    Science.gov (United States)

    Bertille, Nathalie; Fournier-Charrière, Elisabeth; Pons, Gérard; Khoshnood, Babak; Chalumeau, Martin

    2016-07-01

    The pharmacological specificities of the rectal formulation of acetaminophen led to a debate on its appropriateness for managing fever in children, but few data are available on the formulation's current use and determinants of use. In a national cross-sectional study between 2007 and 2008, healthcare professionals were asked to include five consecutive patients with acute fever. Among the 6255 children (mean age 4.0 years ± 2.8 SD) who received acetaminophen given by parents or prescribed/recommended by healthcare professionals, determinants of suppository use were studied by multilevel models. A suppository was given by 27 % of parents and prescribed/recommended by 19 % of healthcare professionals, by 24 and 16 %, respectively, for children 2 to 5 years old, and by 13 and 8 %, respectively, for those 6 to 12 years old. Among children who received suppositories from parents and healthcare professionals, 83 and 84 %, respectively, did not vomit. Suppository use was independently associated with several patient- and healthcare professional-level characteristics: young age of children, presence of vomiting, or lack of diarrhea. We report an enduring large use of suppositories in France for the symptomatic management of fever in children, including in non-vomiting and/or older children. The rational for such use should be questioned. • The pharmacological specificities of the rectal formulation of acetaminophen have led to a debate on its appropriateness for managing fever in children. Few data are available on the formulation's current use and determinants of the use. What is New: • In a national cross-sectional study, we observed a large use of suppositories in France for symptomatic management of fever in children. Suppositories were frequently used for the youngest children but also for older and/or non-vomiting children.

  2. In-source formation of N-acetyl-p-benzoquinone imine (NAPQI), the putatively toxic acetaminophen (paracetamol) metabolite, after derivatization with pentafluorobenzyl bromide and GC-ECNICI-MS analysis.

    Science.gov (United States)

    Tsikas, Dimitrios; Trettin, Arne; Zörner, Alexander A; Gutzki, Frank-Mathias

    2011-05-15

    Pentafluorobenzyl (PFB) bromide (PFB-Br) is a versatile derivatization reagent for numerous classes of compounds. Under electron-capture negative-ion chemical ionization (ECNICI) conditions PFB derivatives of acidic compounds readily and abundantly ionize to produce intense anions due to [M-PFB](-). In the present article we investigated the PFB-Br derivatization of unlabelled acetaminophen (N-acetyl-p-aminophenol, NAPAP-d(0); paracetamol; MW 151) and tetradeuterated acetaminophen (NAPAP-d(4); MW 155) in anhydrous acetonitrile and their GC-ECNICI-MS behavior using methane as the buffer gas. In addition to the expected anions [M-PFB](-) at m/z 150 from NAPAP-d(0) and m/z 154 from NAPAP-d(4), we observed highly reproducibly almost equally intense anions at m/z 149 and m/z 153, respectively. Selected ion monitoring of these ions is suitable for specific and sensitive quantification of acetaminophen in human plasma and urine. Detailed investigations suggest in-source formation of N-acetyl-p-benzoquinone imine (NAPQI; MW 149), the putatively toxic acetaminophen metabolite, from the PFB ether derivative of NAPAP. GC-ECNICI-MS of non-derivatized NAPAP did not produce NAPQI. The peak area ratio of m/z 149 to m/z 150 and of m/z 153 to m/z 154 decreased with increasing ion-source temperature in the range 100-250°C. Most likely, NAPQI formed in the ion-source captures secondary electrons to become negatively charged (i.e., [NAPQI](-)) and thus detectable. Formation of NAPQI was not observed under electron ionization (EI) conditions, i.e., by GC-EI-MS, from derivatized and non-derivatized NAPAP. NAPQI was not detectable in flow injection analysis LC-MS of native NAPAP in positive electrospray ionization (ESI) mode, whereas in negative ESI mode low extent NAPQI formation was observed (<5%). Our results suggest that oxidation of drug derivatives in the ion-sources of mass spectrometers may form intermediates that are produced from activated drugs in enzyme-catalyzed reactions

  3. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise.

    Science.gov (United States)

    D'Lugos, Andrew C; Patel, Shivam H; Ormsby, Jordan C; Curtis, Donald P; Fry, Christopher S; Carroll, Chad C; Dickinson, Jared M

    2018-04-01

    Resistance exercise (RE) is a powerful stimulus for skeletal muscle adaptation. Previous data demonstrate that cyclooxygenase (COX)-inhibiting drugs alter the cellular mechanisms regulating the adaptive response of skeletal muscle. The purpose of this study was to determine whether prior consumption of the COX inhibitor acetaminophen (APAP) alters the immediate adaptive cellular response in human skeletal muscle after RE. In a double-blinded, randomized, crossover design, healthy young men ( n = 8, 25 ± 1 yr) performed two trials of unilateral knee extension RE (8 sets, 10 reps, 65% max strength). Subjects ingested either APAP (1,000 mg/6 h) or placebo (PLA) for 24 h before RE (final dose consumed immediately after RE). Muscle biopsies (vastus lateralis) were collected at rest and 1 h and 3 h after exercise. Mammalian target of rapamycin (mTOR) complex 1 signaling was assessed through immunoblot and immunohistochemistry, and mRNA expression of myogenic genes was examined via RT-qPCR. At 1 h p-rpS6 Ser240/244 was increased in both groups but to a greater extent in PLA. At 3 h p-S6K1 Thr389 was elevated only in PLA. Furthermore, localization of mTOR to the lysosome (LAMP2) in myosin heavy chain (MHC) II fibers increased 3 h after exercise only in PLA. mTOR-LAMP2 colocalization in MHC I fibers was greater in PLA vs. APAP 1 h after exercise. Myostatin mRNA expression was reduced 1 h after exercise only in PLA. MYF6 mRNA expression was increased 1 h and 3 h after exercise only in APAP. APAP consumption appears to alter the early adaptive cellular response of skeletal muscle to RE. These findings further highlight the mechanisms through which COX-inhibiting drugs impact the adaptive response of skeletal muscle to exercise. NEW & NOTEWORTHY The extent to which the cellular reaction to acetaminophen impacts the mechanisms regulating the adaptive response of human skeletal muscle to resistance exercise is not well understood. Consumption of acetaminophen before

  4. Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6

    Directory of Open Access Journals (Sweden)

    Isaac Mohar

    2014-01-01

    Full Text Available The mechanism by which acetaminophen (APAP causes liver damage evokes many aspects drug metabolism, oxidative chemistry, and genetic-predisposition. In this study, we leverage the relative resistance of female C57BL/6 mice to APAP-induced liver damage (AILD compared to male C57BL/6 mice in order to identify the cause(s of sensitivity. Furthermore, we use mice that are either heterozygous (HZ or null (KO for glutamate cysteine ligase modifier subunit (Gclm, in order to titrate the toxicity relative to wild-type (WT mice. Gclm is important for efficient de novo synthesis of glutathione (GSH. APAP (300 mg/kg, ip or saline was administered and mice were collected at 0, 0.5, 1, 2, 6, 12, and 24 h. Male mice showed marked elevation in serum alanine aminotransferase by 6 h. In contrast, female WT and HZ mice showed minimal toxicity at all time points. Female KO mice, however, showed AILD comparable to male mice. Genotype-matched male and female mice showed comparable APAP–protein adducts, with Gclm KO mice sustaining significantly greater adducts. ATP was depleted in mice showing toxicity, suggesting impaired mitochondria function. Indeed, peroxiredoxin-6, a GSH-dependent peroxiredoxin, was preferentially adducted by APAP in mitochondria of male mice but rarely adducted in female mice. These results support parallel mechanisms of toxicity where APAP adduction of peroxiredoxin-6 and sustained GSH depletion results in the collapse of mitochondria function and hepatocyte death. We conclude that adduction of peroxiredoxin-6 sensitizes male C57BL/6 mice to toxicity by acetaminophen.

  5. Quantitative determination of acetaminophen, phenylephrine and carbinoxamine in tablets by high-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Carina de A. Bastos

    2009-01-01

    Full Text Available An alternative methodology for analysis of acetaminophen (Ace, phenylephrine (Phe and carbinoxamine (Car in tablets by ion-pair reversed phase high performance liquid chromatography was validated. The pharmaceutical preparations were analyzed by using a C18 column (5 μm, 300 mm, 3.9 mm and mobile phase consisting of 60% methanol and 40% potassium monobasic phosphate aqueous solution (62.46 mmol L-1 added with 1 mL phosphoric acid, 0.50 mL triethylamine and 0.25 g sodium lauryl sulfate. Isocratic analysis was performed under direct UV detection at 220 nm for Phe and Car and at 300 nm for Ace within 5 min.

  6. Unexpected paracetamol (acetaminophen) hepatotoxicity at standard dosage in two older patients: time to rethink 1 g four times daily?

    Science.gov (United States)

    Ging, Patricia; Mikulich, Olga; O'Reilly, Katherine M A

    2016-07-01

    We present two cases of acute hepatotoxicity associated with elevated paracetamol (acetaminophen) levels in older patients. Both patients were receiving a standard European dose of oral paracetamol (2 × 500 mg QDS) with no risk factors for slowed metabolism (weight paracetamol can be hepatotoxic. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Nancy Sayuri Uchida

    2017-01-01

    Full Text Available High doses of acetaminophen (APAP lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP, and gamma-glutamyl transferase (γGT were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO activity and nitric oxide (NO production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γGT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP.

  8. Association of Variants of Arginine Vasopressin and Arginine Vasopressin Receptor 1A With Severe Acetaminophen Liver InjurySummary

    Directory of Open Access Journals (Sweden)

    Matthew Randesi

    2017-05-01

    Full Text Available Background & Aims: Acetaminophen-related acute liver injury and liver failure (ALF result from ingestion of supratherapeutic quantities of this analgesic, frequently in association with other forms of substance abuse including alcohol, opioids, and cocaine. Thus, overdosing represents a unique high-risk behavior associated with other forms of drug use disorder. Methods: We examined a series of 21 single nucleotide polymorphisms (SNPs in 9 genes related to impulsivity and/or stress responsivity that may modify response to stress. Study subjects were 229 white patients admitted to tertiary care liver centers for ALF that was determined to be due to acetaminophen toxicity after careful review of historical and biochemical data. Identification of relevant SNPs used Sanger sequencing, TaqMan, or custom microarray. Association tests were carried out to compare genotype frequencies between patients and healthy white controls. Results: The mean age was 37 years, and 75.6% were female, with similar numbers classified as intentional overdose or unintentional (without suicidal intent, occurring for a period of several days, usually due to pain. There was concomitant alcohol abuse in 30%, opioid use in 33.6%, and use of other drugs of abuse in 30.6%. The genotype frequencies of 2 SNPs were found to be significantly different between the cases and controls, specifically SNP rs2282018 in the arginine vasopressin gene (AVP, odds ratio 1.64 and SNP rs11174811 in the AVP receptor 1A gene (AVPR1A, odds ratio 1.89, both of which have been previously linked to a drug use disorder diagnosis. Conclusions: Patients who develop acetaminophen-related ALF have increased frequency of gene variants that may cause altered stress responsivity, which has been shown to be associated with other unrelated substance use disorders. Keywords: Impulsivity, Stress Responsivity, Pituitary-Adrenal Axis, Overdose

  9. Hepatoprotective and antioxidant effects of Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats.

    Science.gov (United States)

    Yen, Feng-Lin; Wu, Tzu-Hui; Lin, Liang-Tzung; Lin, Chun-Ching

    2007-04-20

    Tu-Si-Zi, the seeds of Cuscuta chinensis Lam. (Convolvulaceae), is a traditional Chinese medicine that is commonly used to nourish and improve the liver and kidney conditions in China and other Asian countries. As oxidative stress promotes the development of acetaminophen (APAP)-induced hepatotoxicity, the aim of the present study was to evaluate and compare the hepatoprotective effect and antioxidant activities of the aqueous and ethanolic extracts of C chinensis on APAP-induced hepatotoxicity in rats. The C chinensis ethanolic extract at an oral dose of both 125 and 250mg/kg showed a significant hepatoprotective effect relatively to the same extent (PCuscuta chinensis can prevent hepatic injuries from APAP-induced hepatotoxicity in rats and this is likely mediated through its antioxidant activities.

  10. Effect of paracetamol (acetaminophen) and ibuprofen on body temperature in acute ischemic stroke PISA, a phase II double-blind, randomized, placebo-controlled trial [ISRCTN98608690].

    NARCIS (Netherlands)

    D.W.J. Dippel (Diederik); E.J. van Breda (Eric); H.B. van der Worp (Bart); H.M.A. van Gemert (Maarten); R.J. Meijer (Ron); L.J. Kappelle (Jaap); P.J. Koudstaal (Peter Jan)

    2003-01-01

    textabstractBACKGROUND: Body temperature is a strong predictor of outcome in acute stroke. In a previous randomized trial we observed that treatment with high-dose acetaminophen (paracetamol) led to a reduction of body temperature in patients with acute ischemic stroke, even when

  11. NADH:ubiquinone reductase and succinate dehydrogenase activity in the liver of rats with acetaminophen-induced toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2015-02-01

    Full Text Available The ratio between the redox forms of the nicotinamide coenzymes and key enzymatic activity of the I and II respiratory chain complexes in the liver cells mitochondria of rats with acetaminophen-induced hepatitis under the conditions of alimentary deprivation of protein was studied. It was estimated, that under the conditions of acute acetaminophen-induced hepatitis of rats kept on a low-protein diet during 4 weeks a significant decrease of the NADH:ubiquinone reductase and succinate dehydrogenase activity with simultaneous increase of the ratio between redox forms of the nicotinamide coenzymes (NAD+/NADН is observed compared to the same indices in the liver cells of animals with experimental hepatitis kept on the ration balanced by all nutrients. Results of research may become basic ones for the biochemical rationale for the approaches directed to the correction and elimination of the consequences­ of energy exchange in the toxic hepatitis, induced on the background of protein deficiency.

  12. Targeted metabolomic profiling indicates structure-based perturbations in serum phospholipids in children with acetaminophen overdose

    Directory of Open Access Journals (Sweden)

    Sudeepa Bhattacharyya

    Full Text Available Phospholipids are an important class of lipids that act as building blocks of biological cell membranes and participate in a variety of vital cellular functions including cell signaling. Previous studies have reported alterations in phosphatidylcholine (PC and lysophosphatidylcholine (lysoPC metabolism in acetaminophen (APAP-treated animals or cell cultures. However, little is known about phospholipid perturbations in humans with APAP toxicity. In the current study, targeted metabolomic analysis of 180 different metabolites including 14 lysoPCs and 73 PCs was performed in serum samples from children and adolescents hospitalized for APAP overdose. Metabolite profiles in the overdose group were compared to those of healthy controls and hospitalized children receiving low dose APAP for treatment of pain or fever (therapeutic group. PCs and lysoPCs with very long chain fatty acids (VLCFAs were significantly decreased in the overdose group, while those with comparatively shorter chain lengths were increased in the overdose group compared to the therapeutic and control groups. All ether linked PCs were decreased in the overdose group compared to the controls. LysoPC-C26:1 was highly reduced in the overdose group and could discriminate between the overdose and control groups with 100% sensitivity and specificity. The PCs and lysoPCs with VLCFAs showed significant associations with changes in clinical indicators of drug metabolism (APAP protein adducts and liver injury (alanine aminotransferase, or ALT. Thus, a structure-dependent reduction in PCs and lysoPCs was observed in the APAP-overdose group, which may suggest a structure-activity relationship in inhibition of enzymes involved in phospholipid metabolism in APAP toxicity. Keywords: Metabolomics, Phospholipids, Acetaminophen, Hepatotoxicity, Drug

  13. Hepatoprotective, antioxidant, and ameliorative effects of ginger (Zingiber officinale Roscoe) and vitamin E in acetaminophen treated rats.

    Science.gov (United States)

    Abdel-Azeem, Amal S; Hegazy, Amany M; Ibrahim, Khadiga S; Farrag, Abdel-Razik H; El-Sayed, Eman M

    2013-09-01

    Ginger is a remedy known to possess a number of pharmacological properties. This study investigated efficacy of ginger pretreatment in alleviating acetaminophen-induced acute hepatotoxicity in rats. Rats were divided into six groups; negative control, acetaminophen (APAP) (600 mg/kg single intraperitoneal injection); vitamin E (75 mg/kg), ginger (100 mg/kg), vitamin E + APAP, and ginger + APAP. Administration of APAP elicited significant liver injury that was manifested by remarkable increase in plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), arginase activities, and total bilirubin concentration. Meanwhile, APAP significantly decreased plasma total proteins and albumin levels. APAP administration resulted in substantial increase in each of plasma triacylglycerols (TAGs), malondialdhyde (MDA) levels, and total antioxidant capacity (TAC). However, ginger or vitamin E treatment prior to APAP showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, ALP, and arginase) and total bilirubin in plasma. In addition, they remarkably ameliorated the APAP-induced oxidative stress by inhibiting lipid peroxidation (MDA). Pretreatment by ginger or vitamin E significantly restored TAGs, and total protein levels. Histopathological examination of APAP treated rats showed alterations in normal hepatic histoarchitecture, with necrosis and vacuolization of cells. These alterations were substantially decreased by ginger or vitamin E. Our results demonstrated that ginger can prevent hepatic injuries, alleviating oxidative stress in a manner comparable to that of vitamin E. Combination therapy of ginger and APAP is recommended especially in cases with hepatic disorders or when high doses of APAP are required.

  14. Solubility of Acetaminophen in Some Alcohol Free Solvent Systems

    Directory of Open Access Journals (Sweden)

    H. Barzegar-Jalali

    1990-07-01

    Full Text Available In an attempt to formulate an alcohol free acetaminophen solution for use in pediatrics, the effect of different concentra¬tions of polyethylene glycol 400 (PEG 400 and polysorbate 80 ( Iween 80 on the solubility of the drug in water .as well as in the vehicles composed of (propylene glycol 10?o V/V + glycerol 20% V/V in water and (propylene glycol 12?o V/V + glycerol 40?o V/V in water was investigated at 20 C. There was a linear relationship between the logarithm of the drug solubility and volume fraction of PEG 400 in the vehicles. Also, a linear relation was established between the solubility of the drug in water and the volume fraction of Tween 80. After the solubilization studies, the appropriate concentration of the cosolvents and Tween 80 were chosen for the tolerance test of the solutions at a low temperature (4 C against crystalization. These studies led us to propose two alcohol free drug solutions with suitable sweetening and flavoring agents. Properties of the products including a simple method of determination of drug concentration, density and viscosity measure¬ments have been also reported.

  15. Argininosuccinate synthetase as a plasma biomarker of liver injury after acetaminophen overdose in rodents and humans

    Science.gov (United States)

    McGill, Mitchell R.; Cao, Mengde; Svetlov, Archie; Sharpe, Matthew R.; Williams, C. David; Curry, Steven C.; Farhood, Anwar; Jaeschke, Hartmut; Svetlov, Stanislav I.

    2014-01-01

    Context New biomarkers are needed in acetaminophen (APAP) hepatotoxicity. Plasma argininosuccinate synthetase (ASS) is a promising candidate. Objective Characterize ASS in APAP hepatotoxicity. Methods ASS was measured in plasma from rodents and humans with APAP hepatotoxicity. Results In mice, ASS increased before injury, peaked before ALT, and decreased rapidly. Fischer rats had a greater increase in ASS relative to ALT. Patients with abnormal liver test results had very high ASS compared to controls. ASS appeared to increase early in some patients, and declined rapidly in all. Conclusions : ASS may be a useful biomarker of acute cell death in APAP hepatotoxicity. PMID:24597531

  16. Comparação da eficácia de doses iguais de acetaminofeno retal e oral em crianças Comparison of antipyretic effectiveness of equal doses of rectal and oral acetaminophen in children

    Directory of Open Access Journals (Sweden)

    Sedigha Akhavan Karbasi

    2010-06-01

    Full Text Available OBJETIVO: Comparar uma dose de acetaminofeno oral e retal e avaliar a aceitabilidade do acetaminofeno retal, uma vez que o acetaminofeno oral e retal é amplamente usado como agente antipirético em crianças com febre e a eficiência comparativa dessas duas preparações não está bem estabelecida. MÉTODOS: Neste estudo prospectivo de grupos paralelos, foram incluídas 60 crianças admitidas na emergência ou clínica ambulatorial pediátrica em um hospital terciário, com idade entre 6 meses e 6 anos e com temperatura retal acima de 39 °C. Os pacientes foram distribuídos aleatoriamente em dois grupos de mesmo tamanho. O grupo 1 recebeu 15 mg/kg de acetaminofeno retal, e o grupo 2 recebeu a mesma dose oralmente. A temperatura foi registrada no tempo zero e 1 e 3 horas após administração da droga. RESULTADOS: No primeiro grupo, a redução média de temperatura, 1 e 3 horas após administração do acetaminofeno, foi de 1,07±0,16 (p 0,05. CONCLUSÃO: As preparações oral e retal de acetaminofeno têm eficácia antipirética equivalente em crianças. A via retal mostrou ser tão aceitável quanto a oral entre os pais.OBJECTIVE: To compare a dose of oral and rectal acetaminophen and to evaluate acceptability of rectal acetaminophen, since oral and rectal acetaminophen is widely used as an antipyretic agent in febrile children and the comparative effectiveness of these two preparations is not well established. METHODS: In this prospective parallel group designed study, 60 children who presented to the emergency department or outpatient pediatric clinic at a tertiary hospital and aged from 6 months to 6 years with rectal temperature over 39 °C were enrolled. Patients were randomly assigned to two equal-sized groups. Group 1 received 15 mg/kg acetaminophen rectally and group 2 received the same dose orally. Temperature was recorded at baseline and 1 and 3 hours after drug administration. RESULTS: In the first group, mean decrease in

  17. Role and mechanisms of autophagy in acetaminophen-induced liver injury.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Hua; Jaeschke, Hartmut; Ding, Wen-Xing

    2018-04-23

    Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Electrogenerated chemiluminescence quenching of Ru(bpy){sub 3} {sup 2+} (bpy=2,2 Prime -bipyridine) in the presence of acetaminophen, salicylic acid and their metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Haslag, Catherine S. [Department of Chemistry, Missouri State University, Springfield, Missouri 65897 (United States); Richter, Mark M., E-mail: MarkRichter@missouristate.edu [Department of Chemistry, Missouri State University, Springfield, Missouri 65897 (United States)

    2012-03-15

    Quenching of Ru(bpy) {sub 3}{sup 2+} (bpy=2,2 Prime -bipyridine) coreactant electrogenerated chemiluminescence (ECL) has been observed in the presence of acetaminophen, salicylic acid and related complexes. However, no quenching is observed with the acetylsalicylic acid. In most instances, quenching is observed with 100-fold excess of quencher (compared to ECL luminophore) with complete quenching observed between 10,000 and 100,000 fold excess. Fluorescence and UV-vis experiments coupled with bulk electrolysis support the formation of benzoquinone products upon electrochemical oxidation. The mechanism of quenching may involve the interaction of the electrochemically generated benzoquinone species with (i) the {sup Low-Asterisk }Ru(bpy){sub 3}{sup 2+} excited state or (ii) highly energetic coreactant radicals. - Highlights: Black-Right-Pointing-Triangle Efficient quenching of the electrogenerated chemiluminescence is observed. Black-Right-Pointing-Triangle Acetaminophen, salicylic acid and related compounds can be detected. Black-Right-Pointing-Triangle The mechanism of quenching involves benzoquinones formed upon electrolysis.

  19. Non-destructive prediction of the drug content of an acetaminophen suppository by near-infrared spectroscopy and X-ray computed tomography.

    Science.gov (United States)

    Otsuka, Kuniko; Uchino, Tomohiro; Otsuka, Makoto

    2015-01-01

    The purpose of this study is to develop non-destructive methods to determine the drug content of suppositories using near-infrared (NIR) spectrometry and X-ray computed tomography (XCT). The suppository samples (acetaminophen content: 0, 100, 200, 300, 400 and 500 mg/suppository) consisted of acetaminophen powder and hard fat. NIR spectra of 18 standard suppository samples were recorded, and the data were divided into two wave number ranges, 4000-10 000 cm(-1) (LR), and 4280-6650 cm(-1) (SR). The best calibration model was determined to minimize the standard error of cross-validation (SECV) by the leave-one-out method in the partial least squares regression (PLS). Sliced XCT images of the suppositories were measured, and apparent density (AD) was evaluated using the image of the sample. The NIR models gave the best correlation coefficient constant (R) values, since the results for LR and SR gave straight lines with R of 0.9274 and 0.9707, respectively. The AD of the suppositories by XCT increased with increasing drug content, and the relationship between the AD and drug content had a straight line with R of 0.9958. Both NIR and X-ray CT performed accurate measurements of suppository samples through plastic packaging.

  20. Paracetamol/acetaminophen (single administration) for perineal pain in the early postpartum period.

    Science.gov (United States)

    Chou, Doris; Abalos, Edgardo; Gyte, Gillian M L; Gülmezoglu, A Metin

    2013-01-31

    Perineal pain is a common but poorly studied adverse outcome following childbirth. Pain may result from perineal trauma due to bruising, spontaneous tears, surgical incisions (episiotomies), or in association with operative births (ventouse or forceps assisted births). To determine the efficacy of a single administration of paracetamol (acetaminophen) systemic drugs used in the relief of acute postpartum perineal pain We updated the search of the Cochrane Pregnancy and Childbirth Group's Trials Register on 6 November 2012. Randomised controlled trials (RCTs) assessing paracetamol (acetaminophen) in a single dose compared with placebo for women with early postpartum perineal pain. We excluded quasi-RCTs and cross-over studies. Two review authors assessed each paper for inclusion and extracted data. One review author reviewed the decisions and confirmed calculations for pain relief scores. We did not identify any new trials from the updated search so the results remain unchanged as follows.We have included 10 studies describing two dosages of paracetamol. Of these, five studies (526 women) assessed 500 mg to 650 mg and six studies (841 women) assessed 1000 mg of paracetamol. We chose to use random-effects meta-analyses because of the heterogeneity in dosage used. Studies were from the 1970s to the early 1990s, and there was insufficient information to assess the risk of bias adequately, hence the findings need to be interpreted within this context.More women experienced pain relief with paracetamol compared with placebo (average risk ratio (RR) 2.14, 95% confidence interval (CI) 1.59 to 2.89, 10 studies, 1279 women). In addition, there were significantly fewer women having additional pain relief with paracetamol compared with placebo (RR 0.34, 95% CI 0.21 to 0.55, eight studies, 1132 women). Both the 500 mg to 650 mg and 1000 mg doses were effective in providing more pain relief than placebo.Maternal and neonatal potential adverse drug effects were not assessed in

  1. Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode

    International Nuclear Information System (INIS)

    Salmanpour, Sadegh; Tavana, Toktam; Pahlavan, Ali; Khalilzadeh, Mohammad A.; Ensafi, Ali A.; Karimi-Maleh, Hassan; Beitollahi, Hadi; Kowsari, Elaheh; Zareyee, Daryoush

    2012-01-01

    A novel multiwall carbon nanotubes (MWCNTs) modified carbon ionic liquid electrode (CILE) was fabricated and used to investigate the electrochemical behavior of norepinephrine (NP). MWCNTs/CILE was prepared by mixing hydrophilic ionic liquid, 1-methyl-3-butylimidazolium bromide (MBIDZBr), with graphite powder, MWCNTs, and liquid paraffin. The fabricated MWCNTs/CILE showed great electrocatalytic ability to the oxidation of NE. The electron transfer coefficient, diffusion coefficient, and charge transfer resistant (R ct ) of NE at the modified electrode were calculated. Differential pulse voltammetry of NE at the modified electrode exhibited two linear dynamic ranges with slopes of 0.0841 and 0.0231 μA/μM in the concentration ranges of 0.3 to 30.0 μM and 30.0 to 450.0 μM, respectively. The detection limit (3σ) of 0.09 μM NP was achieved. This modified electrode exhibited a good ability for well separated oxidation peaks of NE and acetaminophen (AC) in a buffer solution, pH 7.0. The proposed sensor was successfully applied for the determination of NE in human urine, pharmaceutical, and serum samples. Highlights: ► Electrochemical behavior of norepinephrine study using carbon ionic liquid electrode ► This sensor resolved the overlap response of norepinephrine and acetaminophen. ► This sensor is also used for the determination of above compounds in real samples.

  2. Caffeine and acetaminophen association: Effects on mitochondrial bioenergetics.

    Science.gov (United States)

    Gonçalves, Débora F; de Carvalho, Nelson R; Leite, Martim B; Courtes, Aline A; Hartmann, Diane D; Stefanello, Sílvio T; da Silva, Ingrid K; Franco, Jéferson L; Soares, Félix A A; Dalla Corte, Cristiane L

    2018-01-15

    Many studies have been demonstrating the role of mitochondrial function in acetaminophen (APAP) hepatotoxicity. Since APAP is commonly consumed with caffeine, this work evaluated the effects of the combination of APAP and caffeine on hepatic mitochondrial bioenergetic function in mice. Mice were treated with caffeine (20mg/kg, intraperitoneal (i.p.)) or its vehicle and, after 30minutes, APAP (250mg/kg, i.p.) or its vehicle. Four hours later, livers were removed, and the parameters associated with mitochondrial function and oxidative stress were evaluated. Hepatic cellular oxygen consumption was evaluated by high-resolution respirometry (HRR). APAP treatment decreased cellular oxygen consumption and mitochondrial complex activities in the livers of mice. Additionally, treatment with APAP increased swelling of isolated mitochondria from mice livers. On the other hand, caffeine administered with APAP was able to improve hepatic mitochondrial bioenergetic function. Treatment with APAP increased lipid peroxidation and reactive oxygen species (ROS) production and decreased glutathione levels in the livers of mice. Caffeine administered with APAP was able to prevent lipid peroxidation and the ROS production in mice livers, which may be associated with the improvement of mitochondrial function caused by caffeine treatment. We suggest that the antioxidant effects of caffeine and/or its interactions with mitochondrial bioenergetics may be involved in its beneficial effects against APAP hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Aloe vera attenuated liver injury in mice with acetaminophen-induced hepatitis.

    Science.gov (United States)

    Werawatganon, Duangporn; Linlawan, Sittikorn; Thanapirom, Kessarin; Somanawat, Kanjana; Klaikeaw, Naruemon; Rerknimitr, Rungsun; Siriviriyakul, Prasong

    2014-07-08

    An overdose of the acetaminophen causes liver injury. This study aims to examine the anti-oxidative, anti-inflammatory effects of Aloe vera in mice with acetaminophen induced hepatitis. Male mice were randomly divided into three groups (n = 8 each). Control group were given orally distilled water (DW). APAP group were given orally N-acetyl-P-aminophenol (APAP) 400 mg/kg suspended in DW. Aloe vera-treated group were given orally APAP and Aloe vera (150 mg/kg) suspended in DW. Twenty-four hours later, the liver was removed to determine hepatic malondialdehyde (MDA), hepatic glutathione (GSH), the number of interleukin (IL)-12 and IL-18 positive stained cells (%) by immunohistochemistry method, and histopathological examination. Then, the serum was collected to determine transaminase (ALT). In APAP group, ALT, hepatic MDA and the number of IL-12 and IL-18 positive stained cells were significantly increased when compared to control group (1210.50 ± 533.86 vs 85.28 ± 28.27 U/L, 3.60 ± 1.50 vs 1.38 ± 0.15 nmol/mg protein, 12.18 ± 1.10 vs 1.84 ± 1.29%, and 13.26 ± 0.90 vs 2.54 ± 1.29%, P = 0.000, respectively), whereas hepatic GSH was significantly decreased when compared to control group (5.98 ± 0.30 vs 11.65 ± 0.43 nmol/mg protein, P = 0.000). The mean level of ALT, hepatic MDA, the number of IL-12 and IL-18 positive stained cells, and hepatic GSH in Aloe vera-treated group were improved as compared with APAP group (606.38 ± 495.45 vs 1210.50 ± 533.86 U/L, P = 0.024; 1.49 ± 0.64 vs 3.60 ± 1.50 nmol/mg protein, P = 0.001; 5.56 ± 1.25 vs 12.18 ± 1.10%, P = 0.000; 6.23 ± 0.94 vs 13.26 ± 0.90%, P = 0.000; and 10.02 ± 0.20 vs 5.98 ± 0.30 nmol/mg protein, P = 0.000, respectively). Moreover, in the APAP group, the liver showed extensive hemorrhagic hepatic necrosis at all zones while in Aloe vera-treated group, the liver architecture was improved histopathology. APAP overdose can cause liver injury. Our result indicate that Aloe vera attenuate APAP

  4. Early Risk Factors of Moderate/Severe Hepatotoxicity After Suicide Attempts With Acetaminophen in 11- to 15-Year-Old Children

    DEFF Research Database (Denmark)

    Hedeland, Rikke Lindgaard; Christensen, Vibeke Brix; Jørgensen, Marianne Hørby

    2014-01-01

    Objective. To characterize early risk factors of moderate/severe hepatotoxicity in a pediatric population with acetaminophen overdose, due to suicide attempt, admitted to a general secondary-level pediatric department. Methods. A retrospective case study of 107 patients, 11 to 15 years old. Results...... was significantly related to the elevation of several hepatologically relevant biochemical parameters (eg, maximum γ-glutamyl transferase; P = .0001). Patients suffering from illness prior to their suicide attempt had significantly greater elevations of their hepatologically relevant biochemical parameters...

  5. Silymarin prevents acetaminophen-induced hepatotoxicity in mice.

    Directory of Open Access Journals (Sweden)

    Zuzana Papackova

    Full Text Available Acetaminophen or paracetamol (APAP overdose is a common cause of liver injury. Silymarin (SLM is a hepatoprotective agent widely used for treating liver injury of different origin. In order to evaluate the possible beneficial effects of SLM, Balb/c mice were pretreated with SLM (100 mg/kg b.wt. per os once daily for three days. Two hours after the last SLM dose, the mice were administered APAP (300 mg/kg b.wt. i.p. and killed 6 (T6, 12 (T12 and 24 (T24 hours later. SLM-treated mice exhibited a significant reduction in APAP-induced liver injury, assessed according to AST and ALT release and histological examination. SLM treatment significantly reduced superoxide production, as indicated by lower GSSG content, lower HO-1 induction, alleviated nitrosative stress, decreased p-JNK activation and direct measurement of mitochondrial superoxide production in vitro. SLM did not affect the APAP-induced decrease in CYP2E1 activity and expression during the first 12 hrs. Neutrophil infiltration and enhanced expression of inflammatory markers were first detected at T12 in both groups. Inflammation progressed in the APAP group at T24 but became attenuated in SLM-treated animals. Histological examination suggests that necrosis the dominant cell death pathway in APAP intoxication, which is partially preventable by SLM pretreatment. We demonstrate that SLM significantly protects against APAP-induced liver damage through the scavenger activity of SLM and the reduction of superoxide and peroxynitrite content. Neutrophil-induced damage is probably secondary to necrosis development.

  6. Understanding lactic acidosis in paracetamol (acetaminophen) poisoning.

    Science.gov (United States)

    Shah, Anoop D; Wood, David M; Dargan, Paul I

    2011-01-01

    Paracetamol (acetaminophen) is one of the most commonly taken drugs in overdose in many areas of the world, and the most common cause of acute liver failure in both the UK and USA. Paracetamol poisoning can result in lactic acidosis in two different scenarios. First, early in the course of poisoning and before the onset of hepatotoxicity in patients with massive ingestion; a lactic acidosis is usually associated with coma. Experimental evidence from studies in whole animals, perfused liver slices and cell cultures has shown that the toxic metabolite of paracetamol, N-acetyl-p-benzo-quinone imine, inhibits electron transfer in the mitochondrial respiratory chain and thus inhibits aerobic respiration. This occurs only at very high concentrations of paracetamol, and precedes cellular injury by several hours. The second scenario in which lactic acidosis can occur is later in the course of paracetamol poisoning as a consequence of established liver failure. In these patients lactate is elevated primarily because of reduced hepatic clearance, but in shocked patients there may also be a contribution of peripheral anaerobic respiration because of tissue hypoperfusion. In patients admitted to a liver unit with paracetamol hepatotoxicity, the post-resuscitation arterial lactate concentration has been shown to be a strong predictor of mortality, and is included in the modified King's College criteria for consideration of liver transplantation. We would therefore recommend that post-resuscitation lactate is measured in all patients with a severe paracetamol overdose resulting in either reduced conscious level or hepatic failure. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.

  7. Nanostructured Modified Electrode for Electrocatalytic Determination of Epinephrine in the Presence of Acetaminophen

    Directory of Open Access Journals (Sweden)

    M. Mazloum-Ardakani

    2011-04-01

    Full Text Available In this paper, a nanostructured modified electrode was fabricated by incorporating of 2,2′-[1,9-nonanediylbis(nitriloethylidyne]-bis-hydroquinone (NNH as a newly synthesized modifier and TiO2 nanoparticles to the carbon paste (MTCPE and then was used for the electroanalysis of epinephrine (EP. The electrochemical studies were carried out by using cyclic voltammetry, chronoamperometry and differential pulse voltammetry (DPV techniques. It has been found that the oxidation of EP at the surface of this electrode occurs at a potential about 235 mV less positive than that of an unmodified carbon paste electrode. A dynamic range of 1.0–2000.0 μM, with a detection limit of 0.37 μM for EP, was obtained using DPV. Also, this modified electrode exhibits well separated oxidation peaks for EP and acetaminophen (AC using DPV.

  8. Chars from gasification of coal and pine activated with K2CO3: acetaminophen and caffeine adsorption from aqueous solutions.

    Science.gov (United States)

    Galhetas, Margarida; Mestre, Ana S; Pinto, Moisés L; Gulyurtlu, Ibrahim; Lopes, Helena; Carvalho, Ana P

    2014-11-01

    The high carbon contents and low toxicity levels of chars from coal and pine gasification provide an incentive to consider their use as precursors of porous carbons obtained by chemical activation with K2CO3. Given the chars characteristics, previous demineralization and thermal treatments were made, but no improvement on the solids properties was observed. The highest porosity development was obtained with the biomass derived char (Pi). This char sample produced porous materials with preparation yields near 50% along with high porosity development (ABET≈1500m(2)g(-1)). For calcinations at 800°C, the control of the experimental conditions allowed the preparation of samples with a micropore system formed almost exclusively by larger micropores. A mesopore network was developed only for samples calcined at 900°C. Kinetic and equilibrium acetaminophen and caffeine adsorption data, showed that the processes obey to a pseudo-second order kinetic equation and to the Langmuir model, respectively. The results of sample Pi/1:3/800/2 outperformed those of the commercial carbons. Acetaminophen adsorption process was ruled by the micropore size distribution of the carbons. The caffeine monolayer capacities suggest a very efficient packing of this molecule in samples presenting monomodal micropore size distribution. The surface chemistry seems to be the determinant factor that controls the affinity of caffeine towards the carbons. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. What do we (not) know about how paracetamol (acetaminophen) works?

    Science.gov (United States)

    Toussaint, K; Yang, X C; Zielinski, M A; Reigle, K L; Sacavage, S D; Nagar, S; Raffa, R B

    2010-12-01

    Although paracetamol (acetaminophen), N-(4-Hydroxyphenyl)acetamide, is one of the world's most widely used analgesics, the mechanism by which it produces its analgesic effect is largely unknown. This lack is relevant because: (i) optimal pain treatment matches the analgesic mechanism to the (patho)physiology of the pain and (ii) modern drug discovery relies on an appropriate screening assay. To review the clinical profile and preclinical studies of paracetamol as means of gaining insight into its mechanism of analgesic action. A literature search was conducted of clinical and preclinical literature and the information obtained was organized and reviewed from the perspective of its contribution to an understanding of the mechanism of analgesic action of paracetamol. Paracetamol's broad spectrum of analgesic and other pharmacological actions is presented, along with its multiple postulated mechanism(s) of action. No one mechanism has been definitively shown to account for its analgesic activity. Further research is needed to uncover the mechanism of analgesic action of paracetamol. The lack of this knowledge affects optimal clinical use and impedes drug discovery efforts. © 2010 The Authors. JCPT © 2010 Blackwell Publishing Ltd.

  10. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes

    Directory of Open Access Journals (Sweden)

    Sudip Banerjee

    Full Text Available The hepatotoxicity of acetaminophen (APAP occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1 inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP, a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo. In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein, reactive oxygen formation (superoxide, loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction. Keywords: Acetaminophen, Neuronal nitric oxide, Oxidative stress, Mitochondria

  11. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    International Nuclear Information System (INIS)

    Mandal, Mili; Gardner, Carol R.; Sun, Richard; Choi, Hyejeong; Lad, Sonali; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2016-01-01

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b + infiltrating Ly6G + granulocytic and Ly6G − monocytic cells in the spleen and the liver. The majority of the Ly6G + cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G − cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80 + ) and immature (F4/80 − ) pro-inflammatory Ly6C hi macrophages and mature anti-inflammatory (Ly6C lo ) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3 + macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the bone marrow. • Hepatotoxicity is reduced in

  12. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Mili, E-mail: milimandal@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sun, Richard, E-mail: fishpower52@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Choi, Hyejeong, E-mail: choi@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Lad, Sonali, E-mail: sonurose92@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Mishin, Vladimir, E-mail: mishinv@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2016-08-01

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b{sup +} infiltrating Ly6G{sup +} granulocytic and Ly6G{sup −} monocytic cells in the spleen and the liver. The majority of the Ly6G{sup +} cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G{sup −} cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80{sup +}) and immature (F4/80{sup −}) pro-inflammatory Ly6C{sup hi} macrophages and mature anti-inflammatory (Ly6C{sup lo}) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3{sup +} macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the

  13. Acetaminophen/paracetamol: A history of errors, failures and false decisions.

    Science.gov (United States)

    Brune, K; Renner, B; Tiegs, G

    2015-08-01

    Acetaminophen/paracetamol is the most widely used drug of the world. At the same time, it is probably one of the most dangerous compounds in medical use, causing hundreds of deaths in all industrialized countries due to acute liver failure (ALF). Publications of the last 130 years found in the usual databases were analyzed. Personal contacts existed to renowned researchers having contributed to the medical use of paracetamol and its precursors as H.U. Zollinger, S. Moeschlin, U. Dubach, J. Axelrod and others. Further information is found in earlier reviews by Eichengrün, Rodnan and Benedek, Sneader, Brune; comp. references. The history of the discovery of paracetamol starts with an error (active against worms), continues with a false assumption (paracetamol is safer than phenacetin), describes the first side-effect 'epidemy' (phenacetin nephropathy, drug-induced interstitial nephritis) and ends with the discovery of second-generation problems due to the unavoidable production of a highly toxic metabolite of paracetamol N-acetyl-p-benzoquinone imine (NAPQI) that may cause not only ALF and kidney damage but also impaired development of the fetus and the newborn child. It appears timely to reassess the risk/benefit ratio of this compound. © 2014 European Pain Federation - EFIC®

  14. Effects of kale ingestion on pharmacokinetics of acetaminophen in rats.

    Science.gov (United States)

    Yamasaki, Izumi; Uotsu, Nobuo; Yamaguchi, Kohji; Takayanagi, Risa; Yamada, Yasuhiko

    2011-12-01

    Kale is a cruciferous vegetable (Brassicaceae) that contains a large amount of health-promoting phytochemicals. The chronic ingestion of cabbage of the same family is known to accelerate conjugating acetaminophen (AA) and decrease the plasma AA level. Therefore, we examined to clarify the effects of kale on the pharmacokinetics of AA, its glucuronide (AA-G) and sulfate (AA-S). AA was orally administered to rats pre-treated with kale or cabbage (2000 mg/kg/day) for one week. Blood samples were collected from the jugular vein, and the concentrations of AA, AA-G and AA-S were determined. In results, kale ingestion induced an increase in the area under the concentration-time curve (AUC) and a decrease in the clearance of AA, whereas cabbage had almost no influence. In addition, there were significant differences in the AUC of AA-G between the control and kale groups. mRNA expression levels of UDP-glucuronosyltransferases, the enzymes involved in glucuronidation, in the kale group were significantly higher than those in the control group. In conclusion, kale ingestion increased the plasma concentrations of both AA and AA-G. The results suggest that kale ingestion accelerates the glucuronidation of AA, but an increase of plasma AA levels has a different cause than the cause of glucuronidation.

  15. Efficacy and Safety of Transdermal Buprenorphine versus Oral Tramadol/Acetaminophen in Patients with Persistent Postoperative Pain after Spinal Surgery

    Directory of Open Access Journals (Sweden)

    Jae Hyup Lee

    2017-01-01

    Full Text Available Purpose. Control of persistent pain following spinal surgery is an unmet clinical need. This study compared the efficacy and safety of buprenorphine transdermal system (BTDS to oral tramadol/acetaminophen (TA in Korean patients with persistent, moderate pain following spinal surgery. Methods. Open-label, interventional, randomized multicenter study. Adults with persistent postoperative pain (Numeric Rating Scale [NRS] ≥ 4 at 14–90 days postsurgery were enrolled. Patients received once-weekly BTDS (n=47; 5 μg/h titrated to 20 μg/h or twice-daily TA (n=40; tramadol 37.5 mg/acetaminophen 325 mg, one tablet titrated to 4 tablets for 6 weeks. The study compared pain reduction with BTDS versus TA at week 6. Quality of life (QoL, treatment satisfaction, medication compliance, and adverse events (AEs were assessed. Findings. At week 6, both groups reported significant pain reduction (mean NRS change: BTDS −2.02; TA −2.76, both P<0.0001 and improved QoL (mean EQ-5D index change: BTDS 0.10; TA 0.19, both P<0.05. The BTDS group achieved better medication compliance (97.8% versus 91.0%. Incidence of AEs (26.1% versus 20.0% and adverse drug reactions (20.3% versus 16.9% were comparable between groups. Implications. For patients with persistent pain following spinal surgery, BTDS is an alternative to TA for reducing pain and supports medication compliance. This trial is registered with Clinicaltrials.gov: NCT01983111.

  16. Method to study the effect of blend flowability on the homogeneity of acetaminophen.

    Science.gov (United States)

    Llusá, Marcos; Pingali, Kalyana; Muzzio, Fernando J

    2013-02-01

    Excipient selection is key to product development because it affects their processability and physical properties, which ultimately affect the quality attributes of the pharmaceutical product. To study how the flowability of lubricated formulations affects acetaminophen (APAP) homogeneity. The formulations studied here contain one of two types of cellulose (Avicel 102 or Ceollus KG-802), one of three grades of Mallinckrodt APAP (fine, semi-fine, or micronized), lactose (Fast-Flo) and magnesium stearate. These components are mixed in a 300-liter bin blender. Blend flowability is assessed with the Gravitational Displacement Rheometer. APAP homogeneity is assessed with off-line NIR. Excluding blends dominated by segregation, there is a trend between APAP homogeneity and blend flow index. Blend flowability is affected by the type of microcrystalline cellulose and by the APAP grade. The preliminary results suggest that the methodology used in this paper is adequate to study of the effect of blend flow index on APAP homogeneity.

  17. Paracetamol (acetaminophen) efficacy and safety in the newborn.

    Science.gov (United States)

    Cuzzolin, Laura; Antonucci, Roberto; Fanos, Vassilios

    2013-02-01

    Neonates can perceive pain, therefore an adequate analgesic therapy is a major issue not only from an ethical perspective but also to improve short- and long-term outcome. Fever during the neonatal period requires hospitalization and needs a treatment with an antipyretic agent because of the high risk of severe complications. Paracetamol (acetaminophen), the most commonly prescribed drug in paediatric patients for its analgesic and antipyretic effects, is the only agent recommended for use as an antipyretic in the newborn and has been recently proposed as a supplement therapy to opioids for postoperative analgesia. This article aims to give an updated overview on the use of paracetamol in newborns by presenting its pharmacological profile (mechanism of action, pharmacokinetics), recommendations for dosing regimens (oral or rectal administration: 25-30 mg/kg/day in preterm neonates of 30 weeks' gestation, 45 mg/kg/day in preterm neonates of 34 weeks' gestation, 60 mg/kg/day in term neonates; i.v. administration: indicatively 20-40 mg/kg/day depending on gestational age, with some differences among various guidelines) and clinical uses (more commonly as analgesic/antipyretic by oral or rectal route, but also i.v. in anaesthesia for postoperative analgesia and painful procedures in Neonatal Intensive Care Units). Moreover, drug tolerability is discussed in the light of its potential hepatotoxicity and the unique characteristics of the newborn patient. By analyzing the available literature and the dosing guidelines, a mismatch exists between the current clinical use of paracetamol and the recommendations, suggesting a cautious approach particularly in extremely preterm neonates.

  18. Novel metal complexes of mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid: Synthesis, characterization and antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Yusuf Oloruntoyin Ayipo

    2016-11-01

    Full Text Available Synthesis of coordination compounds of Zinc(II, Copper(II, Nickel(II, Cobalt(II and Iron(II with mixed piperaquine-acetaminophen and piperaquine-acetylsalicylic acid has been studied. The complexes were characterized via: solubility test, melting point determination, conductivity measurement, Atomic Absorption Spectroscopy, UV-Visible Spectroscopy, FTIR Spectroscopy and magnetic susceptibility. The complexes were proposed to have a stoichiometry ratio of 1:1:1 between each metal salt and the ligands with tetrahedral and octahedral geometry following the reaction pattern of MX.yH2O + L1L2/3 to give ML1L2/3X.yH2O. Biological activities of the synthesized complexes have been evaluated against Escherichia coli and Staphylococcus aureus.

  19. Gymnaster koraiensis and its major components, 3,5-di-O-caffeoylquinic acid and gymnasterkoreayne B, reduce oxidative damage induced by tert-butyl hydroperoxide or acetaminophen in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Eun Hye Jho

    2013-10-01

    Full Text Available We investigated the protective effects of Gymnaster koraiensisagainst oxidative stress-induced hepatic cell damage. We usedtwo different cytotoxicity models, i.e., the administration oftert-butyl hydroperoxide (t-BHP and acetaminophen, in HepG2cells to evaluate the protective effects of G. koraiensis. The ethylacetate (EA fraction of G. koraiensis and its major compound,3,5-di-O-caffeoylquinic acid (DCQA, exerted protective effectsin the t-BHP-induced liver cytotoxicity model. The EA fractionand DCQA ameliorated t-BHP-induced reductions in GSHlevels and exhibited free radical scavenging activity. The EAfraction and DCQA also significantly reduced t-BHP-inducedDNA damage in HepG2 cells. Furthermore, the hexane fractionof G. koraiensis and its major compound, gymnasterkoreayne B(GKB, exerted strong hepatoprotection in the acetaminopheninducedcytotoxicity model. CYP 3A4 enzyme activity wasstrongly inhibited by the extract, hexane fraction, and GKB. Thehexane fraction and GKB ameliorated acetaminophen-inducedreductions in GSH levels and protected against cell death. [BMBReports 2013; 46(10: 513-518

  20. Quantification of acetaminophen (paracetamol) in human plasma and urine by stable isotope-dilution GC-MS and GC-MS/MS as pentafluorobenzyl ether derivative.

    Science.gov (United States)

    Trettin, Arne; Zoerner, Alexander A; Böhmer, Anke; Gutzki, Frank-Mathias; Stichtenoth, Dirk O; Jordan, Jens; Tsikas, Dimitrios

    2011-08-01

    We report on the quantitative determination of acetaminophen (paracetamol; NAPAP-d(0)) in human plasma and urine by GC-MS and GC-MS/MS in the electron-capture negative-ion chemical ionization (ECNICI) mode after derivatization with pentafluorobenzyl (PFB) bromide (PFB-Br). Commercially available tetradeuterated acetaminophen (NAPAP-d(4)) was used as the internal standard. NAPAP-d(0) and NAPAP-d(4) were extracted from 100-μL aliquots of plasma and urine with 300 μL ethyl acetate (EA) by vortexing (60s). After centrifugation the EA phase was collected, the solvent was removed under a stream of nitrogen gas, and the residue was reconstituted in acetonitrile (MeCN, 100 μL). PFB-Br (10 μL, 30 vol% in MeCN) and N,N-diisopropylethylamine (10 μL) were added and the mixture was incubated for 60 min at 30 °C. Then, solvents and reagents were removed under nitrogen and the residue was taken up with 1000 μL of toluene, from which 1-μL aliquots were injected in the splitless mode. GC-MS quantification was performed by selected-ion monitoring ions due to [M-PFB](-) and [M-PFB-H](-), m/z 150 and m/z 149 for NAPAP-d(0) and m/z 154 and m/z 153 for NAPAP-d(4), respectively. GC-MS/MS quantification was performed by selected-reaction monitoring the transition m/z 150 → m/z 107 and m/z 149 → m/z 134 for NAPAP-d(0) and m/z 154 → m/z 111 and m/z 153 → m/z 138 for NAPAP-d(4). The method was validated for human plasma (range, 0-130 μM NAPAP-d(0)) and urine (range, 0-1300 μM NAPAP-d(0)). Accuracy (recovery, %) ranged between 89 and 119%, and imprecision (RSD, %) was below 19% in these matrices and ranges. A close correlation (r>0.999) was found between the concentrations measured by GC-MS and GC-MS/MS. By this method, acetaminophen can be reliably quantified in small plasma and urine sample volumes (e.g., 10 μL). The analytical performance of the method makes it especially useful in pediatrics. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Institute of Analytical Chemistry of the ASCR, v.v.i., Veveri 97, CZ-602 00 Brno (Czech Republic); Mester, Zoltan [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Sturgeon, Ralph E., E-mail: Ralph.Sturgeon@nrc-cnrc.gc.ca [Institute for National Measurement Standards, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)

    2011-08-15

    Three plasma-based ambient pressure ion sources were investigated; laboratory constructed dielectric barrier and rf glow discharges, as well as a commercial corona discharge (DART source). All were used to desorb and ionize a model analyte, providing sampling techniques for ambient mass spectrometry (MS). Experimental parameters were optimized to achive highest signal for acetaminophen as the analyte. Insight into the mechanisms of analyte desorption and ionization was obtained by means of emission spectrometry and ion current measurements. Desorption and ionization mechanisms for this analyte appear to be identical for all three plasma sources. Emission spectra differ only in the intensities of various lines and bands. Desorption of solid analyte requires transfer of thermal energy from the plasma source to sample surface, in the absence of which complete loss of MS response occurs. For acetaminophen, helium was the best plasma gas, providing 100- to 1000-fold higher analyte response than with argon or nitrogen. The same trend was also evident with background ions (protonated water clusters). MS analyte signal intensity correlates with the ion density (expressed as ion current) in the plasma plume and with emission intensity from excited state species in the plasma. These observations support an ionization process which occurs via proton transfer from protonated water clusters to analyte molecules.

  2. 5-Lipoxygenase Deficiency Reduces Acetaminophen-Induced Hepatotoxicity and Lethality

    Directory of Open Access Journals (Sweden)

    Miriam S. N. Hohmann

    2013-01-01

    Full Text Available 5-Lipoxygenase (5-LO converts arachidonic acid into leukotrienes (LTs and is involved in inflammation. At present, the participation of 5-LO in acetaminophen (APAP-induced hepatotoxicity and liver damage has not been addressed. 5-LO deficient (5-LO-/- mice and background wild type mice were challenged with APAP (0.3–6 g/kg or saline. The lethality, liver damage, neutrophil and macrophage recruitment, LTB4, cytokine production, and oxidative stress were assessed. APAP induced a dose-dependent mortality, and the dose of 3 g/kg was selected for next experiments. APAP induced LTB4 production in the liver, the primary target organ in APAP toxicity. Histopathological analysis revealed that 5-LO-/- mice presented reduced APAP-induced liver necrosis and inflammation compared with WT mice. APAP-induced lethality, increase of plasma levels of aspartate aminotransferase and alanine aminotransferase, liver cytokine (IL-1β, TNF-α, IFN-γ, and IL-10, superoxide anion, and thiobarbituric acid reactive substances production, myeloperoxidase and N-acetyl-β-D-glucosaminidase activity, Nrf2 and gp91phox mRNA expression, and decrease of reduced glutathione and antioxidant capacity measured by 2,2′-azinobis(3-ethylbenzothiazoline 6-sulfonate assay were prevented in 5-LO-/- mice compared to WT mice. Therefore, 5-LO deficiency resulted in reduced mortality due to reduced liver inflammatory and oxidative damage, suggesting 5-LO is a promising target to reduce APAP-induced lethality and liver inflammatory/oxidative damage.

  3. Mesoporous cellular-structured carbons derived from glucose-fructose syrup and their adsorption properties towards acetaminophen

    Science.gov (United States)

    Tzvetkov, George; Spassov, Tony; Kaneva, Nina; Tsyntsarski, Boyko

    Here, a series of cellular-structured and predominantly mesoporous carbons were prepared via carbonization of glucose-fructose syrup (GFS) with sulfuric acid and subsequent calcination between 400∘C and 700∘C. Comparative results on the microstructure, chemical and textural properties of the newly produced carbons are presented. Furthermore, their adsorption performance for removal of acetaminophen from water was tested and it was found that the carbon calcined at 700∘C has a maximum adsorption capacity (98.7mgṡg-1) among all samples due to its suitable textural properties (BET surface area of 418m2ṡg-1 and total pore volume of 0.2cm3ṡg-1). This study demonstrates the potential use of GFS as a precursor in the preparation of carbonaceous materials for removal of biologically-active micropollutants from water.

  4. Release mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets utilizing magnetic resonance imaging.

    Science.gov (United States)

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Suzuki, Masazumi; Yamanashi, Shigeyuki; Ozaki, Yukihiro; Kitamura, Satoshi

    2010-08-16

    Release mechanism of acetaminophen (AAP) from extended-release tablets of hydrogel polymer matrices containing polyethylene oxide (PEO) and polyethylene glycol (PEG) were achieved using flow-through cell with magnetic resonance imaging (MRI). The hydrogel forming abilities are observed characteristically and the layer thickness which is corresponding to the diffusion length of AAP has a good correlation with the drug release profiles. In addition, polymeric erosion contribution to AAP releasing from hydrogel matrix tablets was directly quantified using size-exclusion chromatography (SEC). The matrix erosion profile indicates that the PEG erosion kinetic depends primarily on the composition ratio of PEG to PEO. The present study has confirmed that the combination of in situ MRI and SEC should be well suited to investigate the drug release mechanisms of hydrogel matrix such as PEO/PEG. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Trabert, Britton; Ness, Roberta B; Lo-Ciganic, Wei-Hsuan

    2014-01-01

    BACKGROUND: Regular aspirin use is associated with reduced risk of several malignancies. Epidemiologic studies analyzing aspirin, nonaspirin nonsteroidal anti-inflammatory drug (NSAID), and acetaminophen use and ovarian cancer risk have been inconclusive. METHODS: We analyzed pooled data from 12...... population-based case-control studies of ovarian cancer, including 7776 case patients and 11843 control subjects accrued between 1992 and 2007. Odds ratios (ORs) for associations of medication use with invasive epithelial ovarian cancer were estimated in individual studies using logistic regression...... and combined using random effects meta-analysis. Associations between frequency, dose, and duration of analgesic use and risk of ovarian cancer were also assessed. All statistical tests were two-sided. RESULTS: Aspirin use was associated with a reduced risk of ovarian cancer (OR = 0.91; 95% confidence interval...

  6. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: Dose–response, mechanisms, and clinical implications

    International Nuclear Information System (INIS)

    McGill, Mitchell R.; Lebofsky, Margitta; Norris, Hye-Ryun K.; Slawson, Matthew H.; Bajt, Mary Lynn; Xie, Yuchao; Williams, C. David; Wilkins, Diana G.; Rollins, Douglas E.; Jaeschke, Hartmut

    2013-01-01

    At therapeutic doses, acetaminophen (APAP) is a safe and effective analgesic. However, overdose of APAP is the principal cause of acute liver failure in the West. Binding of the reactive metabolite of APAP (NAPQI) to proteins is thought to be the initiating event in the mechanism of hepatotoxicity. Early work suggested that APAP-protein binding could not occur without glutathione (GSH) depletion, and likely only at toxic doses. Moreover, it was found that protein-derived APAP-cysteine could only be detected in serum after the onset of liver injury. On this basis, it was recently proposed that serum APAP-cysteine could be used as diagnostic marker of APAP overdose. However, comprehensive dose–response and time course studies have not yet been done. Furthermore, the effects of co-morbidities on this parameter have not been investigated. We treated groups of mice with APAP at multiple doses and measured liver GSH and both liver and plasma APAP-protein adducts at various timepoints. Our results show that protein binding can occur without much loss of GSH. Importantly, the data confirm earlier work that showed that protein-derived APAP-cysteine can appear in plasma without liver injury. Experiments performed in vitro suggest that this may involve multiple mechanisms, including secretion of adducted proteins and diffusion of NAPQI directly into plasma. Induction of liver necrosis through ischemia–reperfusion significantly increased the plasma concentration of protein-derived APAP-cysteine after a subtoxic dose of APAP. While our data generally support the measurement of serum APAP-protein adducts in the clinic, caution is suggested in the interpretation of this parameter. - Highlights: • Extensive GSH depletion is not required for APAP-protein binding in the liver. • APAP-protein adducts appear in plasma at subtoxic doses. • Proteins are adducted in the cell and secreted out. • Coincidental liver injury increases plasma APAP-protein adducts at subtoxic doses

  7. Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice

    Directory of Open Access Journals (Sweden)

    Roko Martinić

    2014-08-01

    Full Text Available Recent histopathological investigations in patients with hepatitis suggested possible involvement of Met-enkephalin and its receptors in the pathophysiology of hepatitis. Consequently, we evaluated the potential hepatoprotective effects of this endogenous opioid pentapeptide in the experimental model of acetaminophen induced hepatotoxicity in male CBA mice. Met-enkephalin exhibited strong hepatoprotective effects in a dose of 7.5 mg/kg, which corresponds to the protective dose reported for several different animal disease models. In this group plasma alanine aminotransferase and aspartate aminotransferase enzyme activities, as well as liver necrosis score were significantly reduced in comparison to control animals treated with physiological saline (p > 0.01. The specificity of the peptide hepatoprotection was investigated from the standpoint of the receptor and peptide blockade. It was concluded that Met-enkephalin effects on the liver were mediated via δ and ζ opioid receptors. Genotoxic testing of Met-enkephalin confirmed the safety of the peptide.

  8. A case of moderate liver enzyme elevation after acute acetaminophen overdose despite undetectable acetaminophen level and normal initial liver enzymes.

    Science.gov (United States)

    Bebarta, Vikhyat S; Shiner, Drew C; Varney, Shawn M

    2014-01-01

    Liver function test (LFT) increase is an early sign of acetaminophen (APAP) toxicity. Typically, when an acute overdose patient is evaluated and has an initial undetectable APAP level and normal liver enzymes, the patient is not treated with N-acetylcysteine, and liver enzymes are not expected to increase later. We report a case of moderate LFT increase despite normal LFTs and an undetectable APAP level after delayed presentation of an APAP ingestion. A 22-year-old male with no medical history ingested 15-25 hydrocodone/APAP tablets (5 mg/500 mg). His suicide note and his bunkmate corroborated the overdose time. He arrived at the emergency department 16 hours after ingestion. At that time, his APAP level was enzymes were normal [aspartate transaminase (AST) 31 U/L and alanine transaminase (ALT) 34 U/L]. Twenty-nine hours after ingestion, the psychiatry team obtained LFTs (AST 45, ALT 61). He had persistent nausea and diffuse abdominal pain. On repeat analysis, the APAP level at 36 hours was found to be <10 μg/mL, AST 150, and ALT 204. After 2 more days of increasing LFTs and persistent abdominal pain and nausea, the toxicology department was consulted, the patient was transferred to the medicine department, and intravenous N-acetylcysteine was started 66 hours after ingestion. He was treated for 16 hours and had a significant decline in LFTs and symptom resolution. His prothrombin time, bilirubin, lactate, creatinine, and mental status were normal throughout the admission. Other cases of LFT increase were excluded. Our case report illustrates that a moderate increase in liver transaminase may occur despite an initial undetectable APAP level and normal transaminases after a delayed presentation. In our case, no serious clinical effects were reported.

  9. Acetaminophen induces xenobiotic-metabolizing enzymes in rat: Impact of a uranium chronic exposure.

    Science.gov (United States)

    Rouas, Caroline; Souidi, Maâmar; Grandcolas, Line; Grison, Stephane; Baudelin, Cedric; Gourmelon, Patrick; Pallardy, Marc; Gueguen, Yann

    2009-11-01

    The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic. The aim of this study was to determine whether a chronic (9 months) non-nephrotoxic low dose exposure to depleted uranium (DU, 1mg/rat/day) could modify the liver XME, using a single non-hepatotoxic acetaminophen (APAP) treatment (50mg/kg). Most of XME analysed were induced by APAP treatment at the gene expression level but at the protein level only CYP3A2 was significantly increased 3h after APAP treatment in DU-exposed rats whereas it remained at a basal level in unexposed rats. In conclusion, these results showed that a chronic non-nephrotoxic DU exposure specially modify CYP3A2 after a single therapeutic APAP treatment. Copyright © 2009 Elsevier B.V. All rights reserved.

  10. Rapid absorption of diclofenac and acetaminophen after their oral administration to cattle.

    Science.gov (United States)

    Sawaguchi, Akiyo; Sasaki, Kazuaki; Miyanaga, Keisuke; Nakayama, Mitsuhiro; Nagasue, Masato; Shimoda, Minoru

    2016-10-01

    The oral pharmacokinetics of diclofenac (DF) were evaluated in cattle by analyzing plasma concentration-time data after its intravenous and oral administration in order to propose the oral administration of DF as effective route to avoid long withdraw period. DF was intravenously and orally administered at 1 mg/kg to cattle using a crossover design with a 4-week washout period. Plasma concentrations of DF were determined by a HPLC analysis. The mean absorption time (MAT) and absorption half-life (t 1/2ka ) were 1.61 ± 0.61 and 1.51 ± 0.38 hr, respectively, and bioavailability was nearly 100%. The oral pharmacokinetics of acetaminophen (AAP) were also evaluated in cattle. Plasma concentrations of AAP were determined by a HPLC analysis. MAT and t 1/2ka were 2.85 ± 0.93 and 1.53 ± 0.28 hr, respectively, and bioavailability was approximately 70%. In conclusion, the results of the present study indicate that DF and AAP are rapidly absorbed from the forestomach of cattle. Therefore, the appropriate efficacies of these drugs may be achieved via their oral administration, even in cattle.

  11. Encephalopathy in acute liver failure resulting from acetaminophen intoxication: new observations with potential therapy.

    Science.gov (United States)

    Brusilow, Saul W; Cooper, Arthur J L

    2011-11-01

    Hyperammonemia is a major contributing factor to the encephalopathy associated with liver disease. It is now generally accepted that hyperammonemia leads to toxic levels of glutamine in astrocytes. However, the mechanism by which excessive glutamine is toxic to astrocytes is controversial. Nevertheless, there is strong evidence that glutamine-induced osmotic swelling, especially in acute liver failure, is a contributing factor: the osmotic gliopathy theory. The object of the current communication is to present evidence for the osmotic gliopathy theory in a hyperammonemic patient who overdosed on acetaminophen. Case report. Johns Hopkins Hospital. A 22-yr-old woman who, 36 hrs before admission, ingested 15 g acetaminophen was admitted to the Johns Hopkins Hospital. She was treated with N-acetylcysteine. Physical examination was unremarkable; her mental status was within normal limits and remained so until approximately 72 hrs after ingestion when she became confused, irritable, and agitated. She was intubated, ventilated, and placed on lactulose. Shortly thereafter, she was noncommunicative, unresponsive to painful stimuli, and exhibited decerebrate posturing. A clinical diagnosis of cerebral edema and increased intracranial pressure was made. She improved very slowly until 180 hrs after ingestion when she moved all extremities. She woke up shortly thereafter. Despite the fact that hyperammonemia is a major contributing factor to the encephalopathy observed in acute liver failure, the patient's plasma ammonia peaked when she exhibited no obvious neurologic deficit. Thereafter, her plasma ammonia decreased precipitously in parallel with a worsening neurologic status. She was deeply encephalopathic during a period when her liver function and plasma ammonia had normalized. Plasma glutamine levels in this patient were high but began to normalize several hours after plasma ammonia had returned to normal. The patient only started to recover as her plasma glutamine began

  12. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

    International Nuclear Information System (INIS)

    O'Connor, Meeghan A.; Koza-Taylor, Petra; Campion, Sarah N.; Aleksunes, Lauren M.; Gu, Xinsheng; Enayetallah, Ahmed E.; Lawton, Michael P.; Manautou, José E.

    2014-01-01

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 h later with 600 mg APAP/kg. Livers were obtained 4 or 24 h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430 2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. - Highlights: • Differential expression of genes in mice resistant to acetaminophen hepatotoxicity. • Increased gene expression of Flavin-containing monooxygenase 3 and Galectin-3. • Decrease in MAT1A expression and compensatory hepatocellular regeneration. • Two distinct gene expression

  13. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection)

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Meeghan A., E-mail: meeghan.oconnor@boehringer-ingelheim.com [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368 (United States); Koza-Taylor, Petra, E-mail: petra.h.koza-taylor@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Campion, Sarah N., E-mail: sarah.campion@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Aleksunes, Lauren M., E-mail: aleksunes@eohsi.rutgers.edu [Rutgers University, Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854 (United States); Gu, Xinsheng, E-mail: xinsheng.gu@uconn.edu [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Enayetallah, Ahmed E., E-mail: ahmed.enayetallah@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Lawton, Michael P., E-mail: michael.lawton@pfizer.com [Pfizer Inc., Groton, CT 06340 (United States); Manautou, José E., E-mail: jose.manautou@uconn.edu [Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States)

    2014-01-01

    Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400 mg/kg) and then challenged 48 h later with 600 mg APAP/kg. Livers were obtained 4 or 24 h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430{sub 2} GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection. - Highlights: • Differential expression of genes in mice resistant to acetaminophen hepatotoxicity. • Increased gene expression of Flavin-containing monooxygenase 3 and Galectin-3. • Decrease in MAT1A expression and compensatory hepatocellular regeneration. • Two distinct gene

  14. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    Science.gov (United States)

    Cho, Sungjoon; Tripathi, Ashutosh; Chlipala, George; Green, Stefan; Lee, Hyunwoo; Chang, Eugene B; Jeong, Hyunyoung

    2017-01-01

    Acetaminophen (APAP) is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp) 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet) on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v) fructose in water (or regular water) for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes) was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold) higher basal glutathione levels and (~2 fold) lower basal (mRNA and activity) levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  15. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    Directory of Open Access Journals (Sweden)

    Sungjoon Cho

    Full Text Available Acetaminophen (APAP is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v fructose in water (or regular water for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold higher basal glutathione levels and (~2 fold lower basal (mRNA and activity levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  16. Humanizing π-class glutathione S-transferase regulation in a mouse model alters liver toxicity in response to acetaminophen overdose.

    Directory of Open Access Journals (Sweden)

    Matthew P Vaughn

    Full Text Available Glutathione S-transferases (GSTs metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of π-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGstp expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. π-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGstp1/2+/+ mice suffer marked liver damage, while mGstp1/2-/- mice escape liver injury.To more faithfully model the contribution of π-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGstp genes. In the resultant hGSTP1+mGstp1/2-/- strain, π-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGstp1/2-/- mice, when hGSTP1+mGstp1/2-/- mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that π-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes.By recapitulating human π-class GST expression, hGSTP1+mGstp1/2-/- mice may better model human drug and xenobiotic toxicology.

  17. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation

    Science.gov (United States)

    Paluch, Andrew S.; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L.

    2015-01-01

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.

  18. Single- and multiple-dose pharmacokinetics of biphasic immediate-release/extended-release hydrocodone bitartrate/acetaminophen (MNK-155 compared with immediate-release hydrocodone bitartrate/ibuprofen and immediate-release tramadol HCl/acetaminophen

    Directory of Open Access Journals (Sweden)

    Devarakonda K

    2015-09-01

    Full Text Available Krishna Devarakonda,1 Kenneth Kostenbader,2 Michael J Giuliani,3 Jim L Young41Department of Clinical Pharmacology, Mallinckrodt Pharmaceuticals, 2Mallinckrodt Pharmaceuticals, 3Research and Development, Mallinckrodt Pharmaceuticals, 4Department of Clinical Affairs and Program Management, Mallinckrodt Pharmaceuticals, Hazelwood, MO, USAObjective: To characterize the single-dose and steady-state pharmacokinetics (PK of biphasic immediate-release/extended-release hydrocodone bitartrate/acetaminophen (IR/ER HB/APAP, IR HB/ibuprofen, and IR tramadol HCl/APAP.Methods: In this single-center, open-label, randomized, four-period crossover study, healthy participants received four treatments under fasted conditions: 1 a single dose of two IR/ER HB/APAP 7.5/325 mg tablets (15/650 mg total dose on day 1, followed by two tablets every 12 hours (q12h beginning on day 3; 2 a single dose of IR HB/ibuprofen 15/400 mg (divided as one 7.5/200 mg tablet at hour 0 and 6, followed by one tablet every 6 hours (q6h beginning on day 3; 3 a single dose of IR tramadol HCl/APAP 75/650 mg (divided as one 37.5/325 mg tablet at hour 0 and 6, followed by one tablet q6h beginning on day 3; and 4 a single dose of three IR/ER HB/APAP 7.5/325 mg tablets (22.5/975 mg total dose on day 1, a three-tablet initial dose at 48 hours followed by two-tablet doses q12h beginning on day 3. Hydrocodone and APAP single-dose and steady-state PK were assessed. Adverse events were monitored.Results: The PK analysis was carried out on 29 of 48 enrolled participants who completed all treatment periods. Single-dose hydrocodone exposure was similar for IR/ER HB/APAP 22.5/975 mg and IR HB/ibuprofen 15/400 mg; time to maximum observed plasma concentration was shorter and half-life was longer for IR/ER HB/APAP (22.5/975 mg and 15/650 mg vs IR HB/ibuprofen. Single-dose APAP exposure was similar for IR/ER HB/APAP 15/650 mg and IR tramadol HCl/APAP 75/650 mg. Steady-state hydrocodone and APAP exposures

  19. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats.

    Science.gov (United States)

    Yen, Feng-Lin; Wu, Tzu-Hui; Lin, Liang-Tzung; Cham, Thau-Ming; Lin, Chun-Ching

    2008-05-01

    Cuscuta chinensis is a commonly used traditional Chinese medicine to nourish the liver and kidney. Due to the poor water solubility of its major constituents such as flavonoids and lignans, its absorption upon oral administration could be limited. The purpose of the present study was to use the nanosuspension method to prepare C. chinensis nanoparticles (CN), and to compare the hepatoprotective and antioxidant effects of C. chinensis ethanolic extract (CE) and CN on acetaminophen-induced hepatotoxicity in rats. An oral dose of CE at 125 and 250 mg/kg and CN at 25 and 50mg/kg showed a significant hepatoprotective effect relatively to the same extent (P<0.05) by reducing levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. These biochemical assessments were supported by rat hepatic biopsy examinations. In addition, the antioxidant activities of CE and CN both significantly increased superoxide dismutase, catalase, glutathione peroxidase, and reduced malondialdehyde (P<0.05). Moreover, the results also indicated that the hepatoprotective and antioxidant effects of 50 mg/kg CN was effectively better than 125 mg/kg CE (P<0.05), and an oral dose of CN that is five times as less as CE could exhibit similar levels of outcomes. In conclusion, we suggest that the nanoparticles system can be applied to overcome other water poorly soluble herbal medicines and furthermore to decrease the treatment dosage.

  20. Incorporation of acetaminophen as an active pharmaceutical ingredient into porous lactose.

    Science.gov (United States)

    Ebrahimi, Amirali; Saffari, Morteza; Dehghani, Fariba; Langrish, Timothy

    2016-02-29

    A new formulation method for solid dosage forms with drug loadings from 0.65 ± 0.03% to 39 ± 1% (w/w) of acetaminophen (APAP) as a model drug has been presented. The proposed method involves the production of highly-porous lactose with a BET surface area of 20 ± 1 m(2)/g as an excipient using a templating method and the incorporation of drug into the porous structure by adsorption from a solution of the drug in ethanol. Drug deposition inside the carrier particles, rather than being physically distributed between them, eliminated the potential drug/carrier segregation, which resulted in excellent blend uniformities with relative standard deviations of less than 3.5% for all drug formulations. The results of DSC and XRD tests have shown deposition of nanocrystals of APAP inside the nanopores of lactose due the nanoconfinement phenomenon. FTIR spectroscopy has revealed no interaction between the adsorbed drug and the surface of lactose. The final loaded lactose particles had large BET surface areas and high porosities, which significantly increased the crushing strengths of the produced tablets. In vitro release studies in phosphate buffer (pH 5.8) have shown an acceptable delivery performance of 85% APAP release within 7 minutes for loaded powders filled in gelatin capsules. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Simultaneous Chronoamperometric Sensing of Ascorbic Acid and Acetaminophen at a Boron-Doped Diamond Electrode

    Directory of Open Access Journals (Sweden)

    Ciprian Radovan

    2008-06-01

    Full Text Available Cyclic voltammetry (CV and chronoamperometry (CA have been used to sense and determine simultaneously L-ascorbic acid (AA and acetaminophen (AC at a boron-doped diamond electrode (BDDE in a Britton-Robinson buffer solution. The calibration plots of anodic current peak versus concentration obtained from CV and CA data for both investigated compounds in single and di-component solutions over the concentration range 0.01 mM – 0.1 mM proved to be linear, with very good correlation parameters. Sensitivity values and RSD of 2-3% were obtained for various situations, involving both individual and simultaneous presence of AA and AC. The chronoamperometric technique associated with standard addition in sequential one step and/or two successive and continuous chronoamperograms at two characteristic potential levels represented a feasible option for the simultaneous determination of AA and AC in real sample systems such as pharmaceutical formulations. The average values indicated by the supplier were confirmed to a very close approximation from chronoamperomgrams by using several additions with the application of suitable current correction factors.

  2. Protective Effects of Tormentic Acid, a Major Component of Suspension Cultures of Eriobotrya japonica Cells, on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Wen-Ping Jiang

    2017-05-01

    Full Text Available An acetaminophen (APAP overdose can cause hepatotoxicity and lead to fatal liver damage. The hepatoprotective effects of tormentic acid (TA on acetaminophen (APAP-induced liver damage were investigated in mice. TA was intraperitoneally (i.p. administered for six days prior to APAP administration. Pretreatment with TA prevented the elevation of serum aspartate aminotransferase (AST, alanine aminotransferase (ALT, total bilirubin (T-Bil, total cholesterol (TC, triacylglycerol (TG, and liver lipid peroxide levels in APAP-treated mice and markedly reduced APAP-induced histological alterations in liver tissues. Additionally, TA attenuated the APAP-induced production of nitric oxide (NO, reactive oxygen species (ROS, tumor necrosis factor-alpha (TNF-α, interleukin-1beta (IL-1β, and IL-6. Furthermore, the Western blot analysis showed that TA blocked the protein expression of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, as well as the inhibition of nuclear factor-kappa B (NF-κB and mitogen-activated protein kinases (MAPKs activation in APAP-injured liver tissues. TA also retained the superoxidase dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT in the liver. These results suggest that the hepatoprotective effects of TA may be related to its anti-inflammatory effect by decreasing thiobarbituric acid reactive substances (TBARS, iNOS, COX-2, TNF-α, IL-1β, and IL-6, and inhibiting NF-κB and MAPK activation. Antioxidative properties were also observed, as shown by heme oxygenase-1 (HO-1 induction in the liver, and decreases in lipid peroxides and ROS. Therefore, TA may be a potential therapeutic candidate for the prevention of APAP-induced liver injury by inhibiting oxidative stress and inflammation.

  3. Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice.

    Science.gov (United States)

    Yi, Ruo-Kun; Song, Jia-Le; Lim, Yaung-Iee; Kim, Yong-Kyu; Park, Kun-Young

    2015-03-01

    This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase. TMC pretreatment also increased the hepatic levels of hepatic catalase, superoxide dismutase, glutathione peroxidase, and glutathione, and reduced serum levels of the inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in mice administered APAP (Phepatic mRNA levels of TNF-α, IL-1β, IL-6, COX-2, and iNOS by 87%, 84%, 89%, 85%, and 88%, respectively, in mice treated with APAP (Phepatic damage.

  4. Photocatalytic oxidation of acetaminophen using carbon self-doped titanium dioxide

    Directory of Open Access Journals (Sweden)

    Mark Daniel G. de Luna

    2016-07-01

    Full Text Available A new carbon self-doped (C-doped TiO2 photocatalyst was synthesized by sol–gel method, in which titanium butoxide was utilized because of its dual functions as a titanium precursor and a carbon source. The effects of calcination temperature from 200 to 600 °C on the photocatalytic activity towards acetaminophen (ACT, which was used as a model persistent organic pollutant under visible light were examined. The effects of temperature on the structure and physicochemical properties of the C-doped TiO2 were also investigated by X-ray diffraction, BET measurement, X-ray photoelectron spectroscopy, and scanning electron microscopy. The specific surface area of the as-doped TiO2 declined as the crystal size increased with increasing calcination temperature. Only amorphous TiO2 was present at 200 °C, while an anatase phase was observed between 300 and 500 °C. Both anatase and rutile phases were observed at 600 °C. Photocatalytic activity increased as the calcination temperature initially increased from 200 to 300 °C but it decreased as the calcination temperature further increased from 400 to 600 °C. The highest ACT removal of 94% with an apparent rate constant of 5.0 × 10−3 min−1 was achieved using the new doped TiO2 calcined at 300 °C, which had an atomic composition of 31.6% Ti2p3, 50.3% O1s and 18.2% C1s.

  5. Association of antioxidant nutraceuticals and acetaminophen (paracetamol): Friend or foe?

    Science.gov (United States)

    Abdel-Daim, Mohamed; Abushouk, Abdelrahman Ibrahim; Reggi, Raffaella; Yarla, Nagendra Sastry; Palmery, Maura; Peluso, Ilaria

    2018-04-01

    Acetaminophen (paracetamol or APAP) is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT). Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP. Copyright © 2017. Published by Elsevier B.V.

  6. Voltammetric Determination of Acetaminophen in the Presence of Codeine and Ascorbic Acid at Layer-by-Layer MWCNT/Hydroquinone Sulfonic Acid-Overoxidized Polypyrrole Modified Glassy Carbon Electrode

    OpenAIRE

    Shahrokhian, Saeed; Saberi, Reyhaneh-Sadat

    2011-01-01

    A very sensitive electrochemical sensor constructed of a glassy carbon electrode modified with a layer-by-layer MWCNT/doped-overoxidized polypyrrole (oppy/MWCNT /GCE) was used for the determination of acetaminophen (AC) in the presence of codeine and ascorbic acid (AA). In comparison to the bare glassy carbon electrode, a considerable shift in the peak potential together with an increase in the peak current was observed for AC on the surface of oppy/MWCNT/GCE, which can be related to the enla...

  7. Efficacy of free glutathione and niosomal glutathione in the treatment of acetaminophen-induced hepatotoxicity in cats

    Directory of Open Access Journals (Sweden)

    L.A. Denzoin Vulcano

    2013-06-01

    Full Text Available Acetaminophen (APAP administration results in hepatotoxicity and hematotoxicity in cats. The response to three different treatments against APAP poisoning was evaluated. Free glutathione (GSH (200mg/kg, niosomal GSH (14 mg/kg and free amino acids (180 mg/kg of N-acetylcysteine and 280 mg/kg of methionine were administered to cats that were intoxicated with APAP (a single dose of 150 mg/kg, p.o.. Serum concentration of alanine aminotransferase (ALT along with serum, liver and erythrocyte concentration of GSH and methemoglobin percentage were measured before and 4, 24 and 72 hours after APAP administration. Free GSH (200 mg/kg and niosomal GSH (14 mg/kg were effective in reducing hepatotoxicity and hematotoxicity in cats intoxicated with a dose of 150 mg/kg APAP. We conclude that both types of treatments can protect the liver and haemoglobin against oxidative stress in APAP intoxicated cats. Furthermore, our results showed that treatment with niosomal GSH represents an effective therapeutic approach for APAP poisoning.

  8. Short-term acetaminophen consumption enhances the exercise-induced increase in Achilles peritendinous IL-6 in humans

    DEFF Research Database (Denmark)

    Gump, Brian S; McMullan, David R; Cauthon, David J

    2013-01-01

    Through an unknown mechanism the cyclooxygenase (COX) inhibitor acetaminophen (APAP) alters tendon mechanical properties in humans when consumed during exercise. Interleukin-6 (IL-6) is produced by tendon during exercise and is a potent stimulator of collagen synthesis. In non-tendon tissue, IL-6...... is upregulated in presence of COX-inhibitors and may contribute to alterations in extracellular matrix turnover, possibly due to inhibition of prostaglandin E2 (PGE2). We evaluated the effects of APAP on IL-6 and PGE2 in human Achilles peritendinous tissue after 1-hour of treadmill exercise. Subjects were...... randomly assigned to a placebo (n=8, 26±1 y) or APAP (n=8, 25±1 y) group. Each subject completed a non-exercise and exercise experiment consisting of 6-hours of microdialysis. Drug (APAP, 1000 mg) or placebo was administered in a double-blind manner during both experiments. PGE2 and IL-6 were determined...

  9. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Michaut, Anaïs; Le Guillou, Dounia [INSERM, U991, Université de Rennes 1, Rennes (France); Moreau, Caroline [INSERM, U991, Université de Rennes 1, Rennes (France); Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes (France); Bucher, Simon [INSERM, U991, Université de Rennes 1, Rennes (France); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Martinais, Sophie [INSERM, U991, Université de Rennes 1, Rennes (France); Gicquel, Thomas; Morel, Isabelle [INSERM, U991, Université de Rennes 1, Rennes (France); Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes (France); Robin, Marie-Anne [INSERM, U991, Université de Rennes 1, Rennes (France); Jaeschke, Hartmut [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Fromenty, Bernard, E-mail: bernard.fromenty@inserm.fr [INSERM, U991, Université de Rennes 1, Rennes (France)

    2016-02-01

    Obesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations of insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5 mM) or high (20 mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicity. - Highlights: • Nonalcoholic fatty liver disease (NAFLD) is frequent in obese individuals. • NAFLD can favor hepatotoxicity induced by some drugs including acetaminophen (APAP). • A model of NAFLD was set up by using HepaRG cells incubated with stearate or oleate. • Stearate-loaded HepaRG cells presented higher cytochrome P450 2E1 (CYP2E1

  10. Acetaminophen Induced Hepatotoxicity in Wistar Rats—A Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    2016-01-01

    Full Text Available Understanding the mechanism of chemical toxicity, which is essential for cross-species and dose extrapolations, is a major challenge for toxicologists. Standard mechanistic studies in animals for examining the toxic and pathological changes associated with the chemical exposure have often been limited to the single end point or pathways. Toxicoproteomics represents a potential aid to the toxicologist to understand the multiple pathways involved in the mechanism of toxicity and also determine the biomarkers that are possible to predictive the toxicological response. We performed an acute toxicity study in Wistar rats with the prototype liver toxin; the acetaminophen (APAP effects on protein profiles in the liver and its correlation with the plasma biochemical markers for liver injury were analyzed. Three separate groups—control, nontoxic (150 mg/kg and toxic dose (1500 mg/kg of APAP—were studied. The proteins extracted from the liver were separated by 2-DE and analyzed by MALDI-TOF. The differential proteins in the gels were analyzed by BIORAD’s PDQuest software and identified by feeding the peptide mass fingerprint data to various public domain programs like Mascot and MS-Fit. The identified proteins in toxicity-induced rats were classified based on their putative protein functions, which are oxidative stress (31%, immunity (14%, neurological related (12% and transporter proteins (2%, whereas in non-toxic dose-induced rats they were  oxidative stress (9%, immunity (6%, neurological (14% and transporter proteins (9%. It is evident that the percentages of oxidative stress and immunity-related proteins were up-regulated in toxicity-induced rats as compared with nontoxic and control rats. Some of the liver drug metabolizing and detoxifying enzymes were depleted under toxic conditions compared with non-toxic rats. Several other proteins were identified as a first step in developing an in-house rodent liver toxicoproteomics database.

  11. A quantum chemical study of the reactivity of acetaminophen (paracetamol) toxic metabolite N-acetyl-p-benzoquinone imine with deoxyguanosine and glutathione.

    Science.gov (United States)

    Klopčič, Ivana; Poberžnik, Matic; Mavri, Janez; Dolenc, Marija Sollner

    2015-12-05

    Acetaminophen (APAP) forms some reactive metabolites that can react with DNA. APAP is a potentially genotoxic drug and is classified as a Group 3 drug according to International Agency for Research on Cancer (IARC). One of the possible mechanisms of APAP genotoxicity after long term of use is that its reactive quinone imine (QI) metabolite of acetaminophen (NAPQI), can chemically react with DNA after glutathione (GSH) depletion. A quantum chemical study of the reactions between the NAPQI and deoxyguanosine (dG) or GSH was performed. Activation energies (ΔG(ǂ)) for the reactions associated with the 1, 4-Michael addition were calculated on the M062X/6-311++G (d,p) level of theory. We modeled the reaction with dG as a multi-step process. The first step is rate-limiting (ΔG(ǂ) = 26.7 kcal/mol) and consists of formation of a C-N bond between the C3 atom of the QI moiety and the N7 atom of dG. The second step involves proton transfer from the C3 moiety to the nitrogen atom of the QI with ΔG(ǂ) of 13.8 kcal/mol. The depurination reaction that follows has a ΔG(ǂ) of 25.7 kcal/mol. The calculated ΔG(ǂ) for the nucleophilic attack of the deprotonated S atom of GSH on the C3 atom of the NAPQI is 12.9 kcal/mol. Therefore, the QI will react with GSH much faster than with DNA. Our study gives mechanistic insight into the genotoxicity of the APAP metabolite and will be useful for estimating the genotoxic potential of existing drugs with a QI moiety. Our results show that clinical application of APAP is safe, while in the case of severely depleted GSH levels APAP should be administered with caution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs, including acetaminophen (APAP, have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP causes liver injury in humans and animals. Hepatic glutathione (GSH depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST and multidrug resistance (MDR1 proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM, a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  13. Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity

    Directory of Open Access Journals (Sweden)

    Yang Runkuan

    2011-11-01

    Full Text Available Abstract Background Acetaminophen (APAP overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G0, the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6. Ringer's lactate solution (RLS has been shown to increase serum TNF-α and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an alternative metabolic fuel to meet the higher energy demand by liver regeneration. Therefore, we tested whether RLS therapy improves liver recovery after APAP overdose. Methods C57BL/6 male mice were intraperitoneally injected with a single dose of APAP (300 mg/kg dissolved in 1 mL sterile saline. Following 2 hrs of APAP challenge, the mice were given 1 mL RLS or Saline treatment every 12 hours for a total of 72 hours. Results 72 hrs after APAP challenge, compared to saline-treated group, RLS treatment significantly lowered serum transaminases (ALT/AST and improved liver recovery seen in histopathology. This beneficial effect was associated with increased hepatic tissue TNF-α concentration, enhanced hepatic NF-κB DNA binding and increased expression of cell cycle protein cyclin D1, three important factors in liver regeneration. Conclusion RLS improves liver recovery from APAP hepatotoxicity.

  14. Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating.

    Science.gov (United States)

    Pham, Loan; Christensen, John M

    2014-02-01

    Twelve hydrophobic coating agents were assessed for their effects on drug release after coating sugar cores by a flexible hot-melt coating method using direct blending. Drug-containing pellets were also produced and used as cores. The cores were coated with single or double wax layers containing acetaminophen (APAP). The harder the wax, the slower the resultant drug releases from single-coated beads. Wax coating can be deposited on cores up to 28% of the beads final weight and reaching 58% with wax and drug. Carnauba-coated beads dissolved in approximately 6 h releasing 80% of the loaded drug. Applying another wax layer extended drug release over 20 h, while still delivering 80% of the loaded drug. When drug-containing pellets (33-58% drug loading) were used as cores, double wax-coated pellets exhibited a near zero-order drug release for 16 h, releasing 80% of the loaded drug delivering 18 mg/h. The simple process of hot-melt coating by direct blending of pellet-containing drug-coated formulations provides excellent options for immediate and sustained release formulations when higher lipid coating or drug loading is warranted. Predicted plasma drug concentration time profiles using convolution and in vitro drug release properties of the beads were performed for optimal formulations.

  15. Plasma microRNA profiles distinguish lethal injury in acetaminophen toxicity: A research study

    Institute of Scientific and Technical Information of China (English)

    Jeanine Ward; Shashi Bala; Jan Petrasek; Gyongyi Szabo

    2012-01-01

    AIM:To investigate plasma microRNA (miRNA) profiles indicative of hepatotoxicity in the setting of lethal acetaminophen (APAP) toxicity in mice.METHODS:Using plasma from APAP poisoned mice,either lethally (500 mg/kg) or sublethally (150 mg/kg) dosed,we screened commercially available murine microRNA libraries (SABiosciences,Qiagen Sciences,MD) to evaluate for unique miRNA profiles between these two dosing parameters.RESULTS:We distinguished numerous,unique plasma miRNAs both up- and downregulated in lethally compared to sublethally dosed mice.Of note,many of the greatest up- and downregulated miRNAs,namely 574-5p,466g,466f-3p,375,29c,and 148a,have been shown to be associated with asthma in prior studies.Interestingly,a relationship between APAP and asthma has been previously well described in the literature,with an as yet unknown mechanism of pathology.There was a statistically significant increase in alanine aminotransferase levels in the lethal compared to sublethal APAP dosing groups at the 12 h time point (P <0.001).There was 90% mortality in the lethally compared to sublethally dosed mice at the 48 h time point (P =0.011).CONCLUSION:We identified unique plasma miRNAs both up- and downregulated in APAP poisoning which are correlated to asthma development.

  16. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase

    International Nuclear Information System (INIS)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Jaeschke, Hartmut

    2014-01-01

    Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69–77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4 h, and 2.5 and 3.3 fold higher in the total liver at 4 h and 6 h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6 h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4 h post-APAP, it was 3.1 fold lower at 6 h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. - Highlights: • Female mice are less susceptible to acetaminophen overdose than males. • GSH depletion and protein adduct formation are similar in both genders. • Recovery of hepatic GSH levels is faster in females and correlates with Gclc. • Reduced oxidant stress in females leads to reduced JNK activation. • JNK activation and mitochondrial translocation are critical

  17. Therapeutic potential of alpha-ketoglutarate against acetaminophen-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Lalita Mehra

    2016-01-01

    Full Text Available Objective: Alpha-ketoglutarate (α-KG is a cellular intermediary metabolite of Krebs cycle, involved in energy metabolism, amino acid synthesis, and nitrogen transport. It is available over-the-counter and marketed as a nutritional supplement. There is a growing body of evidence to suggest that dietary α-KG has the potential to maintain cellular redox status and thus can protect various oxidative stress induced disease states. The aim of the present study was to investigate the hepatoprotective role of α-KG in acetaminophen (APAP induced toxicity in rats. Materials and Methods: Animals were divided into three groups of six animals each. Group I (Vehicle control: Normal Saline, Group II (APAP: A single intraperitoneal injection of 0.6 g/kg, Group III (APAP + α-KG: APAP as in Group II with α-KG treatment at a dose of 2 g/kg, orally for 5 days. Then the levels of alanine aminotransferase (ALT, aspartate aminotransferase (AST, and alkaline phosphatase (ALP with oxidative stress markers including malondialdehyde (MDA, reduced glutathione (GSH, superoxide dismutase (SOD, catalase (CAT, and histopathology were analyzed. Results: The results indicate that APAP caused significant elevations in ALT, AST, ALP, and MDA levels, while GSH, SOD, and CAT were significantly depleted while co-administration of α-KG showed a significant (P < 0.05 reduction in the severity of these damages. Histologically, the liver showed inflammation and necrosis after APAP treatment, which were significantly restored with co-administration of α-KG. Conclusion: These results indicate the possible therapeutic potential of α-KG in protecting liver damage by APAP in rats.

  18. Freshly isolated hepatocyte transplantation in acetaminophen-induced hepatotoxicity model in rats Transplante de hepatócitos recém-isolados em um modelo de hepatotoxicidade induzida por acetaminofeno em ratos

    Directory of Open Access Journals (Sweden)

    Daniela Rodrigues

    2012-12-01

    Full Text Available CONTEXT: Hepatocyte transplantation is an attractive therapeutic modality for liver disease as an alternative for orthotopic liver transplantation. OBJECTIVE: The aim of the current study was to investigate the feasibility of freshly isolated rat hepatocyte transplantation in acetaminophen-induced hepatotoxicity model. METHODS: Hepatocytes were isolated from male Wistar rats and transplanted 24 hours after acetaminophen administration in female recipients. Female rats received either 1x10(7 hepatocytes or phosphate buffered saline through the portal vein or into the spleen and were sacrificed after 48 hours. RESULTS: Alanine aminotransferase levels measured within the experiment did not differ between groups at any time point. Molecular analysis and histology showed presence of hepatocytes in liver of transplanted animals injected either through portal vein or spleen. CONCLUSION: These data demonstrate the feasibility and efficacy of hepatocyte transplantation in the liver or spleen in a mild acetaminophen-induced hepatotoxicity model.CONTEXTO: O transplante de hepatócitos é uma modalidade terapêutica atrativa para doenças hepáticas como alternativa ao transplante hepático ortotópico. OBJETIVO: Investigar a factibilidade do uso de hepatócitos frescos isolados de ratos em um modelo de hepatotoxicidade induzida por paracetamol. MÉTODOS: Hepatócitos foram isolados de ratos Wistar machos e transplantados 24 horas após a administração de paracetamol em receptores fêmeas. As ratas receberam 1x10(7 hepatócitos ou tampão salina fosfato pela veia porta ou no baço e foram sacrificadas após 48 horas. RESULTADOS: Os níveis de alanina aminotransferase medidos durante o experimento não diferiram entre os grupos em nenhum momento. Análises moleculares e histológicas demonstraram a presença de hepatócitos no fígado dos animais transplantados pelo baço ou pela veia porta. CONCLUSÃO: Os dados indicam a factibilidade e eficácia do

  19. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Angelina Huseinovic

    Full Text Available Acetaminophen (APAP, although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.

  20. Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique

    International Nuclear Information System (INIS)

    Manjunatha, Revanasiddappa; Nagaraju, Dodahalli Hanumantharayudu; Suresh, Gurukar Shivappa; Melo, Jose Savio; D'Souza, Stanislaus F.; Venkatesha, Thimmappa Venkatarangaiah

    2011-01-01

    A selective electrochemical method is fabricated via layer-by-layer (LBL) method using both positively and negatively charged multi walled carbon nanotubes (MWCNTs) on poly (diallyldimetheylammonium chloride) (PDDA)/poly styrene sulfonate (PSS) modified graphite electrode, for the determination of acetaminophen (ACT) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA). The modified electrode was characterized by cyclic voltammetry (CV) electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Experimental conditions such as pH, accumulation potential and time, effect of potential sweep rates and interferents were studied. In CV well defined peaks for AA, ACT and DA are obtained at 24, 186 and 374 mV, respectively. The separations of peaks were 210, 188 and 398 mV between AA and DA, DA and ACT and AA and ACT, respectively. The diffusion coefficient was calculated by chronocoulometric. Chronoamperometric studies showed the linear relationship between oxidation peak current and concentration of ACT in the range 25-400 μM (R = 0.9991). The detection limit was 5 x 10 -7 mol/L. The proposed method gave satisfactory results in the determination of ACT in pharmaceutical and human serum samples.

  1. Comparison of oral versus rectal administration of acetaminophen with codeine in postoperative pediatric adenotonsillectomy patients.

    Science.gov (United States)

    Owczarzak, Vicki; Haddad, Joseph

    2006-08-01

    To examine whether acetaminophen with codeine administered per rectum is an effective alternative for pain control compared with oral administration after an adenotonsillectomy. A prospective, randomized control study. Seventy-five children aged 1 to 5 were recruited for this study. Each child was assigned randomly to receive either rectal or oral postoperative pain medication. A journal with eight questions was kept for 10 days after the operation, and an overall survey of five questions was filled out at the first postoperative visit. Postoperative pain was adequately controlled in those patients receiving suppositories when compared with those patients receiving oral pain medication. Adverse effects and total number of doses given per day were similar. Parents found the suppositories easy to administer, and more parents would switch or consider switching from oral pain medication to suppositories if given the choice. The suppositories achieved equivalent pain control as oral medication with few side effects and good tolerance. Furthermore, many parents preferred the suppositories to oral medication in maintaining postoperative pain control because of ease of administration. If given the choice for future surgeries, many parents would switch or consider switching from oral pain medication to suppositories.

  2. Ultrasonic degradation of acetaminophen in water: effect of sonochemical parameters and water matrix.

    Science.gov (United States)

    Villaroel, Erica; Silva-Agredo, Javier; Petrier, Christian; Taborda, Gonzalo; Torres-Palma, Ricardo A

    2014-09-01

    This paper deals about the sonochemical water treatment of acetaminophen (ACP, N-acetyl-p-aminophenol or paracetamol), one of the most popular pharmaceutical compounds found in natural and drinking waters. Effect of ultrasonic power (20-60 W), initial ACP concentration (33-1323 μmol L(-1)) and pH (3-12) were evaluated. High ultrasonic powers and, low and natural acidic pH values favored the efficiency of the treatment. Effect of initial substrate concentration showed that the Langmuir-type kinetic model fit well the ACP sonochemical degradation. The influence of organic compounds in the water matrix, at concentrations 10-fold higher than ACP, was also evaluated. The results indicated that only organic compounds having a higher value of the Henry's law constant than the substrate decrease the efficiency of the treatment. On the other hand, ACP degradation in mineral natural water showed to be strongly dependent of the initial substrate concentration. A positive matrix effect was observed at low ACP concentrations (1.65 μmol L(-1)), which was attributed to the presence of bicarbonate ion in solution. However, at relative high ACP concentrations a detrimental effect of matrix components was noticed. Finally, the results indicated that ultrasonic action is able to transform ACP in aliphatic organic compounds that could be subsequently eliminated in a biological system. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressures.

    Science.gov (United States)

    Boldyreva, E V; Shakhtshneider, T P; Vasilchenko, M A; Ahsbahs, H; Uchtmann, H

    2000-04-01

    The anisotropy of structural distortion of the monoclinic polymorph of acetaminophen induced by hydrostatic pressure up to 4.0 GPa was studied by single-crystal X-ray diffraction in a Merrill-Bassett diamond anvil cell (DAC). The space group (P2(1)/n) and the general structural pattern remained unchanged with pressure. Despite the overall decrease in the molar volume with pressure, the structure expanded in particular crystallographic directions. One of the linear cell parameters (c) passed through a minimum as the pressure increased. The intramolecular bond lengths changed only slightly with pressure, but the changes in the dihedral and torsion angles were very large. The compressibility of the intermolecular hydrogen bonds NH...O and OH...O was measured. NH...O bonds were shown to be slightly more compressible than OH...O bonds. The anisotropy of structural distortion was analysed in detail in relation to the pressure-induced changes in the molecular conformations, to the compression of the hydrogen-bond network, and to the changes in the orientation of molecules with respect to each other in the pleated sheets in the structure. Dirichlet domains were calculated in order to analyse the relative shifts of the centroids of the hydrogen-bonded cycles and of the centroids of the benzene rings with pressure.

  4. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole

    Science.gov (United States)

    Chang, E.-E.; Wan, Jan-Chi; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K ow. The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K ow was replaced by the one with larger K ow. Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores. PMID:26078989

  5. S-adenosyl-L-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, James Mike [Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Huntington, WV (United States); Kuhlman, Christopher [Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, AZ (United States); Terneus, Marcus V. [Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Huntington, WV (United States); Labenski, Matthew T. [Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, AZ (United States); Lamyaithong, Andre Benja; Ball, John G. [Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Huntington, WV (United States); Lau, Serrine S. [Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, AZ (United States); Valentovic, Monica A., E-mail: Valentov@marshall.edu [Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Huntington, WV (United States)

    2014-12-01

    Acetaminophen (APAP) hepatotoxicity is protected by S-adenosyl-L-methionine (SAMe) treatment 1 hour (h) after APAP in C57/Bl6 mice. This study examined protein carbonylation as well as mitochondrial and cytosolic protein adduction by 4-hydroxynonenal (4-HNE) using mass spectrometry (MS) analysis. Additional studies investigated the leakage of mitochondrial proteins and 4-HNE adduction of these proteins. Male C57/Bl6 mice (n = 5/group) were divided into the following groups and treated as indicated: Veh (15 ml/kg water, ip), SAMe (1.25 mmol/kg, ip), APAP (250 mg/kg), and SAMe given 1 h after APAP (S + A). APAP toxicity was confirmed by an increase (p < 0.05) in plasma ALT (U/l) and liver weight/10 g body weight relative to the Veh, SAMe and S + A groups 4 h following APAP treatment. SAMe administered 1 h post-APAP partially corrected APAP hepatotoxicity as ALT and liver weight/10 g body weights were lower in the S + A group compared the APAP group. APAP induced leakage of the mitochondrial protein, carbamoyl phosphate synthase-1 (CPS-1) into the cytosol and which was reduced in the S + A group. SAMe further reduced the extent of APAP mediated 4-HNE adduction of CPS-1. MS analysis of hepatic and mitochondrial subcellular fractions identified proteins from APAP treated mice. Site specific 4-HNE adducts were identified on mitochondrial proteins sarcosine dehydrogenase and carbamoyl phosphate synthase-1 (CPS-1). In summary, APAP is associated with 4-HNE adduction of proteins as identified by MS analysis and that CPS-1 leakage was greater in APAP treated mice. SAMe reduced the extent of 4-HNE adduction of proteins as well as leakage of CPS-1. - Highlights: • Acetaminophen (APAP) toxicity protected by S-adenosylmethionine (SAMe) • 4-Hydroxynonenal adducted to sarcosine dehydrogenase • 4-Hydroxynonenal adducted to carbamoyl phosphate synthetase-1 • SAMe reduced APAP mediated CPS-1 mitochondrial leakage.

  6. S-adenosyl-L-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry

    International Nuclear Information System (INIS)

    Brown, James Mike; Kuhlman, Christopher; Terneus, Marcus V.; Labenski, Matthew T.; Lamyaithong, Andre Benja; Ball, John G.; Lau, Serrine S.; Valentovic, Monica A.

    2014-01-01

    Acetaminophen (APAP) hepatotoxicity is protected by S-adenosyl-L-methionine (SAMe) treatment 1 hour (h) after APAP in C57/Bl6 mice. This study examined protein carbonylation as well as mitochondrial and cytosolic protein adduction by 4-hydroxynonenal (4-HNE) using mass spectrometry (MS) analysis. Additional studies investigated the leakage of mitochondrial proteins and 4-HNE adduction of these proteins. Male C57/Bl6 mice (n = 5/group) were divided into the following groups and treated as indicated: Veh (15 ml/kg water, ip), SAMe (1.25 mmol/kg, ip), APAP (250 mg/kg), and SAMe given 1 h after APAP (S + A). APAP toxicity was confirmed by an increase (p < 0.05) in plasma ALT (U/l) and liver weight/10 g body weight relative to the Veh, SAMe and S + A groups 4 h following APAP treatment. SAMe administered 1 h post-APAP partially corrected APAP hepatotoxicity as ALT and liver weight/10 g body weights were lower in the S + A group compared the APAP group. APAP induced leakage of the mitochondrial protein, carbamoyl phosphate synthase-1 (CPS-1) into the cytosol and which was reduced in the S + A group. SAMe further reduced the extent of APAP mediated 4-HNE adduction of CPS-1. MS analysis of hepatic and mitochondrial subcellular fractions identified proteins from APAP treated mice. Site specific 4-HNE adducts were identified on mitochondrial proteins sarcosine dehydrogenase and carbamoyl phosphate synthase-1 (CPS-1). In summary, APAP is associated with 4-HNE adduction of proteins as identified by MS analysis and that CPS-1 leakage was greater in APAP treated mice. SAMe reduced the extent of 4-HNE adduction of proteins as well as leakage of CPS-1. - Highlights: • Acetaminophen (APAP) toxicity protected by S-adenosylmethionine (SAMe) • 4-Hydroxynonenal adducted to sarcosine dehydrogenase • 4-Hydroxynonenal adducted to carbamoyl phosphate synthetase-1 • SAMe reduced APAP mediated CPS-1 mitochondrial leakage

  7. Effect of ethanol and pH on the adsorption of acetaminophen (paracetamol) to high surface activated charcoal, in vitro studies

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle R; Christophersen, A Bolette

    2002-01-01

    BACKGROUND: Paracetamol (acetaminophen) intoxication often in combination with ethanol, is seen commonly in overdose cases. Doses of several grams might be close to the maximum adsorption capacity of the standard treatment dose (50g) of activated charcoal. The aim of this study was to determine...... the maximum adsorption capacity for paracetamol for two types of high surface-activated charcoal [Carbomix and Norit Ready-To-Use (not yet registered trademark in Denmark) both from Norit Cosmara, Amersfoort, The Netherlands] in simulated in vivo environments: At pH 1.2 (gastric environment), at pH 7.......2 (intestinal environment), and with and without 10% ethanol. METHODS: Activated charcoal, at both gastric or intestinal pHs, and paracetamol were mixed, resulting in activated charcoal-paracetamol ratios from 10:] to 1:1. In trials with ethanol, some of the gastric or intestinal fluid was replaced...

  8. The sequential organ failure assessment (SOFA) score is an effective triage marker following staggered paracetamol (acetaminophen) overdose.

    Science.gov (United States)

    Craig, D G; Zafar, S; Reid, T W D J; Martin, K G; Davidson, J S; Hayes, P C; Simpson, K J

    2012-06-01

    The sequential organ failure assessment (SOFA) score is an effective triage marker following single time point paracetamol (acetaminophen) overdose, but has not been evaluated following staggered (multiple supratherapeutic doses over >8 h, resulting in cumulative dose of >4 g/day) overdoses. To evaluate the prognostic accuracy of the SOFA score following staggered paracetamol overdose. Time-course analysis of 50 staggered paracetamol overdoses admitted to a tertiary liver centre. Individual timed laboratory samples were correlated with corresponding clinical parameters and the daily SOFA scores were calculated. A total of 39/50 (78%) patients developed hepatic encephalopathy. The area under the SOFA receiver operator characteristic for death/liver transplantation was 87.4 (95% CI 73.2-95.7), 94.3 (95% CI 82.5-99.1), and 98.4 (95% CI 84.3-100.0) at 0, 24 and 48 h, respectively, postadmission. A SOFA score of paracetamol overdose, is associated with a good prognosis. Both the SOFA and APACHE II scores could improve triage of high-risk staggered paracetamol overdose patients. © 2012 Blackwell Publishing Ltd.

  9. Performance of a multi-disciplinary emergency department observation protocol for acetaminophen overdose.

    Science.gov (United States)

    Beauchamp, Gillian A; Hart, Kimberly W; Lindsell, Christopher J; Lyons, Michael S; Otten, Edward J; Smith, Carol L; Ward, Michael J; Wright, Stewart W

    2013-09-01

    The availability of 20-h N-acetylcysteine (NAC) infusion for low-risk acetaminophen (APAP) overdose enabled our center to implement an Emergency Department observation unit (OU) protocol as an alternative to hospitalization. Our objective was to evaluate our early experience with this protocol. This retrospective cohort study included all patients treated for low-risk APAP overdose in our academic hospital between 2006 and 2011. Cases were identified using OU and pharmacy records. Successful OU discharge was defined as disposition with no inpatient admission. Differences in medians with 95 % confidence intervals were used for comparisons. One hundred ninety-six patients received NAC for APAP overdose with a mean age of 35 years (SD 14); 73 % were white, and 43 % were male. Twenty (10 %) received care in the OU; 3/20(15 %) met criteria for inclusion in the OU protocol and 13/20(65 %) were discharged successfully. Out of the 196 patients, 10 met criteria for inclusion in the OU protocol but instead received care in the inpatient setting. The median total length of stay from presentation to ED discharge was 41 h for all patients treated in the OU, compared to 68 h for ten patients who met criteria for inclusion in the OU protocol but who were admitted (difference 27 h, 95 % CI 18-72 h). ED observation for APAP overdose can be a viable alternative to inpatient admission. Most patients were successfully discharged from the OU. This evaluation identified both over- and under-utilization of the OU. OU treatment resulted in shorter median length of stay than inpatient admission.

  10. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

    International Nuclear Information System (INIS)

    McGill, Mitchell R.; Williams, C. David; Xie, Yuchao; Ramachandran, Anup; Jaeschke, Hartmut

    2012-01-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The

  11. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis.

    Science.gov (United States)

    Zhou, Yan-Dan; Hou, Jin-Gang; Liu, Wei; Ren, Shen; Wang, Ying-Ping; Zhang, Rui; Chen, Chen; Wang, Zi; Li, Wei

    2018-06-01

    Although ginsenoside Rg3 was isolated as a major component of Korea red ginseng and confirmed to exert potential hepatoprotective effect on acetaminophen (APAP)-induced liver injury via induction of glutathione S-transferase (GST) in vitro, thein vivo hepatoprotective effect of Rg3 and the underlying molecular mechanism of action remain unclear. The current study was aimed to explore whether 20(R)-Ginsenoside Rg3 (20(R)-Rg3) could alleviate acetaminophen-induced liver injury in mice and to determine the involvement of PI3K/AKT signaling pathway. Our findings demonstrated that a single injection of APAP (250 mg/kg) increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); such increases were attenuated by pretreatment of mice with 20(R)-Rg3 for seven days. The depletion of glutathione (GSH), generation of malondialdehyde (MDA) and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP exposure were also inhibited by 20(R)-Rg3 pretreatment. Moreover, 20(R)-Rg3 pretreatment significantly alleviated APAP-induced apoptosis, necrosis, and inflammatory infiltration in liver tissues. Importantly, 20(R)-Rg3 effectively attenuated APAP-induced liver injury in part via activating PI3K/AKT signaling pathway. In summary, 20(R)-Rg3 exerted liver protection against APAP-caused hepatotoxicity evidenced by inhibition of oxidative stress and inflammatory response, alleviation of hepatocellular necrosis and apoptosis via activation of PI3K/AKT signaling pathway, showing potential as a novel therapeutic agent to prevent liver damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Serum neopterin and soluble CD163 as markers of macrophage activation in paracetamol (acetaminophen)-induced human acute liver injury.

    Science.gov (United States)

    Craig, D G; Lee, P; Pryde, E A; Hayes, P C; Simpson, K J

    2013-12-01

    Macrophage activation is implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS) following paracetamol (acetaminophen) overdose (POD). Neopterin is synthesised from macrophages and reflects the intensity of monocyte/macrophage activation. Soluble CD163 (sCD163) is a marker of alternatively activated M2 macrophages. To examine neopterin and sCD163 levels in a cohort of acute liver injury patients. Consecutive patients (n = 41, (18 (43.9%) male) with acute liver injury were enrolled. Neopterin and sCD163 levels were measured by ELISA. A total of 24/33 (72.7%) POD patients developed hepatic encephalopathy (HE), and therefore acute liver failure. Both neopterin and sCD163 levels were significantly higher in PODs compared with chronic liver disease (neopterin P paracetamol overdose, and reflect the degree of macrophage activation in this condition. Serum neopterin in particular may have value as an early proxy marker of macrophage activation following paracetamol overdose. © 2013 John Wiley & Sons Ltd.

  13. The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin.

    Science.gov (United States)

    Temoçin, Zülfikar; Kim, Eunkyoung; Li, Jinyang; Panzella, Lucia; Alfieri, Maria Laura; Napolitano, Alessandra; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-20

    Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O 2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.

  14. Protective Effect of Cymbopogon citratus Essential Oil in Experimental Model of Acetaminophen-Induced Liver Injury.

    Science.gov (United States)

    Uchida, Nancy Sayuri; Silva-Filho, Saulo Euclides; Aguiar, Rafael Pazinatto; Wiirzler, Luiz Alexandre Marques; Cardia, Gabriel Fernando Esteves; Cavalcante, Heitor Augusto Otaviano; Silva-Comar, Francielli Maria de Souza; Becker, Tânia Cristina Alexandrino; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2017-01-01

    To investigate the hepatoprotective effect of Cymbopogon citratus or lemongrass essential oil (LGO), it was used in an animal model of acute liver injury induced by acetaminophen (APAP). Swiss mice were pretreated with LGO (125, 250 and 500[Formula: see text]mg/kg) and SLM (standard drug, 200[Formula: see text]mg/kg) for a duration of seven days, followed by the induction of hepatotoxicity of APAP (single dose, 250[Formula: see text]mg/kg). The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase were determined to evaluate the hepatoprotective effects of the LGO. The livers were used to determine myeloperoxidase (MPO) activity, nitric oxide (NO) production and histological analysis. The effect of LGO on leukocyte migration was evaluated in vitro. Anti-oxidant activity was performed by assessing the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro. LGO pretreatment decreased significantly the levels of ALT, AST and ALP compared with APAP group. MPO activity and NO production were decreased. The histopathological analysis showed an improved of hepatic lesions in mice after LGO pretreatment. LGO inhibited neutrophil migration and exhibited anti-oxidant activity. Our results suggest that LGO has protective activity against liver toxicity induced by paracetamol.

  15. Cuscuta arvensis Beyr "Dodder": In Vivo Hepatoprotective Effects Against Acetaminophen-Induced Hepatotoxicity in Rats.

    Science.gov (United States)

    Koca-Caliskan, Ufuk; Yilmaz, Ismet; Taslidere, Asli; Yalcin, Funda N; Aka, Ceylan; Sekeroglu, Nazim

    2018-05-02

    Cuscuta arvensis Beyr. is a parasitic plant, and commonly known as "dodder" in Europe, in the United States, and "tu si zi shu" in China. It is one of the preferred spices used in sweet and savory dishes. Also, it is used as a folk medicine for the treatment particularly of liver problems, knee pains, and physiological hepatitis, which occur notably in newborns and their mothers in the southeastern part of Turkey. The purpose of this study was to investigate the hepatoprotective effects and antioxidant activities of aqueous and methanolic extracts of C. arvensis Beyr. on acetaminophen (APAP)-induced acute hepatotoxicity in rats. The results were supported by subsequent histopathological studies. The hepatoprotective activity of both the aqueous and methanolic extracts at an oral dose of 125 and 250 mg/kg was investigated by observing the reduction levels or the activity of alkaline phosphatase, alkaline transaminase, aspartate aminotransferase, blood urine nitrogen, and total bilirubin content. In vivo antioxidant activity was determined by analyzing the serum superoxide dismutase, malondialdehyde, glutathione, and catalase levels. Chromatographic methods were used to isolate biologically active compounds from the extract, and spectroscopic methods were used for structure elucidation. Both the methanolic and aqueous extracts exerted noticable hepatoprotective and antioxidant effects supporting the folkloric usage of dodder. One of the bioactive compounds was kaempferol-3-O-rhamnoside, isolated and identified from the methanolic extract.

  16. Targeted liquid chromatography–mass spectrometry analysis of serum acylcarnitines in acetaminophen toxicity in children

    Science.gov (United States)

    Bhattacharyya, Sudeepa; Yan, Ke; Pence, Lisa; Simpson, Pippa M; Gill, Pritmohinder; Letzig, Lynda G; Beger, Richard D; Sullivan, Janice E; Kearns, Gregory L; Reed, Michael D; Marshall, James D; Van Den Anker, John N; James, Laura P

    2014-01-01

    Aim Long-chain acylcarnitines have been postulated to be sensitive biomarkers of acetaminophen (APAP)-induced hepatotoxicity in mouse models. In the following study, the relationship of acylcarnitines with other known indicators of APAP toxicity was examined in children receiving low-dose (therapeutic) and high-dose (‘overdose’ or toxic ingestion) exposure to APAP. Materials & methods The study included three subject groups: group A (therapeutic dose, n = 187); group B (healthy controls, n = 23); and group C (overdose, n = 62). Demographic, clinical and laboratory data were collected for each subject. Serum samples were used for measurement of APAP protein adducts, a biomarker of the oxidative metabolism of APAP and for targeted metabolomics analysis of serum acylcarnitines using ultra performance liquid chromatography–triple-quadrupole mass spectrometry. Results Significant increases in oleoyl- and palmitoyl-carnitines were observed with APAP exposure (low dose and overdose) compared with controls. Significant increases in serum ALT, APAP protein adducts and acylcarnitines were observed in overdose children that received delayed treatment (time to treatment from overdose >24 h) with the antidote N-acetylcysteine. Time to peak APAP protein adducts in serum was shorter than that of the acylcarnitines and serum ALT. Conclusion Perturbations in long-chain acylcarnitines in children with APAP toxicity suggest that mitochrondrial injury and associated impairment in the β-oxidation of fatty acids are clinically relevant as biomarkers of APAP toxicity. PMID:24521011

  17. Effect of Acetaminophen on the Prevention of Acute Kidney Injury in Patients With Sepsis.

    Science.gov (United States)

    Patanwala, Asad E; Aljuhani, Ohoud; Bakhsh, Hussain; Erstad, Brian L

    2018-01-01

    Acute kidney injury (AKI) commonly occurs in patients with sepsis. Acetaminophen (APAP) has been shown to inhibit lipid peroxidation and, thus, may be renal protective in patients with sepsis. The objective of this study was to determine the effect of APAP on AKI in patients with sepsis. This was a retrospective cohort study conducted at 2 affiliated academic medical centers in the United States. Adult patients who were admitted to the intensive care unit with a diagnosis of severe sepsis were included. Patients were categorized based on whether APAP was received within the first 7 days of hospitalization (APAP or no APAP groups). The primary outcome measure was occurrence or increase in AKI stage from admission. Multivariate logistic regression analyses were used to adjust for potential confounders. There were 238 patients who were included in the study cohort. Of these, 122 received APAP and 116 did not receive APAP. AKI or exacerbation occurred in 16.4% (n = 20) of patients in the APAP group and 19.8% (n = 23) of patients in the no APAP group ( P = 0.505). After adjusting for the most important confounders, there was no significant association between APAP use and AKI (odds ratio = 1.2; 95% CI = 0.6-2.4; P = 0.639). APAP use in critically ill patients with sepsis may not reduce the occurrence or exacerbation of AKI.

  18. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuchao; McGill, Mitchell R.; Dorko, Kenneth [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2014-09-15

    Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic. - Highlights: • APAP reproducibly causes cell death in freshly isolated primary human hepatocytes. • APAP induces adduct formation, JNK activation and mitochondrial dysfunction in PHH. • Mitochondrial adducts and JNK translocation are delayed in PHH compared to

  19. Targeted Metabolomics of Serum Acylcarnitines Evaluates Hepatoprotective Effect of Wuzhi Tablet (Schisandra sphenanthera Extract against Acute Acetaminophen Toxicity

    Directory of Open Access Journals (Sweden)

    Huichang Bi

    2013-01-01

    Full Text Available Possible prevention and therapeutic intervention strategies to counteract acetaminophen (APAP hepatotoxicity would be of great value. Wuzhi tablet (WZ, extract of Schisandrae sphenanthera possesses hepatoprotective effects against hepatitis and the hepatic dysfunction induced by various chemical hepatotoxins. In this study, the protective effect of WZ on APAP-induced hepatic injury was evaluated and targeted metabolomics by LC-MS-based metabolomics was used to examine whether WZ influences hepatic metabolism. The results demonstrated significant hepatoprotection of WZ against APAP-induced liver injury; pretreatment with WZ prior to APAP administration blocks the increase in serum palmitoylcarnitine and oleoylcarnitine and thus restores the APAP-impaired fatty acid β-oxidation to normal levels. These studies further revealed a significant and prolonged upregulation of the PPARα target genes Cpt1 and Acot1 by WZ mainly contributing to the maintenance of normal fatty acid metabolism and thus potentially contributing to the hepatic protection of WZ against APAP-induced hepatic toxicity. Taken together, the current study provides new insights into understanding the hepatoprotective effect of WZ against APAP-induced liver toxicity.

  20. Effects of cysteine and acetaminophen on the syntheses of glutathione and adenosine 3'-phosphate 5'-phosphosulfate in isolated rat hepatocytes

    DEFF Research Database (Denmark)

    Dalhoff, K; Poulsen, H E

    1992-01-01

    are dependent on sulphur deriving from cysteine. The effect of cysteine on the syntheses was investigated at non-toxic and toxic concentrations of the hepatotoxic drug acetaminophen (AA). Administration of AA trapped radioactivity (35S) in the pre-labelled PAPS and GSH pools by formation of the metabolites, AA......-sulphate and AA-GSH. Turnover rates were determined from the decline of AA-sulphate and AA-GSH specific activity. Syntheses of PAPS and GSH were calculated by multiplying the rates with the concentrations of the respective co-substrates. Increasing AA concentration from non-toxic to toxic levels resulted.......05) in experiments with non-toxic AA concentrations. In experiments with toxic AA concentrations opposite effects of cysteine were seen, i.e. median PAPS synthesis was reduced (3 to 2 nmol/10(6) cells/min) (P less than 0.05) while median GSH synthesis was unchanged (23 to 16 nmol/10(6) cells/min). The present method...

  1. Randomised controlled trial comparing oral and intravenous paracetamol (acetaminophen) plasma levels when given as preoperative analgesia.

    Science.gov (United States)

    van der Westhuizen, J; Kuo, P Y; Reed, P W; Holder, K

    2011-03-01

    Gastric absorption of oral paracetamol (acetaminophen) may be unreliable perioperatively in the starved and stressed patient. We compared plasma concentrations of parenteral paracetamol given preoperatively and oral paracetamol when given as premedication. Patients scheduled for elective ear; nose and throat surgery or orthopaedic surgery were randomised to receive either oral or intravenous paracetamol as preoperative medication. The oral dose was given 30 minutes before induction of anaesthesia and the intravenous dose given pre-induction. All patients were given a standardised anaesthetic by the same specialist anaesthetist who took blood for paracetamol concentrations 30 minutes after the first dose and then at 30 minute intervals for 240 minutes. Therapeutic concentrations of paracetamol were reached in 96% of patients who had received the drug parenterally, and 67% of patients who had received it orally. Maximum median plasma concentrations were 19 mg.l(-1) (interquartile range 15 to 23 mg.l(-1)) and 13 mg.l(-1) (interquartile range 0 to 18 mg.l(-1)) for the intravenous and oral group respectively. The difference between intravenous and oral groups was less marked after 150 minutes but the intravenous preparation gave higher plasma concentrations throughout the study period. It can be concluded that paracetamol gives more reliable therapeutic plasma concentrations when given intravenously.

  2. The Ameliorative Effects of L-2-Oxothiazolidine-4-Carboxylate on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Jun Ho Shin

    2013-03-01

    Full Text Available The aim of the study was to investigate the ameliorative effects and the mechanism of action of L-2-oxothiazolidine-4-carboxylate (OTC on acetaminophen (APAP-induced hepatotoxicity in mice. Mice were randomly divided into six groups: normal control group, APAP only treated group, APAP + 25 mg/kg OTC, APAP + 50 mg/kg OTC, APAP + 100 mg/kg OTC, and APAP + 100 mg/kg N-acetylcysteine (NAC as a reference control group. OTC treatment significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels in a dose dependent manner. OTC treatment was markedly increased glutathione (GSH production and glutathione peroxidase (GSH-px activity in a dose dependent manner. The contents of malondialdehyde and 4-hydroxynonenal in liver tissues were significantly decreased by administration of OTC and the inhibitory effect of OTC was similar to that of NAC. Moreover, OTC treatment on APAP-induced hepatotoxicity significantly reduced the formation of nitrotyrosin and terminal deoxynucleotidyl transferase dUTP nick end labeling positive areas of liver tissues in a dose dependent manner. Furthermore, the activity of caspase-3 in liver tissues was reduced by administration of OTC in a dose dependent manner. The ameliorative effects of OTC on APAP-induced liver damage in mice was similar to that of NAC. These results suggest that OTC has ameliorative effects on APAP-induced hepatotoxicity in mice through anti-oxidative stress and anti-apoptotic processes.

  3. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage

    Directory of Open Access Journals (Sweden)

    Herson Antonio González-Ponce

    2016-10-01

    Full Text Available Acetaminophen (APAP-induced acute liver failure (ALF is a serious health problem in developed countries. N-acetyl-L-cysteine (NAC, the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients and contain high levels of bioactive compounds, including antioxidants. The aim of this study was to evaluate the hepatoprotective effect of Opuntia robusta and Opuntia streptacantha extracts against APAP-induced ALF. In addition, we analyzed the antioxidant activities of these extracts. Fruit extracts (800mg/kg/day, orally were given prophylactically to male Wistar rats before intoxication with APAP (500 mg/kg, intraperitoneally. Rat hepatocyte cultures were exposed to 20mmol/LAPAP, and necrosis was assessed by LDH leakage. Opuntia robusta had significantly higher levels of antioxidants than Opuntia streptacantha. Both extracts significantly attenuated APAP-induced injury markers AST, ALT and ALP and improved liver histology. The Opuntia extracts reversed APAP-induced depletion of liver GSH and glycogen stores. In cultured hepatocytes, Opuntia extracts significantly reduced leakage of LDH and cell necrosis, both prophylactically and therapeutically. Both extracts appeared to be superior to NAC when used therapeutically. We conclude that Opuntia extracts are hepatoprotective and can be used as a nutraceutical to prevent ALF.

  4. PISA. The effect of paracetamol (acetaminophen and ibuprofen on body temperature in acute stroke: Protocol for a phase II double-blind randomised placebo-controlled trial [ISRCTN98608690

    Directory of Open Access Journals (Sweden)

    Kappelle Jaap

    2002-03-01

    Full Text Available Abstract Background During the first days after stroke, one to two fifths of the patients develop fever or subfebrile temperatures. Body temperature is a strong prognostic factor after stroke. Pharmacological reduction of temperature in patients with acute ischaemic stroke may improve their functional outcome. Previously, we studied the effect of high dose (6 g daily and low dose (3 g daily paracetamol (acetaminophen in a randomised placebo-controlled trial of 75 patients with acute ischemic stroke. In the high-dose paracetamol group, mean body temperature at 12 and 24 hours after start of treatment was 0.4°C lower than in the placebo group. The effect of ibuprofen, another potent antipyretic drug, on body-core temperature in normothermic patients has not been studied. Aim The aim of the present trial is to study the effects of high-dose paracetamol and ibuprofen on body temperature in patients with acute ischaemic stroke, and to study the safety of these treatments. Design Seventy-five (3 × 25 patients with acute ischaemic stroke confined to the anterior circulation will be randomised to treatment with either: 400 mg ibuprofen, 1000 mg acetaminophen, or with placebo 6 times daily during 5 days. Body-temperatures will be measured with a rectal electronic thermometer at the start of treatment and after 24 hours. An infrared tympanic thermometer will be used to monitor body temperature at 2-hour intervals during the first 24 hours and at 12-hour intervals thereafter. The primary outcome measure will be rectal temperature at 24 hours after the start of treatment. The study results will be analysed on an intent-to-treat basis, but an on-treatment analysis will also be performed. No formal interim analysis will be carried out.

  5. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen

    International Nuclear Information System (INIS)

    Singh, Mahendra Pratap; Kim, Ki Young; Kim, Hwa-Young

    2017-01-01

    Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA −/− ). We found that MsrA −/− mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA +/+ ). The central lobule area of the MsrA −/− liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA −/− than in MsrA +/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA −/− than in MsrA +/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA −/− than in MsrA +/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. - Highlights: • MsrA deficiency increases APAP-induced liver damage. • MsrA deletion enhances APAP-induced hepatic GSH depletion and oxidative stress. • MsrA deficiency induces more profound activation of Nrf2 in response to APAP. • MsrA protects the liver from APAP-induced toxicity.

  6. Nephroprotective and anti-inflammatory effects of aqueous extract of Melissa officinalis L. on acetaminophen-induced and pleurisy-induced lesions in rats

    Directory of Open Access Journals (Sweden)

    Denise Pereira Müzell

    2013-06-01

    Full Text Available This study assessed the bioactive properties of an aqueous extract of M. officinalis for its anti-inflammatory activity and its protection against hepatic and renal lesions induced by acetaminophen (APAP. Animals pre-treated with the crude extract in pleurisy induced by carrageenan showed a reduction in the amounts of exudate, in the numbers of leukocytes and polymorphonuclear cells. Intragastric administration of the extract for seven days prior to the APAP-induced lesion showed no protective effect on the liver. The treatment with the extract induced an increase of serum aspartate aminotransferase, indicating a rise of toxicity. Contrarily, the same treatment reduced the APAP induced lesion in kidney, with respect to ν-glutamyltransferase. The results suggested that the extract was not hepatoprotective and could lead to an increase in the lesions induced by the APAP. On the other hand, the extract was nephroprotective against the lesions induced by the APAP and showed an anti-inflammatory effect on pleurisy carrageenan-induced.

  7. Sulfate radical degradation of acetaminophen by novel iron-copper bimetallic oxidation catalyzed by persulfate: Mechanism and degradation pathways

    Science.gov (United States)

    Zhang, Yuanchun; Zhang, Qian; Hong, Junming

    2017-11-01

    A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.

  8. Ameliorative properties of aqueous extract of Ficus thonningii on erythrocyte osmotic fragility induced by acetaminophen in Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    Victor Masekaven Ahur

    2013-12-01

    Full Text Available In vitro antioxidant and erythrocyte protecting activities by aqueous extract of Ficus thonningii leaves on blood cells were studied in acetaminophen treated rats. The extract was safe at limit dose of 5000 mg kg-1body weight. The extract demonstrated dose dependent antihemolytic effect at dose levels between 50 and 200 mg kg-1 body weight. The lowest antihemolytic effect was observed at dose level of 200 mg kg-1 body given the lowest percentage hemolysis of 10.53 ± 1.76%, whereas the highest percentage hemolysis at dose level of 50 mg kg-1 was 29.02 ± 7.45%. Hematology revealed erythrocytosis at dose levels of 100 and 200 mg kg-1 body weight. Hyper-globinemia and lymphocytopenia were observed at dose levels of 100 mg kg-1 and 200 mg kg-1, respectively. The extract effectively showed scavenging activity on a stable oxidative radical diphenylpicrylhydrazyl (DPPH and a significant ferric reducing antioxidant power (FRAP activity. The plausible erythrocyte membrane protective effect may be due to its free radical scavenging activity and hence the extract can be used to improve hematological parameters and ameliorate oxidative stress.

  9. A new electrochemical sensor for the simultaneous determination of acetaminophen and codeine based on porous silicon/palladium nanostructure.

    Science.gov (United States)

    Ensafi, Ali A; Ahmadi, Najmeh; Rezaei, Behzad; Abarghoui, Mehdi Mokhtari

    2015-03-01

    A porous silicon/palladium nanostructure was prepared and used as a new electrode material for the simultaneous determination of acetaminophen (ACT) and codeine (COD). Palladium nanoparticles were assembled on porous silicon (PSi) microparticles by a simple redox reaction between the Pd precursor and PSi in an aqueous solution of hydrofluoric acid. This novel nanostructure was characterized by different spectroscopic and electrochemical techniques including scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, fourier transform infrared spectroscopy and cyclic voltammetry. The high electrochemical activity, fast electron transfer rate, high surface area and good antifouling properties of this nanostructure enhanced the oxidation peak currents and reduced the peak potentials of ACT and COD at the surface of the proposed sensor. Simultaneous determination of ACT and COD was explored using differential pulse voltammetry. A linear range of 1.0-700.0 µmol L(-1) was achieved for ACT and COD with detection limits of 0.4 and 0.3 µmol L(-1), respectively. Finally, the proposed method was used for the determination of ACT and COD in blood serum, urine and pharmaceutical compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Is There a Causal Relation between Maternal Acetaminophen Administration and ADHD?

    Directory of Open Access Journals (Sweden)

    Antonio Saad

    Full Text Available Recent epidemiological studies reported an association between maternal intake of acetaminophen (APAP and attention deficit hyperactivity disorder (ADHD in their children. However, none of these studies demonstrated causality. Our objective was to determine whether exposure to APAP during pregnancy result in hyperkinetic dysfunctions in offspring, using a murine model.Pregnant CD1 mice (N = 8/group were allocated to receive by gavage either APAP (150 mg/kg/day, equivalent to the FDA-approved maximum human clinical dose, or 0.5% carboxymethylcellulose (control group, starting on embryonic day 7 until delivery. Maternal serum APAP and alanine transaminase (ALT concentrations were determined by ELISA and kinetic colorimetric assays, respectively. Open field locomotor activity (LMA in the 30-day old mouse offspring was quantified using Photobeam Activity System. Mouse offspring were then sacrificed, whole brains processed for magnetic resonance imaging (MRI; 11.7 Tesla magnet and for neuronal quantification using Nissl stain. The association between APAP exposure and LMA in mouse offspring was analyzed using a mixed effects Poisson regression model that accounted for mouse offspring weight, gender, random selection, and testing time and day. We corrected for multiple comparisons and considered P<0.008 as statistically significant.Maternal serum APAP concentration peaked 30 minutes after gavage, reaching the expected mean of 117 μg/ml. Serum ALT concentrations were not different between groups. There were no significant differences in vertical (rearing, horizontal, or total locomotor activity between the two rodent offspring groups at the P level fixed to adjust for multiple testing. In addition, no differences were found in volumes of 29 brain areas of interest on MRI or in neuronal quantifications between the two groups.This study refutes that hypothesis that prenatal exposure to APAP causes hyperkinetic dysfunction in mouse offspring. Due to lack

  11. Off-line and real-time monitoring of acetaminophen photodegradation by an electrochemical sensor.

    Science.gov (United States)

    Berto, Silvia; Carena, Luca; Chiavazza, Enrico; Marletti, Matteo; Fin, Andrea; Giacomino, Agnese; Malandrino, Mery; Barolo, Claudia; Prenesti, Enrico; Vione, Davide

    2018-08-01

    The photochemistry of N-acetyl-para-aminophenol (acetaminophen, APAP) is here investigated by using differential pulse voltammetry (DPV) analysis to monitor APAP photodegradation upon steady-state irradiation. The purpose of this work is to assess the applicability of DPV to monitor the photochemical behaviour of xenobiotics, along with the development of an electrochemical set-up for the real-time monitoring of APAP photodegradation. We here investigated the APAP photoreactivity towards the main photogenerated reactive transients species occurring in sunlit surface waters (hydroxyl radical HO, carbonate radical CO 3 - , excited triplet state of anthraquinone-2-sulfonate used as proxy of the chromophoric DOM, and singlet oxygen 1 O 2 ), and determined relevant kinetic parameters. A standard procedure based on UV detection coupled with liquid chromatography (HPLC-UV) was used under identical experimental conditions to compare and verify the DPV-based results. The latter were in agreement with HPLC data, with the exception of the triplet-sensitized processes. In the other cases, DPV could be used as an alternative to the well-tested but more costly and time-consuming HPLC-UV technique. We have also assessed the reaction rate constant between APAP and HO by real-time DPV, which allowed for the monitoring of APAP photodegradation inside the irradiation chamber. Unfortunately, real-time DPV measurements are likely to be affected by temperature variations of the irradiated samples. Overall, DPV appeared as a fast, cheap and reasonably reliable technique when used for the off-line monitoring of APAP photodegradation. When a suitable real-time procedure is developed, it could become a very straightforward method to study the photochemical behaviour of electroactive xenobiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Anti-thromboxane B2 antibodies protect against acetaminophen-induced liver injury in mice

    Directory of Open Access Journals (Sweden)

    Ivan Ćavar

    2011-12-01

    Full Text Available Prostanoids are lipid compounds that mediate a variety of physiological and pathological functions in almost all body tissues and organs. Thromboxane (TX A2 is a powerful inducer of platelet aggregation and vasoconstriction and it has ulcerogenic activity in the gastrointestinal tract. Overdose or chronic use of a high dose of acetaminophen (N-acetyl-paminophenol, APAP is a major cause of acute liver failure in the Western world. We investigated whether TXA2 plays a role in host response to toxic effect of APAP. CBA/H Zg mice of both sexes were intoxicated with a single lethal or high sublethal dose of APAP, which was administered to animals by oral gavage. The toxicity of APAP was determined by observing the survival of mice during 48 h, by measuring concentration of alanine-aminotransferase (ALT in plasma 20-22 h after APAP administration and by liver histology. The results have shown that anti-thromboxane (TX B2 antibodies (anti-TXB2 and a selective inhibitor of thromboxane (TX synthase, benzylimidazole (BZI, were significantly hepatoprotective, while a selective thromboxane receptor (TPR antagonist, daltroban, was slightly protective in this model of acute liver injury. A stabile metabolite of TXA2, TXB2, and a stabile agonist of TPR, U-46619, had no influence on APAP-induced liver damage. Our findings suggest that TXA2 has a pathogenic role in acute liver toxicity induced with APAP, which was highly abrogated by administration of anti-TXB2. According to our results, this protection is mediated, at least in part, through decreased production of TXB2 by liver fragments ex vivo.

  13. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury

    International Nuclear Information System (INIS)

    Williams, C. David; Antoine, Daniel J.; Shaw, Patrick J.; Benson, Craig; Farhood, Anwar; Williams, Dominic P.; Kanneganti, Thirumala-Devi; Park, B. Kevin; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US and UK. Recent studies implied that APAP-induced injury is partially mediated by interleukin-1β (IL-1β), which can activate and recruit neutrophils, exacerbating injury. Mature IL-1β is formed by caspase-1, dependent on inflammasome activation. The objective of this invetstigation was to evaluate the role of the Nalp3 inflammasome on release of damage associated molecular patterns (DAMPs), hepatic neutrophil accumulation and liver injury (ALT, necrosis) after APAP overdose. Mice deficient for each component of the Nalp3 inflammasome (caspase-1, ASC and Nalp3) were treated with 300 mg/kg APAP for 24 h; these mice had similar neutrophil recruitment and liver injury as APAP-treated C57Bl/6 wildtype animals. In addition, plasma levels of DAMPs (DNA fragments, keratin-18, hypo- and hyper-acetylated forms of high mobility group box-1 protein) were similarly elevated with no significant difference between wildtype and gene knockout mice. In addition, aspirin treatment, which has been postulated to attenuate cytokine formation and the activation of the Nalp3 inflammasome after APAP, had no effect on release of DAMPs, hepatic neutrophil accumulation or liver injury. Together, these data confirm the release of DAMPs and a sterile inflammatory response after APAP overdose. However, as previously reported minor endogenous formation of IL-1β and the activation of the Nalp3 inflammasome have little impact on APAP hepatotoxicity. It appears that the Nalp3 inflammasome is not a promising therapeutic target to treat APAP overdose.

  14. Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies.

    Science.gov (United States)

    Cao, Lei; Kwara, Awewura; Greenblatt, David J

    2017-12-01

    Excessive exposure to acetaminophen (APAP, paracetamol) can cause liver injury through formation of a reactive metabolite that depletes hepatic glutathione and causes hepatocellular oxidative stress and damage. Generation of this metabolite is mediated by Cytochrome-P450 (CYP) isoforms, mainly CYP2E1. A number of naturally occurring flavonoids can mitigate APAP-induced hepatotoxicity in experimental animal models. Our objective was to determine the mechanism of these protective effects and to evaluate possible human applicability. Two flavonoids, luteolin and quercetin, were evaluated as potential inhibitors of eight human CYP isoforms, of six UDP-glucuronosyltransferase (UGT) isoforms and of APAP glucuronidation and sulfation. The experimental model was based on in-vitro metabolism by human liver microsomes, using isoform-specific substrates. Luteolin and quercetin inhibited human CYP isoforms to varying degrees, with greatest potency towards CYP1A2 and CYP2C8. However, 50% inhibitory concentrations (IC 50 values) were generally in the micromolar range. UGT isoforms were minimally inhibited. Both luteolin and quercetin inhibited APAP sulfation but not glucuronidation. Inhibition of human CYP activity by luteolin and quercetin occurred with IC 50 values exceeding customary in-vivo human exposure with tolerable supplemental doses of these compounds. The findings indicate that luteolin and quercetin are not likely to be of clinical value for preventing or treating APAP-induced hepatotoxicity. © 2017 Royal Pharmaceutical Society.

  15. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen).

    Science.gov (United States)

    Vellani, Vittorio; Giacomoni, Chiara

    2017-01-01

    Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKC ε ) translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs). We found that gabapentin significantly reduced PKC ε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen), a very commonly used analgesic drug, also produces inhibition of PKC ε . We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  16. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen

    Directory of Open Access Journals (Sweden)

    Vittorio Vellani

    2017-01-01

    Full Text Available Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKCε translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs. We found that gabapentin significantly reduced PKCε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen, a very commonly used analgesic drug, also produces inhibition of PKCε. We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  17. Preparation and electrochemical application of rutin biosensor for differential pulse voltammetric determination of NADH in the presence of acetaminophen

    Directory of Open Access Journals (Sweden)

    HAMID R. ZARE

    2010-10-01

    Full Text Available The electrocatalytic behavior of reduced nicotinamide adenine di-nucleotide (NADH was studied at the surface of a rutin biosensor, using various electrochemical methods. According to the results, the rutin biosensor had a strongly electrocatalytic effect on the oxidation of NADH with the overpotential being decreased by about 450 mV as compared to the process at a bare glassy carbon electrode, GCE. This value is significantly greater than the value of 220 mV that was reported for rutin embedded in a lipid-cast film. The kinetic parameters of the electron transfer coefficient, a, and the heterogeneous charge transfer rate constant, kh, for the electrocatalytic oxidation of NADH at the rutin biosensor were estimated. Furthermore, the linear dynamic range; sensitivity and limit of detection for NADH were evaluated using the differential pulse voltammetry method. The advantages of this biosensor for the determination of NADH are excellent catalytic activity and reproducibility, good detection limit and high exchange current density. The rutin biosensor could separate the oxidation peak potentials of NADH and acetaminophen present in the same solution while at a bare GCE, the peak potentials were indistinguishable.

  18. Identification of identical transcript changes in liver and whole blood during acetaminophen toxicity

    Directory of Open Access Journals (Sweden)

    Liwen eZhang

    2012-09-01

    Full Text Available Abstract The ability to identify mechanisms underlying drug-induced liver injury (DILI in man has been hampered by the difficulty in obtaining liver tissue from patients. It has recently been proposed that whole blood toxicogenomics may provide a noninvasive means for mechanistic studies of human DILI. However, it remains unclear to what extent changes in whole blood transcriptome mirror those in liver mechanistically linked to hepatotoxicity. To address this question, we applied the program Extracting Patterns and Identifying co-expressed Genes (EPIG to publically available toxicogenomic data obtained from rats treated with both toxic and subtoxic doses of acetaminophen (APAP. In a training set of animals, we identified genes (760 at 6 h and 185 at 24 h post dose with similar patterns of expression in blood and liver during APAP induced hepatotoxicity. The pathways represented in the coordinately regulated genes largely involved mitochondrial and immune functions. The identified expression signatures were then evaluated in a separate set of animals for discernment of APAP exposure level or APAP induced hepatotoxicity. At 6 h, the gene sets from liver and blood had equally sufficient classification of APAP exposure levels. At 24 h when toxicity was evident, the gene sets did not perform well in evaluating APAP exposure doses, but provided accurate classification of dose-independent liver injury that was evaluated by serum ALT elevation in the blood. Only thirty eight genes were common to both the 6 and 24h gene sets, but these genes had the same capability as the parent gene sets to discern the exposure level and degree of liver injury. Some of the parallel transcript changes reflect pathways that are relevant to APAP hepatotoxicity, including mitochondria and immune functions. However, the extent to which these changes reflect similar mechanisms of action in both tissues remains to be determined.

  19. Licochalcone A Upregulates Nrf2 Antioxidant Pathway and Thereby Alleviates Acetaminophen-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2018-03-01

    Full Text Available Acetaminophen (APAP overdose-induced fatal hepatotoxicity is majorly characterized by overwhelmingly increased oxidative stress while enhanced nuclear factor-erythroid 2-related factor 2 (Nrf2 is involved in prevention of hepatotoxicity. Although Licochalcone A (Lico A upregulates Nrf2 signaling pathway against oxidative stress-triggered cell injury, whether it could protect from APAP-induced hepatotoxicity by directly inducing Nrf2 activation is still poorly elucidated. This study aims to explore the protective effect of Lico A against APAP-induced hepatotoxicity and its underlying molecular mechanisms. Our findings indicated that Lico A effectively decreased tert-butyl hydroperoxide (t-BHP- and APAP-stimulated cell apoptosis, mitochondrial dysfunction and reactive oxygen species generation and increased various anti-oxidative enzymes expression, which is largely dependent on upregulating Nrf2 nuclear translocation, reducing the Keap1 protein expression, and strengthening the antioxidant response element promoter activity. Meanwhile, Lico A dramatically protected against APAP-induced acute liver failure by lessening the lethality; alleviating histopathological liver changes; decreasing the alanine transaminase and aspartate aminotransferase levels, malondialdehyde formation, myeloperoxidase level and superoxide dismutase depletion, and increasing the GSH-to-GSSG ratio. Furthermore, Lico A not only significantly modulated apoptosis-related protein by increasing Bcl-2 expression, and decreasing Bax and caspase-3 cleavage expression, but also efficiently alleviated mitochondrial dysfunction by reducing c-jun N-terminal kinase phosphorylation and translocation, inhibiting Bax mitochondrial translocation, apoptosis-inducing factor and cytochrome c release. However, Lico A-inhibited APAP-induced the lethality, histopathological changes, hepatic apoptosis, and mitochondrial dysfunction in WT mice were evidently abrogated in Nrf2-/- mice. These

  20. Oral paracetamol (acetaminophen) for cancer pain.

    Science.gov (United States)

    Wiffen, Philip J; Derry, Sheena; Moore, R Andrew; McNicol, Ewan D; Bell, Rae F; Carr, Daniel B; McIntyre, Mairead; Wee, Bee

    2017-07-12

    Pain is a common symptom with cancer, and 30% to 50% of all people with cancer will experience moderate to severe pain that can have a major negative impact on their quality of life. Non-opioid drugs are commonly used to treat mild to moderate cancer pain, and are recommended for this purpose in the WHO cancer pain treatment ladder, either alone or in combination with opioids.A previous Cochrane review that examined the evidence for nonsteroidal anti-inflammatory drugs (NSAIDs) or paracetamol, alone or combined with opioids, for cancer pain was withdrawn in 2015 because it was out of date; the date of the last search was 2005. This review, and another on NSAIDs, updates the evidence. To assess the efficacy of oral paracetamol (acetaminophen) for cancer pain in adults and children, and the adverse events reported during its use in clinical trials. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase from inception to March 2017, together with reference lists of retrieved papers and reviews, and two online study registries. We included randomised, double-blind, studies of five days' duration or longer, comparing paracetamol alone with placebo, or paracetamol in combination with an opioid compared with the same dose of the opioid alone, for cancer pain of any intensity. Single-blind and open studies were also eligible for inclusion. The minimum study size was 25 participants per treatment arm at the initial randomisation. Two review authors independently searched for studies, extracted efficacy and adverse event data, and examined issues of study quality and potential bias. We did not carry out any pooled analyses. We assessed the quality of the evidence using GRADE and created a 'Summary of findings' table. Three studies in adults satisfied the inclusion criteria, lasting up to one week; 122 participants were randomised initially, and 95 completed treatment. We found no studies in children. One study was parallel-group, and

  1. A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid

    Directory of Open Access Journals (Sweden)

    Mohammad Afrasiabi

    2016-09-01

    Full Text Available A chemically-modified electrode has been constructed based on a single walled carbon nanotube/chitosan/room temperature ionic liquid nanocomposite modified glassy carbon electrode (SWCNTs–CHIT–RTIL/GCE. It was demonstrated that this sensor could be used for simultaneous determination of acetaminophen (ACT, uric acid (URI and ascorbic acid (ASC. The measurements were carried out by application of differential pulse voltammetry (DPV, cyclic voltammetry (CV and chronoamperometry (CA methods. Electrochemical studies suggested that the RTIL and SWCNTs provided a synergistic augmentation that can increase current responses by improvement of electron transfers of these compounds on the electrode surface. The presence of the CHIT in the modified electrode can enhance the repeatability of the sensor by its antifouling effect. The modified electrode showed electrochemical responses with high sensitivity for ACT, URI and ASC determination, which makes it a suitable sensor for simultaneous sub-μmol L−1 detection of ACT, URI and ASC in aqueous solutions. The analytical performance of this sensor has been evaluated for detection of ACT, URI and ASC in human serum and urine with satisfactory results.

  2. Phytoextract of Indian mustard seeds acts by suppressing the generation of ROS against acetaminophen-induced hepatotoxicity in HepG2 cells.

    Science.gov (United States)

    Parikh, Harita; Pandita, Nancy; Khanna, Aparna

    2015-07-01

    Indian mustard [Brassica juncea (L.) Czern. & Coss. (Brassicaceae)] is reported to possess diverse pharmacological properties. However, limited information is available concerning its hepatoprotective activity and mechanism of action. To study the protective mechanism of mustard seed extract against acetaminophen (APAP) toxicity in a hepatocellular carcinoma (HepG2) cell line. Hepatotoxicity models were established using APAP (2.5-22.5 mM) based on the cytotoxicity profile. An antioxidant-rich fraction from mustard seeds was extracted and evaluated for its hepatoprotective potential. The mechanism of action was elucidated using various in vitro antioxidant assays, the detection of intracellular generation of reactive oxygen species (ROS), and cell cycle analysis. The phytoconstituents isolated via HPLC-DAD were also evaluated for hepatoprotective activity. Hydromethanolic seed extract exhibited hepatoprotective activity in post- and pre-treatment models of 20 mM APAP toxicity and restored the elevated levels of liver indices to normal values (p DAD analysis revealed the presence quercetin, vitamin E, and catechin, which exhibited hepatoprotective activity. A phytoextract of mustard seeds acts by suppressing the generation of ROS in response to APAP toxicity.

  3. Aminotriazole alleviates acetaminophen poisoning via downregulating P450 2E1 and suppressing inflammation.

    Directory of Open Access Journals (Sweden)

    Yuping Jing

    Full Text Available Aminotriazole (ATZ is commonly used as a catalase (CAT inhibitor. We previously found ATZ attenuated oxidative liver injury, but the underlying mechanisms remain unknown. Acetaminophen (APAP overdose frequently induces life-threatening oxidative hepatitis. In the present study, the potential hepatoprotective effects of ATZ on oxidative liver injury and the underlying mechanisms were further investigated in a mouse model with APAP poisoning. The experimental data indicated that pretreatment with ATZ dose- and time-dependently suppressed the elevation of plasma aminotransferases in APAP exposed mice, these effects were accompanied with alleviated histological abnormality and improved survival rate of APAP-challenged mice. In mice exposed to APAP, ATZ pretreatment decreased the CAT activities, hydrogen peroxide (H2O2 levels, malondialdehyde (MDA contents, myeloperoxidase (MPO levels in liver and reduced TNF-α levels in plasma. Pretreatment with ATZ also downregulated APAP-induced cytochrome P450 2E1 (CYP2E1 expression and JNK phosphorylation. In addition, posttreatment with ATZ after APAP challenge decreased the levels of plasma aminotransferases and increased the survival rate of experimental animals. Posttreatment with ATZ had no effects on CYP2E1 expression or JNK phosphorylation, but it significantly decreased the levels of plasma TNF-α. Our data indicated that the LD50 of ATZ in mice was 5367.4 mg/kg body weight, which is much higher than the therapeutic dose of ATZ in the present study. These data suggested that ATZ might be effective and safe in protect mice against APAP-induced hepatotoxicity, the beneficial effects might resulted from downregulation of CYP2E1 and inhibiton of inflammation.

  4. Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi, E-mail: Xi.Yang@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Salminen, William F., E-mail: Willie.Salminen@parexel.com [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Shi, Qiang, E-mail: Qiang.Shi@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Greenhaw, James, E-mail: James.Greenhaw@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Gill, Pritmohinder S., E-mail: PSGill@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Clinical Pharmacology and Toxicology Section, Arkansas Children' s Hospital, Little Rock, AR (United States); Bhattacharyya, Sudeepa, E-mail: SBhattacharyya2@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (United States); Clinical Pharmacology and Toxicology Section, Arkansas Children' s Hospital, Little Rock, AR (United States); Beger, Richard D., E-mail: Richard.Beger@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Mendrick, Donna L., E-mail: Donna.Mendrick@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); Mattes, William B., E-mail: William.Mattes@fda.hhs.gov [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR (United States); and others

    2015-04-15

    Developing biomarkers for detecting acetaminophen (APAP) toxicity has been widely investigated. Recent studies of adults with APAP-induced liver injury have reported human serum microRNA-122 (miR-122) as a novel biomarker of APAP-induced liver injury. The goal of this study was to examine extracellular microRNAs (miRNAs) as potential biomarkers for APAP liver injury in children. Global levels of serum and urine miRNAs were examined in three pediatric subgroups: 1) healthy children (n = 10), 2) hospitalized children receiving therapeutic doses of APAP (n = 10) and 3) children hospitalized for APAP overdose (n = 8). Out of 147 miRNAs detected in the APAP overdose group, eight showed significantly increased median levels in serum (miR-122, -375, -423-5p, -30d-5p, -125b-5p, -4732-5p, -204-5p, and -574-3p), compared to the other groups. Analysis of urine samples from the same patients had significantly increased median levels of four miRNAs (miR-375, -940, -9-3p and -302a) compared to the other groups. Importantly, correlation of peak serum APAP protein adduct levels (an indicator of the oxidation of APAP to the reactive metabolite N-acetyl-para-quinone imine) with peak miRNA levels showed that the highest correlation was observed for serum miR-122 (R = 0.94; p < 0.01) followed by miR-375 (R = 0.70; p = 0.05). Conclusion: Our findings demonstrate that miRNAs are increased in children with APAP toxicity and correlate with APAP protein adducts, suggesting a potential role as biomarkers of APAP toxicity. - Highlights: • Serum miR-122 and miR-375 levels were increased in children with APAP overdose. • Urine levels of miR-375 and miR-940 were increased in the APAP overdose group. • Peak serum miR-122 levels were correlated with peak serum APAP protein adducts.

  5. Study of the Transformations of Micro/Nano-crystalline Acetaminophen Polymorphs in Drug-Polymer Binary Mixtures.

    Science.gov (United States)

    Maniruzzaman, Mohammed; Lam, Matthew; Molina, Carlos; Nokhodchi, Ali

    2017-07-01

    This study elucidates the physical properties of sono-crystallised micro/nano-sized acetaminophen/paracetamol (PMOL) and monitors its possible transformation from polymorphic form I (monoclinic) to form II (orthorhombic). Hydrophilic Plasdone® S630 copovidone (S630), N-vinyl-2-pyrrolidone and vinyl acetate copolymer, and methacrylate-based cationic copolymer, Eudragit® EPO (EPO), were used as polymeric carriers to prepare drug/polymer binary mixtures. Commercially available PMOL was crystallised under ultra sound sonication to produce micro/nano-sized (0.2-10 microns) crystals in monoclinic form. Homogeneous binary blends of drug-polymer mixtures at various drug concentrations were obtained via a thorough mixing. The analysis conducted via the single X-ray crystallography determined the detailed structure of the crystallised PMOL in its monoclinic form. The solid state and the morphology analyses of the PMOL in the binary blends evaluated via differential scanning calorimetry (DSC), modulated temperature DSC (MTDSC), scanning electron microscopy (SEM) and hot stage microscopy (HSM) revealed the crystalline existence of the drug within the amorphous polymeric matrices. The application of temperature controlled X-ray diffraction (VTXRPD) to study the polymorphism of PMOL showed that the most stable form I (monoclinic) was altered to its less stable form II (orthorhombic) at high temperature (>112°C) in the binary blends regardless of the drug amount. Thus, VTXRD was used as a useful tool to monitor polymorphic transformations of crystalline drug (e.g. PMOL) to assess their thermal stability in terms of pharmaceutical product development and research.

  6. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behaviour.

    Science.gov (United States)

    Hay-Schmidt, Anders; Finkielman, Olivia T Ejlstrup; Jensen, Benjamin A H; Høgsbro, Christine F; Bak Holm, Jacob; Johansen, Kristoffer Haurum; Jensen, Tina Kold; Andrade, Anderson Martino; Swan, Shanna H; Bornehag, Carl-Gustaf; Brunak, Søren; Jegou, Bernard; Kristiansen, Karsten; Kristensen, David Møbjerg

    2017-08-01

    Paracetamol/acetaminophen (N-Acetyl-p-Aminophenol; APAP) is the preferred analgesic for pain relief and fever during pregnancy. It has therefore caused concern that several studies have reported that prenatal exposure to APAP results in developmental alterations in both the reproductive tract and the brain. Genitals and nervous system of male mammals are actively masculinised during foetal development and early postnatal life by the combined actions of prostaglandins and androgens, resulting in the male-typical reproductive behaviour seen in adulthood. Both androgens and prostaglandins are known to be inhibited by APAP. Through intrauterine exposure experiments in C57BL/6 mice, we found that exposure to APAP decreased neuronal number in the sexually dimorphic nucleus (SDN) of the preoptic area (POA) in the anterior hypothalamus of male adult offspring. Likewise, exposure to the environmental pollutant and precursor of APAP, aniline, resulted in a similar reduction. Decrease in neuronal number in the SDN-POA is associated with reductions in male sexual behaviour. Consistent with the changes, male mice exposed in uteri to APAP exhibited changes in urinary marking behaviour as adults and had a less aggressive territorial display towards intruders of the same gender. Additionally, exposed males had reduced intromissions and ejaculations during mating with females in oestrus. Together, these data suggest that prenatal exposure to APAP may impair male sexual behaviour in adulthood by disrupting the sexual neurobehavioral programming. These findings add to the growing body of evidence suggesting the need to limit the widespread exposure and use of APAP by pregnant women. © 2017 Society for Reproduction and Fertility.

  7. The preparation of TiO2@rGO nanocomposite efficiently activated with UVA/LED and H2O2 for high rate oxidation of acetaminophen: Catalyst characterization and acetaminophen degradation and mineralization

    Science.gov (United States)

    Cheshme Khavar, Amir Hossein; Moussavi, Gholamreza; Mahjoub, Ali Reza

    2018-05-01

    The present work was focused on the preparation of TiO2@rGO nanocomposite using an innovative facile synthesis method and the investigation of its photocatalytic activity in a UVA/LED photoreactor. The XRD patterns indicated anatase structure for all samples. Presence of rGO in nanocomposites was confirmed by FT-IR and Raman spectra. Also, mono-dispersed TiO2 nanoparticles on rGO sheet were shown in the SEM and HRTEM images. The prepared TiO2@rGO nanocomposite was used as the photocatalyst for degradation of acetaminophen (ACT) in the photoreactor illuminated with UVA/LEDs having the intensity of 95 μW/cm2. The complete degradation of 50 mg/L ACT was attained within 50 min in the LED/TiO2@rGO process while P25/LED process only showed 17% ACT degradation under similar experimental conditions. The photocatalytic activity was strongly affected by the rGO to TiO2 ratio in the nanocomposites and the highest photocatalytic activity was observed at 3.0 wt.% of rGO. Reaction with free radOH was the main mechanism involved in the ACT photodegradation in the TiO2@rGO/LED process under the selected conditions. The performance of LED/TiO2@rGO process improved by four and three times in ACT degradation and mineralization, respectively, at the presence of H2O2. As made TiO2@rGO nanocompsite could preserve its catalytic activity during five consecutive recycles in the process. Accordingly, TiO2@rGO nanocomposite is an active and stable catalyst in the UVA/LED photoreactor for high rate degradation of pharmaceuticals in the contaminated water.

  8. Role of NAD(P)H:quinone oxidoreductase 1 in clofibrate-mediated hepatoprotection from acetaminophen

    International Nuclear Information System (INIS)

    Moffit, Jeffrey S.; Aleksunes, Lauren M.; Kardas, Michael J.; Slitt, Angela L.; Klaassen, Curtis D.; Manautou, Jose E.

    2007-01-01

    Mice pretreated with the peroxisome proliferator clofibrate (CFB) are resistant to acetaminophen (APAP) hepatotoxicity. Whereas the mechanism of protection is not entirely known, CFB decreases protein adducts formed by the reactive metabolite of APAP, N-acetyl-p-benzoquinone imine (NAPQI). NAD(P)H:quinone oxidoreductase 1 (NQO1) is an enzyme with antioxidant properties that is responsible for the reduction of cellular quinones. We hypothesized that CFB increases NQO1 activity, which in turn enhances the conversion of NAPQI back to the parent APAP. This could explain the decreases in APAP covalent binding and glutathione depletion produced by CFB without affecting APAP bioactivation to NAPQI. Administration of CFB (500 mg/kg, i.p.) to male CD-1 mice for 5 or 10 days increased NQO1 protein and activity levels. To evaluate the capacity of NQO1 to reduce NAPQI back to APAP, we utilized a microsomal activating system. Cytochrome P450 enzymes present in microsomes bioactivate APAP to NAPQI, which binds the electrophile trapping agent, N-acetyl cysteine (NAC). We analyzed the formation of APAP-NAC metabolite in the presence of human recombinant NQO1. Results indicate that NQO1 is capable of reducing NAPQI. The capacity of NQO1 to amelioriate APAP toxicity was then evaluated in primary hepatocytes. Primary hepatocytes isolated from mice dosed with CFB are resistant to APAP toxicity. These hepatocytes were also exposed to ES936, a high affinity, and irreversible inhibitor of NQO1 in the presence of APAP. Concentrations of ES936 that resulted in over 94% inhibition of NQO1 activity did not increase the susceptibility of hepatocytes from CFB treated mice to APAP. Whereas NQO1 is mechanistically capable of reducing NAPQI, CFB-mediated hepatoprotection does not appear to be dependent upon enhanced expression of NQO1

  9. What is the clinical significance of 5-oxoproline (pyroglutamic acid) in high anion gap metabolic acidosis following paracetamol (acetaminophen) exposure?

    Science.gov (United States)

    Liss, D B; Paden, M S; Schwarz, E S; Mullins, M E

    2013-11-01

    Paracetamol (acetaminophen) ingestion is the most frequent pharmaceutical overdose in the developed world. Metabolic acidosis sometimes occurs, but the acidosis is infrequently persistent or severe. A growing number of case reports and case series describe high anion gap metabolic acidosis (HAGMA) following paracetamol exposure with subsequent detection or measurement of 5-oxoproline (also called pyroglutamic acid) in blood, urine, or both. Typically 5-oxoprolinuria or 5-oxoprolinemia occurs in the setting of inborn genetic errors in glutathione metabolism. It is unknown whether 5-oxoprolinemia in the setting of paracetamol exposure reflects an acquired or transient derangement of glutathione metabolism or previously unrecognized genetic defects. We reviewed the published cases of 5-oxoprolinemia or 5-oxoprolinuria among patients with HAGMA in the setting of paracetamol exposure. Our goal was to identify any consistent features that might increase our understanding of the pathophysiology, diagnosis, and treatment of similar cases. We searched the medical literature using PUBMED and EMBASE from inception to 28 August 2013 applying search terms ("oxoproline" OR "pyroglutamic acid" AND "paracetamol" OR "acetaminophen"). The intersection of these two searches returned 77 articles, of which 64 involved human subjects and were in English. Two articles, one each in Spanish and Dutch, were reviewed. An additional Google Scholar search was done with the same terms. We manually searched the reference lists of retrieved articles to identify additional four relevant articles. We focused on articles including measured 5-oxoproline concentrations in urine or blood. Twenty-two articles included quantified 5-oxoproline concentrations. Several additional articles mentioned only qualitative detection of 5-oxoproline in urine or blood without concentrations being reported. Our manual reference search yielded four additional articles for a total of 24 articles describing 43 patients

  10. Optimizing the taste-masked formulation of acetaminophen using sodium caseinate and lecithin by experimental design.

    Science.gov (United States)

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-09-10

    In a previous study of ours, the association of sodium caseinate and lecithin was demonstrated to be promising for masking the bitterness of acetaminophen via drug encapsulation. The encapsulating mechanisms were suggested to be based on the segregation of multicomponent droplets occurring during spray-drying. The spray-dried particles delayed the drug release within the mouth during the early time upon administration and hence masked the bitterness. Indeed, taste-masking is achieved if, within the frame of 1-2 min, drug substance is either not released or the released amount is below the human threshold for identifying its bad taste. The aim of this work was (i) to evaluate the effect of various processing and formulation parameters on the taste-masking efficiency and (ii) to determine the optimal formulation for optimal taste-masking effect. Four investigated input variables included inlet temperature (X1), spray flow (X2), sodium caseinate amount (X3) and lecithin amount (X4). The percentage of drug release amount during the first 2 min was considered as the response variable (Y). A 2(4)-full factorial design was applied and allowed screening for the most influential variables i.e. sodium caseinate amount and lecithin amount. Optimizing these two variables was therefore conducted by a simplex approach. The SEM and DSC results of spray-dried powder prepared under optimal conditions showed that drug seemed to be well encapsulated. The drug release during the first 2 min significantly decreased, 7-fold less than the unmasked drug particles. Therefore, the optimal formulation that performed the best taste-masking effect was successfully achieved. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Acylcarnitine Profiles in Acetaminophen Toxicity in the Mouse: Comparison to Toxicity, Metabolism and Hepatocyte Regeneration

    Directory of Open Access Journals (Sweden)

    Jack Hinson

    2013-08-01

    Full Text Available High doses of acetaminophen (APAP result in hepatotoxicity that involves metabolic activation of the parent compound, covalent binding of the reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI to liver proteins, and depletion of hepatic glutathione. Impaired fatty acid β-oxidation has been implicated in previous studies of APAP-induced hepatotoxicity. To better understand relationships between toxicity and fatty acid β-oxidation in the liver in APAP toxicity, metabolomic assays for long chain acylcarnitines were examined in relationship to established markers of liver toxicity, oxidative metabolism, and liver regeneration in a time course study in mice. Male B6C3F1 mice were treated with APAP (200 mg/kg IP or saline and sacrificed at 1, 2, 4, 8, 24 or 48 h after APAP. At 1 h, hepatic glutathione was depleted and APAP protein adducts were markedly increased. Alanine aminotransferase (ALT levels were elevated at 4 and 8 h, while proliferating cell nuclear antigen (PCNA expression, indicative of hepatocyte regeneration, was apparent at 24 h and 48 h. Elevations of palmitoyl, oleoyl and myristoyl carnitine were apparent by 2–4 h, concurrent with the onset of Oil Red O staining in liver sections. By 8 h, acylcarnitine levels were below baseline levels and remained low at 24 and 48 h. A partial least squares (PLS model suggested a direct association of acylcarnitine accumulation in serum to APAP protein adduct and hepatic glutathione levels in mice. Overall, the kinetics of serum acylcarnitines in APAP toxicity in mice followed a biphasic pattern involving early elevation after the metabolism phases of toxicity and later depletion of acylcarnitines.

  12. Reduced SHARPIN and LUBAC Formation May Contribute to CCl4- or Acetaminophen-Induced Liver Cirrhosis in Mice

    Directory of Open Access Journals (Sweden)

    Takeshi Yamamotoya

    2017-02-01

    Full Text Available Linear ubiquitin chain assembly complex (LUBAC, composed of SHARPIN (SHANK-associated RH domain-interacting protein, HOIL-1L (longer isoform of heme-oxidized iron-regulatory protein 2 ubiquitin ligase-1, and HOIP (HOIL-1L interacting protein, forms linear ubiquitin on nuclear factor-κB (NF-κB essential modulator (NEMO and induces NF-κB pathway activation. SHARPIN expression and LUBAC formation were significantly reduced in the livers of mice 24 h after the injection of either carbon tetrachloride (CCl4 or acetaminophen (APAP, both of which produced the fulminant hepatitis phenotype. To elucidate its pathological significance, hepatic SHARPIN expression was suppressed in mice by injecting shRNA adenovirus via the tail vein. Seven days after this transduction, without additional inflammatory stimuli, substantial inflammation and fibrosis with enhanced hepatocyte apoptosis occurred in the livers. A similar but more severe phenotype was observed with suppression of HOIP, which is responsible for the E3 ligase activity of LUBAC. Furthermore, in good agreement with these in vivo results, transduction of Hepa1-6 hepatoma cells with SHARPIN, HOIL-1L, or HOIP shRNA adenovirus induced apoptosis of these cells in response to tumor necrosis factor-α (TNFα stimulation. Thus, LUBAC is essential for the survival of hepatocytes, and it is likely that reduction of LUBAC is a factor promoting hepatocyte death in addition to the direct effect of drug toxicity.

  13. Diet Restriction Inhibits Apoptosis and HMGB1 Oxidation and Promotes Inflammatory Cell Recruitment during Acetaminophen Hepatotoxicity

    Science.gov (United States)

    Antoine, Daniel James; Williams, Dominic P; Kipar, Anja; Laverty, Hugh; Park, B Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-dependent cysteine 106 oxidation within high mobility group box-1 protein (HMGB1) released by ATP depletion in dying cells as a mechanism of immune activation. In fed mice treated with APAP, necrosis was the dominant form of hepatocyte death. However, apoptosis was also observed, indicated by K18 cleavage, DNA laddering and procaspase-3 processing. In fasted mice treated with APAP, only necrosis was observed. Inflammatory cell recruitment as a consequence of hepatocyte death was observed only in fasted mice treated with APAP or fed mice cotreated with a caspase inhibitor. Hepatic inflammation was also associated with loss in detection of serum oxidized-HMGB1. A significant role of HMGB1 in the induction of inflammation was confirmed with an HMGB1-neutralizing antibody. The differential response between fasted and fed mice was a consequence of a significant reduction in basal hepatic ATP, which prevented caspase processing, rather than glutathione depletion or altered APAP metabolism. Thus, the inhibition of caspase-driven apoptosis and HMGB1 oxidation by ATP depletion from fasting promotes an inflammatory response during drug-induced hepatotoxicity/liver pathology. PMID:20811657

  14. Association of Placebo, Indomethacin, Ibuprofen, and Acetaminophen With Closure of Hemodynamically Significant Patent Ductus Arteriosus in Preterm Infants: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Mitra, Souvik; Florez, Ivan D; Tamayo, Maria E; Mbuagbaw, Lawrence; Vanniyasingam, Thuva; Veroniki, Areti Angeliki; Zea, Adriana M; Zhang, Yuan; Sadeghirad, Behnam; Thabane, Lehana

    2018-03-27

    Despite increasing emphasis on conservative management of patent ductus arteriosus (PDA) in preterm infants, different pharmacotherapeutic interventions are used to treat those developing a hemodynamically significant PDA. To estimate the relative likelihood of hemodynamically significant PDA closure with common pharmacotherapeutic interventions and to compare adverse event rates. The databases of MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were searched from inception until August 15, 2015, and updated on December 31, 2017, along with conference proceedings up to December 2017. Randomized clinical trials that enrolled preterm infants with a gestational age younger than 37 weeks treated with intravenous or oral indomethacin, ibuprofen, or acetaminophen vs each other, placebo, or no treatment for a clinically or echocardiographically diagnosed hemodynamically significant PDA. Data were independently extracted in pairs by 6 reviewers and synthesized with Bayesian random-effects network meta-analyses. Primary outcome: hemodynamically significant PDA closure; secondary: included surgical closure, mortality, necrotizing enterocolitis, and intraventricular hemorrhage. In 68 randomized clinical trials of 4802 infants, 14 different variations of indomethacin, ibuprofen, or acetaminophen were used as treatment modalities. The overall PDA closure rate was 67.4% (2867 of 4256 infants). A high dose of oral ibuprofen was associated with a significantly higher odds of PDA closure vs a standard dose of intravenous ibuprofen (odds ratio [OR], 3.59; 95% credible interval [CrI], 1.64-8.17; absolute risk difference, 199 [95% CrI, 95-258] more per 1000 infants) and a standard dose of intravenous indomethacin (OR, 2.35 [95% CrI, 1.08-5.31]; absolute risk difference, 124 [95% CrI, 14-188] more per 1000 infants). Based on the ranking statistics, a high dose of oral ibuprofen ranked as the best pharmacotherapeutic option for PDA closure (mean surface under the

  15. Paracetamol (Acetaminophen) in stroke 2 (PAIS 2): protocol for a randomized, placebo-controlled, double-blind clinical trial to assess the effect of high-dose paracetamol on functional outcome in patients with acute stroke and a body temperature of 36.5 °C or above.

    Science.gov (United States)

    de Ridder, Inger R; de Jong, Frank Jan; den Hertog, Heleen M; Lingsma, Hester F; van Gemert, H Maarten A; Schreuder, A H C M L Tobien; Ruitenberg, Annemieke; Maasland, E Lisette; Saxena, Ritu; Oomes, Peter; van Tuijl, Jordie; Koudstaal, Peter J; Kappelle, L Jaap; Algra, Ale; van der Worp, H Bart; Dippel, Diederik W J

    2015-04-01

    In the first hours after stroke onset, subfebrile temperatures and fever have been associated with poor functional outcome. In the first Paracetamol (Acetaminophen) in Stroke trial, a randomized clinical trial of 1400 patients with acute stroke, patients who were treated with high-dose paracetamol showed more improvement on the modified Rankin Scale at three-months than patients treated with placebo, but this difference was not statistically significant. In the 661 patients with a baseline body temperature of 37.0 °C or above, treatment with paracetamol increased the odds of functional improvement (odds ratio 1.43; 95% confidence interval: 1.02-1.97). This relation was also found in the patients with a body temperature of 36.5 °C or higher (odds ratio 1.31; 95% confidence interval 1.01-1.68). These findings need confirmation. The study aims to assess the effect of high-dose paracetamol in patients with acute stroke and a body temperature of 36.5 °C or above on functional outcome. The Paracetamol (Acetaminophen) In Stroke 2 trial is a multicenter, randomized, double-blind, placebo-controlled clinical trial. We use a power of 85% to detect a significant difference in the scores on the modified Rankin Scale of the paracetamol group compared with the placebo group at a level of significance of 0.05 and assume a treatment effect of 7%. Fifteen-hundred patients with acute ischemic stroke or intracerebral hemorrhage and a body temperature of 36.5 °C or above will be included within 12 h of symptom onset. Patients will be treated with paracetamol in a daily dose of six-grams or matching placebo for three consecutive days. The Paracetamol (Acetaminophen) In Stroke 2 trial has been registered as NTR2365 in The Netherlands Trial Register. The primary outcome will be improvement on the modified Rankin Scale at three-months as analyzed by ordinal logistic regression. If high-dose paracetamol will be proven effective, a simple, safe, and extremely cheap therapy will be

  16. Use of calcium caseinate in association with lecithin for masking the bitterness of acetaminophen--comparative study with sodium caseinate.

    Science.gov (United States)

    Hoang Thi, Thanh Huong; Lemdani, Mohamed; Flament, Marie-Pierre

    2013-11-18

    Owing to a variety of structural and functional properties, milk proteins are steadily studied for food and pharmaceutical applications. In the present study, calcium caseinate in association with lecithin was firstly investigated in order to encapsulate the acetaminophen through spray-drying for taste-masking purpose for pediatric medicines. A 2(4)-full factorial design revealed that the spray flow, the calcium caseinate amount and the lecithin amount had significant effects on the release of drug during the first 2 min. Indeed, increasing the spray flow and/or the calcium caseinate amount led to increase the released amount, whereas increasing the lecithin amount decreased the released amount. The "interaction" between the calcium caseinate amount and the lecithin amount was also shown to be statistically significant. The second objective was to compare the efficiency of two caseinate-based formulations, i.e. sodium caseinate and calcium caseinate, on the taste-masking effect. The characteristics of spray-dried powders determined by SEM and DSC were shown to depend on the caseinate/lecithin proportion rather than the type of caseinate. Interestingly, calcium caseinate-based formulations were found to lower the released amount of drug during the early time to a higher extent than sodium caseinate-based formulations, which indicates better taste-masking efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Hepatoprotective effect of Crocus sativus (saffron petals extract against acetaminophen toxicity in male Wistar rats

    Directory of Open Access Journals (Sweden)

    Arash Omidi

    2014-09-01

    Full Text Available Objectives: Acetaminophen (APAP toxicity is known to be common and potentially fatal. This study aims to investigate the protective effects of hydroalcoholic extract, remaining from Crocus sativus petals (CSP against APAP-induced hepatotoxicity by measuring the blood parameters and studying the histopathology of liver in male rats. Materials and Methods: Wister rats (24 were randomly assigned into four groups including: I healthy, receiving normal saline; II Intoxicated, receiving only APAP (600 mg/kg; III pre-treated with low dose of CSP (10 mg /kg and receiving APAP (600 mg/kg; IV pre-treated with high dose of CSP (20 mg/kg and receiving APAP (600 mg/kg. Results: The APAP treatment resulted in higher levels of alanine aminotransferase (ALT, aspartate aminotransferase (AST, and bilirubin, along with lower total protein and albumin concentration than the control group. The administration of CSP with a dose of 20 mg/kg was found to result in lower levels of AST, ALT and bilirubin, with a significant higher concentration of total protein and albumin. The histopathological results regarding liver pathology, revealed sever conditions including cell swelling, severe inflammation and necrosis in APAP-exposed rats, which was quiet contrasting compared to the control group. The pre-treated rats with low doses of ‍CSP showed hydropic degeneration with mild necrosis in centrilobular areas of the liver, while the same subjects with high doses of ‍CSP appeared to have only mild hepatocyte degeneration. Conclusions: Doses of 20 mg/kg of CSP ameliorates APAP–induced acute liver injury in rats. It was concluded that the antioxidant property of CSP resulted in reducing the oxidative stress complications of toxic levels of APAP in intoxicated rats.

  18. Acetaminophen (Paracetamol) induced acute liver failure - A social problem in an era of increasing tendency to self-treatment.

    Science.gov (United States)

    Wróblewski, Tadeusz; Kobryń, Konrad; Kozieł, Sławomir; Ołdakowska-Jedynak, Urszula; Pinkas, Jarosław; Danielewicz, Roman; Ziarkiewicz-Wróblewska, Bogna; Krawczyk, Marek

    2015-01-01

    The widespread availability of medication without prescription, so-called over the counter (OTC), and the rapid development of health consciousness of Poles is associated with broad access to medical information in the mass media. This causes patients to recognize their own disease, cancel doctor's appointments, and begin self-treatment. This time and money-saving behavior, often signaled by pain, usually leads to the treatment of symptoms alone, without seeking the cause of the disease.The aim of the study was to present life-threatening paracetamol poisoning, and the treatment of acute liver failure. In 2002-2014, 35 patients were hospitalized due to acute paracetamol poisoning: 17 female and 18 male patients aged between 17-59 (mean 32.3 years). Patients were treated in the surgical intensive care unit, where their parameters of liver and renal function were continuously monitored. If there was no improvement in the liver function, patients underwent albumin dialysis with the Prometheus system and were qualified for liver transplantation (LTx). 26 patients were treated pharmacologically and 7 out of 9 patients who underwent LTx were dialyzed. Overall, 11 patients had 26 albumin dialysis in total; 4 patients died - 1 post-transplant and 3 pre-transplant. Paracetamol is the cause of many poisonings resulting from the lack of public awareness about toxic interactions with alcohol, and suicide attempts. Acetaminophen-induced acute liver failure concerns a small percentage of patients but can be successfully treated with albumin dialysis, and in extreme cases by liver transplantation.

  19. A Liver-centric Multiscale Modeling Framework for Xenobiotics

    Science.gov (United States)

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study foc...

  20. The Effect of Rebadioside A on Attenuation of Oxidative Stress in Kidney of Mice under Acetaminophen Toxicity

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hashemi

    2014-11-01

    Full Text Available Background: Acetaminophen (APAP overdose causes renal and hepatic injury. It is also believed that oxidative stress has a pivotal role in APAP-induced renal injury. Therefore, protective effects of different antioxidants have been examined in APAP-induced renal and hepatic toxicity models. Stevia rebadiana is a plant with a high degree of natural antioxidant activity in its leaf extract. The aim of this study was to investigate the possible protective effects of rebadioside A; one of the main components of stevia extract, on APAP-induced oxidative stress in kidney of mice. Methods: Oxidative stress was induced in kidney of BALB/c mice by the intraperitoneal (i.p. administration of a single dose of 300 mg/kg APAP. Some of these mice also received rebadioside A (700 mg/kg (i.p. 30 minutes after APAP injection. Two and six hours after APAP injection, all mice were sacrificed and malondialdehyde (MDA, glutathione (GSH, free APAP, and glutathione conjugated of APAP (APAP-GSH were determined in the kidney tissue. Results: GSH depletion and MDA levels significantly (P<0.05 increased in mice treated with either APAP or APAP plus Rebadioside A, respectively in 2 and 6 hours intervals after APAP administration. Significantly (P<0.05 higher levels of free APAP and APAP-GSH levels detected in kidney of mice administrated with APAP plus rebadioside A compared to APAP treated ones. Conclusion: Rebadioside A may be a potential compound in alleviation of APAP-induced oxidative stress in kidney of mice after APAP overdoses.

  1. PAIS 2 (Paracetamol [Acetaminophen] in Stroke 2): Results of a Randomized, Double-Blind Placebo-Controlled Clinical Trial.

    Science.gov (United States)

    de Ridder, Inger R; den Hertog, Heleen M; van Gemert, H Maarten A; Schreuder, A H C M L Tobien; Ruitenberg, Annemieke; Maasland, E Lisette; Saxena, Ritu; van Tuijl, Jordie H; Jansen, Ben P W; Van den Berg-Vos, Renske M; Vermeij, Frederique; Koudstaal, Peter J; Kappelle, L Jaap; Algra, Ale; van der Worp, H Bart; Dippel, Diederik W J

    2017-04-01

    Subfebrile body temperature and fever in the first days after stroke are strongly associated with unfavorable outcome. A subgroup analysis of a previous trial suggested that early treatment with paracetamol may improve functional outcome in patients with acute stroke and a body temperature of ≥36.5°C. In the present trial, we aimed to confirm this finding. PAIS 2 (Paracetamol [Acetaminophen] in Stroke 2) was a multicenter, randomized, double-blind, placebo-controlled clinical trial. We aimed to include 1500 patients with acute ischemic stroke or intracerebral hemorrhage within 12 hours of symptom onset. Patients were treated with paracetamol in a daily dose of 6 g or matching placebo for 3 consecutive days. The primary outcome was functional outcome at 3 months, assessed with the modified Rankin Scale and analyzed with multivariable ordinal logistic regression. Because of slow recruitment and lack of funding, the study was stopped prematurely. Between December 2011 and October 2015, we included 256 patients, of whom 136 (53%) were allocated to paracetamol. In this small sample, paracetamol had no effect on functional outcome (adjusted common odds ratio, 1.15; 95% confidence interval, 0.74-1.79). There was no difference in the number of serious adverse events (paracetamol n=35 [26%] versus placebo n=28 [24%]). Treatment with high-dose paracetamol seemed to be safe. The effect of high-dose paracetamol on functional outcome remains uncertain. Therefore, a large trial of early treatment with high-dose paracetamol is still needed. URL: http://www.trialregister.nl. Unique identifier: NTR2365. © 2017 American Heart Association, Inc.

  2. Effects of imatinib mesylate on the pharmacokinetics of paracetamol (acetaminophen) in Korean patients with chronic myelogenous leukaemia.

    Science.gov (United States)

    Kim, Dong-Wook; Tan, Eugene Y; Jin, Yu; Park, Sahee; Hayes, Michael; Demirhan, Eren; Schran, Horst; Wang, Yanfeng

    2011-02-01

    The major objective of the present study was to investigate the effect of imatinib on the pharmacokinetics of paracetamol in patients with chronic myelogenous leukaemia (CML). Patients (n = 12) received a single oral dose of acetaminophen 1000 mg on day 1 (control). On days 2-8, imatinib 400 mg was administered daily. On day 8 (treatment), another 1000 mg dose of paracetamol was administered 1 h after the morning dose of imatinib 400 mg. Blood and urine samples were collected for bioanalytical analyses. The area under the plasma concentration-time curve (AUC) for paracetamol, paracetamol glucuronide and paracetamol sulphate under control conditions was similar to that after treatment with imatinib; the 90% confidence interval of the log AUC ratio was within 0.8 to 1.25. Urinary excretion of paracetamol, paracetamol glucuronide and paracetamol sulphate was also unaffected by imatinib. The pharmacokinetics of paracetamol and imatinib in Korean patients with CML were similar to previous pharmacokinetic results in white patients with CML. Co-administration of a single dose of paracetamol and multiple doses of imatinib was well tolerated and safety profiles were similar to those of either drug alone. The pharmacokinetics of paracetamol and its major metabolites in the presence of imatinib were similar to those of the control conditions and the combination was well tolerated. These findings suggest that imatinib can be safely administered with paracetamol without dose adjustment of either drug. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  3. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Ghorbani-Bidkorbeh, Fatemeh; Shahrokhian, Saeed; Mohammadi, Ali; Dinarvand, Rassoul

    2010-01-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 μL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 μM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 μM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  4. Interventions for paracetamol (acetaminophen) overdose.

    Science.gov (United States)

    Chiew, Angela L; Gluud, Christian; Brok, Jesper; Buckley, Nick A

    2018-02-23

    Paracetamol (acetaminophen) is the most widely used non-prescription analgesic in the world. Paracetamol is commonly taken in overdose either deliberately or unintentionally. In high-income countries, paracetamol toxicity is a common cause of acute liver injury. There are various interventions to treat paracetamol poisoning, depending on the clinical status of the person. These interventions include inhibiting the absorption of paracetamol from the gastrointestinal tract (decontamination), removal of paracetamol from the vascular system, and antidotes to prevent the formation of, or to detoxify, metabolites. To assess the benefits and harms of interventions for paracetamol overdosage irrespective of the cause of the overdose. We searched The Cochrane Hepato-Biliary Group Controlled Trials Register (January 2017), CENTRAL (2016, Issue 11), MEDLINE (1946 to January 2017), Embase (1974 to January 2017), and Science Citation Index Expanded (1900 to January 2017). We also searched the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov database (US National Institute of Health) for any ongoing or completed trials (January 2017). We examined the reference lists of relevant papers identified by the search and other published reviews. Randomised clinical trials assessing benefits and harms of interventions in people who have ingested a paracetamol overdose. The interventions could have been gastric lavage, ipecacuanha, or activated charcoal, or various extracorporeal treatments, or antidotes. The interventions could have been compared with placebo, no intervention, or to each other in differing regimens. Two review authors independently extracted data from the included trials. We used fixed-effect and random-effects Peto odds ratios (OR) with 95% confidence intervals (CI) for analysis of the review outcomes. We used the Cochrane 'Risk of bias' tool to assess the risks of bias (i.e. systematic errors leading to overestimation of

  5. Do poison center triage guidelines affect healthcare facility referrals?

    Science.gov (United States)

    Benson, B E; Smith, C A; McKinney, P E; Litovitz, T L; Tandberg, W D

    2001-01-01

    The purpose of this study was to determine the extent to which poison center triage guidelines influence healthcare facility referral rates for acute, unintentional acetaminophen-only poisoning and acute, unintentional adult formulation iron poisoning. Managers of US poison centers were interviewed by telephone to determine their center's triage threshold value (mg/kg) for acute iron and acute acetaminophen poisoning in 1997. Triage threshold values and healthcare facility referral rates were fit to a univariate logistic regression model for acetaminophen and iron using maximum likelihood estimation. Triage threshold values ranged from 120-201 mg/kg (acetaminophen) and 16-61 mg/kg (iron). Referral rates ranged from 3.1% to 24% (acetaminophen) and 3.7% to 46.7% (iron). There was a statistically significant inverse relationship between the triage value and the referral rate for acetaminophen (p variability in poison center triage values and referral rates for iron and acetaminophen poisoning. Guidelines can account for a meaningful proportion of referral variation. Their influence appears to be substance dependent. These data suggest that efforts to determine and utilize the highest, safe, triage threshold value could substantially decrease healthcare costs for poisonings as long as patient medical outcomes are not compromised.

  6. Antioxidant properties of Taraxacum officinale leaf extract are involved in the protective effect against hepatoxicity induced by acetaminophen in mice.

    Science.gov (United States)

    Colle, Dirleise; Arantes, Leticia Priscilla; Gubert, Priscila; da Luz, Sônia Cristina Almeida; Athayde, Margareth Linde; Teixeira Rocha, João Batista; Soares, Félix Alexandre Antunes

    2012-06-01

    Acetaminophen (APAP) hepatotoxicity has been related to several cases of hepatitis, cirrhosis, and hepatic transplant. As APAP hepatotoxicity is related to reactive oxygen species (ROS) formation and excessive oxidative stress, natural antioxidant compounds have been tested as an alternative therapy to diminish the hepatic dysfunction induced by APAP. Taraxacum officinale Weber (Family Asteraceae), commonly known as dandelion, is used for medicinal purposes because of its choleretic, diuretic, antioxidant, anti-inflammatory, and hepatoprotective properties. This study evaluated the hepatoprotective activity of T. officinale leaf extract against APAP-induced hepatotoxicity. T. officinale was able to decrease thiobarbituric acid-reactive substance levels induced by 200 mg/kg APAP (p.o.), as well as prevent the decrease in sulfhydryl levels caused by APAP treatment. Furthermore, histopathological alterations, as well as the increased levels of serum aspartate and alanine aminotransferases caused by APAP, were prevented by T. officinale (0.1 and 0.5 mg/mL). In addition, T. officinale extract also demonstrated antioxidant activity in vitro, as well as scavenger activity against 2,2-diphenyl-1-picrylhydrazyl and nitric oxide radicals. Our results clearly demonstrate the hepatoprotective effect of T. officinale against the toxicity induced by APAP. The possible mechanisms involved include its scavenger activities against ROS and reactive nitrogen species, which are attributed to the content of phenolic compounds in the extract.

  7. Management of acute paracetamol (acetaminophen) toxicity: a standardised proforma improves risk assessment and overall risk stratification by emergency medicine doctors.

    Science.gov (United States)

    McQuade, David J; Aknuri, Srikanth; Dargan, Paul I; Wood, David M

    2012-12-01

    Paracetamol (acetaminophen) poisoning is the most common toxicological presentation in the UK. Doctors managing patients with paracetamol poisoning need to assess the risk of their patient developing hepatotoxicity before determining appropriate treatment. Patients deemed to be at 'high risk' of hepatotoxicity have lower treatment thresholds than those deemed to be at 'normal risk'. Errors in this process can lead to harmful or potentially fatal under or over treatment. To determine how well treating doctors assess risk factor status and whether a standardised proforma is useful in the risk stratification process. Retrospective 12-month case note review of all patients presenting with paracetamol poisoning to our large inner-city emergency department. Data were collected on the documentation of risk factors, the presence of a local hospital proforma and treatment outcomes. 249 presentations were analysed and only 59 (23.7%) had full documentation of all the risk factors required to make a complete risk assessment. 56 of the 59 (94.9%) had the local hospital proforma included in the notes; the remaining 3 (5.1%) had full documentation of risk factors despite the absence of a proforma. A local hospital proforma was more likely to be included in the emergency department notes in those with 'adequate documentation' (78 out of 120 (65%)) than for those with 'inadequate documentation' (16 out of 129 (12.4%)); X(2), pparacetamol poisoning.

  8. Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2

    International Nuclear Information System (INIS)

    Aleksunes, Lauren M.; Slitt, Angela L.; Maher, Jonathan M.; Augustine, Lisa M.; Goedken, Michael J.; Chan, Jefferson Y.; Cherrington, Nathan J.; Klaassen, Curtis D.; Manautou, Jose E.

    2008-01-01

    The transcription factor NFE2-related factor 2 (Nrf2) mediates detoxification and antioxidant gene transcription following electrophile exposure and oxidative stress. Mice deficient in Nrf2 (Nrf2-null) are highly susceptible to acetaminophen (APAP) hepatotoxicity and exhibit lower basal and inducible expression of cytoprotective genes, including NADPH quinone oxidoreductase 1 (Nqo1) and glutamate cysteine ligase (catalytic subunit, or Gclc). Administration of toxic APAP doses to C57BL/6J mice generates electrophilic stress and subsequently increases levels of hepatic Nqo1, Gclc and the efflux multidrug resistance-associated protein transporters 1-4 (Mrp1-4). It was hypothesized that induction of hepatic Mrp1-4 expression following APAP is Nrf2 dependent. Plasma and livers from wild-type (WT) and Nrf2-null mice were collected 4, 24 and 48 h after APAP. As expected, hepatotoxicity was greater in Nrf2-null compared to WT mice. Gene and protein expression of Mrp1-4 and the Nrf2 targets, Nqo1 and Gclc, was measured. Induction of Nqo1 and Gclc mRNA and protein after APAP was dependent on Nrf2 expression. Similarly, APAP treatment increased hepatic Mrp3 and Mrp4 mRNA and protein in WT, but not Nrf2-null mice. Mrp1 was induced in both genotypes after APAP, suggesting that elevated expression of this transporter was independent of Nrf2. Mrp2 was not induced in either genotype at the mRNA or protein levels. These results show that Nrf2 mediates induction of Mrp3 and Mrp4 after APAP but does not affect Mrp1 or Mrp2. Thus coordinated regulation of detoxification enzymes and transporters by Nrf2 during APAP hepatotoxicity is a mechanism by which hepatocytes may limit intracellular accumulation of potentially toxic chemicals

  9. Effect of acetaminophen on osteoblastic differentiation and migration of MC3T3-E1 cells.

    Science.gov (United States)

    Nakatsu, Yoshihiro; Nakagawa, Fumio; Higashi, Sen; Ohsumi, Tomoko; Shiiba, Shunji; Watanabe, Seiji; Takeuchi, Hiroshi

    2018-02-01

    N-acetyl-p-aminophenol (APAP, acetaminophen, paracetamol) is a widely used analgesic/antipyretic with weak inhibitory effects on cyclooxygenase (COX) compared to non-steroidal anti-inflammatory drugs (NSAIDs). The mechanism of action of APAP is mediated by its metabolite that activates transient receptor potential channels, including transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) or the cannabinoid receptor type 1 (CB1). However, the exact molecular mechanism and target underlying the cellular actions of APAP remain unclear. Therefore, we investigated the effect of APAP on osteoblastic differentiation and cell migration, with a particular focus on TRP channels and CB1. Effects of APAP on osteoblastic differentiation and cell migration of MC3T3-E1, a mouse pre-osteoblast cell line, were assessed by the increase in alkaline phosphatase (ALP) activity, and both wound-healing and transwell-migration assays, respectively. APAP dose-dependently inhibited osteoblastic differentiation, which was well correlated with the effects on COX activity compared with other NSAIDs. In contrast, cell migration was promoted by APAP, and this effect was not correlated with COX inhibition. None of the agonists or antagonists of TRP channels and the CB receptor affected the APAP-induced cell migration, while the effect of APAP on cell migration was abolished by down-regulating TRPV4 gene expression. APAP inhibited osteoblastic differentiation via COX inactivation while it promoted cell migration independently of previously known targets such as COX, TRPV1, TRPA1 channels, and CB receptors, but through the mechanism involving TRPV4. APAP may have still unidentified molecular targets that modify cellular functions. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Necrostatin-1 protects against reactive oxygen species (ROS-induced hepatotoxicity in acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    2014-01-01

    Full Text Available Excessive acetaminophen (APAP use is one of the most common causes of acute liver failure. Various types of cell death in the damaged liver are linked to APAP-induced hepatotoxicity, and, of these, necrotic cell death of hepatocytes has been shown to be involved in disease pathogenesis. Until recently, necrosis was commonly considered to be a random and unregulated form of cell death; however, recent studies have identified a previously unknown form of programmed necrosis called receptor-interacting protein kinase (RIPK-dependent necrosis (or necroptosis, which is controlled by the kinases RIPK1 and RIPK3. Although RIPK-dependent necrosis has been implicated in a variety of disease states, including atherosclerosis, myocardial organ damage, stroke, ischemia–reperfusion injury, pancreatitis, and inflammatory bowel disease. However its involvement in APAP-induced hepatocyte necrosis remains elusive. Here, we showed that RIPK1 phosphorylation, which is a hallmark of RIPK-dependent necrosis, was induced by APAP, and the expression pattern of RIPK1 and RIPK3 in the liver overlapped with that of CYP2E1, whose activity around the central vein area has been demonstrated to be critical for the development of APAP-induced hepatic injury. Moreover, a RIPK1 inhibitor ameliorated APAP-induced hepatotoxicity in an animal model, which was underscored by significant suppression of the release of hepatic enzymes and cytokine expression levels. RIPK1 inhibition decreased reactive oxygen species levels produced in APAP-injured hepatocytes, whereas CYP2E1 expression and the depletion rate of total glutathione were unaffected. Of note, RIPK1 inhibition also conferred resistance to oxidative stress in hepatocytes. These data collectively demonstrated a RIPK-dependent necrotic mechanism operates in the APAP-injured liver and inhibition of this pathway may be beneficial for APAP-induced fulminant hepatic failure.

  11. Acetaminophen-induced Liver Injury is Attenuated in Transgenic fat-1 Mice Endogenously Synthesizing Long-chain n-3 Fatty Acids.

    Science.gov (United States)

    Feng, Ruibing; Wang, Yang; Liu, Conghui; Yan, Chunyan; Zhang, Hang; Su, Huanxing; Kang, Jing X; Shang, Chang-Zhen; Wan, Jian-Bo

    2018-04-18

    Acetaminophen (APAP) overdose-caused hepatotoxicity is the most commonly cause of drugs-induced liver failurecharacterized by oxidative stress, mitochondrial dysfunction, and cell damage. Therapeutic efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in several models of liver disease is well documented. However, the impacts of n-3 PUFA on APAP hepatotoxicity are not adequately addressed. In this study, the fat-1 transgenic mice that synthesize endogenous n-3 PUFA and wild type (WT) littermates were injected intraperitoneally with APAP at the dose of 400 mg/kg to induce liver injury, and euthanized at 0 h, 2 h, 4 h and 6 h post APAP injection for sampling. APAP overdose caused severe liver injury in WT mice as indicated by serum parameters, histopathological changes and hepatocyte apoptosis, which were remarkably ameliorated in fat-1 mice. These protective effects of n-3 PUFA were associated with regulation of the prolonged JNK activation via inhibition of apoptosis signal-regulating kinase 1 (ASK1) / mitogen-activated protein kinase kinase 4 (MKK4) pathway. Additionally, the augment of endogenous n-3 PUFA reduced nuclear factor kappa B (NF-κB) - mediated inflammation response induced by APAP treatment in the liver. These findings indicate that n-3 PUFA has potent protective effects against APAP-induced acute liver injury, suggesting that n-3 dietary supplement with n-3 PUFA may be a potential therapeutic strategy for the treatment of hepatotoxicity induced by APAP overdose. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPARα with clofibrate

    International Nuclear Information System (INIS)

    Donthamsetty, Shashikiran; Bhave, Vishakha S.; Mitra, Mayurranjan S.; Latendresse, John R.; Mehendale, Harihara M.

    2008-01-01

    The objective was to investigate if the hepatotoxic sensitivity in nonalcoholic steatohepatitic mice to acetaminophen (APAP) is due to downregulation of nuclear receptor PPARα via lower cell division and tissue repair. Male Swiss Webster mice fed methionine and choline deficient diet for 31 days exhibited NASH. On the 32nd day, a marginally toxic dose of APAP (360 mg/kg, ip) yielded 70% mortality in steatohepatitic mice, while all non steatohepatitic mice receiving the same dose survived. 14 C-APAP covalent binding, CYP2E1 protein, and enzyme activity did not differ from the controls, obviating increased APAP bioactivation as the cause of amplified APAP hepatotoxicity. Liver injury progressed only in steatohepatitic livers between 6 and 24 h. Cell division and tissue repair assessed by 3 H-thymidine incorporation and PCNA were inhibited only in the steatohepatitic mice given APAP suggesting that higher sensitivity of NASH liver to APAP-induced hepatotoxicity was due to lower tissue repair. The hypothesis that impeded liver tissue repair in steatohepatitic mice was due to downregulation of PPARα was tested. PPARα was downregulated in NASH. To investigate whether downregulation of PPARα in NASH is the critical mechanism of compromised liver tissue repair, PPARα was induced in steatohepatitic mice with clofibrate (250 mg/kg for 3 days, ip) before injecting APAP. All clofibrate pretreated steatohepatitic mice receiving APAP exhibited lower liver injury, which did not progress and the mice survived. The protection was not due to lower bioactivation of APAP but due to higher liver tissue repair. These findings suggest that inadequate PPARα expression in steatohepatitic mice sensitizes them to APAP hepatotoxicity

  13. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    Science.gov (United States)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An elevated neutrophil-lymphocyte ratio is associated with adverse outcomes following single time-point paracetamol (acetaminophen) overdose: a time-course analysis.

    Science.gov (United States)

    Craig, Darren G; Kitto, Laura; Zafar, Sara; Reid, Thomas W D J; Martin, Kirsty G; Davidson, Janice S; Hayes, Peter C; Simpson, Kenneth J

    2014-09-01

    The innate immune system is profoundly dysregulated in paracetamol (acetaminophen)-induced liver injury. The neutrophil-lymphocyte ratio (NLR) is a simple bedside index with prognostic value in a number of inflammatory conditions. To evaluate the prognostic accuracy of the NLR in patients with significant liver injury following single time-point and staggered paracetamol overdoses. Time-course analysis of 100 single time-point and 50 staggered paracetamol overdoses admitted to a tertiary liver centre. Timed laboratory samples were correlated with time elapsed after overdose or admission, respectively, and the NLR was calculated. A total of 49/100 single time-point patients developed hepatic encephalopathy (HE). Median NLRs were higher at both 72 (P=0.0047) and 96 h after overdose (P=0.0041) in single time-point patients who died or were transplanted. Maximum NLR values by 96 h were associated with increasing HE grade (P=0.0005). An NLR of more than 16.7 during the first 96 h following overdose was independently associated with the development of HE [odds ratio 5.65 (95% confidence interval 1.67-19.13), P=0.005]. Maximum NLR values by 96 h were strongly associated with the requirement for intracranial pressure monitoring (Pparacetamol overdoses. Future studies should assess the value of incorporating the NLR into existing prognostic and triage indices of single time-point paracetamol overdose.

  15. Comparison of Intravenous Morphine Versus Paracetamol in Sciatica: A Randomized Placebo Controlled Trial.

    Science.gov (United States)

    Serinken, Mustafa; Eken, Cenker; Gungor, Faruk; Emet, Mucahit; Al, Behcet

    2016-06-01

    The objective was to compare intravenous morphine and intravenous acetaminophen (paracetamol) for pain treatment in patients presenting to the emergency department with sciatica. Patients, between the ages of 21 and 65 years, suffering from pain in the sciatic nerve distribution and a positive straight leg-raise test composed the study population. Study patients were assigned to one of three intravenous interventions: morphine (0.1 mg/kg), acetaminophen (1 g), or placebo. Physicians, nurses, and patients were blinded to the study drug. Changes in pain intensity were measured at 15 and 30 minutes using a visual analog scale. Rescue drug (fentanyl) use and adverse effects were also recorded. Three-hundred patients were randomized. The median change in pain intensity between treatment arms at 30 minutes were as follows: morphine versus acetaminophen 25 mm (95% confidence interval [CI] = 20 to 29 mm), morphine versus placebo 41 mm (95% CI = 37 to 45 mm), and acetaminophen versus placebo 16 mm (95% CI = 12 to 20 mm). Eighty percent of the patients in the placebo group (95% CI = 63.0% to 99%), 18% of the patients in the acetaminophen group (95% CI = 10.7% to 28.5%), and 6% of those in the morphine group (95% CI = 2.0% to 13.2%) required a rescue drug. Adverse effects were similar between the morphine and acetaminophen groups. Morphine and acetaminophen are both effective for treating sciatica at 30 minutes. However, morphine is superior to acetaminophen. © 2016 by the Society for Academic Emergency Medicine.

  16. Solventless dry powder coating for sustained drug release using mechanochemical treatment based on the tri-component system of acetaminophen, carnauba wax and glidant.

    Science.gov (United States)

    Hoashi, Yohei; Tozuka, Yuichi; Takeuchi, Hirofumi

    2013-02-01

    Solventless dry powder coating methods have many advantages compared to solvent-based methods: they are more economical, simpler, safer, more environmentally friendly and easier to scale up. The purpose of this study was to investigate a highly effective dry powder coating method using the mechanofusion system, a mechanochemical treatment equipped with high compressive and shearing force. Acetaminophen (AAP) and carnauba wax (CW) were selected as core particles of the model drug and coating material, respectively. Mixtures of AAP and CW with and without talc were processed using the mechanofusion system. Sustained AAP release was observed by selecting appropriate processing conditions for the rotation speed and the slit size. The dissolution rate of AAP processed with CW substantially decreased with an increase in talc content up to 40% of the amount of CW loaded. Increasing the coating amount by two-step addition of CW led to more effective coating and extended drug release. Scanning electron micrographs indicated that CW adhered and showed satisfactory coverage of the surface of AAP particles. Effective CW coating onto the AAP surface was successfully achieved by strictly controlling the processing conditions and the composition of core particles, coating material and glidant. Our mechanochemical dry powder coating method using the mechanofusion system is a simple and promising means of solventless pharmaceutical coating.

  17. Pharmacokinetics of Oral and Intravenous Paracetamol (Acetaminophen) When Co-Administered with Intravenous Morphine in Healthy Adult Subjects.

    Science.gov (United States)

    Raffa, Robert B; Pawasauskas, Jayne; Pergolizzi, Joseph V; Lu, Luke; Chen, Yin; Wu, Sutan; Jarrett, Brant; Fain, Randi; Hill, Lawrence; Devarakonda, Krishna

    2018-03-01

    Several features favor paracetamol (acetaminophen) administration by the intravenous rather than the oral route in the postoperative setting. This study compared the pharmacokinetics and bioavailability of oral and intravenous paracetamol when given with or without an opioid, morphine. In this randomized, single-blind, parallel, repeat-dose study in healthy adults, subjects received four repeat doses of oral or intravenous 1000 mg paracetamol at 6-h intervals, and morphine infusions (0.125 mg/kg) at the 2nd and 3rd intervals. Comparisons of plasma pharmacokinetic profiles were conducted before, during, and after opioid co-administrations. Twenty-two subjects were included in the pharmacokinetic analysis. Observed paracetamol peak concentration (C max ) and area under the plasma concentration-time curve over the dosing interval (AUC 0-6 ) were reduced when oral paracetamol was co-administered with morphine (reduced from 11.6 to 7.25 µg/mL and from 31.00 to 25.51 µg·h/mL, respectively), followed by an abruptly increased C max and AUC 0-6 upon discontinuation of morphine (to 13.5 µg/mL and 52.38 µg·h/mL, respectively). There was also a significantly prolonged mean time to peak plasma concentration (T max ) after the 4th dose of oral paracetamol (2.84 h) compared to the 1st dose (1.48 h). However, pharmacokinetic parameters of paracetamol were not impacted when intravenous paracetamol was co-administered with morphine. Morphine co-administration significantly impacted the pharmacokinetics of oral but not intravenous paracetamol. The abrupt release of accumulated paracetamol at the end of morphine-mediated gastrointestinal inhibition following oral but not intravenous administration of paracetamol suggests that intravenous paracetamol provides a better option for the management of postoperative pain. CLINICALTRIALS. NCT02848729.

  18. Adult neurobehavioral alterations in male and female mice following developmental exposure to paracetamol (acetaminophen): characterization of a critical period.

    Science.gov (United States)

    Philippot, Gaëtan; Gordh, Torsten; Fredriksson, Anders; Viberg, Henrik

    2017-10-01

    Paracetamol (acetaminophen) is a widely used non-prescription drug with analgesic and antipyretic properties. Among pregnant women and young children, paracetamol is one of the most frequently used drugs and is considered the first-choice treatment for pain and/or fever. Recent findings in both human and animal studies have shown associations between paracetamol intake during brain development and adverse behavioral outcomes later in life. The present study was undertaken to investigate if the induction of these effects depend on when the exposure occurs during a critical period of brain development and if male and female mice are equally affected. Mice of both sexes were exposed to two doses of paracetamol (30 + 30 mg kg -1 , 4 h apart) on postnatal days (PND) 3, 10 or 19. Spontaneous behavior, when introduced to a new home environment, was observed at the age of 2 months. We show that adverse effects on adult behavior and cognitive function occurred in both male and female mice exposed to paracetamol on PND 3 and 10, but not when exposed on PND 19. These neurodevelopmental time points in mice correspond to the beginning of the third trimester of pregnancy and the time around birth in humans, supporting existing human data. Considering that paracetamol is the first choice treatment for pain and/or fever during pregnancy and early life, these results may be of great importance for future research and, ultimately, for clinical practice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Metabolic acidosis caused by concomitant use of paracetamol (acetaminophen) and flucloxacillin? A case report and a retrospective study.

    Science.gov (United States)

    Berbee, J K; Lammers, L A; Krediet, C T P; Fischer, J C; Kemper, E M

    2017-11-01

    A patient was identified with severe metabolic acidosis, a high anion gap and 5-oxoproline accumulation, probably caused by the simultaneous use of paracetamol (acetaminophen) and flucloxacillin. We wanted to investigate the necessity to control the interaction between both drugs with an automatic alert system. To investigate the relevance of the interaction of paracetamol and flucloxacillin, a retrospective study was conducted. Data on paracetamol and flucloxacillin prescriptions and laboratory data (pH, Na + , HCO 3 - , Cl - , albumin and 5-oxoproline levels) were combined to assess the prevalence of acidosis, calculate the anion gap and analyse 5-oxoproline levels in clinically admitted patients using both drugs simultaneously. In the 2-year study period, approximately 53,000 admissions took place in our hospital. One thousand and fifty-seven patients used paracetamol and flucloxacillin simultaneously, of which 51 patients (4.8%) had a serum pH ≤ 7.35. One patient, the same patient as presented in the case report, had a high anion gap and a toxic level of 5-oxoproline. The prevalence of metabolic acidosis is very low and the only patient identified with the interaction was recognised during normal clinical care. We conclude that automatic alerts based on simultaneous use of paracetamol and flucloxacillin will generate too many signals. To recognise patients earlier and prevent severe outcomes, a warning system (clinical rule) based on paracetamol, flucloxacillin and pH measurement may be helpful. Early calculation of the anion gap can narrow the differential diagnosis of patients with metabolic acidosis and measurement of 5-oxoproline can explain acidosis due the interaction of paracetamol and flucloxacillin.

  20. Interrupted time-series analysis of regulations to reduce paracetamol (acetaminophen poisoning.

    Directory of Open Access Journals (Sweden)

    Oliver W Morgan

    2007-04-01

    Full Text Available Paracetamol (acetaminophen poisoning is the leading cause of acute liver failure in Great Britain and the United States. Successful interventions to reduced harm from paracetamol poisoning are needed. To achieve this, the government of the United Kingdom introduced legislation in 1998 limiting the pack size of paracetamol sold in shops. Several studies have reported recent decreases in fatal poisonings involving paracetamol. We use interrupted time-series analysis to evaluate whether the recent fall in the number of paracetamol deaths is different to trends in fatal poisoning involving aspirin, paracetamol compounds, antidepressants, or nondrug poisoning suicide.We calculated directly age-standardised mortality rates for paracetamol poisoning in England and Wales from 1993 to 2004. We used an ordinary least-squares regression model divided into pre- and postintervention segments at 1999. The model included a term for autocorrelation within the time series. We tested for changes in the level and slope between the pre- and postintervention segments. To assess whether observed changes in the time series were unique to paracetamol, we compared against poisoning deaths involving compound paracetamol (not covered by the regulations, aspirin, antidepressants, and nonpoisoning suicide deaths. We did this comparison by calculating a ratio of each comparison series with paracetamol and applying a segmented regression model to the ratios. No change in the ratio level or slope indicated no difference compared to the control series. There were about 2,200 deaths involving paracetamol. The age-standardised mortality rate rose from 8.1 per million in 1993 to 8.8 per million in 1997, subsequently falling to about 5.3 per million in 2004. After the regulations were introduced, deaths dropped by 2.69 per million (p = 0.003. Trends in the age-standardised mortality rate for paracetamol compounds, aspirin, and antidepressants were broadly similar to paracetamol

  1. Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury.

    Science.gov (United States)

    Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Kashiwada, Yoshiki

    2015-04-01

    This work aimed at evaluating the effect of fermented ginseng (FG) and fermented red ginseng (FRG) against rat liver injury caused by paracetamol (acetaminophen (APAP)). Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and histopathological changes in the liver were analysed to determine the degree of liver injury. Deoxyribonucleic acid (DNA) microarray analysis was performed to compare gene expression levels altered in the rat livers. Phosphorylated Jun-N-terminal kinase (JNK) in human hepatocellular carcinoma (HepG2) cells were detected using western blot analysis to investigate the anti-inflammatory activity of compound K. Pretreatment with FG, containing compound K at high concentration, attenuated AST as well as ALT levels in rats, while no obvious effect was observed in the group that received FRG, whose content of compound K was lower than that of FG. In addition, the results of our histopathological analysis were consistent with changes in the serum biochemical analysis. DNA microarray analysis indicated that JNK- and glutathione S-transferase (GST)-related genes were involved in the hepatotoxicity. Notably, compound K, a major ginsenoside in FG, inhibited the phosphorylation of JNK in HepG2 cells. FG was shown to possess hepatoprotective activity against paracetamol (APAP)-induced liver injury better than FRG. Compound K might play an important role for an anti-inflammatory activity of FG by inhibiting JNK signalling in the liver. © 2014 Royal Pharmaceutical Society.

  2. Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid (Hepatotoxicity-Related Drugs) Utilizing Bismuth Oxide Nanorod Modified Screen-Printed Electrochemical Sensing Platforms.

    Science.gov (United States)

    Mahmoud, Bahaa G; Khairy, Mohamed; Rashwan, Farouk A; Banks, Craig E

    2017-02-07

    To overcome the recent outbreaks of hepatotoxicity-related drugs, a new analytical tool for the continuously determination of these drugs in human fluids is required. Electrochemical-based analytical methods offer an effective, rapid, and simple tool for on-site determination of various organic and inorganic species. However, the design of a sensitive, selective, stable, and reproducible sensor is still a major challenge. In the present manuscript, a facile, one-pot hydrothermal synthesis of bismuth oxide (Bi 2 O 2.33 ) nanostructures (nanorods) was developed. These BiO nanorods were cast onto mass disposable graphite screen-printed electrodes (BiO-SPEs), allowing the ultrasensitive determination of acetaminophen (APAP) in the presence of its common interference isoniazid (INH), which are both found in drug samples. The simultaneous electroanalytical sensing using BiO-SPEs exhibited strong electrocatalytic activity toward the sensing of APAP and INH with an enhanced analytical signal (voltammetric peak) over that achievable at unmodified (bare) SPEs. The electroanalytical sensing of APAP and INH are possible with accessible linear ranges from 0.5 to 1250 μM and 5 to 1760 μM with limits of detection (3σ) of 30 nM and 1.85 μM, respectively. The stability, reproducibility, and repeatability of BiO-SPE were also investigated. The BiO-SPEs were evaluated toward the sensing of APAP and INH in human serum, urine, saliva, and tablet samples. The results presented in this paper demonstrate that BiO-SPEs sensing platforms provide a potential candidate for the accurate determination of APAP and INH within human fluids and pharmaceutical formulations.

  3. Combining paracetamol (acetaminophen) with nonsteroidal antiinflammatory drugs: a qualitative systematic review of analgesic efficacy for acute postoperative pain.

    Science.gov (United States)

    Ong, Cliff K S; Seymour, Robin A; Lirk, Phillip; Merry, Alan F

    2010-04-01

    There has been a trend over recent years for combining a nonsteroidal antiinflammatory drug (NSAID) with paracetamol (acetaminophen) for pain management. However, therapeutic superiority of the combination of paracetamol and an NSAID over either drug alone remains controversial. We evaluated the efficacy of the combination of paracetamol and an NSAID versus either drug alone in various acute pain models. A systematic literature search of Medline, Embase, Cumulative Index to Nursing and Allied Health Literature, and PubMed covering the period from January 1988 to June 2009 was performed to identify randomized controlled trials in humans that specifically compared combinations of paracetamol with various NSAIDs versus at least 1 of these constituent drugs. Identified studies were stratified into 2 groups: paracetamol/NSAID combinations versus paracetamol or NSAIDs. We analyzed pain intensity scores and supplemental analgesic requirements as primary outcome measures. In addition, each study was graded for quality using a validated scale. Twenty-one human studies enrolling 1909 patients were analyzed. The NSAIDs used were ibuprofen (n = 6), diclofenac (n = 8), ketoprofen (n = 3), ketorolac (n = 1), aspirin (n = 1), tenoxicam (n = 1), and rofecoxib (n = 1). The combination of paracetamol and NSAID was more effective than paracetamol or NSAID alone in 85% and 64% of relevant studies, respectively. The pain intensity and analgesic supplementation was 35.0% +/- 10.9% and 38.8% +/- 13.1% lesser, respectively, in the positive studies for the combination versus paracetamol group, and 37.7% +/- 26.6% and 31.3% +/- 13.4% lesser, respectively, in the positive studies for the combination versus the NSAID group. No statistical difference in median quality scores was found between experimental groups. Current evidence suggests that a combination of paracetamol and an NSAID may offer superior analgesia compared with either drug alone.

  4. Point-of-Care Determination of Acetaminophen Levels with Multi-Hydrogen Bond Manipulated Single-Molecule Recognition (eMuHSiR).

    Science.gov (United States)

    Zhang, Yan; Huang, Zhongyuan; Wang, Letao; Wang, Chunming; Zhang, Changde; Wiese, Tomas; Wang, Guangdi; Riley, Kevin; Wang, Zhe

    2018-04-03

    This work aims to face the challenge of monitoring small molecule drugs accurately and rapidly for point-of-care (POC) diagnosis in current clinical settings. Overdose of acetaminophen (AP), a commonly used over the counter (OTC) analgesic drug, has been determined to be a major cause of acute liver failure in the US and the UK. However, there is no rapid and accurate detection method available for this drug in the emergency room. The present study examined an AP sensing strategy that relies on a previously unexplored strong interaction between AP and the arginine (Arg) molecule. It was found that as many as 4 hydrogen bonds can be formed between one Arg molecule and one AP molecule. By taking advantages of this structural selectivity and high tenability of hydrogen bonds, Arg, immobilized on a graphene surface via electrostatic interactions, was utilized to structurally capture AP. Interestingly, bonded AP still remained the perfect electrochemical activities. The extent of Arg-AP bonds was quantified using a newly designed electrochemical (EC) sensor. To verify the feasibility of this novel assay, based on multihydrogen bond manipulated single-molecule recognition (eMuHSiR), both pharmaceutical and serum sample were examined. In commercial tablet measurement, no significant difference was seen between the results of eMuHSiR and other standard methods. For measuring AP concentration in the mice blood, the substances in serum, such as sugars and fats, would not bring any interference to the eMuHSiR in a wide concentration range. This eMuHSiR method opens the way for future development of small molecule detection for the POC testing.

  5. A new electrochemical sensor containing a film of chitosan-supported ruthenium: detection and quantification of sildenafil citrate and acetaminophen

    International Nuclear Information System (INIS)

    Delolo, Fabio Godoy; Rodrigues, Claudia; Silva, Monize Martins da; Batista, Alzir Azevedo; Dinelli, Luis Rogerio; Delling, Felix Nicolai; Zukerman-Schpector, Julio

    2014-01-01

    This work presents the construction of a novel electrochemical sensor for detection of organic analytes, using a glassy carbon electrode (GCE) modified with a chitosan-supported ruthenium film. The ruthenium-chitosan film was obtained starting from the mer-[RuCl 3 (dppb)(H 2 O)] complex as a [1,4-bis(diphenylphosphine)butane] (dppb) precursor, and chitosan (QT). The structure of the chitosan-supported ruthenium film on the surface of the glassy carbon electrode was characterized by UV-Vis spectroscopy, electron paramagnetic resonance (EPR), scanning electron microscopy (SEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS) techniques. The glassy carbon electrode was modified with a film formed from the evaporation of 5 μL of a solution composed of 5 mg chitosan-supported ruthenium (RuQT) in 10 mL of 0.1 mol L -1 acetic acid. The modified electrode was tested as a sensor for sildenafil citrate (Viagra® 50 mg) and acetaminophen (Tylenol®) detection. The technique utilized for these analyses was differential pulse voltammetry (DPV) in 0.1 mol L -1 H 2 SO 4 (pH 1.0) and 0.1 mol L -1 CH 3 COOK (pH 6.5) as supporting electrolyte. All analyses were carried out during a month using the same electrode. The electrode was washed only with water in between the analyses, keeping it in the refrigerator when it was not in use. This electrode was stable during the period utilized showing no degradation and presenting a linear response over the evaluated concentration interval (1.25 × 10 -5 to 4.99 × 10 -4 mol L -1 ). (author)

  6. Comparative release studies on suppositories using the basket, paddle, dialysis tubing and flow-through cell methods I. Acetaminophen in a lipophilic base suppository.

    Science.gov (United States)

    Hori, Seiichi; Kawada, Tsubasa; Kogure, Sanae; Yabu, Shinako; Mori, Kenji; Akimoto, Masayuki

    2017-02-01

    The release characteristics of lipophilic suppositories containing acetaminophen (AAP) were examined using four types of dissolution methods: the basket, paddle, dialysis tubing (DT) and flow-through cell (FTC) methods. The suitability of each apparatus for quality control in AAP compounded suppositories was evaluated using statistical procedures. More than 80% of the drug was released over 60 min in all the release methods studied, with the exception of the basket method. Reproducible and faster release was achieved using the paddle method at 100 and 200 rpm, whereas poor release occurred with the basket method. The mean dissolution time (MDT), maximum dissolved quantity of AAP at the end of the sampling time (Q) and dissolution efficiency (DE) were calculated by model-independent methods. The FTC method with a single chamber used in this study was also appreciable for AAP suppositories (Q of 100%, MDT of 71-91 min and DE of 75-80%). The DT apparatus is considered similar to the FTC apparatus from a quality control perspective for judging the release properties of lipophilic base suppositories containing AAP. However, even the single chamber FTC used in this study has potential as an in vitro drug release test for suppositories. The comparative dissolution method is expected to become one of the valuable tools for selecting an adequate dissolution test.

  7. A randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of the extended-release tramadol hydrochloride/acetaminophen fixed-dose combination tablet for the treatment of chronic low back pain.

    Science.gov (United States)

    Lee, Jae Hyup; Lee, Chong-Suh

    2013-11-01

    Chronic low back pain is a common condition that is often difficult to treat. The combination of tramadol hydrochloride and acetaminophen in an extended-release formulation has been shown to provide rapid and long-lasting analgesic effects resulting from the synergistic activity of these 2 active ingredients. The goal of this study was to evaluate the efficacy and safety of extended-release tramadol hydrochloride 75-mg/acetaminophen 650-mg fixed-dose combination tablets (TA-ER) for the treatment of chronic low back pain. This Phase III, double-blind, placebo-controlled, parallel-group study enrolled 245 patients with moderate to severe (≥4 cm on a 10-cm visual analog scale) chronic (≥3 months') low back pain insufficiently controlled by previous NSAIDs or cyclooxygenase-2-selective inhibitors and randomly assigned them to receive 4 weeks of either TA-ER or placebo. The primary efficacy end point was the percentage of patients with a pain intensity change rate ≥30% from baseline to final evaluation. Secondary end points included quality of life (Korean Short Form-36), functionality (Korean Oswestry Disability Index), and adverse events. The percentage of patients with a pain intensity change rate ≥30% was significantly higher (P Pain relief success rate from baseline was significantly higher with TA-ER versus placebo at days 8 and 15 but not at the final visit. Patients in the TA-ER group had significant improvements versus placebo in role-physical, general health, and reported health transition domains of the Korean Short Form-36 and significantly higher functional improvements in the personal care section of the Korean Oswestry Disability Index. Patient assessment of overall pain control as "very good" was also significantly higher with TA-ER than with placebo. Adverse events were reported more frequently with TA-ER than with placebo; the most common adverse events reported were nausea, dizziness, constipation, and vomiting. TA-ER was significantly more

  8. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice.

    Science.gov (United States)

    Viberg, Henrik; Eriksson, Per; Gordh, Torsten; Fredriksson, Anders

    2014-03-01

    Paracetamol (acetaminophen) is one of the most commonly used drugs for the treatment of pain and fever in children, both at home and in the clinic, and is now also found in the environment. Paracetamol is known to act on the endocannabinoid system, involved in normal development of the brain. We examined if neonatal paracetamol exposure could affect the development of the brain, manifested as adult behavior and cognitive deficits, as well as changes in the response to paracetamol. Ten-day-old mice were administered a single dose of paracetamol (30 mg/kg body weight) or repeated doses of paracetamol (30 + 30 mg/kg body weight, 4h apart). Concentrations of paracetamol and brain-derived neurotrophic factor (BDNF) were measured in the neonatal brain, and behavioral testing was done when animals reached adulthood. This study shows that acute neonatal exposure to paracetamol (2 × 30 mg) results in altered locomotor activity on exposure to a novel home cage arena and a failure to acquire spatial learning in adulthood, without affecting thermal nociceptive responding or anxiety-related behavior. However, mice neonatally exposed to paracetamol (2 × 30 mg) fail to exhibit paracetamol-induced antinociceptive and anxiogenic-like behavior in adulthood. Behavioral alterations in adulthood may, in part, be due to paracetamol-induced changes in BDNF levels in key brain regions at a critical time during development. This indicates that exposure to and presence of paracetamol during a critical period of brain development can induce long-lasting effects on cognitive function and alter the adult response to paracetamol in mice.

  9. Kelainan Hati akibat Penggunaan Antipiretik

    Directory of Open Access Journals (Sweden)

    Yusri Dianne Jurnalis

    2015-09-01

    Full Text Available Abstrak Demam menyebabkan penderitaan pada anak dan kecemasan pada orangtua. Demam terjadi pada hampir sebagian besar anak setiap tahunnya. Antipiretik yang paling sering digunakan adalah acetaminophen, ibuprofen dan aspirin. Antipiretik ini dapat menyebabkan kelainan hati pada dosis tinggi dan pada penggunaan dosis terapi yangberulang. Baru-baru ini banyak digunakan obat kombinasi acetaminophen-ibuprofen. Tujuan penulisan artikel ini adalah untuk menjelaskan kelainan hati akibat penggunaan antipiretik. Penggunaan pada dosis terapi secara berulang harus sesuai indikasi, mempertimbangkan efek samping dan memahami dosis maksimal. Penggunaan obat kombinasi acetaminophen-ibuprofen harus diberikan hati-hati, dosis kandungan antipiretik harus dibaca lebih teliti. Perluanamnesis yang jelas pada penegakan diagnosis dan perhitungan dosis total atau dosis rata-rata yang diterima. Klinisi harus dapat memonitor gejala kelainan hati akibat penggunaan obat-obatan antipiretik. Perlu komunikasi yang jelas, antara dokter dan keluarga pasien tentang keuntungan dan resiko pemberian antipiretik, baik itu penggunaan sekalisaja ataupun berulang.Kata kunci: antipiretik, ibuprofen, acetaminophen hepatoksik, drug induced hepatitis Abstract Fever causes misery for children and parental anxiety. It affects almost of children each year. The antipyretics most commonly used for treating fever are acetaminophen, ibuprofen and aspirin. These antipyretics can causeshepatotoxicity in high dose and in multiple daily doses. Recently, the use of combination acetaminophen-ibuprofen was widely use in child. The objective of this artikel was to learn more about how about antipyretics induced hepatotoxicity. The use of multiple daily doses must be in the right indication, considering the side effect and clear in maximal doses.The use of combination acetaminophen-ibuprofen must be with caution, composition of dose must be read cerefully. Its need good anamnesis and calculation of total

  10. Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers

    Science.gov (United States)

    Volak, Laurie P; Hanley, Michael J; Masse, Gina; Hazarika, Suwagmani; Harmatz, Jerold S; Badmaev, Vladimir; Majeed, Muhammed; Greenblatt, David J; Court, Michael H

    2013-01-01

    Aims Turmeric extract derived curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) are currently being evaluated for the treatment of cancer and Alzheimer's dementia. Previous in vitro studies indicate that curcuminoids and piperine (a black pepper derivative that enhances curcuminoid bioavailability) could inhibit human CYP3A, CYP2C9, UGT and SULT dependent drug metabolism. The aim of this study was to determine whether a commercially available curcuminoid/piperine extract alters the pharmacokinetic disposition of probe drugs for these enzymes in human volunteers. Methods A randomized placebo-controlled six way crossover study was conducted in eight healthy volunteers. A standardized curcuminoid/piperine preparation (4 g curcuminoids plus 24 mg piperine) or matched placebo was given orally four times over 2 days before oral administration of midazolam (CYP3A probe), flurbiprofen (CYP2C9 probe) or paracetamol (acetaminophen) (dual UGT and SULT probe). Plasma and urine concentrations of drugs, metabolites and herbals were measured by HPLC. Subject sedation and electroencephalograph effects were also measured following midazolam dosing. Results Compared with placebo, the curcuminoid/piperine treatment produced no meaningful changes in plasma Cmax, AUC, clearance, elimination half-life or metabolite levels of midazolam, flurbiprofen or paracetamol (α = 0.05, paired t-tests). There was also no effect of curcuminoid/piperine treatment on the pharmacodynamics of midazolam. Although curcuminoid and piperine concentrations were readily measured in plasma following glucuronidase/sulfatase treatment, unconjugated concentrations were consistently below the assay thresholds (0.05–0.08 μm and 0.6 μm, respectively). Conclusion The results indicate that short term use of this piperine-enhanced curcuminoid preparation is unlikely to result in a clinically significant interaction involving CYP3A, CYP2C9 or the paracetamol conjugation enzymes. PMID:22725836

  11. A new electrochemical sensor containing a film of chitosan-supported ruthenium: detection and quantification of sildenafil citrate and acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Delolo, Fabio Godoy; Rodrigues, Claudia; Silva, Monize Martins da; Batista, Alzir Azevedo, E-mail: fabiodelolo@hotmail.com, E-mail: daab@power.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica. Lab. de Estrutura e Reatividade de Compostos Inorganicos; Dinelli, Luis Rogerio [Universidade Federal de Uberlandia (UFU), Ituiutaba, MG (Brazil). Faculdade de Ciencias Integradas do Pontal; Delling, Felix Nicolai; Zukerman-Schpector, Julio [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica. Lab. de Cristalografia Estereodinamica e Modelagem Molecular

    2014-03-15

    This work presents the construction of a novel electrochemical sensor for detection of organic analytes, using a glassy carbon electrode (GCE) modified with a chitosan-supported ruthenium film. The ruthenium-chitosan film was obtained starting from the mer-[RuCl{sub 3}(dppb)(H{sub 2}O)] complex as a [1,4-bis(diphenylphosphine)butane] (dppb) precursor, and chitosan (QT). The structure of the chitosan-supported ruthenium film on the surface of the glassy carbon electrode was characterized by UV-Vis spectroscopy, electron paramagnetic resonance (EPR), scanning electron microscopy (SEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS) techniques. The glassy carbon electrode was modified with a film formed from the evaporation of 5 μL of a solution composed of 5 mg chitosan-supported ruthenium (RuQT) in 10 mL of 0.1 mol L{sup -1} acetic acid. The modified electrode was tested as a sensor for sildenafil citrate (Viagra® 50 mg) and acetaminophen (Tylenol®) detection. The technique utilized for these analyses was differential pulse voltammetry (DPV) in 0.1 mol L{sup -1} H{sub 2}SO{sub 4} (pH 1.0) and 0.1 mol L{sup -1} CH{sub 3}COOK (pH 6.5) as supporting electrolyte. All analyses were carried out during a month using the same electrode. The electrode was washed only with water in between the analyses, keeping it in the refrigerator when it was not in use. This electrode was stable during the period utilized showing no degradation and presenting a linear response over the evaluated concentration interval (1.25 × 10{sup -5} to 4.99 × 10{sup -4} mol L{sup -1}). (author)

  12. Transplantation for acute liver failure in patients exposed to NSAIDs or paracetamol (acetaminophen): the multinational case-population SALT study.

    Science.gov (United States)

    Gulmez, Sinem Ezgi; Larrey, Dominique; Pageaux, Georges-Philippe; Lignot, Severine; Lassalle, Régis; Jové, Jérémy; Gatta, Angelo; McCormick, P Aiden; Metselaar, Harold J; Monteiro, Estela; Thorburn, Douglas; Bernal, William; Zouboulis-Vafiadis, Irene; de Vries, Corinne; Perez-Gutthann, Susana; Sturkenboom, Miriam; Bénichou, Jacques; Montastruc, Jean-Louis; Horsmans, Yves; Salvo, Francesco; Hamoud, Fatima; Micon, Sophie; Droz-Perroteau, Cécile; Blin, Patrick; Moore, Nicholas

    2013-02-01

    Most NSAIDs are thought to be able to cause hepatic injury and acute liver failure (ALF), but the event rates of those leading to transplantation (ALFT) remain uncertain. The aim of the study was to estimate population event rates for NSAID-associated ALFT METHODS: This was a case-population study of ALFT in 57 eligible liver transplant centres in seven countries (France, Greece, Ireland, Italy, The Netherlands, Portugal and the UK). Cases were all adults registered from 2005 to 2007 for a liver transplant following ALFT without identified clinical aetiology, exposed to an NSAID or paracetamol (acetaminophen) within 30 days before the onset of clinical symptoms. NSAID and paracetamol population exposures were assessed using national sales data from Intercontinental Marketing Services (IMS). Risk was estimated as the rate of ALFT per million treatment-years (MTY). In the 52 participating centres, 9479 patients were registered for transplantation, with 600 for ALFT, 301 of whom, without clinical aetiology, had been exposed to a drug within 30 days. Of these 301 patients, 40 had been exposed to an NSAID and 192 to paracetamol (81 of whom were without overdose). Event rates per MTY were 1.59 (95 % CI 1.1-2.2) for all NSAIDs pooled, 2.3 (95 % CI 1.2-3.9) for ibuprofen, 1.9 (95 % CI 0.8-3.7) for nimesulide, 1.6 (95 % CI 0.6-3.4) for diclofenac and 1.6 (95 % CI 0.3-4.5) for ketoprofen. For paracetamol, the event rate was 3.3 per MTY (95 % CI 2.6-4.1) without overdoses and 7.8 (95 % CI 6.8-9.0) including overdoses. ALF leading to registration for transplantation after exposure to an NSAID was rare, with no major difference between NSAID. Non-overdose paracetamol-exposed liver failure was twice more common than NSAID-exposed liver failure.

  13. A Prominent Role of Interleukin-18 in Acetaminophen-Induced Liver Injury Advocates Its Blockage for Therapy of Hepatic Necroinflammation

    Directory of Open Access Journals (Sweden)

    Malte Bachmann

    2018-02-01

    Full Text Available Acetaminophen [paracetamol, N-acetyl-p-aminophenol (APAP]-induced acute liver injury (ALI not only remains a persistent clinical challenge but likewise stands out as well-characterized paradigmatic model of drug-induced liver damage. APAP intoxication associates with robust hepatic necroinflammation the role of which remains elusive with pathogenic but also pro-regenerative/-resolving functions being ascribed to leukocyte activation. Here, we shine a light on and put forward a unique role of the interleukin (IL-1 family member IL-18 in experimental APAP-induced ALI. Indeed, amelioration of disease as previously observed in IL-18-deficient mice was further substantiated herein by application of the IL-18 opponent IL-18-binding protein (IL-18BPd:Fc to wild-type mice. Data altogether emphasize crucial pathological action of this cytokine in APAP toxicity. Adding recombinant IL-22 to IL-18BPd:Fc further enhanced protection from liver injury. In contrast to IL-18, the role of prototypic pro-inflammatory IL-1 and tumor necrosis factor-α is controversially discussed with lack of effects or even protective action being repeatedly reported. A prominent detrimental function for IL-18 in APAP-induced ALI as proposed herein should relate to its pivotal role for hepatic expression of interferon-γ and Fas ligand, both of which aggravate APAP toxicity. As IL-18 serum levels increase in patients after APAP overdosing, targeting IL-18 may evolve as novel therapeutic option in those hard-to-treat patients where standard therapy with N-acetylcysteine is unsuccessful. Being a paradigmatic experimental model of ALI, current knowledge on ill-fated properties of IL-18 in APAP intoxication likewise emphasizes the potential of this cytokine to serve as therapeutic target in other entities of inflammatory liver diseases.

  14. wax matrix tablets and its implication on dissolution prof

    African Journals Online (AJOL)

    acetaminophen-wax matrix tablet and hence its implication on dissolution profile. Acetaminophen-wax ... inertness, cost effectiveness, non- toxicity and more importantly their ... Liver Poole, England) at constant load (30 arbitrary units on the ...

  15. A randomized study to compare the efficacy and safety of extended-release and immediate-release tramadol HCl/acetaminophen in patients with acute pain following total knee replacement.

    Science.gov (United States)

    Park, Yong-Beom; Ha, Chul-Won; Cho, Sung-Do; Lee, Myung-Chul; Lee, Ju-Hong; Seo, Seung-Suk; Kang, Seung-Baik; Kyung, Hee-Soo; Choi, Choong-Hyeok; Chang, NaYoon; Rhim, Hyou Young Helen; Bin, Seong-Il

    2015-01-01

    To evaluate the relative efficacy and safety of extended-release tramadol HCl 75 mg/acetaminophen 650 mg (TA-ER) and immediate-release tramadol HCl 37.5 mg/acetaminophen 325 mg (TA-IR) for the treatment of moderate to severe acute pain following total knee replacement. This phase III, double-blind, placebo-controlled, parallel-group study randomized 320 patients with moderate to severe pain (≥4 intensity on an 11 point numeric rating scale) following total knee replacement arthroplasty to receive oral TA-ER (every 12 hours) or TA-IR (every 6 hours) over a period of 48 hours. In the primary analysis, TA-ER was evaluated for efficacy non-inferior to that of TA-IR based on the sum of pain intensity difference (SPID) at 48 hours after the first dose of study drug (SPID48). Secondary endpoints included SPID at additional time points, total pain relief at all on-therapy time points (TOTPAR), sum of SPID and TOTPAR at all on-therapy time points (SPID + TOTPAR), use of rescue medication, subjective pain assessment (PGIC, Patient Global Impression of Change), and adverse events (AEs). Analysis of the primary efficacy endpoint (SPID48) could not establish the non-inferiority of TA-ER to TA-IR. However, a post hoc analysis with a re-defined non-inferiority margin did demonstrate the non-inferiority of TA-ER to TA-IR. No statistically significant difference in SPID at 6, 12, or 24 hours was observed between the TA-ER and TA-IR groups. Similarly, analysis of TOTPAR showed that there were no significant differences between groups at any on-therapy time point, and SPID + TOTPAR at 6 and 48 hours were similar among groups. There was no difference in the mean frequency or dosage of rescue medication required by both groups, and the majority of patients in both the TA-ER and TA-IR groups rated their pain improvement as 'much' or 'somewhat better'. The overall incidence of ≥1 AEs was similar among the TA-ER (88.8%) and TA-IR (89.5%) groups. The most commonly

  16. STAT3, a Key Parameter of Cytokine-driven Tissue Protection During Sterile Inflammation – the Case of Experimental Acetaminophen (Paracetamol-induced Liver Damage

    Directory of Open Access Journals (Sweden)

    Heiko eMühl

    2016-05-01

    Full Text Available Acetaminophen (APAP, N-acetyl-p-aminophenol, or paracetamol overdosing is a prevalent cause of acute liver injury. While clinical disease is initiated by overt parenchymal hepatocyte necrosis in response to the analgetic, course of intoxication is substantially influenced by associated activation of innate immunity. This process is supposed to be set in motion by release of danger associated molecular patterns (DAMPs from dying hepatocytes and is accompanied by an inflammatory cytokine response. Murine models of APAP-induced liver injury emphasize the complex role that DAMPs and cytokines play in promoting either hepatic pathogenesis or resolution and recovery from intoxication. Whereas the function of key inflammatory cytokines is controversially discussed, a subclass of specific cytokines capable of efficiently activating the hepatocyte signal transducer and activator of transcription (STAT-3 pathway stands out as being consistently protective in murine models of APAP intoxication. Those include foremost interleukin (IL-6, IL-11, IL-13, and IL-22. Above all, activation of STAT3 under the influence of these cytokines has the capability to drive hepatocyte compensatory proliferation, a key principle of the regenerating liver. Herein, the role of these specific cytokines during experimental APAP-induced liver injury is highlighted and discussed in a broader perspective. In hard-to-treat or at-risk patients standard therapy may fail and APAP intoxication can proceed towards a fatal condition. Focused administration of recombinant STAT3-activating cytokines may evolve as novel therapeutic approach under those ill-fated conditions.

  17. Browse Title Index

    African Journals Online (AJOL)

    Items 51 - 100 of 162 ... ... on sodium nitrite‑induced cerebellar cortex toxicity in adult Wistar rats, Abstract .... Vol 14, No 2 (2015), Histopathological effects of acetaminophen ... extracts of Garcinia Kola on acetaminophen-Induced liver injury in ...

  18. Chemoprotective effect of insulin-like growth factor I against acetaminophen-induced cell death in Chang liver cells via ERK1/2 activation

    International Nuclear Information System (INIS)

    Hwang, Hye-Jung; Kwon, Mi-Jin; Nam, Taek-Jeong

    2007-01-01

    The insulin-like growth factor (IGF) system and type-I IGF receptor (IGF-IR) signaling are involved in protecting against chemotherapeutic drug-induced cell death in human hepatoma cells. Acetaminophen (AAP) hepatotoxicity is the leading cause of liver failure, and the prevention of AAP-induced cell death has been the focus of many studies. We determined whether IGF-I could protect against AAP-induced cell death in Chang liver cells and investigated the protective mechanism. Based on the results of MTS assays, LDH release assays, Hoechst 33342 cell staining, and DNA fragmentation experiments, AAP induced cell death in a dose-dependent manner. According to Western blot analysis, treatment with AAP increased the level of poly(ADP-ribose) polymerase (PARP) fragments in cells compared with that in control cells; however, caspase-3, a critical signaling molecule in apoptosis, was not activated after AAP overdose. Moreover, combined treatment with AAP and IGF-I inhibited PARP cleavage, which was consistent with the ability of IGF-I to restore the level of glutathione (GSH) and cell viability in GSH and MTS assays, respectively. We investigated whether the protective effect of IGF-I against AAP cytotoxicity is related to the extracellular signal-related kinase ERK1/2, which is generally activated by mitogenic and proliferative stimuli such as growth factors. Compared with AAP treatment alone, IGF-I and AAP co-treatment increased ERK1/2 phosphorylation but inhibited PARP cleavage. Thus ERK1/2 activation is instrumental in the protective effect of IGF-I against AAP-induced cell death in Chang liver cells

  19. Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly(Alizarin Violet 3B), multiwalled carbon nanotubes and graphene

    International Nuclear Information System (INIS)

    Wang, Yan; Wu, Ting; Bi, Chun-yan

    2016-01-01

    The authors describe a glassy carbon disk electrode which after modification with poly(Alizarin Violet 3B), multiwalled carbon nanotubes and graphene enables simultaneous determination of the drugs acetaminophen (AP), theophylline (TP) and caffeine (CF). The electrochemical response to AP, TP and CF at the modified electrode was studied by cyclic voltammetry, and the results revealed an excellent electrocatalytic activity towards the oxidation of the three analytes at potentials of typically 0.5, 1.15 and 1.4 V (vs. SCE) respectively. The anodic peaks are well defined and occur at lower oxidation potential and enhanced oxidation peak currents (compared to an unmodified electrode). Simultaneous differential pulse voltammetric measurements resulted in calibration plot for AP, TP and CF were obtained that cover range from 0.2 to 100 μM for AP, from 0.5 to 120 μM for TP, and from 1.0 to 120 μM for CF. The respective detection limits are 0.01, 0.02 and 0.10 μM. The method was applied to simultaneous determination of AP, TP and CF in spiked human serum and gave satisfactory results. (author)

  20. Ozagrel hydrochloride, a selective thromboxane A2 synthase inhibitor, alleviates liver injury induced by acetaminophen overdose in mice

    Directory of Open Access Journals (Sweden)

    Tomishima Yoshiro

    2013-01-01

    Full Text Available Abstract Background Overdosed acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP causes severe liver injury. We examined the effects of ozagrel, a selective thromboxane A2 (TXA2 synthase inhibitor, on liver injury induced by APAP overdose in mice. Methods Hepatotoxicity was induced to ICR male mice by an intraperitoneal injection with APAP (330 mg/kg. The effects of ozagrel (200 mg/kg treatment 30 min after the APAP injection were evaluated with mortality, serum alanine aminotransferase (ALT levels and hepatic changes, including histopathology, DNA fragmentation, mRNA expression and total glutathione contents. The impact of ozagrel (0.001-1 mg/mL on cytochrome P450 2E1 (CYP2E1 activity in mouse hepatic microsome was examined. RLC-16 cells, a rat hepatocytes cell line, were exposed to 0.25 mM N-acetyl-p-benzoquinone imine (NAPQI, a hepatotoxic metabolite of APAP. In this model, the cytoprotective effects of ozagrel (1–100 muM were evaluated by the WST-1 cell viability assay. Results Ozagel treatment significantly attenuated higher mortality, elevated serum alanine aminotransferase levels, excessive hepatic centrilobular necrosis, hemorrhaging and DNA fragmentation, as well as increase in plasma 2,3-dinor thromboxane B2 levels induced by APAP injection. Ozagrel also inhibited the hepatic expression of cell death-related mRNAs induced by APAP, such as jun oncogene, FBJ osteosarcoma oncogene (fos and C/EBP homologous protein (chop, but did not suppress B-cell lymphoma 2-like protein11 (bim expression and hepatic total glutathione depletion. These results show ozagrel can inhibit not all hepatic changes but can reduce the hepatic necrosis. Ozagrel had little impact on CYP2E1 activity involving the NAPQI production. In addition, ozagrel significantly attenuated cell injury induced by NAPQI in RLC-16. Conclusions We demonstrate that the TXA2 synthase inhibitor, ozagrel, dramatically alleviates liver injury induced by APAP in mice, and suggest

  1. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice.

    Science.gov (United States)

    Bandeira, Ana Carla Balthar; da Silva, Talita Prato; de Araujo, Glaucy Rodrigues; Araujo, Carolina Morais; da Silva, Rafaella Cecília; Lima, Wanderson Geraldo; Bezerra, Frank Silva; Costa, Daniela Caldeira

    2017-02-01

    Our aim was to investigate the antioxidant potential of lycopene in different experimental liver models: in vitro, to evaluate the influence of lycopene on reactive oxygen species (ROS) production mediated by the PKC pathway and in vivo, to evaluate the protective effects of lycopene in an experimental model of hepatotoxicity. The in vitro study assessed the lycopene antioxidant potential by the quantification of ROS production in SK-Hep-1 cells unstimulated or stimulated by an activator of the PKC pathway. The role of NADPH oxidase was evaluated by measuring its inhibition potential using an inhibitor of this enzyme. In the in vivo study, male C57BL/6 mice received lycopene (10 or 100 mg/kg by oral gavage) and 1 h later, acetaminophen (APAP) (500 mg/kg) was administrated. Lycopene decreased ROS production in SK-Hep-1 cells through inhibition of NADPH oxidase, brought about in the PKC pathway. Lycopene improved hepatotoxicity acting as an antioxidant, reduced GSSG and regulated tGSH and CAT levels, reduced oxidative damage primarily by decreasing protein carbonylation, promoted the downregulation of MMP-2 and reduced areas of necrosis improving the general appearance of the lesion in C57BL/6 mice. Lycopene is a natural compound that was able to inhibit the production of ROS in vitro and mitigate the damage caused by APAP overdose in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Estudio termodinámico de la transferencia de acetaminofén desde el agua hasta el octanol Thermodynamic study of acetaminophen's transfer from water to octanol

    Directory of Open Access Journals (Sweden)

    Yolima Baena

    2004-09-01

    Full Text Available Se determinó el coeficiente de reparto octanol/agua y la solubilidad de acetaminofén (paracetamol en octanol, agua y los solventes mutuamente saturados a 25.0, 30.0, 35.0 y 40.0 °C. Mediante el análisis termodinámico de Gibbs y van't Hoff se observa que el proceso de transferencia del fármaco desde el agua hasta el octanol es espontáneo y de conducción principalmente entálpica. Se encuentra que la saturación mutua de las fases juega un papel importante en el reparto y la solubilidad de este fármaco, lo cual se ha demostrado para otras sustancias semipolares tales como algunos derivados de la guanina y algunas sulfonamidas.The partition coefficients and solubilities in octanol, water and mutually saturated octanol-water phases were determined for acetaminophen at 25.0, 30.0, 35.0, and 40.0 °C. By means of Gibbs and van't Hoff thermodynamic analyses it may observe that the transfer of this drug from water to octanol is spontaneous and mainly driven enthalpically. As in other studies made with guanine derivatives and sulfonamides, it has been shown that the mutual saturation of the octanol and aqueous phases plays an important role in the partitioning and solubility of this drug.

  3. Risk Factors, Clinical Presentation, and Outcomes in Overdose With Acetaminophen Alone or With Combination Products: Results From the Acute Liver Failure Study Group.

    Science.gov (United States)

    Serper, Marina; Wolf, Michael S; Parikh, Nikhil A; Tillman, Holly; Lee, William M; Ganger, Daniel R

    2016-01-01

    Acetaminophen (APAP) is the most common cause of acute liver failure (ALF) in the west. It is unknown if APAP overdose in combination with diphenhydramine or opioids confers a different clinical presentation or prognosis. Study objectives were to compare (1) baseline patient characteristics; (2) initial clinical presentation; and (3) clinical outcomes among patients with ALF due to APAP alone or in combination with diphenhydramine or opioids. We analyzed 666 cases of APAP-related liver failure using the Acute Liver Failure Study Group database from 1998 to 2012. The database contains detailed demographic, laboratory, and clinical outcome data, including hemodialysis, transplantation, and death and in-hospital complications such as arrhythmia and infection. The final sample included 666 patients with APAP liver injury. A total 30.3% of patients were overdosed with APAP alone, 14.1% with APAP/diphenhydramine, and 56.6% with APAP/opioids. Patients taking APAP with opioids were older, had more comorbidities, and were more likely to have unintentional overdose (all Ppresentation, 58% in the APAP/opioid group had advanced encephalopathy as compared with 43% with APAP alone (P=0.001) The APAP/diphenhydramine group presented with the highest serum aminotransferase levels, no differences in laboratory values were noted at 3 days postenrollment. No significant differences were observed in clinical outcomes among the groups. Most patients with APAP-induced ALF were taking APAP combination products. There were significant differences in patient characteristics and clinical presentation based on the type of product ingested, however, there were no differences noted in delayed hepatotoxicity or clinical outcomes.

  4. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    International Nuclear Information System (INIS)

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.; Sattabongkot, Jetsumon; Beerheide, Walter; Boelsterli, Urs A.

    2006-01-01

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and the upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 μM) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction

  5. Transcutaneous electrical nerve stimulation improves low back pain during pregnancy.

    Science.gov (United States)

    Keskin, E A; Onur, O; Keskin, H L; Gumus, I I; Kafali, H; Turhan, N

    2012-01-01

    To compare the efficiency of transcutaneous electrical nerve stimulation (TENS) with those of exercise and acetaminophen for the treatment of pregnancy-related low back pain (LBP) during the third trimester of pregnancy. This prospective study included 79 subjects (≥32 gestational weeks) with visual analog scale (VAS) pain scores ≥5. Participants were divided randomly into a control group (n = 21) and three treatment groups [exercise (n = 19); acetaminophen (n = 19); TENS (n = 20)]. The VAS and the Roland-Morris disability questionnaire (RMDQ) were completed before and 3 weeks after treatment to assess the impact of pain on daily activities. During the study period, pain intensity increased in 57% of participants in the control group, whereas pain decreased in 95% of participants in the exercise group and in all participants in the acetaminophen and TENS groups. Post-treatment VAS and RMDQ values were significantly lower in the treatment groups (p pain relief in the TENS group than in the exercise and acetaminophen groups (p TENS application on pregnant women was observed during the study. TENS is an effective and safe treatment modality for LBP during pregnancy. TENS improved LBP more effectively than did exercise and acetaminophen. Copyright © 2012 S. Karger AG, Basel.

  6. Tramadol with or without paracetamol (acetaminophen) for cancer pain.

    Science.gov (United States)

    Wiffen, Philip J; Derry, Sheena; Moore, R Andrew

    2017-05-16

    Tramadol is an opioid analgesic licensed for use in moderate to severe pain. It is considered as a low risk for abuse, so control regulations are not as stringent as for 'strong' opioids such as morphine. It has a potential role as a step 2 option of the World Health Organization (WHO) analgesic ladder. To assess the benefits and adverse effects of tramadol with or without paracetamol (acetaminophen) for cancer-related pain. We searched the following databases using a wide range of search terms: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and LILACS. We also searched three clinical trials registry databases. The date of the last search was 2 November 2016. We selected studies that were randomised, with placebo or active controls, or both, and included a minimum of 10 participants per treatment arm. We were interested particularly in blinded studies, but also included open studies.We excluded non-randomised studies, studies of experimental pain, case reports, and clinical observations. Two review authors independently extracted data using a standard form and checked for agreement before entry into Review Manager 5. We included information about the number of participants treated and demographic details, type of cancer, drug and dosing regimen, study design (placebo or active control) and methods, study duration and follow-up, analgesic outcome measures and results, withdrawals, and adverse events. We collated multiple reports of the same study, so that each study, rather than each report, was the unit of interest in the review. We assessed the evidence using GRADE and created a 'Summary of findings' table.The main outcomes of interest for benefit were pain reduction of 30% or greater and 50% or greater from baseline, participants with pain no worse than mild, and participants feeling much improved or very much improved. We included 10 studies (12 reports) with 958 adult participants. All the studies enrolled participants with

  7. The juniper bush of autism spectrum disorder (ASD: metabolomics, microbiomics, acetaminophen. What else?

    Directory of Open Access Journals (Sweden)

    Vassilios Fanos

    2018-05-01

    . By using 1H NMR spectroscopy, our group found a combination of increased and decreased concentrations of: hippurate, glycine, creatine, tryptophan, D-threitol, and glutamate, creatinine, lactate, valine, betaine, and taurine, respectively. These findings strongly suggest a crucial role of oxidative stress and gut microflora in ASD development. In children with ASD, gut dysbiosis is characterized by the increase in Clostridium, Alistipes, Akkermansia, Caloramator, Sarcina spp., and by the reduction in Prevotella spp., E. siraeum, and Bifidobacterium spp. As a result, in these children the urine metabolome is marked by alterations in hippuric acid, p-hydroxyphenylacetic acid and 3-(3-hydroxyphenyl-3-hydroxypropanoic acid concentration. Moreover, propionic acid, related to Clostridium spp. is strongly involved. Metabolomics can lead to the discovery of dozens of biomarkers strongly implicated in the pathogenesis of ASD (i.e. mannitol, L-threonic acid, fucose, glycine, serine, and many others. Finally, the potential toxicity of acetaminophen (paracetamol, a very common analgesic and antipyretic drug widely used during pregnancy, after birth and in early childhood should be carefully considered in combination with the microbiome.

  8. Pain Relief After Operative Treatment of an Extremity Fracture: A Noninferiority Randomized Controlled Trial

    NARCIS (Netherlands)

    Helmerhorst, Gijs T. T.; Zwiers, Ruben; Ring, David; Kloen, Peter

    2017-01-01

    Opioid pain medication is frequently given to patients recovering from a surgical procedure for an extremity fracture in spite of evidence that acetaminophen may be adequate. The aim of this study was to determine whether prescription of step 1 pain medication (acetaminophen) is noninferior to step

  9. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 ± 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  10. Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis.

    Science.gov (United States)

    McGreal, Steven R; Bhushan, Bharat; Walesky, Chad; McGill, Mitchell R; Lebofsky, Margitta; Kandel, Sylvie E; Winefield, Robert D; Jaeschke, Hartmut; Zachara, Natasha E; Zhang, Zhen; Tan, Ee Phie; Slawson, Chad; Apte, Udayan

    2018-04-01

    Overdose of acetaminophen (APAP) results in acute liver failure. We have investigated the role of a posttranslational modification of proteins called O-GlcNAcylation, where the O-GlcNAc transferase (OGT) adds and O-GlcNAcase (OGA) removes a single β-D-N-acetylglucosamine (O-GlcNAc) moiety, in the pathogenesis of APAP-induced liver injury. Hepatocyte-specific OGT knockout mice (OGT KO), which have reduced O-GlcNAcylation, and wild-type (WT) controls were treated with 300 mg/kg APAP and the development of injury was studied over a time course from 0 to 24 h. OGT KO mice developed significantly lower liver injury as compared with WT mice. Hepatic CYP2E1 activity and glutathione (GSH) depletion following APAP treatment were not different between WT and OGT KO mice. However, replenishment of GSH and induction of GSH biosynthesis genes were significantly faster in the OGT KO mice. Next, male C57BL/6 J mice were treated Thiamet-G (TMG), a specific inhibitor of OGA to induce O-GlcNAcylation, 1.5 h after APAP administration and the development of liver injury was studied over a time course of 0-24 h. TMG-treated mice exhibited significantly higher APAP-induced liver injury. Treatment with TMG did not affect hepatic CYP2E1 levels, GSH depletion, APAP-protein adducts, and APAP-induced mitochondrial damage. However, GSH replenishment and GSH biosynthesis genes were lower in TMG-treated mice after APAP overdose. Taken together, these data indicate that induction in cellular O-GlcNAcylation exacerbates APAP-induced liver injury via dysregulation of hepatic GSH replenishment response.

  11. Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice.

    Science.gov (United States)

    Shen, Zhenyu; Wang, Yu; Su, Zhenhui; Kou, Ruirui; Xie, Keqin; Song, Fuyong

    2018-02-25

    Acetaminophen (APAP) overdose can cause severe liver failure even death. Nearly half of drug-induced liver injury is attributed to APAP in the US and many European countries. Oxidative stress has been validated as a critical event involved in APAP-induced liver failure. p62/SQSTM1, a selective autophagy adaptor protein, is reported to regulate Nrf2-ARE antioxidant pathway in response to oxidative stress. However, the exact role of p62-keap1-Nrf2 antioxidant pathway in APAP-induced hepatotoxicity remains unknown. In the present study, the dose-response and time-course model in C57/BL6 mice were established by intraperitoneal injection of APAP. The results of serum alanine/aspartate aminotransferases (ALT/AST) and histological examination demonstrated that APAP overdose resulted in the severe liver injury. In the meantime, the levels of p62, phospho-p62 and nuclear Nrf2 were significantly increased by APAP in mice liver, suggesting an activation of p62-keap1-Nrf2 pathway. In addition, the expression of GSTA1 mRNA was increased in a dose-dependent manner, while the mRNA levels of HO-1 and GCLC were decreased with the increase of APAP dose. Our further investigation found that expression of HO-1 and GCLC peaked at 3 h∼6 h, and then were decreased gradually. Taken together, these results indicated that p62-keap1-Nrf2 antioxidant pathway was primarily activated in the early stage of APAP hepatotoxicity, which might play a protective role in the process of APAP-induced acute liver injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Extended-release hydrocodone – gift or curse?

    Directory of Open Access Journals (Sweden)

    Krashin D

    2013-01-01

    Full Text Available Daniel Krashin,1 Natalia Murinova,2 Andrea M Trescot31Department of Anesthesiology and Pain Medicine, 2Department of Neurology University of Washington, Seattle, WA, USA 3Algone Pain Center, Wasilla, AK, USAAbstract: Hydrocodone is a semisynthetic opioid, which has been used for decades as a short-acting analgesic combined with acetaminophen (or less commonly ibuprofen. Several long-acting, non-acetaminophen-containing hydrocodone formulations are undergoing trials in the US under the auspices of the US Food and Drug Administration, and may be available shortly. This article reviews some of the advantages (including drug familiarity and lack of acetaminophen toxicity and potential disadvantages (including altered use patterns and high morphine equivalent dosing of such a medication formulation. We also discuss the abuse potential of long-acting versus short-acting opioids in general and hydrocodone specifically, as well as the metabolism of hydrocodone.Keywords: hydrocodone, long-acting opioids, opioid abuse, acetaminophen toxicity, tamper-resistant opioids

  13. A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen

    International Nuclear Information System (INIS)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-01-01

    An electrochemical sensor was prepared by modifying a glassy carbon electrode (GCE) with a composite of yttrium (III) oxide nanoparticles (Y_2O_3NPs) and carbon nanotubes (CNTs) for the determination of acetaminophen (ACT). Compared with a bare GCE and CNTs/GCE, the Y_2O_3NPs/CNTs/GCE exhibited a well-defined redox couple for ACT and highly enhanced the current response. The separations in the anodic and cathodic peak potentials (ΔE_p) for ACT were 552 mV, 24 mV and 10 mV at ba4re GCE, CNTs/GCE and Y_2O_3NPs/CNTs/GCE, respectively. The observation of only 10 mV of ΔE_p for ACT at Y_2O_3NPs/CNTs/GCE was a clear indication of a great acceleration of the electrode process compared to bare GCE and GCE modified with CNTs. Also, L-ascorbic acid (L-AA) and L-tyrosine (L-TRY) did not interfere with the selective determination of ACT. Square wave voltammetry (SWV) was performed for the quantification of ACT. A linear plot was obtained for current responses versus the concentrations of ACT over the range from 1.0 × 10"−"1"0 to 1.8 × 10"−"8 M with a detection limit of 3.0 × 10"−"1"1 M (based on 3S_b/m). The proposed composite material provided high electrocatalytic activity, improved voltammetric behavior, good selectivity and good reproducibility. The accurate quantification of ACT makes the proposed electrode of great interest for the public health. - Highlights: • A voltammetric sensor based on yttrium oxide was prepared for the detection of ACT. • The proposed electrode has greatly accelerated the voltammetric process of ACT. • A detection limit of 0.03 nM was obtained for ACT. • The proposed electrode exhibited great selectivity for ACT in the presence of L-AA and L-TRY. • The composite material exhibited high sensitivity, good stability and excellent reproducibility.

  14. Caspase-Mediated Anti-Apoptotic Effect of Ginsenoside Rg5, a Main Rare Ginsenoside, on Acetaminophen-Induced Hepatotoxicity in Mice.

    Science.gov (United States)

    Wang, Zi; Hu, Jun-Nan; Yan, Meng-Han; Xing, Jing-Jing; Liu, Wen-Cong; Li, Wei

    2017-10-25

    Frequent overdose of acetaminophen (APAP) is one of the most common and important incentives of acute hepatotoxicity. Prior to this work, our research group confirmed that black ginseng (Panax ginseng, BG) showed powerful protective effects on APAP-induced ALI. However, it is not clear which kind of individual ginsenoside from BG plays such a liver protection effect. The objective of the current investigation was to evaluate whether ginsenoside Rg5 (G-Rg5) protected against APAP-induced hepatotoxicity and the involved action mechanisms. Mice were administrated with G-Rg5 at two dosages of 10 or 20 mg/kg for 7 consecutive days. After the last treatment, all of the animals that received a single intraperitoneal injection of APAP (250 mg/kg) showed severe liver toxicity after 24 h, and the liver protection effects of G-Rg5 were examined. The results clearly indicated that pretreatment with G-Rg5 remarkably inhibited the production of serum tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) compared with the APAP group. Meanwhile, G-Rg5 decreased the hepatic malondialdehyde (MDA) content, the protein expression levels of 4-hydroxynonenal (4-HNE) and cytochrome P450 2E1 (CYP2E1) in the liver tissues. G-Rg5 decreased APAP caused the hepatic overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Furthermore, analysis of immunohistochemistry and Western blotting also indicated that G-Rg5 pretreatment inhibited activation of apoptotic pathways mainly via increasing the expression of Bcl-2 protein, decreasing the expression of Bax protein, proliferating cell nuclear antigen (PCNA), cytochrome c, caspase-3, caspase-8, and caspase-9. Liver histopathological observation provided further evidence that pretreatment with G-Rg5 could significantly inhibit hepatocyte necrosis, inflammatory cell infiltration, and apoptosis caused by APAP. In conclusion, the present study clearly demonstrates that G-Rg5 exerts a liver protection effect against

  15. Using aquatic fungi for pharmaceutical bioremediation: Uptake of acetaminophen by Mucor hiemalis does not result in an enzymatic oxidative stress response.

    Science.gov (United States)

    Esterhuizen-Londt, Maranda; Schwartz, Katrin; Pflugmacher, Stephan

    2016-10-01

    The increasing anthropogenic pollution of aquatic environments and fresh water scarcity worldwide have prompted the development of low-cost and effective water treatment alternatives. One example of a highly released anthropogenic xenobiotics is acetaminophen (APAP), which has been detected in surface waters at concentrations as high as 5 μg L(-1). To date, traditional water treatment plants were unable to remove all pharmaceutical xenobiotics and as in the case with APAP, the breakdown products are toxic. Phytoremediation has proved to remove xenobiotics efficiently producing no toxic breakdown products, however, they are often restrained in their application range. Therefore, it was necessary to find alternate remediation tools to extend and complement the application ranges of existing bioremediation techniques. With the success of mycoremediation as well as the adaptability of fungi, Mucor hiemalis was investigated in terms of its APAP uptake capabilities. The investigation included the examination of concentration- and time-dependent uptake studies to examine the effects of each of these parameters independently. Additionally, the extracellular peroxidase activity of M. hiemalis was measured with exposure to APAP to evaluate possible breakdown and the antioxidative stress enzymes, catalase, glutathione peroxidase, and glutathione reductase, were assayed to investigate whether APAP caused oxidative stress. The results showed that M. hiemalis was able to internalize between 1 and 2 μg APAP per g dried fungal biomass when exposed to 5, 10, 50 and 100 ng mL(-1) APAP for 24-48 h, but not beyond this time frame. Further, exposure to APAP did not result in elevated extracellular peroxidase activity or oxidative stress. The findings led to the conclusion that M. hiemalis could be integrated in bioremediation systems, for short-term degradation at low concentrations of APAP with effective management. Copyright © 2016 British Mycological Society. Published by

  16. Curative Effects of Thiacremonone against Acetaminophen-Induced Acute Hepatic Failure via Inhibition of Proinflammatory Cytokines Production and Infiltration of Cytotoxic Immune Cells and Kupffer Cells

    Directory of Open Access Journals (Sweden)

    Yu Ri Kim

    2013-01-01

    Full Text Available High doses of acetaminophen (APAP; N-acetyl-p-aminophenol cause severe hepatotoxicity after metabolic activation by cytochrome P450 2E1. This study was undertaken to examine the preventive effects of thiacremonone, a compound extracted from garlic, on APAP-induced acute hepatic failure in male C57BL/6J. Mice received with 500 mg/kg APAP after a 7-day pretreatment with thiacremonone (10–50 mg/kg. Thiacremonone inhibited the APAP-induced serum ALT and AST levels in a dose-dependent manner, and markedly reduced the restricted area of necrosis and inflammation by administration of APAP. Thiacremonone also inhibited the APAP-induced depletion of intracellular GSH, induction of nitric oxide, and lipid peroxidation as well as expression of P450 2E1. After APAP injection, the numbers of Kupffer cells, natural killer cells, and cytotoxic T cells were elevated, but the elevated cell numbers in the liver were reduced in thiacremonone pretreated mice. The expression levels of I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-7, and IL-17 were increased by APAP treatment, which were inhibited in thiacremonone pretreated mice. These data indicate that thiacremonone could be a useful agent for the treatment of drug-induced hepatic failure and that the reduction of cytotoxic immune cells as well as proinflammatory cytokine production may be critical for the prevention of APAP-induced acute liver toxicity.

  17. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    Science.gov (United States)

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  18. Temporal study of acetaminophen (APAP) and S-adenosyl-L-methionine (SAMe) effects on subcellular hepatic SAMe levels and methionine adenosyltransferase (MAT) expression and activity

    International Nuclear Information System (INIS)

    Brown, J. Michael; Ball, John G.; Hogsett, Amy; Williams, Tierra; Valentovic, Monica

    2010-01-01

    Acetaminophen (APAP) is the leading cause of drug induced liver failure in the United States. Previous studies in our laboratory have shown that S-adenosyl methionine (SAMe) is protective for APAP hepatic toxicity. SAMe is critical for glutathione synthesis and transmethylation of nucleic acids, proteins and phospholipids which would facilitate recovery from APAP toxicity. SAMe is synthesized in cells through the action of methionine adenosyltransferase (MAT). This study tested the hypothesis that total hepatic and subcellular SAMe levels are decreased by APAP toxicity. Studies further examined MAT expression and activity in response to APAP toxicity. Male C57BL/6 mice (16-22 g) were treated with vehicle (Veh; water 15 ml/kg ip injections), 250 mg/kg APAP (15 ml/kg, ip), SAMe (1.25 mmol/kg) or SAMe administered 1 h after APAP injection (SAMe and SAMe + APAP). Hepatic tissue was collected 2, 4, and 6 h after APAP administration. Levels of SAMe and its metabolite S-adenosylhomocysteine (SAH) were determined by HPLC analysis. MAT expression was examined by Western blot. MAT activity was determined by fluorescence assay. Total liver SAMe levels were depressed at 4 h by APAP overdose, but not at 2 or 6 h. APAP depressed mitochondrial SAMe levels at 4 and 6 h relative to the Veh group. In the nucleus, levels of SAMe were depressed below detectable limits 4 h following APAP administration. SAMe administration following APAP (SAMe + APAP) prevented APAP associated decline in mitochondrial and nuclear SAMe levels. In conclusion, the maintenance of SAMe may provide benefit in preventing damage associated with APAP toxicity.

  19. The use of paracetamol (acetaminophen) among a community sample of people with chronic non-cancer pain prescribed opioids.

    Science.gov (United States)

    Hoban, B; Larance, B; Gisev, N; Nielsen, S; Cohen, M; Bruno, R; Shand, F; Lintzeris, N; Hall, W; Farrell, M; Degenhardt, L

    2015-11-01

    The regular use of simple analgesics in addition to opioids such as paracetamol (or acetaminophen) is recommended for persistent pain to enhance analgesia. Few studies have examined the frequency and doses of paracetamol among people with chronic non-cancer pain including use above the recommended maximum daily dose. To assess (i) the prevalence of paracetamol use among people with chronic non-cancer pain prescribed opioids, (ii) assess the prevalence of paracetamol use above the recommended maximum daily dose and (iii) assess correlates of people who used paracetamol above the recommended maximum daily dose including: age, gender, income, education, pain severity and interference, use of paracetamol/opioid combination analgesics, total opioid dose, depression, anxiety, pain self-efficacy or comorbid substance use, among people prescribed opioids for chronic non-cancer pain. This study draws on baseline data collected for the Pain and Opioids IN Treatment (POINT) study and utilises data from 962 interviews and medication diaries. The POINT study is national prospective cohort of people with chronic non-cancer pain prescribed opioids. Participants were recruited from randomly selected pharmacies across Australia. Sixty-three per cent of the participants had used paracetamol in the past week (95% CI = 59.7-65.8). Among the paracetamol users 22% (95% CI = 19.3-24.6) had used paracetamol/opioid combination analgesics and 4.8% (95% CI = 3.6-6.3) had used paracetamol above the recommended maximum daily dose (i.e. > 4000 mg/day). Following binomial logistic regression (χ(2) = 25.98, df = 10, p = 0.004), people who had taken above the recommended maximum daily dose were less likely to have low income (AOR = 0.52, 95% CI = 0.27-0.99), more likely to use paracetamol/opioid combination analgesics (AOR = 2.01, 95% CI = 1.02-3.98) and more likely to take a higher opioid dose (AOR = 1.00, 95% CI = 1.00-1.01). The majority of people with chronic non-cancer pain prescribed

  20. Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: Protection by starch-desferal and minocycline.

    Science.gov (United States)

    Hu, Jiangting; Kholmukhamedov, Andaleb; Lindsey, Christopher C; Beeson, Craig C; Jaeschke, Hartmut; Lemasters, John J

    2016-08-01

    Acetaminophen (APAP) overdose causes hepatotoxicity involving mitochondrial dysfunction and the mitochondrial permeability transition (MPT). Iron is a critical catalyst for ROS formation, and reactive oxygen species (ROS) play an important role in APAP-induced hepatotoxicity. Previous studies show that APAP disrupts lysosomes, which release ferrous iron (Fe(2+)) into the cytosol to trigger the MPT and cell killing. Here, our aim was to investigate whether iron released from lysosomes after APAP is then taken up into mitochondria via the mitochondrial electrogenic Ca(2+), Fe(2+) uniporter (MCFU) to cause mitochondrial dysfunction and cell death. Hepatocytes were isolated from fasted male C57BL/6 mice. Necrotic cell killing was assessed by propidium iodide fluorimetry. Mitochondrial membrane potential (ΔΨ) was visualized by confocal microscopy of rhodamine 123 (Rh123) and tetramethylrhodamine methylester (TMRM). Chelatable Fe(2+) was monitored by quenching of calcein (cytosol) and mitoferrofluor (MFF, mitochondria). ROS generation was monitored by confocal microscopy of MitoSox Red and plate reader fluorimetry of chloromethyldihydrodichlorofluorescein diacetate (cmH2DCF-DA). Administered 1h before APAP (10mM), the lysosomally targeted iron chelator, starch-desferal (1mM), and the MCFU inhibitors, Ru360 (100nM) and minocycline (4µM), decreased cell killing from 83% to 41%, 57% and 53%, respectively, after 10h. Progressive quenching of calcein and MFF began after ~4h, signifying increased cytosolic and mitochondrial chelatable Fe(2+). Mitochondria then depolarized after ~10h. Dipyridyl, a membrane-permeable iron chelator, dequenched calcein and MFF fluorescence after APAP. Starch-desferal, but not Ru360 and minocycline, suppressed cytosolic calcein quenching, whereas starch-desferal, Ru360 and minocycline all suppressed mitochondrial MFF quenching and mitochondrial depolarization. Starch-desferal, Ru360 and minocycline also each decreased ROS formation. Moreover