WorldWideScience

Sample records for acetaminophen-induced acute liver

  1. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-01

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  2. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  3. Nonacetaminophen Drug-Induced Acute Liver Failure.

    Science.gov (United States)

    Thomas, Arul M; Lewis, James H

    2018-05-01

    Acute liver failure of all causes is diagnosed in between 2000 and 2500 patients annually in the United States. Drug-induced acute liver failure is the leading cause of acute liver failure, accounting for more than 50% of cases. Nonacetaminophen drug injury represents 11% of all cases in the latest registry from the US Acute Liver Failure Study Group. Although rare, acute liver failure is clinically dramatic when it occurs, and requires a multidisciplinary approach to management. In contrast with acetaminophen-induced acute liver failure, non-acetaminophen-induced acute liver failure has a more ominous prognosis with a lower liver transplant-free survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage

    NARCIS (Netherlands)

    Gonzalez Ponce, Herson Antonio; Consolacion Martinez-Saldana, Maria; Rosa Rincon-Sanchez, Ana; Teresa Sumaya-Martinez, Maria; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han; Jaramillo-Juarez, Fernando

    2016-01-01

    Acetaminophen (APAP)-induced acute liver failure (ALF) is a serious health problem in developed countries. N-acetyl-L-cysteine (NAC), the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients

  5. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen

    International Nuclear Information System (INIS)

    Singh, Mahendra Pratap; Kim, Ki Young; Kim, Hwa-Young

    2017-01-01

    Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA −/− ). We found that MsrA −/− mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA +/+ ). The central lobule area of the MsrA −/− liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA −/− than in MsrA +/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA −/− than in MsrA +/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA −/− than in MsrA +/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. - Highlights: • MsrA deficiency increases APAP-induced liver damage. • MsrA deletion enhances APAP-induced hepatic GSH depletion and oxidative stress. • MsrA deficiency induces more profound activation of Nrf2 in response to APAP. • MsrA protects the liver from APAP-induced toxicity.

  6. Acetaminophen (Paracetamol induced acute liver failure – A social problem in an era of increasing tendency to self-treatment

    Directory of Open Access Journals (Sweden)

    Tadeusz Wróblewski

    2015-12-01

    Paracetamol is the cause of many poisonings resulting from the lack of public awareness about toxic interactions with alcohol, and suicide attempts. Acetaminophen-induced acute liver failure concerns a small percentage of patients but can be successfully treated with albumin dialysis, and in extreme cases by liver transplantation.

  7. Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Howie Forbes

    2010-03-01

    Full Text Available Abstract Background The development of effective therapies for acute liver failure (ALF is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF. Method 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased. Results Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein. Control pigs (n = 4 survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8 +/- 5.9 vs 59 +/- 2.0 mmHg, increased cardiac output (7.26 +/- 1.86 vs 3.30 +/- 0.40 l/min and decreased systemic vascular resistance (8.48 +/- 2.75 vs 16.2 +/- 1.76 mPa/s/m3. Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636 +/- 95 vs 301 +/- 26.9 mPa/s/m3 observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23 +/- 0.05 vs 7.45 +/- 0.02 and prothrombin time (36 +/- 2 vs 8.9 +/- 0.3 seconds compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5 +/- 210 vs 42 +/- 8.14 coincided with a marked reduction in serum albumin (11.5 +/- 1.71 vs 25 +/- 1 g/dL in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2 +/- 36.5 vs 131.6 +/- 9.33 μmol/l. Liver histology revealed evidence of severe centrilobular necrosis

  8. Acute liver failure after recommended doses of acetaminophen in patients with myopathies

    NARCIS (Netherlands)

    Ceelie, Ilse; James, Laura P.; Gijsen, Violette; Mathot, Ron A. A.; Ito, Shinya; Tesselaar, Coranne D.; Tibboel, Dick; Koren, Gideon; de Wildt, Saskia N.

    2011-01-01

    To determine the likelihood that recommended doses of acetaminophen are associated with acute liver failure in patients with myopathies. Retrospective analysis. Level III pediatric intensive care unit. Two pediatric patients with myopathies and acute liver failure. CLINICAL INVESTIGATIONS: We

  9. Role and mechanisms of autophagy in acetaminophen-induced liver injury.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Hua; Jaeschke, Hartmut; Ding, Wen-Xing

    2018-04-23

    Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage

    Directory of Open Access Journals (Sweden)

    Herson Antonio González-Ponce

    2016-10-01

    Full Text Available Acetaminophen (APAP-induced acute liver failure (ALF is a serious health problem in developed countries. N-acetyl-L-cysteine (NAC, the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients and contain high levels of bioactive compounds, including antioxidants. The aim of this study was to evaluate the hepatoprotective effect of Opuntia robusta and Opuntia streptacantha extracts against APAP-induced ALF. In addition, we analyzed the antioxidant activities of these extracts. Fruit extracts (800mg/kg/day, orally were given prophylactically to male Wistar rats before intoxication with APAP (500 mg/kg, intraperitoneally. Rat hepatocyte cultures were exposed to 20mmol/LAPAP, and necrosis was assessed by LDH leakage. Opuntia robusta had significantly higher levels of antioxidants than Opuntia streptacantha. Both extracts significantly attenuated APAP-induced injury markers AST, ALT and ALP and improved liver histology. The Opuntia extracts reversed APAP-induced depletion of liver GSH and glycogen stores. In cultured hepatocytes, Opuntia extracts significantly reduced leakage of LDH and cell necrosis, both prophylactically and therapeutically. Both extracts appeared to be superior to NAC when used therapeutically. We conclude that Opuntia extracts are hepatoprotective and can be used as a nutraceutical to prevent ALF.

  11. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Science.gov (United States)

    Kim, Hyunseong; Keum, Dong June; Kwak, Jung won; Chung, Hwan-Suck; Bae, Hyunsu

    2014-01-01

    The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2) from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg) in mice. Acetaminophen (APAP) is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/-) mice were injected with PLA2 once a day for five days and sacrificed 24 h (h) after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO) compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  12. Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice.

    Directory of Open Access Journals (Sweden)

    Hyunseong Kim

    Full Text Available The aim of this study was to investigate the protective effects of phospholipase A2 (PLA2 from bee venom against acetaminophen-induced hepatotoxicity through CD4+CD25+Foxp3+ T cells (Treg in mice. Acetaminophen (APAP is a widely used antipyretic and analgesic, but an acute or cumulative overdose of acetaminophen can cause severe hepatic failure. Tregs have been reported to possess protective effects in various liver diseases and kidney toxicity. We previously found that bee venom strongly increased the Treg population in splenocytes and subsequently suppressed immune disorders. More recently, we found that the effective component of bee venom is PLA2. Thus, we hypothesized that PLA2 could protect against liver injury induced by acetaminophen. To evaluate the hepatoprotective effects of PLA2, C57BL/6 mice or interleukin-10-deficient (IL-10-/- mice were injected with PLA2 once a day for five days and sacrificed 24 h (h after acetaminophen injection. The blood sera were collected 0, 6, and 24 h after acetaminophen injection for the analysis of aspartate aminotransferase (AST and alanine aminotransferase (ALT. PLA2-injected mice showed reduced levels of serum AST, ALT, proinflammatory cytokines, and nitric oxide (NO compared with the PBS-injected control mice. However, IL-10 was significantly increased in the PLA2-injected mice. These hepatic protective effects were abolished in Treg-depleted mice by antibody treatment and in IL-10-/- mice. Based on these findings, it can be concluded that the protective effects of PLA2 against acetaminophen-induced hepatotoxicity can be mediated by modulating the Treg and IL-10 production.

  13. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status.

    Science.gov (United States)

    Ajith, T A; Hema, U; Aswathy, M S

    2007-11-01

    A large number of xenobiotics are reported to be potentially hepatotoxic. Free radicals generated from the xenobiotic metabolism can induce lesions of the liver and react with the basic cellular constituents - proteins, lipids, RNA and DNA. Hepatoprotective activity of aqueous ethanol extract of Zingiber officinale was evaluated against single dose of acetaminophen-induced (3g/kg, p.o.) acute hepatotoxicity in rat. Aqueous extract of Z. officinale significantly protected the hepatotoxicity as evident from the activities of serum transaminase and alkaline phosphatase (ALP). Serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and ALP activities were significantly (pHepatic lipid peroxidation was enhanced significantly (pofficinale (200 and 400mg/kg, p.o.) prior to acetaminophen significantly declines the activities of serum transaminases and ALP. Further the hepatic antioxidant status was enhanced in the Z. officinale plus acetaminophen treated group than the control group. The results of the present study concluded that the hepatoprotective effect of aqueous ethanol extract of Z. officinale against acetaminophen-induced acute toxicity is mediated either by preventing the decline of hepatic antioxidant status or due to its direct radical scavenging capacity.

  14. Acute liver failure after recommended doses of acetaminophen in patients with myopathies

    NARCIS (Netherlands)

    I. Ceelie (Ilse); L.P. James (Laura); V.M.G.J. Gijsen (Violette); R.A.A. Mathôt (Ron); S. Ito (Shinya); C.D. Tesselaar (Coranne); D. Tibboel (Dick); G. Koren (Gideon); S.N. de Wildt (Saskia)

    2011-01-01

    textabstractObjective: To determine the likelihood that recommended doses of acetaminophen are associated with acute liver failure in patients with myopathies. Design: Retrospective analysis. Setting: Level III pediatric intensive care unit. Patients: Two pediatric patients with myopathies and acute

  15. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Nancy Sayuri Uchida

    2017-01-01

    Full Text Available High doses of acetaminophen (APAP lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP, and gamma-glutamyl transferase (γGT were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO activity and nitric oxide (NO production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γGT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP.

  16. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    Science.gov (United States)

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  17. Necrostatin-1 protects against reactive oxygen species (ROS-induced hepatotoxicity in acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    2014-01-01

    Full Text Available Excessive acetaminophen (APAP use is one of the most common causes of acute liver failure. Various types of cell death in the damaged liver are linked to APAP-induced hepatotoxicity, and, of these, necrotic cell death of hepatocytes has been shown to be involved in disease pathogenesis. Until recently, necrosis was commonly considered to be a random and unregulated form of cell death; however, recent studies have identified a previously unknown form of programmed necrosis called receptor-interacting protein kinase (RIPK-dependent necrosis (or necroptosis, which is controlled by the kinases RIPK1 and RIPK3. Although RIPK-dependent necrosis has been implicated in a variety of disease states, including atherosclerosis, myocardial organ damage, stroke, ischemia–reperfusion injury, pancreatitis, and inflammatory bowel disease. However its involvement in APAP-induced hepatocyte necrosis remains elusive. Here, we showed that RIPK1 phosphorylation, which is a hallmark of RIPK-dependent necrosis, was induced by APAP, and the expression pattern of RIPK1 and RIPK3 in the liver overlapped with that of CYP2E1, whose activity around the central vein area has been demonstrated to be critical for the development of APAP-induced hepatic injury. Moreover, a RIPK1 inhibitor ameliorated APAP-induced hepatotoxicity in an animal model, which was underscored by significant suppression of the release of hepatic enzymes and cytokine expression levels. RIPK1 inhibition decreased reactive oxygen species levels produced in APAP-injured hepatocytes, whereas CYP2E1 expression and the depletion rate of total glutathione were unaffected. Of note, RIPK1 inhibition also conferred resistance to oxidative stress in hepatocytes. These data collectively demonstrated a RIPK-dependent necrotic mechanism operates in the APAP-injured liver and inhibition of this pathway may be beneficial for APAP-induced fulminant hepatic failure.

  18. Hepatoprotective effects of Arctium lappa on carbon tetrachloride- and acetaminophen-induced liver damage.

    Science.gov (United States)

    Lin, S C; Chung, T C; Lin, C C; Ueng, T H; Lin, Y H; Lin, S Y; Wang, L Y

    2000-01-01

    The root of Arctium lappa Linne (A. lappa) (Compositae), a perennial herb, has been cultivated for a long time as a popular vegetable. In order to investigate the hepatoprotective effects of A. lappa, male ICR mice were injected with carbon tetrachloride (CCl4, 32 microl/kg, i.p.) or acetaminophen (600 mg/kg, i.p.). A. lappa suppressed the SGOT and SGPT elevations induced by CCl4 or acetaminophen in a dose-dependent manner and alleviated the severity of liver damage based on histopathological observations. In an attempt to elucidate the possible mechanism(s) of this hepatoprotective effect, glutathione (GSH), cytochrome P-450 (P-450) and malondialdehyde (MDA) contents were studied. A. lappa reversed the decrease in GSH and P-450 induced by CCl4 and acetaminophen. It was also found that A. lappa decreased the malondialdehyde (MDA) content in CCl4 or acetaminophen-intoxicated mice. From these results, it was suggested that A. lappa could protect the liver cells from CCl4 or acetaminophen-induced liver damages, perhaps by its antioxidative effect on hepatocytes, hence eliminating the deleterious effects of toxic metabolites from CCl4 or acetaminophen.

  19. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Directory of Open Access Journals (Sweden)

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  20. Ethanol extract from portulaca oleracea L. attenuated acetaminophen-induced mice liver injury

    Science.gov (United States)

    Liu, Xue-Feng; Zheng, Cheng-Gang; Shi, Hong-Guang; Tang, Gu-Sheng; Wang, Wan-Yin; Zhou, Juan; Dong, Li-Wei

    2015-01-01

    Acetaminophen-induced liver injury represents the most frequent cause of drug-induced liver failure in the world. Portulaca oleracea L., a widely distributed weed, has been used as a folk medicine in many countries. Previously, we reported that the ethanol extracts of Portulaca oleracea L. (PO) exhibited significant anti-hypoxic activity. In the present study, we investigated the role of PO on acetaminophen (APAP) induced hepatotoxicity. The results demonstrated that PO was an effective anti-oxidative agent, which could, to some extent, reverse APAP-induced hepatotoxicity by regulating the reactive oxygen species (ROS) in the liver of mice. At the same time, PO treatment significantly decreased mice serum levels of IL-6 and TNFα and their mRNA expression in liver tissue IL-α and TNFα play an important role during APAP-induced liver injury. Furthermore, PO inhibited APAP and TNFα-induced activation of JNK, whose activation play an important effect during APAP induced liver injury. These findings suggested that administration of PO may be an effective strategy to prevent or treat liver injury induced by APAP. PMID:25901199

  1. Acetaminophen (Paracetamol) induced acute liver failure - A social problem in an era of increasing tendency to self-treatment.

    Science.gov (United States)

    Wróblewski, Tadeusz; Kobryń, Konrad; Kozieł, Sławomir; Ołdakowska-Jedynak, Urszula; Pinkas, Jarosław; Danielewicz, Roman; Ziarkiewicz-Wróblewska, Bogna; Krawczyk, Marek

    2015-01-01

    The widespread availability of medication without prescription, so-called over the counter (OTC), and the rapid development of health consciousness of Poles is associated with broad access to medical information in the mass media. This causes patients to recognize their own disease, cancel doctor's appointments, and begin self-treatment. This time and money-saving behavior, often signaled by pain, usually leads to the treatment of symptoms alone, without seeking the cause of the disease.The aim of the study was to present life-threatening paracetamol poisoning, and the treatment of acute liver failure. In 2002-2014, 35 patients were hospitalized due to acute paracetamol poisoning: 17 female and 18 male patients aged between 17-59 (mean 32.3 years). Patients were treated in the surgical intensive care unit, where their parameters of liver and renal function were continuously monitored. If there was no improvement in the liver function, patients underwent albumin dialysis with the Prometheus system and were qualified for liver transplantation (LTx). 26 patients were treated pharmacologically and 7 out of 9 patients who underwent LTx were dialyzed. Overall, 11 patients had 26 albumin dialysis in total; 4 patients died - 1 post-transplant and 3 pre-transplant. Paracetamol is the cause of many poisonings resulting from the lack of public awareness about toxic interactions with alcohol, and suicide attempts. Acetaminophen-induced acute liver failure concerns a small percentage of patients but can be successfully treated with albumin dialysis, and in extreme cases by liver transplantation.

  2. Gene expression data from acetaminophen-induced toxicity in human hepatic in vitro systems and clinical liver samples

    Directory of Open Access Journals (Sweden)

    Robim M. Rodrigues

    2016-06-01

    Full Text Available This data set is composed of transcriptomics analyses of (i liver samples from patients suffering from acetaminophen-induced acute liver failure (ALF and (ii hepatic cell systems exposed to acetaminophen and their respective controls. The in vitro systems include widely employed cell lines i.e. HepaRG and HepG2 cells as well as a novel stem cell-derived model i.e. human skin-precursors-derived hepatocyte-like cells (hSKP-HPC. Data from primary human hepatocytes was also added to the data set “Open TG-GATEs: a large-scale toxicogenomics database” (Igarashi et al., 2015 [1]. Changes in gene expression due to acetaminophen intoxication as well as comparative information between human in vivo and in vitro samples are provided. The microarray data have been deposited in NCBI׳s Gene Expression Omnibus and are accessible through GEO Series accession number GEO: GSE74000. The provided data is used to evaluate the predictive capacity of each hepatic in vitro system and can be directly compared with large-scale publically available toxicogenomics databases. Further interpretation and discussion of these data feature in the corresponding research article “Toxicogenomics-based prediction of acetaminophen-induced liver injury using human hepatic cell systems” (Rodrigues et al., 2016 [2].

  3. Hepatoprotective Effect of Metadoxine on Acetaminophen-induced Liver Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Parvin Mazraati

    2018-01-01

    Full Text Available Background: Metadoxine (pyridoxine pyrrolidone carboxylate is considered to be a beneficial agent for the treatment of experimental hepatotoxicity due to alcohol, CCl4, and bile duct ligation. Hence, the therapeutic effect of metadoxine and N-acetylcysteine (NAC as reference drug was investigated in mice exposed to acute hepatotoxicity induced by a single oral toxic dose of acetaminophen (650 mg/kg. Materials and Methods: Metadoxine (200 and 400 mg/kg and NAC (300 mg/kg were given orally (p. o., 2 h after acetaminophen administration. Serum aminotransferases, aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP, total bilirubin, hepatic glutathione (GSH, and malondialdehyde (MDA levels were determined for evaluating the extent of hepatotoxicity due to acetaminophen and its protection by metadoxine. Results: Findings indicated that metadoxine significantly reduced the level of serum ALT, AST, and ALP but not total bilirubin which increased by acetaminophen intoxication. Administration of metadoxine also attenuated oxidative stress by suppressing lipid peroxidation (MDA and prevented the depletion of reduced GSH level which caused by acetaminophen toxicity. Besides, metadoxine ameliorated histopathological hepatic tissue injury induced by acetaminophen. Conclusion: In most parameters examined, the effect of metadoxine was comparable to NAC. Hence, metadoxine could be considered as a beneficial therapeutic candidate to protect against acute acetaminophen hepatotoxicity.

  4. Serum neopterin and soluble CD163 as markers of macrophage activation in paracetamol (acetaminophen)-induced human acute liver injury.

    Science.gov (United States)

    Craig, D G; Lee, P; Pryde, E A; Hayes, P C; Simpson, K J

    2013-12-01

    Macrophage activation is implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS) following paracetamol (acetaminophen) overdose (POD). Neopterin is synthesised from macrophages and reflects the intensity of monocyte/macrophage activation. Soluble CD163 (sCD163) is a marker of alternatively activated M2 macrophages. To examine neopterin and sCD163 levels in a cohort of acute liver injury patients. Consecutive patients (n = 41, (18 (43.9%) male) with acute liver injury were enrolled. Neopterin and sCD163 levels were measured by ELISA. A total of 24/33 (72.7%) POD patients developed hepatic encephalopathy (HE), and therefore acute liver failure. Both neopterin and sCD163 levels were significantly higher in PODs compared with chronic liver disease (neopterin P paracetamol overdose, and reflect the degree of macrophage activation in this condition. Serum neopterin in particular may have value as an early proxy marker of macrophage activation following paracetamol overdose. © 2013 John Wiley & Sons Ltd.

  5. Anti-thromboxane B2 antibodies protect against acetaminophen-induced liver injury in mice

    Directory of Open Access Journals (Sweden)

    Ivan Ćavar

    2011-12-01

    Full Text Available Prostanoids are lipid compounds that mediate a variety of physiological and pathological functions in almost all body tissues and organs. Thromboxane (TX A2 is a powerful inducer of platelet aggregation and vasoconstriction and it has ulcerogenic activity in the gastrointestinal tract. Overdose or chronic use of a high dose of acetaminophen (N-acetyl-paminophenol, APAP is a major cause of acute liver failure in the Western world. We investigated whether TXA2 plays a role in host response to toxic effect of APAP. CBA/H Zg mice of both sexes were intoxicated with a single lethal or high sublethal dose of APAP, which was administered to animals by oral gavage. The toxicity of APAP was determined by observing the survival of mice during 48 h, by measuring concentration of alanine-aminotransferase (ALT in plasma 20-22 h after APAP administration and by liver histology. The results have shown that anti-thromboxane (TX B2 antibodies (anti-TXB2 and a selective inhibitor of thromboxane (TX synthase, benzylimidazole (BZI, were significantly hepatoprotective, while a selective thromboxane receptor (TPR antagonist, daltroban, was slightly protective in this model of acute liver injury. A stabile metabolite of TXA2, TXB2, and a stabile agonist of TPR, U-46619, had no influence on APAP-induced liver damage. Our findings suggest that TXA2 has a pathogenic role in acute liver toxicity induced with APAP, which was highly abrogated by administration of anti-TXB2. According to our results, this protection is mediated, at least in part, through decreased production of TXB2 by liver fragments ex vivo.

  6. PROTECTIVE EFFECT OF MORINGA PEREGRINA LEAVES EXTRACT ON ACETAMINOPHEN -INDUCED LIVER TOXICITY IN ALBINO RATS.

    Science.gov (United States)

    Azim, Samy Abdelfatah Abdel; Abdelrahem, Mohamed Taha; Said, Mostafa Mohamed; Khattab, Alshaimaa

    2017-01-01

    Acetaminophen is a common antipyretic drug but at overdose can cause severe hepatotoxicity that may further develop into liver failure and hepatic centrilobular necrosis in experimental animals and humans. This study was undertaken to assess the ameliorative role of Moringa peregrina leaves extract against acetaminophen toxicity in rats. Induction of hepatotoxicity was done by chronic oral administration of acetaminophen (750 mg/kg bwt) for 4 weeks. To study the possible hepatoprotective effect, Moringa peregrina leaves extract (200 mg/kg bwt) or Silymarin (50 mg/kg bwt) was administered orally, for 4 weeks, along with acetaminophen. acetaminophen significantly increased serum liver enzymes and caused oxidative stress, evidenced by significantly increased tissue malondialdehyde, glutathione peroxidase, hepatic DNA fragmentation, and significant decrease of glutathione and antioxidant enzymes in liver, blood and brain. On the other hand, administration of Moringa peregrina leaves extract reversed acetaminophen-related toxic effects through: powerful malondialdehyde suppression, glutathione peroxidase normalization and stimulation of the cellular antioxidants synthesis represented by significant increase of glutathione, catalase and superoxide dismutase in liver, blood and brain, besides, DNA fragmentation was significantly decreased in the liver tissue. acetaminophen induced oxidative damage can be improved by Moringa peregrina leaves extract-treatment, due to its antioxidant potential.

  7. Extracorporeal liver assist device to exchange albumin and remove endotoxin in acute liver failure: Results of a pivotal pre-clinical study.

    Science.gov (United States)

    Lee, Karla C L; Baker, Luisa A; Stanzani, Giacomo; Alibhai, Hatim; Chang, Yu Mei; Jimenez Palacios, Carolina; Leckie, Pamela J; Giordano, Paola; Priestnall, Simon L; Antoine, Daniel J; Jenkins, Rosalind E; Goldring, Christopher E; Park, B Kevin; Andreola, Fausto; Agarwal, Banwari; Mookerjee, Rajeshwar P; Davies, Nathan A; Jalan, Rajiv

    2015-09-01

    In acute liver failure, severity of liver injury and clinical progression of disease are in part consequent upon activation of the innate immune system. Endotoxaemia contributes to innate immune system activation and the detoxifying function of albumin, critical to recovery from liver injury, is irreversibly destroyed in acute liver failure. University College London-Liver Dialysis Device is a novel artificial extracorporeal liver assist device, which is used with albumin infusion, to achieve removal and replacement of dysfunctional albumin and reduction in endotoxaemia. We aimed to test the effect of this device on survival in a pig model of acetaminophen-induced acute liver failure. Pigs were randomised to three groups: Acetaminophen plus University College London-Liver Dialysis Device (n=9); Acetaminophen plus Control Device (n=7); and Control plus Control Device (n=4). Device treatment was initiated two h after onset of irreversible acute liver failure. The Liver Dialysis Device resulted in 67% reduced risk of death in acetaminophen-induced acute liver failure compared to Control Device (hazard ratio=0.33, p=0.0439). This was associated with 27% decrease in circulating irreversibly oxidised human non-mercaptalbumin-2 throughout treatment (p=0.046); 54% reduction in overall severity of endotoxaemia (p=0.024); delay in development of vasoplegia and acute lung injury; and delay in systemic activation of the TLR4 signalling pathway. Liver Dialysis Device-associated adverse clinical effects were not seen. The survival benefit and lack of adverse effects would support clinical trials of University College London-Liver Dialysis Device in acute liver failure patients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. PULMONARY AND LIVER DAMAGE DURING TREATMENT WITH ACETAMINOPHEN (PARACETAMOL

    Directory of Open Access Journals (Sweden)

    L. I. Dvoretski

    2016-01-01

    Full Text Available This is a case report of pulmonary damage in the form of intestinal pneumonitis with severe respiratory failure during administration of acetaminophen (paracetamol. In addition, significant increase of ALT and AST levels without clinical signs of liver damage was observed in this patient. After glucocorticoids administration regression of radiological abnormal findings in the lungs along with normalization of liver enzymes values were registered. The rarity of interstitial pneumonitis induced by acetaminophen (paracetamol, especially in combination with liver damage, is emphasized. The presented patient history is the first case report of drug-induced hepatopulmonary syndrome during acetaminophen (paracetamol administration.

  9. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  10. Acute versus chronic alcohol consumption in acetaminophen-induced hepatotoxicity

    DEFF Research Database (Denmark)

    Schmidt, L.E.; Dalhoff, K.P.; Poulsen, Henrik E.

    2002-01-01

    . With a time to NAC less than 12 hours, the mortality rate was 0.42% (95% CI, 0.05-2.7). When time to NAC exceeded 12, 24, and 48 hours, the mortality rate increased to 6.1%, 13%, and 19%, respectively. Chronic alcohol abuse was an independent risk factor of mortality (odds ratio [OR], 3.52; 95% CI, 1...... was confirmed as the major risk factor in acetaminophen-induced hepatotoxicity and mortality. Chronic alcohol abuse was an independent risk factor that could be counteracted by concomitant acute alcohol ingestion. We suggest that patients with chronic alcoholism and suspected acetaminophen poisoning due......The aim of this study was to determine by multivariate analysis how alcohol and other factors affect the clinical course and outcome in patients with acetaminophen (paracetamol) poisoning. A total of 645 consecutive patients admitted from 1994 to 2000 with single-dose acetaminophen poisoning were...

  11. Alpha-fetoprotein is a predictor of outcome in acetaminophen-induced liver injury

    DEFF Research Database (Denmark)

    Schmidt, Lars E; Dalhoff, Kim

    2005-01-01

    An increase in alpha-fetoprotein (AFP) following hepatic necrosis is considered indicative of hepatic regeneration. This study evaluated the prognostic value of serial AFP measurements in patients with severe acetaminophen-induced liver injury. Prospectively, serial measurements of AFP were...

  12. Diphenhydramine as a Cause of Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Yunseok Namn

    2017-01-01

    Full Text Available Drug-induced liver injury (DILI is the most common cause of acute liver failure in the Unites States and accounts for 10% of acute hepatitis cases. We report the only known case of diphenhydramine-induced acute liver injury in the absence of concomitant medications. A 28-year-old man with history of 13/14-chromosomal translocation presented with fevers, vomiting, and jaundice. Aspartate-aminotransferase and alanine-aminotransferase levels peaked above 20,000 IU/L and 5,000 IU/L, respectively. He developed coagulopathy but without altered mental status. Patient reported taking up to 400 mg diphenhydramine nightly, without concomitant acetaminophen, for insomnia. He denied taking other medications, supplements, antibiotics, and herbals. A thorough workup of liver injury ruled out viral hepatitis (including A, B, C, and E, autoimmune, toxic, ischemic, and metabolic etiologies including Wilson’s disease. A liver biopsy was consistent with DILI without evidence of iron or copper deposition. Diphenhydramine was determined to be the likely culprit. This is the first reported case of diphenhydramine-induced liver injury without concomitant use of acetaminophen.

  13. Encephalopathy in acute liver failure resulting from acetaminophen intoxication: new observations with potential therapy.

    Science.gov (United States)

    Brusilow, Saul W; Cooper, Arthur J L

    2011-11-01

    Hyperammonemia is a major contributing factor to the encephalopathy associated with liver disease. It is now generally accepted that hyperammonemia leads to toxic levels of glutamine in astrocytes. However, the mechanism by which excessive glutamine is toxic to astrocytes is controversial. Nevertheless, there is strong evidence that glutamine-induced osmotic swelling, especially in acute liver failure, is a contributing factor: the osmotic gliopathy theory. The object of the current communication is to present evidence for the osmotic gliopathy theory in a hyperammonemic patient who overdosed on acetaminophen. Case report. Johns Hopkins Hospital. A 22-yr-old woman who, 36 hrs before admission, ingested 15 g acetaminophen was admitted to the Johns Hopkins Hospital. She was treated with N-acetylcysteine. Physical examination was unremarkable; her mental status was within normal limits and remained so until approximately 72 hrs after ingestion when she became confused, irritable, and agitated. She was intubated, ventilated, and placed on lactulose. Shortly thereafter, she was noncommunicative, unresponsive to painful stimuli, and exhibited decerebrate posturing. A clinical diagnosis of cerebral edema and increased intracranial pressure was made. She improved very slowly until 180 hrs after ingestion when she moved all extremities. She woke up shortly thereafter. Despite the fact that hyperammonemia is a major contributing factor to the encephalopathy observed in acute liver failure, the patient's plasma ammonia peaked when she exhibited no obvious neurologic deficit. Thereafter, her plasma ammonia decreased precipitously in parallel with a worsening neurologic status. She was deeply encephalopathic during a period when her liver function and plasma ammonia had normalized. Plasma glutamine levels in this patient were high but began to normalize several hours after plasma ammonia had returned to normal. The patient only started to recover as her plasma glutamine began

  14. Acetaminophen (Paracetamol) Induces Hypothermia During Acute Cold Stress.

    Science.gov (United States)

    Foster, Josh; Mauger, Alexis R; Govus, Andrew; Hewson, David; Taylor, Lee

    2017-11-01

    Acetaminophen is an over-the-counter drug used to treat pain and fever, but it has also been shown to reduce core temperature (T c ) in the absence of fever. However, this side effect is not well examined in humans, and it is unknown if the hypothermic response to acetaminophen is exacerbated with cold exposure. To address this question, we mapped the thermoregulatory responses to acetaminophen and placebo administration during exposure to acute cold (10 °C) and thermal neutrality (25 °C). Nine healthy Caucasian males (aged 20-24 years) participated in the experiment. In a double-blind, randomised, repeated measures design, participants were passively exposed to a thermo-neutral or cold environment for 120 min, with administration of 20 mg/kg lean body mass acetaminophen or a placebo 5 min prior to exposure. T c , skin temperature (T sk ), heart rate, and thermal sensation were measured every 10 min, and mean arterial pressure was recorded every 30 min. Data were analysed using linear mixed effects models. Differences in thermal sensation were analysed using a cumulative link mixed model. Acetaminophen had no effect on T c in a thermo-neutral environment, but significantly reduced T c during cold exposure, compared with a placebo. T c was lower in the acetaminophen compared with the placebo condition at each 10-min interval from 80 to 120 min into the trial (all p  0.05). This preliminary trial suggests that acetaminophen-induced hypothermia is exacerbated during cold stress. Larger scale trials seem warranted to determine if acetaminophen administration is associated with an increased risk of accidental hypothermia, particularly in vulnerable populations such as frail elderly individuals.

  15. Activation of p62-keap1-Nrf2 antioxidant pathway in the early stage of acetaminophen-induced acute liver injury in mice.

    Science.gov (United States)

    Shen, Zhenyu; Wang, Yu; Su, Zhenhui; Kou, Ruirui; Xie, Keqin; Song, Fuyong

    2018-02-25

    Acetaminophen (APAP) overdose can cause severe liver failure even death. Nearly half of drug-induced liver injury is attributed to APAP in the US and many European countries. Oxidative stress has been validated as a critical event involved in APAP-induced liver failure. p62/SQSTM1, a selective autophagy adaptor protein, is reported to regulate Nrf2-ARE antioxidant pathway in response to oxidative stress. However, the exact role of p62-keap1-Nrf2 antioxidant pathway in APAP-induced hepatotoxicity remains unknown. In the present study, the dose-response and time-course model in C57/BL6 mice were established by intraperitoneal injection of APAP. The results of serum alanine/aspartate aminotransferases (ALT/AST) and histological examination demonstrated that APAP overdose resulted in the severe liver injury. In the meantime, the levels of p62, phospho-p62 and nuclear Nrf2 were significantly increased by APAP in mice liver, suggesting an activation of p62-keap1-Nrf2 pathway. In addition, the expression of GSTA1 mRNA was increased in a dose-dependent manner, while the mRNA levels of HO-1 and GCLC were decreased with the increase of APAP dose. Our further investigation found that expression of HO-1 and GCLC peaked at 3 h∼6 h, and then were decreased gradually. Taken together, these results indicated that p62-keap1-Nrf2 antioxidant pathway was primarily activated in the early stage of APAP hepatotoxicity, which might play a protective role in the process of APAP-induced acute liver injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Evaluation of hepatoprotective effect of methanolic extract of Clitoria ternatea (Linn. flower against acetaminophen-induced liver damage

    Directory of Open Access Journals (Sweden)

    Kuppan Nithianantham

    2013-08-01

    Full Text Available Objective: To evaluate the hepatoprotective and antioxidant activity of Clitoria ternatea (C. ternatea flower extract against acetaminophen-induced liver toxicity. Methods: The antioxidant property of C. ternatea flower extract was investigated by employing established in vitro antioxidant assay. The C. ternatea flower extract was studied in this work for its hepatoprotective effect against acetaminophen-induced liver toxicity in mice. Activity was measured by monitoring the levels of aspartate aminotransferase, alanine aminotransferase, billirubin and glutathione with histopathological analysis. Results: The amount of total phenolics and flavonoids were estimated to be 105.40依2.47 mg/g gallic acid equivalent and 72.21依0.05 mg/g catechin equivalent respectively. The antioxidant activity of C. ternatea flower extract was 68.9% at a concentration of 1 mg/mL and was also concentration dependant, with an IC 50 value of 327.00 µg/mL. The results of acetaminophen-induced liver toxicity experiment showed that mice treated with the extract (200 mg/kg showed a significant decrease in alanine aminotransferase, aspartate aminotransferase, and bilirubin levels, which were all elevated in the paracetamol group (P<0.05. Meanwhile, the level of glutathione was found to be restored in extract treated animals compared to the groups treated with acetaminophen alone (P<0.05. Therapy of extract also showed its protective effect on histopathological alterations and supported the biochemical finding. Conclusion: The present work confirmed the hepatoprotective effect of C. ternatea flower against model hepatotoxicant acetaminophen.

  17. NADH:ubiquinone reductase and succinate dehydrogenase activity in the liver of rats with acetaminophen-induced toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2015-02-01

    Full Text Available The ratio between the redox forms of the nicotinamide coenzymes and key enzymatic activity of the I and II respiratory chain complexes in the liver cells mitochondria of rats with acetaminophen-induced hepatitis under the conditions of alimentary deprivation of protein was studied. It was estimated, that under the conditions of acute acetaminophen-induced hepatitis of rats kept on a low-protein diet during 4 weeks a significant decrease of the NADH:ubiquinone reductase and succinate dehydrogenase activity with simultaneous increase of the ratio between redox forms of the nicotinamide coenzymes (NAD+/NADН is observed compared to the same indices in the liver cells of animals with experimental hepatitis kept on the ration balanced by all nutrients. Results of research may become basic ones for the biochemical rationale for the approaches directed to the correction and elimination of the consequences­ of energy exchange in the toxic hepatitis, induced on the background of protein deficiency.

  18. Acute interstitial nephritis with acetaminophen and alcohol intoxication

    Directory of Open Access Journals (Sweden)

    Alexopoulou Iakovina

    2011-04-01

    Full Text Available Abstract Drug-induced acute interstitial nephritis (AIN represents a growing cause of renal failure in current medical practice. While antimicrobials and non-steroidal anti-inflammatory drugs are typically associated with drug-induced AIN, few reports have been made on the involvement of other analgesics. We report our experience in managing a 17-year-old female with AIN and subsequent renal injury following an acetaminophen overdose in conjunction with acute alcohol intoxication. It is well established that acetaminophen metabolism, particularly at high doses, produces reactive metabolites that may induce renal and hepatic toxicity. It is also plausible however, that such reactive species could instead alter renal peptide immunogenicity, thereby inducing AIN. In the following report, we review a possible mechanism for the acetaminophen-induced AIN observed in our patient and also discuss the potential involvement of acute alcohol ingestion in disease onset. The objective of our report is to increase awareness of healthcare professionals to the potential involvement of these commonly used agents in AIN pathogenesis.

  19. Protective Effect of Cymbopogon citratus Essential Oil in Experimental Model of Acetaminophen-Induced Liver Injury.

    Science.gov (United States)

    Uchida, Nancy Sayuri; Silva-Filho, Saulo Euclides; Aguiar, Rafael Pazinatto; Wiirzler, Luiz Alexandre Marques; Cardia, Gabriel Fernando Esteves; Cavalcante, Heitor Augusto Otaviano; Silva-Comar, Francielli Maria de Souza; Becker, Tânia Cristina Alexandrino; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2017-01-01

    To investigate the hepatoprotective effect of Cymbopogon citratus or lemongrass essential oil (LGO), it was used in an animal model of acute liver injury induced by acetaminophen (APAP). Swiss mice were pretreated with LGO (125, 250 and 500[Formula: see text]mg/kg) and SLM (standard drug, 200[Formula: see text]mg/kg) for a duration of seven days, followed by the induction of hepatotoxicity of APAP (single dose, 250[Formula: see text]mg/kg). The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase were determined to evaluate the hepatoprotective effects of the LGO. The livers were used to determine myeloperoxidase (MPO) activity, nitric oxide (NO) production and histological analysis. The effect of LGO on leukocyte migration was evaluated in vitro. Anti-oxidant activity was performed by assessing the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro. LGO pretreatment decreased significantly the levels of ALT, AST and ALP compared with APAP group. MPO activity and NO production were decreased. The histopathological analysis showed an improved of hepatic lesions in mice after LGO pretreatment. LGO inhibited neutrophil migration and exhibited anti-oxidant activity. Our results suggest that LGO has protective activity against liver toxicity induced by paracetamol.

  20. Evaluation of the Hepatoprotective Effects of Lantadene A, a Pentacyclic Triterpenoid of Lantana Plants against Acetaminophen-induced Liver Damage

    Directory of Open Access Journals (Sweden)

    Sreenivasan Sasidharan

    2012-11-01

    Full Text Available The aim of the present study was to evaluate the hepatoprotective activity of lantadene A against acetaminophen-induced liver toxicity in mice was studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (ALP and bilirubin, along with histo-pathological analysis. Silymarin was used as positive control. A bimodal pattern of behavioural toxicity was exhibited by the lantadene A-treated group at the beginning of the treatment. However, treatment with lantadene A and silymarin resulted in an increase in the liver weight compared with the acetaminophen treated group. The results of the acetaminophen-induced liver toxicity experiments showed that mice treated with lantadene A (500 mg/kg showed a significant decrease in the activity of ALT, AST and ALP and the level of bilirubin, which were all elevated in the acetaminophen treated group (p < 0.05. Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen. The lantadene A-treated group showed remarkable protective effects against histopathological alterations, with comparable results to the silymarin treated group. The current study confirmed the hepatoprotective effects of lantadene A against the model hepatotoxicant acetaminophen, which is likely related to its potent antioxidative activity.

  1. Acute liver failure and self-medication.

    Science.gov (United States)

    de Oliveira, André Vitorio Câmara; Rocha, Frederico Theobaldo Ramos; Abreu, Sílvio Romero de Oliveira

    2014-01-01

    Not responsible self-medication refers to drug use in high doses without rational indication and often associated with alcohol abuse. It can lead to liver damage and drug interactions, and may cause liver failure. To warn about how the practice of self-medication can be responsible for acute liver failure. Were used the Medline via PubMed, Cochrane Library, SciELO and Lilacs, and additional information on institutional sites of interest crossing the headings acute liver failure [tiab] AND acetaminophen [tiab]; self-medication [tiab] AND acetaminophen [tiab]; acute liver failure [tiab] AND dietary supplements [tiab]; self-medication [tiab] AND liver failure [tiab] and self-medication [tiab] AND green tea [tiab]. In Lilacs and SciELO used the descriptor self medication in Portuguese and Spanish. From total surveyed were selected 27 articles and five sites specifically related to the purpose of this review. Legislation and supervision disabled and information inaccessible to people, favors the emergence of cases of liver failure drug in many countries. In the list of released drugs that deserve more attention and care, are some herbal medicines used for the purpose of weight loss, and acetaminophen. It is recommended that institutes of health intensify supervision and better orient their populations on drug seemingly harmless, limiting the sale of products or requiring a prescription for release them.

  2. "Nifedipine in the treatment of liver toxicity induced by Acetaminophen overdose in mice "

    Directory of Open Access Journals (Sweden)

    Kalantari H

    2000-11-01

    Full Text Available Acetaminophen is an analgesic and antipyretic drug, which is widely used by public and poisoning with this drug, is common. One of the most important adverse effects of acetaminophen poisoning is centrilobullar necrosis in hepatic cells, which depends on activity of microsomal cytochrome P-450 (CYP enzymes. The aim of this investigation was to find out the protective effect of nifedipine against liver toxicity caused by acetaminophen overdose (700 mg/kg as calcium channel blocker. In this study doses of 5, 50, 100, 250, 500 mg/kg of nifedipine were administered to mice orally one hour before acetaminophen administration. The negative control group receive normal saline. The positive control group was administered with acetaminophen at a dose of 700 mg/kg one hour after nifedipine administration. After 24 hours, enzyme activity (ALT, AST, histopathological examination and liver weight were compared with the control groups. The results revealed that nifedipine at dose of 500 mg/kg was the most effective and protected damage from acetaminophen toxicity.

  3. Acetaminophen hepatotoxicity in mice: Effect of age, frailty and exposure type

    Science.gov (United States)

    Kane, Alice E.; Mitchell, Sarah J.; Mach, John; Huizer-Pajkos, Aniko; McKenzie, Catriona; Jones, Brett; Cogger, Victoria; Le Couteur, David G.; de Cabo, Rafael; Hilmer, Sarah N.

    2018-01-01

    Acetaminophen is a commonly used analgesic that can cause severe hepatotoxicity in overdose. Despite old age and frailty being associated with extensive and long-term utilization of acetaminophen and a high prevalence of adverse drug reactions, there is limited information on the risks of toxicity from acetaminophen in old age and frailty. This study aimed to assess changes in the risk and mechanisms of hepatotoxicity from acute, chronic and sub-acute acetaminophen exposure with old age and frailty in mice. Young and old male C57BL/6 mice were exposed to either acute (300 mg/kg via oral gavage), chronic (100 mg/kg/day in diet for six weeks) or sub-acute (250 mg/kg, t.i.d., for three days) acetaminophen, or saline control. Pre-dosing mice were scored for the mouse clinical frailty index, and after dosing serum and liver tissue were collected for assessment of toxicity and mechanisms. There were no differences with old age or frailty in the degree of hepatotoxicity induced by acute, chronic or subacute acetaminophen exposure as assessed by serum liver enzymes and histology. Age-related changes in the acetaminophen toxicity pathways included increased liver GSH concentrations, increased NQO1 activity and an increased pro- and anti-inflammatory response to acetaminophen in old age. Frailty-related changes included a negative correlation between frailty index and serum protein, albumin and ALP concentrations for some mouse groups. In conclusion, although there were changes in some pathways that would be expected to influence susceptibility to acetaminophen toxicity, there was no overall increase in acetaminophen hepatotoxicity with old age or frailty in mice. PMID:26615879

  4. Transcriptome association analysis identifies miR-375 as a major determinant of variable acetaminophen glucuronidation by human liver.

    Science.gov (United States)

    Papageorgiou, Ioannis; Freytsis, Marina; Court, Michael H

    2016-10-01

    Acetaminophen is the leading cause of acute liver failure (ALF) in many countries including the United States. Hepatic glucuronidation by UDP-glucuronosyltransferase (UGT) 1A subfamily enzymes is the major route of acetaminophen elimination. Reduced glucuronidation may predispose some individuals to acetaminophen-induced ALF, but mechanisms underlying reduced glucuronidation are poorly understood. We hypothesized that specific microRNAs (miRNAs) may reduce UGT1A activity by direct effects on the UGT1A 3'-UTR shared by all UGT1A enzyme transcripts, or by indirect effects on transcription factors regulating UGT1A expression. We performed an unbiased miRNA whole transcriptome association analysis using a bank of human livers with known acetaminophen glucuronidation activities. Of 754 miRNAs evaluated, 9 miRNAs were identified that were significantly overexpressed (p2-fold) in livers with low acetaminophen glucuronidation activities compared with those with high activities. miR-375 showed the highest difference (>10-fold), and was chosen for further mechanistic validation. We demonstrated using in silico analysis and luciferase reporter assays that miR-375 has a unique functional binding site in the 3'-UTR of the aryl hydrocarbon receptor (AhR) gene. Furthermore overexpression of miR-375 in LS180 cells demonstrated significant repression of endogenous AhR protein (by 40%) and mRNA (by 10%), as well as enzyme activity and/or mRNA of AhR regulated enzymes including UGT1A1, UGT1A6, and CYP1A2, without affecting UGT2B7, which is not regulated by AhR. Thus miR-375 is identified as a novel repressor of UGT1A-mediated hepatic acetaminophen glucuronidation through reduced AhR expression, which could predispose some individuals to increased risk for acetaminophen-induced ALF. Published by Elsevier Inc.

  5. Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis.

    Science.gov (United States)

    McGreal, Steven R; Bhushan, Bharat; Walesky, Chad; McGill, Mitchell R; Lebofsky, Margitta; Kandel, Sylvie E; Winefield, Robert D; Jaeschke, Hartmut; Zachara, Natasha E; Zhang, Zhen; Tan, Ee Phie; Slawson, Chad; Apte, Udayan

    2018-04-01

    Overdose of acetaminophen (APAP) results in acute liver failure. We have investigated the role of a posttranslational modification of proteins called O-GlcNAcylation, where the O-GlcNAc transferase (OGT) adds and O-GlcNAcase (OGA) removes a single β-D-N-acetylglucosamine (O-GlcNAc) moiety, in the pathogenesis of APAP-induced liver injury. Hepatocyte-specific OGT knockout mice (OGT KO), which have reduced O-GlcNAcylation, and wild-type (WT) controls were treated with 300 mg/kg APAP and the development of injury was studied over a time course from 0 to 24 h. OGT KO mice developed significantly lower liver injury as compared with WT mice. Hepatic CYP2E1 activity and glutathione (GSH) depletion following APAP treatment were not different between WT and OGT KO mice. However, replenishment of GSH and induction of GSH biosynthesis genes were significantly faster in the OGT KO mice. Next, male C57BL/6 J mice were treated Thiamet-G (TMG), a specific inhibitor of OGA to induce O-GlcNAcylation, 1.5 h after APAP administration and the development of liver injury was studied over a time course of 0-24 h. TMG-treated mice exhibited significantly higher APAP-induced liver injury. Treatment with TMG did not affect hepatic CYP2E1 levels, GSH depletion, APAP-protein adducts, and APAP-induced mitochondrial damage. However, GSH replenishment and GSH biosynthesis genes were lower in TMG-treated mice after APAP overdose. Taken together, these data indicate that induction in cellular O-GlcNAcylation exacerbates APAP-induced liver injury via dysregulation of hepatic GSH replenishment response.

  6. Acetaminophen-induced Liver Injury is Attenuated in Transgenic fat-1 Mice Endogenously Synthesizing Long-chain n-3 Fatty Acids.

    Science.gov (United States)

    Feng, Ruibing; Wang, Yang; Liu, Conghui; Yan, Chunyan; Zhang, Hang; Su, Huanxing; Kang, Jing X; Shang, Chang-Zhen; Wan, Jian-Bo

    2018-04-18

    Acetaminophen (APAP) overdose-caused hepatotoxicity is the most commonly cause of drugs-induced liver failurecharacterized by oxidative stress, mitochondrial dysfunction, and cell damage. Therapeutic efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in several models of liver disease is well documented. However, the impacts of n-3 PUFA on APAP hepatotoxicity are not adequately addressed. In this study, the fat-1 transgenic mice that synthesize endogenous n-3 PUFA and wild type (WT) littermates were injected intraperitoneally with APAP at the dose of 400 mg/kg to induce liver injury, and euthanized at 0 h, 2 h, 4 h and 6 h post APAP injection for sampling. APAP overdose caused severe liver injury in WT mice as indicated by serum parameters, histopathological changes and hepatocyte apoptosis, which were remarkably ameliorated in fat-1 mice. These protective effects of n-3 PUFA were associated with regulation of the prolonged JNK activation via inhibition of apoptosis signal-regulating kinase 1 (ASK1) / mitogen-activated protein kinase kinase 4 (MKK4) pathway. Additionally, the augment of endogenous n-3 PUFA reduced nuclear factor kappa B (NF-κB) - mediated inflammation response induced by APAP treatment in the liver. These findings indicate that n-3 PUFA has potent protective effects against APAP-induced acute liver injury, suggesting that n-3 dietary supplement with n-3 PUFA may be a potential therapeutic strategy for the treatment of hepatotoxicity induced by APAP overdose. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure

    DEFF Research Database (Denmark)

    Khamri, Wafa; Abeles, Robin D; Hou, Tie Zheng

    2017-01-01

    , hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood...... mice with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+ T cells from patients with ALF......BACKGROUND & AIMS: Patients with acute liver failure (ALF) have defects in innate immune responses to microbes (immune paresis) and are susceptible to sepsis. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which interacts with the membrane receptor B7 (also called CD80 and CD86...

  8. Acrolein scavengers, cysteamine and N-benzylhydroxylamine, reduces the mouse liver damage after acetaminophen overdose.

    Science.gov (United States)

    Koyama, Ryo; Mizuta, Ryushin

    2017-01-10

    Our previous study suggested that the highly toxic α,β-unsaturated aldehyde acrolein, a byproduct of oxidative stress, plays a major role in acetaminophen-induced liver injury. In this study, to determine the involvement of acrolein in the liver injury and to identify novel therapeutic options for the liver damage, we examined two putative acrolein scavengers, a thiol compound cysteamine and a hydroxylamine N-benzylhydroxylamine, in cell culture and in mice. Our results showed that cysteamine and N-benzylhydroxylamine effectively prevented the cell toxicity of acrolein in vitro and acetaminophen-induced liver injury in vivo, which suggested that acrolein is involved in the liver damage, and these two drugs can be potential therapeutic options for this condition.

  9. Use of Arctium lappa Extract Against Acetaminophen-Induced Hepatotoxicity in Rats

    OpenAIRE

    El-Kott, Attalla Farag; Bin-Meferij, Mashael Mohammed

    2015-01-01

    Background: Severe destructive hepatic injuries can be induced by acetaminophen overdose and may lead to acute hepatic failure. Objective: To investigate the ameliorative effects of Arctium lappa root extract on acetaminophen-induced hepatotoxicity. Methods: Rats were divided into 4 groups: normal control group, Arctium lappa extract group, acetaminophen-injected group, and acetaminophen treated with Arctium lappa extract group. Results: The treatment with Arctium lappa extract reduc...

  10. Aloe vera attenuated liver injury in mice with acetaminophen-induced hepatitis.

    Science.gov (United States)

    Werawatganon, Duangporn; Linlawan, Sittikorn; Thanapirom, Kessarin; Somanawat, Kanjana; Klaikeaw, Naruemon; Rerknimitr, Rungsun; Siriviriyakul, Prasong

    2014-07-08

    An overdose of the acetaminophen causes liver injury. This study aims to examine the anti-oxidative, anti-inflammatory effects of Aloe vera in mice with acetaminophen induced hepatitis. Male mice were randomly divided into three groups (n = 8 each). Control group were given orally distilled water (DW). APAP group were given orally N-acetyl-P-aminophenol (APAP) 400 mg/kg suspended in DW. Aloe vera-treated group were given orally APAP and Aloe vera (150 mg/kg) suspended in DW. Twenty-four hours later, the liver was removed to determine hepatic malondialdehyde (MDA), hepatic glutathione (GSH), the number of interleukin (IL)-12 and IL-18 positive stained cells (%) by immunohistochemistry method, and histopathological examination. Then, the serum was collected to determine transaminase (ALT). In APAP group, ALT, hepatic MDA and the number of IL-12 and IL-18 positive stained cells were significantly increased when compared to control group (1210.50 ± 533.86 vs 85.28 ± 28.27 U/L, 3.60 ± 1.50 vs 1.38 ± 0.15 nmol/mg protein, 12.18 ± 1.10 vs 1.84 ± 1.29%, and 13.26 ± 0.90 vs 2.54 ± 1.29%, P = 0.000, respectively), whereas hepatic GSH was significantly decreased when compared to control group (5.98 ± 0.30 vs 11.65 ± 0.43 nmol/mg protein, P = 0.000). The mean level of ALT, hepatic MDA, the number of IL-12 and IL-18 positive stained cells, and hepatic GSH in Aloe vera-treated group were improved as compared with APAP group (606.38 ± 495.45 vs 1210.50 ± 533.86 U/L, P = 0.024; 1.49 ± 0.64 vs 3.60 ± 1.50 nmol/mg protein, P = 0.001; 5.56 ± 1.25 vs 12.18 ± 1.10%, P = 0.000; 6.23 ± 0.94 vs 13.26 ± 0.90%, P = 0.000; and 10.02 ± 0.20 vs 5.98 ± 0.30 nmol/mg protein, P = 0.000, respectively). Moreover, in the APAP group, the liver showed extensive hemorrhagic hepatic necrosis at all zones while in Aloe vera-treated group, the liver architecture was improved histopathology. APAP overdose can cause liver injury. Our result indicate that Aloe vera attenuate APAP-induced

  11. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    International Nuclear Information System (INIS)

    Mandal, Mili; Gardner, Carol R.; Sun, Richard; Choi, Hyejeong; Lad, Sonali; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2016-01-01

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b + infiltrating Ly6G + granulocytic and Ly6G − monocytic cells in the spleen and the liver. The majority of the Ly6G + cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G − cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80 + ) and immature (F4/80 − ) pro-inflammatory Ly6C hi macrophages and mature anti-inflammatory (Ly6C lo ) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3 + macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the bone marrow. • Hepatotoxicity is reduced in

  12. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Mili, E-mail: milimandal@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sun, Richard, E-mail: fishpower52@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Choi, Hyejeong, E-mail: choi@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Lad, Sonali, E-mail: sonurose92@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Mishin, Vladimir, E-mail: mishinv@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2016-08-01

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b{sup +} infiltrating Ly6G{sup +} granulocytic and Ly6G{sup −} monocytic cells in the spleen and the liver. The majority of the Ly6G{sup +} cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G{sup −} cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80{sup +}) and immature (F4/80{sup −}) pro-inflammatory Ly6C{sup hi} macrophages and mature anti-inflammatory (Ly6C{sup lo}) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3{sup +} macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the

  13. Protective Effect of Hydroalcoholic Extract of Salvia officinalis L. against Acute Liver Toxicity of Acetaminophen in Mice

    Directory of Open Access Journals (Sweden)

    H. Foruozandeh

    2016-09-01

    Full Text Available Aims: The medical herbs play important roles in the treatment of liver diseases. In the traditional medicine, Salvia officinalis is highly used to heal a wide range of diseases. The aim of this study was to investigate the treatment effects of Saliva officinalis on hepatotoxicity due to acetaminophen. Materials & Methods: In the experimental study, 60 albino mice were studied. The rats were divided into 6 groups. The first, second, and third groups were physiological serum, crude extract of Saliva officinalis, and 500mg acetaminophen per 1Kg consumed as single dose, respectively. The fourth, fifth, and sixth groups received 5-day 125, 250, and 500mg per 1Kg extract of Saliva officinalis, respectively. Then, they received 500mg acetaminophen one hour after the last administration of extract. Blood sampling was done from the carotids of the rats 24hour later, and the levels of bilirubin and liver enzymes were measured. In addition, their liver tissues were studied. Data was analyzed by SPSS 16 software using one-way ANOVA. Findings: There were significant increases in the direct and complete bilirubin concentration and liver enzymes due to acetaminophen compared to control group (p<0.05. There were significant reductions in the direct and complete bilirubin and liver enzymes due to 125, 250, and 500mg per 1Kg of the extract of Saliva officinalis compared to control group (p<0.05. The results were confirmed by the histology studies. Conclusion: 250 and 500mg per 1Kg of Saliva officinalis potentially protect the damages caused by acetaminophen. In addition, they considerably improve the tissue damage and the biochemical indices in the liver damages.

  14. Cannabidiol Rescues Acute Hepatic Toxicity and Seizure Induced by Cocaine

    Directory of Open Access Journals (Sweden)

    Luciano Rezende Vilela

    2015-01-01

    Full Text Available Cocaine is a commonly abused illicit drug that causes significant morbidity and mortality. The most severe and common complications are seizures, ischemic strokes, myocardial infarction, and acute liver injury. Here, we demonstrated that acute cocaine intoxication promoted seizure along with acute liver damage in mice, with intense inflammatory infiltrate. Considering the protective role of the endocannabinoid system against cell toxicity, we hypothesized that treatment with an anandamide hydrolysis inhibitor, URB597, or with a phytocannabinoid, cannabidiol (CBD, protects against cocaine toxicity. URB597 (1.0 mg/kg abolished cocaine-induced seizure, yet it did not protect against acute liver injury. Using confocal liver intravital microscopy, we observed that CBD (30 mg/kg reduced acute liver inflammation and damage induced by cocaine and prevented associated seizure. Additionally, we showed that previous liver damage induced by another hepatotoxic drug (acetaminophen increased seizure and lethality induced by cocaine intoxication, linking hepatotoxicity to seizure dynamics. These findings suggest that activation of cannabinoid system may have protective actions on both liver and brain induced by cocaine, minimizing inflammatory injury promoted by cocaine, supporting its further clinical application in the treatment of cocaine abuse.

  15. Short day photoperiod protects against acetaminophen-induced ...

    African Journals Online (AJOL)

    Prof. Ogunji

    blood was collected by cardiac puncture for the estimation of liver enzymes activities. Liver ... revealed the protective effects of short photoperiod against acetaminophen-induced hepatotoxicity and lipid .... homogenized in ice cold KCl (100mM) containing. 0.003M ... This was followed by the addition of 1.0ml water and 5.0ml ...

  16. A case of moderate liver enzyme elevation after acute acetaminophen overdose despite undetectable acetaminophen level and normal initial liver enzymes.

    Science.gov (United States)

    Bebarta, Vikhyat S; Shiner, Drew C; Varney, Shawn M

    2014-01-01

    Liver function test (LFT) increase is an early sign of acetaminophen (APAP) toxicity. Typically, when an acute overdose patient is evaluated and has an initial undetectable APAP level and normal liver enzymes, the patient is not treated with N-acetylcysteine, and liver enzymes are not expected to increase later. We report a case of moderate LFT increase despite normal LFTs and an undetectable APAP level after delayed presentation of an APAP ingestion. A 22-year-old male with no medical history ingested 15-25 hydrocodone/APAP tablets (5 mg/500 mg). His suicide note and his bunkmate corroborated the overdose time. He arrived at the emergency department 16 hours after ingestion. At that time, his APAP level was enzymes were normal [aspartate transaminase (AST) 31 U/L and alanine transaminase (ALT) 34 U/L]. Twenty-nine hours after ingestion, the psychiatry team obtained LFTs (AST 45, ALT 61). He had persistent nausea and diffuse abdominal pain. On repeat analysis, the APAP level at 36 hours was found to be <10 μg/mL, AST 150, and ALT 204. After 2 more days of increasing LFTs and persistent abdominal pain and nausea, the toxicology department was consulted, the patient was transferred to the medicine department, and intravenous N-acetylcysteine was started 66 hours after ingestion. He was treated for 16 hours and had a significant decline in LFTs and symptom resolution. His prothrombin time, bilirubin, lactate, creatinine, and mental status were normal throughout the admission. Other cases of LFT increase were excluded. Our case report illustrates that a moderate increase in liver transaminase may occur despite an initial undetectable APAP level and normal transaminases after a delayed presentation. In our case, no serious clinical effects were reported.

  17. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury

    International Nuclear Information System (INIS)

    Williams, C. David; Antoine, Daniel J.; Shaw, Patrick J.; Benson, Craig; Farhood, Anwar; Williams, Dominic P.; Kanneganti, Thirumala-Devi; Park, B. Kevin; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US and UK. Recent studies implied that APAP-induced injury is partially mediated by interleukin-1β (IL-1β), which can activate and recruit neutrophils, exacerbating injury. Mature IL-1β is formed by caspase-1, dependent on inflammasome activation. The objective of this invetstigation was to evaluate the role of the Nalp3 inflammasome on release of damage associated molecular patterns (DAMPs), hepatic neutrophil accumulation and liver injury (ALT, necrosis) after APAP overdose. Mice deficient for each component of the Nalp3 inflammasome (caspase-1, ASC and Nalp3) were treated with 300 mg/kg APAP for 24 h; these mice had similar neutrophil recruitment and liver injury as APAP-treated C57Bl/6 wildtype animals. In addition, plasma levels of DAMPs (DNA fragments, keratin-18, hypo- and hyper-acetylated forms of high mobility group box-1 protein) were similarly elevated with no significant difference between wildtype and gene knockout mice. In addition, aspirin treatment, which has been postulated to attenuate cytokine formation and the activation of the Nalp3 inflammasome after APAP, had no effect on release of DAMPs, hepatic neutrophil accumulation or liver injury. Together, these data confirm the release of DAMPs and a sterile inflammatory response after APAP overdose. However, as previously reported minor endogenous formation of IL-1β and the activation of the Nalp3 inflammasome have little impact on APAP hepatotoxicity. It appears that the Nalp3 inflammasome is not a promising therapeutic target to treat APAP overdose.

  18. Use of Arctium lappa Extract Against Acetaminophen-Induced Hepatotoxicity in Rats.

    Science.gov (United States)

    El-Kott, Attalla Farag; Bin-Meferij, Mashael Mohammed

    2015-12-01

    Severe destructive hepatic injuries can be induced by acetaminophen overdose and may lead to acute hepatic failure. To investigate the ameliorative effects of Arctium lappa root extract on acetaminophen-induced hepatotoxicity. Rats were divided into 4 groups: normal control group, Arctium lappa extract group, acetaminophen-injected group, and acetaminophen treated with Arctium lappa extract group. The treatment with Arctium lappa extract reduced serum alanine transaminase, aspartate aminotransferase, and alkaline phosphatase in the acetaminophen group when compared with the control group. DNA fragments in the acetaminophen-injected group were also significantly increased (P Arctium lappa treatment (12.97±0.89 nmol/mg) when compared with the acetaminophen-treated-only group (12.97±0.89 nmol/mg). Histopathologic examination revealed that acetaminophen administration produced hepatic cell necrosis, infiltrate of lymphocytes, and vacuolation that were associated with the acetaminophen-treated animal group, but the degree of acetaminophen-induced hepatotoxicity was mediated by treatment with Arctium lappa extract. Arctium lappa can prevent most of the hepatic tissue damage caused by acetaminophen overdose in rats.

  19. Protective effect of zinc aspartate against acetaminophen induced hepato-renal toxicity in albino rats

    International Nuclear Information System (INIS)

    Mohamed, E.T.; Said, A.I.; El-Sayed, S.A.

    2011-01-01

    Zinc is an essential nutrient that is required in humans and animals for many physiological functions, including antioxidant functions. The evidence to date indicates that zinc is an important element that links antioxidant system and tissue damage. Acetaminophen (AP), a widely used analgesic and antipyretic, produces hepatocyte and renal tubular necrosis in human and animals following overdose. In human, AP is one of the most common causes of acute liver failure as a result of accidental or deliberate overdose. Moreover, the initial event in AP toxicity is a toxic metabolic injury with the release of free radicals and subsequent cellular death by necrosis and apoptosis. This study was designed to evaluate the potential protective role of zinc aspartate in case of acetaminophen induced hepato-renal toxicity in rats. A total number of 32 adult male albino rats were divided into 4 equal groups: group I (control group), group II (zinc aspartate treated group), group III (acetaminophen treated group; by a single oral dose of 750 mg/kg body weight) and group IV acetaminophen plus zinc treated group; (zinc aspartate was intraperitoneally given one hour after acetaminophen administration in a dose of 30 mg/kg body weight). Serum levels of: alanine aminotransferase, aspartate aminotransferase, direct bilirubin, blood urea nitrogen, creatinine, uric acid, xanthine oxidase (XO), glutathione (GSH), malonaldehyde (MDA) and nitric oxide (NO) were assessed in all groups. The results of this study showed that treatment with acetaminophen alone (group III) produced a significant increase in serum levels of the liver enzymes and direct bilirubin. Moreover, in the same group there was a significant increase in the blood urea nitrogen and serum creatinine compared to the control group. In addition, there was a significant increase in XO and MDA and a significant decrease in GSH and NO level. Injection of rats with zinc aspartate after acetaminophen treatment could produce a

  20. Acute alcohol-induced liver injury

    Directory of Open Access Journals (Sweden)

    Gavin Edward Arteel

    2012-06-01

    Full Text Available Alcohol consumption is customary in most cultures and alcohol abuse is common worldwide. For example, more than 50% of Americans consume alcohol, with an estimated 23.1% of Americans participating in heavy and/or binge drinking at least once a month. A safe and effective therapy for alcoholic liver disease (ALD in humans is still elusive, despite significant advances in our understanding of how the disease is initiated and progresses. It is now clear that acute alcohol binges not only can be acutely toxic to the liver, but also can contribute to the chronicity of ALD. Potential mechanisms by which acute alcohol causes damage include steatosis, dysregulated immunity and inflammation and altered gut permeability. Recent interest in modeling acute alcohol exposure has yielded new insights into potential mechanisms of acute injury, that also may well be relevant for chronic ALD. Recent work by this group on the role of PAI-1 and fibrin metabolism in mediating acute alcohol-induced liver damage serve as an example of possible new targets that may be useful for alcohol abuse, be it acute or chronic.

  1. Acute liver injury induced by weight-loss herbal supplements.

    Science.gov (United States)

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-11-27

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss.

  2. Lack of Direct Cytotoxicity of Extracellular ATP against Hepatocytes: Role in the Mechanism of Acetaminophen Hepatotoxicity

    NARCIS (Netherlands)

    Xie, Yuchao; Woolbright, Benjamin L.; Kos, Milan; McGill, Mitchell R.; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Jaeschke, Hartmut

    2015-01-01

    Acetaminophen (APAP) hepatotoxicity is a major cause of acute liver failure in many countries. Mechanistic studies in mice and humans have implicated formation of a reactive metabolite, mitochondrial dysfunction and oxidant stress as critical events in the pathophysiology of APAP-induced liver cell

  3. Hepatoprotective activity of Tribulus terrestris extract against acetaminophen-induced toxicity in a freshwater fish (Oreochromis mossambicus).

    Science.gov (United States)

    Kavitha, P; Ramesh, R; Bupesh, G; Stalin, A; Subramanian, P

    2011-12-01

    The potential protective role of Tribulus terrestris in acetaminophen-induced hepatotoxicity in Oreochromis mossambicus was investigated. The effect of oral exposure of acetaminophen (500 mg/kg) in O. mossambicus at 24-h duration was evaluated. The plant extract (250 mg/kg) showed a remarkable hepatoprotective activity against acetaminophen-induced hepatotoxicity. It was judged from the tissue-damaging level and antioxidant levels in liver, gill, muscle and kidney tissues. Further acetaminophen impact induced a significant rise in the tissue-damaging level, and the antioxidant level was discernible from the enzyme activity modulations such as glutamate oxaloacetic transaminase, glutamate pyruvic transaminase, alkaline phosphatase, acid phosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, lipid peroxidase and reduced glutathione. The levels of all these enzymes have significantly (p terrestris extract (250 kg/mg). Histopathological changes of liver, gill and muscle samples were compared with respective controls. The results of the present study specify the hepatoprotective and antioxidant properties of T. terrestris against acetaminophen-induced toxicity in freshwater fish, O. mossambicus.

  4. Synergistic protective effect of picrorhiza with honey in acetaminophen induced hepatic injury.

    Science.gov (United States)

    Gupta, Prashant; Tripathi, Alok; Agrawal, Tripti; Narayan, Chandradeo; Singh, B M; Kumar, Mohan; Kumar, Arvind

    2016-08-01

    Rhizome of picrorhiza along with honey prevents hepatic damage and cure the acetaminophen (paracetamol) induced hepatotoxicity by modulating the activity of hepatic enzymes. Here, we studied the in vivo effects of Picrorhiza kurroa and honey on acetaminophen induced hepatotoxicity Balb/c mice model. Hepatic histopathological observations of acetaminophen fed (day-6) group showed more congestion, hemorrhage, necrosis, distorted hepatic architecture and nuclear inclusion. Such damages were recompensed to normal by picrorhiza or honey alone or both in combinations. We observed increased activity of SGPT and SGOT in injured liver tissues, and that too was compensated to normal with picrorhiza or honey alone or both in combinations. We observed 1.27 and 1.23-fold enhanced activity of SGPT in serum and liver lysate, respectively while SGOT showed 1.66 and 1.11 fold enhanced activity. These two enzymes are signature enzymes of liver damage. Thus, our results support that honey may be used with drug picrorhiza due to its synergistic role to enhance hepatoprotective and hepatoregenerative ability along with allopathic drugs to mitigate the hepatotoxic effects.

  5. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    International Nuclear Information System (INIS)

    Jetten, Marlon J.A.; Gaj, Stan; Ruiz-Aracama, Ainhoa; Kok, Theo M. de; Delft, Joost H.M. van; Lommen, Arjen; Someren, Eugene P. van; Jennen, Danyel G.J.; Claessen, Sandra M.; Peijnenburg, Ad A.C.M.; Stierum, Rob H.; Kleinjans, Jos C.S.

    2012-01-01

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2 g dose) and oxidative stress responses (4 g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites. -- Highlights: ► 'Omics techniques outperformed

  6. A Prominent Role of Interleukin-18 in Acetaminophen-Induced Liver Injury Advocates Its Blockage for Therapy of Hepatic Necroinflammation

    Directory of Open Access Journals (Sweden)

    Malte Bachmann

    2018-02-01

    Full Text Available Acetaminophen [paracetamol, N-acetyl-p-aminophenol (APAP]-induced acute liver injury (ALI not only remains a persistent clinical challenge but likewise stands out as well-characterized paradigmatic model of drug-induced liver damage. APAP intoxication associates with robust hepatic necroinflammation the role of which remains elusive with pathogenic but also pro-regenerative/-resolving functions being ascribed to leukocyte activation. Here, we shine a light on and put forward a unique role of the interleukin (IL-1 family member IL-18 in experimental APAP-induced ALI. Indeed, amelioration of disease as previously observed in IL-18-deficient mice was further substantiated herein by application of the IL-18 opponent IL-18-binding protein (IL-18BPd:Fc to wild-type mice. Data altogether emphasize crucial pathological action of this cytokine in APAP toxicity. Adding recombinant IL-22 to IL-18BPd:Fc further enhanced protection from liver injury. In contrast to IL-18, the role of prototypic pro-inflammatory IL-1 and tumor necrosis factor-α is controversially discussed with lack of effects or even protective action being repeatedly reported. A prominent detrimental function for IL-18 in APAP-induced ALI as proposed herein should relate to its pivotal role for hepatic expression of interferon-γ and Fas ligand, both of which aggravate APAP toxicity. As IL-18 serum levels increase in patients after APAP overdosing, targeting IL-18 may evolve as novel therapeutic option in those hard-to-treat patients where standard therapy with N-acetylcysteine is unsuccessful. Being a paradigmatic experimental model of ALI, current knowledge on ill-fated properties of IL-18 in APAP intoxication likewise emphasizes the potential of this cytokine to serve as therapeutic target in other entities of inflammatory liver diseases.

  7. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    Directory of Open Access Journals (Sweden)

    Laura James

    Full Text Available Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001, glycodeoxycholic acid (R=0.581; p<0.001, and glycochenodeoxycholic acid (R=0.571; p<0.001. Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  8. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    Energy Technology Data Exchange (ETDEWEB)

    Jetten, Marlon J.A.; Gaj, Stan [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Ruiz-Aracama, Ainhoa [RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen (Netherlands); Kok, Theo M. de [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Delft, Joost H.M. van, E-mail: j.vandelft@maastrichtuniversity.nl [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Lommen, Arjen [RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen (Netherlands); Someren, Eugene P. van [Research Group Microbiology and Systems Biology, TNO, PO Box 360 3700 AJ Zeist (Netherlands); Jennen, Danyel G.J.; Claessen, Sandra M. [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands); Peijnenburg, Ad A.C.M. [RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen (Netherlands); Stierum, Rob H. [Research Group Microbiology and Systems Biology, TNO, PO Box 360 3700 AJ Zeist (Netherlands); Kleinjans, Jos C.S. [Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht (Netherlands)

    2012-03-15

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2 g dose) and oxidative stress responses (4 g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites. -- Highlights: ► 'Omics techniques

  9. Risk Factors, Clinical Presentation, and Outcomes in Overdose With Acetaminophen Alone or With Combination Products: Results From the Acute Liver Failure Study Group.

    Science.gov (United States)

    Serper, Marina; Wolf, Michael S; Parikh, Nikhil A; Tillman, Holly; Lee, William M; Ganger, Daniel R

    2016-01-01

    Acetaminophen (APAP) is the most common cause of acute liver failure (ALF) in the west. It is unknown if APAP overdose in combination with diphenhydramine or opioids confers a different clinical presentation or prognosis. Study objectives were to compare (1) baseline patient characteristics; (2) initial clinical presentation; and (3) clinical outcomes among patients with ALF due to APAP alone or in combination with diphenhydramine or opioids. We analyzed 666 cases of APAP-related liver failure using the Acute Liver Failure Study Group database from 1998 to 2012. The database contains detailed demographic, laboratory, and clinical outcome data, including hemodialysis, transplantation, and death and in-hospital complications such as arrhythmia and infection. The final sample included 666 patients with APAP liver injury. A total 30.3% of patients were overdosed with APAP alone, 14.1% with APAP/diphenhydramine, and 56.6% with APAP/opioids. Patients taking APAP with opioids were older, had more comorbidities, and were more likely to have unintentional overdose (all Ppresentation, 58% in the APAP/opioid group had advanced encephalopathy as compared with 43% with APAP alone (P=0.001) The APAP/diphenhydramine group presented with the highest serum aminotransferase levels, no differences in laboratory values were noted at 3 days postenrollment. No significant differences were observed in clinical outcomes among the groups. Most patients with APAP-induced ALF were taking APAP combination products. There were significant differences in patient characteristics and clinical presentation based on the type of product ingested, however, there were no differences noted in delayed hepatotoxicity or clinical outcomes.

  10. Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    NARCIS (Netherlands)

    Jetten, M.J.A.; Gaj, S.; Ruiz-Aracama, A.; Kok, T.M. de; Delft, J.H.M. van; Lommen, A.; Someren, E.P. van; Jennen, D.G.J.; Claessen, S.M.; Peijnenburg, A.A.C.M.; Stierum, R.H.; Kleinjans, J.C.S.

    2012-01-01

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure

  11. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    NARCIS (Netherlands)

    Jetten, M.J.A.; Gaj, S.; Ruiz Aracama, A.; Kok, de T.M.; Delft, van J.H.M.; Lommen, A.; Someren, van E.P.; Jennen, D.; Claessen, S.M.; Peijnenburg, A.A.C.M.; Stierum, R.; Kleinjans, J.C.S.

    2012-01-01

    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure

  12. Dynamic and accurate assessment of acetaminophen-induced hepatotoxicity by integrated photoacoustic imaging and mechanistic biomarkers in vivo.

    Science.gov (United States)

    Brillant, Nathalie; Elmasry, Mohamed; Burton, Neal C; Rodriguez, Josep Monne; Sharkey, Jack W; Fenwick, Stephen; Poptani, Harish; Kitteringham, Neil R; Goldring, Christopher E; Kipar, Anja; Park, B Kevin; Antoine, Daniel J

    2017-10-01

    The prediction and understanding of acetaminophen (APAP)-induced liver injury (APAP-ILI) and the response to therapeutic interventions is complex. This is due in part to sensitivity and specificity limitations of currently used assessment techniques. Here we sought to determine the utility of integrating translational non-invasive photoacoustic imaging of liver function with mechanistic circulating biomarkers of hepatotoxicity with histological assessment to facilitate the more accurate and precise characterization of APAP-ILI and the efficacy of therapeutic intervention. Perturbation of liver function and cellular viability was assessed in C57BL/6J male mice by Indocyanine green (ICG) clearance (Multispectral Optoacoustic Tomography (MSOT)) and by measurement of mechanistic (miR-122, HMGB1) and established (ALT, bilirubin) circulating biomarkers in response to the acetaminophen and its treatment with acetylcysteine (NAC) in vivo. We utilised a 60% partial hepatectomy model as a situation of defined hepatic functional mass loss to compared acetaminophen-induced changes to. Integration of these mechanistic markers correlated with histological features of APAP hepatotoxicity in a time-dependent manner. They accurately reflected the onset and recovery from hepatotoxicity compared to traditional biomarkers and also reported the efficacy of NAC with high sensitivity. ICG clearance kinetics correlated with histological scores for acute liver damage for APAP (i.e. 3h timepoint; r=0.90, P<0.0001) and elevations in both of the mechanistic biomarkers, miR-122 (e.g. 6h timepoint; r=0.70, P=0.005) and HMGB1 (e.g. 6h timepoint; r=0.56, P=0.04). For the first time we report the utility of this non-invasive longitudinal imaging approach to provide direct visualisation of the liver function coupled with mechanistic biomarkers, in the same animal, allowing the investigation of the toxicological and pharmacological aspects of APAP-ILI and hepatic regeneration. Copyright © 2017

  13. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity

    International Nuclear Information System (INIS)

    McGill, Mitchell R.; Williams, C. David; Xie, Yuchao; Ramachandran, Anup; Jaeschke, Hartmut

    2012-01-01

    Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The

  14. Lycopene pretreatment improves hepatotoxicity induced by acetaminophen in C57BL/6 mice.

    Science.gov (United States)

    Bandeira, Ana Carla Balthar; da Silva, Rafaella Cecília; Rossoni, Joamyr Victor; Figueiredo, Vivian Paulino; Talvani, André; Cangussú, Silvia Dantas; Bezerra, Frank Silva; Costa, Daniela Caldeira

    2017-02-01

    Acetaminophen (APAP) is an antipyretic and analgesic drug that, in high doses, leads to severe liver injury and potentially death. Oxidative stress is an important event in APAP overdose. Researchers are looking for natural antioxidants with the potential to mitigate the harmful effects of reactive oxygen species in different models. Lycopene has been widely studied for its antioxidant properties. The aim of this study was to evaluate the antioxidant potential of lycopene pretreatment in APAP-induced liver injury in C57BL/6 mice. C57BL/6 male mice were divided into the following groups: control (C); sunflower oil (CO); acetaminophen 500mg/kg (APAP); acetaminophen 500mg/kg+lycopene 10mg/kg (APAP+L10), and acetaminophen 500mg/kg+lycopene 100mg/kg (APAP+L100). Mice were pretreated with lycopene for 14 consecutive days prior to APAP overdose. Analyses of blood serum and livers were performed. Lycopene was able to improve redox imbalance, decrease thiobarbituric acid reactive species level, and increase CAT and GSH levels. In addition, it decreased the IL-1β expression and the activity of MMP-2. This study revealed that preventive lycopene consumption in C57BL/6 mice can attenuate the effects of APAP-induced liver injury. Furthermore, by improving the redox state, and thus indicating its potential antioxidant effect, lycopene was also shown to have an influence on inflammatory events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evaluation of Hepatoprotective Activity of Adansonia digitata Extract on Acetaminophen-Induced Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Abeer Hanafy

    2016-01-01

    Full Text Available The methanol extract of the fruit pulp of Adansonia digitata L. (Malvaceae was examined for its hepatoprotective activity against liver damage induced by acetaminophen in rats. The principle depends on the fact that administration of acetaminophen will be associated with development of oxidative stress. In addition, hepatospecific serum markers will be disturbed. Treatment of the rats with the methanol extract of the fruit pulp of Adansonia digitata L. prior to administration of acetaminophen significantly reduced the disturbance in liver function. Liver functions were measured by assessment of total protein, total bilirubin, ALP, ALT, and AST. Oxidative stress parameter and antioxidant markers were also evaluated. Moreover, histopathological evaluation was performed in order to assess liver case regarding inflammatory infiltration or necrosis. Animals were observed for any symptoms of toxicity after administration of extract of the fruit pulp of Adansonia digitata L. to ensure safety of the fruit extract.

  16. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    International Nuclear Information System (INIS)

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15 ml/kg). In CCl 4 + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl 4 -induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl 4 -induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  17. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da-Gang [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Wang, Jun-Xian [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Lu, Yan; Tao, Li; Wang, Jian-Qing [Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei 230032 (China)

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  18. [Acetaminophen (paracetamol) causing renal failure: report on 3 pediatric cases].

    Science.gov (United States)

    Le Vaillant, J; Pellerin, L; Brouard, J; Eckart, P

    2013-06-01

    Renal failure secondary to acetaminophen poisoning is rare and occurs in approximately 1-2 % of patients with acetaminophen overdose. The pathophysiology is still being debated, and renal acetaminophen toxicity consists of acute tubular necrosis, without complication if treated promptly. Renal involvement can sometimes occur without prior liver disease, and early renal manifestations usually occur between the 2nd and 7th day after the acute acetaminophen poisoning. While therapy is exclusively symptomatic, sometimes serious metabolic complications can be observed. The monitoring of renal function should therefore be considered as an integral part of the management of children with acute, severe acetaminophen intoxication. We report 3 cases of adolescents who presented with acute renal failure as a result of voluntary drug intoxication with acetaminophen. One of these 3 girls developed severe renal injury without elevated hepatic transaminases. None of the 3 girls' renal function required hemodialysis, but one of the 3 patients had metabolic complications after her acetaminophen poisoning. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Michaut, Anaïs; Le Guillou, Dounia [INSERM, U991, Université de Rennes 1, Rennes (France); Moreau, Caroline [INSERM, U991, Université de Rennes 1, Rennes (France); Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes (France); Bucher, Simon [INSERM, U991, Université de Rennes 1, Rennes (France); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Martinais, Sophie [INSERM, U991, Université de Rennes 1, Rennes (France); Gicquel, Thomas; Morel, Isabelle [INSERM, U991, Université de Rennes 1, Rennes (France); Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes (France); Robin, Marie-Anne [INSERM, U991, Université de Rennes 1, Rennes (France); Jaeschke, Hartmut [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Fromenty, Bernard, E-mail: bernard.fromenty@inserm.fr [INSERM, U991, Université de Rennes 1, Rennes (France)

    2016-02-01

    Obesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations of insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5 mM) or high (20 mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicity. - Highlights: • Nonalcoholic fatty liver disease (NAFLD) is frequent in obese individuals. • NAFLD can favor hepatotoxicity induced by some drugs including acetaminophen (APAP). • A model of NAFLD was set up by using HepaRG cells incubated with stearate or oleate. • Stearate-loaded HepaRG cells presented higher cytochrome P450 2E1 (CYP2E1

  20. Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice

    Directory of Open Access Journals (Sweden)

    Roko Martinić

    2014-08-01

    Full Text Available Recent histopathological investigations in patients with hepatitis suggested possible involvement of Met-enkephalin and its receptors in the pathophysiology of hepatitis. Consequently, we evaluated the potential hepatoprotective effects of this endogenous opioid pentapeptide in the experimental model of acetaminophen induced hepatotoxicity in male CBA mice. Met-enkephalin exhibited strong hepatoprotective effects in a dose of 7.5 mg/kg, which corresponds to the protective dose reported for several different animal disease models. In this group plasma alanine aminotransferase and aspartate aminotransferase enzyme activities, as well as liver necrosis score were significantly reduced in comparison to control animals treated with physiological saline (p > 0.01. The specificity of the peptide hepatoprotection was investigated from the standpoint of the receptor and peptide blockade. It was concluded that Met-enkephalin effects on the liver were mediated via δ and ζ opioid receptors. Genotoxic testing of Met-enkephalin confirmed the safety of the peptide.

  1. [Causes and management of severe acute liver damage during pregnancy].

    Science.gov (United States)

    Sepulveda-Martinez, Alvaro; Romero, Carlos; Juarez, Guido; Hasbun, Jorge; Parra-Cordero, Mauro

    2015-05-01

    Abnormalities in liver function tests appear in 3% of pregnancies. Severe acute liver damage can be an exclusive condition of pregnancy (dependent or independent of pre-eclampsia) or a concomitant disease. HELLP syndrome and acute fatty liver of pregnancy are the most severe liver diseases associated with pregnancy. Both appear during the third trimester and have a similar clinical presentation. Acute fatty liver may be associated with hypoglycemia and HELLP syndrome is closely linked with pre-eclampsia. Among concomitant conditions, fulminant acute hepatitis caused by medications or virus is the most severe disease. Its clinical presentation may be hyper-acute with neurological involvement and severe coagulation disorders. It has a high mortality and patients should be transplanted. Fulminant hepatic failure caused by acetaminophen overdose can be managed with n-acetyl cysteine. Because of the high fetal mortality rate, the gestational age at diagnosis is crucial.

  2. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  3. Acetaminophen Induced Hepatotoxicity in Wistar Rats—A Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    2016-01-01

    Full Text Available Understanding the mechanism of chemical toxicity, which is essential for cross-species and dose extrapolations, is a major challenge for toxicologists. Standard mechanistic studies in animals for examining the toxic and pathological changes associated with the chemical exposure have often been limited to the single end point or pathways. Toxicoproteomics represents a potential aid to the toxicologist to understand the multiple pathways involved in the mechanism of toxicity and also determine the biomarkers that are possible to predictive the toxicological response. We performed an acute toxicity study in Wistar rats with the prototype liver toxin; the acetaminophen (APAP effects on protein profiles in the liver and its correlation with the plasma biochemical markers for liver injury were analyzed. Three separate groups—control, nontoxic (150 mg/kg and toxic dose (1500 mg/kg of APAP—were studied. The proteins extracted from the liver were separated by 2-DE and analyzed by MALDI-TOF. The differential proteins in the gels were analyzed by BIORAD’s PDQuest software and identified by feeding the peptide mass fingerprint data to various public domain programs like Mascot and MS-Fit. The identified proteins in toxicity-induced rats were classified based on their putative protein functions, which are oxidative stress (31%, immunity (14%, neurological related (12% and transporter proteins (2%, whereas in non-toxic dose-induced rats they were  oxidative stress (9%, immunity (6%, neurological (14% and transporter proteins (9%. It is evident that the percentages of oxidative stress and immunity-related proteins were up-regulated in toxicity-induced rats as compared with nontoxic and control rats. Some of the liver drug metabolizing and detoxifying enzymes were depleted under toxic conditions compared with non-toxic rats. Several other proteins were identified as a first step in developing an in-house rodent liver toxicoproteomics database.

  4. Curative Effects of Thiacremonone against Acetaminophen-Induced Acute Hepatic Failure via Inhibition of Proinflammatory Cytokines Production and Infiltration of Cytotoxic Immune Cells and Kupffer Cells

    Directory of Open Access Journals (Sweden)

    Yu Ri Kim

    2013-01-01

    Full Text Available High doses of acetaminophen (APAP; N-acetyl-p-aminophenol cause severe hepatotoxicity after metabolic activation by cytochrome P450 2E1. This study was undertaken to examine the preventive effects of thiacremonone, a compound extracted from garlic, on APAP-induced acute hepatic failure in male C57BL/6J. Mice received with 500 mg/kg APAP after a 7-day pretreatment with thiacremonone (10–50 mg/kg. Thiacremonone inhibited the APAP-induced serum ALT and AST levels in a dose-dependent manner, and markedly reduced the restricted area of necrosis and inflammation by administration of APAP. Thiacremonone also inhibited the APAP-induced depletion of intracellular GSH, induction of nitric oxide, and lipid peroxidation as well as expression of P450 2E1. After APAP injection, the numbers of Kupffer cells, natural killer cells, and cytotoxic T cells were elevated, but the elevated cell numbers in the liver were reduced in thiacremonone pretreated mice. The expression levels of I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-7, and IL-17 were increased by APAP treatment, which were inhibited in thiacremonone pretreated mice. These data indicate that thiacremonone could be a useful agent for the treatment of drug-induced hepatic failure and that the reduction of cytotoxic immune cells as well as proinflammatory cytokine production may be critical for the prevention of APAP-induced acute liver toxicity.

  5. l-Methionine and silymarin: A comparison of prophylactic protective capabilities in acetaminophen-induced injuries of the liver, kidney and cerebral cortex.

    Science.gov (United States)

    Onaolapo, Olakunle J; Adekola, Moses A; Azeez, Taiwo O; Salami, Karimat; Onaolapo, Adejoke Y

    2017-01-01

    We compared the relative protective abilities of silymarin and l-methionine pre-treatment in acetaminophen overdose injuries of the liver, kidney and cerebral cortex by assessing behaviours, antioxidant status, tissue histological changes and biochemical parameters of hepatic/renal function. Rats were divided into six groups of ten each; animals in five of these groups were pre-treated with oral distilled water, silymarin (25mg/kg) or l-methionine (2.5, 5 and 10mg/kg body weight) for 14days; and then administered intraperitoneal (i.p.) acetaminophen at 800mg/kg/day for 3days. Rats in the sixth group (normal control) received distilled water orally for 14days and then i.p. for 3days. Neurobehavioural tests were conducted 7days after last i.p treatment, and animals sacrificed on the 8th day. Plasma was assayed for biochemical markers of liver/kidney function; while sections of the liver, kidney and cerebral cortex were either homogenised for assay of antioxidant status or processed for histology. Acetaminophen overdose resulted in locomotor retardation, excessive self-grooming, working-memory impairment, anxiety, derangement of liver/kidney biochemistry, antioxidant imbalance, and histological changes in the liver, kidney and cerebral cortex. Administration of silymarin or increasing doses of l-methionine counteracted the behavioural changes, reversed biochemical indices of liver/kidney injury, and improved antioxidant activity. Silymarin and l-methionine also conferred variable degrees of tissue protection, on histology. Either silymarin or l-methionine can protect vulnerable tissues from acetaminophen overdose injury; however, each offers variable protection to different tissues. This study highlights an obstacle to seeking the 'ideal' protective agent against acetaminophen overdose. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. STAT3, a Key Parameter of Cytokine-driven Tissue Protection During Sterile Inflammation – the Case of Experimental Acetaminophen (Paracetamol-induced Liver Damage

    Directory of Open Access Journals (Sweden)

    Heiko eMühl

    2016-05-01

    Full Text Available Acetaminophen (APAP, N-acetyl-p-aminophenol, or paracetamol overdosing is a prevalent cause of acute liver injury. While clinical disease is initiated by overt parenchymal hepatocyte necrosis in response to the analgetic, course of intoxication is substantially influenced by associated activation of innate immunity. This process is supposed to be set in motion by release of danger associated molecular patterns (DAMPs from dying hepatocytes and is accompanied by an inflammatory cytokine response. Murine models of APAP-induced liver injury emphasize the complex role that DAMPs and cytokines play in promoting either hepatic pathogenesis or resolution and recovery from intoxication. Whereas the function of key inflammatory cytokines is controversially discussed, a subclass of specific cytokines capable of efficiently activating the hepatocyte signal transducer and activator of transcription (STAT-3 pathway stands out as being consistently protective in murine models of APAP intoxication. Those include foremost interleukin (IL-6, IL-11, IL-13, and IL-22. Above all, activation of STAT3 under the influence of these cytokines has the capability to drive hepatocyte compensatory proliferation, a key principle of the regenerating liver. Herein, the role of these specific cytokines during experimental APAP-induced liver injury is highlighted and discussed in a broader perspective. In hard-to-treat or at-risk patients standard therapy may fail and APAP intoxication can proceed towards a fatal condition. Focused administration of recombinant STAT3-activating cytokines may evolve as novel therapeutic approach under those ill-fated conditions.

  7. Evaluation of N-Acetyl Cysteine performance in acetaminophen poisoning using certain liver and renal factors in plasma

    Directory of Open Access Journals (Sweden)

    Armin Salek Maghsoudi

    2014-10-01

    Full Text Available Background: Annually, acetaminophen poisoning causes probable acute liver and renal failures in different societies. N-acetyl cystein (NAC, first suggested as an effective antidote to fight against acetaminophen poisoning in 1970, prevents the binding of NAPQI to hepatic cells. Methods: In the present study 30 patients with the average age of 27 and acetaminophen poisoning who referred to the poisons unit of Sina hospital in Tabriz were selected as the study sample. During the 24 hours of hospitalization, the blood samples of the patients were taken and collected in heparinized tubes. The plasma was separated by centrifuge and kept in tubes in -70°C until it was analyzed by a high performance liquid chromatography method (HPLC and laboratory analytical kits. Results: the glutathione peroxidase (GPX activity difference between the patients and control group was significant at first (P0.05. Conclusion: The activity level of GPX changed before a tangible change in regular liver enzymes. Urea level increased after 24 hours of treatment despite serum therapy and hydration condition.

  8. Metabolite kinetics: formation of acetaminophen from deuterated and nondeuterated phenacetin and acetanilide on acetaminophen sulfation kinetics in the perfused rat liver preparation

    International Nuclear Information System (INIS)

    Pang, K.S.; Waller, L.; Horning, M.G.; Chan, K.K.

    1982-01-01

    The role of hepatic intrinsic clearance for metabolite formation from various precursors on subsequent metabolite elimination was was investigated in the once-through perfused rat liver preparation. Two pairs of acetaminophen precursors: [ 14 C] phenacetin-d5 and [ 3 H] phenacetin-do, [ 14 C] acetanilide and [ 3 H] phenacetin were delivered by constant flow (10 ml/min/liver) either by normal or retrograde perfusion to the rat liver preparations. The extents of acetaminophen sulfation were compared within the same preparation. The data showed that the higher the hepatocellular activity (intrinsic clearance) for acetaminophen formation, the greater the extent of subsequent acetaminophen sulfation. The findings were explained on the basis of blood transit time and metabolite duration time. Because of blood having only a finite transit time in liver, the longer the drug requires for metabolite formation, the less time will remain for metabolite sulfation and the less will be the degree of subsequent sulfation. Conversely, when the drug forms the primary metabolite rapidly, a longer time will remain for the metabolite to be sulfated in liver to result in a greater degree of metabolite sulfation. Finally, the effects of hepatic intrinsic clearances for metabolite formation and zonal distribution of enzyme systems for metabolite formation and elimination in liver are discussed

  9. Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure

    DEFF Research Database (Denmark)

    Khamri, Wafa; Abeles, Robin D; Hou, Tie Zheng

    2017-01-01

    , hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood...... were found to have increased concentrations of soluble B7 compared to sera from controls. Necrotic human primary hepatocytes exposed to acetaminophen, but not hepatic sinusoidal endothelial cells and biliary epithelial cells from patients with ALF, secreted high levels of soluble B7. Sera from mice...... with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+T cells from patients with ALF have increased...

  10. Long-term prognosis for transplant-free survivors of paracetamol-induced acute liver failure

    DEFF Research Database (Denmark)

    Jepsen, P; Schmidt, L E; Larsen, F S

    2010-01-01

    The prognosis for transplant-free survivors of paracetamol-induced acute liver failure remains unknown.......The prognosis for transplant-free survivors of paracetamol-induced acute liver failure remains unknown....

  11. The effect of acetaminophen nanoparticles on liver toxicity in a rat model

    Directory of Open Access Journals (Sweden)

    Esmaeil Biazar

    2010-03-01

    Full Text Available Esmaeil Biazar1, S Mahdi Rezayat2, Naser Montazeri1, Khalil Pourshamsian1, Reza Zeinali3, Azadeh Asefnejad3, Mehdi Rahimi3, Mohammadmajid Zadehzare3, Mehran Mahmoudi3, Rohollah Mazinani3, Mehdi Ziaei31Department of Chemistry, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran; 2Department of Pharmacology, School of Medicine, Tehran University of Medical Science, Tehran, Iran; 3Biomedical Engineering, Islamic Azad University, Research and Science Branch, Tehran, IranAbstract: Acetaminophen, a pain-reliever, is one of the most widely used medications in the world. Acetaminophen with normal dosage is considered a nontoxic drug for therapeutic applications, but when taken at overdose levels it produces liver damage in human and various animal species. By a high energy mechanically activated method, we produced acetaminophen in a nanometer crystalline size (24 nm. Forty-eight hours after injection of crystalline particles with normal and reduced size of our drug, the effect of liver toxicity was compared by determination of liver transferase enzymes such as alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase (ALT. These enzymes were examined by routine colorimetric methods using commercial kits and pathologic investigations. Statistical analysis and pathological figures indicated that ALT delivery and toxicity in reduced size acetaminophen was significantly reduced when compared with normal size acetaminophen. Pathology figures exhibited reduced necrosis effects, especially the confluent necrosis, in the central part of the lobule in the reduced size acetaminophen samples when compared with the normal samples.Keywords: acetaminophen, size reduction, pathological and enzymatic investigations, toxicity

  12. Etiologies and Outcomes of Acute Liver Failure in a Spanish Community

    Directory of Open Access Journals (Sweden)

    Emilio Fábrega

    2013-01-01

    Full Text Available Previous retrospective study (1992 to 2000 performed in Spain showed that drug toxicity, viral hepatitis, and indeterminate etiology were the most prevalent causes of acute liver failure (ALF. In the last decade, there is no information about ALF in our country. For these reasons we analyze retrospectively, in a ten-year period (2000 to 2010, the presumed causes, clinical characteristics, course, and outcome of ALF in a Spanish community. Causes of ALF were indeterminate in 4 patients (24%, acute hepatitis B infection in 4 patients (24%, drug or toxic reactions in 4 patients (24%, including one case of acetaminophen overdose, followed by miscellaneous causes. The overall short-term survival (6 weeks after admission was 65%. Liver transplantation was performed in 11 patients with a survival of 82%. Despite fulfilling criteria, 2 patients were not transplanted because of contraindications; they both died. In summary, acute hepatitis B and indeterminate cause are still being the most frequent causes of ALF in our region, and patients with ALF have an excellent chance of survival after emergency liver transplantation. Acetaminophen overdose still represents a very rare cause of ALF in our community.

  13. Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6

    Directory of Open Access Journals (Sweden)

    Isaac Mohar

    2014-01-01

    Full Text Available The mechanism by which acetaminophen (APAP causes liver damage evokes many aspects drug metabolism, oxidative chemistry, and genetic-predisposition. In this study, we leverage the relative resistance of female C57BL/6 mice to APAP-induced liver damage (AILD compared to male C57BL/6 mice in order to identify the cause(s of sensitivity. Furthermore, we use mice that are either heterozygous (HZ or null (KO for glutamate cysteine ligase modifier subunit (Gclm, in order to titrate the toxicity relative to wild-type (WT mice. Gclm is important for efficient de novo synthesis of glutathione (GSH. APAP (300 mg/kg, ip or saline was administered and mice were collected at 0, 0.5, 1, 2, 6, 12, and 24 h. Male mice showed marked elevation in serum alanine aminotransferase by 6 h. In contrast, female WT and HZ mice showed minimal toxicity at all time points. Female KO mice, however, showed AILD comparable to male mice. Genotype-matched male and female mice showed comparable APAP–protein adducts, with Gclm KO mice sustaining significantly greater adducts. ATP was depleted in mice showing toxicity, suggesting impaired mitochondria function. Indeed, peroxiredoxin-6, a GSH-dependent peroxiredoxin, was preferentially adducted by APAP in mitochondria of male mice but rarely adducted in female mice. These results support parallel mechanisms of toxicity where APAP adduction of peroxiredoxin-6 and sustained GSH depletion results in the collapse of mitochondria function and hepatocyte death. We conclude that adduction of peroxiredoxin-6 sensitizes male C57BL/6 mice to toxicity by acetaminophen.

  14. Acute Liver Failure Secondary to Niacin Toxicity

    Directory of Open Access Journals (Sweden)

    Marc A. Ellsworth

    2014-01-01

    Full Text Available A 17-year-old male was transferred to the pediatric intensive care unit for evaluation of acute liver failure. He was recently released from an alcohol treatment center with acute onset of chest pain. Cardiac workup was negative but he was found to have abnormal coagulation studies and elevated liver transaminases. Other evaluations included a normal toxicology screen and negative acetaminophen level. Autoimmune and infectious workups were normal providing no identifiable cause of his acute liver failure. He initially denied any ingestions or illicit drug use but on further query he admitted taking niacin in an attempt to obscure the results of an upcoming drug test. Niacin has been touted on the Internet as an aid to help pass urine drug tests though there is no evidence to support this practice. Niacin toxicity has been associated with serious multisystem organ failure and fulminant hepatic failure requiring liver transplantation. Pediatric providers should be aware of the risks associated with niacin toxicity and other experimental medical therapies that may be described on the Internet or other nonreputable sources.

  15. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Science.gov (United States)

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  16. Schisandra sphenanthera extract (Wuzhi Tablet protects against chronic-binge and acute alcohol-induced liver injury by regulating the NRF2-ARE pathway in mice

    Directory of Open Access Journals (Sweden)

    Xuezhen Zeng

    2017-09-01

    Full Text Available Alcohol abuse leads to alcoholic liver disease and no effective therapy is currently available. Wuzhi Tablet (WZ, a preparation of extract from Schisandra sphenanthera that is a traditional hepato-protective herb, exerted a significant protective effect against acetaminophen-induced liver injury in our recent studies, but whether WZ can alleviate alcohol-induced toxicity remains unclear. This study aimed to investigate the contribution of WZ to alcohol-induced liver injury by using chronic-binge and acute models of alcohol feeding. The activities of ALT and AST in serum were assessed as well as the level of GSH and the activity of SOD in the liver. The expression of CYP2E1 and proteins in the NRF2-ARE signaling pathway including NRF2, GCLC, GCLM, HO-1 were measured, and the effect of WZ on NRF2 transcriptional activity was determined. We found that both models resulted in liver steatosis accompanied by increased transaminase activities, but that liver injury was significantly attenuated by WZ. WZ administration also inhibited CYP2E1 expression induced by alcohol, and elevated the level of GSH and the activity of SOD in the liver. Moreover, the NRF2-ARE signaling pathway was activated by WZ and the target genes were all upregulated. Furthermore, WZ significantly activated NRF2 transcriptional activity. Collectively, our study demonstrates that WZ protected against alcohol-induced liver injury by reducing oxidative stress and improving antioxidant defense, possibly by activating the NRF2-ARE pathway.

  17. Gastric emptying in rats with acetaminophen-induced hepatitis

    Directory of Open Access Journals (Sweden)

    G. Hessel

    1998-09-01

    Full Text Available The objective of this work was to study the gastric emptying (GE of liquids in fasted and sucrose-fed rats with toxic hepatitis induced by acetaminophen. The GE of three test meals (saline, glucose and mayonnaise was evaluated in Wistar rats. For each meal, the animals were divided into two groups (N = 24 each. Group I was fed a sucrose diet throughout the experiment (66 h while group II was fasted. Forty-two hours after the start of the experiment, each group was divided into two subgroups (N = 12 each. Subgroup A received a placebo and subgroup B was given acetaminophen (1 g/kg. Twenty-four hours later, the GE of the three test meals was assessed and blood samples were collected to measure the serum levels of alanine aminotransferase (ALT, aspartate aminotransferase (AST and acetaminophen. In group IB, the mean AST and ALT values were 515 and 263 IU/l, respectively, while for group IIB they were 4014 and 2472 IU/l, respectively. The mean serum acetaminophen levels were higher in group IIB (120 µg/ml than in group IB (87 µg/ml. The gastric retention values were significantly higher in group IIB than in group IIA for all three test meals: saline, 51 vs 35%; glucose, 52 vs 38% and mayonnaise, 51 vs 29% (median values. The correlation between gastric retention and AST levels was significant (P<0.05 for group IIB for the three test meals: r = 0.73, 0.67 and 0.68 for saline, glucose and mayonnaise, respectively. We conclude that GE is altered in rats with hepatic lesions induced by acetaminophen, and that these alterations may be related to the liver cell necrosis caused by the drug.

  18. The biochemistry of acetaminophen hepatotoxicity and rescue: a mathematical model

    Directory of Open Access Journals (Sweden)

    Ben-Shachar Rotem

    2012-12-01

    Full Text Available Abstract Background Acetaminophen (N-acetyl-para-aminophenol is the most widely used over-the-counter or prescription painkiller in the world. Acetaminophen is metabolized in the liver where a toxic byproduct is produced that can be removed by conjugation with glutathione. Acetaminophen overdoses, either accidental or intentional, are the leading cause of acute liver failure in the United States, accounting for 56,000 emergency room visits per year. The standard treatment for overdose is N-acetyl-cysteine (NAC, which is given to stimulate the production of glutathione. Methods We have created a mathematical model for acetaminophen transport and metabolism including the following compartments: gut, plasma, liver, tissue, urine. In the liver compartment the metabolism of acetaminophen includes sulfation, glucoronidation, conjugation with glutathione, production of the toxic metabolite, and liver damage, taking biochemical parameters from the literature whenever possible. This model is then connected to a previously constructed model of glutathione metabolism. Results We show that our model accurately reproduces published clinical and experimental data on the dose-dependent time course of acetaminophen in the plasma, the accumulation of acetaminophen and its metabolites in the urine, and the depletion of glutathione caused by conjugation with the toxic product. We use the model to study the extent of liver damage caused by overdoses or by chronic use of therapeutic doses, and the effects of polymorphisms in glucoronidation enzymes. We use the model to study the depletion of glutathione and the effect of the size and timing of N-acetyl-cysteine doses given as an antidote. Our model accurately predicts patient death or recovery depending on size of APAP overdose and time of treatment. Conclusions The mathematical model provides a new tool for studying the effects of various doses of acetaminophen on the liver metabolism of acetaminophen and

  19. Overdose pattern and outcome in paracetamol-induced acute severe hepatotoxicity

    Science.gov (United States)

    Craig, Darren G N; Bates, Caroline M; Davidson, Janice S; Martin, Kirsty G; Hayes, Peter C; Simpson, Kenneth J

    2011-01-01

    AIMS Paracetamol (acetaminophen) hepatotoxicity is the commonest cause of acute liver failure (ALF) in the UK. Conflicting data regarding the outcomes of paracetamol-induced ALF resulting from different overdose patterns are reported. METHODS Using prospectively defined criteria, we have analysed the impact of overdose pattern upon outcome in a cohort of 938 acute severe liver injury patients admitted to the Scottish Liver Transplantation Unit. RESULTS Between 1992 and 2008, 663 patients were admitted with paracetamol-induced acute severe liver injury. Of these patients, 500 (75.4%) had taken an intentional paracetamol overdose, whilst 110 (16.6%) had taken an unintentional overdose. No clear overdose pattern could be determined in 53 (8.0%). Unintentional overdose patients were significantly older, more likely to abuse alcohol, and more commonly overdosed on compound narcotic/paracetamol analgesics compared with intentional overdose patients. Unintentional overdoses had significantly lower admission paracetamol and alanine aminotransferase concentrations compared with intentional overdoses. However, unintentional overdoses had greater organ dysfunction at admission, and subsequently higher mortality (unintentional 42/110 (38.2%), intentional 128/500 (25.6%), P paracetamol overdose is associated with increased mortality compared with intentional paracetamol overdose, despite lower admission paracetamol concentrations. Alternative prognostic criteria may be required for unintentional paracetamol overdoses. PMID:21219409

  20. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  1. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    International Nuclear Information System (INIS)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori; Tsuneyama, Koichi; Endo, Shinya; Tsukui, Tohru; Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  2. False positive acetaminophen concentrations in icteric serum

    Directory of Open Access Journals (Sweden)

    L. de Jong

    2016-04-01

    Full Text Available Introduction: Serum concentrations of acetaminophen are measured to predict the risk of hepatotoxicity in cases of acetaminophen overdose and to identify acetaminophen use in patients with acute liver injury without a known cause. The acetaminophen concentration determines if treatment with N-acetyl cysteine, the antidote for acetaminophen poisoning, is warranted. Description: A 49-year-old woman was admitted to our hospital with a hepatic encephalopathy and a total serum bilirubin concentration of 442 µmol/l. The acetaminophen concentration of 11.5 mg/l was measured with an enzymatic-colorimetric assay, thus treatment with N-acetyl cysteine was started. Interestingly, the acetaminophen concentration remained unchanged (11.5–12.3 mg/l during a period of 4 consecutive days. In contrast, the acetaminophen concentration measured by HPLC, a chromatographic technique, remained undetectable Discussion: In the presented case, elevated bilirubin was the most likely candidate to interfere with acetaminophen assay causing false positive results. Bilirubin has intense absorbance in the ultraviolet and visible regions of the electromagnetic spectrum and for that reason it causes interference in an enzymatic-colorimetric assay. Conclusion: False positive acetaminophen laboratory test results may be found in icteric serum, when enzymatic-colorimetric assays are used for determination of an acetaminophen concentration. Questionable acetaminophen results in icteric serum should be confirmed by a non-enzymatic method, by means of ultrafiltration of the serum, or by dilution studies. Keywords: Acetaminophen, Enzymatic-colorimetric assays, HPLC, Bilirubin, Interference, Paracetamol, Liver failure, Jaundice

  3. Hepatoprotective effects of Iranian Hypericum scabrum essential oils against oxidative stress induced by acetaminophen in rats

    Directory of Open Access Journals (Sweden)

    Abolfazl Dadkhah

    2014-06-01

    Full Text Available This studied examined the protective role of Hypericum scabrum oils (100 and 200 mg/kg b.w, i.p on acetaminophen-induced liver damages in the rat. The hepatic oxidative/antioxidant parameters such as lipid peroxidation (LP, glutathione (GSH, superoxide dismutase (SOD, catalase (CAT and ferric reducing ability of plasma (FRAP were measured 2, 4, 8, 16 and 24h after the treatments confirmed by histopathological consideration. The results indicated that increased levels of hepatic LP and FRAP and SOD activity were reversed in the rats treated with oils. In addition, the depleted GSH were compensated with the oil treatments. The protective effect of the oils was further confirmed by the histophatological examination carried out on liver biopsies. The data pointed out that H. scabrum oil could modulate the hepatic toxicity induced by the APAP through adjusting the oxidative stress/antioxidant parameters and could be of potential candidate for the treatment of acetaminophen induced oxidative stress liver damages.

  4. 5-Lipoxygenase Deficiency Reduces Acetaminophen-Induced Hepatotoxicity and Lethality

    Directory of Open Access Journals (Sweden)

    Miriam S. N. Hohmann

    2013-01-01

    Full Text Available 5-Lipoxygenase (5-LO converts arachidonic acid into leukotrienes (LTs and is involved in inflammation. At present, the participation of 5-LO in acetaminophen (APAP-induced hepatotoxicity and liver damage has not been addressed. 5-LO deficient (5-LO-/- mice and background wild type mice were challenged with APAP (0.3–6 g/kg or saline. The lethality, liver damage, neutrophil and macrophage recruitment, LTB4, cytokine production, and oxidative stress were assessed. APAP induced a dose-dependent mortality, and the dose of 3 g/kg was selected for next experiments. APAP induced LTB4 production in the liver, the primary target organ in APAP toxicity. Histopathological analysis revealed that 5-LO-/- mice presented reduced APAP-induced liver necrosis and inflammation compared with WT mice. APAP-induced lethality, increase of plasma levels of aspartate aminotransferase and alanine aminotransferase, liver cytokine (IL-1β, TNF-α, IFN-γ, and IL-10, superoxide anion, and thiobarbituric acid reactive substances production, myeloperoxidase and N-acetyl-β-D-glucosaminidase activity, Nrf2 and gp91phox mRNA expression, and decrease of reduced glutathione and antioxidant capacity measured by 2,2′-azinobis(3-ethylbenzothiazoline 6-sulfonate assay were prevented in 5-LO-/- mice compared to WT mice. Therefore, 5-LO deficiency resulted in reduced mortality due to reduced liver inflammatory and oxidative damage, suggesting 5-LO is a promising target to reduce APAP-induced lethality and liver inflammatory/oxidative damage.

  5. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish

    Directory of Open Access Journals (Sweden)

    Hyun-Sik Nam

    2016-01-01

    Full Text Available MicroRNA-122 (miRNA-122, also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM and cell death in larval liver (5 μM at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish.

  6. Drug-induced liver toxicity and prevention by herbal antioxidants: an overview

    Directory of Open Access Journals (Sweden)

    Divya eSingh

    2016-01-01

    Full Text Available The liver is the center for drug and xenobiotic metabolism, which is influenced most with medication/xenobiotic-mediated toxic activity. Drug-induced hepatotoxicity is common and its actual frequency is hard to determine due to underreporting, difficulties in detection or diagnosis, and incomplete observation of exposure. The death rate is high, up to about 10% for medication instigated liver danger. Endorsed medications (counting acetaminophen represented >50% of instances of intense liver failure in a study from the Acute Liver Failure Study Group (ALFSG of the patients admitted in 17 US healing facilities. Albeit different studies are accessible uncovering the mechanistic aspects of medication prompted hepatotoxicity, we are in the dilemma about the virtual story. The expanding prevalence and effectiveness of Ayurveda and herbal products in the treatment of various disorders led the investigators to look into their potential in countering drug-induced liver toxicity. Several plant products have been reported to date to mitigate the drug-induced toxicity. The dietary nature and less side reactions of the herbs provide them an extra edge over other candidates of supplementary medication. In this paper, we have discussed on the mechanism involved in drug-induced liver toxicity and the potential of herbal antioxidants as supplementary medication.

  7. Effect of paracetamol (acetaminophen) on body temperature in acute stroke: A meta-analysis.

    Science.gov (United States)

    Fang, Junjie; Chen, Chensong; Cheng, Hongsen; Wang, Ren; Ma, Linhao

    2017-10-01

    The objective of this study was to assess the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Medline, Cochrane Central Register of Controlled Trials, EMBASE, Chinese BioMedical Literature Database, China National Knowledge Infrastructure, and the World Health Organization (WHO) International Clinical Trials Registry Platform were searched electronically. Relevant journals and references of studies included were hand-searched for randomized controlled trials (RCT) and controlled clinical trials (CCT) regarding the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Two reviewers independently performed data extraction and quality assessment. Data were analyzed using RevMan 5.3 software by the Cochrane Collaboration. Five studies were included. To compare the efficacy of paracetamol (acetaminophen) in acute stroke, the pooled RR (Risk Ratio) and its 95% CI of body temperature reduction at 24h from the start of treatment were -0.3 (95% CI: -0.52 to -0.08), with statistical significance (P=0.007). Consistently, the pooled RR (Risk Ratio) and its 95% CI of body temperature at 24h from the start of treatment were -0.22 (-0.29, -0.15), with statistical significance (PParacetamol (acetaminophen) is one of the most commonly used antipyretic drugs and has some capability to reduce body temperature through acting on central nervous system. Acetaminophen showed some capability to decrease body temperature for acute stroke. Acetaminophen could not improve functional outcome and reduce adverse events of patients with acute stroke. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    Science.gov (United States)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  9. Competing Mechanistic Hypotheses of Acetaminophen-Induced Hepatotoxicity Challenged by Virtual Experiments.

    Directory of Open Access Journals (Sweden)

    Andrew K Smith

    2016-12-01

    Full Text Available Acetaminophen-induced liver injury in mice is a model for drug-induced liver injury in humans. A precondition for improved strategies to disrupt and/or reverse the damage is a credible explanatory mechanism for how toxicity phenomena emerge and converge to cause hepatic necrosis. The Target Phenomenon in mice is that necrosis begins adjacent to the lobule's central vein (CV and progresses outward. An explanatory mechanism remains elusive. Evidence supports that location dependent differences in NAPQI (the reactive metabolite formation within hepatic lobules (NAPQI zonation are necessary and sufficient prerequisites to account for that phenomenon. We call that the NZ-mechanism hypothesis. Challenging that hypothesis in mice is infeasible because 1 influential variables cannot be controlled, and 2 it would require sequential intracellular measurements at different lobular locations within the same mouse. Virtual hepatocytes use independently configured periportal-to-CV gradients to exhibit lobule-location dependent behaviors. Employing NZ-mechanism achieved quantitative validation targets for acetaminophen clearance and metabolism but failed to achieve the Target Phenomenon. We posited that, in order to do so, at least one additional feature must exhibit zonation by decreasing in the CV direction. We instantiated and explored two alternatives: 1 a glutathione depletion threshold diminishes in the CV direction; and 2 ability to repair mitochondrial damage diminishes in the CV direction. Inclusion of one or the other feature into NZ-mechanism failed to achieve the Target Phenomenon. However, inclusion of both features enabled successfully achieving the Target Phenomenon. The merged mechanism provides a multilevel, multiscale causal explanation of key temporal features of acetaminophen hepatotoxicity in mice. We discovered that variants of the merged mechanism provide plausible quantitative explanations for the considerable variation in 24-hour

  10. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Huseinovic, A.; van Leeuwen, Jolanda; van Welsem, Tibor; Stulemeijer, Iris; van Leeuwen, Fred; Vermeulen, N.P.E.; Kooter, J.M.; Vos, J.C.

    2017-01-01

    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity,

  11. Mitochondrial–Lysosomal Axis in Acetaminophen Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Anna Moles

    2018-05-01

    Full Text Available Acetaminophen (APAP toxicity is the most common cause of acute liver failure and a major indication for liver transplantion in the United States and Europe. Although significant progress has been made in understanding the molecular mechanisms underlying APAP hepatotoxicity, there is still an urgent need to find novel and effective therapies against APAP-induced acute liver failure. Hepatic APAP metabolism results in the production of the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI, which under physiological conditions is cleared by its conjugation with glutathione (GSH to prevent its targeting to mitochondria. APAP overdose or GSH limitation leads to mitochondrial NAPQI-protein adducts formation, resulting in oxidative stress, mitochondrial dysfunction, and necrotic cell death. As mitochondria are a major target of APAP hepatotoxicity, mitochondrial quality control and clearance of dysfunctional mitochondria through mitophagy, emerges as an important strategy to limit oxidative stress and the engagement of molecular events leading to cell death. Recent evidence has indicated a lysosomal–mitochondrial cross-talk that regulates APAP hepatotoxicity. Moreover, as lysosomal function is essential for mitophagy, impairment in the fusion of lysosomes with autophagosomes-containing mitochondria may compromise the clearance of dysfunctional mitochondria, resulting in exacerbated APAP hepatotoxicity. This review centers on the role of mitochondria in APAP hepatotoxicity and how the mitochondrial/lysosomal axis can influence APAP-induced liver failure.

  12. Profile of extended-release oxycodone/acetaminophen for acute pain

    Directory of Open Access Journals (Sweden)

    Bekhit MH

    2015-10-01

    Full Text Available Mary Hanna Bekhit1–51David Geffen School of Medicine, 2Ronald Reagan UCLA Medical Center, 3UCLA Ambulatory Surgery Center, 4UCLA Wasserman Eye Institute, 5UCLA Martin Luther King Community Hospital, University of California Los Angeles, Los Angeles, CA, USA Abstract: This article provides a historical and pharmacological overview of a new opioid analgesic that boasts an extended-release (ER formulation designed to provide both immediate and prolonged analgesia for up to 12 hours in patients who are experiencing acute pain. This novel medication, ER oxycodone/acetaminophen, competes with current US Food and Drug Administration (FDA-approved opioid formulations available on the market in that it offers two benefits concurrently: a prolonged duration of action, and multimodal analgesia through a combination of an opioid (oxycodone with a nonopioid component. Current FDA-approved combination analgesics, such as Percocet (oxycodone/acetaminophen, are available solely in immediate-release (IR formulations. Keywords: opioid, analgesic, xartemis, acute postsurgical pain, substance abuse, acetaminophen, extended release 

  13. A Liver-centric Multiscale Modeling Framework for Xenobiotics

    Science.gov (United States)

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study foc...

  14. Seasonality in acute liver injury? Findings in two health care claims databases

    Directory of Open Access Journals (Sweden)

    Weinstein RB

    2016-03-01

    Full Text Available Rachel B Weinstein, Martijn J Schuemie, Patrick B Ryan, Paul E Stang Epidemiology, Janssen Research and Development, LLC, Titusville, NJ, USA Background: Presumed seasonal use of acetaminophen-containing products for relief of cold/influenza (“flu” symptoms suggests that there might also be a corresponding seasonal pattern for acute liver injury (ALI, a known clinical consequence of acetaminophen overdose. Objective: The objective of this study was to determine whether there were any temporal patterns in hospitalizations for ALI that would correspond to assumed acetaminophen use in cold/flu season. Methods: In the period 2002–2010, monthly hospitalization rates for ALI using a variety of case definitions were calculated. Data sources included Truven MarketScan® Commercial Claims and Encounters (CCAE and Medicare Supplemental and Coordination of Benefits (MDCR databases. We performed a statistical test for seasonality of diagnoses using the periodic generalized linear model. To validate that the test can distinguish seasonal from nonseasonal patterns, we included two positive controls (ie, diagnoses of the common cold [acute nasopharyngitis] and influenza, believed to change with seasons, and two negative controls (female breast cancer and diabetes, believed to be insensitive to season. Results: A seasonal pattern was observed in monthly rates for common cold and influenza diagnoses, but this pattern was not observed for monthly rates of ALI, with or without comorbidities (cirrhosis or hepatitis, breast cancer, or diabetes. The statistical test for seasonality was significant for positive controls (P<0.001 for each diagnosis in both databases and nonsignificant for ALI and negative controls. Conclusion: No seasonal pattern was observed in the diagnosis of ALI. The positive and negative controls showed the expected patterns, strengthening the validity of the statistical and visual tests used for detecting seasonality. Keywords: acute liver

  15. Total Flavonoids from Mimosa Pudica Protects Carbon Tetrachloride -Induced Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Zhen-qin QIU

    2015-03-01

    Full Text Available Objective: To observe the protective effect of total flavonoids from Mimosa pudica on carbon tetrachloride (CCl4-induced acute liver injury in mice. Methods: CCl4-induced acute liver injury model in mice was established. The activity of ALT and AST, the content of serum albumin (Alb and total antioxidant capacity (T-AOC were determined. The content of malondiadehyde (MDA was measured and the activity of superoxide dismutase (SOD was determined. The histopathological changes of liver were observed.Results: Compared with CCl4 modle group, each dose group of total flavonouida from Mimosa pudica couldreduced the activity of ALT and AST in mice obviously (P<0.01, indicating they had remarkably protective effect on CCl4-induced acute liver injury in mice. high and middle dose groups of total flavonouida from Mimosa pudica couldincrease the content of Alb in mice (P<0.01. Each dose group of total flavonouida from Mimosa pudica could enhance the level of T-AOC (P<0.01. each dose group of total flavonouida from Mimosa pudica could lower the content of liver homogenate MDA but enhance the activity of SOD in a dose-depended manner (P<0.01. Conclusion: Total flavones from Mimosa Pudica have obvious protective effect on CCl4-induced acute liver injury in mice.

  16. Silymarin prevents acetaminophen-induced hepatotoxicity in mice.

    Directory of Open Access Journals (Sweden)

    Zuzana Papackova

    Full Text Available Acetaminophen or paracetamol (APAP overdose is a common cause of liver injury. Silymarin (SLM is a hepatoprotective agent widely used for treating liver injury of different origin. In order to evaluate the possible beneficial effects of SLM, Balb/c mice were pretreated with SLM (100 mg/kg b.wt. per os once daily for three days. Two hours after the last SLM dose, the mice were administered APAP (300 mg/kg b.wt. i.p. and killed 6 (T6, 12 (T12 and 24 (T24 hours later. SLM-treated mice exhibited a significant reduction in APAP-induced liver injury, assessed according to AST and ALT release and histological examination. SLM treatment significantly reduced superoxide production, as indicated by lower GSSG content, lower HO-1 induction, alleviated nitrosative stress, decreased p-JNK activation and direct measurement of mitochondrial superoxide production in vitro. SLM did not affect the APAP-induced decrease in CYP2E1 activity and expression during the first 12 hrs. Neutrophil infiltration and enhanced expression of inflammatory markers were first detected at T12 in both groups. Inflammation progressed in the APAP group at T24 but became attenuated in SLM-treated animals. Histological examination suggests that necrosis the dominant cell death pathway in APAP intoxication, which is partially preventable by SLM pretreatment. We demonstrate that SLM significantly protects against APAP-induced liver damage through the scavenger activity of SLM and the reduction of superoxide and peroxynitrite content. Neutrophil-induced damage is probably secondary to necrosis development.

  17. Anabolic steroid-induced cardiomyopathy underlying acute liver failure in a young bodybuilder.

    Science.gov (United States)

    Bispo, Miguel; Valente, Ana; Maldonado, Rosário; Palma, Rui; Glória, Helena; Nóbrega, João; Alexandrino, Paula

    2009-06-21

    Heart failure may lead to subclinical circulatory disturbances and remain an unrecognized cause of ischemic liver injury. We present the case of a previously healthy 40-year-old bodybuilder, referred to our Intensive-Care Unit of Hepatology for treatment of severe acute liver failure, with the suspicion of toxic hepatitis associated with anabolic steroid abuse. Despite the absence of symptoms and signs of congestive heart failure at admission, an anabolic steroid-induced dilated cardiomyopathy with a large thrombus in both ventricles was found to be the underlying cause of the liver injury. Treatment for the initially unrecognized heart failure rapidly restored liver function to normal. To our knowledge, this is the first reported case of severe acute liver failure due to an unrecognized anabolic steroid-induced cardiomyopathy. Awareness of this unique presentation will allow for prompt treatment of this potentially fatal cause of liver failure.

  18. Expression of liver-specific functions in rat hepatocytes following sublethal and lethal acetaminophen poisoning

    DEFF Research Database (Denmark)

    Tygstrup, N; Jensen, S A; Krog, B

    1996-01-01

    AIM: In order to study the short-term effect of moderate and severe reduction of liver function by acetaminophen poisoning of different severity on gene expression for liver-specific functions, rats were given 3.75 and 7.5 g per kg body weight acetaminophen intragastrically. The lower dose...... is associated with low mortality; after the higher dose, most rats die at between 12 and 24 h. METHODS: In the morning, 1 1/2, 3, 6, 9, and 12 h after the injection, the rats were killed and RNA was extracted from liver tissue. By slot-blot hybridization mRNA steady-state levels were determined for enzymes...

  19. Ozagrel hydrochloride, a selective thromboxane A2 synthase inhibitor, alleviates liver injury induced by acetaminophen overdose in mice

    Directory of Open Access Journals (Sweden)

    Tomishima Yoshiro

    2013-01-01

    Full Text Available Abstract Background Overdosed acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP causes severe liver injury. We examined the effects of ozagrel, a selective thromboxane A2 (TXA2 synthase inhibitor, on liver injury induced by APAP overdose in mice. Methods Hepatotoxicity was induced to ICR male mice by an intraperitoneal injection with APAP (330 mg/kg. The effects of ozagrel (200 mg/kg treatment 30 min after the APAP injection were evaluated with mortality, serum alanine aminotransferase (ALT levels and hepatic changes, including histopathology, DNA fragmentation, mRNA expression and total glutathione contents. The impact of ozagrel (0.001-1 mg/mL on cytochrome P450 2E1 (CYP2E1 activity in mouse hepatic microsome was examined. RLC-16 cells, a rat hepatocytes cell line, were exposed to 0.25 mM N-acetyl-p-benzoquinone imine (NAPQI, a hepatotoxic metabolite of APAP. In this model, the cytoprotective effects of ozagrel (1–100 muM were evaluated by the WST-1 cell viability assay. Results Ozagel treatment significantly attenuated higher mortality, elevated serum alanine aminotransferase levels, excessive hepatic centrilobular necrosis, hemorrhaging and DNA fragmentation, as well as increase in plasma 2,3-dinor thromboxane B2 levels induced by APAP injection. Ozagrel also inhibited the hepatic expression of cell death-related mRNAs induced by APAP, such as jun oncogene, FBJ osteosarcoma oncogene (fos and C/EBP homologous protein (chop, but did not suppress B-cell lymphoma 2-like protein11 (bim expression and hepatic total glutathione depletion. These results show ozagrel can inhibit not all hepatic changes but can reduce the hepatic necrosis. Ozagrel had little impact on CYP2E1 activity involving the NAPQI production. In addition, ozagrel significantly attenuated cell injury induced by NAPQI in RLC-16. Conclusions We demonstrate that the TXA2 synthase inhibitor, ozagrel, dramatically alleviates liver injury induced by APAP in mice, and suggest

  20. Transplantation for acute liver failure in patients exposed to NSAIDs or paracetamol (acetaminophen): the multinational case-population SALT study.

    Science.gov (United States)

    Gulmez, Sinem Ezgi; Larrey, Dominique; Pageaux, Georges-Philippe; Lignot, Severine; Lassalle, Régis; Jové, Jérémy; Gatta, Angelo; McCormick, P Aiden; Metselaar, Harold J; Monteiro, Estela; Thorburn, Douglas; Bernal, William; Zouboulis-Vafiadis, Irene; de Vries, Corinne; Perez-Gutthann, Susana; Sturkenboom, Miriam; Bénichou, Jacques; Montastruc, Jean-Louis; Horsmans, Yves; Salvo, Francesco; Hamoud, Fatima; Micon, Sophie; Droz-Perroteau, Cécile; Blin, Patrick; Moore, Nicholas

    2013-02-01

    Most NSAIDs are thought to be able to cause hepatic injury and acute liver failure (ALF), but the event rates of those leading to transplantation (ALFT) remain uncertain. The aim of the study was to estimate population event rates for NSAID-associated ALFT METHODS: This was a case-population study of ALFT in 57 eligible liver transplant centres in seven countries (France, Greece, Ireland, Italy, The Netherlands, Portugal and the UK). Cases were all adults registered from 2005 to 2007 for a liver transplant following ALFT without identified clinical aetiology, exposed to an NSAID or paracetamol (acetaminophen) within 30 days before the onset of clinical symptoms. NSAID and paracetamol population exposures were assessed using national sales data from Intercontinental Marketing Services (IMS). Risk was estimated as the rate of ALFT per million treatment-years (MTY). In the 52 participating centres, 9479 patients were registered for transplantation, with 600 for ALFT, 301 of whom, without clinical aetiology, had been exposed to a drug within 30 days. Of these 301 patients, 40 had been exposed to an NSAID and 192 to paracetamol (81 of whom were without overdose). Event rates per MTY were 1.59 (95 % CI 1.1-2.2) for all NSAIDs pooled, 2.3 (95 % CI 1.2-3.9) for ibuprofen, 1.9 (95 % CI 0.8-3.7) for nimesulide, 1.6 (95 % CI 0.6-3.4) for diclofenac and 1.6 (95 % CI 0.3-4.5) for ketoprofen. For paracetamol, the event rate was 3.3 per MTY (95 % CI 2.6-4.1) without overdoses and 7.8 (95 % CI 6.8-9.0) including overdoses. ALF leading to registration for transplantation after exposure to an NSAID was rare, with no major difference between NSAID. Non-overdose paracetamol-exposed liver failure was twice more common than NSAID-exposed liver failure.

  1. Careful: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    Science.gov (United States)

    ... Pain Relievers and Fever Reducers Careful: Acetaminophen in pain relief medicines can cause liver damage Share Tweet Linkedin Pin it More sharing options Linkedin Pin ... ingredient in many over-the-counter and prescription medicines that help relieve pain and reduce fever. More than 600 over-the- ...

  2. The protection of glycyrrhetinic acid (GA) towards acetaminophen ...

    African Journals Online (AJOL)

    induced toxicity partially through fatty acids metabolic pathway. ... Abstract. Background: Acetaminophen (APAP)-induced liver toxicity remains the key factor limiting the clinical application of APAP, and herbs are the important sources for isolation of ...

  3. Tocilizumab-Induced Acute Liver Injury in Adult Onset Still’s Disease

    Directory of Open Access Journals (Sweden)

    Michael Drepper

    2013-01-01

    Full Text Available Background. Tocilizumab, a monoclonal humanized anti-IL-6 receptor antibody, is used in treatment of refractory adult onset Still’s disease (AOSD. Mild to moderate liver enzyme elevation is a well-known side effect, but severe liver injury has only been reported in 3 cases in the literature. Case. A young female suffering from corticoid and methotrexate refractory AOSD was treated by tocilizumab. After 19 months of consecutive treatment, she developed acute severe liver injury. Liver biopsy showed extensive hepatocellular necrosis with ballooned hepatocytes, highly suggestive of drug-induced liver injury. No other relevant drug exposure beside tocilizumab was recorded. She recovered totally after treatment discontinuation and an initial 3-day course of intravenous N-acetylcysteine with normalization of liver function tests after 6 weeks. Conclusion. Acute severe hepatitis can be associated with tocilizumab as documented in this case. Careful monitoring of liver function tests is warranted during tocilizumab treatment.

  4. The role of intrahepatic CD3 +/CD4 −/CD8 − double negative T (DN T) cells in enhanced acetaminophen toxicity

    International Nuclear Information System (INIS)

    Getachew, Yonas; Cusimano, Frank A.; James, Laura P.; Thiele, Dwain L.

    2014-01-01

    The role of the immune system, specifically NK, NKT and CD3 cells, in acetaminophen (APAP) induced liver injury remains inconsistently defined. In the present study, wild type (C57BL/6J) mice and granzyme B deficient (GrB −/−) mice were treated with acetaminophen to assess the role of the immune system in acute liver injury. Doses of acetaminophen that induced sub lethal liver injury in wild type mice unexpectedly produced fatal hepatotoxicity in granzyme B deficient (GrB −/−) mice. Analysis revealed that GrB −/− mice had an increased population of intrahepatic CD3 (+), CD4 (−), and CD8 (−) lymphocytes expressing the CD69 activation marker and Fas ligand. Depletion of these cells in the GrB −/− and wild type mice made them less susceptible to APAP injury, while depletion of NK1.1 (+) cells or both CD4 (+) and CD8 (+) T cells failed to provide the same hepatoprotection. Transfer of the GrB −/− IHLs further exacerbated liver injury and increased mortality in wild type mice but not in LRP/LPR mice, lacking fas expression. Conclusions: Acetaminophen toxicity is enhanced by the presence of activated, FasL expressing intrahepatic CD3 (+), CD4 (−), CD8 (−), NK1.1 (−) T cells. Depletion of these cells from GrB −/− mice and wild type mice greatly reduces mortality and improves the course of liver injury recovery. - Highlights: • Intrahepatic lymphocytes (IHLs) from GrB −/− mice harbor activated DNT cells. • IHLs from GrB −/− mice exhibit enhanced Fas ligand expression. • Acetaminophen toxicity is enhanced by activated, FasL expressing DNT cells

  5. The role of intrahepatic CD3 +/CD4 −/CD8 − double negative T (DN T) cells in enhanced acetaminophen toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Getachew, Yonas, E-mail: yonas.getachew@utsouthwestern.edu [Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151 (United States); Cusimano, Frank A. [Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151 (United States); James, Laura P. [Department of Pediatrics, University of Arkansas, Little Rock, AR (United States); Thiele, Dwain L. [Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151 (United States)

    2014-10-15

    The role of the immune system, specifically NK, NKT and CD3 cells, in acetaminophen (APAP) induced liver injury remains inconsistently defined. In the present study, wild type (C57BL/6J) mice and granzyme B deficient (GrB −/−) mice were treated with acetaminophen to assess the role of the immune system in acute liver injury. Doses of acetaminophen that induced sub lethal liver injury in wild type mice unexpectedly produced fatal hepatotoxicity in granzyme B deficient (GrB −/−) mice. Analysis revealed that GrB −/− mice had an increased population of intrahepatic CD3 (+), CD4 (−), and CD8 (−) lymphocytes expressing the CD69 activation marker and Fas ligand. Depletion of these cells in the GrB −/− and wild type mice made them less susceptible to APAP injury, while depletion of NK1.1 (+) cells or both CD4 (+) and CD8 (+) T cells failed to provide the same hepatoprotection. Transfer of the GrB −/− IHLs further exacerbated liver injury and increased mortality in wild type mice but not in LRP/LPR mice, lacking fas expression. Conclusions: Acetaminophen toxicity is enhanced by the presence of activated, FasL expressing intrahepatic CD3 (+), CD4 (−), CD8 (−), NK1.1 (−) T cells. Depletion of these cells from GrB −/− mice and wild type mice greatly reduces mortality and improves the course of liver injury recovery. - Highlights: • Intrahepatic lymphocytes (IHLs) from GrB −/− mice harbor activated DNT cells. • IHLs from GrB −/− mice exhibit enhanced Fas ligand expression. • Acetaminophen toxicity is enhanced by activated, FasL expressing DNT cells.

  6. Argininosuccinate synthetase as a plasma biomarker of liver injury after acetaminophen overdose in rodents and humans

    Science.gov (United States)

    McGill, Mitchell R.; Cao, Mengde; Svetlov, Archie; Sharpe, Matthew R.; Williams, C. David; Curry, Steven C.; Farhood, Anwar; Jaeschke, Hartmut; Svetlov, Stanislav I.

    2014-01-01

    Context New biomarkers are needed in acetaminophen (APAP) hepatotoxicity. Plasma argininosuccinate synthetase (ASS) is a promising candidate. Objective Characterize ASS in APAP hepatotoxicity. Methods ASS was measured in plasma from rodents and humans with APAP hepatotoxicity. Results In mice, ASS increased before injury, peaked before ALT, and decreased rapidly. Fischer rats had a greater increase in ASS relative to ALT. Patients with abnormal liver test results had very high ASS compared to controls. ASS appeared to increase early in some patients, and declined rapidly in all. Conclusions : ASS may be a useful biomarker of acute cell death in APAP hepatotoxicity. PMID:24597531

  7. Gold nanoparticles ameliorate acetaminophen induced hepato-renal injury in rats.

    Science.gov (United States)

    Reshi, Mohd Salim; Shrivastava, Sadhana; Jaswal, Amita; Sinha, Neelu; Uthra, Chhavi; Shukla, Sangeeta

    2017-04-04

    Valuable effects of gold particles have been reported and used in complementary medicine for decades. The aim of this study was to evaluate the therapeutic efficacy of gold nanoparticles (AuNPs) against acetaminophen (APAP) induced toxicity. Albino rats were administered APAP at a dose of 2g/kg p.o. once only. After 24h of APAP intoxication, animals were treated with three different doses of AuNPs (50μg/kg, 100μg/kg, 150μg/kg) orally or silymarin at a dose of 50mg/kg p.o., once only. Animals of all the groups were sacrificed after 24h of last treatment. APAP administered group showed a significant rise in the AST, ALT, SALP, LDH, cholesterol, bilirubin, albumin, urea and creatinine in serum which indicated the hepato-renal damage. A significantly enhanced LPO and a depleted level of GSH were observed in APAP intoxicated rats. Declined activities of SOD and Catalase, after acetaminophen exposure indicated oxidative stress in liver and kidney. The activities of ATPase and glucose-6-Phosphatase were significantly inhibited after APAP administration. AuNPs treatment reversed all variables significantly towards normal level and was found nontoxic. Thus it is concluded that gold nanoparticles played a beneficial role in reducing acetaminophen induced toxicity and can be used in the development of drug against hepatic as well as renal diseases, after further preclinical and clinical studies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity

    Science.gov (United States)

    Massart, Julie; Begriche, Karima; Moreau, Caroline; Fromenty, Bernard

    2017-01-01

    Background Obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions including fatty liver, nonalcoholic steatohepatitis (NASH) and cirrhosis. Different investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs could induce more frequently an acute hepatitis in obese individuals whereas others could worsen pre-existing NAFLD. Aim The main objective of the present review was to collect the available information regarding the role of NAFLD as risk factor for drug-induced hepatotoxicity. For this purpose, we performed a data-mining analysis using different queries including drug-induced liver injury (or DILI), drug-induced hepatotoxicity, fatty liver, nonalcoholic fatty liver disease (or NAFLD), steatosis and obesity. The main data from the collected articles are reported in this review and when available, some pathophysiological hypotheses are put forward. Relevance for patients Drugs that could pose a potential risk in obese patients include compounds belonging to different pharmacological classes such as acetaminophen, halothane, methotrexate, rosiglitazone, stavudine and tamoxifen. For some of these drugs, experimental investigations in obese rodents confirmed the clinical observations and unveiled different pathophysiological mechanisms which could explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Other drugs such as pentoxifylline, phenobarbital and omeprazole might also pose a risk but more investigations are required to determine whether this risk is significant or not. Because obese people often take several drugs for the treatment of different obesity-related diseases such as type 2 diabetes, hyperlipidemia and coronary heart disease, it is urgent to identify the main pharmaceuticals that can cause acute hepatitis on a fatty liver background or induce NAFLD worsening

  9. Caspase-Mediated Anti-Apoptotic Effect of Ginsenoside Rg5, a Main Rare Ginsenoside, on Acetaminophen-Induced Hepatotoxicity in Mice.

    Science.gov (United States)

    Wang, Zi; Hu, Jun-Nan; Yan, Meng-Han; Xing, Jing-Jing; Liu, Wen-Cong; Li, Wei

    2017-10-25

    Frequent overdose of acetaminophen (APAP) is one of the most common and important incentives of acute hepatotoxicity. Prior to this work, our research group confirmed that black ginseng (Panax ginseng, BG) showed powerful protective effects on APAP-induced ALI. However, it is not clear which kind of individual ginsenoside from BG plays such a liver protection effect. The objective of the current investigation was to evaluate whether ginsenoside Rg5 (G-Rg5) protected against APAP-induced hepatotoxicity and the involved action mechanisms. Mice were administrated with G-Rg5 at two dosages of 10 or 20 mg/kg for 7 consecutive days. After the last treatment, all of the animals that received a single intraperitoneal injection of APAP (250 mg/kg) showed severe liver toxicity after 24 h, and the liver protection effects of G-Rg5 were examined. The results clearly indicated that pretreatment with G-Rg5 remarkably inhibited the production of serum tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) compared with the APAP group. Meanwhile, G-Rg5 decreased the hepatic malondialdehyde (MDA) content, the protein expression levels of 4-hydroxynonenal (4-HNE) and cytochrome P450 2E1 (CYP2E1) in the liver tissues. G-Rg5 decreased APAP caused the hepatic overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Furthermore, analysis of immunohistochemistry and Western blotting also indicated that G-Rg5 pretreatment inhibited activation of apoptotic pathways mainly via increasing the expression of Bcl-2 protein, decreasing the expression of Bax protein, proliferating cell nuclear antigen (PCNA), cytochrome c, caspase-3, caspase-8, and caspase-9. Liver histopathological observation provided further evidence that pretreatment with G-Rg5 could significantly inhibit hepatocyte necrosis, inflammatory cell infiltration, and apoptosis caused by APAP. In conclusion, the present study clearly demonstrates that G-Rg5 exerts a liver protection effect against

  10. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    Science.gov (United States)

    Cho, Sungjoon; Tripathi, Ashutosh; Chlipala, George; Green, Stefan; Lee, Hyunwoo; Chang, Eugene B; Jeong, Hyunyoung

    2017-01-01

    Acetaminophen (APAP) is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp) 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet) on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v) fructose in water (or regular water) for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes) was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold) higher basal glutathione levels and (~2 fold) lower basal (mRNA and activity) levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  11. Fructose diet alleviates acetaminophen-induced hepatotoxicity in mice.

    Directory of Open Access Journals (Sweden)

    Sungjoon Cho

    Full Text Available Acetaminophen (APAP is a commonly used analgesic and antipyretic that can cause hepatotoxicity due to production of toxic metabolites via cytochrome P450 (Cyp 1a2 and Cyp2e1. Previous studies have shown conflicting effects of fructose (the major component in Western diet on the susceptibility to APAP-induced hepatotoxicity. To evaluate the role of fructose-supplemented diet in modulating the extent of APAP-induced liver injury, male C57BL/6J mice were given 30% (w/v fructose in water (or regular water for 8 weeks, followed by oral administration of APAP. APAP-induced liver injury (determined by serum levels of liver enzymes was decreased by two-fold in mice pretreated with fructose. Fructose-treated mice exhibited (~1.5 fold higher basal glutathione levels and (~2 fold lower basal (mRNA and activity levels of Cyp1a2 and Cyp2e1, suggesting decreased bioactivation of APAP and increased detoxification of toxic metabolite in fructose-fed mice. Hepatic mRNA expression of heat shock protein 70 was also found increased in fructose-fed mice. Analysis of bacterial 16S rRNA gene amplicons from the cecal samples of vehicle groups showed that the fructose diet altered gut bacterial community, leading to increased α-diversity. The abundance of several bacterial taxa including the genus Anaerostipes was found to be significantly correlated with the levels of hepatic Cyp2e1, Cyp1a2 mRNA, and glutathione. Together, these results suggest that the fructose-supplemented diet decreases APAP-induced liver injury in mice, in part by reducing metabolic activation of APAP and inducing detoxification of toxic metabolites, potentially through altered composition of gut microbiota.

  12. Compound list: acetaminophen [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available acetaminophen APAP 00001 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/acetam...inophen.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/acetam...inophen.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/i...cedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/acetaminophen.Rat.in_vivo.Liver.Repeat.zip ftp...://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/acetaminophen.Rat.in_vivo.Kidn

  13. Development and validation of a dynamic outcome prediction model for paracetamol-induced acute liver failure

    DEFF Research Database (Denmark)

    Bernal, William; Wang, Yanzhong; Maggs, James

    2016-01-01

    : The models developed here show very good discrimination and calibration, confirmed in independent datasets, and suggest that many patients undergoing transplantation based on existing criteria might have survived with medical management alone. The role and indications for emergency liver transplantation......BACKGROUND: Early, accurate prediction of survival is central to management of patients with paracetamol-induced acute liver failure to identify those needing emergency liver transplantation. Current prognostic tools are confounded by recent improvements in outcome independent of emergency liver...... transplantation, and constrained by static binary outcome prediction. We aimed to develop a simple prognostic tool to reflect current outcomes and generate a dynamic updated estimation of risk of death. METHODS: Patients with paracetamol-induced acute liver failure managed at intensive care units in the UK...

  14. Reduced SHARPIN and LUBAC Formation May Contribute to CCl4- or Acetaminophen-Induced Liver Cirrhosis in Mice

    Directory of Open Access Journals (Sweden)

    Takeshi Yamamotoya

    2017-02-01

    Full Text Available Linear ubiquitin chain assembly complex (LUBAC, composed of SHARPIN (SHANK-associated RH domain-interacting protein, HOIL-1L (longer isoform of heme-oxidized iron-regulatory protein 2 ubiquitin ligase-1, and HOIP (HOIL-1L interacting protein, forms linear ubiquitin on nuclear factor-κB (NF-κB essential modulator (NEMO and induces NF-κB pathway activation. SHARPIN expression and LUBAC formation were significantly reduced in the livers of mice 24 h after the injection of either carbon tetrachloride (CCl4 or acetaminophen (APAP, both of which produced the fulminant hepatitis phenotype. To elucidate its pathological significance, hepatic SHARPIN expression was suppressed in mice by injecting shRNA adenovirus via the tail vein. Seven days after this transduction, without additional inflammatory stimuli, substantial inflammation and fibrosis with enhanced hepatocyte apoptosis occurred in the livers. A similar but more severe phenotype was observed with suppression of HOIP, which is responsible for the E3 ligase activity of LUBAC. Furthermore, in good agreement with these in vivo results, transduction of Hepa1-6 hepatoma cells with SHARPIN, HOIL-1L, or HOIP shRNA adenovirus induced apoptosis of these cells in response to tumor necrosis factor-α (TNFα stimulation. Thus, LUBAC is essential for the survival of hepatocytes, and it is likely that reduction of LUBAC is a factor promoting hepatocyte death in addition to the direct effect of drug toxicity.

  15. Steroid use in acute liver failure

    DEFF Research Database (Denmark)

    Karkhanis, Jamuna; Verna, Elizabeth C; Chang, Matthew S

    2014-01-01

    UNLABELLED: Drug-induced and indeterminate acute liver failure (ALF) might be due to an autoimmune-like hepatitis that is responsive to corticosteroid therapy. The aim of this study was to evaluate whether corticosteroids improve survival in fulminant autoimmune hepatitis, drug-induced, or indete......UNLABELLED: Drug-induced and indeterminate acute liver failure (ALF) might be due to an autoimmune-like hepatitis that is responsive to corticosteroid therapy. The aim of this study was to evaluate whether corticosteroids improve survival in fulminant autoimmune hepatitis, drug......-induced, or indeterminate ALF, and whether this benefit varies according to the severity of illness. We conducted a retrospective analysis of autoimmune, indeterminate, and drug-induced ALF patients in the Acute Liver Failure Study Group from 1998-2007. The primary endpoints were overall and spontaneous survival (SS......% versus 66%, P = 0.41), nor with improved survival in any diagnosis category. Steroid use was associated with diminished survival in certain subgroups of patients, including those with the highest quartile of the Model for Endstage Liver Disease (MELD) (>40, survival 30% versus 57%, P = 0...

  16. TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner

    Science.gov (United States)

    Badmann, A; Langsch, S; Keogh, A; Brunner, T; Kaufmann, T; Corazza, N

    2012-01-01

    Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage. PMID:23254290

  17. Licochalcone A Upregulates Nrf2 Antioxidant Pathway and Thereby Alleviates Acetaminophen-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2018-03-01

    Full Text Available Acetaminophen (APAP overdose-induced fatal hepatotoxicity is majorly characterized by overwhelmingly increased oxidative stress while enhanced nuclear factor-erythroid 2-related factor 2 (Nrf2 is involved in prevention of hepatotoxicity. Although Licochalcone A (Lico A upregulates Nrf2 signaling pathway against oxidative stress-triggered cell injury, whether it could protect from APAP-induced hepatotoxicity by directly inducing Nrf2 activation is still poorly elucidated. This study aims to explore the protective effect of Lico A against APAP-induced hepatotoxicity and its underlying molecular mechanisms. Our findings indicated that Lico A effectively decreased tert-butyl hydroperoxide (t-BHP- and APAP-stimulated cell apoptosis, mitochondrial dysfunction and reactive oxygen species generation and increased various anti-oxidative enzymes expression, which is largely dependent on upregulating Nrf2 nuclear translocation, reducing the Keap1 protein expression, and strengthening the antioxidant response element promoter activity. Meanwhile, Lico A dramatically protected against APAP-induced acute liver failure by lessening the lethality; alleviating histopathological liver changes; decreasing the alanine transaminase and aspartate aminotransferase levels, malondialdehyde formation, myeloperoxidase level and superoxide dismutase depletion, and increasing the GSH-to-GSSG ratio. Furthermore, Lico A not only significantly modulated apoptosis-related protein by increasing Bcl-2 expression, and decreasing Bax and caspase-3 cleavage expression, but also efficiently alleviated mitochondrial dysfunction by reducing c-jun N-terminal kinase phosphorylation and translocation, inhibiting Bax mitochondrial translocation, apoptosis-inducing factor and cytochrome c release. However, Lico A-inhibited APAP-induced the lethality, histopathological changes, hepatic apoptosis, and mitochondrial dysfunction in WT mice were evidently abrogated in Nrf2-/- mice. These

  18. Acute Liver Failure: Pathophysiologic Basis, and The Current and Emerging Therapies

    Directory of Open Access Journals (Sweden)

    Graziella Privitera

    2014-05-01

    Full Text Available Acute liver failure (ALF is a devastating condition that occurs in patients who previously had a normal liver. Although the outcome of patients with ALF has improved, without liver transplantation (LT mortality rates remain in the range of 35-50% in different geographical areas and therefore, its treatment remains an unmet need. In the Western world toxic liver injury from acetaminophen remains one of the common causes but, in the East, hepatitis of unknown aetiology remains the most common cause. Treatment options are limited to meticulous attention to multi-organ support, use of N-acetyl cysteine, judicious use of antibiotics, and timely LT. This review describes the state-of-the-art techniques in the issues related to prognosis, outcome, and treatment of this devastating syndrome.

  19. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David; Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Sharpe, Matthew R. [Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS (United States); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2014-03-01

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear

  20. Acetaminophen-Induced Liver Injury Alters the Acyl Ethanolamine-Based Anti-Inflammatory Signaling System in Liver

    Directory of Open Access Journals (Sweden)

    Patricia Rivera

    2017-10-01

    Full Text Available Protective mechanisms against drug-induced liver injury are actively being searched to identify new therapeutic targets. Among them, the anti-inflammatory N-acyl ethanolamide (NAE-peroxisome proliferators activated receptor alpha (PPARα system has gained much interest after the identification of its protective role in steatohepatitis and liver fibrosis. An overdose of paracetamol (APAP, a commonly used analgesic/antipyretic drug, causes hepatotoxicity, and it is being used as a liver model. In the present study, we have analyzed the impact of APAP on the liver NAE-PPARα system. A dose-response (0.5–5–10–20 mM and time-course (2–6–24 h study in human HepG2 cells showed a biphasic response, with a decreased PPARα expression after 6-h APAP incubation followed by a generalized increase of NAE-PPARα system-related components (PPARα, NAPE-PLD, and FAAH, including the NAEs oleoyl ethanolamide (OEA and docosahexaenoyl ethanolamide, after a 24-h exposure to APAP. These results were partially confirmed in a time-course study of mice exposed to an acute dose of APAP (750 mg/kg. The gene expression levels of Pparα and Faah were decreased after 6 h of treatment and, after 24 h, the gene expression levels of Nape-pld and Faah, as well as the liver levels of OEA and palmitoyl ethanolamide, were increased. Repeated APAP administration (750 mg/kg/day up to 4 days also decreased the expression levels of PPARα and FAAH, and increased the liver levels of NAEs. A resting period of 15 days completely restored these impairments. Liver immunohistochemistry in a well-characterized human case of APAP hepatotoxicity confirmed PPARα and FAAH decrements. Histopathological and hepatic damage (Cyp2e1, Caspase3, αSma, Tnfα, and Mcp1-related alterations observed after repeated APAP administration were aggravated in the liver of Pparα-deficient mice. Our results demonstrate that the anti-inflammatory NAE-PPARα signaling system is implicated in liver

  1. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: Dose–response, mechanisms, and clinical implications

    International Nuclear Information System (INIS)

    McGill, Mitchell R.; Lebofsky, Margitta; Norris, Hye-Ryun K.; Slawson, Matthew H.; Bajt, Mary Lynn; Xie, Yuchao; Williams, C. David; Wilkins, Diana G.; Rollins, Douglas E.; Jaeschke, Hartmut

    2013-01-01

    At therapeutic doses, acetaminophen (APAP) is a safe and effective analgesic. However, overdose of APAP is the principal cause of acute liver failure in the West. Binding of the reactive metabolite of APAP (NAPQI) to proteins is thought to be the initiating event in the mechanism of hepatotoxicity. Early work suggested that APAP-protein binding could not occur without glutathione (GSH) depletion, and likely only at toxic doses. Moreover, it was found that protein-derived APAP-cysteine could only be detected in serum after the onset of liver injury. On this basis, it was recently proposed that serum APAP-cysteine could be used as diagnostic marker of APAP overdose. However, comprehensive dose–response and time course studies have not yet been done. Furthermore, the effects of co-morbidities on this parameter have not been investigated. We treated groups of mice with APAP at multiple doses and measured liver GSH and both liver and plasma APAP-protein adducts at various timepoints. Our results show that protein binding can occur without much loss of GSH. Importantly, the data confirm earlier work that showed that protein-derived APAP-cysteine can appear in plasma without liver injury. Experiments performed in vitro suggest that this may involve multiple mechanisms, including secretion of adducted proteins and diffusion of NAPQI directly into plasma. Induction of liver necrosis through ischemia–reperfusion significantly increased the plasma concentration of protein-derived APAP-cysteine after a subtoxic dose of APAP. While our data generally support the measurement of serum APAP-protein adducts in the clinic, caution is suggested in the interpretation of this parameter. - Highlights: • Extensive GSH depletion is not required for APAP-protein binding in the liver. • APAP-protein adducts appear in plasma at subtoxic doses. • Proteins are adducted in the cell and secreted out. • Coincidental liver injury increases plasma APAP-protein adducts at subtoxic doses

  2. Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity

    Directory of Open Access Journals (Sweden)

    Yang Runkuan

    2011-11-01

    Full Text Available Abstract Background Acetaminophen (APAP overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G0, the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6. Ringer's lactate solution (RLS has been shown to increase serum TNF-α and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an alternative metabolic fuel to meet the higher energy demand by liver regeneration. Therefore, we tested whether RLS therapy improves liver recovery after APAP overdose. Methods C57BL/6 male mice were intraperitoneally injected with a single dose of APAP (300 mg/kg dissolved in 1 mL sterile saline. Following 2 hrs of APAP challenge, the mice were given 1 mL RLS or Saline treatment every 12 hours for a total of 72 hours. Results 72 hrs after APAP challenge, compared to saline-treated group, RLS treatment significantly lowered serum transaminases (ALT/AST and improved liver recovery seen in histopathology. This beneficial effect was associated with increased hepatic tissue TNF-α concentration, enhanced hepatic NF-κB DNA binding and increased expression of cell cycle protein cyclin D1, three important factors in liver regeneration. Conclusion RLS improves liver recovery from APAP hepatotoxicity.

  3. Chemoprotective effect of insulin-like growth factor I against acetaminophen-induced cell death in Chang liver cells via ERK1/2 activation

    International Nuclear Information System (INIS)

    Hwang, Hye-Jung; Kwon, Mi-Jin; Nam, Taek-Jeong

    2007-01-01

    The insulin-like growth factor (IGF) system and type-I IGF receptor (IGF-IR) signaling are involved in protecting against chemotherapeutic drug-induced cell death in human hepatoma cells. Acetaminophen (AAP) hepatotoxicity is the leading cause of liver failure, and the prevention of AAP-induced cell death has been the focus of many studies. We determined whether IGF-I could protect against AAP-induced cell death in Chang liver cells and investigated the protective mechanism. Based on the results of MTS assays, LDH release assays, Hoechst 33342 cell staining, and DNA fragmentation experiments, AAP induced cell death in a dose-dependent manner. According to Western blot analysis, treatment with AAP increased the level of poly(ADP-ribose) polymerase (PARP) fragments in cells compared with that in control cells; however, caspase-3, a critical signaling molecule in apoptosis, was not activated after AAP overdose. Moreover, combined treatment with AAP and IGF-I inhibited PARP cleavage, which was consistent with the ability of IGF-I to restore the level of glutathione (GSH) and cell viability in GSH and MTS assays, respectively. We investigated whether the protective effect of IGF-I against AAP cytotoxicity is related to the extracellular signal-related kinase ERK1/2, which is generally activated by mitogenic and proliferative stimuli such as growth factors. Compared with AAP treatment alone, IGF-I and AAP co-treatment increased ERK1/2 phosphorylation but inhibited PARP cleavage. Thus ERK1/2 activation is instrumental in the protective effect of IGF-I against AAP-induced cell death in Chang liver cells

  4. Identification of identical transcript changes in liver and whole blood during acetaminophen toxicity

    Directory of Open Access Journals (Sweden)

    Liwen eZhang

    2012-09-01

    Full Text Available Abstract The ability to identify mechanisms underlying drug-induced liver injury (DILI in man has been hampered by the difficulty in obtaining liver tissue from patients. It has recently been proposed that whole blood toxicogenomics may provide a noninvasive means for mechanistic studies of human DILI. However, it remains unclear to what extent changes in whole blood transcriptome mirror those in liver mechanistically linked to hepatotoxicity. To address this question, we applied the program Extracting Patterns and Identifying co-expressed Genes (EPIG to publically available toxicogenomic data obtained from rats treated with both toxic and subtoxic doses of acetaminophen (APAP. In a training set of animals, we identified genes (760 at 6 h and 185 at 24 h post dose with similar patterns of expression in blood and liver during APAP induced hepatotoxicity. The pathways represented in the coordinately regulated genes largely involved mitochondrial and immune functions. The identified expression signatures were then evaluated in a separate set of animals for discernment of APAP exposure level or APAP induced hepatotoxicity. At 6 h, the gene sets from liver and blood had equally sufficient classification of APAP exposure levels. At 24 h when toxicity was evident, the gene sets did not perform well in evaluating APAP exposure doses, but provided accurate classification of dose-independent liver injury that was evaluated by serum ALT elevation in the blood. Only thirty eight genes were common to both the 6 and 24h gene sets, but these genes had the same capability as the parent gene sets to discern the exposure level and degree of liver injury. Some of the parallel transcript changes reflect pathways that are relevant to APAP hepatotoxicity, including mitochondria and immune functions. However, the extent to which these changes reflect similar mechanisms of action in both tissues remains to be determined.

  5. Protective Effects of Tormentic Acid, a Major Component of Suspension Cultures of Eriobotrya japonica Cells, on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Wen-Ping Jiang

    2017-05-01

    Full Text Available An acetaminophen (APAP overdose can cause hepatotoxicity and lead to fatal liver damage. The hepatoprotective effects of tormentic acid (TA on acetaminophen (APAP-induced liver damage were investigated in mice. TA was intraperitoneally (i.p. administered for six days prior to APAP administration. Pretreatment with TA prevented the elevation of serum aspartate aminotransferase (AST, alanine aminotransferase (ALT, total bilirubin (T-Bil, total cholesterol (TC, triacylglycerol (TG, and liver lipid peroxide levels in APAP-treated mice and markedly reduced APAP-induced histological alterations in liver tissues. Additionally, TA attenuated the APAP-induced production of nitric oxide (NO, reactive oxygen species (ROS, tumor necrosis factor-alpha (TNF-α, interleukin-1beta (IL-1β, and IL-6. Furthermore, the Western blot analysis showed that TA blocked the protein expression of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, as well as the inhibition of nuclear factor-kappa B (NF-κB and mitogen-activated protein kinases (MAPKs activation in APAP-injured liver tissues. TA also retained the superoxidase dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT in the liver. These results suggest that the hepatoprotective effects of TA may be related to its anti-inflammatory effect by decreasing thiobarbituric acid reactive substances (TBARS, iNOS, COX-2, TNF-α, IL-1β, and IL-6, and inhibiting NF-κB and MAPK activation. Antioxidative properties were also observed, as shown by heme oxygenase-1 (HO-1 induction in the liver, and decreases in lipid peroxides and ROS. Therefore, TA may be a potential therapeutic candidate for the prevention of APAP-induced liver injury by inhibiting oxidative stress and inflammation.

  6. [Severe toxic liver failure after acute poisoning with paracetamol, ferrous sulphate and naproxen].

    Science.gov (United States)

    Adamek, Robert; Wilczek, Lech; Krupiński, Bogusław

    2004-01-01

    We present the case of 20-year-old woman intoxicated with mixed drugs, composed of paracetamol (acetaminophen), ferrous sulphate, naproxen and benzodiazepines. Acute toxic liver damage with clinical symptoms of coma resolved at the patient. Lack of the past history doesn't let to specific therapy and systemic complications. In this data we confirm, that past history, clinical symptoms and laboratory results are needed in designing a treatment strategy.

  7. Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice

    OpenAIRE

    Martinić, Roko; Šošić, Hrvoje; Turčić, Petra; Konjevoda, Paško; Fučić, Aleksandra; Stojković, Ranko; Aralica, Gorana; Gabričević, Mario; Weitner, Tin; Štambuk, Nikola

    2014-01-01

    Recent histopathological investigations in patients with hepatitis suggested possible involvement of Met-enkephalin and its receptors in the pathophysiology of hepatitis. Consequently, we evaluated the potential hepatoprotective effects of this endogenous opioid pentapeptide in the experimental model of acetaminophen induced hepatotoxicity in male CBA mice. Met-enkephalin exhibited strong hepatoprotective effects in a dose of 7.5 mg/kg, which corresponds to the protective dose reported for se...

  8. Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury.

    Science.gov (United States)

    Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Kashiwada, Yoshiki

    2015-04-01

    This work aimed at evaluating the effect of fermented ginseng (FG) and fermented red ginseng (FRG) against rat liver injury caused by paracetamol (acetaminophen (APAP)). Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and histopathological changes in the liver were analysed to determine the degree of liver injury. Deoxyribonucleic acid (DNA) microarray analysis was performed to compare gene expression levels altered in the rat livers. Phosphorylated Jun-N-terminal kinase (JNK) in human hepatocellular carcinoma (HepG2) cells were detected using western blot analysis to investigate the anti-inflammatory activity of compound K. Pretreatment with FG, containing compound K at high concentration, attenuated AST as well as ALT levels in rats, while no obvious effect was observed in the group that received FRG, whose content of compound K was lower than that of FG. In addition, the results of our histopathological analysis were consistent with changes in the serum biochemical analysis. DNA microarray analysis indicated that JNK- and glutathione S-transferase (GST)-related genes were involved in the hepatotoxicity. Notably, compound K, a major ginsenoside in FG, inhibited the phosphorylation of JNK in HepG2 cells. FG was shown to possess hepatoprotective activity against paracetamol (APAP)-induced liver injury better than FRG. Compound K might play an important role for an anti-inflammatory activity of FG by inhibiting JNK signalling in the liver. © 2014 Royal Pharmaceutical Society.

  9. Quercitrin from Toona sinensis (Juss. M.Roem. Attenuates Acetaminophen-Induced Acute Liver Toxicity in HepG2 Cells and Mice through Induction of Antioxidant Machinery and Inhibition of Inflammation

    Directory of Open Access Journals (Sweden)

    Van-Long Truong

    2016-07-01

    Full Text Available Quercitrin is found in many kinds of vegetables and fruits, and possesses various bioactive properties. The aim of the present study was to elucidate hepatoprotective mechanisms of quercitrin isolated from Toona sinensis (Juss. M.Roem. (syn. Cedrela sinensis Juss., using acetaminophen (APAP-treated HepG2 cell and animal models. In an in vitro study, quercitrin suppressed the production of reactive oxygen species and enhanced expression of nuclear factor E2-related factor 2 (Nrf2, activity of antioxidant response element (ARE-reporter gene, and protein levels of NADPH: quinone oxidoreductase 1 (NQO1, catalase (CAT, glutathione peroxidase (GPx, and superoxide dismutase 2 (SOD-2 in APAP-treated HepG2 cells. In an in vivo study, Balb/c mice were orally administered with 10 or 50 mg/kg of quercitrin for 7 days and followed by the injection with single dose of 300 mg/kg APAP. Quercitrin decreased APAP-caused elevation of alanine aminotransferase and aspartate aminotransferase levels, liver necrosis, the expression of pro-inflammatory factors including inducible nitric oxide synthase, cyclooxygenase 2 and inerleukin-1β, and phosphorylation of kinases including c-Jun N-terminal kinase and p38. Quercitrin restored protein levels of Nrf2, NQO1 and activities and expressions of CAT, GPx, SOD-2. The results suggested that quercitrin attenuates APAP-induced liver damage by the activation of defensive genes and the inhibition of pro-inflammatory genes via the suppressions of JNK and p38 signaling.

  10. [Establishment of a D-galactosamine/lipopolysaccharide induced acute-on-chronic liver failure model in rats].

    Science.gov (United States)

    Liu, Xu-hua; Chen, Yu; Wang, Tai-ling; Lu, Jun; Zhang, Li-jie; Song, Chen-zhao; Zhang, Jing; Duan, Zhong-ping

    2007-10-01

    To establish a practical and reproducible animal model of human acute-on-chronic liver failure for further study of the pathophysiological mechanism of acute-on-chronic liver failure and for drug screening and evaluation in its treatment. Immunological hepatic fibrosis was induced by human serum albumin in Wistar rats. In rats with early-stage cirrhosis (fibrosis stage IV), D-galactosamine and lipopolysaccharide were administered. Mortality and survival time were recorded in 20 rats. Ten rats were sacrificed at 4, 8, and 12 hours. Liver function tests and plasma cytokine levels were measured after D-galactosamine/lipopolysaccharide administration and liver pathology was studied. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Most of the rats treated with human albumin developed cirrhosis and fibrosis, and 90% of them died from acute liver failure after administration of D-galactosamine/lipopolysaccharide, with a mean survival time of (16.1+/-3.7) hours. Liver histopathology showed massive or submassive necrosis of the regenerated nodules, while fibrosis septa were intact. Liver function tests were compatible with massive necrosis of hepatocytes. Plasma level of TNFalpha increased significantly, parallel with the degree of the hepatocytes apoptosis. Plasma IL-10 levels increased similarly as seen in patients with acute-on-chronic liver failure. We established an animal model of acute-on-chronic liver failure by treating rats with human serum albumin and later with D-galactosamine and lipopolysaccharide. TNFalpha-mediated liver cell apoptoses plays a very important role in the pathogenesis of acute liver failure.

  11. Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Nesreen E.M. Mohammed

    2016-11-01

    Conclusion: Amlodipine, lisinopril or allopurinol can protect against acetaminophen-induced hepatotoxicity, showing mechanistic roles of calcium channels, angiotensin converting enzyme and xanthine oxidase enzyme in the pathogenesis of hepatotoxicity induced by acetaminophen.

  12. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats.

    Science.gov (United States)

    S, Latha; Chaudhary, Sheetal; R S, Ray

    2017-11-01

    Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Autoprotection in acetaminophen intoxication in rats

    DEFF Research Database (Denmark)

    Dalhoff, K; Laursen, H; Bangert, K

    2001-01-01

    and liver tissue were collected before and 12, 24, 36, and 48 hr after the toxic dose and were analysed for hepatic glutathione and cysteine contents, hepatic glutathione-S-transferase and blood alanine aminotransferase activity, as well as acetaminophen concentration in plasma. Steady-state mRNA levels......Autoprotection by acetaminophen, i.e. increased resistance to toxic effects caused by pretreatment, is a well-known phenomenon. The purpose of the present work was to identify mechanisms for increased acetaminophen tolerance induced by pretreatment of rats. One group of female Wistar rats...... (pretreated rats) received acetaminophen orally in increasing doses (1 to 4.3 g/kg) twice a week for 3 weeks, one group (naïve rats) received the vehicle. At time zero pretreated rats received a toxic dose of 7.5 g/kg (100% lethal in naïve rats), and naïve rats received a toxic dose of 4.3 g/kg. Blood...

  14. Patients with the worst outcomes after paracetamol (acetaminophen)-induced liver failure have an early monocytopenia.

    Science.gov (United States)

    Moore, J K; MacKinnon, A C; Man, T Y; Manning, J R; Forbes, S J; Simpson, K J

    2017-02-01

    Acute liver failure (ALF) is associated with significant morbidity and mortality. Studies have implicated the immune response, especially monocyte/macrophages as being important in dictating outcome. To investigate changes in the circulating monocytes and other immune cells serially in patients with ALF, relate these with cytokine concentrations, monocyte gene expression and patient outcome. In a prospective case-control study in the Scottish Liver Transplant Unit, Royal Infirmary Edinburgh, 35 consecutive patients admitted with paracetamol-induced liver failure (POD-ALF), 10 patients with non-paracetamol causes of ALF and 16 controls were recruited. The peripheral blood monocyte phenotype was analysed by flow cytometry, circulating cytokines quantified by protein array and monocyte gene expression array performed and related to outcome. On admission, patients with worst outcomes after POD-ALF had a significant monocytopenia, characterised by reduced classical and expanded intermediate monocyte population. This was associated with reduced circulating lymphocytes and natural killer cells, peripheral cytokine patterns suggestive of a 'cytokine storm' and increased concentrations of cytokines associated with monocyte egress from the bone marrow. Gene expression array did not differentiate patient outcome. At day 4, there was no significant difference in monocyte, lymphocyte or natural killer cells between survivors and the patients with adverse outcomes. Severe paracetamol liver failure is associated with profound changes in the peripheral blood compartment, particularly in monocytes, related with worse outcomes. This is not seen in patients with non-paracetamol-induced liver failure. Significant monocytopenia on admission may allow earlier clarification of prognosis, and it highlights a potential target for therapeutic intervention. © 2016 John Wiley & Sons Ltd.

  15. Hepatoprotective and antioxidant effects of Azolla microphylla based gold nanoparticles against acetaminophen induced toxicity in a fresh water common carp fish (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Selvaraj Kunjiappan

    2015-04-01

    Conclusion: Azolla microphylla phytochemically synthesized GNaP protects liver against oxidative damage and tissue damaging enzyme activities and could be used as an effective protector against acetaminophen-induced hepatic damage in fresh water common carp fish.

  16. Humanizing π-class glutathione S-transferase regulation in a mouse model alters liver toxicity in response to acetaminophen overdose.

    Directory of Open Access Journals (Sweden)

    Matthew P Vaughn

    Full Text Available Glutathione S-transferases (GSTs metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of π-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGstp expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. π-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGstp1/2+/+ mice suffer marked liver damage, while mGstp1/2-/- mice escape liver injury.To more faithfully model the contribution of π-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGstp genes. In the resultant hGSTP1+mGstp1/2-/- strain, π-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGstp1/2-/- mice, when hGSTP1+mGstp1/2-/- mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that π-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes.By recapitulating human π-class GST expression, hGSTP1+mGstp1/2-/- mice may better model human drug and xenobiotic toxicology.

  17. Expression of liver functions following sub-lethal and non-lethal doses of allyl alcohol and acetaminophen in the rat

    DEFF Research Database (Denmark)

    Tygstrup, N; Jensen, S A; Krog, B

    1997-01-01

    BACKGROUND/AIMS: To relate severity of intoxication with allyl alcohol and acetaminophen to modulated hepatic gene expression of liver functions and regeneration. METHODS: Rats fasted for 12 h received acetaminophen 3.5 or 5.6 g per kg body weight, or allyl alcohol 100 or 125 microl by gastric tu...

  18. Experimental type 2 diabetes mellitus and acetaminophen toxic lesions: glutathione system indices changes

    Directory of Open Access Journals (Sweden)

    Olga Furka

    2017-11-01

    Full Text Available Background. The goal of the research was to study the effect of acetaminophen on major glutathione part of antioxidant system indices in liver homogenate of rats with type 2 diabetes mellitus in time dynamics. Materials and methods. We conducted two series of experiments. In the first series toxic lesion was caused by a single intragastric administration of acetaminophen suspension in 2 % starch solution to animals in a dose of 1250 mg/kg (1/2 LD50. In the second series  the suspension of acetaminophen in 2 % starch solution in a dose of 55 mg/kg was given, which corresponds to the highest therapeutic dose during 7 days. Non-genetic form of experimental type 2 diabetes mellitus was modeled by Islam S., Choi H. method (2007. Activity of glutathione peroxidase (GPx and glutathione reductase (GR, and contents of reduced glutathione (GSH were determined in liver homogenate. Results. The obtained results have shown that GR and GPx activity actively decreased after acetaminophen administration in higher therapeutic doses to rats with type 2 DM. However, the changes were less pronounced than in rats with type 2 DM and acute acetaminophen toxic lesions. Conclusion. Results of the research have shown that acetaminophen administration to rats with type 2 DM causes a significant violation of compensatory mechanisms, especially of the enzyme and nonenzyme parts of antioxidant system.

  19. Interventions for paracetamol (acetaminophen) overdoses

    DEFF Research Database (Denmark)

    Brok, J; Buckley, N; Gluud, C

    2002-01-01

    Self-poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Interventions for paracetamol poisoning encompass inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation.......Self-poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Interventions for paracetamol poisoning encompass inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation....

  20. Montelukast induced acute hepatocellular liver injury

    Directory of Open Access Journals (Sweden)

    Harugeri A

    2009-01-01

    Full Text Available A 46-year-old male with uncontrolled asthma on inhaled albuterol and formoterol with budesonide was commenced on montelukast. He developed abdominal pain and jaundice 48 days after initiating montelukast therapy. His liver tests showed an increase in serum total bilirubin, conjugated bilirubin, aspartate aminotranferase, alanine aminotranferase, and alkaline phosphatase. The patient was evaluated for possible non-drug related liver injury. Montelukast was discontinued suspecting montelukast induced hepatocellular liver injury. Liver tests began to improve and returned to normal 55 days after drug cessation. Causality of this adverse drug reaction by the Council for International Organizations of Medical Sciences or Roussel Uclaf Causality Assessment Method (CIOMS or RUCAM and Naranjo′s algorithm was ′probable′. Liver tests should be monitored in patients receiving montelukast and any early signs of liver injury should be investigated with a high index of suspicion for drug induced liver injury.

  1. Protection afforded by pre- or post-treatment with 4-phenylbutyrate against liver injury induced by acetaminophen overdose in mice.

    Science.gov (United States)

    Shimizu, Daisuke; Ishitsuka, Yoichi; Miyata, Keishi; Tomishima, Yoshiro; Kondo, Yuki; Irikura, Mitsuru; Iwawaki, Takao; Oike, Yuichi; Irie, Tetsumi

    2014-09-01

    Acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) is a widely used analgesic/antipyretic drug with few adverse effects at therapeutic doses; suicidal or unintentional overdose of APAP frequently induces severe hepatotoxicity. To explore a new and effective antidote for APAP hepatotoxicity, this study examined the effects of sodium 4-phenylbutyrate (4-PBA) on liver injury induced by APAP overdose in mice. Liver injury was induced in C57BL/6 male mice by intraperitoneal injection of APAP (400mg/kg). The effects of 4-PBA (100-200mg/kg) treatment at 1h before the APAP injection were evaluated with serum alanine aminotransferase (ALT) and blood ammonia levels, hepatic pathological changes, including histopathology, DNA damage, nitrotyrosine formation, and mRNA or protein expression involved in the development of hepatotoxicity, such as X-box binding protein-1 (XBP1), c-Jun N-terminal kinase (JNK), C/EBP homologous protein (CHOP) and B-cell lymphoma 2 interacting mediator of cell death (Bim). In addition, glutathione depletion and CYP2E1 protein expression, which are measures of the metabolic conversion of APAP to a toxic metabolite, were examined. Furthermore, we examined the effects of post-treatment with 4-PBA against APAP-induced hepatotoxicity in mice. When administered at 1h before APAP injection, 4-PBA significantly prevented the increase in serum ALT and blood ammonia levels, centrilobular necrosis of hepatocytes, DNA fragmentation, and nitrotyrosine formation induced by APAP in mice. 4-PBA also inhibited hepatic Xbp1 mRNA splicing and JNK phosphorylation induced by APAP, but did not suppress CHOP and Bim mRNA and protein expression. In addition, 4-PBA had little effect on hepatic glutathione depletion and CYP2E1 expression, parameters of toxic APAP metabolite production. Post-treatment with 4-PBA administration at 1 or 2h after APAP injection also attenuated the increase in serum ALT and blood ammonia levels and hepatic pathological changes in APAP-induced

  2. Protective role of hypoxia-inducible factor-1α-dependent CD39 and CD73 in fulminant acute liver failure

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Eunyoung [Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jung, Dong-Hwan; Kim, Seok-Hwan; Park, Gil-Chun [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jun, Dae Young; Lee, Jooyoung [Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jung, Bo-hyun [Department of Surgery, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of); Kirchner, Varvara A. [Division of Transplantation, Department of Surgery and Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN (United States); Hwang, Shin [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Song, Gi-Won, E-mail: drsong71@amc.seoul.kr [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Sung-Gyu [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2017-01-01

    Acute liver failure (ALF) is a severe life-threatening disease which usually arises in patients with-irreversible liver illnesses. Although human ectonucleotide triphosphate diphosphohydrolase-1, E-NTPDase1 (CD39) and ecto-5′-nucleotidase, Ecto5′NTase (CD73) are known to protect tissues from ALF, the expression and function of CD39 and CD73 during ALF are currently not fully investigated. We tested whether CD39 and CD73 are upregulated by hypoxia inducible factor (HIF)-1α, and improve ischemic tolerance to ALF. To test our hypothesis, liver biopsies were obtained and we found that CD39 and CD73 mRNA and proteins from human specimens were dramatically elevated in ALF. We investigated that induction of CD39 and CD73 in ALF-related with wild type mice. In contrast, deletion of cd39 and cd73 mice has severe ALF. In this study, we concluded that CD39 and CD73 are molecular targets for the development of drugs for ALF patients care. - Highlights: • HIF-1a is stabilized during acute liver failure • Upregulation of CD39 and CD73 following acute liver failure • CD39 and CD73 are transcriptionally induced by HIF-1a • Deletion of Cd39 and CD73 aggravates murine acute liver failure • DMOG treatment induces HIF-1a stabilization, CD39 and CD73 during acute liver failure in WT mice.

  3. Hepatoprotective and antioxidant effects of Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats.

    Science.gov (United States)

    Yen, Feng-Lin; Wu, Tzu-Hui; Lin, Liang-Tzung; Lin, Chun-Ching

    2007-04-20

    Tu-Si-Zi, the seeds of Cuscuta chinensis Lam. (Convolvulaceae), is a traditional Chinese medicine that is commonly used to nourish and improve the liver and kidney conditions in China and other Asian countries. As oxidative stress promotes the development of acetaminophen (APAP)-induced hepatotoxicity, the aim of the present study was to evaluate and compare the hepatoprotective effect and antioxidant activities of the aqueous and ethanolic extracts of C chinensis on APAP-induced hepatotoxicity in rats. The C chinensis ethanolic extract at an oral dose of both 125 and 250mg/kg showed a significant hepatoprotective effect relatively to the same extent (PCuscuta chinensis can prevent hepatic injuries from APAP-induced hepatotoxicity in rats and this is likely mediated through its antioxidant activities.

  4. Acute acetaminophen (paracetamol) ingestion improves time to exhaustion during exercise in the heat.

    Science.gov (United States)

    Mauger, Alexis R; Taylor, Lee; Harding, Christopher; Wright, Benjamin; Foster, Josh; Castle, Paul C

    2014-01-01

    Acetaminophen (paracetamol) is a commonly used over-the-counter analgesic and antipyretic and has previously been shown to improve exercise performance through a reduction in perceived pain. This study sought to establish whether its antipyretic action may also improve exercise capacity in the heat by moderating the increase in core temperature. On separate days, 11 recreationally active participants completed two experimental time-to-exhaustion trials on a cycle ergometer in hot conditions (30°C, 50% relative humidity) after ingesting a placebo control or an oral dose of acetaminophen in a randomized, double-blind design. Following acetaminophen ingestion, participants cycled for a significantly longer period of time (acetaminophen, 23 ± 15 min versus placebo, 19 ± 13 min; P = 0.005; 95% confidence interval = 90-379 s), and this was accompanied by significantly lower core (-0.15°C), skin (-0.47°C) and body temperatures (0.19°C; P 0.05). This is the first study to demonstrate that an acute dose of acetaminophen can improve cycling capacity in hot conditions, and that this may be due to the observed reduction in core, skin and body temperature and the subjective perception of thermal comfort. These findings suggest that acetaminophen may reduce the thermoregulatory strain elicited from exercise, thus improving time to exhaustion.

  5. Interventions for paracetamol (acetaminophen) overdose

    DEFF Research Database (Denmark)

    Chiew, Angela L; Gluud, Christian; Brok, Jesper

    2018-01-01

    BACKGROUND: Paracetamol (acetaminophen) is the most widely used non-prescription analgesic in the world. Paracetamol is commonly taken in overdose either deliberately or unintentionally. In high-income countries, paracetamol toxicity is a common cause of acute liver injury. There are various...... of paracetamol. Acetylcysteine should be given to people at risk of toxicity including people presenting with liver failure. Further randomised clinical trials with low risk of bias and adequate number of participants are required to determine which regimen results in the fewest adverse effects with the best...... was abandoned due to low numbers recruited), assessing several different interventions in 700 participants. The variety of interventions studied included decontamination, extracorporeal measures, and antidotes to detoxify paracetamol's toxic metabolite; which included methionine, cysteamine, dimercaprol...

  6. Association of Variants of Arginine Vasopressin and Arginine Vasopressin Receptor 1A With Severe Acetaminophen Liver InjurySummary

    Directory of Open Access Journals (Sweden)

    Matthew Randesi

    2017-05-01

    Full Text Available Background & Aims: Acetaminophen-related acute liver injury and liver failure (ALF result from ingestion of supratherapeutic quantities of this analgesic, frequently in association with other forms of substance abuse including alcohol, opioids, and cocaine. Thus, overdosing represents a unique high-risk behavior associated with other forms of drug use disorder. Methods: We examined a series of 21 single nucleotide polymorphisms (SNPs in 9 genes related to impulsivity and/or stress responsivity that may modify response to stress. Study subjects were 229 white patients admitted to tertiary care liver centers for ALF that was determined to be due to acetaminophen toxicity after careful review of historical and biochemical data. Identification of relevant SNPs used Sanger sequencing, TaqMan, or custom microarray. Association tests were carried out to compare genotype frequencies between patients and healthy white controls. Results: The mean age was 37 years, and 75.6% were female, with similar numbers classified as intentional overdose or unintentional (without suicidal intent, occurring for a period of several days, usually due to pain. There was concomitant alcohol abuse in 30%, opioid use in 33.6%, and use of other drugs of abuse in 30.6%. The genotype frequencies of 2 SNPs were found to be significantly different between the cases and controls, specifically SNP rs2282018 in the arginine vasopressin gene (AVP, odds ratio 1.64 and SNP rs11174811 in the AVP receptor 1A gene (AVPR1A, odds ratio 1.89, both of which have been previously linked to a drug use disorder diagnosis. Conclusions: Patients who develop acetaminophen-related ALF have increased frequency of gene variants that may cause altered stress responsivity, which has been shown to be associated with other unrelated substance use disorders. Keywords: Impulsivity, Stress Responsivity, Pituitary-Adrenal Axis, Overdose

  7. Reversal of acetaminophen-generated oxidative stress and concomitant hepatotoxicity by a phytopharmaceutical product

    Directory of Open Access Journals (Sweden)

    Afolabi C. Akinmoladun

    2017-03-01

    Full Text Available The increasing popularity of herbal medicine and the well-established health benefits of phytochemicals have spurred the multiplicity of nutraceutical and phytopharmaceutical products. In this study, Trévo™, a nutraceutical and phytopharmaceutical product, was evaluated for beneficial effects in acetaminophen-induced hepatic toxicity in Wistar rats. Animals received Trévo™ (1.5 mL/kg, 3.0 mL/kg or 4.5 mL/kg orally for 14 days. Hepatotoxicity was induced by the oral administration of acetaminophen (2 g/kg, 24 h prior to sacrifice. Biochemical liver function tests, oxidative stress indicators and histoarchitectural changes were evaluated. Acetaminophen administration occasioned significant increase (P < 0.05 in serum bilirubin level and activities of the aminotransferases, alkaline phosphatase, γ-glutamyltransferase and lactate dehydrogenase accompanied by a significant decrease (P < 0.05 in albumin level as well as histopathological alterations in liver sections. Promotion of hepatic oxidative stress by acetaminophen was revealed by significant (P < 0.05 increase in lipid peroxidation, depletion of reduced glutathione, and decrease in superoxide dismutase and catalase activities. Administration of Trévo™ remarkably ameliorated acetaminophen-induced histopathological alterations and changes in serum and tissue biochemical markers. The protective effect of Trévo™ (4.5 mL/kg was at par with that of Silymarin (25 mg/kg. The present study indicates that Trévo™ has notable salubrious effects.

  8. Non-Steroid Anti-Inflammatory Drugs Are Better than Acetaminophen on Fever Control at Acute Stage of Fracture.

    Directory of Open Access Journals (Sweden)

    Kuang-Ting Yeh

    Full Text Available In addition to adequate surgical fixation and an aggressive rehabilitation program, pain relief is one of the most critical factors in the acute stage of fracture treatment. The most common analgesics are nonsteroid anti-inflammatory drugs and Acetaminophen, both of which relieve pain and reduce body temperature. In clinical experiences, they exhibit effective pain control; however, their influence on body temperature remains controversial. This study is aimed at determining the effects of analgesics at the acute stage of traumatic fracture by performing a clinical retrospective study of patients with fractures and a fracture animal model. The retrospective study revealed that, in the acetaminophen group, the mean value of postmedication body temperature (BT was significantly higher than that of the premedication BT. The change in BT was highly related with the medication rather than other risk factors. Forty eight 12-week-old male Wistar rats were divided into 6 groups: a control group, fracture group, fracture-Acetaminophen group, Acetaminophen group, fracture-Arcoxia group, and Arcoxia group. Fracture rats were prepared by breaking their unilateral tibia and fibula. Their inflammation conditions were evaluated by measuring their serum cytokine level and their physiological status was evaluated by estimating their central temperature, heart rate, and mean blood pressure. The hepatic adverse effects were assessed by measuring the serum levels of aspartate aminotransferase (sGOT and alanine aminotransferase (sGPT. The central temperature in the fracture-Acetaminophen group exceeded that in the groups fed normal saline water or Arcoxia. Accumulated hepatic injury was presented as steadily ascending curves of sGOT and sGPT. Inflammation-related cytokine levels were not higher in the Acetaminophen fracture group and were significantly lower in the fracture-Arcoxia group. Fever appeared to be aggravated by acetaminophen and more related to the

  9. Increased plasma levels of microparticles expressing CD39 and CD133 in acute liver injury

    DEFF Research Database (Denmark)

    Schmelzle, Moritz; Splith, Katrin; Wiuff Andersen, Lars

    2013-01-01

    BACKGROUND: We have previously demonstrated that CD133 and CD39 are expressed by hematopoietic stem cells (HSC), which are mobilized after liver injury and target sites of injury, limit vascular inflammation, and boost hepatic regeneration. Plasma microparticles (MP) expressing CD39 can block...... sacrificed and plasma MP were isolated by ultracentrifugation. HSC and CD133 MP levels were analyzed by fluorescence-activated cell sorting. Patients were enrolled with acute (n=5) and acute on chronic (n=5) liver injury with matched controls (n=7). Blood was collected at admission and plasma CD133 and CD39...... MP subsets were analyzed by fluorescence-activated cell sorting. RESULTS: HSC and CD133 MP levels were significantly increased only in the plasma of wild-type mice with acetaminophen hepatotoxicity (P

  10. Effectiveness of FDA's new over-the-counter acetaminophen warning label in improving consumer risk perception of liver damage.

    Science.gov (United States)

    Goyal, R K; Rajan, S S; Essien, E J; Sansgiry, S S

    2012-12-01

    The Food and Drug Administration (FDA) issued new organ-specific warning label requirements for over-the-counter (OTC) analgesic products in order to make consumers aware of the risk of liver damage when using acetaminophen. However, awareness of a health risk alone cannot ensure consumers' engagement in safe and preventive behaviour. In this study, we attempted to: (i) measure consumer risk perception of liver damage due to the OTC acetaminophen products and (ii) analyse the effectiveness of the new organ-specific warning label in improving consumer risk perception of liver damage and intention to perform protective behaviours while using OTC acetaminophen products. This within-subject experimental study used a convenience sample of English-speaking adults visiting OTC segments of selected pharmacy stores in Houston. Participants were randomly exposed to the old and new warning labels and their respective risk perception (measured on a visual analogue scale, 0%, no risk, to 100%, extreme risk) and behavioural intention (measured on a 7-point Likert scale) were recorded using a validated, self-administered questionnaire. Descriptive statistics and non-parametric Wilcoxon signed-rank tests were performed using sas statistical software (v 9.2) at a priori significance level of 0.05. Majority of participants (74.4%) were not aware of the new warnings; however, majority (67.8%) had prior knowledge of the risk. The mean risk perception score for the new warning label was found to be significantly higher (72.2% vs. 65.9%, P risk perception of potential liver damage and may encourage protective behaviour. However, future studies are essential to assess the impact of the new label on actual changes in consumer behaviour and subsequent reduction in acetaminophen-related morbidity and mortality. © 2012 Blackwell Publishing Ltd.

  11. Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease.

    Science.gov (United States)

    Willebrords, Joost; Maes, Michaël; Pereira, Isabel Veloso Alves; da Silva, Tereza Cristina; Govoni, Veronica Mollica; Lopes, Valéria Veras; Crespo Yanguas, Sara; Shestopalov, Valery I; Nogueira, Marina Sayuri; de Castro, Inar Alves; Farhood, Anwar; Mannaerts, Inge; van Grunsven, Leo; Akakpo, Jephte; Lebofsky, Margitta; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2018-03-01

    Pannexins are transmembrane proteins that form communication channels connecting the cytosol of an individual cell with its extracellular environment. A number of studies have documented the presence of pannexin1 in liver as well as its involvement in inflammatory responses. In this study, it was investigated whether pannexin1 plays a role in acute liver failure and non-alcoholic steatohepatitis, being prototypical acute and chronic liver pathologies, respectively, both featured by liver damage, oxidative stress and inflammation. To this end, wild-type and pannexin1 -/- mice were overdosed with acetaminophen for 1, 6, 24 or 48h or were fed a choline-deficient high-fat diet for 8weeks. Evaluation of the effects of genetic pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, lipid accumulation, protein adduct formation, oxidative stress and inflammation. In parallel, in order to elucidate molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. The results of this study show that pannexin1 -/- diseased mice present less liver damage and oxidative stress, while inflammation was only decreased in pannexin1 -/- mice in which non-alcoholic steatohepatitis was induced. A multitude of genes related to inflammation, oxidative stress and xenobiotic metabolism were differentially modulated in both liver disease models in wild-type and in pannexin1 -/- mice. Overall, the results of this study suggest that pannexin1 may play a role in the pathogenesis of liver disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Targeted Metabolomics of Serum Acylcarnitines Evaluates Hepatoprotective Effect of Wuzhi Tablet (Schisandra sphenanthera Extract against Acute Acetaminophen Toxicity

    Directory of Open Access Journals (Sweden)

    Huichang Bi

    2013-01-01

    Full Text Available Possible prevention and therapeutic intervention strategies to counteract acetaminophen (APAP hepatotoxicity would be of great value. Wuzhi tablet (WZ, extract of Schisandrae sphenanthera possesses hepatoprotective effects against hepatitis and the hepatic dysfunction induced by various chemical hepatotoxins. In this study, the protective effect of WZ on APAP-induced hepatic injury was evaluated and targeted metabolomics by LC-MS-based metabolomics was used to examine whether WZ influences hepatic metabolism. The results demonstrated significant hepatoprotection of WZ against APAP-induced liver injury; pretreatment with WZ prior to APAP administration blocks the increase in serum palmitoylcarnitine and oleoylcarnitine and thus restores the APAP-impaired fatty acid β-oxidation to normal levels. These studies further revealed a significant and prolonged upregulation of the PPARα target genes Cpt1 and Acot1 by WZ mainly contributing to the maintenance of normal fatty acid metabolism and thus potentially contributing to the hepatic protection of WZ against APAP-induced hepatic toxicity. Taken together, the current study provides new insights into understanding the hepatoprotective effect of WZ against APAP-induced liver toxicity.

  13. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes

    Directory of Open Access Journals (Sweden)

    Sudip Banerjee

    Full Text Available The hepatotoxicity of acetaminophen (APAP occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1 inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP, a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo. In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein, reactive oxygen formation (superoxide, loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction. Keywords: Acetaminophen, Neuronal nitric oxide, Oxidative stress, Mitochondria

  14. The Ameliorative Effects of L-2-Oxothiazolidine-4-Carboxylate on Acetaminophen-Induced Hepatotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Jun Ho Shin

    2013-03-01

    Full Text Available The aim of the study was to investigate the ameliorative effects and the mechanism of action of L-2-oxothiazolidine-4-carboxylate (OTC on acetaminophen (APAP-induced hepatotoxicity in mice. Mice were randomly divided into six groups: normal control group, APAP only treated group, APAP + 25 mg/kg OTC, APAP + 50 mg/kg OTC, APAP + 100 mg/kg OTC, and APAP + 100 mg/kg N-acetylcysteine (NAC as a reference control group. OTC treatment significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels in a dose dependent manner. OTC treatment was markedly increased glutathione (GSH production and glutathione peroxidase (GSH-px activity in a dose dependent manner. The contents of malondialdehyde and 4-hydroxynonenal in liver tissues were significantly decreased by administration of OTC and the inhibitory effect of OTC was similar to that of NAC. Moreover, OTC treatment on APAP-induced hepatotoxicity significantly reduced the formation of nitrotyrosin and terminal deoxynucleotidyl transferase dUTP nick end labeling positive areas of liver tissues in a dose dependent manner. Furthermore, the activity of caspase-3 in liver tissues was reduced by administration of OTC in a dose dependent manner. The ameliorative effects of OTC on APAP-induced liver damage in mice was similar to that of NAC. These results suggest that OTC has ameliorative effects on APAP-induced hepatotoxicity in mice through anti-oxidative stress and anti-apoptotic processes.

  15. Circulating histones are major mediators of systemic inflammation and cellular injury in patients with acute liver failure.

    Science.gov (United States)

    Wen, Zongmei; Lei, Zhen; Yao, Lu; Jiang, Ping; Gu, Tao; Ren, Feng; Liu, Yan; Gou, Chunyan; Li, Xiuhui; Wen, Tao

    2016-09-29

    Acute liver failure (ALF) is a life-threatening systemic disorder. Here we investigated the impact of circulating histones, recently identified inflammatory mediators, on systemic inflammation and liver injury in murine models and patients with ALF. We analyzed histone levels in blood samples from 62 patients with ALF, 60 patients with chronic liver disease, and 30 healthy volunteers. We incubated patients' sera with human L02 hepatocytes and monocytic U937 cells to assess cellular damage and cytokine production. d-galactosamine plus lipopolysaccharide (GalN/LPS), concanavalin A (ConA), and acetaminophen (APAP) were given to C57BL/6N mice to induce liver injury, respectively, and the pathogenic role of circulating histones was studied. Besides, the protective effect of nonanticoagulant heparin, which can bind histones, was evaluated with in vivo and ex vivo investigations. We observed that circulating histones were significantly increased in patients with ALF, and correlated with disease severity and mortality. Significant systemic inflammation was also pronounced in ALF patients, which were associated with histone levels. ALF patients' sera induced significant L02 cell death and stimulated U937 cells to produce cytokines, which were abrogated by nonanticoagulant heparin. Furthermore, circulating histones were all released remarkably in GalN/LPS, ConA, and APAP-treated mice, and associated with high levels of inflammatory cytokines. Heparin reduced systemic inflammation and liver damage in mice, suggesting that it could interfere with histone-associated liver injury. Collectively, these findings demonstrate that circulating histones are critical mediators of systemic inflammation and cellular damage in ALF, which may be potentially translatable for clinical use.

  16. Hepatoprotective potential of three sargassum species from Karachi coast against carbon tetrachloride and acetaminophen intoxication

    Directory of Open Access Journals (Sweden)

    Khan Hira

    2016-01-01

    Full Text Available Objective: To assess the hepatoprotective effect of ethanol extracts of Sargassum variegatum (S. variegatum, Sargassum tenerrimum (S. tenerrimum and Sargassum binderi occurring at Karachi coast against carbon tetrachloride (CCl4 and acetaminophen intoxication in rats. Methods: Sargassum species were collected at low tide from Buleji beach at Karachi coast. Effect of ethanol extracts of Sargassum spp., on lipid parameter, serum glucose and kidney function was examined. Liver damage in rats was induced by CCl4 or acetaminophen. Rats were administered with ethanol extracts of S. tenerrimum, S. variegatum and Sargassum binderi at 200 mg/kg body weight daily for 14 days separately. Hepatotoxicity was determined in terms of cardiac and liver enzymes and other biochemical parameters. Results: S. variegatum showed highest activity by reducing the elevated level of hepatic enzymes, bilirubin, serum glucose, triglyceride with restoration of cholesterol. Urea and creatinine concentrations were also significantly (P < 0.05 reduced as compared to acetaminophen intoxicated rats. S. tenerrimum and S. variegatum showed moderate activity against CCl4 hepatic toxicity. Conclusions: The protective role of S. variegatum against acetaminophen liver damage and its positive impact on disturbed lipid, glucose metabolism, kidney dysfunction and S. tenerrimum against CCl4 liver toxicity suggest that Sargassum species offer a non-chemical means for the treatment of toxicity mediated liver damage.

  17. Stevia Prevents Acute and Chronic Liver Injury Induced by Carbon Tetrachloride by Blocking Oxidative Stress through Nrf2 Upregulation

    Science.gov (United States)

    Ramos-Tovar, Erika; Hernández-Aquino, Erika; Casas-Grajales, Sael; Buendia-Montaño, Laura D.; Tsutsumi, Víctor

    2018-01-01

    The effect of stevia on liver cirrhosis has not been previously investigated. In the present study, the antioxidant and anti-inflammatory properties of stevia leaves were studied in male Wistar rats with carbon tetrachloride- (CCl4-) induced acute and chronic liver damage. Acute and chronic liver damage induced oxidative stress, necrosis, and cholestasis, which were significantly ameliorated by stevia. Chronic CCl4 treatment resulted in liver cirrhosis, as evidenced by nodules of hepatocytes surrounded by thick bands of collagen and distortion of the hepatic architecture, and stevia significantly prevented these alterations. Subsequently, the underlying mechanism of action of the plant was analyzed. Our study for the first time shows that stevia upregulated Nrf2, thereby counteracting oxidative stress, and prevented necrosis and cholestasis through modulation of the main proinflammatory cytokines via NF-κB inhibition. These multitarget mechanisms led to the prevention of experimental cirrhosis. Given the reasonable safety profile of stevia, our results indicated that it may be useful for the clinical treatment of acute and chronic liver diseases. PMID:29849889

  18. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuchao; McGill, Mitchell R.; Dorko, Kenneth [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2014-09-15

    Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic. - Highlights: • APAP reproducibly causes cell death in freshly isolated primary human hepatocytes. • APAP induces adduct formation, JNK activation and mitochondrial dysfunction in PHH. • Mitochondrial adducts and JNK translocation are delayed in PHH compared to

  19. [The catalase inhibitor aminotriazole alleviates acute alcoholic liver injury].

    Science.gov (United States)

    Ai, Qing; Ge, Pu; Dai, Jie; Liang, Tian-Cai; Yang, Qing; Lin, Ling; Zhang, Li

    2015-02-25

    In this study, the effects of catalase (CAT) inhibitor aminotriazole (ATZ) on alcohol-induced acute liver injury were investigated to explore the potential roles of CAT in alcoholic liver injury. Acute liver injury was induced by intraperitoneal injection of alcohol in Sprague Dawley (SD) rats, and various doses of ATZ (100-400 mg/kg) or vehicle were administered intraperitoneally at 30 min before alcohol exposure. After 24 h of alcohol exposure, the levels of aspartate transaminase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH) in plasma were determined. The degree of hepatic histopathological abnormality was observed by HE staining. The activity of hepatic CAT, hydrogen peroxide (H₂O₂) level and malondialdehyde (MDA) content in liver tissue were measured by corresponding kits. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in plasma were determined by ELISA method. The results showed that treatment with ATZ dose-dependently suppressed the elevation of ALT, AST and LDH levels induced by alcohol exposure, and that ATZ alleviated alcohol-induced histopathological alterations. Furthermore, ATZ inhibited the activity of CAT, reduced hepatic levels of H₂O₂and MDA in alcohol exposed rats. ATZ also decreased the levels of plasma TNF-α and IL-6 in rats with alcohol exposure. These results indicated that ATZ attenuated alcohol-induced acute liver injury in rats, suggesting that CAT might play important pathological roles in the pathogenesis of alcoholic liver injury.

  20. Manipulation of nitric oxide in an animal model of acute liver injury ...

    African Journals Online (AJOL)

    We evaluated the impact of altering nitric oxide release on acute liver injury, the associated gut injury and bacterial translocation, at different time intervals. Methods: An acute rat liver injury model induced by D-galactosamine was used. Sprague Dawley rats were divided into four main groups: normal control, acute liver ...

  1. Loss of 5‐lipoxygenase activity protects mice against paracetamol‐induced liver toxicity

    Science.gov (United States)

    Pu, Shiyun; Ren, Lin; Liu, Qinhui; Kuang, Jiangying; Shen, Jing; Cheng, Shihai; Zhang, Yuwei; Jiang, Wei; Zhang, Zhiyong; Jiang, Changtao

    2015-01-01

    Background and Purpose Paracetamol (acetaminophen) is the most widely used over‐the‐counter analgesic and overdosing with paracetamol is the leading cause of hospital admission for acute liver failure. 5‐Lipoxygenase (5‐LO) catalyses arachidonic acid to form LTs, which lead to inflammation and oxidative stress. In this study, we examined whether deletion or pharmacological inhibition of 5‐LO could protect mice against paracetamol‐induced hepatic toxicity. Experimental Approach Both genetic deletion and pharmacological inhibition of 5‐LO in C57BL/6J mice were used to study the role of this enzyme in paracetamol induced liver toxicity. Serum and tissue biochemistry, H&E staining, and real‐time PCR were used to assess liver toxicity. Key Results Deletion or pharmacological inhibition of 5‐LO in mice markedly ameliorated paracetamol‐induced hepatic injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and hepatic centrilobular necrosis. The hepatoprotective effect of 5‐LO inhibition was associated with induction of the antitoxic phase II conjugating enzyme, sulfotransferase2a1, suppression of the pro‐toxic phase I CYP3A11 and reduction of the hepatic transporter MRP3. In 5‐LO−/− mice, levels of GSH were increased, and oxidative stress decreased. In addition, PPAR α, a nuclear receptor that confers resistance to paracetamol toxicity, was activated in 5‐LO−/− mice. Conclusions and Implications The activity of 5‐LO may play a critical role in paracetamol‐induced hepatic toxicity by regulating paracetamol metabolism and oxidative stress. PMID:26398229

  2. Kaempferol protects against propacetamol-induced acute liver injury through CYP2E1 inactivation, UGT1A1 activation, and attenuation of oxidative stress, inflammation and apoptosis in mice.

    Science.gov (United States)

    Tsai, Ming-Shiun; Wang, Ying-Han; Lai, Yan-Yun; Tsou, Hsi-Kai; Liou, Gan-Guang; Ko, Jiunn-Liang; Wang, Sue-Hong

    2018-06-15

    Acetaminophen (APAP) overdose can induce acute liver injury (ALI) with significant morbidity and mortality. Propacetamol is an APAP prodrug, which is clinically bioequivalent to APAP. Kaempferol, a dietary flavonoid, has antioxidant, anti-inflammatory, and anti-apoptotic effects. In this study, we investigated the protective effect of kaempferol on propacetamol-induced ALI and its underlying mechanism in mice. Kaempferol pretreatment (125 mg/kg) before propacetamol injection significantly decreased propacetamol-induced serum ALT and AST activities, and DNA fragmentation. Kaempferol administration also reduced propacetamol-induced oxidative stress by inhibiting thiobarbituric acid reactive substances (TBARS) and 3-nitrotyrosine (3-NT) formation partly through downregulation of cytochrome P450 2E1 (CYP2E1) expression, upregulation of UDP glucuronosyltransferase family 1 member A1 (UGT1A1) expression, restoration of the activities of antioxidant enzymes including SOD, GPx and catalase toward normal, recovery of propacetamol-suppressed Nrf2 and GCLC expressions, and maintenance of normal glutathione level. Furthermore, kaempferol markedly attenuated APAP-induced serum TNF-α and IL-6 productions, downregulated APAP-induced phosphorylations of JNK and ERK, and decreased early hepatic apoptosis via decreasing Bax/Bcl-2 ratio and caspase 3 activation. Furthermore, administration of N-acetylcysteine (NAC) and kaempferol significantly rescued more mice than a low dose of NAC only did when a lethal dose of propacetamol injected and therapized at a delayed time point. These data suggested that kaempferol protects the liver against propacetamol-induced injury through anti-oxidative, anti-inflammatory and anti-apoptotic activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury

    Directory of Open Access Journals (Sweden)

    Henning W Zimmermann

    2012-10-01

    Full Text Available Different etiologies such as drug toxicity, acute viral hepatitis B or acetaminophen poisoning can cause acute liver injury (ALI or even acute liver failure (ALF. Excessive cell death of hepatocytes in the liver is known to result in a strong hepatic inflammation. Experimental murine models of liver injury highlighted the importance of hepatic macrophages, so-called Kupffer cells, for initiating and driving this inflammatory response by releasing proinflammatory cytokines and chemokines including tumor necrosis factor (TNF, interleukin-6 (IL-6, IL-1-beta or monocyte chemoattractant protein 1 (MCP-1, CCL2 as well as activating other non-parenchymal liver cells, e.g. endothelial or hepatic stellate cells (HSC. Many of these proinflammatory mediators can trigger hepatocytic cell death pathways, e.g. via caspase activation, but also activate protective signaling pathways, e.g. via nuclear factor kappa B (NF-kB. Recent studies in mice demonstrated that these macrophage actions largely depend on the recruitment of monocytes into the liver, namely of the inflammatory Ly6c+ (Gr1+ monocyte subset as precursors of tissue macrophages. The chemokine receptor CCR2 and its ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury. In contrast, the chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1 are important negative regulators of monocyte infiltration by controlling their survival and differentiation into functionally diverse macrophage subsets upon injury. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation and interactions with other hepatic cell types in the injured liver may therefore represent interesting novel targets for future therapeutic approaches in ALF.

  4. Involvement of immune-related factors in diclofenac-induced acute liver injury in mice

    International Nuclear Information System (INIS)

    Yano, Azusa; Higuchi, Satonori; Tsuneyama, Koichi; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is difficult to predict DILI in humans due to the lack of experimental animal models. Diclofenac, a non-steroidal anti-inflammatory drug rarely causes severe liver injury in human, but there is some evidence for immunoallergic idiosyncratic reactions. In this study, the mechanism of diclofenac-induced liver injury in mice was investigated. First, we established the dosing condition for liver injury in normal mice. Plasma ALT and AST levels were significantly increased in diclofenac-administered (80 mg/kg, i.p.) mice in a dose- and time-dependent manner. Among several interleukins (ILs) and chemokines, mRNA expression of helper T (Th) 17 cell-mediated factors, such as retinoid orphan receptor (ROR)-γt, and signal transducers and activators of transcription factor (STAT) 3 in the liver, and the plasma IL-17 level were significantly increased. Neutralization of IL-17 tended to suppress the hepatotoxicity of diclofenac, suggesting that IL-17 was partly involved. Gadolinium chloride (GdCl 3 ) administration demonstrated that Kupffer cells are not likely to be involved in diclofenac hepatotoxicity. Hepatic expressions of IL-1β mRNA and plasma IL-1β were significantly increased soon after the diclofenac administration. Then, the results of an in vivo neutralization study of IL-1β suggested that IL-1β was involved early in the time of pathogenesis of the diclofenac-induced liver injury. In conclusion, we firstly developed a diclofenac-induced acute liver injury model in normal mice, and the involvement of IL-17 and IL-1β was clarified.

  5. Imatinib-induced fulminant liver failure in chronic myeloid leukemia: role of liver transplant and second-generation tyrosine kinase inhibitors: a case report.

    Science.gov (United States)

    Nacif, Lucas Souto; Waisberg, Daniel R; Pinheiro, Rafael Soares; Lima, Fabiana Roberto; Rocha-Santos, Vinicius; Andraus, Wellington; D'Albuquerque, Luiz Carneiro

    2018-03-10

    There is a worldwide problem of acute liver failure and mortality associated with remaining on the waiting for a liver transplant. In this study, we highlight results published in recent years by leading transplant centers in evaluating imatinib-induced acute liver failure in chronic myeloid leukemia and follow-up in liver transplantation. A 36-year-old brown-skinned woman (mixed Brazilian race) diagnosed 1 year earlier with chronic myeloid leukemia was started after delivery of a baby and continued for 6 months with imatinib mesylate (selective inhibitor of Bcr-Abl tyrosine kinase), which induced liver failure. We conducted a literature review using the PubMed database for articles published through September 2017, and we demonstrate a role of liver transplant in this situation for imatinib-induced liver failure. We report previously published results and a successful liver transplant after acute liver failure due to imatinib-induced in chronic myeloid leukemia treatment. We report a case of a successful liver transplant after acute liver failure resulting from imatinib-induced chronic myeloid leukemia treatment. The literature reveals the importance of prompt acute liver failure diagnosis and treatment with liver transplant in selected cases.

  6. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis.

    Science.gov (United States)

    Zhou, Yan-Dan; Hou, Jin-Gang; Liu, Wei; Ren, Shen; Wang, Ying-Ping; Zhang, Rui; Chen, Chen; Wang, Zi; Li, Wei

    2018-06-01

    Although ginsenoside Rg3 was isolated as a major component of Korea red ginseng and confirmed to exert potential hepatoprotective effect on acetaminophen (APAP)-induced liver injury via induction of glutathione S-transferase (GST) in vitro, thein vivo hepatoprotective effect of Rg3 and the underlying molecular mechanism of action remain unclear. The current study was aimed to explore whether 20(R)-Ginsenoside Rg3 (20(R)-Rg3) could alleviate acetaminophen-induced liver injury in mice and to determine the involvement of PI3K/AKT signaling pathway. Our findings demonstrated that a single injection of APAP (250 mg/kg) increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); such increases were attenuated by pretreatment of mice with 20(R)-Rg3 for seven days. The depletion of glutathione (GSH), generation of malondialdehyde (MDA) and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP exposure were also inhibited by 20(R)-Rg3 pretreatment. Moreover, 20(R)-Rg3 pretreatment significantly alleviated APAP-induced apoptosis, necrosis, and inflammatory infiltration in liver tissues. Importantly, 20(R)-Rg3 effectively attenuated APAP-induced liver injury in part via activating PI3K/AKT signaling pathway. In summary, 20(R)-Rg3 exerted liver protection against APAP-caused hepatotoxicity evidenced by inhibition of oxidative stress and inflammatory response, alleviation of hepatocellular necrosis and apoptosis via activation of PI3K/AKT signaling pathway, showing potential as a novel therapeutic agent to prevent liver damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Acute fish liver intoxication induced blisters formation and generalized skin peeling.

    Science.gov (United States)

    Chang, Chih-Hao; Lu, Chun-Wei; Chung, Wen-Hung; Ho, Hsin-Chun

    2018-02-01

    Acute fish liver intoxication, including hypervitaminosis A and hypervitaminosis D, may result from the ingestion of certain fish livers. The typical symptoms of hypervitaminosis A include nausea, headache, blurred vision, and cutaneous manifestations, such as flushing, vesicles formation, and desquamation. Hypervitaminosis D may result in hypercalcemia. We report a case of acute fish liver intoxication with systemic and cutaneous manifestations. A 63-year-old male presented to the clinic with generalized desquamation and multiple clear-fluid filled flaccid vesicles after eating approximately two fist-sized portions (about 300-400 g) of cooked seerfish (Scomberomorus spp.) liver. Laboratory examination showed a high serum level of vitamin A and D, and hypercalcemia. Fish liver consumption from particular fish may result in acute hypervitaminosis A and D. In patients with skin detachment or blister formation, headache, drowsiness, and other symptoms and signs consistent with hypervitaminosis A and/or hypercalcemia, a history of fish intake should be sought, and a serum level of vitamin A and D should be measured.

  8. Paracetamol (acetaminophen) attenuates in vitro mast cell and peripheral blood mononucleocyte cell histamine release induced by N-acetylcysteine.

    Science.gov (United States)

    Coulson, James; Thompson, John Paul

    2010-02-01

    The treatment of acute paracetamol (acetaminophen) poisoning with N-acetylcysteine (NAC) is frequently complicated by an anaphylactoid reaction to the antidote. The mechanism that underlies this reaction is unclear. We used the human mast cell line 1 (HMC-1) and human peripheral blood mononucleocytes (PBMCs) to investigate the effects of NAC and paracetamol on histamine secretion in vitro. HMC-1 and human PBMCs were incubated in the presence of increasing concentrations of NAC +/- paracetamol. Cell viability was determined by the Trypan Blue Assay, and histamine secretion was measured by ELISA. NAC was toxic to HMC-1 cells at 100 mg/mL and to PBMCs at 67 mg/mL. NAC increased HMC-1 and PBMC histamine secretion at concentrations of NAC from 20 to 50 mg/mL and 2.5 to 100 mg/mL, respectively. NAC-induced histamine secretion by both cell types was reduced by co-incubation with 2.5 mg/mL of paracetamol. Paracetamol (acetaminophen) is capable of modifying histamine secretion in vitro. This may explain the clinical observation of a lower incidence of adverse reactions to NAC in vivo when higher concentrations of paracetamol are present than when paracetamol concentrations are low. Paracetamol (acetaminophen) attenuates in vitro mast cell and PBMC cell histamine release induced by NAC.

  9. Human endometrial regenerative cells alleviate carbon tetrachloride-induced acute liver injury in mice

    Directory of Open Access Journals (Sweden)

    Shanzheng Lu

    2016-10-01

    Full Text Available Abstract Background The endometrial regenerative cell (ERC is a novel type of adult mesenchymal stem cell isolated from menstrual blood. Previous studies demonstrated that ERCs possess unique immunoregulatory properties in vitro and in vivo, as well as the ability to differentiate into functional hepatocyte-like cells. For these reasons, the present study was undertaken to explore the effects of ERCs on carbon tetrachloride (CCl4–induced acute liver injury (ALI. Methods An ALI model in C57BL/6 mice was induced by administration of intraperitoneal injection of CCl4. Transplanted ERCs were intravenously injected (1 million/mouse into mice 30 min after ALI induction. Liver function, pathological and immunohistological changes, cell tracking, immune cell populations and cytokine profiles were assessed 24 h after the CCl4 induction. Results ERC treatment effectively decreased the CCl4-induced elevation of serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activities and improved hepatic histopathological abnormalities compared to the untreated ALI group. Immunohistochemical staining showed that over-expression of lymphocyte antigen 6 complex, locus G (Ly6G was markedly inhibited, whereas expression of proliferating cell nuclear antigen (PCNA was increased after ERC treatment. Furthermore, the frequency of CD4+ and CD8+ T cell populations in the spleen was significantly down-regulated, while the percentage of splenic CD4+CD25+FOXP3+ regulatory T cells (Tregs was obviously up-regulated after ERC treatment. Moreover, splenic dendritic cells in ERC-treated mice exhibited dramatically decreased MHC-II expression. Cell tracking studies showed that transplanted PKH26-labeled ERCs engrafted to lung, spleen and injured liver. Compared to untreated controls, mice treated with ERCs had lower levels of IL-1β, IL-6, and TNF-α but higher level of IL-10 in both serum and liver. Conclusions Human ERCs protect the liver from acute injury

  10. Acute Liver Failure Due to Regorafenib May Be Caused by Impaired Liver Blood Flow: A Case Report.

    Science.gov (United States)

    Akamine, Takaki; Ando, Koji; Oki, Eiji; Saeki, Hiroshi; Nakashima, Yuichiro; Imamura, Y U; Ohgaki, Kippei; Maehara, Yoshihiko

    2015-07-01

    Regorafenib has been approved for treatment of patients with unresectable or recurrent gastrointestinal stromal tumors resistant to imatinib or sunitinib. However, regorafenib has severe side-effects, including acute liver failure. We describe the case of a patient with multiple liver metastases of a small intestinal stromal tumor who experienced acute liver failure while being treated with regorafenib. A 50-year-old patient with an unresectable small intestinal stromal tumor resistant to prior treatment with imatinib and sunitinib was started on regorafenib, but experienced acute liver failure 10 days later. Plasma exchange and steroid pulse treatment improved her liver function. During liver failure, abdominal ultrasonography showed to-and-fro flow in the portal vein. Lactate dehydrogenase concentration was markedly elevated to 1633 U/l. These findings indicate that liver failure in this patient was due to impaired liver blood flow. Regorafenib may impair liver blood flow, inducing acute liver failure. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Involvement of immune-related factors in diclofenac-induced acute liver injury in mice.

    Science.gov (United States)

    Yano, Azusa; Higuchi, Satonori; Tsuneyama, Koichi; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-03-11

    Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is difficult to predict DILI in humans due to the lack of experimental animal models. Diclofenac, a non-steroidal anti-inflammatory drug rarely causes severe liver injury in human, but there is some evidence for immunoallergic idiosyncratic reactions. In this study, the mechanism of diclofenac-induced liver injury in mice was investigated. First, we established the dosing condition for liver injury in normal mice. Plasma ALT and AST levels were significantly increased in diclofenac-administered (80 mg/kg, i.p.) mice in a dose- and time-dependent manner. Among several interleukins (ILs) and chemokines, mRNA expression of helper T (Th) 17 cell-mediated factors, such as retinoid orphan receptor (ROR)-γt, and signal transducers and activators of transcription factor (STAT) 3 in the liver, and the plasma IL-17 level were significantly increased. Neutralization of IL-17 tended to suppress the hepatotoxicity of diclofenac, suggesting that IL-17 was partly involved. Gadolinium chloride (GdCl₃) administration demonstrated that Kupffer cells are not likely to be involved in diclofenac hepatotoxicity. Hepatic expressions of IL-1β mRNA and plasma IL-1β were significantly increased soon after the diclofenac administration. Then, the results of an in vivo neutralization study of IL-1β suggested that IL-1β was involved early in the time of pathogenesis of the diclofenac-induced liver injury. In conclusion, we firstly developed a diclofenac-induced acute liver injury model in normal mice, and the involvement of IL-17 and IL-1β was clarified. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Eucalyptus globulus extract protects upon acetaminophen-induced kidney damages in male rat

    Science.gov (United States)

    Dhibi, Sabah; Mbarki, Sakhria; Elfeki, Abdelfettah; Hfaiedh, Najla

    2014-01-01

    Plants have historically been used in treating many diseases. Eucalyptus globules, a rich source of bioactive compounds, and have been shown to possess antioxidative properties. The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of Eucalyptus globulus extract upon acetaminophen-induced damages in kidney. Our study is realized in the Department of Biology, Faculty of Sciences of Sfax (Tunisia). 32 Wistar male rats; were divided into 4 batches: a control group (n=8), a group of rats treated with acetaminophen (goomg/kg) by intraperitoneal injection during 4 days (n=8), a group receiving Eucalyptus globulus extract (130 mg of dry leaves/kg/day) in drinking water during 42 days after 2 hours of acetaminophen administration (during 4 days) (n=8) and group received only Eucalyptus (n=8) during 42 days. After 6 weeks, animals from each group were rapidly sacrificed by decapitation. Blood serum was obtained by centrifugation. Under our experimental conditions, acetaminophen poisoning resulted in an oxidative stress evidenced by statistically significant losses in the activities of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPX) activities and an increase in lipids peroxidation level in renal tissue of acetaminophen-treated group compared with the control group. Acetaminophen also caused kidney damage as evident by statistically significant (p<0.05) increase in levels of creatinine and urea and decreased levels of uric acid and proteins in blood. Histological analysis demonstrated alteration of proximal tubules, atrophy of the glomerule and dilatation of urinary space. Previous administration of plant extract is found to alleviate this acetaminophen-induced damage. PMID:24856382

  13. Cytokine and acute phase protein gene expression in liver biopsies from dairy cows with a lipopolysaccharide - induced mastitis

    DEFF Research Database (Denmark)

    Vels, J; Røntved, Christine M.; Bjerring, Martin

    2009-01-01

    A minimally invasive liver biopsy technique was tested for its applicability to study the hepatic acute phase response (APR) in dairy cows with Escherichia coli lipopolysaccharide (LPS)-induced mastitis. The hepatic mRNA expression profiles of the inflammatory cytokines, tumor necrosis factor (TNF......, a minimally invasive liver biopsy technique can be used for studying the hepatic APR in diseased cattle. Lipopolysaccharide-induced mastitis resulted in a time-dependent production of inflammatory cytokines and SAA and Hp in the liver of dairy cows.......- ), IL-1β, IL-6, and IL-10, and the acute phase proteins serum amyloid A isoform 3 (SAA3), haptoglobin (Hp), and 1-acid glycoprotein (AGP) were determined by real-time reverse transcription-PCR. Fourteen primiparous cows in mid lactation were challenged with 200 µg of LPS (n = 8) or NaCl solution (n = 6...

  14. Exacerbation of acetaminophen hepatotoxicity by the anthelmentic drug fenbendazole.

    Science.gov (United States)

    Gardner, Carol R; Mishin, Vladimir; Laskin, Jeffrey D; Laskin, Debra L

    2012-02-01

    Fenbendazole is a broad-spectrum anthelmintic drug widely used to prevent or treat nematode infections in laboratory rodent colonies. Potential interactions between fenbendazole and hepatotoxicants such as acetaminophen are unknown, and this was investigated in this study. Mice were fed a control diet or a diet containing fenbendazole (8-12 mg/kg/day) for 7 days prior to treatment with acetaminophen (300 mg/kg) or phosphate buffered saline. In mice fed a control diet, acetaminophen administration resulted in centrilobular hepatic necrosis and increases in serum transaminases, which were evident within 12 h. Acetaminophen-induced hepatotoxicity was markedly increased in mice fed the fenbendazole-containing diet, as measured histologically and by significant increases in serum transaminase levels. Moreover, in mice fed the fenbendazole-containing diet, but not the control diet, 63% mortality was observed within 24 h of acetaminophen administration. Fenbendazole by itself had no effect on liver histology or serum transaminases. To determine if exaggerated hepatotoxicity was due to alterations in acetaminophen metabolism, we analyzed sera for the presence of free acetaminophen and acetaminophen-glucuronide. We found that there were no differences in acetaminophen turnover. We also measured cytochrome P450 (cyp) 2e1, cyp3a, and cyp1a2 activity. Whereas fenbendazole had no effect on the activity of cyp2e1 or cyp3a, cyp1a2 was suppressed. A prolonged suppression of hepatic glutathione (GSH) was also observed in acetaminophen-treated mice fed the fenbendazole-containing diet when compared with the control diet. These data demonstrate that fenbendazole exacerbates the hepatotoxicity of acetaminophen, an effect that is related to persistent GSH depletion. These findings are novel and suggest a potential drug-drug interaction that should be considered in experimental protocols evaluating mechanisms of hepatotoxicity in rodent colonies treated with fenbendazole.

  15. Hepatoprotective effect of Scoparia dulcis on carbon tetrachloride induced acute liver injury in mice.

    Science.gov (United States)

    Tsai, Jen-Chieh; Peng, Wen-Huang; Chiu, Tai-Hui; Huang, Shun-Chieh; Huang, Tai-Hung; Lai, Shang-Chih; Lai, Zhen-Rung; Lee, Chao-Ying

    2010-01-01

    This study aims to investigate the hepatoprotective activity and active constituents of the ethanol extract of Scoparia dulcis (SDE). The hepatoprotective effect of SDE (0.1, 0.5 and 1 g/kg) was evaluated on the carbon tetrachloride (CCl(4))-induced acute liver injury. The active constituents were detected by high performance liquid chromatography (HPLC). Mice pretreated orally with SDE (0.5 and 1.0 g/kg) and silymarin (200 mg/kg) for five consecutive days before the administering of a single dose of 0.2% CCl(4) (10 ml/kg of bw, ip) showed a significant inhibition of the increase of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Histological analyses also showed that SDE (0.5 and 1.0 g/kg) and silymarin reduced the extent of liver lesions induced by CCl(4), including vacuole formation, neutrophil infiltration and necrosis. Moreover, SDE decreased the malondialdehyde (MDA) level and elevated the content of reduced glutathione (GSH) in the liver as compared to those in the CCl(4) group. Furthermore, SDE (0.5 and 1.0 g/kg) enhanced the activities of anti-oxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRd) and glutathione-S-transferase (GST). The quantities of active constituents in SDE were about 3.1 mg luteolin/g extract and 1.1 mg apigenin/g extract. The hepatoprotective mechanisms of SDE were likely associated to the decrease in MDA level and increase in GSH level by increasing the activities of antioxidant enzymes such as SOD, GPx, GRd and GST. These results demonstrated that SDE could alleviate CCl(4)-induced acute liver injury in mice.

  16. Nephroprotective and anti-inflammatory effects of aqueous extract of Melissa officinalis L. on acetaminophen-induced and pleurisy-induced lesions in rats

    Directory of Open Access Journals (Sweden)

    Denise Pereira Müzell

    2013-06-01

    Full Text Available This study assessed the bioactive properties of an aqueous extract of M. officinalis for its anti-inflammatory activity and its protection against hepatic and renal lesions induced by acetaminophen (APAP. Animals pre-treated with the crude extract in pleurisy induced by carrageenan showed a reduction in the amounts of exudate, in the numbers of leukocytes and polymorphonuclear cells. Intragastric administration of the extract for seven days prior to the APAP-induced lesion showed no protective effect on the liver. The treatment with the extract induced an increase of serum aspartate aminotransferase, indicating a rise of toxicity. Contrarily, the same treatment reduced the APAP induced lesion in kidney, with respect to ν-glutamyltransferase. The results suggested that the extract was not hepatoprotective and could lead to an increase in the lesions induced by the APAP. On the other hand, the extract was nephroprotective against the lesions induced by the APAP and showed an anti-inflammatory effect on pleurisy carrageenan-induced.

  17. Study on bone marrow mesenchymal stem cells in repairing of radiation induced acute liver injury of rats

    International Nuclear Information System (INIS)

    Bao Yongxing; Lou Fan; Zhao Huarong; Zhu Huhu; Ma Yan; Wen Hao

    2010-01-01

    Objective: To investigate the role of mesenchymal stem cells in the repair of radiation induced liver injury. Methods: 12 female SD rats were irradiated with 20 Gy 6 MV X-rays on the right lobe of the liver, to establish the model of radiation induced liver injury. The rats were divided randomly into two groups as invention group and control group, and transplanted with 1 ml male mesenchymal suspension or 1 ml normal saline in 4 hours after radiotherapy. The morphological changes of liver were observed. The existence of sex determining gene Y(SRY) and the level of alpha-smooth muscle actin (a-SMA) were detected. Results: Some injury of right lobe liver in two groups were observed, and the injury degree of right lobe liver in intervention group were lower than that of control group. The amount of SRY positive cells in the right lobe liver of intervention group was higher than that in the left lobe liver (t = 3.77, P <0.05). The positive expression rate of a-SMA in right lobe liver of intervention group was lower than that of control group. Conclusions: Acute radiation induced liver injury could lead BMSCs' homing in order to decrease the degree of liver fibrosis. (authors)

  18. Acute Liver Failure from Tumor Necrosis Factor-α Antagonists: Report of Four Cases and Literature Review.

    Science.gov (United States)

    Kok, Beverley; Lester, Erica L W; Lee, William M; Hanje, A James; Stravitz, R Todd; Girgis, Safwat; Patel, Vaishali; Peck, Joshua R; Esber, Christopher; Karvellas, Constantine J

    2018-03-21

    Tumor necrosis factor-α antagonists (anti-TNF-α) have been associated with drug-induced liver injury. However, cases of anti-TNF-α-associated acute liver failure have only been rarely reported. To identify cases of anti-TNF-α-associated acute liver failure and evaluate patterns of liver injury and common characteristics to the cases. The United States Acute Liver Failure Study Group database was searched from 1998 to 2014. Four subjects were identified. A PubMed search for articles that reported anti-TNF-α-associated acute liver failure identified five additional cases. The majority of individuals affected were female (eight of nine cases). Age of individual ranged from 20 to 53 years. The most common anti-TNF-α agent associated with acute liver failure was infliximab (n = 8). The latency between initial drug exposure and acute liver failure ranged from 3 days to over a year. Of the nine cases, six required emergency LT. Liver biopsy was obtained in seven cases with a preponderance toward cholestatic-hepatitic features; none showed clear autoimmune features. Anti-TNF-α-associated acute liver failure displays somewhat different characteristics compared with anti-TNF-α-induced drug-induced liver injury. Infliximab was implicated in the majority of cases. Cholestatic-hepatitic features were frequently found on pre-transplant and explant histology.

  19. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose

    Directory of Open Access Journals (Sweden)

    Judge Bryan S

    2011-03-01

    Full Text Available Abstract Background Acetaminophen-cysteine adducts (APAP-CYS are a specific biomarker of acetaminophen exposure. APAP-CYS concentrations have been described in the setting of acute overdose, and a concentration >1.1 nmol/ml has been suggested as a marker of hepatic injury from acetaminophen overdose in patients with an ALT >1000 IU/L. However, the concentrations of APAP-CYS during therapeutic dosing, in cases of acetaminophen toxicity from repeated dosing and in cases of hepatic injury from non-acetaminophen hepatotoxins have not been well characterized. The objective of this study is to describe APAP-CYS concentrations in these clinical settings as well as to further characterize the concentrations observed following acetaminophen overdose. Methods Samples were collected during three clinical trials in which subjects received 4 g/day of acetaminophen and during an observational study of acetaminophen overdose patients. Trial 1 consisted of non-drinkers who received APAP for 10 days, Trial 2 consisted of moderate drinkers dosed for 10 days and Trial 3 included subjects who chronically abuse alcohol dosed for 5 days. Patients in the observational study were categorized by type of acetaminophen exposure (single or repeated. Serum APAP-CYS was measured using high pressure liquid chromatography with electrochemical detection. Results Trial 1 included 144 samples from 24 subjects; Trial 2 included 182 samples from 91 subjects and Trial 3 included 200 samples from 40 subjects. In addition, we collected samples from 19 subjects with acute acetaminophen ingestion, 7 subjects with repeated acetaminophen exposure and 4 subjects who ingested another hepatotoxin. The mean (SD peak APAP-CYS concentrations for the Trials were: Trial 1- 0.4 (0.20 nmol/ml, Trial 2- 0.1 (0.09 nmol/ml and Trial 3- 0.3 (0.12 nmol/ml. APAP-CYS concentrations varied substantially among the patients with acetaminophen toxicity (0.10 to 27.3 nmol/ml. No subject had detectable APAP

  20. Interventions for paracetamol (acetaminophen) overdoses. Protocol for a Cochrane Review

    DEFF Research Database (Denmark)

    Brok, J; Buckley, N; Gluud, C

    2001-01-01

    Poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation are interventions for paracetamol poisoning.......Poisoning with paracetamol (acetaminophen) is a common cause of hepatotoxicity in the Western World. Inhibition of absorption, removal from the vascular system, antidotes, and liver transplantation are interventions for paracetamol poisoning....

  1. Hepatic disposition of the acyl glucuronide 1-O-gemfibrozil-beta-D-glucuronide: effects of clofibric acid, acetaminophen, and acetaminophen glucuronide.

    Science.gov (United States)

    Sabordo, L; Sallustio, B C; Evans, A M; Nation, R L

    2000-10-01

    Glucuronidation of carboxylic acid compounds results in the formation of electrophilic acyl glucuronides. Because of their polarity, carrier-mediated hepatic transport systems play an important role in determining both intra- and extrahepatic exposure to these reactive conjugates. We have previously shown that the hepatic membrane transport of 1-O-gemfibrozil-beta-D-glucuronide (GG) is carrier-mediated and inhibited by the organic anion dibromosulfophthalein. In this study, we examined the influence of 200 microM acetaminophen, acetaminophen glucuronide, and clofibric acid on the disposition of GG (3 microM) in the recirculating isolated perfused rat liver preparation. GG was taken up by the liver, excreted into bile, and hydrolyzed within the liver to gemfibrozil, which appeared in perfusate but not in bile. Mean +/- S. D. hepatic clearance, apparent intrinsic clearance, hepatic extraction ratio, and biliary excretion half-life of GG were 10.4 +/- 1.4 ml/min, 94.1 +/- 17.9 ml/min, 0.346 +/- 0.046, and 30.9 +/- 4.9 min, respectively, and approximately 73% of GG was excreted into bile. At the termination of the experiment (t = 90 min), the ratio of GG concentrations in perfusate, liver, and bile was 1:35:3136. Acetaminophen and acetaminophen glucuronide had no effect on the hepatic disposition of GG, suggesting relatively low affinities of acetaminophen conjugates for hepatic transport systems or the involvement of multiple transport systems for glucuronide conjugates. In contrast, clofibric acid increased the hepatic clearance, extraction ratio, and apparent intrinsic clearance of GG (P clofibric acid glucuronide at the level of hepatic transport. However, the transporter protein(s) involved remains to be identified.

  2. Serum phosphate is an early predictor of outcome in severe acetaminophen-induced hepatotoxicity

    DEFF Research Database (Denmark)

    Schmidt, Lars E; Dalhoff, Kim

    2002-01-01

    Hypophosphatemia is frequently observed in acetaminophen-induced hepatotoxicity and may be involved in the pathogenesis of hepatic failure. The aim of the study was to evaluate the prognostic value of serial measurements of serum phosphate in patients with severe acetaminophen poisoning. Prospect......Hypophosphatemia is frequently observed in acetaminophen-induced hepatotoxicity and may be involved in the pathogenesis of hepatic failure. The aim of the study was to evaluate the prognostic value of serial measurements of serum phosphate in patients with severe acetaminophen poisoning...... Hospital (KCH) criteria. Phosphate concentrations were significantly higher in nonsurvivors than in survivors at 48 to 72 hours after overdose (mean 2.65 +/- 1.18 mmol/L vs. 0.68 +/- 0.22 mmol/L, P L vs. 0.59 +/- 0.23 mmol/L, P ...). A threshold phosphate concentration of 1.2 mmol/L at 48 to 96 hours after overdose had sensitivity 89%, specificity 100%, accuracy 98%, positive predictive value 100%, and negative predictive value 98%. The phosphate criteria had higher sensitivity, accuracy, and positive and negative predictive values than...

  3. Drug-induced liver injury

    DEFF Research Database (Denmark)

    Nielsen, Mille Bækdal; Ytting, Henriette; Skalshøi Kjær, Mette

    2017-01-01

    OBJECTIVE: The idiosyncratic subtype of drug-induced liver injury (DILI) is a rare reaction to medical treatment that in severe cases can lead to acute liver failure and death. The aim of this study was to describe the presentation and outcome of DILI and to identify potential predictive factors...... that DILI may be severe and run a fatal course, and that bilirubin and INR levels may predict poor outcome....

  4. Acetaminophen modulates the transcriptional response to recombinant interferon-beta.

    Directory of Open Access Journals (Sweden)

    Aaron Farnsworth

    Full Text Available BACKGROUND: Recombinant interferon treatment can result in several common side effects including fever and injection-site pain. Patients are often advised to use acetaminophen or other over-the-counter pain medications as needed. Little is known regarding the transcriptional changes induced by such co-administration. METHODOLOGY/PRINCIPAL FINDINGS: We tested whether the administration of acetaminophen causes a change in the response normally induced by interferon-beta treatment. CD-1 mice were administered acetaminophen (APAP, interferon-beta (IFN-beta or a combination of IFN-beta+APAP and liver and serum samples were collected for analysis. Differential gene expression was determined using an Agilent 22 k whole mouse genome microarray. Data were analyzed by several methods including Gene Ontology term clustering and Gene Set Enrichment Analysis. We observed a significant change in the transcription profile of hepatic cells when APAP was co-administered with IFN-beta. These transcriptional changes included a marked up-regulation of genes involved in signal transduction and cell differentiation and down-regulation of genes involved in cellular metabolism, trafficking and the IkappaBK/NF-kappaB cascade. Additionally, we observed a large decrease in the expression of several IFN-induced genes including Ifit-3, Isg-15, Oasl1, Zbp1 and predicted gene EG634650 at both early and late time points. CONCLUSIONS/SIGNIFICANCE: A significant change in the transcriptional response was observed following co-administration of IFN-beta+APAP relative to IFN-beta treatment alone. These results suggest that administration of acetaminophen has the potential to modify the efficacy of IFN-beta treatment.

  5. Etiology and Outcome of Acute Liver Failure: Experience from a Liver Transplantation Centre in Montreal

    Directory of Open Access Journals (Sweden)

    Geneviève Tessier

    2002-01-01

    Full Text Available BACKGROUND: Acute liver failure is a rare condition in which massive liver injury is associated with the rapid development of hepatic encephalopathy. Although viral hepatitis and drug-induced liver injury are the most common causes, no specific etiology is found in a substantial proportion of cases reported from Europe and the United States.

  6. Interindividual variation in gene expression responses and metabolite formation in acetaminophen-exposed primary human hepatocytes

    NARCIS (Netherlands)

    Jetten, M.J.A.; Blanco Garcia, Ainhoa; Coonen, M.L.J.; Claessen, Sandra; Herwijnen, van M.H.M.; Lommen, Arjen; Delft, van J.H.M.; Peijnenburg, A.A.C.M.; Kleinjans, J.C.S.

    2016-01-01

    Acetaminophen (APAP) is a readily available over-the-counter drug and is one of the most commonly used analgesics/antipyretics worldwide. Large interindividual variation in susceptibility toward APAP-induced liver failure has been reported. However, the exact underlying factors causing this

  7. Cuscuta arvensis Beyr "Dodder": In Vivo Hepatoprotective Effects Against Acetaminophen-Induced Hepatotoxicity in Rats.

    Science.gov (United States)

    Koca-Caliskan, Ufuk; Yilmaz, Ismet; Taslidere, Asli; Yalcin, Funda N; Aka, Ceylan; Sekeroglu, Nazim

    2018-05-02

    Cuscuta arvensis Beyr. is a parasitic plant, and commonly known as "dodder" in Europe, in the United States, and "tu si zi shu" in China. It is one of the preferred spices used in sweet and savory dishes. Also, it is used as a folk medicine for the treatment particularly of liver problems, knee pains, and physiological hepatitis, which occur notably in newborns and their mothers in the southeastern part of Turkey. The purpose of this study was to investigate the hepatoprotective effects and antioxidant activities of aqueous and methanolic extracts of C. arvensis Beyr. on acetaminophen (APAP)-induced acute hepatotoxicity in rats. The results were supported by subsequent histopathological studies. The hepatoprotective activity of both the aqueous and methanolic extracts at an oral dose of 125 and 250 mg/kg was investigated by observing the reduction levels or the activity of alkaline phosphatase, alkaline transaminase, aspartate aminotransferase, blood urine nitrogen, and total bilirubin content. In vivo antioxidant activity was determined by analyzing the serum superoxide dismutase, malondialdehyde, glutathione, and catalase levels. Chromatographic methods were used to isolate biologically active compounds from the extract, and spectroscopic methods were used for structure elucidation. Both the methanolic and aqueous extracts exerted noticable hepatoprotective and antioxidant effects supporting the folkloric usage of dodder. One of the bioactive compounds was kaempferol-3-O-rhamnoside, isolated and identified from the methanolic extract.

  8. Commensal Lactobacillus Controls Immune Tolerance during Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Nobuhiro Nakamoto

    2017-10-01

    Full Text Available Summary: Gut-derived microbial antigens trigger the innate immune system during acute liver injury. During recovery, regulatory immunity plays a role in suppressing inflammation; however, the precise mechanism underlying this process remains obscure. Here, we find that recruitment of immune-regulatory classical dendritic cells (cDCs is crucial for liver tolerance in concanavalin A-induced acute liver injury. Acute liver injury resulted in enrichment of commensal Lactobacillus in the gut. Notably, Lactobacillus activated IL-22 production by gut innate lymphoid cells and raised systemic IL-22 levels. Gut-derived IL-22 enhanced mucosal barrier function and promoted the recruitment of regulatory cDCs to the liver. These cDCs produced IL-10 and TGF-β through TLR9 activation, preventing further liver inflammation. Collectively, our results indicate that beneficial gut microbes influence tolerogenic immune responses in the liver. Therefore, modulation of the gut microbiota might be a potential option to regulate liver tolerance. : Nakamoto et.al. find that Lactobacillus accumulates in the gut and activates IL-22 production by innate lymphoid cells during acute liver injury. Gut-derived IL-22 contributes to liver tolerance via induction of regulatory DCs. Keywords: immune tolerance, dendritic cell, innate lymphoid cell, acute liver injury, interleukin-10, interleukin-22, microbiota, dysbiosis

  9. Acetaminophen induces xenobiotic-metabolizing enzymes in rat: Impact of a uranium chronic exposure.

    Science.gov (United States)

    Rouas, Caroline; Souidi, Maâmar; Grandcolas, Line; Grison, Stephane; Baudelin, Cedric; Gourmelon, Patrick; Pallardy, Marc; Gueguen, Yann

    2009-11-01

    The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic. The aim of this study was to determine whether a chronic (9 months) non-nephrotoxic low dose exposure to depleted uranium (DU, 1mg/rat/day) could modify the liver XME, using a single non-hepatotoxic acetaminophen (APAP) treatment (50mg/kg). Most of XME analysed were induced by APAP treatment at the gene expression level but at the protein level only CYP3A2 was significantly increased 3h after APAP treatment in DU-exposed rats whereas it remained at a basal level in unexposed rats. In conclusion, these results showed that a chronic non-nephrotoxic DU exposure specially modify CYP3A2 after a single therapeutic APAP treatment. Copyright © 2009 Elsevier B.V. All rights reserved.

  10. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    International Nuclear Information System (INIS)

    Cheshchevik, V.T.; Lapshina, E.A.; Dremza, I.K.; Zabrodskaya, S.V.; Reiter, R.J.; Prokopchik, N.I.; Zavodnik, I.B.

    2012-01-01

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p 4 displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl 4 , reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage. Highlights: ► After 30-day chronic CCl 4 intoxication mitochondria displayed considerable changes. ► The functional parameters of mitochondria were similar to the control values. ► Melatonin + succinate + flavonoids prevented mitochondrial ultrastructure damage. ► The above complex enhanced regenerative processes in the liver.

  11. Effect of paracetamol (acetaminophen and ibuprofen on body temperature in acute ischemic stroke PISA, a phase II double-blind, randomized, placebo-controlled trial [ISRCTN98608690

    Directory of Open Access Journals (Sweden)

    Meijer Ron J

    2003-02-01

    Full Text Available Abstract Background Body temperature is a strong predictor of outcome in acute stroke. In a previous randomized trial we observed that treatment with high-dose acetaminophen (paracetamol led to a reduction of body temperature in patients with acute ischemic stroke, even when they had no fever. The purpose of the present trial was to study whether this effect of acetaminophen could be reproduced, and whether ibuprofen would have a similar, or even stronger effect. Methods Seventy-five patients with acute ischemic stroke confined to the anterior circulation were randomized to treatment with either 1000 mg acetaminophen, 400 mg ibuprofen, or placebo, given 6 times daily during 5 days. Treatment was started within 24 hours from the onset of symptoms. Body temperatures were measured at 2-hour intervals during the first 24 hours, and at 6-hour intervals thereafter. Results No difference in body temperature at 24 hours was observed between the three treatment groups. However, treatment with high-dose acetaminophen resulted in a 0.3°C larger reduction in body temperature from baseline than placebo treatment (95% CI: 0.0 to 0.6 °C. Acetaminophen had no significant effect on body temperature during the subsequent four days compared to placebo, and ibuprofen had no statistically significant effect on body temperature during the entire study period. Conclusions Treatment with a daily dose of 6000 mg acetaminophen results in a small, but potentially worthwhile decrease in body temperature after acute ischemic stroke, even in normothermic and subfebrile patients. Further large randomized clinical trials are needed to study whether early reduction of body temperature leads to improved outcome.

  12. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice

    International Nuclear Information System (INIS)

    Uematsu, Yasuaki; Akai, Sho; Tochitani, Tomoaki; Oda, Shingo; Yamada, Toru; Yokoi, Tsuyoshi

    2016-01-01

    MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantly increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.

  13. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Yasuaki, E-mail: yasuaki-uematsu@ds-pharma.co.jp [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Akai, Sho [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Tochitani, Tomoaki [Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Oda, Shingo [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Yamada, Toru [Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Yokoi, Tsuyoshi [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan)

    2016-09-15

    MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantly increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.

  14. Experimental models of hepatotoxicity related to acute liver failure

    Energy Technology Data Exchange (ETDEWEB)

    Maes, Michaël [Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels (Belgium); Vinken, Mathieu, E-mail: mvinken@vub.ac.be [Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels (Belgium); Jaeschke, Hartmut [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City (United States)

    2016-01-01

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposure or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. - Highlights: • The murine APAP model is very close to what is observed in patients. • The Gal/ET model is useful to study TNFα-mediated apoptotic signaling mechanisms. • Fas receptor activation is an effective model of apoptosis and secondary necrosis. • The ConA model is a relevant model of auto-immune hepatitis and viral hepatitis. • Multiple time point evaluation needed in experimental models of acute liver injury.

  15. Acute liver failure

    DEFF Research Database (Denmark)

    Larsen, Fin Stolze; Bjerring, Peter Nissen

    2011-01-01

    Acute liver failure (ALF) results in a multitude of serious complications that often lead to multi-organ failure. This brief review focuses on the pathophysiological processes in ALF and how to manage these.......Acute liver failure (ALF) results in a multitude of serious complications that often lead to multi-organ failure. This brief review focuses on the pathophysiological processes in ALF and how to manage these....

  16. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats.

    Science.gov (United States)

    Lv, Long-Xian; Hu, Xin-Jun; Qian, Gui-Rong; Zhang, Hua; Lu, Hai-Feng; Zheng, Bei-Wen; Jiang, Li; Li, Lan-Juan

    2014-06-01

    This work investigated the effect of the intragastric administration of five lactic acid bacteria from healthy people on acute liver failure in rats. Sprague-Dawley rats were given intragastric supplements of Lactobacillus salivarius LI01, Lactobacillus salivarius LI02, Lactobacillus paracasei LI03, Lactobacillus plantarum LI04, or Pediococcus pentosaceus LI05 for 8 days. Acute liver injury was induced on the eighth day by intraperitoneal injection of 1.1 g/kg body weight D-galactosamine (D-GalN). After 24 h, samples were collected to determine the level of liver enzymes, liver function, histology of the terminal ileum and liver, serum levels of inflammatory cytokines, bacterial translocation, and composition of the gut microbiome. The results indicated that pretreatment with L. salivarius LI01 or P. pentosaceus LI05 significantly reduced elevated alanine aminotransferase and aspartate aminotransferase levels, prevented the increase in total bilirubin, reduced the histological abnormalities of both the liver and the terminal ileum, decreased bacterial translocation, increased the serum level of interleukin 10 and/or interferon-γ, and resulted in a cecal microbiome that differed from that of the liver injury control. Pretreatment with L. plantarum LI04 or L. salivarius LI02 demonstrated no significant effects during this process, and pretreatment with L. paracasei LI03 aggravated liver injury. To the best of our knowledge, the effects of the three species-L. paracasei, L. salivarius, and P. pentosaceus-on D-GalN-induced liver injury have not been previously studied. The excellent characteristics of L. salivarius LI01 and P. pentosaceus LI05 enable them to serve as potential probiotics in the prevention or treatment of acute liver failure.

  17. [Good use and knowledge of paracetamol (acetaminophen) among self-medicated patients: Prospective study in community pharmacies].

    Science.gov (United States)

    Severin, Anne-Elise; Petitpain, Nadine; Scala-Bertola, Julien; Latarche, Clotilde; Yelehe-Okouma, Melissa; Di Patrizio, Paolo; Gillet, Pierre

    2016-06-01

    Acetaminophen (paracetamol), the highest over-the-counter (OTC) selling drug in France, is also the first cause of acute hepatic failure. We aimed to assess the good use and the knowledge of acetaminophen in a setting of urban self-medicated patients. We conducted a prospective observational study in randomly selected community pharmacies of Metz (France) agglomeration. Patients coming to buy OTC acetaminophen for themselves or their family had to answer to an anonymous autoquestionnaire. Responses were individually and concomitantly analyzed through 3 scores: good use, knowledge and overdosage. Twenty-four community pharmacies participated and 302 patients were interviewed by mean of a dedicated questionnaire. Most of patients (84.4%) could be considered as "good users" and independent factors of good use were (i) a good knowledge of acetaminophen (OR=5.3; P<0.0001) and more surprisingly; (ii) the fact of having no children (parentality: OR=0.1; P=0.006). Responses corresponding to involuntary overdosage were mostly due to a too short interval between drug intakes (3hours). Only 30.8% of patients were aware of liver toxicity of acetaminophen and only 40.7% knew the risk of the association with alcohol. Both good use and knowledge were significantly higher in patients looking for information from their pharmacist, physician and package leaflet. Patients should definitely be better informed about acetaminophen to warrant a better safety of its consumption. Pharmacists and physicians have to remind patients the risk factors of unintentional overdose and liver toxicity. Package leaflets have also to be more informative. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  18. Hepatoprotective activity of petroleum ether, diethyl ether, and methanol extract of Scoparia dulcis L. against CCl4-induced acute liver injury in mice.

    Science.gov (United States)

    Praveen, T K; Dharmaraj, S; Bajaj, Jitendra; Dhanabal, S P; Manimaran, S; Nanjan, M J; Razdan, Rema

    2009-06-01

    The present study was aimed at assessing the hepatoprotective activity of 1:1:1 petroleum ether, diethyl ether, and methanol (PDM) extract of Scoparia dulcis L. against carbon tetrachloride-induced acute liver injury in mice. The PDM extract (50, 200, and 800 mg/kg, p.o.) and standard, silymarin (100 mg/kg, p.o) were tested for their antihepatotoxic activity against CCl4-induced acute liver injury in mice. The hepatoprotective activity was evaluated by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total proteins in serum, glycogen, lipid peroxides, superoxide dismutase, and glutathione reductase levels in liver homogenate and by histopathological analysis of the liver tissue. In addition, the extract was also evaluated for its in vitro antioxidant activity using 1, 1-Diphenyl-2-picrylhydrazyl scavenging assay. The extract at the dose of 800 mg/kg, p.o., significantly prevented CCl4-induced changes in the serum and liver biochemistry (P Scoparia dulcis L. possesses potential hepatoprotective activity, which may be attributed to its free radical scavenging potential, due to the terpenoid constituents.

  19. Effects of acetaminophen and ibuprofen in children with migraine receiving preventive treatment with magnesium.

    Science.gov (United States)

    Gallelli, Luca; Avenoso, Tiziana; Falcone, Daniela; Palleria, Caterina; Peltrone, Francesco; Esposito, Maria; De Sarro, Giovambattista; Carotenuto, Marco; Guidetti, Vincenzo

    2014-02-01

    The purpose of this study was to evaluate both the effects of ibuprofen and/or acetaminophen for the acute treatment of primary migraine in children in or out prophylactic treatment with magnesium. Children ranging from the ages of 5 to 16 years with at least 4 attack/month of primary migraine were eligible for participation the study. A visual analog scale was used to evaluate pain intensity at the moment of admission to the study (start of the study) and every month up to 18 months later (end of the study). One hundred sixty children of both sexes aged 5-16 years were enrolled and assigned in 4 groups to receive a treatment with acetaminophen or ibuprofen without or with magnesium. Migraine pain endurance and monthly frequency were similar in the 4 groups. Both acetaminophen and ibuprofen induced a significant decrease in pain intensity (P < .01), without a time-dependent correlation, but did not modify its frequency. Magnesium pretreatment induced a significant decrease in pain intensity (P < .01) without a time-dependent correlation in both acetaminophen- and ibuprofen-treated children and also significantly reduced (P < .01) the pain relief timing during acetaminophen but not during ibuprofen treatment (P < .01). In both acetaminophen and ibuprofen groups, magnesium pretreatment significantly reduced the pain frequency (P < .01). Magnesium increased the efficacy of ibuprofen and acetaminophen with not age-related effects. © 2013 American Headache Society.

  20. Effect of corn silk extract on acetaminophen induced renal damage in mice

    International Nuclear Information System (INIS)

    Mehboob, F.; Tahir, M.

    2015-01-01

    To evaluate the protective role of Corn Silk extract on Acetaminophen induced nephrotoxicity in albino mice. Study Design: Laboratory based randomized controlled trials. Place and Duration of Study: The study was carried out in experimental research laboratory University of Health Sciences and Anatomy department, Lahore. The study duration was one year from February 2012 to February 2013. Material and Methods: Twenty seven male albino mice, 6-8 weeks old weighing 30 + 5 gm, were used; these animals were randomly divided into three groups having nine mice in each group. Group A served as control and was given 16.6ml/kg normal saline intraperitoneally on first day of experiment and was sacrificed on 10th day of the experiment. Group B was treated with acetaminophen 600 mg/kg dissolved in 16.6 ml of normal saline intraperitoneally on 1st day of experiment and was sacrificed after 48 hours. Group C was given acetaminophen at a dose of 600 mg/kg intraperitoneally on first day of experiment and then corn silk extract was given by oral route at a dose of 400 mg/kg for next 8 days. The animals were sacrificed on 10th day of the experiment, the kidneys were removed; 3mm three tissue pieces were fixed in 10% formaline; processed and stained with H and E for histological study. Results: It was observed on microscopic examination that Corn silk extract reduced deleterious effects of acetaminophen on tubules of kidney as evidenced by reduction of tubular vacuolation and necrosis, absence of protein casts, vascular congestion and inflammation. Conclusion: It is concluded from current results that corn silk extract protects acetaminophen induced nephrotoxicity. (author)

  1. Acute Liver Injury Is Independent of B Cells or Immunoglobulin M.

    Directory of Open Access Journals (Sweden)

    James A Richards

    Full Text Available Acute liver injury is a clinically important pathology and results in the release of Danger Associated Molecular Patterns, which initiate an immune response. Withdrawal of the injurious agent and curtailing any pathogenic secondary immune response may allow spontaneous resolution of injury. The role B cells and Immunoglobulin M (IgM play in acute liver injury is largely unknown and it was proposed that B cells and/or IgM would play a significant role in its pathogenesis.Tissue from 3 models of experimental liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury and patients transplanted following paracetamol overdose were stained for evidence of IgM deposition. Mice deficient in B cells (and IgM were used to dissect out the role B cells and/or IgM played in the development or resolution of injury. Serum transfer into mice lacking IgM was used to establish the role IgM plays in injury.Significant deposition of IgM was seen in the explanted livers of patients transplanted following paracetamol overdose as well as in 3 experimental models of acute liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury. Serum transfer into IgM-deficient mice failed to reconstitute injury (p = 0.66, despite successful engraftment of IgM. Mice deficient in both T and B cells (RAG1-/- mice (p<0.001, but not B cell deficient (μMT mice (p = 0.93, were significantly protected from injury. Further interrogation with T cell deficient (CD3εKO mice confirmed that the T cell component is a key mediator of sterile liver injury. Mice deficient in B cells and IgM mice did not have a significant delay in resolution following acute liver injury.IgM deposition appears to be common feature of both human and murine sterile liver injury. However, neither IgM nor B cells, play a significant role in the development of or resolution from acute liver injury. T cells appear to be key

  2. Acute-on-chronic Liver Failure.

    Science.gov (United States)

    Sarin, Shiv Kumar; Choudhury, Ashok

    2016-12-01

    Acute-on-chronic liver failure (ACLF) is a distinct entity that differs from acute liver failure and decompensated cirrhosis in timing, presence of treatable acute precipitant, and course of disease, with a potential for self-recovery. The core concept is acute deterioration of existing liver function in a patient of chronic liver disease with or without cirrhosis in response to an acute insult. The insult should be a hepatic one and presentation in the form of liver failure (jaundice, encephalopathy, coagulopathy, ascites) with or without extrahepatic organ failure in a defined time frame. ACLF is characterized by a state of deregulated inflammation. Initial cytokine burst presenting as SIRS, progression to CARS and associated immunoparalysis leads to sepsis and multi-organ failure. Early identification of the acute insult and mitigation of the same, use of nucleoside analogue in HBV-ACLF, steroid in severe alcoholic hepatitis, steroid in severe autoimmune hepatitis and/or bridging therapy lead to recovery, with a 90-day transplant-free survival rate of up to 50 %. First-week presentation is crucial concerning SIRS/sepsis, development, multiorgan failure and consideration of transplant. A protocol-based multi-disciplinary approach including critical care hepatology, early liver transplant before multi-organ involvement, or priority for organ allocation may improve the outcome. Presentation with extrahepatic organ involvement or inclusion of sepsis as an acute insult in definition restricts the therapy, i.e., liver transplant or bridging therapy, and needs serious consideration. Augmentation of regeneration, cell-based therapy, immunotherapy, and gut microbiota modulation are the emerging areas and need further research.

  3. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    International Nuclear Information System (INIS)

    Kim, Young C.; Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-01-01

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  4. Higher Thyroid-Stimulating Hormone, Triiodothyronine and Thyroxine Values Are Associated with Better Outcome in Acute Liver Failure.

    Science.gov (United States)

    Anastasiou, Olympia; Sydor, Svenja; Sowa, Jan-Peter; Manka, Paul; Katsounas, Antonios; Syn, Wing-Kin; Führer, Dagmar; Gieseler, Robert K; Bechmann, Lars P; Gerken, Guido; Moeller, Lars C; Canbay, Ali

    2015-01-01

    Changes in thyroid hormone levels, mostly as non-thyroidal illness syndrome (NTIS), have been described in many diseases. However, the relationship between acute liver failure (ALF) and thyroid hormone levels has not yet been clarified. The present study evaluates potential correlations of select thyroid functional parameters with ALF. 84 consecutively recruited ALF patients were grouped according to the outcome of ALF (spontaneous recovery: SR; transplantation or death: NSR). TSH, free thyroxine (fT4), free triiodothyronine (fT3), T4, and T3 were determined. More than 50% of patients with ALF presented with abnormal thyroid parameters. These patients had greater risk for an adverse outcome than euthyroid patients. SR patients had significantly higher TSH, T4, and T3 concentrations than NSR patients. Albumin concentrations were significantly higher in SR than in NSR. In vitro T3 treatment was not able to rescue primary human hepatocytes from acetaminophen induced changes in mRNA expression. In patients with ALF, TSH and total thyroid hormone levels differed significantly between SR patients and NSR patients. This might be related to diminished liver-derived transport proteins, such as albumin, in more severe forms of ALF. Thyroid parameters may serve as additional indicators of ALF severity.

  5. Treatment strategies for early presenting acetaminophen overdose: a survey of medical directors of poison centers in North America and Europe.

    Science.gov (United States)

    Kozer, E; McGuigan, M

    2002-03-01

    Acetaminophen is frequently used in self-poisoning in Western countries. Although treatment with N-acetylcysteine (NAC) reduces liver injury, no consensus exists on the preferred management of acetaminophen toxicity. To describe the approach taken by toxicologists in North America and Europe toward the management of acetaminophen toxicity. Medical directors of poison centers in the US, Canada, and Europe were surveyed by means of a questionnaire presenting two clinical scenarios of acetaminophen overdose: a healthy adolescent with no risk factors who had an acute ingestion of acetaminophen, and an adult with both acute ingestion and possible risk factors. For each case, several questions about the management of these patients were asked. Questionnaires were sent to medical directors of 76 poison centers in North America and 48 in Europe, with response rates of 62% and 44%, respectively. Forty percent of responders suggested using charcoal 4 hours after ingestion of a potential toxic dose of acetaminophen, and 90% recommended treatment with NAC when levels were above 150 microg/mL but below 200 microg/mL 4 hours after ingestion. Duration of treatment with oral NAC ranged from 24 to 96 hours; 38 responders suggested a duration of 72 hours. Of 49 centers recommending oral NAC, 18 (36.7%) said they might consider treatment for less than 72 hours. Eleven of 29 (37.9%) responders suggested treatment with intravenous NAC for more than 20 hours as their usual protocol or a protocol for specific circumstances. Our study showed large variability in the management of acetaminophen overdose. Variations in treatment protocols should be addressed in clinical trials to optimize the treatment for this common problem.

  6. Retrospective Identification of Herpes Simplex 2 Virus-Associated Acute Liver Failure in an Immunocompetent Patient Detected Using Whole Transcriptome Shotgun Sequencing.

    Science.gov (United States)

    Ono, Atsushi; Hayes, C Nelson; Akamatsu, Sakura; Imamura, Michio; Aikata, Hiroshi; Chayama, Kazuaki

    2017-01-01

    Acute liver failure (ALF) is a severe condition in which liver function rapidly deteriorates in individuals without prior history of liver disease. While most cases result from acetaminophen overdose or viral hepatitis, in up to a third of patients, no clear cause can be identified. Liver transplantation has greatly reduced mortality among these patients, but 40% of patients recover without liver transplantation. Therefore, there is an urgent need for rapid determination of the etiology of acute liver failure. In this case report, we present a case of herpes simplex 2 virus- (HSV-) associated ALF in an immunocompetent patient. The patient recovered without LT, but the presence of HSV was not suspected at the time, precluding more effective treatment with acyclovir. To determine the etiology, stored blood samples were analyzed using whole transcriptome shotgun sequencing followed by mapping to a panel of viral reference sequences. The presence of HSV-DNA in blood samples at the time of admission was confirmed using real-time polymerase chain reaction, and, at the time of discharge, HSV-DNA levels had decreased by a factor of 10 6 . Conclusions. In ALF cases of undetermined etiology, uncommon causes should be considered, especially those for which an effective treatment is available.

  7. Retrospective Identification of Herpes Simplex 2 Virus-Associated Acute Liver Failure in an Immunocompetent Patient Detected Using Whole Transcriptome Shotgun Sequencing

    Directory of Open Access Journals (Sweden)

    Atsushi Ono

    2017-01-01

    Full Text Available Acute liver failure (ALF is a severe condition in which liver function rapidly deteriorates in individuals without prior history of liver disease. While most cases result from acetaminophen overdose or viral hepatitis, in up to a third of patients, no clear cause can be identified. Liver transplantation has greatly reduced mortality among these patients, but 40% of patients recover without liver transplantation. Therefore, there is an urgent need for rapid determination of the etiology of acute liver failure. In this case report, we present a case of herpes simplex 2 virus- (HSV- associated ALF in an immunocompetent patient. The patient recovered without LT, but the presence of HSV was not suspected at the time, precluding more effective treatment with acyclovir. To determine the etiology, stored blood samples were analyzed using whole transcriptome shotgun sequencing followed by mapping to a panel of viral reference sequences. The presence of HSV-DNA in blood samples at the time of admission was confirmed using real-time polymerase chain reaction, and, at the time of discharge, HSV-DNA levels had decreased by a factor of 106. Conclusions. In ALF cases of undetermined etiology, uncommon causes should be considered, especially those for which an effective treatment is available.

  8. Procalcitonin Identifies Cell Injury, Not Bacterial Infection, in Acute Liver Failure.

    Directory of Open Access Journals (Sweden)

    Jody A Rule

    Full Text Available Because acute liver failure (ALF patients share many clinical features with severe sepsis and septic shock, identifying bacterial infection clinically in ALF patients is challenging. Procalcitonin (PCT has proven to be a useful marker in detecting bacterial infection. We sought to determine whether PCT discriminated between presence and absence of infection in patients with ALF.Retrospective analysis of data and samples of 115 ALF patients from the United States Acute Liver Failure Study Group randomly selected from 1863 patients were classified for disease severity and ALF etiology. Twenty uninfected chronic liver disease (CLD subjects served as controls.Procalcitonin concentrations in most samples were elevated, with median values for all ALF groups near or above a 2.0 ng/mL cut-off that generally indicates severe sepsis. While PCT concentrations increased somewhat with apparent liver injury severity, there were no differences in PCT levels between the pre-defined severity groups-non-SIRS and SIRS groups with no documented infections and Severe Sepsis and Septic Shock groups with documented infections, (p = 0.169. PCT values from CLD patients differed from all ALF groups (median CLD PCT value 0.104 ng/mL, (p ≤0.001. Subjects with acetaminophen (APAP toxicity, many without evidence of infection, demonstrated median PCT >2.0 ng/mL, regardless of SIRS features, while some culture positive subjects had PCT values <2.0 ng/mL.While PCT appears to be a robust assay for detecting bacterial infection in the general population, there was poor discrimination between ALF patients with or without bacterial infection presumably because of the massive inflammation observed. Severe hepatocyte necrosis with inflammation results in elevated PCT levels, rendering this biomarker unreliable in the ALF setting.

  9. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Directory of Open Access Journals (Sweden)

    Sathish Kumar Natarajan

    2018-01-01

    Full Text Available Acute fatty liver of pregnancy (AFLP, a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD. The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency.

  10. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Science.gov (United States)

    Ibdah, Jamal A.

    2018-01-01

    Acute fatty liver of pregnancy (AFLP), a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C) in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD). The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency. PMID:29361796

  11. Inhibition of vascular endothelial growth factor signaling facilitates liver repair from acute ethanol-induced injury in zebrafish

    Directory of Open Access Journals (Sweden)

    Changwen Zhang

    2016-11-01

    Full Text Available Alcoholic liver disease (ALD results from alcohol overconsumption and is among the leading causes of liver-related morbidity and mortality worldwide. Elevated expression of vascular endothelial growth factor (VEGF and its receptors has been observed in ALD, but how it contributes to ALD pathophysiology is unclear. Here, we investigated the impact of VEGF signaling inhibition on an established zebrafish model of acute alcoholic liver injury. Kdrl activity was blocked by chemical inhibitor treatment or by genetic mutation. Exposing 4-day-old zebrafish larvae to 2% ethanol for 24 h induced hepatic steatosis, angiogenesis and fibrogenesis. The liver started self-repair once ethanol was removed. Although inhibiting Kdrl did not block the initial activation of hepatic stellate cells during ethanol treatment, it suppressed their proliferation, extracellular matrix protein deposition and fibrogenic gene expression after ethanol exposure, thus enhancing the liver repair. It also ameliorated hepatic steatosis and attenuated hepatic angiogenesis that accelerated after the ethanol treatment. qPCR showed that hepatic stellate cells are the first liver cell type to increase the expression of VEGF ligand and receptor genes in response to ethanol exposure. Both hepatic stellate cells and endothelial cells, but not hepatic parenchymal cells, expressed kdrl upon ethanol exposure and were likely the direct targets of Kdrl inhibition. Ethanol-induced steatosis and fibrogenesis still occurred in cloche mutants that have hepatic stellate cells but lack hepatic endothelial cells, and Kdrl inhibition suppressed both phenotypes in the mutants. These results suggest that VEGF signaling mediates interactions between activated hepatic stellate cells and hepatocytes that lead to steatosis. Our study demonstrates the involvement of VEGF signaling in regulating sustained liver injuries after acute alcohol exposure. It also provides a proof of principle of using the

  12. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice.

    Science.gov (United States)

    Tang, Xuchong; Wei, Ruofan; Deng, Aihua; Lei, Tingping

    2017-09-11

    Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke ( Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight) by gavage once daily. Up to 40% alcohol (12 mL/kg body weight) was administered orally 1 h after artichoke treatment. All mice were fed for 10 consecutive days. Results showed that artichoke extract significantly prevented elevated levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, total cholesterol, and malondialdehyde. Meanwhile, the decreased levels of superoxide dismutase and glutathione were elevated by artichoke administration. Histopathological examination showed that artichoke attenuated degeneration, inflammatory infiltration and necrosis of hepatocytes. Immunohistochemical analysis revealed that expression levels of toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB) in liver tissues were significantly suppressed by artichoke treatment. Results obtained demonstrated that artichoke extract exhibited significant preventive protective effect against acute alcohol-induced liver injury. This finding is mainly attributed to its ability to attenuate oxidative stress and suppress the TLR4/NF-κB inflammatory pathway. To the best of our knowledge, the underlying mechanisms of artichoke on acute ALD have been rarely reported.

  13. THE DIAGNOSIS OF LIVER ALLOGRAFT ACUTE REJECTION IN LIVER BIOPSIES

    Directory of Open Access Journals (Sweden)

    L. V. Shkalova

    2011-01-01

    Full Text Available We performed histological examination of 80 liver allograft biopsies, the diagnosis of acute rejection was proved in 34 cases. Histological changes in liver biopsies in different grades of acute rejection were estimated according to Banff classification 1995, 1997 and were compared with current literature data. The article deals with the question of morphological value of grading acute rejection on early and late, also we analyze changes in treat- ment tactics after morphological verification of liver allograft acute rejection. 

  14. Therapeutic potential of alpha-ketoglutarate against acetaminophen-induced hepatotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Lalita Mehra

    2016-01-01

    Full Text Available Objective: Alpha-ketoglutarate (α-KG is a cellular intermediary metabolite of Krebs cycle, involved in energy metabolism, amino acid synthesis, and nitrogen transport. It is available over-the-counter and marketed as a nutritional supplement. There is a growing body of evidence to suggest that dietary α-KG has the potential to maintain cellular redox status and thus can protect various oxidative stress induced disease states. The aim of the present study was to investigate the hepatoprotective role of α-KG in acetaminophen (APAP induced toxicity in rats. Materials and Methods: Animals were divided into three groups of six animals each. Group I (Vehicle control: Normal Saline, Group II (APAP: A single intraperitoneal injection of 0.6 g/kg, Group III (APAP + α-KG: APAP as in Group II with α-KG treatment at a dose of 2 g/kg, orally for 5 days. Then the levels of alanine aminotransferase (ALT, aspartate aminotransferase (AST, and alkaline phosphatase (ALP with oxidative stress markers including malondialdehyde (MDA, reduced glutathione (GSH, superoxide dismutase (SOD, catalase (CAT, and histopathology were analyzed. Results: The results indicate that APAP caused significant elevations in ALT, AST, ALP, and MDA levels, while GSH, SOD, and CAT were significantly depleted while co-administration of α-KG showed a significant (P < 0.05 reduction in the severity of these damages. Histologically, the liver showed inflammation and necrosis after APAP treatment, which were significantly restored with co-administration of α-KG. Conclusion: These results indicate the possible therapeutic potential of α-KG in protecting liver damage by APAP in rats.

  15. Acute pain management: acetaminophen and ibuprofen are often under-dosed.

    Science.gov (United States)

    Milani, Gregorio P; Benini, Franca; Dell'Era, Laura; Silvagni, Davide; Podestà, Alberto F; Mancusi, Rossella Letizia; Fossali, Emilio F

    2017-07-01

    Most children with pain are managed by either acetaminophen or ibuprofen. However, no study has so far investigated if children are prescribed adequate doses of acetaminophen or ibuprofen in emergency department. Aim of this retrospective study was to investigate the prevalence of under-dosage of these drugs in children presenting with pain in emergency department. Children initially prescribed with acetaminophen or ibuprofen for pain management were included. The χ 2 automatic interaction detection method was used considering the percentage variation from the minimum of the appropriate dose as dependent variable while prescribed drug, age, gender, body weight, type of hospital (pediatric or general), and availability of internal guidelines on pediatric pain management in the emergency department as independent variables. Data on 1471 children managed for pain were available. Under-dosage was prescribed in 893 subjects (61%), of whom 577 were prescribed acetaminophen and 316 ibuprofen. The use of acetaminophen suppositories, body weight 40 kg, and the use of oral ibuprofen identified clusters of children associated with under-dosage prescription. Prescription of acetaminophen and ibuprofen was frequently under-dosed. The use of suppositories, lower and higher body weight, and the use of ibuprofen were associated with under-dosage. Under-dosing may reflect prescription of anti-pyretic doses. Agenzia Italiana del Farmaco-Observational Study Register (RSO). Registration code: PIERRE/1 What is Known: • Pain is frequent in children presented to emergency department. • International recommendations on pain management are often not implemented. What is New: • Acetaminophen and ibuprofen were frequently underdosed in children prescribed for pain in the Italian emergency departments. • Under-dosage may be related to the habit of using acetaminophen and ibuprofen in the recommended range for fever treatment.

  16. Alleviative effects from boswellic acid on acetaminophen-induced hepatic injury - Corrected and republished from: Biomedicine (Taipei). 2016 Jun; 6 (2): 9. doi: 10.7603/s40681-016-0009-1PMCID: PMC4864770.

    Science.gov (United States)

    Chen, Lung-Che; Hu, Li-Hong; Yin, Mei-Chin

    2017-06-01

    Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP up-regulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepato-protective agent. © Author(s) 2017. This article is published with open access by China Medical University.

  17. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D.

    2012-01-01

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H 2 DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  18. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  19. Curcumin Attenuates on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Modulation of the Nrf2/HO-1 and TGF-β1/Smad3 Pathway

    Directory of Open Access Journals (Sweden)

    Xinyan Peng

    2018-01-01

    Full Text Available This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl4-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl4 exposure. At 24 h, curcumin-attenuated CCl4 induced elevated serum transaminase activities and histopathological damage in the mouse’s liver. Curcumin pre-treatment at 50, 100 and 200 mg/kg significantly ameliorated CCl4-induced oxidative stress, characterized by decreased malondialdehyde (MDA formations, and increased superoxide dismutase (SOD, catalase (CAT activities and glutathione (GSH content, followed by a decrease in caspase-9 and -3 activities. Curcumin pre-treatment significantly decreased CCl4-induced inflammation. Furthermore, curcumin pre-treatment significantly down-regulated the expression of TGF-β1 and Smad3 mRNAs (both p < 0.01, and up-regulated the expression of nuclear-factor erythroid 2-related factor 2 (Nrf2 and HO-1 mRNA (both p < 0.01 in the liver. Inhibition of HO-1 attenuated the protective effect of curcumin on CCl4-induced acute liver injury. Given these outcomes, curcumin could protect against CCl4-induced acute liver injury by inhibiting oxidative stress and inflammation, which may partly involve the activation of Nrf2/HO-1 and inhibition of TGF-β1/Smad3 pathways.

  20. Gymnaster koraiensis and its major components, 3,5-di-O-caffeoylquinic acid and gymnasterkoreayne B, reduce oxidative damage induced by tert-butyl hydroperoxide or acetaminophen in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Eun Hye Jho

    2013-10-01

    Full Text Available We investigated the protective effects of Gymnaster koraiensisagainst oxidative stress-induced hepatic cell damage. We usedtwo different cytotoxicity models, i.e., the administration oftert-butyl hydroperoxide (t-BHP and acetaminophen, in HepG2cells to evaluate the protective effects of G. koraiensis. The ethylacetate (EA fraction of G. koraiensis and its major compound,3,5-di-O-caffeoylquinic acid (DCQA, exerted protective effectsin the t-BHP-induced liver cytotoxicity model. The EA fractionand DCQA ameliorated t-BHP-induced reductions in GSHlevels and exhibited free radical scavenging activity. The EAfraction and DCQA also significantly reduced t-BHP-inducedDNA damage in HepG2 cells. Furthermore, the hexane fractionof G. koraiensis and its major compound, gymnasterkoreayne B(GKB, exerted strong hepatoprotection in the acetaminopheninducedcytotoxicity model. CYP 3A4 enzyme activity wasstrongly inhibited by the extract, hexane fraction, and GKB. Thehexane fraction and GKB ameliorated acetaminophen-inducedreductions in GSH levels and protected against cell death. [BMBReports 2013; 46(10: 513-518

  1. Time-course of cadmium-induced acute hepatotoxicity in the rat liver: the role of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Tzirogiannis, Konstantinos N.; Panoutsopoulos, Georgios I.; Hereti, Rosa I.; Alexandropoulou, Katerina N.; Basayannis, Aristidis C.; Mykoniatis, Michael G. [Department of Experimental Pharmacology, Medical School, Athens University, 75 Mikras Asias St., 115 27, Athens (Greece); Demonakou, Maria D. [Histopathology Laboratory, Sismanoglion G.D. Hospital, Sismanogliou 1, Marousi, Attiki 151 27 (Greece)

    2003-12-01

    Exposure to toxic metals and pollutants is a major environmental problem. Cadmium is a metal causing acute hepatic injury but the mechanism of this phenomenon is poorly understood. In the present study, we investigated the mechanism and time-course of cadmium-induced liver injury in rats, with emphasis being placed on apoptosis in parenchymal and nonparenchymal liver cells. Cadmium (3.5 mg/kg body weight) was injected intraperitoneally and the rats were killed 0, 9, 12, 16, 24, 48 and 60 h later. The extent of liver injury was evaluated for necrosis, apoptosis, peliosis, mitoses and inflammatory infiltration in hematoxylin-eosin-stained liver sections, and by assaying serum enzyme activities. The number of cells that died via apoptosis was quantified by TUNEL assay. The identification of nonparenchymal liver cells and activated Kupffer cells was performed histochemically. Liver regeneration was evaluated by assaying the activity of liver thymidine kinase and by the rate of {sup 3}H-thymidine incorporation into DNA. Both cadmium-induced necrotic cell death and parenchymal cell apoptosis showed a biphasic elevation at 12 and 48 h and peaked at 48 and 12 h, respectively. Nonparenchymal cell apoptosis peaked at 48 h. Peliosis hepatis, another characteristic form of liver injury, was first observed at 16 h and, at all time points, closely correlated with the apoptotic index of nonparenchymal liver cells, where the lesion was also maximial at 48 h. Kupffer cell activation and neutrophil infiltration were minimal for all time points examined. Based on thymidine kinase activity, liver regeneration was found to discern a classic biphasic peak pattern at 12 and 48 h. It was very interesting to observe that cadmium-induced liver injury did not involve inflammation at any time point. Apoptosis seems to be a major mechanism for the removal of damaged cells, and constitutes the major type of cell death in nonparenchymal liver cells. Apoptosis of nonparenchymal cells is the basis

  2. Acute liver failure

    DEFF Research Database (Denmark)

    Bernal, William; Lee, William M; Wendon, Julia

    2015-01-01

    Over the last three decades acute liver failure (ALF) has been transformed from a rare and poorly understood condition with a near universally fatal outcome, to one with a well characterized phenotype and disease course. Complex critical care protocols are now applied and emergency liver...

  3. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    Energy Technology Data Exchange (ETDEWEB)

    Cheshchevik, V.T. [Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Lapshina, E.A.; Dremza, I.K.; Zabrodskaya, S.V. [Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Reiter, R.J. [Department of Cellular and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229–3900 (United States); Prokopchik, N.I. [Grodno State Medical University, Gorkogo - 80, 230015 Grodno (Belarus); Zavodnik, I.B., E-mail: zavodnik_il@mail.ru [Institute for Pharmacology and Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus); Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno (Belarus)

    2012-06-15

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage

  4. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure

    Directory of Open Access Journals (Sweden)

    Honglei eWeng

    2015-06-01

    Full Text Available Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called second pathway of liver regeneration. The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  5. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure.

    Science.gov (United States)

    Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling

    2015-01-01

    Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called "second pathway of liver regeneration." The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  6. An iso-α-acid-rich extract from hops (Humulus lupulus) attenuates acute alcohol-induced liver steatosis in mice.

    Science.gov (United States)

    Hege, Marianne; Jung, Finn; Sellmann, Cathrin; Jin, Chengjun; Ziegenhardt, Doreen; Hellerbrand, Claus; Bergheim, Ina

    2018-01-01

    Results of in vitro and in vivo studies suggest that consumption of beer is less harmful for the liver than consumption of spirits. It also has been suggested that secondary plant compounds derived from hops such as xanthohumol or iso-α-acids may have beneficial effects on the development of liver diseases of various etiologies. The aim of this study was to determine whether iso-α-acids consumed in doses achieved by "normal" beer consumption have beneficial effects on health. Female C57 Bl/6 J mice, pretreated for 4 d with an iso-α-acid-rich extract (∼30% iso-α-acids from hops, 0.75 mg/kg body weight), were fed one bolus of ethanol (6 g/kg body weight intragastric) or an iso-caloric maltodextrin solution. Markers of liver damage, toll-like receptor-4 signaling, and lipid peroxidation were determined. Furthermore, the effect of isohumulone on the lipopolysaccharide-dependent activation of J774 A.1 macrophages, used as a model of Kupffer cells, was determined. In the liver, acute ethanol administration led to a significant accumulation of fat (∼10-fold), which was accompanied by significantly higher inducible nitric oxide synthase protein level, elevated nitric oxide production, and increased plasminogen activator inhibitor 1 protein concentration when compared to controls. In mice pretreated with iso-α-acids, these effects of alcohol were markedly attenuated. Pretreatment of J774 A.1 macrophages with isohumulone significantly attenuated lipopolysaccharide-induced mRNA expression of inducible nitric oxide synthase and interleukin-6 as well as the release of nitric oxide. Taken together, iso-α-acids markedly attenuated the development of acute alcohol-induced damage in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qi; Xu, Xi, E-mail: xuxi@njust.edu.cn; Yang, Xiao; Weng, Dan; Wang, Junsong; Zhang, Jianfa

    2017-02-15

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines and adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis. - Highlights: • Salecan treatment significantly reduced ConA-induced liver injury. • Salecan suppressed the expression and secretion of inflammatory cytokines. • Salecan decreased the expression of chemokines and adhesion molecules in liver. • Salecan inhibited the infiltration and activation of T cells induced by ConA. • Salecan partly recovered the metabolic perturbations induced by ConA.

  8. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice

    OpenAIRE

    Tang, Xuchong; Wei, Ruofan; Deng, Aihua; Lei, Tingping

    2017-01-01

    Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke (Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight)...

  9. Acute liver failure and acute kidney injury: Definitions, prognosis, and outcome

    NARCIS (Netherlands)

    Włodzimirow, K.A.

    2013-01-01

    The objective of this thesis was to investigate definitions, prognostic indicators and their association with adverse events, mainly mortality for acute liver failure (ALF), acute-on-chronic liver failure (ACLF) and acute kidney injury (AKI).

  10. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 ± 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  11. Effect of Momordica charantia (bitter melon on serum glucose level and various protein parameters in acetaminophen intoxicated rabbits

    Directory of Open Access Journals (Sweden)

    Kanwal Zahra

    2012-02-01

    Full Text Available Aim: Liver function tests, including total plasma proteins, albumin, bilirubin and glucose were analyzed to find out the hepatocurative and hepatoprotective effects of Momordica charantia. Method: The study was divided into two categories. In first category, the livers of rabbits were intoxicated with acetaminophen, and then Momordica fruit extract was given to observe its hepatocurative effects. Results: The results indicated significant changes in concentrations of the parameters in acetaminophen-challenged rabbits. In the second category, treatment was started by giving Momordica fruit extract dose orally for 10 days and 15 days to two groups of rabbits, respectively. Then, livers of rabbits were damaged with acetaminophen and hepatoprotective effects of Momordica were observed. Conclusion: The results showed that the animals treated with Momordica fruit extract experienced less liver damage due to acetaminophen intoxication, indicating that Momordica has hepatoprotective properties. [J Intercult Ethnopharmacol 2012; 1(1.000: 7-12

  12. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-07-01

    Full Text Available Peroxisome proliferator-activated receptor α (PPARα is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF. However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apoptosis, thereby protecting against ALF. In a murine model of D-galactosamine (D-GalN- and lipopolysaccharide (LPS-induced ALF, Wy-14643 was administered to activate PPARα, and 4-phenylbutyric acid (4-PBA was administered to attenuate ER stress. PPARα activation ameliorated liver injury, because pre-administration of its specific inducer, Wy-14643, reduced the serum aminotransferase levels and preserved liver architecture compared with that of controls. The protective effect of PPARα activation resulted from the suppression of ER stress-induced hepatocyte apoptosis. Indeed, (1 PPARα activation decreased the expression of glucose-regulated protein 78 (Grp78, Grp94 and C/EBP-homologous protein (CHOP in vivo; (2 the liver protection by 4-PBA resulted from the induction of PPARα expression, as 4-PBA pre-treatment promoted upregulation of PPARα, and inhibition of PPARα by small interfering RNA (siRNA treatment reversed liver protection and increased hepatocyte apoptosis; (3 in vitro PPARα activation by Wy-14643 decreased hepatocyte apoptosis induced by severe ER stress, and PPARα inhibition by siRNA treatment decreased the hepatocyte survival induced by mild ER stress. Here, we demonstrate that PPARα activation contributes to liver protection and decreases hepatocyte apoptosis in ALF, particularly through regulating ER stress. Therefore, targeting PPARα could be a potential therapeutic strategy to ameliorate ALF.

  13. Visualization of acute liver damage induced by cycloheximide in rats using PET with [(18F]FEDAC, a radiotracer for translocator protein (18 kDa.

    Directory of Open Access Journals (Sweden)

    Akiko Hatori

    Full Text Available Liver damage induced by drug toxicity is an important concern for both medical doctors and patients. The aim of this study was to noninvasively visualize acute liver damage using positron emission tomography (PET with N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-[(18F]fluoroethyl-8-oxo-2-phenyl-9H-purin-9-yl]acetamide ([(18F]FEDAC, a radiotracer specific for translocator protein (18 kDa, TSPO as a biomarker for inflammation, and to determine cellular sources enriching TSPO expression in the liver. A mild acute liver damage model was prepared by a single intraperitoneal injection of cycloheximide (CHX into rats. Treatment with CHX induced apoptosis and necrotic changes in hepatocytes with slight neutrophil infiltration. The uptake of radioactivity in the rat livers was measured with PET after injection of [(18F]FEDAC. The uptake of [(18F]FEDAC increased in livers damaged from treatment with CHX compared to the controls. Presence of TSPO was examined in the liver tissue using quantitative reverse transcriptase-polymerase chain reaction and immunohistochemical assays. mRNA expression of TSPO was elevated in the damaged livers compared to the controls, and the level was correlated with the [(18F]FEDAC uptake and severity of damage. TSPO expression in the damaged liver sections was mainly found in macrophages (Kupffer cells and neutrophils, but not in hepatocytes. The elevation of TSPO mRNA expression was derived from the increase of the number of macrophages with TSPO and neutrophils with TSPO in damaged livers. From this study we considered that PET imaging with [(18F]FEDAC represented the mild liver damage through the enhanced TSPO signal in inflammatory cells. We conclude that this method may be a useful tool for diagnosis in early stage of acute liver damage.

  14. Prophylactic Acetaminophen or Ibuprofen Results in Equivalent Acute Mountain Sickness Incidence at High Altitude: A Prospective Randomized Trial.

    Science.gov (United States)

    Kanaan, Nicholas C; Peterson, Alicia L; Pun, Matiram; Holck, Peter S; Starling, Jennifer; Basyal, Bikash; Freeman, Thomas F; Gehner, Jessica R; Keyes, Linda; Levin, Dana R; O'Leary, Catherine J; Stuart, Katherine E; Thapa, Ghan B; Tiwari, Aditya; Velgersdyk, Jared L; Zafren, Ken; Basnyat, Buddha

    2017-06-01

    Recent trials have demonstrated the usefulness of ibuprofen in the prevention of acute mountain sickness (AMS), yet the proposed anti-inflammatory mechanism remains unconfirmed. Acetaminophen and ibuprofen were tested for AMS prevention. We hypothesized that a greater clinical effect would be seen from ibuprofen due to its anti-inflammatory effects compared with acetaminophen's mechanism of possible symptom reduction by predominantly mediating nociception in the brain. A double-blind, randomized trial was conducted testing acetaminophen vs ibuprofen for the prevention of AMS. A total of 332 non-Nepali participants were recruited at Pheriche (4371 m) and Dingboche (4410 m) on the Everest Base Camp trek. The participants were randomized to either acetaminophen 1000 mg or ibuprofen 600 mg 3 times a day until they reached Lobuche (4940 m), where they were reassessed. The primary outcome was AMS incidence measured by the Lake Louise Questionnaire score. Data from 225 participants who met inclusion criteria were analyzed. Twenty-five participants (22.1%) in the acetaminophen group and 18 (16.1%) in the ibuprofen group developed AMS (P = .235). The combined AMS incidence was 19.1% (43 participants), 14 percentage points lower than the expected AMS incidence of untreated trekkers in prior studies at this location, suggesting that both interventions reduced the incidence of AMS. We found little evidence of any difference between acetaminophen and ibuprofen groups in AMS incidence. This suggests that AMS prevention may be multifactorial, affected by anti-inflammatory inhibition of the arachidonic-acid pathway as well as other analgesic mechanisms that mediate nociception. Additional study is needed. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  15. Effect of acute beer ingestion on the liver: studies in female mice.

    Science.gov (United States)

    Kanuri, Giridhar; Wagnerberger, Sabine; Landmann, Marianne; Prigl, Eva; Hellerbrand, Claus; Bischoff, Stephan C; Bergheim, Ina

    2015-04-01

    The aim of the present study was to assess whether the effects of acute consumption of stout or pilsner beer on the liver differ from those of plain ethanol in a mouse model. Seven-week-old female C57BL/6J mice received either ethanol, stout or pilsner beer (ethanol content: 6 g/kg body weight) or isocaloric maltodextrin solution. Plasma alanine transaminase, markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade as well as lipid peroxidation and fibrogenesis in the liver were measured 12 h after acute ethanol or beer intake. Acute alcohol ingestion caused a marked ~11-fold increase in hepatic triglyceride accumulation in comparison to controls, whereas in mice exposed to stout and pilsner beer, hepatic triglyceride levels were increased only by ~6.5- and ~4-fold, respectively. mRNA expression of sterol regulatory element-binding protein 1c and fatty acid synthase in the liver did not differ between alcohol and beer groups. In contrast, expression of myeloid differentiation primary response gene 88, inducible nitric oxide synthases, but also the concentrations of 4-hydroxynonenal protein adducts, nuclear factor κB and plasminogen activator inhibitor-1 were induced in livers of ethanol treated mice but not in those exposed to the two beers. Taken together, our results suggest that acute ingestion of beer and herein especially of pilsner beer is less harmful to the liver than the ingestion of plain ethanol.

  16. Propylthiouracil-induced liver failure and artificial liver support systems: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Wu DB

    2017-01-01

    Full Text Available Dong-Bo Wu,1,2 En-Qiang Chen,1,2 Lang Bai,1,2 Hong Tang1,2 1Center of Infectious Diseases, West China Hospital of Sichuan University, 2Division of Molecular Biology of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, People’s Republic of China Background: Antithyroid drugs carry a potential risk of hepatotoxicity. Propylthiouracil (PTU is commonly prescribed for patients with hyperthyroidism. PTU, however, can induce liver injury, ranging from mild asymptomatic elevation of aminotransferases to acute liver failure (ALF.Case presentation: This case reports on a 16-year-old Chinese girl with hyperthyroidism, who was admitted to our hospital for jaundice, nausea, and fatigue associated with severe hyperbilirubinemia and coagulopathy. She had been prescribed PTU 5 months earlier. There was no history of hypersensitivity to drugs, viral liver diseases, blood transfusion, or surgery. On the basis of her symptoms and the clinical data, she was diagnosed with PTU-induced ALF. Due to the limited number of available donor organs for liver transplantation, she was started on treatment with artificial liver support system (ALSS. After four sessions of ALSS, her clinical signs and symptoms were found to be markedly improved, and she was discharged 25 days after admission. Four months later, her liver function normalized.Conclusion: Although PTU-induced liver failure is rare in clinical practice, liver function should be appropriately monitored during treatment with PTU. PTU-induced ALF in this patient was successfully managed with an ALSS, suggesting that the latter may be an alternative to liver transplantation. Keywords: propylthiouracil, liver injury, acute liver failure, artificial liver support systems 

  17. Toxicoproteomic assessment of liver responses to acute pyrrolizidine alkaloid intoxication in rats.

    Science.gov (United States)

    Li, Yan-Hong; Tai, William Chi-Shing; Khan, Imran; Lu, Cheng; Lu, Yao; Wong, Wing-Yan; Chan, Wood-Yee; Wendy Hsiao, Wen-Luan; Lin, Ge

    2018-04-03

    A toxicoproteomic study was performed on liver of rats treated with retrorsine (RTS), a representative hepatotoxic pyrrolizidine alkaloid at a toxic dose (140 mg/kg) known to cause severe acute hepatotoxicity. By comparing current data with our previous findings in mild liver lesions of rats treated with a lower dose of RTS, seven proteins and three toxicity pathways of vascular endothelial cell death, which was further verified by observed sinusoidal endothelial cell losses, were found uniquely associated with retrorsine-induced hepatotoxicity. This toxicoproteomic study of acute pyrrolizidine alkaloid intoxication lays a foundation for future investigation to delineate molecular mechanisms of pyrrolizidine alkaloid-induced hepatotoxicity.

  18. Inter-Individual Variability in Acute Toxicity of R-Pulegone and R-Menthofuran in Human Liver Slices and Their Influence on miRNA Expression Changes in Comparison to Acetaminophen

    Directory of Open Access Journals (Sweden)

    Tomáš Zárybnický

    2018-06-01

    Full Text Available Monoterpenes R-pulegone (PUL and R-menthofuran (MF, abundant in the Lamiaceae family, are frequently used in herb and food products. Although their hepatotoxicity was shown in rodent species, information about their effects in human liver has been limited. The aim of our study was to test the effects of PUL, MF and acetaminophen (APAP, as a reference compound on cell viability and microRNA (miRNA expression in human precision-cut liver slices. Slices from five patients were used to follow up on the inter-individual variability. PUL was toxic in all liver samples (the half-maximal effective concentration was 4.0 µg/mg of tissue, while MF and surprisingly APAP only in two and three liver samples, respectively. PUL also changed miRNA expression more significantly than MF and APAP. The most pronounced effect was a marked decrease of miR-155-5p expression caused by PUL even in non-toxic concentrations in all five liver samples. Our results showed that PUL is much more toxic than MF and APAP in human liver and that miR-155-5p could be a good marker of PUL early hepatotoxicity. Marked inter-individual variabilities in all our results demonstrate the high probability of significant differences in the hepatotoxicity of tested compounds among people.

  19. Hepatoprotective Effects of Antrodia cinnamomea: The Modulation of Oxidative Stress Signaling in a Mouse Model of Alcohol-Induced Acute Liver Injury

    Directory of Open Access Journals (Sweden)

    Yange Liu

    2017-01-01

    Full Text Available In the present study, the components of A. cinnamomea (AC mycelia were systematically analyzed. Subsequently, its hepatoprotective effects and the underlying mechanisms were explored using a mouse model of acute alcohol-induced liver injury. AC contained 25 types of fatty acid, 16 types of amino acid, 3 types of nucleotide, and 8 types of mineral. The hepatoprotective effects were observed after 2 weeks of AC treatment at doses of 75 mg/kg, 225 mg/kg, and 675 mg/kg in the mouse model. These effects were indicated by the changes in the levels of aspartate aminotransferase, alanine aminotransferase, several oxidation-related factors, and inflammatory cytokines in serum and/or liver samples. AC reduced the incidence rate of necrosis, inflammatory infiltration, fatty droplets formation, and cell apoptosis in liver detecting via histological and TUNEL assay. In addition, AC reduced the expression of cleaved caspase-3, -8, and -9 and the levels of phosphor-protein kinase B (Akt and phosphor-nuclear factor-κB (NF-κB in the liver samples. Collectively, AC-mediated hepatoprotective effects in a mouse model of acute alcohol-induced liver injury are the result of reduction in oxidative stress. This may be associated with Akt/NF-κB signaling. These results provide valuable evidence to support the use of A. cinnamomea as a functional food and/or medicine.

  20. Hepatoprotective, antioxidant, and ameliorative effects of ginger (Zingiber officinale Roscoe) and vitamin E in acetaminophen treated rats.

    Science.gov (United States)

    Abdel-Azeem, Amal S; Hegazy, Amany M; Ibrahim, Khadiga S; Farrag, Abdel-Razik H; El-Sayed, Eman M

    2013-09-01

    Ginger is a remedy known to possess a number of pharmacological properties. This study investigated efficacy of ginger pretreatment in alleviating acetaminophen-induced acute hepatotoxicity in rats. Rats were divided into six groups; negative control, acetaminophen (APAP) (600 mg/kg single intraperitoneal injection); vitamin E (75 mg/kg), ginger (100 mg/kg), vitamin E + APAP, and ginger + APAP. Administration of APAP elicited significant liver injury that was manifested by remarkable increase in plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), arginase activities, and total bilirubin concentration. Meanwhile, APAP significantly decreased plasma total proteins and albumin levels. APAP administration resulted in substantial increase in each of plasma triacylglycerols (TAGs), malondialdhyde (MDA) levels, and total antioxidant capacity (TAC). However, ginger or vitamin E treatment prior to APAP showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, ALP, and arginase) and total bilirubin in plasma. In addition, they remarkably ameliorated the APAP-induced oxidative stress by inhibiting lipid peroxidation (MDA). Pretreatment by ginger or vitamin E significantly restored TAGs, and total protein levels. Histopathological examination of APAP treated rats showed alterations in normal hepatic histoarchitecture, with necrosis and vacuolization of cells. These alterations were substantially decreased by ginger or vitamin E. Our results demonstrated that ginger can prevent hepatic injuries, alleviating oxidative stress in a manner comparable to that of vitamin E. Combination therapy of ginger and APAP is recommended especially in cases with hepatic disorders or when high doses of APAP are required.

  1. Inhibitory Effects of Pretreatment with Radon on Acute Alcohol-Induced Hepatopathy in Mice

    Directory of Open Access Journals (Sweden)

    Teruaki Toyota

    2012-01-01

    Full Text Available We previously reported that radon inhalation activates antioxidative functions in the liver and inhibits carbon tetrachloride-induced hepatopathy in mice. In addition, it has been reported that reactive oxygen species contribute to alcohol-induced hepatopathy. In this study, we examined the inhibitory effects of radon inhalation on acute alcohol-induced hepatopathy in mice. C57BL/6J mice were subjected to intraperitoneal injection of 50% alcohol (5 g/kg bodyweight after inhaling approximately 4000 Bq/m3 radon for 24 h. Alcohol administration significantly increased the activities of glutamic oxaloacetic transaminase (GOT, glutamic pyruvic transaminase (GPT in serum, and the levels of triglyceride and lipid peroxide in the liver, suggesting acute alcohol-induced hepatopathy. Radon inhalation activated antioxidative functions in the liver. Furthermore, pretreatment with radon inhibited the depression of hepatic functions and antioxidative functions. These findings suggested that radon inhalation activated antioxidative functions in the liver and inhibited acute alcohol-induced hepatopathy in mice.

  2. Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis

    Directory of Open Access Journals (Sweden)

    Andrea Iorga

    2017-05-01

    Full Text Available Drug-induced liver injury (DILI can broadly be divided into predictable and dose dependent such as acetaminophen (APAP and unpredictable or idiosyncratic DILI (IDILI. Liver injury from drug hepatotoxicity (whether idiosyncratic or predictable results in hepatocyte cell death and inflammation. The cascade of events leading to DILI and the cell death subroutine (apoptosis or necrosis of the cell depend largely on the culprit drug. Direct toxins to hepatocytes likely induce oxidative organelle stress (such as endoplasmic reticulum (ER and mitochondrial stress leading to necrosis or apoptosis, while cell death in idiosyncratic DILI (IDILI is usually the result of engagement of the innate and adaptive immune system (likely apoptotic, involving death receptors (DR. Here, we review the hepatocyte cell death pathways both in direct hepatotoxicity such as in APAP DILI as well as in IDILI. We examine the known signaling pathways in APAP toxicity, a model of necrotic liver cell death. We also explore what is known about the genetic basis of IDILI and the molecular pathways leading to immune activation and how these events can trigger hepatotoxicity and cell death.

  3. Fulminate Hepatic Failure in a 5 Year Old Female after Inappropriate Acetaminophen Treatment

    Directory of Open Access Journals (Sweden)

    Irena Kasmi

    2015-09-01

    CONCLUSION: Healthcare providers should considered probable acetaminophen toxicity in any child who has received the drug and presented with liver failure. When there is a high index of suspicion of acetaminophen toxicity NAC should be initiated and continued until there are no signs of hepatic dysfunction.

  4. Acute-on-chronic liver failure: causes, clinical characteristics and predictors of mortality

    International Nuclear Information System (INIS)

    Ali, A.; Luck, N.H.

    2017-01-01

    Objective: To determine the causes, characteristics and predictors of mortality in patients with acute-on-chronic liver failure (ACLF). Study Design: Cross-sectional study. Place and Duration of Study:Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi, from July 2014 to June 2016. Methodology:All patients with acute-on-chronic liver disease (ACLD) with ages > 12 were included. Patients with ACLF, as defined by the Asian Pacific Association for the Study of Liver (APASL, 2014) were identified. Predictors of mortality were identified using chi-square or Fisher's exact test. Results: Included in the study were 72 patients with mean age of 36.71 years, 46 (63.9%) being males. Among them, 61 developed ACLF. Commonest causes of chronic liver disease (CLD) were chronic viral hepatitis (37, 51.4%) and autoimmune hepatitis (14, 19.4%). Commonest causes of acute liver injury (ALI) were acute viral hepatitis (24, 33.3%) and drug induced liver injury (DILI) (17, 23.6%). Among those with ACLF, 24 (39.3%) patients died with median survival of 17.1 +-13.5 days. Mortality was significantly associated with Child Turcotte Pugh (CTP) score =>13 (p=0.010), model for end-stage liver disease (MELD) score =>30 (p=0.001), age >40 years (p=0.036), organ failures (OF) =>3 (p 3, CTP =>13, MELD =>30, age >40 years, PSE, renal failure and urosepsis. (author)

  5. Can paracetamol (acetaminophen) be administered to patients with liver impairment?

    Science.gov (United States)

    Hayward, Kelly L; Powell, Elizabeth E; Irvine, Katharine M; Martin, Jennifer H

    2016-02-01

    Although 60 years have passed since it became widely available on the therapeutic market, paracetamol dosage in patients with liver disease remains a controversial subject. Fulminant hepatic failure has been a well documented consequence of paracetamol overdose since its introduction, while short and long term use have both been associated with elevation of liver transaminases, a surrogate marker for acute liver injury. From these reports it has been assumed that paracetamol use should be restricted or the dosage reduced in patients with chronic liver disease. We review the factors that have been purported to increase risk of hepatocellular injury from paracetamol and the pharmacokinetic alterations in different pathologies of chronic liver disease which may affect this risk. We postulate that inadvertent under-dosing may result in concentrations too low to enable efficacy. Specific research to improve the evidence base for prescribing paracetamol in patients with different aetiologies of chronic liver disease is needed. © 2015 The British Pharmacological Society.

  6. Effect of Acetaminophen Ingestion on Thermoregulation of Normothermic, Non-Febrile Humans.

    Directory of Open Access Journals (Sweden)

    Josh eFoster

    2016-03-01

    Full Text Available In non-febrile mouse models, high dose acetaminophen administration causes profound hypothermia. However, this potentially hazardous side-effect has not been confirmed in non-febrile humans. Thus, we sought to ascertain whether an acute therapeutic dose (20 mg·kg lean body mass of acetaminophen would reduce non-febrile human core temperature in a sub-neutral environment. Ten apparently healthy (normal core temperature, no musculoskeletal injury, no evidence of acute illness Caucasian males participated in a preliminary study (Study one to determine plasma acetaminophen concentration following oral ingestion of 20 mg·kg lean body mass acetaminophen. Plasma samples (every 20 minutes up to 2-hours post ingestion were analysed via enzyme linked immunosorbent assay. Thirteen (eight recruited from Study one apparently healthy Caucasian males participated in Study two, and were passively exposed to 20°C, 40% r.h. for 120 minutes on two occasions in a randomised, repeated measures, crossover design. In a double blind manner, participants ingested acetaminophen (20 mg·kg lean body mass or a placebo (dextrose immediately prior to entering the environmental chamber. Rectal temperature, skin temperature, heart rate, and thermal sensation were monitored continuously and recorded every ten minutes. In Study one, the peak concentration of acetaminophen (14 ± 4 µg/ml in plasma arose between 80 and 100 minutes following oral ingestion. In Study two, acetaminophen ingestion reduced the core temperature of all participants, whereas there was no significant change in core temperature over time in the placebo trial. Mean core temperature was significantly lower in the acetaminophen trial compared with that of a placebo (p 0.05. The results indicate oral acetaminophen reduces core temperature of humans exposed to an environment beneath the thermal neutral zone. These results suggest that acetaminophen may inhibit the thermogenic mechanisms required to regulate

  7. Amelioration of liver injury by continuously targeted intervention against TNFRp55 in rats with acute-on-chronic liver failure.

    Directory of Open Access Journals (Sweden)

    Yumin Xu

    Full Text Available Acute-on-chronic liver failure (ACLF is an acute deterioration of established liver disease. Blocking the TNF (tumor necrosis factor/TNFR (tumor necrosis factor receptor 1 pathway may reduce hepatocyte apoptosis/necrosis, and subsequently decrease mortality during development of ACLF. We demonstrated that a long-acting TNF antagonist (soluble TNF receptor: IgG Fc [sTNFR:IgG-Fc] prevented/reduced development of acute liver failure by blocking the TNF/TNFR1 (TNFRp55 pathway. However, it is still unclear if sTNFR:IgG-Fc can inhibit hepatocyte damage during development of ACLF.Chronic liver disease (liver fibrosis/cirrhosis was induced in Wistar rats by repeatedly challenging with human serum albumin (HSA, and confirmed by histopathology. ACLF was induced with D-galactosamine (D-GalN/lipopolysaccharide (LPS i.p. in the rats with chronic liver disease. Serum and liver were collected for biochemical, pathological and molecular biological examinations.Reduced mortality was observed in sTNFR:IgG-Fc treated ACLF rats, consistent with reduced interleukin (IL-6 levels in serum and liver, as well as reduced hepatic caspase-3 activity, compared to that of mock treated group. Reduced hepatic damage was confirmed with histopathology in the sTNFR:IgG-Fc treated group, which is consistent with reduced Bcl-2 and Bax, at mRNA and protein levels, but increased hepatocyte proliferation (PCNA. This is also supported by the findings that caspase-3 production was up-regulated significantly in ACLF group compared to the mock treated group. Moreover, up-regulated caspase-3 was inhibited following sTNFR:IgG-Fc treatment. Finally, there was up-regulation of hepatic IL-22R in sTNFR:IgG-Fc treated ACLF rats.sTNFR:IgG-Fc improved survival rate during development of ACLF via ameliorating liver injury with a potential therapeutic value.

  8. Effect of paracetamol (acetaminophen) and ibuprofen on body temperature in acute ischemic stroke PISA, a phase II double-blind, randomized, placebo-controlled trial [ISRCTN98608690].

    NARCIS (Netherlands)

    D.W.J. Dippel (Diederik); E.J. van Breda (Eric); H.B. van der Worp (Bart); H.M.A. van Gemert (Maarten); R.J. Meijer (Ron); L.J. Kappelle (Jaap); P.J. Koudstaal (Peter Jan)

    2003-01-01

    textabstractBACKGROUND: Body temperature is a strong predictor of outcome in acute stroke. In a previous randomized trial we observed that treatment with high-dose acetaminophen (paracetamol) led to a reduction of body temperature in patients with acute ischemic stroke, even when

  9. Missed paracetamol (acetaminophen) overdose due to confusion regarding drug names.

    Science.gov (United States)

    Hewett, David G; Shields, Jennifer; Waring, W Stephen

    2013-07-01

    Immediate management of drug overdose relies upon the patient account of what was ingested and how much. Paracetamol (acetaminophen) is involved in around 40% of intentional overdose episodes, and remains the leading cause of acute liver failure in many countries including the United Kingdom. In recent years, consumers have had increasing access to medications supplied by international retailers via the internet, which may have different proprietary or generic names than in the country of purchase. We describe a patient that presented to hospital after intentional overdose involving 'acetaminophen' purchased via the internet. The patient had difficulty recalling the drug name, which was inadvertently attributed to 'Advil', a proprietary non-steroidal anti-inflammatory drug. The error was later recognised when the drug packaging became available, but the diagnosis of paracetamol overdose and initiation of acetylcysteine antidote were delayed. This case illustrates the benefit of routinely measuring paracetamol concentrations in all patients with suspected poisoning, although this is not universally accepted in practice. Moreover, it highlights the importance of the internet as a source of medications for intentional overdose, and emphasises the need for harmonisation of international drug names to improve patient safety.

  10. Single nucleotide polymorphism in genome-wide association of ...

    African Journals Online (AJOL)

    Mohd Fareed

    2012-09-25

    Sep 25, 2012 ... Codeine, Tramadol, Acetaminophen. CYP2C9. Celecoxib .... Pharmacogenet- ics of acute azathioprine toxicity: relationship to thiopurine ... Martinez C, Cueto R,. Garcia-Martin E. Pharmacogenomics in drug induced liver.

  11. Acute ethanol administration reduces the antidote effect of N-acetylcysteine after acetaminophen overdose in mice

    DEFF Research Database (Denmark)

    Dalhoff, K; Hansen, P B; Ott, P

    1991-01-01

    given ethanol or saline alone only 7% and 3%, respectively, survived 96 h. 4. The data suggest that the protective effect of N-acetylcysteine on acetaminophen-induced toxicity in fed mice is reduced by concomitant administration of ethanol. This may explain the clinical observation that ingestion...

  12. Acute liver failure and self-medication

    OpenAIRE

    OLIVEIRA, André Vitorio Câmara de; ROCHA, Frederico Theobaldo Ramos; ABREU, Sílvio Romero de Oliveira

    2014-01-01

    INTRODUCTION: Not responsible self-medication refers to drug use in high doses without rational indication and often associated with alcohol abuse. It can lead to liver damage and drug interactions, and may cause liver failure. AIM: To warn about how the practice of self-medication can be responsible for acute liver failure. METHOD: Were used the Medline via PubMed, Cochrane Library, SciELO and Lilacs, and additional information on institutional sites of interest crossing the headings acute l...

  13. Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure.

    Science.gov (United States)

    Rama Rao, Kakulavarapu V; Verkman, A S; Curtis, Kevin M; Norenberg, Michael D

    2014-03-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. Published by Elsevier Inc.

  14. When the heart kills the liver: acute liver failure in congestive heart failure

    Directory of Open Access Journals (Sweden)

    Saner FH

    2009-12-01

    Full Text Available Abstract Congestive heart failure as a cause of acute liver failure is rarely documented with only a few cases. Although the pathophysiology is poorly understood, there is rising evidence, that low cardiac output with consecutive reduction in hepatic blood flow is a main causing factor, rather than hypotension. In the setting of acute liver failure due to congestive heart failure, clinical signs of the latter can be absent, which requires an appropriate diagnostic approach. As a reference center for acute liver failure and liver transplantation we recorded from May 2003 to December 2007 202 admissions with the primary diagnoses acute liver failure. 13/202 was due to congestive heart failure, which was associated with a mortality rate of 54%. Leading cause of death was the underlying heart failure. Asparagine transaminase (AST, bilirubin, and international normalized ratio (INR did not differ significantly in surviving and deceased patients at admission. Despite both groups had signs of cardiogenic shock, the cardiac index (CI was significantly higher in the survival group on admission as compared with non-survivors (2.1 L/min/m2 vs. 1.6 L/min/m2, p = 0.04. Central venous - and pulmonary wedge pressure did not differ significantly. Remarkable improvement of liver function was recorded in the group, who recovered from cardiogenic shock. In conclusion, patients with acute liver failure require an appropriate diagnostic approach. Congestive heart failure should always be considered as a possible cause of acute liver failure.

  15. Preventive effects of dexmedetomidine on the liver in a rat model of acid-induced acute lung injury.

    Science.gov (United States)

    Sen, Velat; Güzel, Abdulmenap; Şen, Hadice Selimoğlu; Ece, Aydın; Uluca, Unal; Söker, Sevda; Doğan, Erdal; Kaplan, İbrahim; Deveci, Engin

    2014-01-01

    The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300-350 g were allocated randomly to four groups. In group 1, normal saline (NS) was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV) in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI) was found to be associated with increased malondialdehyde (MDA), total oxidant activity (TOA), oxidative stress index (OSI), and decreased total antioxidant capacity (TAC). Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P < 0.05). The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF) expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI.

  16. An Update on Drug-induced Liver Injury.

    Science.gov (United States)

    Devarbhavi, Harshad

    2012-09-01

    Idiosyncratic drug-induced liver injury (DILI) is an important cause of morbidity and mortality following drugs taken in therapeutic doses. Hepatotoxicity is a leading cause of attrition in drug development, or withdrawal or restricted use after marketing. No age is exempt although adults and the elderly are at increased risk. DILI spans the entire spectrum ranging from asymptomatic elevation in transaminases to severe disease such as acute hepatitis leading to acute liver failure. The liver specific Roussel Uclaf Causality Assessment Method is the most validated and extensively used for determining the likelihood that an implicated drug caused DILI. Asymptomatic elevation in liver tests must be differentiated from adaptation. Drugs producing DILI have a signature pattern although no single pattern is characteristic. Antimicrobial and central nervous system agents including antiepileptic drugs are the leading causes of DILI worldwide. In the absence of a diagnostic test or a biomarker, the diagnosis rests on the evidence of absence of competing causes such as acute viral hepatitis, autoimmune hepatitis and others. Recent studies show that antituberculosis drugs given for active or latent disease are still a major cause of drug-induced liver injury in India and the West respectively. Presence of jaundice signifies a severe disease and entails a worse outcome. The pathogenesis is unclear and is due to a mix of host, drug metabolite and environmental factors. Research has evolved from incriminating candidate genes to genome wide analysis studies. Immediate cessation of the drug is key to prevent or minimize progressive damage. Treatment is largely supportive. N-acetylcysteine is the antidote for paracetamol toxicity. Carnitine has been tried in valproate injury whereas steroids and ursodeoxycholic acid may be used in DILI associated with hypersensitivity or cholestatic features respectively. This article provides an overview of the epidemiology, the patterns of

  17. Protective effect of Sida cordata leaf extract against CCl(4) induced acute liver toxicity in rats.

    Science.gov (United States)

    Mistry, Sunil; Dutt, K R; Jena, J

    2013-04-13

    To investigate the hepatoprotective potential of Sida cordata (Malvaceae) (S. cordata) in experimental rats to validate its traditional claim. Wister albino rats were divided into 6 groups: Group I served as control; Group II served as hepatotoxic (CCl(4) treated) group; Group III, IV and V served as (100, 200 and 400 mg/kg b.w.) S. cordata leaf extract (SCLE) treated groups; Group VI served as positive control (Silymarin) treated group. Liver marker enzymes serum glutamate oxyloacetic transaminase, serum glutamic pyruvic transaminase, pancreatic enzymatic antioxidants superoxide dismutase (SOD), lipid peroxidation, catalase (CAT), reduced glutathione (GSH) were measured and compared along with histopathological studies. Obtained results show that the treatment with SCLE significantly (P<0.05-<0.001) and dose-dependently reduced CCl4 induced elevated serum level of hepatic enzymes. Furthermore, SCLE significantly (up to P<0.001) reduced the lipid peroxidation in the liver tissue and restored activities of defence antioxidant enzymes GSH, SOD and CAT towards normal levels, which was confirmed by the histopathological studies. The results of this study strongly indicate the protective effect of SCLE against CCl(4) induced acute liver toxicity in rats and thereby scientifically support its traditional use. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats

    Directory of Open Access Journals (Sweden)

    Chien-Chun Li

    2018-01-01

    Full Text Available The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg and 400 LO (400 mg/kg and its major component, citral (240 mg/kg, on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(PH:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5′-diphospho (UDP glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen.

  19. Perioperative intravenous acetaminophen attenuates lipid peroxidation in adults undergoing cardiopulmonary bypass: a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Frederic T Billings

    Full Text Available Cardiopulmonary bypass (CPB lyses erythrocytes and induces lipid peroxidation, indicated by increasing plasma concentrations of free hemoglobin, F2-isoprostanes, and isofurans. Acetaminophen attenuates hemeprotein-mediated lipid peroxidation, reduces plasma and urine concentrations of F2-isoprostanes, and preserves kidney function in an animal model of rhabdomyolysis. Acetaminophen also attenuates plasma concentrations of isofurans in children undergoing CPB. The effect of acetaminophen on lipid peroxidation in adults has not been studied. This was a pilot study designed to test the hypothesis that acetaminophen attenuates lipid peroxidation in adults undergoing CPB and to generate data for a clinical trial aimed to reduce acute kidney injury following cardiac surgery.In a prospective double-blind placebo-controlled clinical trial, sixty adult patients were randomized to receive intravenous acetaminophen or placebo starting prior to initiation of CPB and for every 6 hours for 4 doses. Acetaminophen concentrations measured 30 min into CPB and post-CPB were 11.9 ± 0.6 μg/mL (78.9 ± 3.9 μM and 8.7 ± 0.3 μg/mL (57.6 ± 2.0 μM, respectively. Plasma free hemoglobin increased more than 15-fold during CPB, and haptoglobin decreased 73%, indicating hemolysis. Plasma and urinary markers of lipid peroxidation also increased during CPB but returned to baseline by the first postoperative day. Acetaminophen reduced plasma isofuran concentrations over the duration of the study (P = 0.05, and the intraoperative plasma isofuran concentrations that corresponded to peak hemolysis were attenuated in those subjects randomized to acetaminophen (P = 0.03. Perioperative acetaminophen did not affect plasma concentrations of F2-isoprostanes or urinary markers of lipid peroxidation.Intravenous acetaminophen attenuates the increase in intraoperative plasma isofuran concentrations that occurs during CPB, while urinary markers were unaffected.ClinicalTrials.gov NCT

  20. Acute liver failure in Cuban children.

    Science.gov (United States)

    Silverio, César E; Smithen-Romany, Chleo Y; Hondal, Norma I; Díaz, Hetzel O; Castellanos, Marlen I; Sosa, Oramis

    2015-01-01

    Acute liver failure is rare in pediatric patients and is one of the most challenging medical emergencies due to its prognostic and therapeutic implications. The best scientific evidence worldwide comes from multicenter studies in developed countries. In Cuba, there are no prior studies of this disorder in children. Describe the main clinical features of Cuban children treated at a national referral center for acute liver failure, as defined by recognized diagnostic criteria for pediatric patients. A case series study was conducted comprising patients diagnosed with acute liver failure treated from 2005 to 2011 in the hepatology and liver transplant service at Havana's William Soler University Children's Hospital. Variables were age group, etiology of acute liver failure, grade of hepatic encephalopathy, blood chemistry variables, and clinical outcome (whether or not spontaneous recovery of liver function occurred). Associations between variables were assessed using contingency tables, and case fatality was calculated, as well as relative risk with its 95% confidence interval. The Mann-Whitney U test was used to compare means of laboratory test results. Median age of the 31 patients studied (14 boys and 17 girls) was 24 months (range 1-180). Time between symptom onset and diagnosis of acute liver failure was 25.1 days (SD 16.8). Infection was the most common etiology, present in 61.3% of cases (19/31); nonhepatotropic viruses, especially cytomegalovirus, predominated in infants. Spontaneous recovery occurred in 15 patients (48.4%), 3 (9.7%) received transplants, and 13 died, for a case fatality of 41.9%. Outcome was not associated with etiology (p = 0.106), but was statistically associated with degree of hepatic encephalopathy (p failure in Cuban children calls for further epidemiologic study and identification of local underlying determinants of this phenomenon.

  1. Radiation induced liver disease: A clinical update

    International Nuclear Information System (INIS)

    Benson, R.; Madan, R.; Chander, S.; Kilambi, R.

    2016-01-01

    Radiation-induced liver disease (RILD) or radiation hepatitis is a sub-acute form of liver injury due to radiation. It is one of the most dreaded complications of radiation which prevents radiation dose escalation and re irradiation for hepatobiliary or upper gastrointestinal malignancies. This complication should be kept in mind whenever a patient is planned for irradiation of these malignancies. Although, incidence of RILD is decreasing due to better knowledge of liver tolerance, improved investigation modalities and modern radiation delivery techniques, treatment options are still limited. In this review article, we have focussed on pathophysiology, risk factors, prevention and management of RILD

  2. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury

    Directory of Open Access Journals (Sweden)

    Yuewen Tang

    2017-02-01

    Full Text Available Abstract Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.

  3. Arctigenin protects against liver injury from acute hepatitis by suppressing immune cells in mice.

    Science.gov (United States)

    Cheng, Xixi; Wang, Huafeng; Yang, Jinlai; Cheng, Yingnan; Wang, Dan; Yang, Fengrui; Li, Yan; Zhou, Dongmei; Wang, Yanxia; Xue, Zhenyi; Zhang, Lijuan; Zhang, Qi; Yang, Luhong; Zhang, Rongxin; Da, Yurong

    2018-06-01

    As a phenylpropanoid and dibenzylbutyrolactone lignan present in medical plants, such as those used in traditional Chinese herbal medicine, including Arctium lappa (Niubang), arctigenin exhibits antimicrobial, anti-inflammatory, and anticancer activities. In this study, we investigated the protective role of arctigenin in Concanavalin A (ConA)-induced acute hepatitis in mice. Arctigenin remarkably reduced the congestion and necroinflammation of livers, and improved hepatic function (ALT and AST) in ConA-induced acute hepatitis in vivo. The infiltration of CD4 T, NKT and macrophages into the livers was found to be reduced with arctigenin treatment. Arctigenin suppressed ConA-induced T lymphocyte proliferations that might have resulted from enhanced IL-10 production by macrophages and CD4 T cells. These results suggested that arctigenin could be a powerful drug candidate for acute hepatitis through immune suppression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Freshly isolated hepatocyte transplantation in acetaminophen-induced hepatotoxicity model in rats Transplante de hepatócitos recém-isolados em um modelo de hepatotoxicidade induzida por acetaminofeno em ratos

    Directory of Open Access Journals (Sweden)

    Daniela Rodrigues

    2012-12-01

    Full Text Available CONTEXT: Hepatocyte transplantation is an attractive therapeutic modality for liver disease as an alternative for orthotopic liver transplantation. OBJECTIVE: The aim of the current study was to investigate the feasibility of freshly isolated rat hepatocyte transplantation in acetaminophen-induced hepatotoxicity model. METHODS: Hepatocytes were isolated from male Wistar rats and transplanted 24 hours after acetaminophen administration in female recipients. Female rats received either 1x10(7 hepatocytes or phosphate buffered saline through the portal vein or into the spleen and were sacrificed after 48 hours. RESULTS: Alanine aminotransferase levels measured within the experiment did not differ between groups at any time point. Molecular analysis and histology showed presence of hepatocytes in liver of transplanted animals injected either through portal vein or spleen. CONCLUSION: These data demonstrate the feasibility and efficacy of hepatocyte transplantation in the liver or spleen in a mild acetaminophen-induced hepatotoxicity model.CONTEXTO: O transplante de hepatócitos é uma modalidade terapêutica atrativa para doenças hepáticas como alternativa ao transplante hepático ortotópico. OBJETIVO: Investigar a factibilidade do uso de hepatócitos frescos isolados de ratos em um modelo de hepatotoxicidade induzida por paracetamol. MÉTODOS: Hepatócitos foram isolados de ratos Wistar machos e transplantados 24 horas após a administração de paracetamol em receptores fêmeas. As ratas receberam 1x10(7 hepatócitos ou tampão salina fosfato pela veia porta ou no baço e foram sacrificadas após 48 horas. RESULTADOS: Os níveis de alanina aminotransferase medidos durante o experimento não diferiram entre os grupos em nenhum momento. Análises moleculares e histológicas demonstraram a presença de hepatócitos no fígado dos animais transplantados pelo baço ou pela veia porta. CONCLUSÃO: Os dados indicam a factibilidade e eficácia do

  5. Amiodarone-Induced Liver Injury and Cirrhosis.

    Science.gov (United States)

    Buggey, Jonathan; Kappus, Matthew; Lagoo, Anand S; Brady, Carla W

    2015-01-01

    We present a case report of an 80-year-old woman with volume overload thought initially to be secondary to heart failure, but determined to be amiodarone-induced acute and chronic liver injury leading to submassive necrosis and bridging fibrosis consistent with early cirrhosis. Her histopathology was uniquely absent of steatosis and phospholipidosis, which are commonly seen in AIC.

  6. Quercetin prevents pyrrolizidine alkaloid clivorine-induced liver injury in mice by elevating body defense capacity.

    Directory of Open Access Journals (Sweden)

    Lili Ji

    Full Text Available Quercetin is a plant-derived flavonoid that is widely distributed in nature. The present study is designed to analyze the underlying mechanism in the protection of quercetin against pyrrolizidine alkaloid clivorine-induced acute liver injury in vivo. Serum transaminases, total bilirubin analysis, and liver histological evaluation demonstrated the protection of quercetin against clivorine-induced liver injury. Terminal dUTP nick end-labeling assay demonstrated that quercetin reduced the increased amount of liver apoptotic cells induced by clivorine. Western-blot analysis of caspase-3 showed that quercetin inhibited the cleaved activation of caspase-3 induced by clivorine. Results also showed that quercetin reduced the increase in liver glutathione and lipid peroxidative product malondialdehyde induced by clivorine. Quercetin reduced the enhanced liver immunohistochemical staining for 4-hydroxynonenal induced by clivorine. Results of the Mouse Stress and Toxicity PathwayFinder RT2 Profiler PCR Array demonstrated that the expression of genes related with oxidative or metabolic stress and heat shock was obviously altered after quercetin treatment. Some of the alterations were confirmed by real-time PCR. Our results demonstrated that quercetin prevents clivorine-induced acute liver injury in vivo by inhibiting apoptotic cell death and ameliorating oxidative stress injury. This protection may be caused by the elevation of the body defense capacity induced by quercetin.

  7. Quercetin Prevents Pyrrolizidine Alkaloid Clivorine-Induced Liver Injury in Mice by Elevating Body Defense Capacity

    Science.gov (United States)

    Ji, Lili; Ma, Yibo; Wang, Zaiyong; Cai, Zhunxiu; Pang, Chun; Wang, Zhengtao

    2014-01-01

    Quercetin is a plant-derived flavonoid that is widely distributed in nature. The present study is designed to analyze the underlying mechanism in the protection of quercetin against pyrrolizidine alkaloid clivorine-induced acute liver injury in vivo. Serum transaminases, total bilirubin analysis, and liver histological evaluation demonstrated the protection of quercetin against clivorine-induced liver injury. Terminal dUTP nick end-labeling assay demonstrated that quercetin reduced the increased amount of liver apoptotic cells induced by clivorine. Western-blot analysis of caspase-3 showed that quercetin inhibited the cleaved activation of caspase-3 induced by clivorine. Results also showed that quercetin reduced the increase in liver glutathione and lipid peroxidative product malondialdehyde induced by clivorine. Quercetin reduced the enhanced liver immunohistochemical staining for 4-hydroxynonenal induced by clivorine. Results of the Mouse Stress and Toxicity PathwayFinder RT2 Profiler PCR Array demonstrated that the expression of genes related with oxidative or metabolic stress and heat shock was obviously altered after quercetin treatment. Some of the alterations were confirmed by real-time PCR. Our results demonstrated that quercetin prevents clivorine-induced acute liver injury in vivo by inhibiting apoptotic cell death and ameliorating oxidative stress injury. This protection may be caused by the elevation of the body defense capacity induced by quercetin. PMID:24905073

  8. Clinical features of HBV-associated acute-on-chronic liver failure induced by discontinuation of nucleoside analogues

    Directory of Open Access Journals (Sweden)

    LIU Xiaoyan

    2016-09-01

    Full Text Available Objective To investigate the clinical features of patients with HBV-associated acute-on-chronic liver failure (HBV-ACLF induced by the discontinuation of necleos(tide analogues. Methods A retrospective analysis was performed for 698 patients with a definite diagnosis of HBV-ACLF in The 302 Hospital of PLA from January 2014 to April 2016, and among these patients, 150 (discontinuation group had acute-on-chronic liver failure (ACLF induced by discontinuation, 396 (previously untreated group had not received antiviral therapy when they developed this disease for the first time, and the other 152 patients with ACLF caused by other reasons were enrolled as controls. The causative factors, underlying diseases, family history, serum hepatitis B markers, prognosis, and initial onset were summarized, and the drugs used and discontinuation time were recorded for patients who stopped taking necleos(tide analogues. The chi-square test was used for the comparison of categorical data between groups. Results Among the 698 patients, 355(50.86% had a family history of chronic hepatitis B (CHB, and 93 patients (62.00% in the discontinuation group had a family history of CHB. Among the 150 patients in the discontinuation group, 27 (18.00% had an underlying disease of chronic hepatitis, among whom 12 (44.44% had a family history of CHB, which was significantly lower than the overall level (χ2=2.57, P=0.07; 123 (82.00% had an underlying disease of liver cirrhosis (compensated, among whom 81 (65.85% had a family history of CHB, which was significantly higher than the overall level (χ2=48.77, P<0.001. Of all the patients in the discontinuation group, 77.33% (116/150 developed the disease within 1 year after discontinuation, and 21.33% (32/150developed the disease during the second year after discontinuation. The HBeAg-negative patients accounted for 47.33% (71/150. In the discontinuation group and previously untreated group, the patients with an underlying disease

  9. Hepatoprotective Effect of Terminalia chebula against t-BHP-Induced Acute Liver Injury in C57/BL6 Mice

    Directory of Open Access Journals (Sweden)

    Min-Kyung Choi

    2015-01-01

    Full Text Available We aimed to identify the hepatoprotective effects of Terminalia chebula water extract (TCW and its corresponding pharmacological actions using C57/BL6 mice model of tert-butylhydroperoxide-(t-BHP- induced acute liver injury. Mice were orally administered with TCW (0, 50, 100, or 200 mg/kg or gallic acid (100 mg/kg for 5 days before t-BHP (2.5 mM/kg injection. Liver enzymes, histopathology, oxidative stress parameters, antioxidant components, and inflammatory cytokines were examined 18 h after t-BHP injection. t-BHP injection caused dramatic elevation of serum AST, ALT, and LDH level, while TCW pretreatment notably attenuated these elevations. Inflammatory cytokines including TNF-α, IL-1β, and IL-6 were notably increased in hepatic tissues, and then these were efficiently attenuated by TCW pretreatment. t-BHP injection notably increased malondialdehyde, total reactive oxygen species, and nitric oxide in the liver tissue, while it markedly dropped the antioxidant activities including total antioxidant capacity, total glutathione contents, glutathione peroxidase, superoxide dismutase, and catalase. TCW pretreatment remarkably ameliorated these alterations, and these effects were relevant to gene expressions. Histopathological examinations supported the above findings. Collectively, these findings well prove that TCW beneficially prevents acute and severe liver injury and clarify its corresponding mechanisms involved in the inhibition of oxidative stress and inflammatory cytokines.

  10. TRPV1 in brain is involved in acetaminophen-induced antinociception.

    Directory of Open Access Journals (Sweden)

    Christophe Mallet

    2010-09-01

    Full Text Available Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular over-the-counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl-5Z,8Z,11Z,14Z -eicosatetraenamide (AM404 by fatty acid amide hydrolase (FAAH in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV(1 in vitro. Pharmacological activation of TRPV(1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV(1 in the brain contributes to the analgesic effect of acetaminophen.Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV(1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E(2 (PGE(2 and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV(1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV(1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test.This study shows that TRPV(1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV(1 in the brain.

  11. Changes in cerebral oxidative metabolism in patients with acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, P N; Larsen, F S

    2013-01-01

    acid cycle, induces substrate depletion through marked glutamate utilization for glutamine synthesis and leads to mitochondrial dysfunction. In patients with acute liver failure cerebral microdialysis studies show a linear correlation between the lactate to pyruvate ratio and the glutamine...

  12. Acute Liver Failure

    Science.gov (United States)

    ... can cause acute liver failure. It is an industrial chemical found in refrigerants and solvents for waxes, varnishes ... measures when spraying insecticides, fungicides, paint and other toxic chemicals. Follow product instructions carefully. Watch what gets on ...

  13. Understanding lactic acidosis in paracetamol (acetaminophen) poisoning.

    Science.gov (United States)

    Shah, Anoop D; Wood, David M; Dargan, Paul I

    2011-01-01

    Paracetamol (acetaminophen) is one of the most commonly taken drugs in overdose in many areas of the world, and the most common cause of acute liver failure in both the UK and USA. Paracetamol poisoning can result in lactic acidosis in two different scenarios. First, early in the course of poisoning and before the onset of hepatotoxicity in patients with massive ingestion; a lactic acidosis is usually associated with coma. Experimental evidence from studies in whole animals, perfused liver slices and cell cultures has shown that the toxic metabolite of paracetamol, N-acetyl-p-benzo-quinone imine, inhibits electron transfer in the mitochondrial respiratory chain and thus inhibits aerobic respiration. This occurs only at very high concentrations of paracetamol, and precedes cellular injury by several hours. The second scenario in which lactic acidosis can occur is later in the course of paracetamol poisoning as a consequence of established liver failure. In these patients lactate is elevated primarily because of reduced hepatic clearance, but in shocked patients there may also be a contribution of peripheral anaerobic respiration because of tissue hypoperfusion. In patients admitted to a liver unit with paracetamol hepatotoxicity, the post-resuscitation arterial lactate concentration has been shown to be a strong predictor of mortality, and is included in the modified King's College criteria for consideration of liver transplantation. We would therefore recommend that post-resuscitation lactate is measured in all patients with a severe paracetamol overdose resulting in either reduced conscious level or hepatic failure. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.

  14. Hepatoprotective effect of Solanum xanthocarpum fruit extract against CCl4 induced acute liver toxicity in experimental animals.

    Science.gov (United States)

    Gupta, Ramesh K; Hussain, Talib; Panigrahi, G; Das, Avik; Singh, Gireesh Narayan; Sweety, K; Faiyazuddin, Md; Rao, Chandana Venkateswara

    2011-12-01

    To investigate the hepatoprotective potential of Solanum xanthocarpum (Solanaceae) (S. xanthocarpum) in experimental rats to validate its traditional claim. 50% ethanolic fruit extract of S. xanthocarpum (SXE, 100, 200 or 400 mg/kg body weight) was administered daily for 14 days in experimental animals. Liver injury was induced chemically, by CCl(4) administration (1 mL/kg i. p.). The hepatoprotective activity was assessed using various biochemical parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), Serum alkaline phosphatise (SALP) and total bilirubin. Meanwhile, in vivo antioxidant activities as lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were screened along with histopathological studies. Obtained results demonstrated that the treatment with SXE significantly (P<0.05-<0.001) and dose-dependently prevented chemically induced increase in serum levels of hepatic enzymes. Furthermore, SXE significantly (up to P<0.001) reduced the lipid peroxidation in the liver tissue and restored activities of defence antioxidant enzymes GSH, SOD and catalase towards normal levels. Histopathology of the liver tissue showed that SXE attenuated the hepatocellular necrosis and led to reduction of inflammatory cells inflltration. The results of this study strongly indicate the protective effect of SXE against acute liver injury which may be attributed to its hepatoprotective activity, and there by scientifically support its traditional use. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  15. Sitaxsentan-Induced Acute Severe Hepatitis Treated with Glucocorticoid Therapy

    Directory of Open Access Journals (Sweden)

    Marcus W Chin

    2012-01-01

    Full Text Available Endothelin receptor antagonists are commonly used in the treatment of pulmonary hypertension. Sitaxsentan, a selective endothelin A receptor blocker, induces a mild transaminitis in approximately 3% to 5% of patients, but rarely an acute severe hepatitis. A case involving a 61-year-old female with sitaxsentan-induced acute severe liver failure is presented. Depite withdrawal of therapy, her liver tests failed to improve. After six weeks of monitoring, the patient was administered high-dose corticosteroids, with a good clinical and biochemical response. While endothelin receptor antagonists are postulated to cause hepatitis by inhibition of a bile salt transporter pump, an immune-mediated or idiosyncratic mechanism should be considered.

  16. [Case reports of drug-induced liver injury in a reference hospital of Zulia state, Venezuela].

    Science.gov (United States)

    Mengual-Moreno, Edgardo; Lizarzábal-García, Maribel; Ruiz-Soler, María; Silva-Suarez, Niniveth; Andrade-Bellido, Raúl; Lucena-González, Maribel; Bessone, Fernando; Hernández, Nelia; Sánchez, Adriana; Medina-Cáliz, Inmaculada

    2015-03-01

    Drug-induced liver injury (DILI) is an important cause of morbidity and mortality worldwide, with varied geographical differences. The aim of this prospective, descriptive, cross-sectional study was to identify and characterize cases of DILI in a hospital of Zulia state, Venezuela. Thirteen patients with a presumptive diagnosis of DILI attended by the Department of Gastroenterology, Hospital Universitario, Zulia state, Venezuela, from December-2012 to December-2013 were studied. Ibuprofen (n = 3; 23.1%), acetaminophen (n = 3; 23.1), isoniazid (n = 2; 15.4%) and Herbalife products (n = 2; 15.4%) were the main drugs involved with DILI. Acetaminophen and ibuprofen showed a mixed pattern of liver injury (n = 3; 23.1%) and isoniazid presented a hepatocellular pattern (n = 2; 15.4%). The CIOMS/RUCAMS allowed the identification of possible (n = 7; 53.9%), probable (n = 4; 30.8%) and highly-probable cases (n = 2; 15.4%) of DILI. Amoxicillin/clavulanate, isoniazid, isotretinoin, methotrexate and Herbalife nutritional products were implicated as highly-probable and probable agents. The highest percentage of DILI corresponded to mild cases that recovered after the discontinuation of the agent involved (n = 9; 69.3%). The consumption of Herbalife botanical products is associated with probable causality and fatality (n = 1; 7.7%). In conclusion, the frequency of DILI cases controlled by the Department of Gastroenterology of the Hospital Universitario of Maracaibo was low, being ibuprofen, acetaminophen, isoniazid and products Herbalife the products most commonly involved. It is recommended to continue with the prospective registration of cases, with an extended follow up monitoring period and to facilitate the incorporation of other hospitals in the Zulia State and Venezuela.

  17. Possible fatal acetaminophen intoxication with atypical clinical presentation

    NARCIS (Netherlands)

    de-Giorgio, Fabio; Lodise, Maria; Chiarotti, Marcello; d'Aloja, Ernesto; Carbone, Arnaldo; Valerio, Luca

    2013-01-01

    Acetaminophen or paracetamol, a commonly used over-the-counter analgesic, is known to elicit severe adverse reactions when taken in overdose, chronically at therapeutic dosage or, sporadically, following single assumptions of a therapeutic dose. Damage patterns including liver damage and, rarely,

  18. Fulltext PDF

    Indian Academy of Sciences (India)

    2016-09-28

    Sep 28, 2016 ... acute toxicity of Triphala Mashi, an Ayurvedic formulation. J. Herb. Pharmacother. ... status in the liver and kidney of young and aged rats. Cell. Biochem. Funct. ... acetaminophen-induced hepatotoxicity in mice. J. Pharmacol.

  19. Adderall Induced Acute Liver Injury: A Rare Case and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Rohini R. Vanga

    2013-01-01

    Full Text Available Adderall (dextroamphetamine/amphetamine is a widely prescribed medicine for the treatment of attention-deficit/hyperactivity disorder (ADHD and is considered safe with due precautions. Use of prescribed Adderall without intention to overdose as a cause of acute liver injury is extremely rare, and to our knowledge no cases have been reported in the English literature. Amphetamine is an ingredient of recreational drugs such as Ecstacy and is known to cause hepatotoxicity. We describe here the case of a 55-year-old woman who developed acute liver failure during the treatment of ADHD with Adderall. She presented to the emergency room with worsening abdominal pain, malaise, and jaundice requiring hospitalization. She had a past history of partial hepatic resection secondary to metastasis from colon cancer which was under remission at the time of presentation. She recovered after intensive monitoring and conservative management. Adderall should be used carefully in individuals with underlying liver conditions.

  20. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.

    Science.gov (United States)

    Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme

    2017-02-01

    The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.

  1. Protective effect of Rabdosia amethystoides (Benth Hara extract on acute liver injury induced by Concanavalin A in mice through inhibition of TLR4-NF-κB signaling pathway

    Directory of Open Access Journals (Sweden)

    Ke-Feng Zhai

    2016-02-01

    Full Text Available Extract of Rabdosia amethystoides (Benth Hara (ERA, a traditional Chinese medicine has antibacterial, antiviral, anti-tumor, anti-hepatitis and anti-inflammatory properties. However, the hepatoprotective effects and molecular mechanisms of ERA on acute liver injury have not been fully elucidated. This study aims to investigate the anti-inflammatory effect and liver protection of ERA against the acute liver injury induced by Concanavalin A (Con A and its underlying molecular mechanisms in mice. Mice received ERA (50, 100, 150 mg/kg body weight by gavage before Con A intravenous administration. We found that ERA pretreatment was able to significantly reduce the elevated serum alanine and aspartate aminotransferase levels and liver necrosis in Con A-induced hepatitis. In addition, ERA treatment significantly decreased the myeloperoxidase, malondialdehyde levels and augmented superoxide dismutase level in the liver tissue, and also suppressed the secretion of proinflammatory cytokines in the serum, compared with Con A group by enzyme linked immunosorbent assay. Furthermore, we observed that ERA pretreatment can significantly decrease the expression level of Toll-like receptor (TLR 4 mRNA or protein in liver tissues. Further results showed that ERA pretreatment was capable of attenuating the activation of the NF-κB pathway by inhibiting IκBα kinase and p65 phosphorylation in Con A-induced liver injury. Our results demonstrate that ERA pretreatment has hepatoprotective property against Con A-induced liver injury through inhibition of inflammatory mediators in mice. The beneficial effect of ERA may be mediated by the downregulation of TLR4 expression and the inhibition of NF-κB activation.

  2. Drug-induced liver injury due to antibiotics.

    Science.gov (United States)

    Björnsson, Einar S

    Drug-induced liver injury (DILI) is an important differential diagnosis in patients with abnormal liver tests and normal hepatobiliary imaging. Of all known liver diseases, the diagnosis of DILI is probably one of the most difficult one to be established. In all major studies on DILI, antibiotics are the most common type of drugs that have been reported. The clinical phenotype of different types of antibiotics associated with liver injury is highly variable. Some widely used antibiotics such as amoxicillin-clavulanate have been shown to have a delayed onset on liver injury and recently cefazolin has been found to lead to liver injury 1-3 weeks after exposure of a single infusion. The other extreme is the nature of nitrofurantoin-induced liver injury, which can occur after a few years of treatment and lead to acute liver failure (ALF) or autoimmune-like reaction. Most patients with liver injury associated with use of antibiotics have a favorable prognosis. However, patients with jaundice have approximately 10% risk of death from liver failure and/or require liver transplantation. In rare instances, the hepatoxicity can lead to chronic injury and vanishing bile duct syndrome. Given, sometimes very severe consequences of the adverse liver reactions, it cannot be over emphasized that the indication for the different antibiotics should be evidence-based and symptoms and signs of liver injury from the drugs should lead to prompt cessation of therapy.

  3. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats.

    Science.gov (United States)

    Li, Chien-Chun; Yu, Hsiang-Fu; Chang, Chun-Hua; Liu, Yun-Ta; Yao, Hsien-Tsung

    2018-01-01

    The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO)] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg) and 400 LO (400 mg/kg) and its major component, citral (240 mg/kg), on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(P)H:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5'-diphospho (UDP) glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen. Copyright © 2017. Published by Elsevier B.V.

  4. The modulatory effect of Moringa oleifera leaf extract on endogenous antioxidant systems and inflammatory markers in an acetaminophen-induced nephrotoxic mice model

    Directory of Open Access Journals (Sweden)

    Govindarajan Karthivashan

    2016-07-01

    Full Text Available N-Acetyl-p-Aminophenol (APAP, also known as acetaminophen, is the most commonly used over-the counter analgesic and antipyretic medication. However, its overdose leads to both liver and kidney damage. APAP-induced toxicity is considered as one of the primary causes of acute liver failure; numerous scientific reports have focused majorly on APAP hepatotoxicity. Alternatively, not many works approach APAP nephrotoxicity focusing on both its mechanisms of action and therapeutic exploration. Moringa oleifera (MO is pervasive in nature, is reported to possess a surplus amount of nutrients, and is enriched with several bioactive candidates including trace elements that act as curatives for various clinical conditions. In this study, we evaluated the nephro-protective potential of MO leaf extract against APAP nephrotoxicity in male Balb/c mice. A single-dose acute oral toxicity design was implemented in this study. Group 2, 3, 4 and 5 received a toxic dose of APAP (400 mg/kg of bw, i.p and after an hour, these groups were administered with saline (10 mL/kg, silymarin—positive control (100 mg/kg of bw, i.p, MO leaf extract (100 mg/kg of bw, i.p, and MO leaf extract (200 mg/kg bw, i.p respectively. Group 1 was administered saline (10 mL/kg during both the sessions. APAP-treated mice exhibited a significant elevation of serum creatinine, blood urea nitrogen, sodium, potassium and chloride levels. A remarkable depletion of antioxidant enzymes such as SOD, CAT and GSH-Px with elevated MDA levels has been observed in APAP treated kidney tissues. They also exhibited a significant rise in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and decreased anti-inflammatory (IL-10 cytokine level in the kidney tissues. Disorganized glomerulus and dilated tubules with inflammatory cell infiltration were clearly observed in the histology of APAP treated mice kidneys. All these pathological changes were reversed in a dose-dependent manner after MO leaf extract

  5. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice.

    Directory of Open Access Journals (Sweden)

    Hong-Min Ni

    Full Text Available Chronic alcohol causes liver hypoxia and steatosis, which eventually develops into alcoholic liver disease (ALD. While it has been known that alcohol consumption activates hepatic hypoxia inducing factor-1α (HIF-1α, conflicting results regarding the role of HIF-1α in alcohol-induced liver injury and steatosis in mice have been reported. In the present study, we aimed to use hepatocyte-specific HIF-1β knockout mice to eliminate the possible compensatory effects of the single knockout of the 1α subunit of HIF to study the role of HIFs in ALD. C57BL/6 wild type mice were treated with acute ethanol to mimic human binge drinking. Matched wild-type and hepatocyte specific HIF-1β knockout mice were also subjected to a recently established Gao-binge alcohol model to mimic chronic plus binge conditions, which is quite common in human alcoholics. We found that acute alcohol treatment increased BNIP3 and BNIP3L/NIX expression in primary cultured hepatocytes and in mouse livers, suggesting that HIF may be activated in these models. We further found that hepatocyte-specific HIF-1β knockout mice developed less steatosis and liver injury following the Gao-binge model or acute ethanol treatment compared with their matched wild type mice. Mechanistically, protection against Gao-binge treatment-induced steatosis and liver injury was likely associated with increased FoxO3a activation and subsequent induction of autophagy in hepatocyte-specific HIF-1β knockout mice.

  6. Preventive Effects of Dexmedetomidine on the Liver in a Rat Model of Acid-Induced Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Velat Şen

    2014-01-01

    Full Text Available The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300–350 g were allocated randomly to four groups. In group 1, normal saline (NS was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI was found to be associated with increased malondialdehyde (MDA, total oxidant activity (TOA, oxidative stress index (OSI, and decreased total antioxidant capacity (TAC. Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P<0.05. The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI.

  7. Therapeutic hypothermia for acute liver failure

    DEFF Research Database (Denmark)

    Stravitz, R.T.; Larsen, Finn Stolze

    2009-01-01

    transplantation or spontaneous liver regeneration follows in short order. To buy time, the induction of therapeutic hypothermia (core temperature 32 degrees C-35 degrees C) has been shown to effectively bridge patients to transplant. Similar to the experience in patients with cerebral edema after other neurologic...... insults, hypothermia reduces cerebral edema and intracranial hypertension in patients with acute liver failure by decreasing splanchnic ammonia production, restoring normal regulation of cerebral hemodynamics, and lowering oxidative metabolism within the brain. Hypothermia may also ameliorate the degree...... of liver injury. Hypothermia has not been adequately studied for its safety and theoretically may increase the risk of infection, cardiac dysrhythmias, and bleeding, all complications independently associated with acute liver failure. Therefore, although an ample body of experimental and human data...

  8. Hepatoprotective effect of Crocus sativus (saffron petals extract against acetaminophen toxicity in male Wistar rats

    Directory of Open Access Journals (Sweden)

    Arash Omidi

    2014-09-01

    Full Text Available Objectives: Acetaminophen (APAP toxicity is known to be common and potentially fatal. This study aims to investigate the protective effects of hydroalcoholic extract, remaining from Crocus sativus petals (CSP against APAP-induced hepatotoxicity by measuring the blood parameters and studying the histopathology of liver in male rats. Materials and Methods: Wister rats (24 were randomly assigned into four groups including: I healthy, receiving normal saline; II Intoxicated, receiving only APAP (600 mg/kg; III pre-treated with low dose of CSP (10 mg /kg and receiving APAP (600 mg/kg; IV pre-treated with high dose of CSP (20 mg/kg and receiving APAP (600 mg/kg. Results: The APAP treatment resulted in higher levels of alanine aminotransferase (ALT, aspartate aminotransferase (AST, and bilirubin, along with lower total protein and albumin concentration than the control group. The administration of CSP with a dose of 20 mg/kg was found to result in lower levels of AST, ALT and bilirubin, with a significant higher concentration of total protein and albumin. The histopathological results regarding liver pathology, revealed sever conditions including cell swelling, severe inflammation and necrosis in APAP-exposed rats, which was quiet contrasting compared to the control group. The pre-treated rats with low doses of ‍CSP showed hydropic degeneration with mild necrosis in centrilobular areas of the liver, while the same subjects with high doses of ‍CSP appeared to have only mild hepatocyte degeneration. Conclusions: Doses of 20 mg/kg of CSP ameliorates APAP–induced acute liver injury in rats. It was concluded that the antioxidant property of CSP resulted in reducing the oxidative stress complications of toxic levels of APAP in intoxicated rats.

  9. EJST V9N2

    African Journals Online (AJOL)

    Acute oral toxicity study of Thymus serrulatus and Thymus schimperi from Ethiopia. Destaw Damtie1* ..... weight ratio, liver to body weight ratio and brain to body weight ratio in the .... oil in experimental model of acetaminophen- induced injury.

  10. Dietary docosahexaenoic acid-induced generation of liver lipid peroxides is not suppressed further by elevated levels of glutathione in ODS rats.

    Science.gov (United States)

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2006-04-01

    We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.

  11. Protective effect of Allium neapolitanum Cyr. versus Allium sativum L. on acute ethanol-induced oxidative stress in rat liver.

    Science.gov (United States)

    Nencini, Cristina; Franchi, Gian Gabriele; Cavallo, Federica; Micheli, Lucia

    2010-04-01

    This study investigated the protective effect of Allium neapolitanum Cyr., a spontaneous species of the Italian flora, compared with garlic (Allium sativum L.) on liver injury induced by ethanol in rats. Male albino Wistar rats were orally treated with fresh Allium homogenates (leaves or bulbs, 250 mg/kg) daily for 5 days, whereas controls received vehicle only. At the end of the experimental 5-day period, the animals received an acute ethanol dose (6 mL/kg, i.p.) 2 hours before the last Allium administration and were sacrificed 6 hours after ethanol administration. The activities of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) and the levels of malondialdehyde (MDA), ascorbic acid (AA), and reduced (GSH) and oxidized glutathione in liver tissue were determined. Administration of both Allium species for 5 days (leaves or bulbs) led to no statistical variation of nonenzymatic parameters versus the control group; otherwise Allium treatment caused an increase of GSH and AA levels compared with the ethanol group and a diminution of MDA levels, showing in addition that A. neapolitanum bulb had the best protective effect. Regarding to enzymatic parameters, GR and CAT activities were enhanced significantly compared with the ethanol group, whereas SOD activity showed a trend different from other parameters estimated. However, the treatment with both Allium species followed by acute ethanol administration reestablished the nonenzymatic parameters similar to control values and enhanced the activities of the enzymes measured. These results suggest that fresh Allium homogenates (leaves or bulbs) possess antioxidant properties and provide protection against ethanol-induced liver injury.

  12. Aberrant GSTP1 promoter methylation predicts short-term prognosis in acute-on-chronic hepatitis B liver failure.

    Science.gov (United States)

    Gao, S; Sun, F-K; Fan, Y-C; Shi, C-H; Zhang, Z-H; Wang, L-Y; Wang, K

    2015-08-01

    Glutathione-S-transferase P1 (GSTP1) methylation has been demonstrated to be associated with oxidative stress induced liver damage in acute-on-chronic hepatitis B liver failure (ACHBLF). To evaluate the methylation level of GSTP1 promoter in acute-on-chronic hepatitis B liver failure and determine its predictive value for prognosis. One hundred and five patients with acute-on-chronic hepatitis B liver failure, 86 with chronic hepatitis B (CHB) and 30 healthy controls (HC) were retrospectively enrolled. GSTP1 methylation level in peripheral mononuclear cells (PBMC) was detected by MethyLight. Clinical and laboratory parameters were obtained. GSTP1 methylation levels were significantly higher in patients with acute-on-chronic hepatitis B liver failure (median 16.84%, interquartile range 1.83-59.05%) than those with CHB (median 1.25%, interquartile range 0.48-2.47%; P chronic hepatitis B liver failure group, nonsurvivors showed significantly higher GSTP1 methylation levels (P chronic hepatitis B liver failure, GSTP1 methylation showed significantly better predictive value than MELD score [area under the receiver operating characteristic curve (AUC) 0.89 vs. 0.72, P chronic hepatitis B liver failure and shows high predictive value for short-term mortality. It might serve as a potential prognostic marker for acute-on-chronic hepatitis B liver failure. © 2015 John Wiley & Sons Ltd.

  13. Clinical heterogeneity in autoimmune acute liver failure

    Science.gov (United States)

    Chavez-Tapia, Norberto C; Martinez-Salgado, Julio; Granados, Julio; Uribe, Misael; Tellez-Avila, Felix I

    2007-01-01

    AIM: To describe the outcome and prognosis in a cohort of patients with acute liver failure due to autoimmune hepatitis without liver transplantation. METHODS: A retrospective trial was conducted in 11 patients with acute liver failure due to autoimmune hepatitis who attended the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran. Demographic, biochemical and severity indexes, and treatment and outcome were assessed. RESULTS: Among the 11 patients, with a median age of 31 years, 72% had inflammatory response syndrome, and six patients received corticosteroids. The mortality rate within four weeks was 56%, and the one-year survival was 27%. In the survivors, severity indexes were lower and 83% received corticosteroids. CONCLUSION: We observed a relatively high survival rate in patients with acute liver failure due to autoimmune hepatitis. This survival rate could be influenced by severity of the disease and/or use of corticosteroids. PMID:17465474

  14. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Angelina Huseinovic

    Full Text Available Acetaminophen (APAP, although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.

  15. Acetaminophen/paracetamol: A history of errors, failures and false decisions.

    Science.gov (United States)

    Brune, K; Renner, B; Tiegs, G

    2015-08-01

    Acetaminophen/paracetamol is the most widely used drug of the world. At the same time, it is probably one of the most dangerous compounds in medical use, causing hundreds of deaths in all industrialized countries due to acute liver failure (ALF). Publications of the last 130 years found in the usual databases were analyzed. Personal contacts existed to renowned researchers having contributed to the medical use of paracetamol and its precursors as H.U. Zollinger, S. Moeschlin, U. Dubach, J. Axelrod and others. Further information is found in earlier reviews by Eichengrün, Rodnan and Benedek, Sneader, Brune; comp. references. The history of the discovery of paracetamol starts with an error (active against worms), continues with a false assumption (paracetamol is safer than phenacetin), describes the first side-effect 'epidemy' (phenacetin nephropathy, drug-induced interstitial nephritis) and ends with the discovery of second-generation problems due to the unavoidable production of a highly toxic metabolite of paracetamol N-acetyl-p-benzoquinone imine (NAPQI) that may cause not only ALF and kidney damage but also impaired development of the fetus and the newborn child. It appears timely to reassess the risk/benefit ratio of this compound. © 2014 European Pain Federation - EFIC®

  16. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient.

    Science.gov (United States)

    Ates, İhsan; Kaplan, Mustafa; Yilmaz, Nisbet; Çiftçi, Filiz

    2015-01-01

    Acute hepatitis is a disorder that goes with liver cell necrosis and liver inflammation. Among the causes of acute hepatitis, the most common reasons are viral hepatitis. About 95% of the acute hepatitis generate because of hepatotropic viruses. Epstein-barr virus (EBV) and cytomegalovirus (CMV) are from the family of herpes viruses and rare causes of acute hepatitis. In this case report, acute hepatitis due to EBV and CMV coinfection will be described. Ates İ, Kaplan M, Yilmaz N, Çiftçi F. Epstein-Barr Virus and Cytomegalovirus induced Acute Hepatitis in Young Female Patient. Euroasian J Hepato-Gastroenterol 2015;5(1):60-61.

  17. Role of IRAK-M in alcohol induced liver injury.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available Increasing evidence suggests that innate immunity plays an important role in alcohol-induced liver injury and most studies have focused on positive regulation of innate immunity. The main objective of this study was to investigate the negative regulator of innate immunity, IL-1/Toll-like receptor (TLR signaling pathways and interleukin receptor-associated kinase-M (IRAK-M in alcoholic liver injury. We established an alcohol-induced liver injury model using wild type and IRAK-M deficient B6 mice and investigated the possible mechanisms. We found that in the absence of IRAK-M, liver damage by alcohol was worse with higher alanine transaminase (ALT, more immune cell infiltration and increased numbers of IFNγ producing cells. We also found enhanced phagocytic activity in CD68(+ cells. Moreover, our results revealed altered gut bacteria after alcohol consumption and this was more striking in the absence of IRAK-M. Our study provides evidence that IRAK-M plays an important role in alcohol-induced liver injury and IRAK-M negatively regulates the innate and possibly the adaptive immune response in the liver reacting to acute insult by alcohol. In the absence of IRAK-M, the hosts developed worse liver injury, enhanced gut permeability and altered gut microbiota.

  18. HMGB1 and Extracellular Histones Significantly Contribute to Systemic Inflammation and Multiple Organ Failure in Acute Liver Failure

    Directory of Open Access Journals (Sweden)

    Runkuan Yang

    2017-01-01

    Full Text Available Acute liver failure (ALF is the culmination of severe liver cell injury from a variety of causes. ALF occurs when the extent of hepatocyte death exceeds the hepatic regenerative capacity. ALF has a high mortality that is associated with multiple organ failure (MOF and sepsis; however, the underlying mechanisms are still not clear. Emerging evidence shows that ALF patients/animals have high concentrations of circulating HMGB1, which can contribute to multiple organ injuries and mediate gut bacterial translocation (BT. BT triggers/induces systemic inflammatory responses syndrome (SIRS, which can lead to MOF in ALF. Blockade of HMGB1 significantly decreases BT and improves hepatocyte regeneration in experimental acute fatal liver injury. Therefore, HMGB1 seems to be an important factor that links BT and systemic inflammation in ALF. ALF patients/animals also have high levels of circulating histones, which might be the major mediators of systemic inflammation in patients with ALF. Extracellular histones kill endothelial cells and elicit immunostimulatory effect to induce multiple organ injuries. Neutralization of histones can attenuate acute liver, lung, and brain injuries. In conclusion, HMGB1 and histones play a significant role in inducing systemic inflammation and MOF in ALF.

  19. HMGB1 and Extracellular Histones Significantly Contribute to Systemic Inflammation and Multiple Organ Failure in Acute Liver Failure.

    Science.gov (United States)

    Yang, Runkuan; Zou, Xiaoping; Tenhunen, Jyrki; Tønnessen, Tor Inge

    2017-01-01

    Acute liver failure (ALF) is the culmination of severe liver cell injury from a variety of causes. ALF occurs when the extent of hepatocyte death exceeds the hepatic regenerative capacity. ALF has a high mortality that is associated with multiple organ failure (MOF) and sepsis; however, the underlying mechanisms are still not clear. Emerging evidence shows that ALF patients/animals have high concentrations of circulating HMGB1, which can contribute to multiple organ injuries and mediate gut bacterial translocation (BT). BT triggers/induces systemic inflammatory responses syndrome (SIRS), which can lead to MOF in ALF. Blockade of HMGB1 significantly decreases BT and improves hepatocyte regeneration in experimental acute fatal liver injury. Therefore, HMGB1 seems to be an important factor that links BT and systemic inflammation in ALF. ALF patients/animals also have high levels of circulating histones, which might be the major mediators of systemic inflammation in patients with ALF. Extracellular histones kill endothelial cells and elicit immunostimulatory effect to induce multiple organ injuries. Neutralization of histones can attenuate acute liver, lung, and brain injuries. In conclusion, HMGB1 and histones play a significant role in inducing systemic inflammation and MOF in ALF.

  20. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats.

    Science.gov (United States)

    Yen, Feng-Lin; Wu, Tzu-Hui; Lin, Liang-Tzung; Cham, Thau-Ming; Lin, Chun-Ching

    2008-05-01

    Cuscuta chinensis is a commonly used traditional Chinese medicine to nourish the liver and kidney. Due to the poor water solubility of its major constituents such as flavonoids and lignans, its absorption upon oral administration could be limited. The purpose of the present study was to use the nanosuspension method to prepare C. chinensis nanoparticles (CN), and to compare the hepatoprotective and antioxidant effects of C. chinensis ethanolic extract (CE) and CN on acetaminophen-induced hepatotoxicity in rats. An oral dose of CE at 125 and 250 mg/kg and CN at 25 and 50mg/kg showed a significant hepatoprotective effect relatively to the same extent (P<0.05) by reducing levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. These biochemical assessments were supported by rat hepatic biopsy examinations. In addition, the antioxidant activities of CE and CN both significantly increased superoxide dismutase, catalase, glutathione peroxidase, and reduced malondialdehyde (P<0.05). Moreover, the results also indicated that the hepatoprotective and antioxidant effects of 50 mg/kg CN was effectively better than 125 mg/kg CE (P<0.05), and an oral dose of CN that is five times as less as CE could exhibit similar levels of outcomes. In conclusion, we suggest that the nanoparticles system can be applied to overcome other water poorly soluble herbal medicines and furthermore to decrease the treatment dosage.

  1. [Brain oedema and acute liver failure].

    Science.gov (United States)

    Spahr, L

    2003-04-01

    Brain oedema leading to intracranial hypertension occurs in a significant proportion of patients with acute liver failure in whom it is a leading cause of death. Although precise pathogenic mechanisms associated to this severe complication remain incompletely understood, increasing evidence points to gut-derived neurotoxins including ammonia as key mediators in cerebral osmotic and perfusion disturbances. The management of brain oedema and intracranial hypertension requires a multidisciplinar approach in a center where liver transplantation is available, as this option is the only treatment modality that provides improvement in outcome. This article reviews the most common causes of acute liver failure and the standard of supportive care management, and describes future potential therapeutic aspects of brain oedema and intracranial hypertension.

  2. A Challenge for Diagnosing Acute Liver Injury with Concomitant/Sequential Exposure to Multiple Drugs: Can Causality Assessment Scales Be Utilized to Identify the Offending Drug?

    Directory of Open Access Journals (Sweden)

    Roxanne Lim

    2014-01-01

    Full Text Available Drug-induced hepatotoxicity most commonly manifests as an acute hepatitis syndrome and remains the leading cause of drug-induced death/mortality and the primary reason for withdrawal of drugs from the pharmaceutical market. We report a case of acute liver injury in a 12-year-old Hispanic boy, who received a series of five antibiotics (amoxicillin, ceftriaxone, vancomycin, ampicillin/sulbactam, and clindamycin for cervical lymphadenitis/retropharyngeal cellulitis. Histopathology of the liver biopsy specimen revealed acute cholestatic hepatitis. All known causes of acute liver injury were appropriately excluded and (only drug-induced liver injury was left as a cause of his cholestasis. Liver-specific causality assessment scales such as Council for the International Organization of Medical Sciences/Roussel Uclaf Causality Assessment Method scoring system (CIOMS/RUCAM, Maria and Victorino scale, and Digestive Disease Week-Japan were applied to seek the most likely offending drug. Although clindamycin is the most likely cause by clinical diagnosis, none of causality assessment scales aid in the diagnosis.

  3. Assessment of emerging biomarkers of liver injury in human subjects.

    Science.gov (United States)

    Schomaker, Shelli; Warner, Roscoe; Bock, Jeff; Johnson, Kent; Potter, David; Van Winkle, Joyce; Aubrecht, Jiri

    2013-04-01

    Hepatotoxicity remains a major challenge in drug development. Although alanine aminotransferase (ALT) remains the gold standard biomarker of liver injury, alternative biomarker strategies to better predict the potential for severe drug-induced liver injury (DILI) are essential. In this study, we evaluated the utility of glutamate dehydrogenase (GLDH), purine nucleoside phosphorylase (PNP), malate dehydrogenase (MDH), and paraxonase 1 (PON1) as indicators of liver injury in cohorts of human subjects, including healthy subjects across age and gender, subjects with a variety of liver impairments, and several cases of acetaminophen poisoning. In the healthy subjects, levels of GLDH and MDH were not affected by age or gender. Reference ranges for GLDH and MDH in healthy subjects were 1-10 and 79-176U/L, respectively. In contrast, the levels of PON1 and PNP were not consistent across cohorts of healthy subjects. Furthermore, GLDH and MDH had a strong correlation with elevated ALT levels and possessed a high predictive power for liver injury, as determined by ROC analysis. In contrast, PON1 and PNP did not detect liver injury in our study. Finally, evaluation of patients with acetaminophen-induced liver injury provided evidence that both GLDH and MDH might have utility as biomarkers of DILI in humans. This study is the first to evaluate GLDH, MDH, PON1, and PNP in a large number of human subjects and, and it provides an impetus for prospective clinical studies to fully evaluate the diagnostic value of GLDH and MDH for detection of liver injury.

  4. Acute renal dysfunction in liver diseases

    OpenAIRE

    Betrosian, Alex P; Agarwal, Banwari; Douzinas, Emmanuel E

    2007-01-01

    Renal dysfunction is common in liver diseases, either as part of multiorgan involvement in acute illness or secondary to advanced liver disease. The presence of renal impairment in both groups is a poor prognostic indicator. Renal failure is often multifactorial and can present as pre-renal or intrinsic renal dysfunction. Obstructive or post renal dysfunction only rarely complicates liver disease. Hepatorenal syndrome (HRS) is a unique form of renal failure associated with advanced liver dise...

  5. Bridging a patient with acute liver failure to liver transplantation by the AMC-bioartificial liver

    NARCIS (Netherlands)

    van de Kerkhove, Maarten-Paul; di Florio, Ernesto; Scuderi, Vincenzo; Mancini, Antonio; Belli, Antonello; Bracco, Adele; Scala, Daniela; Scala, Simona; Zeuli, Laura; Di Nicuolo, Giuseppe; Amoroso, Pietro; Calise, Fulvio; Chamuleau, Robert A. F. M.

    2003-01-01

    Recently a phase I clinical trial has been started in Italy to bridge patients with acute liver failure (ALF) to orthotopic liver transplantation (OLT) by the AMC-bioartificial liver (AMC-BAL). The AMC-BAL is charged with 10 X 109 viable primary porcine hepatocytes isolated from a specified

  6. Brain expression of the water channels Aquaporin-1 and -4 in mice with acute liver injury, hyperammonemia and brain edema

    DEFF Research Database (Denmark)

    Eefsen, Martin; Jelnes, Peter; Schmidt, Lars E

    2010-01-01

    Cerebral edema is a feared complication to acute liver failure (ALF), but the pathogenesis is still poorly understood. The water channels Aquaporin-1 (Aqp1) and -4 (Aqp4) has been associated with brain edema formation in several neuropathological conditions, indicating a possible role of Aqp1 and....../or Aqp4 in ALF mediated brain edema. We induced acute liver injury and hyperammonemia in mice, to evaluate brain edema formation and the parallel expression of Aqp1 and Aqp4 in ALF. Liver injury and hyperammonemia were induced by +D-galactosamine (GLN) plus lipopolysaccharide (LPS) intraperitoneally......(6266) (p edema in mice with ALF....

  7. Piroxicam induced submassive necrosis of the liver.

    Science.gov (United States)

    Paterson, D; Kerlin, P; Walker, N; Lynch, S; Strong, R

    1992-01-01

    Several widely used non-steroidal anti-inflammatory drugs have been reported as causing severe hepatitis. Three cases of severe acute hepatitis have been reported in association with piroxicam. A fatal submassive necrosis that occurred in a 68 year old lady who had received piroxicam for 15 months is described. A 48 year old man who developed submassive hepatic necrosis six weeks after beginning piroxicam but was successfully treated with orthotopic liver transplantation is also reported. Piroxicam may induce submassive necrosis of the liver, probably as an idiosyncratic reaction. Images Figure 1 Figure 2 Figure 3 PMID:1446877

  8. Acute liver failure in a term neonate after repeated paracetamol administration

    OpenAIRE

    Bucaretchi, Fabio; Fernandes, Carla Borrasca; Branco, Maira Migliari; Capitani, Eduardo Mello De; Hyslop, Stephen; Caldas, Jamil Pedro S.; Moreno, Carolina Araujo; Porta, Gilda

    2014-01-01

    Objective: Severe hepatotoxicity caused by paracetamol is rare in neonates. We report a case of paracetamol-induced acute liver failure in a term neonate. Case description: A 26-day-old boy was admitted with intestinal bleeding, shock signs, slight liver enlargement, coagulopathy, metabolic acidosis (pH=7.21; bicarbonate: 7.1mEq/L), hypoglycemia (18mg/dL), increased serum aminotransferase activity (AST=4,039IU/L; ALT=1,087IU/L) and hyperbilirubinemia (total: 9.57mg/dL; direct: 6.18mg/dL)...

  9. Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: Application to acetaminophen injury

    International Nuclear Information System (INIS)

    Prot, Jean-Matthieu; Bunescu, Andrei; Elena-Herrmann, Bénédicte; Aninat, Caroline; Snouber, Leila Choucha; Griscom, Laurent; Razan, Florence; Bois, Frederic Y.; Legallais, Cécile

    2012-01-01

    We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treated biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology. -- Highlights: ► We cultivated liver cells in microfluidic biochips ► We integrated transcriptomic, proteomic and metabolomics profiles ► Pathways reconstructions were proposed in control and acetaminophen treated cultures ► Biomarkers were identified ► Comparisons with in vivo studies were proposed.

  10. Lansoprazole-induced acute lung and liver injury: a case report.

    Science.gov (United States)

    Atkins, Christopher; Maheswaran, Tina; Rushbrook, Simon; Kamath, Ajay

    2014-12-01

    A 61-year old woman was admitted with increasing dyspnea and deranged liver function tests. A chest X-ray revealed small volume lungs with reticulo-nodular shadowing. High resolution computed tomography of the chest revealed interlobular septal thickening. The patient subsequently underwent an open lung biopsy and ultrasound-guided liver biopsy, which were consistent with a hypersensitivity pneumonitis and drug-induced liver injury respectively. The patient had previously been commenced on lansoprazole 10 days before the onset of symptoms; this had been stopped at diagnosis. High dose prednisolone was commenced, and the patient went on to make a full recovery. Hypersensitivity pneumonitis is a form of interstitial lung disease that is rarely associated with lansoprazole; this is the first report of it causing an idiosyncratic reaction affecting the lung and liver simultaneously. This case demonstrates the importance of obtaining a full drug history, as early identification of the offending agent will improve outcomes.

  11. Acetaminophen

    Science.gov (United States)

    Apra® ... Acetaminophen is used to relieve mild to moderate pain from headaches, muscle aches, menstrual periods, colds and ... reactions to vaccinations (shots), and to reduce fever. Acetaminophen may also be used to relieve the pain ...

  12. Case Characterization, Clinical Features and Risk Factors in Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Aida Ortega-Alonso

    2016-05-01

    Full Text Available Idiosyncratic drug-induced liver injury (DILI caused by xenobiotics (drugs, herbals and dietary supplements presents with a range of both phenotypes and severity, from acute hepatitis indistinguishable of viral hepatitis to autoimmune syndromes, steatosis or rare chronic vascular syndromes, and from asymptomatic liver test abnormalities to acute liver failure. DILI pathogenesis is complex, depending on the interaction of drug physicochemical properties and host factors. The awareness of risk factors for DILI is arising from the analysis of large databases of DILI cases included in Registries and Consortia networks around the world. These networks are also enabling in-depth phenotyping with the identification of predictors for severe outcome, including acute liver failure and mortality/liver transplantation. Genome wide association studies taking advantage of these large cohorts have identified several alleles from the major histocompatibility complex system indicating a fundamental role of the adaptive immune system in DILI pathogenesis. Correct case definition and characterization is crucial for appropriate phenotyping, which in turn will strengthen sample collection for genotypic and future biomarkers studies.

  13. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model.

    Science.gov (United States)

    Jiang, Jun; Wei, Jishu; Wu, Junli; Gao, Wentao; Li, Qiang; Jiang, Kuirong; Miao, Yi

    2016-01-01

    Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury.

  14. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2016-01-01

    Full Text Available Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury.

  15. ACUTE APENDICITIS IN LIVER TRANSPLANT RECIPIENTS.

    Science.gov (United States)

    Fonseca-Neto, Olival Cirilo Lucena da; Lima, Heloise Caroline de Souza; Melo, Paulo Sérgio Vieira de; Lemos, Roberto; Leitão, Laércio; Amorim, Américo Gusmão; Lacerda, Cláudio Moura

    2016-03-01

    Appendicitis is a common cause of emergency surgery that in the population undergoing organ transplantation presents a rare incidence due to late diagnosis and treatment. To report the occurrence of acute appendicitis in a cohort of liver transplant recipients. Retrospective analysis in a period of 12 years among 925 liver transplants, in witch five cases of acute appendicitis were encountered. Appendicitis occurred between three and 46 months after liver transplantation. The age ranged between 15 and 58 years. There were three men and two women. The clinical presentations varied, but not discordant from those found in non-transplanted patients. Pain was a symptom found in all patients, in two cases well located in the right iliac fossa (40%). Two patients had symptoms characteristic of peritoneal irritation (40%) and one patient had abdominal distention (20%). All patients were submitted to laparotomies. In 20% there were no complications. In 80% was performed appendectomy complicated by suppuration (40%) or perforation (40%). Superficial infection of the surgical site occurred in two patients, requiring clinical management. The hospital stay ranged from 48 h to 45 days. Acute appendicitis after liver transplantation is a rare event being associated with a high rate of drilling, due to delays in diagnosis and therapy, and an increase in hospital stay.

  16. Comparison of Intravenous Metoclopramide and Acetaminophen in Primary Headaches: a Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Gholamreza Faridaalaee

    2015-05-01

    Full Text Available Introduction: Headache is the most common neurologic symptom among referees to the emergency department (ED, while the best treatment has not yet been found. Therefore, in the present study pain relief effects of metoclopramide and acetaminophen were compared in patients suffered acute primary headache. Methods: This study was a double-blind randomized clinical trial performed in Imam Khomeini Hospital, Urmia, Iran, through July to October 2014.  All adult patients, with acute primary (migraine, tension type and cluster headache referred to the ED were included in this study. Pain Severity was measured with 10 centimeters numeric rating scales. The patients were randomized in to two groups of intravenous (IV metoclopramide (10 milligrams and acetaminophen (1 gram. Pain score, success rate, and complication of drugs were compared within administration time and 15, 30, 60, as well as 120 minutes after medication. Results: 100 patients were equally categorized in to two groups (mean age of 32 ± 13.2 years; 51.2% male. Initial pain score in metoclopramide and acetaminophen groups were 9.1 and 9.4, respectively (p=0.46. IV metoclopramide did not have any analgesic effect at 15 minutes, but had good effect at 30 minutes. While, the analgesic effect of acetaminophen initiated after 15 minutes. After 2 hours, both drugs had good treatment effect on primary headaches (p<0.001. Conclusion: The present study demonstrated that efficacy of metoclopramide for pain relief in primary headaches is lower than acetaminophen.  In this regard, success rate of acetaminophen was 42.0% versus 0% for metoclopramide within 15 minutes. The efficacy of acetaminophen continued until 60 minutes.

  17. Hepatoprotective effect of ethanolic extract of Trichosanthes lobata on paracetamol-induced liver toxicity in rats

    Directory of Open Access Journals (Sweden)

    Rajasekaran Aiyalu

    2012-05-01

    Full Text Available Abstract Background Trichosanthes lobata (family cucurbitaceae is used to treat malarial fever and liver disorders. This study aims to investigate possible hepatoprotective activities of ethanolic extract of Trichosanthes lobata against paracetamol-induced hepatotoxicity. Methods Hepatotoxicity was induced in Wistar male rats by oral administration, 2 g/kg body weight on 7th day after the administration of ethanolic extract of Trichosanthes lobata and silymarin (100 mg/kg. Ethanolic extract of Trichosanthes lobata was administered orally at doses of 200 mg/kg and 400 mg/kg body weight daily for 7 days. Several serum markers, aspartate transaminase, alanine transaminase, alkaline phosphatase, bilirubin, total protein was measured to assess the effect of the extract on paracetamol (acetaminophen-induced hepatic damage. The study included histopathological examination of liver sections. Results Blood samples from rats treated with ethanolic extract of Trichosanthes lobata (200 mg/kg body weight and 400 mg/kg body weight had significant reductions in serum markers in paracetamol administered animals, indicating the effect of the extract in restoring the normal functional ability of hepatocytes. Silymarin (100 mg/kg, p.o. was used as a reference drug. Conclusion The ethanolic extract of Trichosanthes lobata exhibits protective effects against paracetamol‒induced hepatotoxicity.

  18. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    Directory of Open Access Journals (Sweden)

    Dan Xu

    2014-04-01

    Full Text Available Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU] developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers.Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers.FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology

  19. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    Science.gov (United States)

    Xu, Dan; Nishimura, Toshi; Nishimura, Sachiko; Zhang, Haili; Zheng, Ming; Guo, Ying-Ying; Masek, Marylin; Michie, Sara A; Glenn, Jeffrey; Peltz, Gary

    2014-04-01

    Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers. Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers. FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve

  20. Stellate Cell Activation and Imbalanced Expression of TGF-β1/TGF-β3 in Acute Autoimmune Liver Lesions Induced by ConA in Mice

    Directory of Open Access Journals (Sweden)

    Liyun Wang

    2017-01-01

    Full Text Available Objective. To study the pathogenic feature of liver injury, activation of hepatic stellate cells, and dynamic expression of TGF-β1/TGF-β3 to reveal their role in liver injury induced by ConA. Methods. Mice were randomly divided into control group and ConA treatment group. ConA (20 mg/kg was injected through vena caudalis in ConA treatment group; the controls received the same volume of saline injection. After injection for 2 h, 8 h, 24 h, and 48 h, animals were terminated. Blood, liver, and spleen were harvested. Liver function and histopathology were studied. α-SMA, vimentin, TGF-β1, and TGF-β3 were detected. Results. After ConA injection, liver damage started to increase. Expression of α-SMA, vimentin, TGF-β1, and TGF-β3 was significantly enhanced; all above indicators reached peak at 8 h; but from 24 h after ConA injection, TGF-β3 expression began to decline, while the TGF-β1/TGF-β3 ratio at 48 h was significantly lower than control. Conclusion. (1 Autoimmune liver injury induced by ConA showed time-based features, in which the most serious liver lesions happened at 8 h after ConA injection. (2 Early activation of HSC and imbalance expression of TGF-β1 and TGF-β3 existed in ConA-induced acute autoimmune liver injury, which may be associated with liver dysfunction and the mechanisms of progression to fibrosis.

  1. Changing Interdigestive Migrating Motor Complex in Rats under Acute Liver Injury

    Directory of Open Access Journals (Sweden)

    Mei Liu

    2014-01-01

    Full Text Available Gastrointestinal motility disorder is a major clinical manifestation of acute liver injury, and interdigestive migrating motor complex (MMC is an important indicator. We investigated the changes and characteristics of MMC in rats with acute liver injury. Acute liver injury was created by D-galactosamine, and we recorded the interdigestive MMC using a multichannel physiological recorder and compared the indexes of interdigestive MMC. Compared with normal controls, antral MMC Phase I duration was significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The duodenal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The jejunal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury compared with normal controls. Compared with the normal controls, rats with acute liver injury had a significantly prolonged interdigestive MMC cycle, related mainly to longer MMC Phases I and IV, shortened MMC Phase III, and MMC Phase II characterized by increased migrating clustered contractions, which were probably major contributors to the gastrointestinal motility disorders.

  2. Intact thrombin generation and decreased fibrinolytic capacity in patients with acute liver injury or acute liver failure

    NARCIS (Netherlands)

    Lisman, T.; Bakhtiari, K.; Adelmeijer, J.; Meijers, J. C. M.; Porte, R. J.; Stravitz, R. T.

    2012-01-01

    . Background: It has been well established that hemostatic potential in patients with chronic liver disease is in a rebalanced status due to a concomitant decrease in pro- and antihemostatic drivers. The hemostatic changes in patients with acute liver injury/failure (ALI/ALF) are similar but not

  3. Intact thrombin generation and decreased fibrinolytic capacity in patients with acute liver injury or acute liver failure

    NARCIS (Netherlands)

    Lisman, T.; Bakhtiari, K.; Adelmeijer, J.; Meijers, J. C. M.; Porte, R. J.; Stravitz, R. T.

    . Background: It has been well established that hemostatic potential in patients with chronic liver disease is in a rebalanced status due to a concomitant decrease in pro- and antihemostatic drivers. The hemostatic changes in patients with acute liver injury/failure (ALI/ALF) are similar but not

  4. Experimental approach to IGF-1 therapy in CCl4-induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency.

    Science.gov (United States)

    Morales-Garza, Luis A; Puche, Juan E; Aguirre, Gabriel A; Muñoz, Úrsula; García-Magariño, Mariano; De la Garza, Rocío G; Castilla-Cortazar, Inma

    2017-05-04

    Cell necrosis, oxidative damage, and fibrogenesis are involved in cirrhosis development, a condition in which insulin-like growth factor 1 (IGF-1) levels are diminished. This study evaluates whether the exogenous administration of low doses of IGF-1 can induce hepatoprotection in acute carbon tetrachloride (CCl 4 )-induced liver damage compared to healthy controls (Wt Igf +/+ ). Additionally, the impact of IGF-1 deficiency on a damaged liver was investigated in mice with a partial deficit of this hormone (Hz Igf1 +/- ). Three groups of 25 ± 5-week-old healthy male mice (Wt Igf +/+ ) were included in the protocol: untreated controls (Wt). Controls that received CCl 4 (Wt + CCl 4 ) and Wt + CCl 4 were treated subcutaneously with IGF-1 (2 µg/100 g body weight/day) for 10 days (Wt + CCl 4  + IGF1). In parallel, three IGF-1-deficient mice (Hz Igf1 +/- ) groups were studied: untreated Hz, Hz + CCl 4 , and Hz + CCl 4  + IGF-1. Microarray and real-time quantitative polymerase chain reaction (RT-qPCR) analyses, serum aminotransferases levels, liver histology, and malondialdehyde (MDA) levels were assessed at the end of the treatment in all groups. All data represent mean ± SEM. An altered gene coding expression pattern for proteins of the extracellular matrix, fibrosis, and cellular protection were found, as compared to healthy controls, in which IGF-1 therapy normalized in the series including healthy mice. Liver histology showed that Wt + CCl 4  + IGF1 mice had less oxidative damage, fibrosis, lymphocytic infiltrate, and cellular changes when compared to the Wt + CCl 4 . Moreover, there was a correlation between MDA levels and the histological damage score (Pearson's r = 0.858). In the IGF-1-deficient mice series, similar findings were identified, denoting a much more vulnerable hepatic parenchyma. IGF1 treatment improved the biochemistry, histology, and genetic expression of pro-regenerative and cytoprotective factors in both series

  5. Late-onset acute rejection after living donor liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Nobuhisa Akamatsu; Yasuhiko Sugawara; Sumihito Tamura; Junichi Keneko; Yuichi Matsui; Kiyoshi Hasegawa; Masatoshi Makuuchi

    2006-01-01

    AIM: To investigate the incidence and risk factors of late-onset acute rejection (LAR) and to clarify the effectiveness of our immunosuppressive regime consisting of life-long administration of tacrolimus and steroids.METHODS: Adult living donor liver transplantation recipients (n = 204) who survived more than 6 mo after living donor liver transplantation were enrolled.Immunosuppression was achieved using tacrolimus and methylprednisolone. When adverse effects of tacrolimus were detected, the patient was switched to cyclosporine. Six months after transplantation,tacrolimus or cyclosporine was carefully maintained at a therapeutic level. The methylprednisolone dosage was maintained at 0.05 mg/kg per day by oral administration.Acute rejections that occurred more than 6 mo after the operation were defined as late-onset. The median followup period was 34 mo.RESULTS: LAR was observed in 15 cases (7%) and no chronic rejection was observed. The incidence of hyperlipidemia, chronic renal failure, new-onset posttransplantation diabetes, and deep fungal infection were 13%, 2%, 24%, and 17%, respectively. Conversion from tacrolimus to cyclosporine was required in 38 patients (19%). Multivariate analysis revealed that a cyclosporinebased regimen was significantly associated with LAR.CONCLUSION: Both LAR and drug-induced adverse events happen at a low incidence, supporting the safety and efficacy of the present immunosuppression regimen for living donor liver transplantation.

  6. Predisposing Factors in Acute-on-Chronic Liver Failure

    DEFF Research Database (Denmark)

    Trebicka, J.

    2016-01-01

    Acute-on-chronic liver failure (ACLF) is a syndrome with high short-term mortality in patients with chronic liver disease. The definition of ACLF has been addressed recently in many publications, and despite regional differences the number and severity of organ failures are decisive for the prese......Acute-on-chronic liver failure (ACLF) is a syndrome with high short-term mortality in patients with chronic liver disease. The definition of ACLF has been addressed recently in many publications, and despite regional differences the number and severity of organ failures are decisive...... hypertension might predispose for the development of ACLF after proper injury and response. © 2016 by Thieme Medical Publishers, Inc....

  7. Anti-fatty liver effects of oils from Zingiber officinale and Curcuma longa on ethanol-induced fatty liver in rats.

    Science.gov (United States)

    Nwozo, Sarah Onyenibe; Osunmadewa, Damilola Adeola; Oyinloye, Babatunji Emmanuel

    2014-01-01

    The present study is aimed at evaluating the protective effects of oils from Zingiber officinale (ginger) and Curcuma longa (turmeric) on acute ethanol-induced fatty liver in male Wistar rats. Ferric reducing antioxidant power activity and oxygen radical absorbance capacity of the oils were evaluated ex vivo. Rats were pretreated for 28 d with standard drug (Livolin Forte) and oils from Z. officinale and C. longa before they were exposed to 45% ethanol (4.8 g/kg) to induce acute fatty liver. Histological changes were observed and the degree of protection was measured by using biochemical parameters such as alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activities. Serum triglyceride (TG) level, total cholesterol (TC) level and the effects of both oils on reduced gluthatione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and hepatic malondialdehyde (MDA) levels were estimated. Oils from Z. officinale and C. longa at a dose of 200 mg/kg showed hepatoprotection by decreasing the activities of serum enzymes, serum TG, serum TC and hepatic MDA, while they significantly restored the level of GSH as well as GST and SOD activities. Histological examination of rats tissues was related to the obtained results. From the results it may be concluded that oils from Z. officinale and C. longa (200 mg/kg) exhibited hepatoprotective activity in acute ethanol-induced fatty liver and Z. officinale oil was identified to have better effects than C. longa oil.

  8. Acute Liver Failure among Patients on Efavirenz-Based Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Innocent Lule Segamwenge

    2018-01-01

    Full Text Available Objectives. To describe the clinical characteristics of patients presenting with fulminant liver failure after varying periods of exposure to Efavirenz containing antiretroviral medications. Methods. We report a series of 4 patients with human immunodeficiency virus (HIV infection who were admitted with acute liver failure (ALF over a 6-month period. All these patients had been treated with a range of Efavirenz containing antiretroviral regimens and were negative for hepatitis A, B, and C infections as well as other opportunistic infections, all were negative for autoimmune hepatitis, and none had evidence of chronic liver disease or use of alcohol or herbal medications. Information on patient clinical characteristics, current antiretroviral regimen, CD4 count, HIV-1 RNA levels, and clinical chemistry parameters was collected. Informed consent was provided. Results. During a 6-month period, four patients without other known risk factors for acute hepatitis presented with symptomatic drug-induced liver injury with varying symptoms and outcomes. The pattern of liver injury was hepatocellular for all the 4 cases. Liver biopsies were done for all the four cases and the results showed a heavy mixed inflammatory cell infiltrate with eosinophils. For three patients withdrawal of Efavirenz from their antiretroviral regimen was sufficient to restore transaminase levels to normal and led to improvement of clinical symptoms. For one patient his clinical course was characterized by fulminant liver failure and fluctuating episodes of hepatic encephalopathy which ultimately resulted in his death. Conclusion. Hepatotoxicity of Efavirenz is not as rare as previously described in the literature and does actually present with fatal outcomes. The key message to note is that frequent monitoring of liver enzymes should be done at initiation of antiretroviral therapy and should continue throughout the treatment period.

  9. Diet Restriction Inhibits Apoptosis and HMGB1 Oxidation and Promotes Inflammatory Cell Recruitment during Acetaminophen Hepatotoxicity

    Science.gov (United States)

    Antoine, Daniel James; Williams, Dominic P; Kipar, Anja; Laverty, Hugh; Park, B Kevin

    2010-01-01

    Acetaminophen (APAP) overdose is a major cause of acute liver failure and serves as a paradigm to elucidate mechanisms, predisposing factors and therapeutic interventions. The roles of apoptosis and inflammation during APAP hepatotoxicity remain controversial. We investigated whether fasting of mice for 24 h can inhibit APAP-induced caspase activation and apoptosis through the depletion of basal ATP. We also investigated in fasted mice the critical role played by inhibition of caspase-dependent cysteine 106 oxidation within high mobility group box-1 protein (HMGB1) released by ATP depletion in dying cells as a mechanism of immune activation. In fed mice treated with APAP, necrosis was the dominant form of hepatocyte death. However, apoptosis was also observed, indicated by K18 cleavage, DNA laddering and procaspase-3 processing. In fasted mice treated with APAP, only necrosis was observed. Inflammatory cell recruitment as a consequence of hepatocyte death was observed only in fasted mice treated with APAP or fed mice cotreated with a caspase inhibitor. Hepatic inflammation was also associated with loss in detection of serum oxidized-HMGB1. A significant role of HMGB1 in the induction of inflammation was confirmed with an HMGB1-neutralizing antibody. The differential response between fasted and fed mice was a consequence of a significant reduction in basal hepatic ATP, which prevented caspase processing, rather than glutathione depletion or altered APAP metabolism. Thus, the inhibition of caspase-driven apoptosis and HMGB1 oxidation by ATP depletion from fasting promotes an inflammatory response during drug-induced hepatotoxicity/liver pathology. PMID:20811657

  10. Maresin 1, a Proresolving Lipid Mediator, Mitigates Carbon Tetrachloride-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Ruidong Li

    2016-01-01

    Full Text Available Maresin 1 (MaR 1 was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb and mitogen-activated protein kinases (MAPKs in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway.

  11. Drug-Induced Liver Injury Associated with Complementary and Alternative Medicines

    Science.gov (United States)

    Takahashi, Koji; Kanda, Tatsuo; Yasui, Shin; Haga, Yuki; Kumagai, Junichiro; Sasaki, Reina; Wu, Shuang; Nakamoto, Shingo; Nakamura, Masato; Arai, Makoto; Yokosuka, Osamu

    2016-01-01

    A 24-year-old man was admitted due to acute hepatitis with unknown etiology. After his condition and laboratory data gradually improved with conservative therapy, he was discharged 1 month later. Two months after his discharge, however, liver dysfunction reappeared. After his mother accidentally revealed that he took complementary and alternative medicine, discontinuation of the therapy caused his condition to improve. Finally, he was diagnosed with a recurrent drug-induced liver injury associated with Japanese complementary and alternative medicine. It is important to take the medical history in detail and consider complementary and alternative medicine as a cause of liver disease. PMID:28100990

  12. Acute-on-chronic liver failure: a review

    Directory of Open Access Journals (Sweden)

    Zamora Nava LE

    2014-04-01

    Full Text Available Luis Eduardo Zamora Nava,1 Jonathan Aguirre Valadez,2 Norberto C Chávez-Tapia,3 Aldo Torre21Department of Endoscopy, 2Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, 3Obesity and Digestive Diseases Unit, Medica Sur Clinic and Foundation, Mexico City, MexicoAbstract: There is no universally accepted definition of acute-on-chronic liver failure; however, it is recognized as an entity characterized by decompensation from an underlying chronic liver disease associated with organ failure that conveys high short-term mortality, with alcoholism and infection being the most frequent precipitating events. The pathophysiology involves inflammatory processes associated with a trigger factor in susceptible individuals (related to altered immunity in the cirrhotic population. This review addresses the different definitions developed by leading research groups, epidemiological and pathophysiological aspects, and the latest treatments for this entity.Keywords: acute-on-chronic liver failure, cirrhosis, organ failure, acute kidney injury, infection

  13. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    Science.gov (United States)

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P L; Hadi, Mackenzie; Laarakkers, Coby M M; Masereeuw, R.|info:eu-repo/dai/nl/155644033; Groothuis, Geny M M; Russel, Frans G M

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker

  15. Chronic Uridine Administration Induces Fatty Liver and Pre-Diabetic Conditions in Mice.

    Directory of Open Access Journals (Sweden)

    Yasuyo Urasaki

    Full Text Available Uridine is a pyrimidine nucleoside that exerts restorative functions in tissues under stress. Short-term co-administration of uridine with multiple unrelated drugs prevents drug-induced liver lipid accumulation. Uridine has the ability to modulate liver metabolism; however, the precise mechanism has not been delineated. In this study, long-term effects of uridine on liver metabolism were examined in both HepG2 cell cultures and C57BL/6J mice. We report that uridine administration was associated with O-GlcNAc modification of FOXO1, increased gluconeogenesis, reduced insulin signaling activity, and reduced expression of a liver-specific fatty acid binding protein FABP1. Long-term uridine feeding induced systemic glucose intolerance and severe liver lipid accumulation in mice. Our findings suggest that the therapeutic potentials of uridine should be designed for short-term acute administration.

  16. Expression, Purification and Bioactivities Analysis of Recombinant Active Peptide from Shark Liver

    Directory of Open Access Journals (Sweden)

    Boping Ye

    2009-06-01

    Full Text Available The Active Peptide from Shark Liver (APSL was expressed in E. coli BL21 cells. The cDNA encoding APSL protein was obtained from shark regenerated hepatic tissue by RT-PCR, then it was cloned in the pET-28a expression vector. The expressed fusion protein was purified by Ni-IDA affinity chromatography. SDS-PAGE and HPLC analysis showed the purity of the purified fusion protein was more than 98%. The recombinant APSL (rAPSL was tested for its biological activity both in vitro, by its ability to improve the proliferation of SMMC7721 cells, and in vivo, by its significant protective effects against acute hepatic injury induced by CCl4 and AAP (acetaminophen in mice. In addition, the rAPSL could decrease the blood glucose concentration of mice with diabetes mellitus induced by alloxan. Paraffin sections of mouse pancreas tissues showed that rAPSL (3 mg/kg could effectively protect mouse islets from lesions induced by alloxan, which indicated its potential application in theoretical research and industry.

  17. Living Donor Liver Transplantation for Acute Liver Failure : Comparing Guidelines on the Prediction of Liver Transplantation.

    Science.gov (United States)

    Yoshida, Kazuhiro; Umeda, Yuzo; Takaki, Akinobu; Nagasaka, Takeshi; Yoshida, Ryuichi; Nobuoka, Daisuke; Kuise, Takashi; Takagi, Kosei; Yasunaka, Tetsuya; Okada, Hiroyuki; Yagi, Takahito; Fujiwara, Toshiyoshi

    2017-10-01

    Determining the indications for and timing of liver transplantation (LT) for acute liver failure (ALF) is essential. The King's College Hospital (KCH) guidelines and Japanese guidelines are used to predict the need for LT and the outcomes in ALF. These guidelines' accuracy when applied to ALF in different regional and etiological backgrounds may differ. Here we compared the accuracy of new (2010) Japanese guidelines that use a simple scoring system with the 1996 Japanese guidelines and the KCH criteria for living donor liver transplantation (LDLT). We retrospectively analyzed 24 adult ALF patients (18 acute type, 6 sub-acute type) who underwent LDLT in 1998-2009 at our institution. We assessed the accuracies of the 3 guidelines' criteria for ALF. The overall 1-year survival rate was 87.5%. The new and previous Japanese guidelines were superior to the KCH criteria for accurately predicting LT for acute-type ALF (72% vs. 17%). The new Japanese guidelines could identify 13 acute-type ALF patients for LT, based on the timing of encephalopathy onset. Using the previous Japanese guidelines, although the same 13 acute-type ALF patients (72%) had indications for LT, only 4 patients were indicated at the 1st step, and it took an additional 5 days to decide the indication at the 2nd step in the other 9 cases. Our findings showed that the new Japanese guidelines can predict the indications for LT and provide a reliable alternative to the previous Japanese and KCH guidelines.

  18. Case Report: Acute Fatty Liver Of Pregnancy In A 30-year Old ...

    African Journals Online (AJOL)

    Acute fatty liver of pregnancy is an uncommon, potentially fatal disorder that usually occurs in the third trimester of pregnancy or in the early post partum. We present here a 30-year-old Nigerian primigravida with acute fatty liver of pregnancy. She was successfully managed and discharged. Keywords: Acute fatty liver of ...

  19. 76 FR 2691 - Prescription Drug Products Containing Acetaminophen; Actions To Reduce Liver Injury From...

    Science.gov (United States)

    2011-01-14

    ..., chronic alcoholism, acute excess alcohol use, and use of anticonvulsant or antituberculosis medications... individuals who, for a variety of reasons (e.g., existing liver disease, chronic alcohol use) are particularly...

  20. Role of Vitamin C As A Potent Antioxidant in Acute Radiation Induced Liver Disease (RILD) Among Male Albino Rats

    International Nuclear Information System (INIS)

    Ezz El Arab, A.; Ayad, S.K.Y.; El Fouly, A.

    2012-01-01

    Recent studies demonstrated the role of vitamin C as antioxidant in alleviating organ damage caused by gamma irradiation. The present study was conducted to find out the effect of vitamin C on liver biochemical functions such as serum ALT, AST, albumin and bilirubin after experimental liver damage induced by gamma irradiation. Rats irradiated with gamma radiation were used as a model of liver injury terminating with necro inflammatory activity and acute hepatitis. Forty male albino rats were classified into 6 groups (G0-G5). G0 included 8 male albino rats that were divided to 2 subgroups (4 rats/subgroup). Both subgroups were exposed to gamma irradiation with 6 Gy as a single dose. The first subgroup was left for 3 weeks then serum and liver samples were collected while in the second subgroup, 2 rats were died and the remaining 2 rats were left for 6 weeks then serum and liver samples were collected. G1 was the negative control while in the rest groups, the whole body of rats was exposed to gamma irradiation of dose 8 Gy divided to 2 doses (4 Gy/one dose) at one week interval in between. G2 included 12 albino rats divided into 3 subgroups (4 rats/subgroup). The whole body of albino rats of G2 was exposed to 8 Gy gamma irradiation that divided as mentioned before. Serum and liver samples were collected after one day, two days and four days after last dose of irradiation. G3 also included 8 rats that were divided into 2 subgroups (4 rats/subgroup) and whole body was exposed to 8 Gy gamma irradiation that were divided as mentioned before. Serum and liver samples were collected after one week for one subgroup and 2 weeks for other subgroup after last dose of irradiation. The rest 2 groups (4 rats/group) were exposed to 8Gy gamma irradiation divided as before, but the rats in one group were orally supplemented with low dose of vitamin C. G4 and the others were supplemented with high dose of vitamin C for 2 weeks starting after last dose of irradiation (G5) then serum

  1. Plasma osteopontin in acute liver failure

    DEFF Research Database (Denmark)

    Srungaram, Praveen; Rule, Jody A; Yuan, He Jun

    2015-01-01

    BACKGROUND: Osteopontin (OPN) is a novel phosphoglycoprotein expressed in Kupffer cells that plays a pivotal role in activating natural killer cells, neutrophils and macrophages. Measuring plasma OPN levels in patients with acute liver failure (ALF) might provide insights into OPN function...... in the setting of massive hepatocyte injury. METHODS: OPN levels were measured using a Quantikine® ELISA assay on plasma from 105 consecutive ALF patients enrolled by the US Acute Liver Failure Study Group, as well as controls including 40 with rheumatoid arthritis (RA) and 35 healthy subjects both before, and 1...... and 3 days after undergoing spine fusion (SF) surgery as a model for acute inflammation. RESULTS: Median plasma OPN levels across all etiologies of ALF patients were elevated 10- to 30-fold: overall median 1055ng/mL; range: 33-19,127), when compared to healthy controls (median in pre-SF patients: 41ng...

  2. Antioxidant and hepatoprotective effects of Capparis spinosa L. fractions and Quercetin on tert-butyl hydroperoxide- induced acute liver damage in mice

    Directory of Open Access Journals (Sweden)

    Heibatullah Kalantari

    2018-01-01

    Full Text Available The present study investigates the antioxidant and hepatoprotective effects of Capparis spinosa L. and Quercetin in tert-butyl hydroperoxide (t-BHP induced acute liver damage. Different fractions of C. spinosa were examined for total phenolic content and antioxidant property. Among these fractions, hydroalcoholic extract was used to assess the hepatoprotective effect in tert-butyl hydroperoxide (t-BHP induced hepatotoxicity model by determining serum biochemical markers, sleeping time and antioxidant assay such as reduced glutathione (GSH as well as histopathological examination of liver tissues. The total phenolic and Quercetin contents of hydroalcoholic fraction were significantly higher than other fractions. It also showed high antioxidant activity. Pretreatment with hydroalcoholic fraction at the dose of 400 mg/kg and Quercetin at the dose of 20 mg/kg showed liver protection against t-BHP induced hepatic injury, as it was evident by a significant decrease in serum enzymes marker, sleeping time and MDA and an increase in the GSH, SOD and CAT activities confirmed by pathology tests. The final results ascertained the hepatoprotective and antioxidant effects of C. spinosa and Quercetin in a dose-dependent manner. Moreover, this study suggests that possible mechanism of this protection may be associated with its property of scavenging free radicals which may be due to the presence of phenolic compounds.

  3. Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: Method validation and application to a neonatal pharmacokinetic study.

    Science.gov (United States)

    Cook, Sarah F; King, Amber D; van den Anker, John N; Wilkins, Diana G

    2015-12-15

    Drug metabolism plays a key role in acetaminophen (paracetamol)-induced hepatotoxicity, and quantification of acetaminophen metabolites provides critical information about factors influencing susceptibility to acetaminophen-induced hepatotoxicity in clinical and experimental settings. The aims of this study were to develop, validate, and apply high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) methods for simultaneous quantification of acetaminophen, acetaminophen-glucuronide, acetaminophen-sulfate, acetaminophen-glutathione, acetaminophen-cysteine, and acetaminophen-N-acetylcysteine in small volumes of human plasma and urine. In the reported procedures, acetaminophen-d4 and acetaminophen-d3-sulfate were utilized as internal standards (IS). Analytes and IS were recovered from human plasma (10μL) by protein precipitation with acetonitrile. Human urine (10μL) was prepared by fortification with IS followed only by sample dilution. Calibration concentration ranges were tailored to literature values for each analyte in each biological matrix. Prepared samples from plasma and urine were analyzed under the same HPLC-ESI-MS/MS conditions, and chromatographic separation was achieved through use of an Agilent Poroshell 120 EC-C18 column with a 20-min run time per injected sample. The analytes could be accurately and precisely quantified over 2.0-3.5 orders of magnitude. Across both matrices, mean intra- and inter-assay accuracies ranged from 85% to 112%, and intra- and inter-assay imprecision did not exceed 15%. Validation experiments included tests for specificity, recovery and ionization efficiency, inter-individual variability in matrix effects, stock solution stability, and sample stability under a variety of storage and handling conditions (room temperature, freezer, freeze-thaw, and post-preparative). The utility and suitability of the reported procedures were illustrated by analysis of pharmacokinetic samples

  4. Acute Hepatitis Induced by Chinese Hepatoprotective Herb, Xiao-Chai-Hu-Tang

    Directory of Open Access Journals (Sweden)

    Li-Ming Hsu

    2006-02-01

    Full Text Available Xiao-chai-hu-tang (syo-saiko-to in Japanese is a herbal remedy that has been widely used in China for treatment of respiratory, hepatobiliary, and gastrointestinal diseases, particularly among patients with chronic liver disease. However, its safety has recently been challenged. We, herein, report a Chinese patient with acute hepatitis induced by this herb. A 52-year-old woman presented with weakness, fatigue, and tea-colored urine after continual consumption of the decoction of xiao-chai-hu-tang for 1.5 months. Laboratory studies disclosed acute hepatitis even though all of the viral hepatitis markers were negative. Liver biopsy also revealed a picture of acute hepatocellular hepatitis. The symptoms improved after discontinuing the drug, and liver biochemical tests normalized 2 months later. The case report reminds us of the probable adverse drug reaction of herbs, even in some that are claimed to have hepatoprotective effects.

  5. Effect of acetaminophen administration to rats chronically exposed to depleted uranium

    International Nuclear Information System (INIS)

    Gueguen, Y.; Grandcolas, L.; Baudelin, C.; Grison, S.; Tissandie, E.; Jourdain, J.R.; Paquet, F.; Voisin, P.; Aigueperse, J.; Gourmelon, P.; Souidi, M.

    2007-01-01

    The extensive use of depleted uranium (DU) in both civilian and military applications results in the increase of the number of human beings exposed to this compound. We previously found that DU chronic exposure induces the expression of CYP enzymes involved in the metabolism of xenobiotics (drugs). In order to evaluate the consequences of these changes on the metabolism of a drug, rats chronically exposed to DU (40 mg/l) were treated by acetaminophen (APAP, 400 mg/kg) at the end of the 9-month contamination. Acetaminophen is considered as a safe drug within the therapeutic range but in the case of overdose or in sensitive animals, hepatotoxicity and nephrotoxicity could occur. In the present work, plasma concentration of APAP was higher in the DU group compared to the non-contaminated group. In addition, administration of APAP to the DU-exposed rats increased plasma ALT (p < 0.01) and AST (p < 0.05) more rapidly than in the control group. Nevertheless, no histological alteration of the liver was observed but renal injury characterized by incomplete proximal tubular cell necrosis was higher for the DU-exposed rats. Moreover, in the kidney, CYP2E1 gene expression, an important CYP responsible for APAP bioactivation and toxicity, is increased (p < 0.01) in the DU-exposed group compared to the control group. In the liver, CYP's activities were decreased between control and DU-exposed rats. These results could explain the worse elimination of APAP in the plasma and confirm our hypothesis of a modification of the drug metabolism following a DU chronic contamination

  6. [Acetaminophen: Knowledge, use and overdose risk in urban patients consulting their general practitioner. A prospective, descriptive and transversal study].

    Science.gov (United States)

    Cipolat, Lauriane; Loeb, Ouriel; Latarche, Clotilde; Pape, Elise; Gillet, Pierre; Petitpain, Nadine

    2017-09-01

    Acetaminophen is the most involved active substance in both unintentional and intentional drug poisoning. However, its availability outside community pharmacies is being debated in France. We made, via a self-administered questionnaire, a prospective assessment of knowledge, use and acetaminophen overdose risk in patients consulting their general practitioner, in the Metz Métropole urban area, between May 2015 and February 2016. We estimated the prevalence of potential unintentional overdosage by capture-recapture method. Among 819 responding patients, only 17.9 % had a sufficient knowledge and 20.3 % were at risk for potential unintentional overdose. The risk was higher for patients aged over 55 years or belonging to socioprofessional categories of laborers and inactive. A good knowledge score was a protective factor for overdose risk (P<0.0001). The liver toxicity of acetaminophen was particularly unknown. The prevalence of potential unintentional acetaminophen overdose was estimated at 1 to2 % of the population. Proposing acetaminophen outside of pharmacies cannot be recommended in France in such conditions. Information campaigns are needed to limit the risk of unintentional overdose and its consequences on liver toxicity. Copyright © 2017 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  7. Hyperosmolar nonketotic hyperglycemic coma induced by methylprednisolone pulse therapy for acute rejection after liver transplantation: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Zhou J

    2014-12-01

    Full Text Available Jian Zhou,* Weiqiang Ju,* Xiaopeng Yuan, Xiaofeng Zhu, Dongping Wang, Xiaoshun HeOrgan Transplant Center, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Hyperosmolar nonketotic hyperglycemic coma (HNKHC is a serious, rare complication induced by methylprednisolone (MP pulse therapy for acute rejection after orthotopic liver transplantation (OLT. Herein, we report an unusual case of a 58-year-old woman who experienced acute rejection at 30 months after OLT, only one case in which HNKHC resulted in MP pulse therapy for acute rejection in all 913 recipients in our center. The general morbidity of HNKHC was 1.09‰ in this study. HNKHC is characterized by rapid onset, rapid progression, and a lack of specific clinical manifestations. High-dose MP management was a clear risk factor. The principle of treatment included rapid rehydration, low-dose insulin infusion, and correcting disorders of electrolytes and acidosis. In conclusion, clinicians considering MP pulse therapy after OLT should be alert to the occurrence of HNKHC. Keywords: liver transplantation, complications, hyperosmolar nonketotic hyperglycemic coma, methylprednisolone pulse therapy, principle of treatment

  8. The effect of Hibiscus sabdariffa calyx extract on cisplatin-induced ...

    African Journals Online (AJOL)

    JTEkanem

    2008-12-14

    Dec 14, 2008 ... of reduced glutathione in the liver and kidney over controls (p < 0.05). Cisplatin also caused a ..... Hydroperoxide-induced hepatic toxicity in rats. Food Chem. ... effects of Artemisia absinthium on acetaminophen and CCl. 4. –.

  9. Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice

    OpenAIRE

    Yi, Ruo-Kun; Song, Jia-Le; Lim, Yaung-Iee; Kim, Yong-Kyu; Park, Kun-Young

    2015-01-01

    This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphata...

  10. Acute-on-chronic liver failure due to thiamazole in a patient with hyperthyroidism and trilogy of Fallot: case report

    Science.gov (United States)

    2010-01-01

    Background Thiamazole is a widely used antithyroid agent that has been approved for the treatment of hyperthyroidism. Although thiamazole-induced hepatotoxicity is a main side effect, it may progress to liver failure in a very few cases. Case Presentation We described a 24-year-old patient with hyperthyroidism and trilogy of Fallot, who developed liver failure due to thiamazole. Liver biopsy showed intrahepatic cholestasis, mild inflammatory infiltrates, as well as significant fibrosis, indicating both acute and chronic liver injuries. Although a series of potent therapies were given, the patient deceased due to severe liver decompensation. Conclusions This case suggests that thiamazole-induced hepatotoxicity in the setting of advanced fibrosis increases the risk of poor outcome. Regular liver function monitoring during thiamazole therapy is therefore important. PMID:20707932

  11. Albendazole Induced Recurrent Acute Toxic Hepatitis: A Case Report.

    Science.gov (United States)

    Bilgic, Yilmaz; Yilmaz, Cengiz; Cagin, Yasir Furkan; Atayan, Yahya; Karadag, Nese; Harputluoglu, Murat Muhsin Muhip

    2017-01-01

    Drug induced acute toxic hepatitis can be idiosyncratic. Albendazole, a widely used broad spectrum antiparasitic drug is generally accepted as a safe drug. It may cause asymptomatic transient liver enzyme abnormalities but acute toxic hepatitis is very rare. Case Report : Herein, we present the case of 47 year old woman with recurrent acute toxic hepatitis after a single intake of albendazole in 2010 and 2014. The patient was presented with symptoms and findings of anorexia, vomiting and jaundice. For diagnosis, other acute hepatitis etiologies were excluded. Roussel Uclaf Causality Assessment Method (RUCAM) score was calculated and found to be 10, which meant highly probable drug hepatotoxicity. Within 2 months, all pathological findings came to normal. There are a few reported cases of albendazole induced toxic hepatitis, but at adults, there is no known recurrent acute toxic hepatitis due to albendazole at this certainty according to RUCAM score. Physicians should be aware of this rare and potentially fatal adverse effect of albendazole. © Acta Gastro-Enterologica Belgica.

  12. Hepatitis E in liver biopsies from patients with acute hepatitis of clinically unexplained origin.

    Directory of Open Access Journals (Sweden)

    Uta eDrebber

    2013-12-01

    Full Text Available Hepatitis E virus (HEV is a small RNA virus and the infectious agent of hepatitis E that occurs worldwide either as epidemics in Asia caused by genotype 1 and 2 or as sporadic disease in industrialized countries induced by genotype 3 and 4. The frequency might be underestimated in central Europe as a cause of acute hepatitis. Therefore, we analyzed on liver biopsies, if cases of acute hepatitis with clinically unknown or obscure diagnosis were actually caused by the infection with HEV.We included 221 liver biopsies retrieved from the files of the institute of pathology during the years 2000 till 2010 that were taken from patients with acute hepatitis of obscure or doubtful diagnosis. From all biopsies RNA was extracted, prepared, and subjected to RT-PCR with specific primers. Amplified RNA was detected in 7 patients, sequenced and the genotype 3 could be determined in four of the seven of positive specimens from 221 samples. Histopathology of the biopsies revealed a classic acute hepatitis with cholestatic features and in some cases confluent necrosis in zone 3. Histology in a cohort of matched patients was less severe and showed more eosinophils. The analysis of the immune response by subtyping of liver infiltrating lymphocytes showed circumstantial evidence of adaptive immune reaction with CD 8 positive CTLs being the dominant lymphocyte population.In conclusion, in doubtful cases of acute hepatitis of unknown origine hepatitis E virus infection should be considered as etiology in central Europe. We demonstrate for the first time that the diagnosis can be made in paraffin-embedded liver biopsies reliably when no serum is available and also the genotype can be determined. The analysis of the immune response by subtyping of liver infiltrating lymphocytes indicates an adaptive mechanism suggesting in analogy with HAV, HBV and HCV that the virus itself is not cytopathic but liver damage is due to immune reaction.

  13. Chronic acetaminophen overdosing in children: risk assessment and management.

    Science.gov (United States)

    Sztajnkrycer, M J; Bond, G R

    2001-04-01

    Acetaminophen is currently the pediatric analgesic and antipyretic of choice. Although children appear to tolerate single, high-dose ingestions well, the literature is replete with reports of significant morbidity and mortality after repeated supra-therapeutic dosing. Proposed risk factors for injury with chronic use include age, total dose, duration, presence of intercurrent febrile illness, starvation, co-administration of cytochrome P450-inducing drugs, underlying hepatic disease, and unique genetic makeup. Evaluation of these children should include serum acetaminophen concentration, prothrombin time, and serum bilirubin and transaminase concentrations. The Rumack-Mathew nomogram should not be used to estimate the risk of hepatotoxicity in cases of chronic ingestion. Based on history, clinical examination, and laboratory findings, patients may be placed in three categories: those without hepatic injury and with no residual acetaminophen to be metabolized, those without injury but with some acetaminophen to be metabolized, and those with hepatotoxicity. Those without injury and no residual acetaminophen need not be treated or followed. Patients with hepatotoxicity or potential for hepatotoxicity based on residual acetaminophen should be treated with N-acetylcysteine. Most importantly, because so many parents are unaware of the potential risk of inappropriate dosing, education is the key to preventing future cases.

  14. Flumazenil does not improve hepatic encephalopathy associated with acute ischemic liver failure in the rabbit

    NARCIS (Netherlands)

    C.C.D. van der Rijt (Carin); R.J. de Knegt (Robert); S.W. Schalm (Solko); O.T. Terpstra (Onno); K. Mechelse (Karel)

    1990-01-01

    textabstractThe effect of flumazenil, a benzodiazepine antagonist, on hepatic encephalopathy was studied in rabbits with acute hepatic failure induced by a two-stage liver devascularization procedure. The rabbits were randomized for treatment with 5 mg/kg of flumazenil or the placebo. The drug was

  15. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats.

    Science.gov (United States)

    Maharaj, D S; Saravanan, K S; Maharaj, H; Mohanakumar, K P; Daya, S

    2004-04-01

    We assessed the antioxidant activity of non-narcotic analgesics, acetaminophen and aspirin in rat brain homogenates and neuroprotective effects in vivo in rats intranigrally treated with 1-methyl-4-phenyl pyridinium (MPP+). Both drugs inhibited cyanide-induced superoxide anion generation, as well as lipid peroxidation in rat brain homogenates, the combination of the agents resulting in a potentiation of this effect. Acetaminophen or aspirin when administered alone or in combination, did not alter dopamine (DA) levels in the forebrain or in the striatum. Intranigral infusion of MPP+ in rats caused severe depletion of striatal DA levels in the ipsilateral striatum in rats by the third day. Systemic post-treatment of acetaminophen afforded partial protection, whereas similar treatment of aspirin resulted in complete blockade of MPP+-induced striatal DA depletion. While these findings suggest usefulness of non-narcotic analgesics in neuroprotective therapy in neurodegenerative diseases, aspirin appears to be a potential candidate in prophylactic as well as in adjuvant therapy in Parkinson's disease.

  16. Red Sea Suberea mollis Sponge Extract Protects against CCl4-Induced Acute Liver Injury in Rats via an Antioxidant Mechanism

    Directory of Open Access Journals (Sweden)

    Aymn T. Abbas

    2014-01-01

    Full Text Available Recent studies have demonstrated that marine sponges and their active constituents exhibited several potential medical applications. This study aimed to evaluate the possible hepatoprotective role as well as the antioxidant effect of the Red Sea Suberea mollis sponge extract (SMSE on carbon tetrachloride- (CCl4- induced acute liver injury in rats. In vitro antioxidant activity of SMSE was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH assay. Rats were orally administered three different concentrations (100, 200, and 400 mg/kg of SMSE and silymarin (100 mg/kg along with CCl4 (1 mL/kg, i.p., every 72 hr for 14 days. Plasma aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (ALP, and total bilirubin were measured. Hepatic malondialdehyde (MDA, reduced glutathione (GSH, nitric oxide (NO, superoxide dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT were also measured. Liver specimens were histopathologically examined. SMSE showed strong scavenging activity against free radicals in DPPH assay. SMSE significantly reduced liver enzyme activities. Moreover, SMSE significantly reduced hepatic MDA formation. In addition, SMSE restored GSH, NO, SOD, GPx, and CAT. The histopathological results confirmed these findings. The results of this study suggested a potent protective effect of the SMSE against CCl4-induced hepatic injury. This may be due to its antioxidant and radical scavenging activity.

  17. Diagnostic value of liver scintigraphy in fulminant hepatitis and severe acute hepatitis

    International Nuclear Information System (INIS)

    Shiomi, Susumu; Ikeoka, Naoko; Minowa, Takami; Kuroki, Tetsuo; Harihara, Shigeyoshi; Yamamoto, Sukeo; Ochi, Hironobu; Monna, Takeyuki

    1985-01-01

    Liver scintigraphy was performed in 12 cases with fulminant hepatitis, in 8 cases with severe acute hepatitis and in 44 cases with acute hepatitis. Scintiphotoes of severe hepatitis showed reduction of liver size, marked visualization of the bone marrow and the spleen, so this pattern was useful to differentiate from acute hepatitis. Relative size of the liver calculated by A.L.I. (anterior liver index) showed significant reduction in severe hepatitis compared with that of acute hepatitis. Three of five patients with died of severe hepatitis showed high uptake in the lung and ribs, but none of fifteen patients with severe hepatitis who recovered showed the abnormal accumulation in the lung and in the ribs. (author)

  18. Efficacy of free glutathione and niosomal glutathione in the treatment of acetaminophen-induced hepatotoxicity in cats

    Directory of Open Access Journals (Sweden)

    L.A. Denzoin Vulcano

    2013-06-01

    Full Text Available Acetaminophen (APAP administration results in hepatotoxicity and hematotoxicity in cats. The response to three different treatments against APAP poisoning was evaluated. Free glutathione (GSH (200mg/kg, niosomal GSH (14 mg/kg and free amino acids (180 mg/kg of N-acetylcysteine and 280 mg/kg of methionine were administered to cats that were intoxicated with APAP (a single dose of 150 mg/kg, p.o.. Serum concentration of alanine aminotransferase (ALT along with serum, liver and erythrocyte concentration of GSH and methemoglobin percentage were measured before and 4, 24 and 72 hours after APAP administration. Free GSH (200 mg/kg and niosomal GSH (14 mg/kg were effective in reducing hepatotoxicity and hematotoxicity in cats intoxicated with a dose of 150 mg/kg APAP. We conclude that both types of treatments can protect the liver and haemoglobin against oxidative stress in APAP intoxicated cats. Furthermore, our results showed that treatment with niosomal GSH represents an effective therapeutic approach for APAP poisoning.

  19. Sonographic changes of liver and gallbladder in acute viral hepatitis

    Directory of Open Access Journals (Sweden)

    Ebrahimi Daryani N

    2001-07-01

    Full Text Available Hepatomegaly, decrease in the liver paranchymal echo and increase in the gallbladder wall thickness has been shown in acute viral hepatitis. The present study was done to determine sonographic changes in acute viral hepatitis. We performed liver and bile ducts sonography and specific tests on 42 patients (mean age: 31.5 and 61% male with acute viral hepatitis. Gallbladder wall thickness was seen in 45.2% and hepatomegaly in 33.3% of patients and liver paranchymal echo was decreased in 19.3%. Age, sex, type of hepatitis, cholecystitis like symptoms, aspartate aminotransfrase, alanine aminotransfrase, alkaline phosphatase and bilirubin did not significantly corralate with these changes. Only raised prothrombin time was strongly correlated to the thickening of the gallbladder and decrease in the liver paranchymal echo and cholesistic like symptoms we can postulate that thickening of the gallbladder and decrease in the liver paranchymal echo is not dependent on the severity and speed of the paranchymal necrosis (as considered with ALT and AST but they depend on the liver function disturbance (as considered with PT because the thickening of the gall bladder is present in 45% of the patients and 10% of the normal population have gallbladder stones, one should not perform the diagnosis of acute cholecystitis, only on the basis of sonographic report without attention to the clinical and laboratory data.

  20. Acute Ethanol Gavage Attenuates Hemorrhage/Resuscitation-Induced Hepatic Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    B. Relja

    2012-01-01

    Full Text Available Acute ethanol intoxication increases the production of reactive oxygen species (ROS. Hemorrhagic shock with subsequent resuscitation (H/R also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.. Then, rats were hemorrhaged to a mean arterial blood pressure of 30±2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.. Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE and nitrosative (3-nitrotyrosine, 3-NT stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.

  1. [Risk of acute hepatic insufficiency in children due to chronic accidental overdose of paracetamol (acetaminophen)

    NARCIS (Netherlands)

    Hameleers-Snijders, P.; Hogeveen, M.; Smeitink, J.A.M.; Kramers, C.; Draaisma, J.M.T.

    2007-01-01

    Two girls aged 4 and 3 years, respectively, experienced acute liver failure due to accidental ingestion of supratherapeutic doses of paracetamol (90 mg/kg/day or more). Recognition of chronic paracetamol intoxication as a cause of acute hepatic failure is often delayed. It is important to consider

  2. A Liver-Centric Multiscale Modeling Framework for Xenobiotics.

    Directory of Open Access Journals (Sweden)

    James P Sluka

    Full Text Available We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.

  3. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats.

    Science.gov (United States)

    Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Büyükbaş, Sadık

    2013-05-01

    The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.

  4. Acute-on-chronic liver failure due to thiamazole in a patient with hyperthyroidism and trilogy of Fallot: case report

    Directory of Open Access Journals (Sweden)

    Shen Chuan

    2010-08-01

    Full Text Available Abstract Background Thiamazole is a widely used antithyroid agent that has been approved for the treatment of hyperthyroidism. Although thiamazole-induced hepatotoxicity is a main side effect, it may progress to liver failure in a very few cases. Case Presentation We described a 24-year-old patient with hyperthyroidism and trilogy of Fallot, who developed liver failure due to thiamazole. Liver biopsy showed intrahepatic cholestasis, mild inflammatory infiltrates, as well as significant fibrosis, indicating both acute and chronic liver injuries. Although a series of potent therapies were given, the patient deceased due to severe liver decompensation. Conclusions This case suggests that thiamazole-induced hepatotoxicity in the setting of advanced fibrosis increases the risk of poor outcome. Regular liver function monitoring during thiamazole therapy is therefore important.

  5. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure

    DEFF Research Database (Denmark)

    Wendon,, Julia; Cordoba, Juan; Dhawan, Anil

    2017-01-01

    abnormality of liver blood tests in an individual without underlying chronic liver disease. The disease process is associated with development of a coagulopathy of liver aetiology, and clinically apparent altered level of consciousness due to hepatic encephalopathy. Several important measures are immediately...... necessary when the patient presents for medical attention. These, as well as additional clinical procedures will be the subject of these clinical practice guidelines.......The term acute liver failure (ALF) is frequently applied as a generic expression to describe patients presenting with or developing an acute episode of liver dysfunction. In the context of hepatological practice, however, ALF refers to a highly specific and rare syndrome, characterised by an acute...

  6. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Makoto; Miyake, Manami; Sato, Hiroko; Masutomi, Naoya; Tsutsui, Naohisa [Mitsubishi Tanabe Pharma Corporation, Kisarazu, Chiba 292-0818 (Japan); Adam, Klaus-Peter; Alexander, Danny C.; Lawton, Kay A.; Milburn, Michael V.; Ryals, John A.; Wulff, Jacob E. [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States); Guo, Lining, E-mail: lguo@metabolon.com [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States)

    2013-04-01

    Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the

  7. Author Details

    African Journals Online (AJOL)

    Olayaki, L A. Vol 15, No 1 (2008) - Articles The causes of shortage of Cadavers in medical schools across Nigeria Abstract · Vol 15, No 1 (2008) - Articles A comparative study of the protective effect of Jubi Formula and melatonin on acute acetaminophen induced liver damage in Sprague-Dawley rats. Abstract. ISSN: 1117- ...

  8. Role of PGC-1{alpha} in exercise and fasting induced adaptations in mouse liver

    DEFF Research Database (Denmark)

    Haase, Tobias Nørresø; Jørgensen, Stine Ringholm; Leick, Lotte

    2011-01-01

    The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)-¿ coactivator (PGC)-1a plays a role in regulation of several metabolic pathways. By use of whole body PGC-1a knockout (KO) mice we investigated the role of PGC-1a in fasting, acute exercise and exercise training ind...... role in regulation of Cyt c and COXI expression in the liver in response to a single exercise bout and prolonged exercise training, which implies that exercise training induced improvements in oxidative capacity of the liver is regulated by PGC-1a.......The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)-¿ coactivator (PGC)-1a plays a role in regulation of several metabolic pathways. By use of whole body PGC-1a knockout (KO) mice we investigated the role of PGC-1a in fasting, acute exercise and exercise training...... induced regulation of key proteins in gluconeogenesis and metabolism in the liver. In both wild type (WT) and PGC-1a KO mice liver, the mRNA content of the gluconeogenic proteins glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) was upregulated during fasting. Pyruvate...

  9. Hops (Humulus lupulus) Content in Beer Modulates Effects of Beer on the Liver After Acute Ingestion in Female Mice.

    Science.gov (United States)

    Landmann, Marianne; Sellmann, Cathrin; Engstler, Anna Janina; Ziegenhardt, Doreen; Jung, Finn; Brombach, Christine; Bergheim, Ina

    2017-01-01

    Using a binge-drinking mouse model, we aimed to determine whether hops (Humulus lupulus) in beer is involved in the less damaging effects of acute beer consumption on the liver in comparison with ethanol. Female C57BL/6 J mice were either fed one iso-alcoholic and iso-caloric bolus dose of ethanol, beer, beer without hops (6 g ethanol/kg body weight) or an iso-caloric bolus of maltodextrin control solution. Markers of steatosis, intestinal barrier function, activation of toll-like receptor 4 signaling cascades, lipid peroxidation and lipogenesis were determined in liver, small intestine and plasma 2 h and 12 h after acute alcohol ingestion. Alcohol-induced hepatic fat accumulation was significantly attenuated in mice fed beer whereas in those fed beer without hops, hepatic fat accumulation was similar to that found in ethanol-fed mice. While markers of intestinal barrier function e.g. portal endotoxin levels and lipogenesis only differed slightly between groups, hepatic concentrations of myeloid differentiation primary response gene 88, inducible nitric oxide synthase (iNOS) and plasminogen-activator inhibitor 1 protein as well as of 4-hydroxynonenal and 3-nitrotyrosine protein adducts were similarly elevated in livers of mice fed ethanol or beer without hops when compared with controls. Induction of these markers was markedly attenuated in mice fed hops-containing beer. Taken together, our data suggest that hops in beer markedly attenuated acute alcohol-induced liver steatosis in female mice through mechanisms involving a suppression of iNOS induction in the liver. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  10. Cellular Immunity State of Protein-deficient Rats with the Toxic Liver Injury

    Directory of Open Access Journals (Sweden)

    O.N. Voloshchuk

    2017-05-01

    Full Text Available Studies on the role of immunity mechanisms in the emergence and maintenance of inflammatory and destructive processes in the liver under toxic hepatitis and nutrient deficiency are topical. The aim of research – to study the quantitative content and functional activity of leukocytes under the conditions of acetaminophen-induced hepatitis on the background of nutritional protein deficiency. The most pronounced changes in cell-mediated immunity are observed in protein-deficient animals with toxic hepatitis. The pronounced defects of both specific and non-specific cellular immunity were manifested by the leukocytosis, increase number of segmented neutrophils in blood serum against decrease their phagocytic index and phagocytic number, reduction of total lymphocyte number, and simultaneously lowering of T- and B-lymphocytes was established under the conditions of acetaminophen-induced hepatotoxicity on the background of protein deficiency. Installed changes indicate the defective formation of functional immunity state which can manifest by decrease the body’s ability to carry out the reaction of cellular and humoral immunity. Research results may be used for the rationale of therapeutic approaches to the elimination and correction of the consequences of immunological status disturbances under the conditions of acetaminophen-induced hepatitis, aggravated by the alimentary protein deprivation.

  11. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection

    OpenAIRE

    Shi, Ming; Liu, Zhenwen; Wang, Ying; Xu, Rounan; Sun, Yanling; Zhang, Min; Yu, Xi; Wang, Hongbo; Meng, Lingzhan; Su, Haibin; Jin, Lei; Wang, Fu‐Sheng

    2017-01-01

    Abstract Acute allograft rejection remains common after liver transplantation despite modern immunosuppressive agents. In addition, the long‐term side effects of these regimens, including opportunistic infections, are challenging. This study evaluated the safety and clinical feasibility of umbilical cord‐derived mesenchymal stem cell (UC‐MSC) therapy in liver transplant patients with acute graft rejection. Twenty‐seven liver allograft recipients with acute rejection were randomly assigned int...

  12. Acute fatty liver of pregnancy. CT scan imaging in 4 cases

    International Nuclear Information System (INIS)

    Coche, G.; Moran, V.; Schmitt, M.; Boillot, A.; Miguet, J.P.; Hadni-Bresson, S.; Weill, F.S.

    1987-01-01

    Acute fatty liver of pregnancy is a disease of the third trimester, generally considered to be rare and to have a grave prognosis. Histologically the characteristic fine droplet steatosis usually produces distinct vacuolization. Successful treatment depends on accurate diagnosis and early delivery. Computed tomography is of value in the diagnosis of fatty liver through liver and spleen attenuation value measurements. We reviewed 4 cases of acute fatty liver of pregnancy. Computed tomography was performed in two cases and was very helpful in the diagnosis of this condition [fr

  13. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury.

    Science.gov (United States)

    Yu, Lei; Zhao, Xue-Ke; Cheng, Ming-Liang; Yang, Guo-Zhen; Wang, Bi; Liu, Hua-Juan; Hu, Ya-Xin; Zhu, Li-Li; Zhang, Shuai; Xiao, Zi-Wen; Liu, Yong-Mei; Zhang, Bao-Fang; Mu, Mao

    2017-05-02

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii administration. In the meantime, S. boulardii induced dramatic changes in the gut microbial composition. At the phylum level, we found that S. boulardii significantly increased in the relative abundance of Bacteroidetes, and decreased the relative abundance of Firmicutes and Proteobacteria, which may explain the hepatic protective effects of S. boulardii. Taken together, our results demonstrated that S. boulardii administration could change the gut microbiota in mice and alleviate acute liver failure, indicating a potential protective and therapeutic role of S. boulardii.

  14. A new liver function test using the asialoglycoprotein-receptor system on the liver cell membrane, 3

    International Nuclear Information System (INIS)

    Hazama, Hiroshi; Kawa, Soukichi; Kubota, Yoshitsugu

    1986-01-01

    We evaluated the vilidity of a new liver function test using liver scintigraphy based on the asialoglycoprotein (ASGP) receptor system on the liver cell membrane in rats with galactosamine-induced acute liver disorder and those with carbon tetra-chloride-induced chronic liver disorder. Neoglycoprotein (GHSA) produced by combining human serum albumin with 32 galactose units was labeled with 99m Tc and administered (50 μg/100 g body weight) to rats with acute or chronic liver disorder. Clearance curves were produced based on liver scintigrams and analysed using the two-compartment model to obtain parameters. In acute liver disorder, the prolongation of 99m Tc-GHSA clearance and the decrease in ASGP receptor activities correlated well to the increase in serum GOT and the decrease in the esterified to total cholesterol ratio (E/T ratio); in chronic liver disorder, they correlated significantly to the increase in the content of liver hydroxyproline (Hyp) which increased in proportion to the severity of liver fibrosis studied histologically, and to the decrease in the contents of cytochrome P-450 and cytochrome b 5 in liver microsomes. Significant correlation was observed between the prolongation of 99m Tc-GHSA clearance and the decrease in ASGP receptor activities in both acute and chronic liver disorders. These findings indicate that the measurement of 99m Tc-GHSA clearance can be a new liver function test sensitively reflecting the severity of liver damage. (author)

  15. Outcome of acute liver failure in the elderly

    DEFF Research Database (Denmark)

    Schiødt, Frank V; Chung, Raymond T; Schilsky, Michael L

    2009-01-01

    Older age is considered a poor prognostic factor in acute liver failure (ALF) and may still be considered a relative contraindication for liver transplantation for ALF. We aimed to evaluate the impact of older age, defined as age > or = 60 years, on outcomes in patients with ALF. One thousand one...

  16. Co-ordinate but disproportionate activation of apoptotic, regenerative and inflammatory pathways characterizes the liver response to acute amebic infection.

    Science.gov (United States)

    Pelosof, Lorraine C; Davis, Paul H; Zhang, Zhi; Zhang, Xiaochun; Stanley, Samuel L

    2006-03-01

    The liver has the remarkable ability to respond to injury with repair and regeneration. The protozoan parasite Entamoeba histolytica is the major cause of liver abscess worldwide. We report a transcriptional analysis of the response of mouse liver to E. histolytica infection, the first study looking at acute liver infection by a non-viral pathogen. Focusing on early time points, we identified 764 genes with altered transcriptional levels in amebic liver abscess. The response to infection is rapid and complex, with concurrent increased expression of genes linked to host defence through IL-1, TLR2, or interferon-induced pathways, liver regeneration via activation of IL-6 pathways, and genes associated with programmed cell death possibly through TNFalpha or Fas pathways. A comparison of amebic liver infection with the liver response to partial hepatectomy or toxins reveals striking similarities between amebic liver abscess and non-infectious injury in key components of the liver regeneration pathways. However, the response in amebic liver abscess is biased towards apoptosis when compared with acute liver injury from hepatectomy, toxins, or other forms of liver infection. E. histolytica infection of the liver simultaneously activates inflammatory, regenerative and apoptotic pathways, but the sum of these early responses is biased towards programmed cell death.

  17. [Liver and sport].

    Science.gov (United States)

    Watelet, J

    2008-11-01

    The liver is a vital organ and plays a central role in energy exchange, protein synthesis as well as the elimination of waste products from the body. Acute and chronic injury may disturb a variety of liver functions to different degrees. Over the last three decades, the effects of physical activity and competitive sport on the liver have been described by various investigators. These include viral hepatitis and drug-induced liver disorders. Herein, we review acute and chronic liver diseases potentially caused by sport. Team physicians, trainers and others, responsible for the health of athletes, should be familiar with the risk factors, clinical features, and consequences of liver diseases that occur in sports.

  18. Human plasma concentrations of tolbutamide and acetaminophen extrapolated from in vivo animal pharmacokinetics using in vitro human hepatic clearances and simple physiologically based pharmacokinetic modeling for radio-labeled microdose clinical studies

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Kunikane, Eriko; Nishiyama, Sayako; Murayama, Norie; Shimizu, Makiko; Sugiyama, Yuichi; Chiba, Koji; Ikeda, Toshihiko

    2015-01-01

    The aim of the current study was to extrapolate the pharmacokinetics of drug substances orally administered in humans from rat pharmacokinetic data using tolbutamide and acetaminophen as model compounds. Adjusted animal biomonitoring equivalents from rat studies based on reported plasma concentrations were scaled to human biomonitoring equivalents using known species allometric scaling factors. In this extrapolation, in vitro metabolic clearance data were obtained using liver preparations. Rates of tolbutamide elimination were roughly similar in rat and human liver microsome experiments, but acetaminophen elimination by rat liver microsomes and cytosolic preparations showed a tendency to be faster than those in humans. Using a simple physiologically based pharmacokinetic (PBPK) model, estimated human plasma concentrations of tolbutamide and acetaminophen were consistent with reported concentrations. Tolbutamide cleared in a roughly similar manner in humans and rats, but medical-dose levels of acetaminophen cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in rats. The data presented here illustrate how pharmacokinetic data in combination with a simple PBPK model can be used to assist evaluations of the pharmacological/toxicological potential of new drug substances and for estimating human radiation exposures from radio-labeled drugs when planning human studies. (author)

  19. The Lipid Lowering and Cardioprotective Effects of Vernonia calvoana Ethanol Extract in Acetaminophen-Treated Rats

    Directory of Open Access Journals (Sweden)

    Godwin Eneji Egbung

    2017-12-01

    Full Text Available Background: Paracetamol overdose/abuse as a result of self-medication is a common occurrence amongst people living in low/middle income countries. The present study was designed to investigate the hypolipidemic and cardioprotective potentials of Vernonia calvoana (VC ethanol extract in acetaminophen (paracetamol-treated rats. Methods: Thirty-five Wistar rats weighing 100–150 g were randomly assigned into five groups of seven rats each. Groups 2–5 received high doses of paracetamol to induce liver damage, while group 1 was used as normal control. Afterwards, they were allowed to receive varying doses of VC (group 3 and 4 or vitamin E (group 5, whilst groups 1 and 2 were left untreated. The treatment period lasted for twenty one days after which sera were harvested and assayed for serum lipid indices using standard methods. Results: Groups 3 to 5 treated animals indicated significant decrease (p < 0.001 in low density lipoprotein cholesterol (LDL-c, total cholesterol (TC and triacylglycerol (TG levels relative to the normal and acetaminophen-treated controls, the atherogenic index showed a significant decrease (p < 0.001 in all treated groups compared with normal and acetaminophen-treated controls. However, the VC- and vitamin E-treated groups showed significant (p < 0.001 increase in high density lipoprotein cholesterol (HDL-C relative to the controls. Conclusions: Data from our study suggest that ethanol leaf extract of VC possesses probable hypolipidemic and cardioprotective effects.

  20. UDP-Glucuronosyltransferase Expression in Mouse Liver Is Increased in Obesity- and Fasting-Induced Steatosis

    Science.gov (United States)

    Xu, Jialin; Kulkarni, Supriya R.; Li, Liya

    2012-01-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lepob/ob (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  1. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    Science.gov (United States)

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance.

  2. Potential Effect of Bacopa monnieri on Nitrobenzene Induced Liver Damage in Rats.

    Science.gov (United States)

    Menon, B Rajalakshmy; Rathi, M A; Thirumoorthi, L; Gopalakrishnan, V K

    2010-10-01

    The study was designed to evaluate the hepatoprotective activity of ethanolic extract of Bacopa monnieri in acute experimental liver injury induced by Nitrobenzene in rats. The extract at the dose of 200 mg/kg body weight was administered orally once every day for 10 days. The increased serum marker enzymes, Aspartate transaminase, Alanine transaminase and alkaline phosphatase were restored towards normalization significantly by the extract. Significant increase in SOD, CAT and GPx was observed in extract treated liver injured experimental rats. Histopathological examination of the liver tissues supported the hepatoprotection. It is concluded that the ethanolic extract of Bacopa monieri plant possess good hepatoprotective activity.

  3. Subtoxic Alterations in Hepatocyte-Derived Exosomes: An Early Step in Drug-Induced Liver Injury?

    Science.gov (United States)

    Holman, Natalie S; Mosedale, Merrie; Wolf, Kristina K; LeCluyse, Edward L; Watkins, Paul B

    2016-06-01

    Drug-induced liver injury (DILI) is a significant clinical and economic problem in the United States, yet the mechanisms that underlie DILI remain poorly understood. Recent evidence suggests that signaling molecules released by stressed hepatocytes can trigger immune responses that may be common across DILI mechanisms. Extracellular vesicles released by hepatocytes, principally hepatocyte-derived exosomes (HDEs), may constitute one such signal. To examine HDE alterations as a function of drug-induced stress, this work utilized prototypical hepatotoxicant acetaminophen (APAP) in male Sprague-Dawley (SD) rats, SD rat hepatocytes, and primary human hepatocytes. HDE were isolated using ExoQuick precipitation reagent and analyzed by quantification of the liver-specific RNAs albumin and microRNA-122 (miR-122). In vivo, significant elevations in circulating exosomal albumin mRNA were observed at subtoxic APAP exposures. Significant increases in exosomal albumin mRNA were also observed in primary rat hepatocytes at subtoxic APAP concentrations. In primary human hepatocytes, APAP elicited increases in both exosomal albumin mRNA and exosomal miR-122 without overt cytotoxicity. However, the number of HDE produced in vitro in response to APAP did not increase with exosomal RNA quantity. We conclude that significant drug-induced alterations in the liver-specific RNA content of HDE occur at subtoxic APAP exposures in vivo and in vitro, and that these changes appear to reflect selective packaging rather than changes in exosome number. The current findings demonstrate that translationally relevant HDE alterations occur in the absence of overt hepatocellular toxicity, and support the hypothesis that HDE released by stressed hepatocytes may mediate early immune responses in DILI. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Association of antioxidant nutraceuticals and acetaminophen (paracetamol: Friend or foe?

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Daim

    2018-04-01

    Full Text Available Acetaminophen (paracetamol or APAP is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT. Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP. Keywords: Acetaminophen, Antioxidants, Food-drug interaction, Nutraceuticals, Paracetamol

  5. Keratin-18 and microRNA-122 complement alanine aminotransferase as novel safety biomarkers for drug-induced liver injury in two human cohorts.

    Science.gov (United States)

    Thulin, Petra; Nordahl, Gunnar; Gry, Marcus; Yimer, Getnet; Aklillu, Eleni; Makonnen, Eyasu; Aderaye, Getachew; Lindquist, Lars; Mattsson, C Mikael; Ekblom, Björn; Antoine, Daniel J; Park, B Kevin; Linder, Stig; Harrill, Alison H; Watkins, Paul B; Glinghammar, Björn; Schuppe-Koistinen, Ina

    2014-03-01

    There is a demand for more sensitive, specific and predictive biomarkers for drug-induced liver injury (DILI) than the gold standard used today, alanine aminotransferase (ALT). The aim of this study was to qualify novel DILI biomarkers (keratin-18 markers M65/M30, microRNA-122, glutamate dehydrogenase and alpha-foetoprotein) in human DILI. Levels of the novel biomarkers were measured by enzyme-linked immunosorbent assay or real-time quantitative reverse-transcription PCR (qRT-PCR) in two human DILI cohorts: a human volunteer study with acetaminophen and a human immunodeficiency virus (HIV)/tuberculosis (TB) study. In the acetaminophen study, serum M65 and microRNA-122 levels were significantly increased at an earlier time point than ALT. Furthermore, the maximal elevation of M65 and microRNA-122 exceeded the increase in ALT. In the HIV/TB study, all the analysed novel biomarkers increased after 1 week of treatment. In contrast to ALT, the novel biomarkers remained stable in a human cohort with exercise-induced muscular injury. M65 and microRNA-122 are potential biomarkers of DILI superior to ALT with respect to sensitivity and specificity. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Fish oil prevents sucrose-induced fatty liver but exacerbates high-safflower oil-induced fatty liver in ddy mice.

    Science.gov (United States)

    Yamazaki, Tomomi; Nakamori, Akiko; Sasaki, Eriko; Wada, Satoshi; Ezaki, Osamu

    2007-12-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). We analyzed the effects of dietary fish oil on fatty liver induced by sucrose, safflower oil, and butter in ddY mice. In experiment I, mice were fed a high-starch diet [70 energy% (en%) starch] plus 20% (wt/wt) sucrose in the drinking water or fed a high-safflower oil diet (60 en%) for 11 weeks. As a control, mice were fed a high-starch diet with drinking water. Fish oil (10 en%) was either supplemented or not. Mice supplemented with sucrose or fed safflower oil showed a 1.7-fold or 2.2-fold increased liver triglyceride content, respectively, compared with that of control mice. Fish oil completely prevented sucrose-induced fatty liver, whereas it exacerbated safflower oil-induced fatty liver. Sucrose increased SREBP-1c and target gene messenger RNAs (mRNAs), and fish oil completely inhibited these increases. In experiment II, mice were fed a high-safflower oil or a high-butter diet, with or without fish oil supplementation. Fish oil exacerbated safflower oil-induced fatty liver but did not affect butter-induced fatty liver. Fish oil increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and target CD36 mRNA in safflower oil-fed mice. These increases were not observed in sucrose-supplemented or butter-fed mice. The effects of dietary fish oil on fatty liver differ according to the cause of fatty liver; fish oil prevents sucrose-induced fatty liver but exacerbates safflower oil-induced fatty liver. The exacerbation of fatty liver may be due, at least in part, to increased expression of liver PPARgamma.

  7. Pomegranate protects liver against cecal ligation and puncture-induced oxidative stress and inflammation in rats through TLR4/NF-κB pathway inhibition.

    Science.gov (United States)

    Makled, Mirhan N; El-Awady, Mohammed S; Abdelaziz, Rania R; Atwan, Nadia; Guns, Emma T; Gameil, Nariman M; Shehab El-Din, Ahmed B; Ammar, Elsayed M

    2016-04-01

    Acute liver injury secondary to sepsis is a major challenge in intensive care unit. This study was designed to investigate potential protective effects of pomegranate against sepsis-induced acute liver injury in rats and possible underlying mechanisms. Pomegranate was orally given (800mg/kg/day) for two weeks before sepsis induction by cecal ligation and puncture (CLP). Pomegranate improved survival and attenuated liver inflammatory response, likely related to downregulation of mRNA expression of toll like recptor-4, reduced nuclear translocation and DNA binding activity of proinflammatory transcription factor NF-κB subunit p65, decreased mRNA and protein expression of tumor necrosis factor-alpha and reduction in myeloperoxidase activity and mRNA expression. Pomegranate also decreased CLP-induced oxidative stress as reflected by decreased malondialdehyde content, and increased reduced glutathione level and superoxide dismutase activity. These results confirm the antiinflammatory and antioxidant effects of pomegranate in CLP-induced acute liver injury mediated through inhibiting TLR4/NF-κB pathway, lipid peroxidation and neutrophil infiltration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Dengue hemorrhagic fever complicated with acute liver failure: a case report.

    Science.gov (United States)

    Dalugama, Chamara; Gawarammana, Indika Bandara

    2017-12-08

    Dengue is a common arboviral infection with a clinically diverse spectrum of presentations. Although hepatic dysfunction is commonly identified in patients will dengue illness, acute liver failure is rare. The etiopathogenesis of hepatic dysfunction is multifactorial and related to direct viral invasion of hepatocytes, immunological factors and hypoxia particularly in cases of shock in dengue hemorrhagic fever. Ideal management of dengue-related hepatic dysfunction and acute liver failure is still debated. We report a 53-year-old Sri Lankan Sinhalese male with serologically confirmed dengue fever presenting with evidence of plasma leakage developing acute liver failure evidenced by deranged liver functions, coagulopathy and altered sensorium. In addition to the 'standard care', the patient was managed with intravenous N-acetyl cysteine and blood transfusions even in the absence of bleeding or dropping packed cell volume (PCV), targeting a higher PCV in anticipation of better oxygenation at tissue level. He made a full recovery with no sequential infections. N-acetyl cysteine and packed cell transfusion aiming at a higher PCV to maintain adequate tissue perfusion during shock may be beneficial in acute liver failure due to dengue virus. Large randomized trials should be carried out to establish the efficacy of these treatment strategies to support these observations and change the current practice.

  9. Advances in the treatment of acute liver failure

    Directory of Open Access Journals (Sweden)

    LUO Ling

    2018-02-01

    Full Text Available Acute liver failure (ALF is a rare life-threatening disease with rapid progression and a low survival rate and affects the function of multiple organ systems. Early identification of cause and protection of vital organs are critical for patients' survival. With the development in artificial liver, stem cell transplantation, and liver transplantation in recent years, the outcome of ALF has been greatly improved. This article elaborates on the treatment of ALF from the aspects of the etiology of ALF and major organ systems involved and introduces the latest advances in artificial liver and stem cell transplantation.

  10. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Koerner, Michael R., E-mail: mkoern2@illinois.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Lampe, Jed N. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Farhood, Anwar [Department of Pathology, Brackenridge Hospital, Austin, TX 78701 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2011-12-15

    The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice. The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only < 0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, > 20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. Conclusion: Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change. -- Highlights: Black-Right-Pointing-Pointer During acetaminophen overdose caspase-3 can be activated in fed mice of certain outbred strains. Black-Right-Pointing-Pointer Hepatic ATP levels are not the determining factor for caspase

  11. Uridine prevents fenofibrate-induced fatty liver.

    Directory of Open Access Journals (Sweden)

    Thuc T Le

    Full Text Available Uridine, a pyrimidine nucleoside, can modulate liver lipid metabolism although its specific acting targets have not been identified. Using mice with fenofibrate-induced fatty liver as a model system, the effects of uridine on liver lipid metabolism are examined. At a daily dosage of 400 mg/kg, fenofibrate treatment causes reduction of liver NAD(+/NADH ratio, induces hyper-acetylation of peroxisomal bifunctional enzyme (ECHD and acyl-CoA oxidase 1 (ACOX1, and induces excessive accumulation of long chain fatty acids (LCFA and very long chain fatty acids (VLCFA. Uridine co-administration at a daily dosage of 400 mg/kg raises NAD(+/NADH ratio, inhibits fenofibrate-induced hyper-acetylation of ECHD, ACOX1, and reduces accumulation of LCFA and VLCFA. Our data indicates a therapeutic potential for uridine co-administration to prevent fenofibrate-induced fatty liver.

  12. Curcumin attenuates lipopolysaccharide/d-galactosamine-induced acute liver injury by activating Nrf2 nuclear translocation and inhibiting NF-kB activation.

    Science.gov (United States)

    Xie, Yi-Lian; Chu, Jin-Guo; Jian, Xiao-Min; Dong, Jin-Zhong; Wang, Li-Ping; Li, Guo-Xiang; Yang, Nai-Bin

    2017-07-01

    Curcumin, a polyphenol in curry spice isolated from the rhizome of turmeric, has been reported to possess versatile biological properties including anti-inflammatory, anti-oxidant, antifibrotic, and anticancer activities. In this study, the hepatoprotective effect of curcumin was investigated in lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced acute liver injury (ALI) in rats. Experimental ALI was induced with an intraperitoneal (ip) injection of sterile 0.9% sodium chloride (NaCl) solution containing 8μg LPS and 800mg/kg d-GalN. Curcumin was administered once daily starting three days prior to LPS/d-GalN treatment. Results indicated that curcumin could attenuate hepatic pathological damage, decrease serum ALT and AST levels, and reduce malondialdehyde (MDA) content in experimental ALI rats. Moreover, higher dosages of curcumin pretreatment inhibited NF-κB activation and reduced serum TNF-α and liver TNF-α levels induced by LPS/d-GalN ip injection. Furthermore, we found that curcumin up-regulated the expression of nuclear Nrf2 and Nrf2-dependent antioxidant defense genes including heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCLC), NAD(P)H dehydrogenase, and quinone (NQO-1) in a dose-dependent manner. Our results showed that curcumin protected experimental animals against LPS/d-GalN-induced ALI through activation of Nrf2 nuclear translocation and inhibition of NF-κB activation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Clinical observation on the treatment of acute liver failure by combined non-biological artificial liver.

    Science.gov (United States)

    Li, Maoqin; Sun, Jingxi; Li, Jiaqiong; Shi, Zaixiang; Xu, Jiyuan; Lu, Bo; Cheng, Shuli; Xu, Yanjun; Wang, Xiaomeng; Zhang, Xianjiang

    2016-12-01

    The clinical efficacy and safety of different combinations of non-bio artificial liver in the treatment of acute liver failure was examined. A total of 61 cases were selected under blood purification treatment from the patients with severe acute liver failure admitted to the severe disease department of the hospital from December, 2010 to December, 2015. Three types of artificial liver combinations were observed, i.e., plasma exchange plus hemoperfusion plus continuous venovenous hemodiafiltration (PE+HP+CVVHDF), PE+CVVHDF and HP+CVVHDF. The heart rate (HR), mean arterial pressure (MAP), respiratory index (PaO 2 /FiO 2 ), liver and kidney function indicator, as well as platelet and coagulation function were compared. A comparison before and after the treatment using the three methods, showed improvement in the HRs, MAPs, PaO 2 /FiO 2 , total bilirubins (TBIL) and alanine aminotransferases (ALT) (Prate of 62.3% (38/61), and a viral survival rate of 35.0% (7/20); with the non-viral survival rate being 75.6% (31/41). In conclusion, following the treatment of three types of artificial livers, the function was improved to varying degrees, with the PE+HP+CVVHDF and the PE+CVVHDF method being better. By contrast, after the treatment of non-viral liver failure, the survival rate was significantly higher than the patients with viral liver failure.

  14. Pre-emptive administration of intravenous acetaminophen with transversus abdominis plane block (tap-blocke in the prevention of fentanil-induced hyperalgesia in pediatric oncological patient undergoing abdominal surgery

    Directory of Open Access Journals (Sweden)

    Dmytro Dmytriiev

    2015-10-01

      Abstract Background: Acetaminophen is a selective COX-2 agonist that has been shown to decrease the intensity of opioid-induced hyperalgesia (OIH in children. We aimed to investigate the effects of preemptive administration of intravenous acitomenofen  in the prevention of high-dose fentanil-induced hyperalgesia in pediatric patients. Methods: 45 patients of  American Society of Anesthesiologists physical status 1-3 undergoing abdominal surgery were randomly assigned to one of the following three groups. each of which received either IV acetaminophen  (an initial dose of 1.5 ml/kg for 40 min before before the induction of anesthesia or placebo saline 40 min before the induction of anesthesia and intraoperative fentanil infusion: group LFH received a placebo and 0.05 μg/kg/min fentanil; group FH received a placebo and 0.3 μg/kg/min fentanil; and group AFH received IV preemptive administration acetaminophen  and TAP-blocke bupivacaine 0,3 mg/kg.             Results: The mechanical hyperalgesia threshold 12 hr after surgery was significantly lower in group FH than in the other two groups. Postoperative pain intensity using visual analog scale (VAS and cumulative volume of a patient controlled analgesia (PCA containing morphine over 12 hr were significantly greater in group FH than in group AFH. The time to the first postoperative analgesic requirement was significantly shorter in group RH than in the other two groups. The sevoflurane requirement was significantly greater in group LFH than in the other groups. The frequency of hypotension and bradycardia was significantly higher, but shivering and postoperative nausea and vomiting were significantly lower in group AFH than in the other two groups. Conclusions: High-doses of fentanil induced hyperalgesia, which presented a decreased mechanical hyperalgesia threshold, enhanced pain intensity, a shorter time to first postoperative analgesic requirement, and greater morphine consumption, but IV

  15. In vitro antioxidant and hepatoprotective potential of Azolla microphylla phytochemically synthesized gold nanoparticles on acetaminophen - induced hepatocyte damage in Cyprinus carpio L.

    Science.gov (United States)

    Kunjiappan, Selvaraj; Bhattacharjee, Chiranjib; Chowdhury, Ranjana

    2015-06-01

    The present study aims to evaluate the hepatoprotective and antioxidant effects of gold nanoparticles (GNaP) biosynthesized through the mediation of Azolla microphylla and A. microphylla extract on acetaminophen-induced hepatocyte damage in common carp fish (Cyprinus carpio L.). The gold nanoparticles (100, 150, 200 μg/ml) and A. microphylla extract powder (100, 200, 400 μg/ml) were added to the primary hepatocytes in different conditions: treatment I (before 12 mM acetaminophen), treatment II (after 12 mM acetaminophen), and treatment III (both before and after 12 mM acetaminophen), and incubated. Among these, control group treated with 12 mM acetaminophen produced significantly elevated levels (50-80%) of lactate dehydrogenase (LDH), catalase (CAT), glutamate oxalate transaminase (GOT), glutamate pyruvate transaminase (GPT), and malondialdehyde (MDA), and significantly decreased the levels (60-75%) of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Treatment with methanol extract of A. microphylla phytochemically biosynthesized gold nanoparticles (100, 150, 200 μg/ml) and A. microphylla methanol extract powder (100, 200, 400 μg/ml) significantly improved the viability of cells in a culture medium. It also significantly reduced the levels of LDH, CAT, GOT, GPT, and MDA, and significantly increased the levels of SOD and GSH-Px. In conclusion, gold nanoparticles biosynthesized through A. microphylla demonstrated effective hepatoprotective and antioxidant effects than methanol extract of A. microphylla.

  16. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice

    International Nuclear Information System (INIS)

    Wang, Tao; Yang, Ping; Zhan, Yibei; Xia, Lin; Hua, Zichun; Zhang, Jianfa

    2013-01-01

    The severity of ethanol-induced liver injury is associated with oxidative stress and lipid accumulation in the liver. Core circadian clock is known to mediate antioxidative enzyme activity and lipid metabolism. However, the link between circadian clock and ethanol-induced hepatotoxicity remains unclear. Here we showed that extents of acute ethanol-induced liver injury and steatosis in mice exhibit circadian variations consistent with hepatic expression of Period (Per) genes. Mice lacking clock gene Per1 displayed less susceptible to ethanol-induced liver injury, as evidenced by lower serum transaminase activity and less severe histopathological changes. Ethanol-induced lipid peroxidation was alleviated in Per1−/− mice. However, Per1 deletion had no effect on antioxidants depletion caused by ethanol administration. Ethanol-induced triglycerides (TG) accumulation in the serum and liver was significantly decreased in Per1−/− mice compared with that in wild-type (WT) mice. Analysis of gene expression in the liver revealed peroxisome proliferators activated receptor-gamma (PPARγ) and its target genes related to TG synthesis are remarkably down-regulated in Per1−/− mice. HepG2 cells were treated with ethanol at 150 mM for 3 days. Per1 overexpression augmented lipid accumulation after treatment with ethanol in HepG2 cells, but had no effect on ethanol-induced oxidative stress. Expression of genes related to lipogenesis, including PPARγ and its target genes, was up-regulated in cells overexpressing Per1. In conclusion, these results indicated that circadian rhythms of ethanol-induced hepatotoxicity are controlled by clock gene Per1, and deletion of Per1 protected mice from ethanol-induced liver injury by decreasing hepatic lipid accumulation

  17. Plasma cystatin C is a predictor of renal dysfunction, acute-on-chronic liver failure, and mortality in patients with acutely decompensated liver cirrhosis

    DEFF Research Database (Denmark)

    Markwardt, Daniel; Holdt, Lesca; Steib, Christian

    2017-01-01

    The development of acute-on-chronic liver failure (ACLF) in patients with liver cirrhosis is associated with high mortality rates. Renal failure is the most significant organ dysfunction that occurs in ACLF. So far there are no biomarkers predicting ACLF. We investigated whether cystatin C (Cys...

  18. Loss of cellular FLICE-inhibitory protein promotes acute cholestatic liver injury and inflammation from bile duct ligation.

    Science.gov (United States)

    Gehrke, Nadine; Nagel, Michael; Straub, Beate K; Wörns, Marcus A; Schuchmann, Marcus; Galle, Peter R; Schattenberg, Jörn M

    2018-03-01

    Cholestatic liver injury results from impaired bile flow or metabolism and promotes hepatic inflammation and fibrogenesis. Toxic bile acids that accumulate in cholestasis induce apoptosis and contribute to early cholestatic liver injury, which is amplified by accompanying inflammation. The aim of the current study was to evaluate the role of the antiapoptotic caspase 8-homolog cellular FLICE-inhibitory (cFLIP) protein during acute cholestatic liver injury. Transgenic mice exhibiting hepatocyte-specific deletion of cFLIP (cFLIP -/- ) were used for in vivo and in vitro analysis of cholestatic liver injury using bile duct ligation (BDL) and the addition of bile acids ex vivo. Loss of cFLIP in hepatocytes promoted acute cholestatic liver injury early after BDL, which was characterized by a rapid release of proinflammatory and chemotactic cytokines (TNF, IL-6, IL-1β, CCL2, CXCL1, and CXCL2), an increased presence of CD68 + macrophages and an influx of neutrophils in the liver, and resulting apoptotic and necrotic hepatocyte cell death. Mechanistically, liver injury in cFLIP -/- mice was aggravated by reactive oxygen species, and sustained activation of the JNK signaling pathway. In parallel, cytoprotective NF-κB p65, A20, and the MAPK p38 were inhibited. Increased injury in cFLIP -/- mice was accompanied by activation of hepatic stellate cells and profibrogenic regulators. The antagonistic caspase 8-homolog cFLIP is a critical regulator of acute, cholestatic liver injury. NEW & NOTEWORTHY The current paper explores the role of a classical modulator of hepatocellular apoptosis in early, cholestatic liver injury. These include activation of NF-κB and MAPK signaling, production of inflammatory cytokines, and recruitment of neutrophils in response to cholestasis. Because these signaling pathways are currently exploited in clinical trials for the treatment of nonalcoholic steatohepatitis and cirrhosis, the current data will help in the development of novel pharmacological

  19. Discrepancies between N-Acetyl Cysteine Prescription based on Patient’s History and Plasma Acetaminophen Level

    Directory of Open Access Journals (Sweden)

    Fakhreddin Taghaddosi-Nejad

    2012-11-01

    Full Text Available Background: Fatalities from acetaminophen poisoning are common, but they are preventable by timely treatment with N-acetyl cysteine (NAC. In many medical centers, NAC is prescribed in keeping with the ingested dose of the drug as revealed through medical history. It seems to significantly differ from the real indications of NAC administration based on plasma level of acetaminophen. Overtreatment increases adverse drug reactions and it is time- consuming and costly. Methods: Acetaminophen plasma level was checked by HPLC method in 170 admitted patients who had history of acute ingestion of more than 7.5 g acetaminophen within 4 to 24 hours prior to hospital admission. Indications for NAC prescription according to patient’s history and adaptation from acetaminophen plasma level in Romack-Mathew nomogram were matched. Data were analyzed by SPSS software version 16.0. Results: Mean age of the patients was 21.8±6.05 years. In 75.8% of the patients, poisoning had occurred after suicidal attempts. Acetaminophen plasma level was between less than 2 and 265 μg/ml (18.7±28.88, mean± SD. Only in 18 (10.6% cases, overtreatment had been performed. Multiple logistic regression analysis showed that the number of suicidal attempts, number of ingested pills, and time of referral had positive relationships with acetaminophen plasma level. Conclusion: If NAC is prescribed only based on patient's medical history, overtreatment may take place.

  20. Hepatic encephalopathy in acute-on-chronic liver failure.

    Science.gov (United States)

    Lee, Guan-Huei

    2015-10-01

    The presence of hepatic encephalopathy (HE) within 4 weeks is part of the criteria for defining acute-on-chronic liver failure (ACLF). The pathophysiology of HE is complex, and hyperammonemia and cerebral hemodynamic dysfunction appear to be central in the pathogenesis of encephalopathy. Recent data also suggest that inflammatory mediators may have a significant role in modulating the cerebral effect of ammonia. Multiple prospective and retrospective studies have shown that hepatic encephalopathy in ACLF patients is associated with higher mortality, especially in those with grade III-IV encephalopathy, similar to that of acute liver failure (ALF). Although significant cerebral edema detected by CT in ACLF patients appeared to be less common, specialized MRI imaging was able to detect cerebral edema even in low grade HE. Ammonia-focused therapy constitutes the basis of current therapy, as in the treatment of ALF. Emerging treatment strategies focusing on modulating the gut-liver-circulation-brain axis are discussed.

  1. Breviscapine ameliorates CCl4‑induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation.

    Science.gov (United States)

    Liu, Yu; Wen, Pei-Hao; Zhang, Xin-Xue; Dai, Yang; He, Qiang

    2018-05-02

    Acute liver injury is characterized by fibrosis, inflammation and apoptosis, leading to liver failure, cirrhosis or cancer and affecting the clinical outcome in the long term. However, no effective therapeutic strategy is currently available. Breviscapine, a mixture of flavonoid glycosides, has been reported to have multiple biological functions. The present study aimed to investigate the effects of breviscapine on acute liver injury induced by CCl4 in mice. C57BL/6 mice were subjected to intraperitoneal injection with CCl4 for 8 weeks with or without breviscapine (15 or 30 mg/kg). Mice treated with CCl4 developed acute liver injury, as evidenced by histological analysis, Masson trichrome and Sirius Red staining, accompanied with elevated levels of alanine aminotransferase and aspartate aminotransferase. Furthermore, increases in pro‑inflammatory cytokines, chemokines and apoptotic factors, including caspase‑3 and poly(ADP ribose) polymerase‑2 (PARP‑2), were observed. Breviscapine treatment significantly and dose‑dependently reduced collagen deposition and the fibrotic area. Inflammatory cytokines were downregulated by breviscapine through inactivating Toll‑like receptor 4/nuclear factor-κB signaling pathways. In addition, co‑administration of breviscapine with CCl4 decreased the apoptotic response by enhancing B‑cell lymphoma-2 (Bcl‑2) levels, while reducing Bcl‑2‑associated X protein, apoptotic protease activating factor 1, caspase‑3 and PARP activity. Furthermore, CCl4‑induced oxidative stress was blocked by breviscapine through improving anti‑oxidants and impeding mitogen‑activated protein kinase pathways. The present study highlighted that breviscapine exhibited liver‑protective effects against acute hepatic injury induced by CCl4 via suppressing inflammation and apoptosis.

  2. Impaired TFEB-mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-induced Liver Injury and Steatosis in Mice.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing

    2018-05-18

    Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the

  3. Acute Liver Toxicity due to Efavirenz/Emtricitabine/Tenofovir

    Directory of Open Access Journals (Sweden)

    Rashmee Patil

    2015-01-01

    Full Text Available The fixed-dose combination of Efavirenz/Emtricitabine/Tenofovir is a first-line agent for the treatment of HIV; however few cases have reported hepatotoxicity associated with the drug. We report a case of Efavirenz/Emtricitabine/Tenofovir-associated hepatotoxicity presenting mainly with hepatocellular injury characterized by extremely elevated aminotransferase levels, which resolved without acute liver failure or need for liver transplant referral.

  4. Induction of Mkp-1 and Nuclear Translocation of Nrf2 by Limonoids from Khaya grandifoliola C.DC Protect L-02 Hepatocytes against Acetaminophen-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Arnaud F. Kouam

    2017-09-01

    Full Text Available Drug-induced liver injury (DILI is a major clinical problem where natural compounds hold promise for its abrogation. Khaya grandifoliola (Meliaceae is used in Cameroonian traditional medicine for the treatment of liver related diseases and has been studied for its hepatoprotective properties. Till date, reports showing the hepatoprotective molecular mechanism of the plant are lacking. The aim of this study was therefore to identify compounds from the plant bearing hepatoprotective activity and the related molecular mechanism by assessing their effects against acetaminophen (APAP-induced hepatotoxicity in normal human liver L-02 cells line. The cells were exposed to APAP (10 mM or co-treated with phytochemical compounds (40 μM over a period of 36 h and, biochemical and molecular parameters assessed. Three known limonoids namely 17-epi-methyl-6-hydroxylangolensate, 7-deacetoxy-7-oxogedunin and deacetoxy-7R-hydroxygedunin were identified. The results of cells viability and membrane integrity, reactive oxygen species generation and lipid membrane peroxidation assays, cellular glutathione content determination as well as expression of cytochrome P450 2E1 demonstrated the protective action of the limonoids. Immunoblotting analysis revealed that limonoids inhibited APAP-induced c-Jun N-terminal Kinase phosphorylation (p-JNK, mitochondrial translocation of p-JNK and Bcl2-associated X Protein, and the release of Apoptosis-inducing Factor into the cytosol. Interestingly, limonoids increased the expression of Mitogen-activated Protein Kinase Phosphatase (Mkp-1, an endogenous inhibitor of JNK phosphorylation and, induced the nuclear translocation of Nuclear Factor Erythroid 2-related Factor-2 (Nrf2 and decreased the expression of Kelch-like ECH-associated Protein-1. The limonoids also reversed the APAP-induced decreased mRNA levels of Catalase, Superoxide Dismutase-1, Glutathione-S-Transferase and Methionine Adenosyltransferase-1A. The obtained results

  5. From painkiller to empathy killer: acetaminophen (paracetamol) reduces empathy for pain.

    Science.gov (United States)

    Mischkowski, Dominik; Crocker, Jennifer; Way, Baldwin M

    2016-09-01

    Simulation theories of empathy hypothesize that empathizing with others' pain shares some common psychological computations with the processing of one's own pain. Support for this perspective has largely relied on functional neuroimaging evidence of an overlap between activations during the experience of physical pain and empathy for other people's pain. Here, we extend the functional overlap perspective to the neurochemical level and test whether a common physical painkiller, acetaminophen (paracetamol), can reduce empathy for another's pain. In two double-blind placebo-controlled experiments, participants rated perceived pain, personal distress and empathic concern in response to reading scenarios about another's physical or social pain, witnessing ostracism in the lab, or visualizing another study participant receiving painful noise blasts. As hypothesized, acetaminophen reduced empathy in response to others' pain. Acetaminophen also reduced the unpleasantness of noise blasts delivered to the participant, which mediated acetaminophen's effects on empathy. Together, these findings suggest that the physical painkiller acetaminophen reduces empathy for pain and provide a new perspective on the neurochemical bases of empathy. Because empathy regulates prosocial and antisocial behavior, these drug-induced reductions in empathy raise concerns about the broader social side effects of acetaminophen, which is taken by almost a quarter of adults in the United States each week. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Systematic review of severe acute liver injury caused by terbinafine.

    Science.gov (United States)

    Yan, Jun; Wang, Xiaolin; Chen, Shengli

    2014-08-01

    Terbinafine is an effective antimicrobial agent against dermatophytes, cryptococcus and other fungi. It is the preferred drug to treat onychomycosis. However, severe acute hepatitis from oral terbinafine administration has been recently reported. To describe a representative case, and review the literature regarding the best evidence on treatment and prognosis of severe acute hepatitis caused by oral terbinafine. The literature was searched for publications on severe hepatitis caused by terbinafine using MEDLINE, China Biology Medicine Disc, and the VIP Medical Information Resource System. Related references were searched manually. Seventeen English and three Chinese references of case reports were included after eliminating duplicate publications. No randomized control studies were found. Liver enzyme levels were found to have been increased significantly. Abdominal ultrasound demonstrated cholestasis. Severe acute liver injury is a known, but unusual complication of terbinafine exposure. The prognosis is often good with appropriate treatment. Liver function assessment before treatment and periodic monitoring 4-6 weeks after initiation of treatment is recommended.

  7. [EFFECT OF ACETYLCYSTEINE, CORVITIN AND THEIR COMBINATION ON THE FUNCTIONAL STATE OF LIVER IN RATS WITH PARACETAMOL INDUCED TOXIC HEPATITIS].

    Science.gov (United States)

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Nowadays drug-induced hepatotoxicity is urgent problem worldwide. Currently more than 1000 drugs are hepatotoxic and most often are the reason of acute fulminant hepatitis and hepatocellular failure, the states requiring liver transplantation. The paracetamol induced liver toxicity is related with accumulation of its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is the free radical and enhances peroxidation of lipids, disturbs the energy status and causes death of hepatocytes. During our research we investigated and assessed the efficacy of acetylcysteine, corvitin and their combination in rat model of paracetamol induced acute toxic hepatitis. The study was performed on mature white male Wistar rates with body mass 150-180 g. 50 rats were randomly divided into 5 groups (10 rats in each group). To get the model of acute toxic hepatitis single intraperitoneal injection of paracetamol solution was used (750 mg/kg). Toxic hepatitis was treated with intrapertoneal administration of 40mg/kg acetylcysteine or 100mg/kg corvitin, as well as with combination of these drugs. Monotherapy with acetylcysteine and corvitin of paracetamol induced toxic hepatitis improved the liver function, decreased relative mass of the liver and animal mortality. The treatment of toxic hepatitis was most effective in the case of simultaneous administration of acetylcysteine and corvitin. The normal value of laboratory tests (ALT, ACT, alkaline phosphatase, total and unconjugated bilirubin) was reached and mortality was not more observed. On the bases of obtained data was concluded that acetylcysteine and corvitin have almost equal hepatoprotective activity. The combination of two drugs actually improves the liver function. The most pronounced hepatoprotective effect may be due to synergic action of acetylcysteine and corvitin and such regime can be recommended for correction of liver function.

  8. Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development

    Directory of Open Access Journals (Sweden)

    Leah Y. Liu

    2013-09-01

    Genome-wide association studies (GWAS have revealed numerous associations between many phenotypes and gene candidates. Frequently, however, further elucidation of gene function has not been achieved. A recent GWAS identified 69 candidate genes associated with elevated liver enzyme concentrations, which are clinical markers of liver disease. To investigate the role of these genes in liver homeostasis, we narrowed down this list to 12 genes based on zebrafish orthology, zebrafish liver expression and disease correlation. To assess the function of gene candidates during liver development, we assayed hepatic progenitors at 48 hours post fertilization (hpf and hepatocytes at 72 hpf using in situ hybridization following morpholino knockdown in zebrafish embryos. Knockdown of three genes (pnpla3, pklr and mapk10 decreased expression of hepatic progenitor cells, whereas knockdown of eight genes (pnpla3, cpn1, trib1, fads2, slc2a2, pklr, mapk10 and samm50 decreased cell-specific hepatocyte expression. We then induced liver injury in zebrafish embryos using acetaminophen exposure and observed changes in liver toxicity incidence in morphants. Prioritization of GWAS candidates and morpholino knockdown expedites the study of newly identified genes impacting liver development and represents a feasible method for initial assessment of candidate genes to instruct further mechanistic analyses. Our analysis can be extended to GWAS for additional disease-associated phenotypes.

  9. Tacrolimus Aggravated Tube Feeding Syndrome with Acute Renal Failure in a Pediatric Liver Transplant Recipient

    Directory of Open Access Journals (Sweden)

    R. Kula

    2017-01-01

    Full Text Available Acute renal failure can be caused by calcineurin inhibitors (CNIs, due to arteriolopathy and altered tubular function. Within this context, we present the case of a 14-month-old liver transplant recipient who suffered an acute polyuric renal failure during a short episode of hypercaloric feeding. In our case, CNI-induced distal RTA led to nephrocalcinosis and therefore to secondary nephrogenic diabetes insipidus. The diet with high renal solute load consequently resulted in an acute polyuric renal failure with severe hypernatremic dehydration. In conclusion, a hypercaloric diet in children with potentially impaired renal function due to therapy with CNIs requires precise calculation of the potential renal solute load and the associated fluid requirements.

  10. Ethanol extract of Portulaca Oleracea L. reduced the carbon tetrachloride induced liver injury in mice involving enhancement of NF-κB activity

    Science.gov (United States)

    Shi, Hongguang; Liu, Xuefeng; Tang, Gusheng; Liu, Haiyan; Zhang, Yinghui; Zhang, Bo; Zhao, Xuezhi; Wang, Wanyin

    2014-01-01

    Acute hepatic injury causes high morbidity and mortality world-wide. Management of severe acute hepatic failure continues to be one of the most challenging problems in clinical medicine. In present study, carbon tetrachloride (CCl4) was used to induce acute liver damage in mice and the protective effects of ethanol extract of Portulaca Oleracea L. (PO) were examined. The aminotransferase activities were biochemical estimated and the liver damage was tested by morphological histological analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The role of PO on the activity of NF-κB was determined by luciferase reporter gene assay and immunohistochemistry. The level of p-p65 was tested by western blot. Our results showed that PO administration on mice would decrease the serum aminotransferase level and reduced the liver histological damage. We also found that nuclear translocation of p65 was enhanced in liver tissues of mice treated with PO compared with control animals. In addition, in cultured hepatic cells, PO increased the NF-κB luciferase reporter gene activity and upregulated the level of phosphorylation of p65, but had no effects on mice liver SOD activity and MDA level. Collectively, PO attenuated CCl4 induced mice liver damage by enhancement of NF-κB activity. PMID:25628785

  11. Hepatocurative potential of sesquiterpene lactones of Taraxacum officinale on carbon tetrachloride induced liver toxicity in mice.

    Science.gov (United States)

    Mahesh, A; Jeyachandran, R; Cindrella, L; Thangadurai, D; Veerapur, V P; Muralidhara Rao, D

    2010-06-01

    The hepatocurative potential of ethanolic extract (ETO) and sesquiterpene lactones enriched fraction (SL) of Taraxacum officinale roots was evaluated against carbon tetrachloride (CCl 4 ) induced hepatotoxicity in mice. The diagnostic markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin contents were significantly elevated, whereas significant reduction in the level of reduced glutathione (GSH) and enhanced hepatic lipid peroxidation, liver weight and liver protein were observed in CCl 4 induced hepatotoxicity in mice. Post-treatment with ETO and SL significantly protected the hepatotoxicity as evident from the lower levels of hepatic enzyme markers, such as serum transaminase (ALT, AST), ALP and total bilirubin. Further, significant reduction in the liver weight and liver protein in drug-treated hepatotoxic mice and also reduced oxidative stress by increasing reduced glutathione content and decreasing lipid peroxidation level has been noticed. The histopathological evaluation of the liver also revealed that ETO and SL reduced the incidence of liver lesions induced by CCl 4 . The results indicate that sesquiterpene lactones have a protective effect against acute hepatotoxicity induced by the administration of CCl 4 in mice. Furthermore, observed activity of SL may be due to the synergistic action of two sesquiterpene lactones identified from enriched ethyl acetate fraction by HPLC method.

  12. Nonalcoholic steatohepatitic (NASH) mice are protected from higher hepatotoxicity of acetaminophen upon induction of PPARα with clofibrate

    International Nuclear Information System (INIS)

    Donthamsetty, Shashikiran; Bhave, Vishakha S.; Mitra, Mayurranjan S.; Latendresse, John R.; Mehendale, Harihara M.

    2008-01-01

    The objective was to investigate if the hepatotoxic sensitivity in nonalcoholic steatohepatitic mice to acetaminophen (APAP) is due to downregulation of nuclear receptor PPARα via lower cell division and tissue repair. Male Swiss Webster mice fed methionine and choline deficient diet for 31 days exhibited NASH. On the 32nd day, a marginally toxic dose of APAP (360 mg/kg, ip) yielded 70% mortality in steatohepatitic mice, while all non steatohepatitic mice receiving the same dose survived. 14 C-APAP covalent binding, CYP2E1 protein, and enzyme activity did not differ from the controls, obviating increased APAP bioactivation as the cause of amplified APAP hepatotoxicity. Liver injury progressed only in steatohepatitic livers between 6 and 24 h. Cell division and tissue repair assessed by 3 H-thymidine incorporation and PCNA were inhibited only in the steatohepatitic mice given APAP suggesting that higher sensitivity of NASH liver to APAP-induced hepatotoxicity was due to lower tissue repair. The hypothesis that impeded liver tissue repair in steatohepatitic mice was due to downregulation of PPARα was tested. PPARα was downregulated in NASH. To investigate whether downregulation of PPARα in NASH is the critical mechanism of compromised liver tissue repair, PPARα was induced in steatohepatitic mice with clofibrate (250 mg/kg for 3 days, ip) before injecting APAP. All clofibrate pretreated steatohepatitic mice receiving APAP exhibited lower liver injury, which did not progress and the mice survived. The protection was not due to lower bioactivation of APAP but due to higher liver tissue repair. These findings suggest that inadequate PPARα expression in steatohepatitic mice sensitizes them to APAP hepatotoxicity

  13. A gargantuan acetaminophen level in an acidemic patient treated solely with intravenous N-acetylcysteine.

    Science.gov (United States)

    Zell-Kanter, Michele; Coleman, Patrick; Whiteley, Patrick M; Leikin, Jerrold B

    2013-01-01

    The objective of this report is to describe an acidemic patient with one of the largest recorded acetaminophen ingestions in a patient with acidemia who was treated with supportive care and intravenous (IV) N-acetylcysteine. A 59-year-old female with a history of depression was found comatose. In the Emergency Department, she was obtunded with agonal respirations and immediately intubated. Activated charcoal was given through a nasogastric tube. An initial acetaminophen serum level was 1141 mg/L. The patient was started on IV N-acetylcysteine. The acetaminophen level peaked 2 hours later at 1193 mg/L. She was continued on the IV N-acetylcysteine protocol. The next day her aspartate aminotransferase was 3150 U/L, alanine aminotransferase was 2780 U/L, and creatinine phosphokinase was 16,197 U/L. There was no elevation in bilirubin or international normalized ratio (INR). Transaminase levels decreased on day 3 and normalized by day 4 when she was transferred to a psychiatric unit. Few cases have been reported of strikingly elevated acetaminophen levels in poisoned patients who did not receive hemodialysis. These patients did have increased lactate levels, and some had normal liver function tests. All of these patients received N-acetylcysteine and survived the poisoning without sequelae. This patient in this report was unique in that she had the highest reported serum acetaminophen level with acidosis and was treated successfully with only IV N-acetylcysteine and supportive care.

  14. Effects of α-Melanocortin Enantiomers on Acetaminophen-Induced Hepatotoxicity in CBA Mice

    Directory of Open Access Journals (Sweden)

    Dražen Vikić-Topić

    2009-12-01

    Full Text Available Proteins and peptides in mammals are based exclusively on L-amino acids. Recent investigations show that D-amino acids exhibit physiological effects in vivo, despite of their very small quantities. We have investigated the hepatoprotective effects of the Land D-enantiomers of α-melanocortin peptide (α-MSH. The results showed that peptideenantiomerism is related to the protective effects of melanocortin peptides in vivo. L-α-MSH exhibited potent hepatoprotective effect in the experimental model of acetaminophen induced hepatotoxicity in male CBA mice, while its D-mirror image was inefficient. Furthermore, the antibody to the L-peptide did not recognize the D-structure. The results indicate that the opposite peptide configuration may be used to modulate its function and metabolism in vivo and in vitro.

  15. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    International Nuclear Information System (INIS)

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.; Sattabongkot, Jetsumon; Beerheide, Walter; Boelsterli, Urs A.

    2006-01-01

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and the upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 μM) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction

  16. Increase of peripheral Th17 lymphocytes during acute cellular rejection in liver transplant recipients.

    Science.gov (United States)

    Fan, Hua; Li, Li-Xin; Han, Dong-Dong; Kou, Jian-Tao; Li, Ping; He, Qiang

    2012-12-15

    Although many human inflammatory and autoimmune diseases were previously considered to be mediated by T helper type 1 (Th1) cells, the recently described Th17 cells play dominant roles in several of these diseases. We and others speculated that allograft rejection after organ transplantation may also involve Th17 cells. Episodes of acute rejection occur in 30% of liver transplants. This study aimed to determine the frequency of circulating Th17 cells in patients who had received liver transplants for benign end-stage liver disease and to identify any association between acute rejection episodes and levels of Th17 cells in the peripheral blood. A prospective study compared Th17 cells from 76 consecutive benign end-stage liver disease patients who had undergone orthotopic liver transplantation from 2007 to 2011 with those from 20 age-matched healthy individuals. Peripheral blood samples were collected at different time points within one year after transplant. Blood samples and liver biopsies were also collected at the diagnosis of acute rejection. Percentages of circulating CD4+IL-17+ cells were measured by flow cytometry. The transplant patients were classified into two groups: a rejection group consisting of 17 patients who had an episode of acute rejection, and a non-rejection group comprising the remaining 59 patients with no acute rejection episodes. Percentages of circulating Th17 cells were compared between the two groups and controls. The levels of circulating CD4+IL-17+ T cells in the rejection group were higher during acute rejection than those in the non-rejection group (2.56+/-0.43% versus 1.79+/-0.44%, Pblood was positively correlated with the rejection activity index (r=0.79, P=0.0002). Circulating Th17 cells may be useful as a surrogate marker for predicting acute rejection in liver transplant recipients.

  17. Parvovirus B19 Infection in a Fatal Case of Acute Liver Failure.

    Science.gov (United States)

    Leon, Luciane Almeida Amado; Alves, Arthur Daniel Rocha; Garcia, Rita de Cássia Nasser Cubel; Melgaço, Juliana Gil; de Paula, Vanessa Salete; Pinto, Marcelo Alves

    2017-12-01

    B19V has been proposed as an etiologic agent for hepatitis, mainly in children, but this is a rare clinical occurrence. In this article, we report a case of non-A-E acute liver failure in an immunocompetent child with B19 infection. The clinical findings of severe anemia and pancytopenia combined with the detection of anti-B19 Immunoglobulin G (IgG), B19 DNA and B19 mRNA in liver indicate a persistent infection and suggest a diagnosis of parvovirus B19-associated acute liver failure.

  18. Fibroblast growth factor 21 (FGF21 is robustly induced by ethanol and has a protective role in ethanol associated liver injury

    Directory of Open Access Journals (Sweden)

    Bhavna N. Desai

    2017-11-01

    Conclusions: Acute or binge ethanol consumption significantly increases circulating FGF21 levels in both humans and mice. However, FGF21 does not play a role in acute ethanol clearance. In contrast, chronic ethanol consumption in the absence of FGF21 is associated with significant liver pathology alone or in combination with excess mortality, depending on the type of diet consumed with ethanol. This suggests that FGF21 protects against long term ethanol induced hepatic damage and may attenuate progression of alcoholic liver disease. Further study is required to assess the therapeutic potential of FGF21 in the treatment of alcoholic liver disease.

  19. Acetaminophen use during pregnancy

    DEFF Research Database (Denmark)

    Rebordosa, Cristina; Kogevinas, Manolis; Horváth-Puhó, Erzsébet

    2008-01-01

    information on acetaminophen use during the first trimester of pregnancy. We used the National Hospital Registry to identify 3784 (4.3%) children from the cohort diagnosed with 5847 congenital abnormalities. RESULTS: Children exposed to acetaminophen during the first trimester of pregnancy (n = 26,424) did...

  20. Pre-emptive analgesia with paracetamol (acetaminophen) in postoperative pain

    International Nuclear Information System (INIS)

    Afhami, M.R.; Hassanzadeh, J.P.; Panahea, J.R.

    2007-01-01

    To evaluate efficacy and safety of preoperative paracetamol for postoperative pain relief. The study population consisted of 40 adult female patients scheduled for tubectomy as an elective surgery who were in ASA class I. Patients were allocated randomly to receive 325mg of acetaminophen orally half an hour before surgery. Pain was assessed by verbal rating scale in three situations (resting, moving and coughing). Data was collection done using the questionnaire and data analysis done using descriptive statistical methods. The patients who received oral paracetamol experienced moderate and mild pain in 50% of the cases when they were in resting position. Feeling mild and moderate pain with movement was in 40% and 60% respectively. While coughing, 100% of the cases felt only moderate pain and none experienced severe pain. Administration of a single dose of acetaminophen in preoperative period is effective for acute postoperative pain relief. (author)

  1. Plasma cystatin C is a predictor of renal dysfunction, acute-on-chronic liver failure, and mortality in patients with acutely decompensated liver cirrhosis.

    Science.gov (United States)

    Markwardt, Daniel; Holdt, Lesca; Steib, Christian; Benesic, Andreas; Bendtsen, Flemming; Bernardi, Mauro; Moreau, Richard; Teupser, Daniel; Wendon, Julia; Nevens, Frederik; Trebicka, Jonel; Garcia, Elisabet; Pavesi, Marco; Arroyo, Vicente; Gerbes, Alexander L

    2017-10-01

    The development of acute-on-chronic liver failure (ACLF) in patients with liver cirrhosis is associated with high mortality rates. Renal failure is the most significant organ dysfunction that occurs in ACLF. So far there are no biomarkers predicting ACLF. We investigated whether cystatin C (CysC) and neutrophil gelatinase-associated lipocalin (NGAL) can predict development of renal dysfunction (RD), hepatorenal syndrome (HRS), ACLF, and mortality. We determined the plasma levels of CysC and NGAL in 429 patients hospitalized for acute decompensation of cirrhosis in the EASL-CLIF Acute-on-Chronic Liver Failure in Cirrhosis (CANONIC) study. The patients were followed for 90 days. Patients without RD or ACLF at inclusion but with development of either had significantly higher baseline concentrations of CysC and NGAL compared to patients without. CysC, but not NGAL, was found to be predictive of RD (odds ratio, 9.4; 95% confidence interval [CI], 1.8-49.7), HRS (odds ratio, 4.2; 95% CI, 1.2-14.8), and ACLF (odds ratio, 5.9; 95% CI, 1.3-25.9). CysC at day 3 was not found to be a better predictor than baseline CysC. CysC and NGAL were both predictive of 90-day mortality, with hazard ratios for CysC of 3.1 (95% CI, 2.1-4.7) and for NGAL of 1.9 (95% CI, 1.5-2.4). Baseline CysC is a biomarker of RD, HRS, and ACLF and an independent predictor of mortality in patients with acutely decompensated liver cirrhosis, though determining CysC at day 3 did not provide any benefit; while NGAL is also associated with short-term mortality, it fails to predict development of RD, HRS, and ACLF. Baseline CysC may help to identify patients at risk earlier and improve clinical management. (Hepatology 2017;66:1232-1241). © 2017 by the American Association for the Study of Liver Diseases.

  2. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    International Nuclear Information System (INIS)

    Blazquez, Alba G.; Briz, Oscar; Gonzalez-Sanchez, Ester; Perez, Maria J.; Ghanem, Carolina I.; Marin, Jose J.G.

    2014-01-01

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug

  3. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, Alba G., E-mail: albamgb@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Briz, Oscar, E-mail: obriz@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Gonzalez-Sanchez, Ester, E-mail: u60343@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); Perez, Maria J., E-mail: mjperez@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); University Hospital of Salamanca, IECSCYL-IBSAL, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Ghanem, Carolina I., E-mail: cghanem@ffyb.uba.ar [Instituto de Investigaciones Farmacologicas, Facultad de Farmacia y Bioquimica, CONICET, Universidad de Buenos Aires, Buenos Aires (Argentina); Marin, Jose J.G., E-mail: jjgmarin@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain)

    2014-05-15

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug.

  4. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    Science.gov (United States)

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  5. Assessment of protein modifications in liver of rats under chronic treatment with paracetamol (acetaminophen) using two complementary mass spectrometry-based metabolomic approaches.

    Science.gov (United States)

    Mast, Carole; Lyan, Bernard; Joly, Charlotte; Centeno, Delphine; Giacomoni, Franck; Martin, Jean-François; Mosoni, Laurent; Dardevet, Dominique; Pujos-Guillot, Estelle; Papet, Isabelle

    2015-04-29

    Liver protein can be altered under paracetamol (APAP) treatment. APAP-protein adducts and other protein modifications (oxidation/nitration, expression) play a role in hepatotoxicity induced by acute overdoses, but it is unknown whether liver protein modifications occur during long-term treatment with non-toxic doses of APAP. We quantified APAP-protein adducts and assessed other protein modifications in the liver from rats under chronic (17 days) treatment with two APAP doses (0.5% or 1% of APAP in the diet w/w). A targeted metabolomic method was validated and used to quantify APAP-protein adducts as APAP-cysteine adducts following proteolytic hydrolysis. The limit of detection was found to be 7ng APAP-cysteine/mL hydrolysate i.e. an APAP-Cys to tyrosine ratio of 0.016‰. Other protein modifications were assessed on the same protein hydrolysate by untargeted metabolomics including a new strategy to process the data and identify discriminant molecules. These two complementary mass spectrometry (MS)-based metabolic approaches enabled the assessment of a wide range of protein modifications induced by chronic treatment with APAP. APAP-protein adducts were detected even in the absence of glutathione depletion and hepatotoxicity, i.e. in the 0.5% APAP group, and increased by 218% in the 1% APAP group compared to the 0.5% APAP group. At the same time, the untargeted metabolomic method revealed a decrease in the binding of cysteine, cysteinyl-glycine and GSH to thiol groups of protein cysteine residues, an increase in the oxidation of tryptophan and proline residues and a modification in protein expression. This wide range of modifications in liver proteins occurred in rats under chronic treatment with APAP that did not induce hepatotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Protective effect of Curcuma longa L. extract on CCl4-induced acute hepatic stress.

    Science.gov (United States)

    Lee, Geum-Hwa; Lee, Hwa-Young; Choi, Min-Kyung; Chung, Han-Wool; Kim, Seung-Wook; Chae, Han-Jung

    2017-02-01

    The Curcuma longa L. (CLL) rhizome has long been used to treat patients with hepatic dysfunction. CLL is a member of the ginger family of spices that are widely used in China, India, and Japan, and is a common spice, coloring, flavoring, and traditional medicine. This study was performed to evaluate the hepatoprotective activity of CLL extract and its active component curcumin in an acute carbon tetrachloride (CCl 4 )-induced liver stress model. Acute hepatic stress was induced by a single intraperitoneal injection of CCl 4 (0.1 ml/kg body weight) in rats. CLL extract was administered once a day for 3 days at three dose levels (100, 200, and 300 mg/kg/day) and curcumin was administered once a day at the 200 mg/kg/day. We performed alanine transaminase (ALT) and aspartate transaminase (AST). activity analysis and also measured total lipid, triglyceride, and cholesterol levels, and lipid peroxidation. At 100 g CLL, the curcuminoid components curcumin (901.63 ± 5.37 mg/100 g), bis-demethoxycurcumin (108.28 ± 2.89 mg/100 g), and demethoxycurcumin (234.85 ± 1.85 mg/100 g) were quantified through high liquid chromatography analysis. In CCl 4 -treated rats, serum AST and ALT levels increased 2.1- and 1.2-fold compared with the control. AST but not ALT elevation induced by CCl 4 was significantly alleviated in CLL- and curcumin-treated rats. Peroxidation of membrane lipids in the liver was significantly prevented by CLL (100, 200, and 300 mg/kg/day) on tissue lipid peroxidation assay and immunostaining with anti-4HNE antibody. We found that CLL extract and curcumin exhibited significant protection against liver injury by improving hepatic superoxide dismutase (p < 0.05) and glutathione peroxidase activity, and glutathione content in the CCl 4 -treated group (p < 0.05), leading to a reduced lipid peroxidase level. Our data suggested that CLL extract and curcumin protect the liver from acute CCl 4 -induced injury in a rodent model by suppressing

  7. A hot water extract of turmeric (Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production.

    Science.gov (United States)

    Uchio, Ryusei; Higashi, Yohei; Kohama, Yusuke; Kawasaki, Kengo; Hirao, Takashi; Muroyama, Koutarou; Murosaki, Shinji

    2017-01-01

    Turmeric ( Curcuma longa ) is a widely used spice that has various biological effects, and aqueous extracts of turmeric exhibit potent antioxidant activity and anti-inflammatory activity. Bisacurone, a component of turmeric extract, is known to have similar effects. Oxidative stress and inflammatory cytokines play an important role in ethanol-induced liver injury. This study was performed to evaluate the influence of a hot water extract of C. longa (WEC) or bisacurone on acute ethanol-induced liver injury. C57BL/6 mice were orally administered WEC (20 mg/kg body weight; BW) or bisacurone (60 µg/kg BW) at 30 min before a single dose of ethanol was given by oral administration (3·0 g/kg BW). Plasma levels of aspartate aminotransferase and alanine aminotransferase were markedly increased in ethanol-treated mice, while the increase of these enzymes was significantly suppressed by prior administration of WEC. The increase of alanine aminotransferase was also significantly suppressed by pretreatment with bisacurone. Compared with control mice, animals given WEC had higher hepatic tissue levels of superoxide dismutase and glutathione, as well as lower hepatic tissue levels of thiobarbituric acid-reactive substances, TNF-α protein and IL-6 mRNA. These results suggest that oral administration of WEC may have a protective effect against ethanol-induced liver injury by suppressing hepatic oxidation and inflammation, at least partly through the effects of bisacurone.

  8. Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis.

    Science.gov (United States)

    Yang, Qing-Li; Shen, Ji-Qing; Xue, Yan; Cheng, Xiao-Bing; Jiang, Zhi-Hua; Yang, Yi-Chao; Chen, Ying-Dan; Zhou, Xiao-Nong

    2015-12-01

    The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.

  9. The Social Side Effects of Acetaminophen

    Science.gov (United States)

    Mischkowski, Dominik

    About 23% of all adults in the US take acetaminophen during an average week (Kaufman, Kelly, Rosenberg, Anderson, & Mitchell, 2002) because acetaminophen is an effective physical painkiller and easily accessible over the counter. The physiological side effects of acetaminophen are well documented and generally mild when acetaminophen is consumed in the appropriate dosage. In contrast, the psychological and social side effects of acetaminophen are largely unknown. Recent functional neuroimaging research suggests that the experience of physical pain is fundamentally related to the experience of empathy for the pain of other people, indicating that pharmacologically reducing responsiveness to physical pain also reduces cognitive, affective, and behavioral responsiveness to the pain of others. I tested this hypothesis across three double-blind between-subjects drug intervention studies. Two experiments showed that acetaminophen had moderate effects on empathic affect, specifically personal distress and empathic concern, and a small effect on empathic cognition, specifically perceived pain, when facing physical and social pain of others. The same two experiments and a third experiment also showed that acetaminophen can increase the willingness to inflict pain on other people, i.e., actual aggressive behavior. This effect was especially pronounced among people low in dispositional empathic concern. Together, these findings suggest that the physical pain system is more involved in the regulation of social cognition, affect, and behavior than previously assumed and that the experience of physical pain and responsiveness to the pain of others share a common neurochemical basis. Furthermore, these findings suggest that acetaminophen has unappreciated but serious social side effects, and that these side effects may depend on psychological characteristics of the drug consumer. This idea is consistent with recent theory and research on the context-dependency of neurochemical

  10. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury.

    Science.gov (United States)

    Addante, Annalisa; Roncero, Cesáreo; Almalé, Laura; Lazcanoiturburu, Nerea; García-Álvaro, María; Fernández, Margarita; Sanz, Julián; Hammad, Seddik; Nwosu, Zeribe C; Lee, Se-Jin; Fabregat, Isabel; Dooley, Steven; Ten Dijke, Peter; Herrera, Blanca; Sánchez, Aránzazu

    2018-05-11

    Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Conjugation of nitrated acetaminophen to Der p1 amplifies peripheral blood monocyte response to Der p1.

    Directory of Open Access Journals (Sweden)

    Ryan G Thomas

    Full Text Available An association of acetaminophen use and asthma was observed in the International Study of Asthma and Allergies in Childhood study. However there are no clear mechanisms to explain an association between acetaminophen use and immunologic pathology. In acidic conditions like those in the stomach and inflamed airway, tyrosine residues are nitrated by nitrous and peroxynitrous acids. The resulting nitrotyrosine is structurally similar to 2,4-dinitrophenol and 2,4-dinitrochlorobenzene, known haptens that enhance immune responses by covalently binding proteins. Nitrated acetaminophen shares similar molecular structure.We hypothesized the acetaminophen phenol ring undergoes nitration under acidic conditions, producing 3-nitro-acetaminophen which augments allergic responses by acting as a hapten for environmental allergens.3-nitro-acetaminophen was formed from acetaminophen in the presence of acidified nitrite, purified by high performance liquid chromatography, and assayed by gas-chromatography mass spectrometry. Purified 3-nitro-acetaminophen was reacted with Dermatophagoides pteronyssinus (Der p1 and analyzed by mass spectrometry to identify the modification site. Human peripheral blood mononuclear cells proliferation response was measured in response to 3-nitro-acetaminophen and to 3-nitro-acetaminophen-modified Der p1.Acetaminophen was modified by nitrous acid forming 3-nitro-acetaminophen over a range of different acidic conditions consistent with airway inflammation and stomach acidity. The Der p1 protein-hapten adduct creation was confirmed by liquid chromatography-mass spectrometry proteomics modifying cysteine 132. Peripheral blood mononuclear cells exposed to 3-nitro-acetaminophen-modified Der p1 had increased proliferation and cytokine production compared to acetaminophen and Der p1 alone (n = 7; p < 0.05.These data suggests 3-nitro-acetaminophen formation and reaction with Der p1 provides a mechanism by which stomach acid or infection-induced

  12. Septic liver - Clinical relevance of early inhomogeneous enhancement of the liver in patients with acute pyelonephritis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ga Jin; Lee, Nam Kyung; Kim, Suk [Dept. of Radiology, Biomedical Research Inst., Pusan National Univ. Hospital, Pusan National Univ. School of Medicine, Busan (Korea, Republic of)], e-mail: kimsuk@medimail.co.kr; Kim, Tae Un [Dept. of Radiology, Pusan National Univ. Yangsan Hospital, Pusan National Univ. School of Medicine, Yangsan (Korea, Republic of); Song, Sang Heon [Dept. of Internal Medicine, Biomedical Research Inst., Pusan National Univ. Hospital, Pusan National Univ. School of Medicine, Busan (Korea, Republic of); Kim, Hyun Sung; Jo, Hong Jae [Dept. of Surgery, Biomedical Research Inst., Pusan National Univ. Hospital, Pusan National Univ. School of Medicine, Busan (Korea, Republic of)

    2013-10-15

    Background: CT scans of patients with febrile illness occasionally show hepatobiliary changes, although infection does not originate in the hepatobiliary system. These findings may cause radiologists and clinicians to misrecognize hepatobiliary diseases and initiate an inappropriate treatment. Thus, it is important to recognize hepatobiliary CT findings in cases of extrahepatobiliary infectious disease. Purpose: To evaluate extrarenal CT manifestations in patients with acute pyelonephritis and to determine the correlation between these extrarenal CT findings and septic liver based on laboratory parameters of sepsis. Material and Methods: This study included 157 retrospectively identified patients with confirmed acute pyelonephritis based on CT imaging and urine test, and who had also undergone multi-phase dynamic contrast-enhanced CT scan. Two radiologists reviewed CT findings including early inhomogeneous enhancement of the liver, periportal low density and gallbladder edema, which were correlated with laboratory data including liver function enzymes, albumin, C-reactive protein, white blood cell count, and results of a blood culture by using the Fisher's exact test and Mann-Whitney U test. Results: Forty-six patients (29.3%) showed early inhomogeneous enhancement of the liver, which was associated with increased C-reactive protein (P < 0.001), a positive blood culture (P < 0.005), and decreased albumin level (P < 0.002). The periportal low density and gallbladder wall edema were noted in 15 patients (9.6%) and six patients (3.8%), respectively. These two CT findings were significantly associated with only decreased albumin level (P < 0.001 and P < 0.040). Conclusion: Early inhomogeneous enhancement of the liver in patients with acute pyelonephritis was significantly associated with increased CRP level, a positive blood culture and decreased albumin level, reflecting sepsis and sepsis-associated liver dysfunction, requiring rapid and appropriate intensive

  13. Septic liver - Clinical relevance of early inhomogeneous enhancement of the liver in patients with acute pyelonephritis

    International Nuclear Information System (INIS)

    Han, Ga Jin; Lee, Nam Kyung; Kim, Suk; Kim, Tae Un; Song, Sang Heon; Kim, Hyun Sung; Jo, Hong Jae

    2013-01-01

    Background: CT scans of patients with febrile illness occasionally show hepatobiliary changes, although infection does not originate in the hepatobiliary system. These findings may cause radiologists and clinicians to misrecognize hepatobiliary diseases and initiate an inappropriate treatment. Thus, it is important to recognize hepatobiliary CT findings in cases of extrahepatobiliary infectious disease. Purpose: To evaluate extrarenal CT manifestations in patients with acute pyelonephritis and to determine the correlation between these extrarenal CT findings and septic liver based on laboratory parameters of sepsis. Material and Methods: This study included 157 retrospectively identified patients with confirmed acute pyelonephritis based on CT imaging and urine test, and who had also undergone multi-phase dynamic contrast-enhanced CT scan. Two radiologists reviewed CT findings including early inhomogeneous enhancement of the liver, periportal low density and gallbladder edema, which were correlated with laboratory data including liver function enzymes, albumin, C-reactive protein, white blood cell count, and results of a blood culture by using the Fisher's exact test and Mann-Whitney U test. Results: Forty-six patients (29.3%) showed early inhomogeneous enhancement of the liver, which was associated with increased C-reactive protein (P < 0.001), a positive blood culture (P < 0.005), and decreased albumin level (P < 0.002). The periportal low density and gallbladder wall edema were noted in 15 patients (9.6%) and six patients (3.8%), respectively. These two CT findings were significantly associated with only decreased albumin level (P < 0.001 and P < 0.040). Conclusion: Early inhomogeneous enhancement of the liver in patients with acute pyelonephritis was significantly associated with increased CRP level, a positive blood culture and decreased albumin level, reflecting sepsis and sepsis-associated liver dysfunction, requiring rapid and appropriate intensive

  14. 562-IJBCS-Article-Dr Ojokuku Sikiru Abiola

    African Journals Online (AJOL)

    DR GATSING

    and Depo provera on liver and kidney function of pregnant rabbits. Graded ... In conclusion CPSO may result in liver damage, biliary obstruction and impaired kidney function. ..... Acute toxicity ... Wistar albino rats against acetaminophen-.

  15. Late Acute Rejection Occuring in Liver Allograft Recipients

    Directory of Open Access Journals (Sweden)

    Eric M Yoshida

    1996-01-01

    Full Text Available To study the effect of immunosuppressive reduction on the incidence and consequence of late acute rejection (LAR in liver allograft recipients, mean daily prednisone dose, mean cyclosporine A (CsA trough and nadir levels were retrospectively reviewed for the nearest 12-week period preceding six episodes of LAR in five liver allograft recipients (group 1. Results were compared with those from a cohort of 12 liver allograft recipients who did not develop LAR (group 2. LAR was defined as acute rejection occurring more than 365 days post-transplantation. Median follow-up for both groups was similar (504 days, range 367 to 1050, versus 511 days, range 365 to 666, not significant. Mean trough CsA levels were lower in patients with LAR compared with those without (224±66 ng/mL versus 233±49 ng/mL but the difference was not statistically significant. In contrast, mean daily prednisone dose (2.5±1.6 mg/ day versus 6.5±2.9 mg/day, P=0.007 and CsA nadir values (129±60 ng/mL versus 186±40 ng/mL, P=0.03 were significantly lower in patients who developed LAR compared with those who did not. Five of six episodes (83% of LAR occurred in patients receiving less than 5 mg/day of prednisone, versus a single LAR episode in only one of 12 patients (8% receiving prednisone 5 mg/day or more (P=0.004. In all but one instance, LAR responded to pulse methylprednisolone without discernible affect on long term graft function. The authors conclude that liver allograft recipients remain vulnerable to acute rejection beyond the first post-transplant year; and reduction of immunosuppressive therapy, particularly prednisone, below a critical, albeit low dose, threshold increases the risk of LAR.

  16. The Protective Role of Zinc Sulphate on Ethanol -Induced Liver and Kidney Damages in Rats

    International Nuclear Information System (INIS)

    Al-Damegh, Mona Abdalla

    2007-01-01

    Around the world more and more people suffer from alcoholism. Addiction problems, alcoholism and excessive use of drugs both medical and nonmedical, are major causes of liver and kidney damage in adults. The purpose of this study was to investigate on the protective role of zinc sulphate on liver and kidney in rats with acute alcoholism. Wistar albino rats were divided into four groups. Group I; control group, group 2; given only Zinc Sulphate (100 mg/kg/day for 3days), group 3; rats given absolute ethanol (1 ml of absolute ethanol administrated by gavage technique to each rat), group 4 given Zinc sulphate prior to the administration of absolute ethanol. The results of this study revealed that acute ethanol exposure caused degenerative morphological changes in the liver and kidney. Significant difference were found in the levels of serum, liver, kidney super oxide dismutase(SOD), catalase (CAT), nitric oxide(NO), and malondialdehyde (MDA) in the ethanol group compared to the control group. Moreover ,serum urea, creatnine, uric acid, alkaline phoshpatase and transaminases activities (GOTand GPT) were increased in the ethanol group compared to the control group. On the other hand,administration of zinc sulphate in the ethanol group caused a significant decrease in the degenerative changes, lipid peroxidation, antioxidant enzymes, and nitric oxide in serum, liver, and kidney. It can be concluded that zinc Sulphate has a protective role on the ethanol induced liver and kidney injury. In addition ,nitric oxide is involved in the mechanism of acute alcohol intoxication. (author)

  17. Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: Critical role of autophagy induction.

    Science.gov (United States)

    Kim, Eun Hye; Park, Pil-Hoon

    2018-05-24

    Acetaminophen (APAP) overdose treatment causes severe liver injury. Adiponectin, a hormone predominantly produced by adipose tissue, exhibits protective effects against APAP-induced hepatotoxicity. However, the underlying mechanisms are not clearly understood. In the present study, we examined the protective effect of globular adiponectin (gAcrp) on APAP-induced hepatocyte death and its underlying mechanisms. We found that APAP (2 mM)-induced hepatocyte death was prevented by inhibition of the inflammasome. In addition, treatment with gAcrp (0.5 and 1 μg/ml) inhibited APAP-induced activation of the inflammasome, judged by suppression of interleukin-1β maturation, caspase-1 activation, and apoptosis-associated speck-like protein (ASC) speck formation, suggesting that protective effects of gAcrp against APAP-induced hepatocyte death is mediated via modulation of the inflammasome. APAP also induced ER stress and treatment with tauroursodeoxycholic acid (TUDCA), an ER chaperone and inhibitor of ER stress, abolished APAP-induced inflammasomes activation, implying that ER stress acts as signaling event leading to the inflammasome activation in hepatocytes stimulated with APAP. Moreover, gAcrp significantly suppressed APAP-induced expression of ER stress marker genes. Finally, the modulatory effects of gAcrp on ER stress and inflammasomes activation were abrogated by treatment with autophagy inhibitors, while an autophagy inducer (rapamycin) suppressed APAP-elicited ER stress, demonstrating that autophagy induction plays a crucial role in the suppression of APAP-induced inflammasome activation and ER stress by gAcrp. Taken together, these results indicate that gAcrp protects hepatocytes against APAP-induced cell death by modulating ER stress and the inflammasome activation, at least in part, via autophagy induction. Copyright © 2018. Published by Elsevier Inc.

  18. Abacavir-induced liver toxicity

    Directory of Open Access Journals (Sweden)

    Maria Diletta Pezzani

    2016-09-01

    Full Text Available Abacavir-induced liver toxicity is a rare event almost exclusively occurring in HLA B*5701-positive patients. Herein, we report one case of abnormal liver function tests occurring in a young HLA B*5701-negative woman on a stable nevirapine-based regimen with no history of liver problems or alcohol abuse after switching to abacavir from tenofovir. We also investigated the reasons for abacavir discontinuation in a cohort of patients treated with abacavir-lamivudine-nevirapine.

  19. Aminotriazole alleviates acetaminophen poisoning via downregulating P450 2E1 and suppressing inflammation.

    Directory of Open Access Journals (Sweden)

    Yuping Jing

    Full Text Available Aminotriazole (ATZ is commonly used as a catalase (CAT inhibitor. We previously found ATZ attenuated oxidative liver injury, but the underlying mechanisms remain unknown. Acetaminophen (APAP overdose frequently induces life-threatening oxidative hepatitis. In the present study, the potential hepatoprotective effects of ATZ on oxidative liver injury and the underlying mechanisms were further investigated in a mouse model with APAP poisoning. The experimental data indicated that pretreatment with ATZ dose- and time-dependently suppressed the elevation of plasma aminotransferases in APAP exposed mice, these effects were accompanied with alleviated histological abnormality and improved survival rate of APAP-challenged mice. In mice exposed to APAP, ATZ pretreatment decreased the CAT activities, hydrogen peroxide (H2O2 levels, malondialdehyde (MDA contents, myeloperoxidase (MPO levels in liver and reduced TNF-α levels in plasma. Pretreatment with ATZ also downregulated APAP-induced cytochrome P450 2E1 (CYP2E1 expression and JNK phosphorylation. In addition, posttreatment with ATZ after APAP challenge decreased the levels of plasma aminotransferases and increased the survival rate of experimental animals. Posttreatment with ATZ had no effects on CYP2E1 expression or JNK phosphorylation, but it significantly decreased the levels of plasma TNF-α. Our data indicated that the LD50 of ATZ in mice was 5367.4 mg/kg body weight, which is much higher than the therapeutic dose of ATZ in the present study. These data suggested that ATZ might be effective and safe in protect mice against APAP-induced hepatotoxicity, the beneficial effects might resulted from downregulation of CYP2E1 and inhibiton of inflammation.

  20. Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.

    Directory of Open Access Journals (Sweden)

    Daleya Abdulaziz Bardi

    Full Text Available This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg or ELAP (250 or 500 mg/kg. Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed

  1. Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.

    Science.gov (United States)

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen

    2014-01-01

    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from

  2. Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation

    International Nuclear Information System (INIS)

    Kovalchuk, Olga; Burke, Paula; Besplug, Jill; Slovack, Mark; Filkowski, Jody; Pogribny, Igor

    2004-01-01

    The biological and genetic effects of chronic low-dose radiation (LDR) exposure and its relationship to carcinogenesis have received a lot of attention in the recent years. For example, radiation-induced genome instability, which is thought to be a precursor of tumorogenesis, was shown to have a transgenerational nature. This indicates a possible involvement of epigenetic mechanisms in LDR-induced genome instability. Genomic DNA methylation is one of the most important epigenetic mechanisms. Existing data on radiation effects on DNA methylation patterns is limited, and no one has specifically studied the effects of the LDR. We report the first study of the effects of whole-body LDR exposure on global genome methylation in muscle and liver tissues of male and female mice. In parallel, we evaluated changes in promoter methylation and expression of the tumor suppressor gene p16 INKa and DNA repair gene O 6 -methylguanine-DNA methyltransferase (MGMT). We observed different patterns of radiation-induced global genome DNA methylation in the liver and muscle of exposed males and females. We also found sex and tissue-specific differences in p16 INKa promoter methylation upon LDR exposure. In male liver tissue, p16 INKa promoter methylation was more pronounced than in female tissue. In contrast, no significant radiation-induced changes in p16 INKa promoter methylation were noted in the muscle tissue of exposed males and females. Radiation also did not significantly affect methylation status of MGMT promoter. We also observed substantial sex differences in acute and chronic radiation-induced expression of p16 INKa and MGMT genes. Another important outcome of our study was the fact that chronic low-dose radiation exposure proved to be a more potent inducer of epigenetic effects than the acute exposure. This supports previous findings that chronic exposure leads to greater genome destabilization than acute exposure

  3. Different effects of ursodeoxycholic acid on intrahepatic cholestasis in acute and recovery stages induced by alpha-naphthylisothiocyanate in mice.

    Science.gov (United States)

    Zhang, Linlin; Su, Huizong; Li, Yue; Fan, Yujuan; Wang, Qian; Jiang, Jian; Hu, Yiyang; Chen, Gaofeng; Tan, Bo; Qiu, Furong

    2018-03-01

    The aim of this study was to determine the effect of ursodeoxycholic acid (UDCA) on the alpha-naphthylisothiocyanate (ANIT)-induced acute and recovery stage of cholestasis model mice. In the acute stage of model mice, pretreatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 12 days prior to ANIT administration (50 mg·kg -1 , ig) resulted in the dramatic increase in serum biochemistry, with aggrevation of bile infarcts and hepatocyte necrosis. The elevation of beta-muricholic acid (β-MCA), cholic acid (CA), and taurocholic acid (TCA) in serum and liver, and reduction of these bile acids (BAs) in bile was observed. In contrast, in the recovery stage of model mice, treatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 7 days after ANIT administration (50 mg·kg -1 , ig) resulted in the significant decrease in levels of serum alanine aminotransferase (ALT) and total bile acid (TBA). Liver injury was attenuated, and the levels of TBA, CA, TCA, and β-MCA in the liver were significantly decreased. Additionally, UDCA can upregulate expression of BSEP, but it cannot upregulate expression of AE2. UDCA, which induced BSEP to increase bile acid-dependent bile flow, aggravated cholestasis and liver injury when the bile duct was obstructed in the acute stage of injury in model mice. In contrast, UDCA alleviated cholestasis and liver injury induced by ANIT when the obstruction was improved in the recovery stage. Copyright © 2018. Published by Elsevier Inc.

  4. Hepato- and neuro-protective influences of biopropolis on thioacetamide-induced acute hepatic encephalopathy in rats.

    Science.gov (United States)

    Mostafa, Rasha E; Salama, Abeer A A; Abdel-Rahman, Rehab F; Ogaly, Hanan A

    2017-05-01

    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that ultimately occurs as a complication of acute or chronic liver failure; accompanied by hyperammonemia. This study aimed to evaluate the potential of biopropolis as a hepato- and neuro-protective agent using thioacetamide (TAA)-induced acute HE in rats as a model. Sixty Wistar rats were divided into 5 groups: Group 1 (normal control) received only saline and paraffin oil. Group 2 (hepatotoxic control) received TAA (300 mg/kg, once). Groups 3, 4, and 5 received TAA followed by vitamin E (100 mg/kg) and biopropolis (100 and 200 mg/kg), respectively, daily for 30 days. Evidences of HE were clearly detected in TAA-hepatotoxic group including significant elevation in the serum level of ammonia, liver functions, increased oxidative stress in liver and brain, apoptotic DNA fragmentation and overexpression of iNOS gene in brain tissue. The findings for groups administered biopropolis, highlighted its efficacy as a hepato- and neuro-protectant through improving the liver functions, oxidative status and DNA fragmentation as well as suppressing the brain expression of iNOS gene. In conclusion, biopropolis, at a dose of 200 mg/kg per day protected against TAA-induced HE through its antioxidant and antiapoptotic influence; therefore, it can be used as a protective natural product.

  5. Cerebral blood flow and liver function in patients with encephalopathy due to acute and chronic liver diseases

    DEFF Research Database (Denmark)

    Almdal, T; Schroeder, T; Ranek, L

    1989-01-01

    The purpose of the present investigation was to study changes in cerebral blood flow (CBF) in hepatic encephalopathy, to ascertain whether this was related to the changes in liver function and whether these changes gave any prognostic information. CBF, determined by the intravenous xenon-133 method......, and liver functions, assessed by the prothrombin index, bilirubin concentration, and the galactose elimination capacity, were studied in patients with acute fulminant liver failure and in patients with encephalopathy due to chronic liver diseases--that is, cirrhosis of various etiologies. The CBF range...

  6. Acetaminophen overdose associated with double serum concentration peaks

    Directory of Open Access Journals (Sweden)

    Cristian Papazoglu

    2015-12-01

    Full Text Available Acetaminophen is the most commonly used analgesic–antipyretic medication in the United States. Acetaminophen overdose, a frequent cause of drug toxicity, has been recognized as the leading cause of fatal and non-fatal hepatic necrosis. N-Acetylcysteine is the recommended antidote for acetaminophen poisoning. Despite evidence on the efficacy of N-acetylcysteine for prevention of hepatic injury, controversy persists about the optimal duration of the therapy. Here, we describe the case of a 65-year-old male with acetaminophen overdose and opioid co-ingestion who developed a second peak in acetaminophen serum levels after completing the recommended 21-hour intravenous N-acetylcysteine protocol and when the standard criteria for monitoring drug levels was achieved. Prolongation of N-acetylcysteine infusion beyond the standard protocol, despite a significant gap in treatment, was critical for successful avoidance of hepatotoxicity. Delay in acetaminophen absorption may be associated with a second peak in serum concentration following an initial declining trend, especially in cases of concomitant ingestion of opioids. In patients with acetaminophen toxicity who co-ingest other medications that may potentially delay gastric emptying or in those with risk factors for delayed absorption of acetaminophen, we recommend close monitoring of aminotransferase enzyme levels, as well as trending acetaminophen concentrations until undetectable before discontinuing the antidote therapy.

  7. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial : a multicentre, randomised, placebo-controlled, phase III trial

    NARCIS (Netherlands)

    den Hertog, Heleen M.; van der Worp, H. Bart; van Gemert, H. Maarten A.; Algra, Ate; Kappelle, L. Jaap; Van Gijn, Jan; Koudstaal, Peter J.; Dippel, Diederik W. J.

    Background High body temperature in the first 12-24 h after stroke onset is associated with poor functional outcome. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial aimed to assess whether early treatment with paracetamol improves functional outcome in patients with acute stroke by reducing

  8. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury

    Directory of Open Access Journals (Sweden)

    Burra Patrizia

    2012-07-01

    Full Text Available Abstract Background Hepatocytes and stem cells transplantation may be an alternative to liver transplantation in acute or chronic liver disease. We aimed to evaluate the therapeutic potential of mesenchymal stem cells from human umbilical cord (UCMSCs, a readily available source of mesenchymal stem cells, in the CCl4-induced acute liver injury model. Methods Mesenchymal stem cells profile was analyzed by flow cytometry. In order to evaluate the capability of our UCMSCs to differentiate in hepatocytes, cells were seeded on three different supports, untreated plastic support, MatrigelTM and human liver acellular matrix. Cells were analyzed by immunocitochemistry for alpha-fetoprotein and albumin expression, qPCR for hepatocyte markers gene expression, Periodic Acid-Schiff staining for glycogen storage, ELISA for albumin detection and colorimetric assay for urea secretion. To assess the effects of undifferentiated UCMSCs in hepatic regeneration after an acute liver injury, we transplanted them via tail vein in mice injected intraperitoneally with a single dose of CCl4. Livers were analyzed by histological evaluation for damage quantification, immunostaining for Kupffer and stellate cells/liver myofibroblasts activation and for UCMSCs homing. Pro- and anti-inflammatory cytokines gene expression was evaluated by qPCR analysis and antioxidant enzyme activity was measured by catalase quantification. Data were analyzed by Mann–Whitney U-test, Kruskal-Wallis test and Cuzick’s test followed by Bonferroni correction for multiple comparisons. Results We have standardized the isolation procedure to obtain a cell population with hepatogenic properties prior to in vivo transplantation. When subjected to hepatogenic differentiation on untreated plastic support, UCMSCs differentiated in hepatocyte-like cells as demonstrated by their morphology, progressive up-regulation of mature hepatocyte markers, glycogen storage, albumin and urea secretion. However

  9. Yogi Detox Tea: A Potential Cause of Acute Liver Failure.

    Science.gov (United States)

    Kesavarapu, Keerthana; Kang, Mitchell; Shin, Jaewook James; Rothstein, Kenneth

    2017-01-01

    We present a case of acute fulminant liver failure from a liver detoxification tea. We present a 60-year-old female with weakness, lethargy, scleral icterus, jaundice, and worsening mental status. She drank herbal tea three times a day for 14 days prior to symptom development. Liver tests were elevated. Remaining laboratory tests and imaging were negative for other etiologies. An ultrasound-guided liver biopsy showed submassive necrosis. A literature search on the ingredients shows six ingredients as having hepatotoxic effects and remaining ingredients as having very sparse hepatoprotective data. Healthcare professionals should discuss herbal medication and tea use and report adverse effects.

  10. Browse Title Index

    African Journals Online (AJOL)

    Items 51 - 100 of 162 ... ... on sodium nitrite‑induced cerebellar cortex toxicity in adult Wistar rats, Abstract .... Vol 14, No 2 (2015), Histopathological effects of acetaminophen ... extracts of Garcinia Kola on acetaminophen-Induced liver injury in ...

  11. PISA. The effect of paracetamol (acetaminophen and ibuprofen on body temperature in acute stroke: Protocol for a phase II double-blind randomised placebo-controlled trial [ISRCTN98608690

    Directory of Open Access Journals (Sweden)

    Kappelle Jaap

    2002-03-01

    Full Text Available Abstract Background During the first days after stroke, one to two fifths of the patients develop fever or subfebrile temperatures. Body temperature is a strong prognostic factor after stroke. Pharmacological reduction of temperature in patients with acute ischaemic stroke may improve their functional outcome. Previously, we studied the effect of high dose (6 g daily and low dose (3 g daily paracetamol (acetaminophen in a randomised placebo-controlled trial of 75 patients with acute ischemic stroke. In the high-dose paracetamol group, mean body temperature at 12 and 24 hours after start of treatment was 0.4°C lower than in the placebo group. The effect of ibuprofen, another potent antipyretic drug, on body-core temperature in normothermic patients has not been studied. Aim The aim of the present trial is to study the effects of high-dose paracetamol and ibuprofen on body temperature in patients with acute ischaemic stroke, and to study the safety of these treatments. Design Seventy-five (3 × 25 patients with acute ischaemic stroke confined to the anterior circulation will be randomised to treatment with either: 400 mg ibuprofen, 1000 mg acetaminophen, or with placebo 6 times daily during 5 days. Body-temperatures will be measured with a rectal electronic thermometer at the start of treatment and after 24 hours. An infrared tympanic thermometer will be used to monitor body temperature at 2-hour intervals during the first 24 hours and at 12-hour intervals thereafter. The primary outcome measure will be rectal temperature at 24 hours after the start of treatment. The study results will be analysed on an intent-to-treat basis, but an on-treatment analysis will also be performed. No formal interim analysis will be carried out.

  12. Drug-induced liver injury due to antimicrobials, central nervous system agents, and nonsteroidal anti-inflammatory drugs.

    Science.gov (United States)

    Devarbhavi, Harshad; Andrade, Raúl J

    2014-05-01

    Antimicrobial agents including antituberculosis (anti-TB) agents are the most common cause of idiosyncratic drug-induced liver injury (DILI) and drug-induced liver failure across the world. Better molecular and genetic biomarkers are acutely needed to help identify those at risk of liver injury particularly for those needing antituberculosis therapy. Some antibiotics such as amoxicillin-clavulanate and isoniazid consistently top the lists of agents in retrospective and prospective DILI databases. Central nervous system agents, particularly antiepileptics, account for the second most common class of agents implicated in DILI registries. Hepatotoxicity from older antiepileptics such as carbamazepine, phenytoin, and phenobarbital are often associated with hypersensitivity features, whereas newer antiepileptic drugs have a more favorable safety profile. Antidepressants and nonsteroidal anti-inflammatory drugs carry very low risk of significant liver injury, but their prolific use make them important causes of DILI. Early diagnosis and withdrawal of the offending agent remain the mainstays of minimizing hepatotoxicity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Risk factors of radiation-induced liver disease after three-dimensional conformal radiotherapy for primary liver carcinoma

    International Nuclear Information System (INIS)

    Liang Shixiong; Zhu Xiaodong; Lu Haijie; Pan Chaoyang; Huang Qifang; Li Fuxiang; Wang Anyu; Liang Guoliang; Fu Xiaolong

    2005-01-01

    Objective: To identify the risk factors of radiation-induced liver disease (RILD) after three-dimensional radiotherapy (3DCRT) for primary liver carcinoma (PLC) and the dosimetric threshold of RILD. Methods: Between April 1999 and August 2003, 128 PLC patients who were treated with 3DCRT received a mean dose of 53.6 ± 6.6 Gy with a 4-8 Gy/f, 3f/w, qod regimen. The relation between RILD and the possible clinical factors, such as gender, age, UICC/ AJCC T stage, GTV, HBV status, PTV, TACE, Child-Pugh grade of liver cirrhosis, BED calculated by LQ model and fraction size were analyzed. Among 84 patients who had full dose- volume histogram (DVH) data, the relation between RILD and dosimetric parameters were analyzed. Results: Nineteen patients (14.8%) developed RILD. It was found that T stage, GTV, PTV, Child-Pugh grade of liver cirrhosis and the acute hepatic toxicity proposed by common toxicity criteria version 2.0 (CTC2.0) were correlated with RILD (P=0.024, 0.002, 0.001, 0.000, 0.000, respectively). Multivariate analysis showed that only the Child-Pugh grade of liver cirrhosis was independent factor (P=0.000). The mean liver dose was significantly higher in patients with RILD (P=0.027). In patients with Child-Pugh grade A, V5 (percentage of normal liver volume with radiation dose > 5 Gy), V 10 and V 20 ≤81%, 69% and 42%, mean liver dose ≤28 Gy, RILD was not observed, whereas in patients with Child-Pugh grade B, the possibility of developing RILD was 53.3%(8/15). Conclusions: Comprehensive consideration of T stage, GTV, PTV and Child-Pugh grade of liver cirrhosis, especially the Child-Pugh grade of liver cirrhosis, when planning 3DCRT for PLC, may lower the incidence of RILD. (authors)

  14. Celiac artery trunk thrombosis presenting as acute liver failure

    International Nuclear Information System (INIS)

    Akbarian, M.A.; Kahrom, M.; Kahrom, H.

    2011-01-01

    Acute mesenteric ischemia is a life-threatening vascular emergency that requires early diagnosis and intervention to adequately restore mesenteric blood flow and to prevent bowel necrosis and patient death. While, almost always superior and inferior mesenteric arteries are involved, we report a 57-year-old male with an unusual celiac artery trunk thrombosis leading to gastero-duodenal and hepato-splenic infarction, and presenting an acute liver failure. (author)

  15. Caffeine and acetaminophen association: Effects on mitochondrial bioenergetics.

    Science.gov (United States)

    Gonçalves, Débora F; de Carvalho, Nelson R; Leite, Martim B; Courtes, Aline A; Hartmann, Diane D; Stefanello, Sílvio T; da Silva, Ingrid K; Franco, Jéferson L; Soares, Félix A A; Dalla Corte, Cristiane L

    2018-01-15

    Many studies have been demonstrating the role of mitochondrial function in acetaminophen (APAP) hepatotoxicity. Since APAP is commonly consumed with caffeine, this work evaluated the effects of the combination of APAP and caffeine on hepatic mitochondrial bioenergetic function in mice. Mice were treated with caffeine (20mg/kg, intraperitoneal (i.p.)) or its vehicle and, after 30minutes, APAP (250mg/kg, i.p.) or its vehicle. Four hours later, livers were removed, and the parameters associated with mitochondrial function and oxidative stress were evaluated. Hepatic cellular oxygen consumption was evaluated by high-resolution respirometry (HRR). APAP treatment decreased cellular oxygen consumption and mitochondrial complex activities in the livers of mice. Additionally, treatment with APAP increased swelling of isolated mitochondria from mice livers. On the other hand, caffeine administered with APAP was able to improve hepatic mitochondrial bioenergetic function. Treatment with APAP increased lipid peroxidation and reactive oxygen species (ROS) production and decreased glutathione levels in the livers of mice. Caffeine administered with APAP was able to prevent lipid peroxidation and the ROS production in mice livers, which may be associated with the improvement of mitochondrial function caused by caffeine treatment. We suggest that the antioxidant effects of caffeine and/or its interactions with mitochondrial bioenergetics may be involved in its beneficial effects against APAP hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Brain MRI findings in acute hepatic encephalopathy in liver transplant recipients.

    Science.gov (United States)

    Guo, Ruo-Mi; Li, Qing-Ling; Zhong, Li-Ru; Guo, Yu; Jiao, Ju; Chen, Shao-Qiong; Wang, Jin; Zhang, Yong

    2018-06-01

    Acute hepatic encephalopathy has significant morbidity and mortality in liver transplant recipients unless it is promptly treated. We evaluated the brain magnetic resonance (MR) imaging findings associated with acute hepatic encephalopathy in transplant recipients. We retrospectively reviewed the clinical and imaging data and outcomes of twenty-five liver transplant patients (16 male; mean age, 49.3 years) with clinically diagnosed acute hepatic encephalopathy and forty liver transplant patients (20 males; mean age, 45.5 years) without neurological symptoms suggestive of hepatic encephalopathy at our institution. Bilateral symmetric hyperintensities of the insular cortex and cingulate gyrus were observed in twenty-one patients (84.00%), bilateral symmetric extensive increased cortical signal intensity (involving two or more regions) was observed in 72.00% of the patients, leptomeningeal enhancement in 73.68%, and visualization of prominent venules in 52.00%. The most common symptom at diagnosis was rigidity (n = 14), and the plasma ammonia levels ranged from 68.63 to 192.16 μmol/L. After active treatment, 17 patients gradually recovered, four patients suffered from mild or moderate neurologic deficits, and four patients with widespread brain edema died. The specific brain MR imaging features were bilateral symmetric increased cortical signal intensity, especially in the insular cortex and cingulate gyrus, leptomeningeal enhancement, visualization of the prominent venules, and widespread brain edema. These features may indicate poor prognosis and should alert radiologists to the possibility of acute hepatic encephalopathy in liver transplant recipients and encourage clinicians to prepare appropriate treatment in advance.

  17. Anti-Inflammatory Effects of Licorice and Roasted Licorice Extracts on TPA-Induced Acute Inflammation and Collagen-Induced Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Ki Rim Kim

    2010-01-01

    Full Text Available The anti-inflammatory activity of licorice (LE and roated licorice (rLE extracts determined in the murine phorbol ester-induced acute inflammation model and collagen-induced arthritis (CIA model of human rheumatoid arthritis. rLE possessed greater activity than LE in inhibiting phorbol ester-induced ear edema. Oral administration of LE or rLE reduced clinical arthritis score, paw swelling, and histopathological changes in a murine CIA. LE and rLE decreased the levels of proinflammatory cytokines in serum and matrix metalloproteinase-3 expression in the joints. Cell proliferation and cytokine secretion in response to type II collagen or lipopolysaccharide stimulation were suppressed in spleen cells from LE or rLE-treated CIA mice. Furthermore, LE and rLE treatment prevented oxidative damages in liver and kidney tissues of CIA mice. Taken together, LE and rLE have benefits in protecting against both acute inflammation and chronic inflammatory conditions including rheumatoid arthritis. rLE may inhibit the acute inflammation more potently than LE.

  18. Does cytochrome P450 liver isoenzyme induction increase the risk of liver toxicity after paracetamol overdose?

    Directory of Open Access Journals (Sweden)

    Kalsi SS

    2011-10-01

    Full Text Available Sarbjeet S Kalsi1,2, David M Wood2–4, W Stephen Waring5, Paul I Dargan2–4 1Emergency Department, 2Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London; 3King's Health Partners, 4King's College London, London; 5York Teaching Hospital NHS Foundation Trust, York, UK Abstract: Paracetamol (acetaminophen, N-acetyl-p-aminophenol, 4-hydroxyacetanilide is the most common cause of acute liver failure in developed countries. There are a number of factors which potentially impact on the risk of an individual developing hepatotoxicity following an acute paracetamol overdose. These include the dose of paracetamol ingested, time to presentation, decreased liver glutathione, and induction of cytochrome P450 (CYP isoenzymes responsible for the metabolism of paracetamol to its toxic metabolite N-acetyl-p-benzoquinoneimine (NAPQI. In this paper, we review the currently published literature to determine whether induction of relevant CYP isoenzymes is a risk factor for hepatotoxicity in patients with acute paracetamol overdose. Animal and human in vitro studies have shown that the CYP isoenzyme responsible for the majority of human biotransformation of paracetamol to NAPQI is CYP2E1 at both therapeutic and toxic doses of paracetamol. Current UK treatment guidelines suggest that patients who use a number of drugs therapeutically should be treated as “high-risk” after paracetamol overdose. However, based on our review of the available literature, it appears that the only drugs for which there is evidence of the potential for an increased risk of hepatotoxicity associated with paracetamol overdose are phenobarbital, primidone, isoniazid, and perhaps St John's wort. There is no evidence that other drugs often quoted as increasing risk, such as carbamazepine, phenytoin, primidone, rifampicin, rifabutin, efavirenz, or nevirapine, should be considered risk factors for hepatotoxicity in patients presenting with acute paracetamol overdose. Keywords

  19. Circulating mannan-binding lectin, M-, L-, H-ficolin and collectin-liver-1 levels in patients with acute liver failure

    DEFF Research Database (Denmark)

    Laursen, Tea Lund; Sandahl, Thomas D; Støy, Sidsel

    2015-01-01

    BACKGROUND & AIMS: The complement system is activated in liver diseases including acute liver failure (ALF); however, the role of the lectin pathway of complement has scarcely been investigated in ALF. The pathway is initiated by soluble pattern recognition molecules: mannan-binding lectin (MBL),...

  20. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice.

    Science.gov (United States)

    Bandeira, Ana Carla Balthar; da Silva, Talita Prato; de Araujo, Glaucy Rodrigues; Araujo, Carolina Morais; da Silva, Rafaella Cecília; Lima, Wanderson Geraldo; Bezerra, Frank Silva; Costa, Daniela Caldeira

    2017-02-01

    Our aim was to investigate the antioxidant potential of lycopene in different experimental liver models: in vitro, to evaluate the influence of lycopene on reactive oxygen species (ROS) production mediated by the PKC pathway and in vivo, to evaluate the protective effects of lycopene in an experimental model of hepatotoxicity. The in vitro study assessed the lycopene antioxidant potential by the quantification of ROS production in SK-Hep-1 cells unstimulated or stimulated by an activator of the PKC pathway. The role of NADPH oxidase was evaluated by measuring its inhibition potential using an inhibitor of this enzyme. In the in vivo study, male C57BL/6 mice received lycopene (10 or 100 mg/kg by oral gavage) and 1 h later, acetaminophen (APAP) (500 mg/kg) was administrated. Lycopene decreased ROS production in SK-Hep-1 cells through inhibition of NADPH oxidase, brought about in the PKC pathway. Lycopene improved hepatotoxicity acting as an antioxidant, reduced GSSG and regulated tGSH and CAT levels, reduced oxidative damage primarily by decreasing protein carbonylation, promoted the downregulation of MMP-2 and reduced areas of necrosis improving the general appearance of the lesion in C57BL/6 mice. Lycopene is a natural compound that was able to inhibit the production of ROS in vitro and mitigate the damage caused by APAP overdose in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Akinori Okumura

    2017-12-01

    Full Text Available Leukocyte cell-derived chemotaxin 2 (LECT2 is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.

  2. Japanese-style intensive medical care improves prognosis for acute liver failure and the perioperative management of liver transplantation.

    Science.gov (United States)

    Inoue, K; Watanabe, T; Maruoka, N; Kuroki, Y; Takahashi, H; Yoshiba, M

    2010-12-01

    The Japanese style of intensive medical care for acute liver failure has yielded high survival rates. The care system comprises artificial liver support (ALS) together with treatment for the underlying disease. Plasma exchange in combination with high-volume hemodiafiltration using an high performance membrane has become the standard ALS system. It is safe, efficiently removing more low and middle molecular weight toxic substances than other methods because of the large volumes of buffer (more than 200 L per session), resulting in recovery from coma in patients with severe fulminant hepatitis, a status comparable with the ahepatic state. This ALS is therefore an effective tool to sustain patients with fulminant hepatitis in a favorable condition until liver function recovers or liver transplantation becomes available. The accompanying treatment for underlying disease serves to limit the liver destruction that hampers regeneration. The treatment has remarkably improved the prognosis for patients with subacute types of fulminant hepatitis, which generally carry a less favorable prognosis than the acute type. This treatment system thus provides more time for physicians to assess the indications for liver transplantation as well as giving the patient a greater chance of undergoing transplantation. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    International Nuclear Information System (INIS)

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-01-01

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of 14 C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation

  4. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomoki, E-mail: s13220@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Morita, Akihito, E-mail: moritaa@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Mori, Nobuko, E-mail: morin@b.s.osakafu-u.ac.jp [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570 (Japan); Miura, Shinji, E-mail: miura@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  5. Yogi Detox Tea: A Potential Cause of Acute Liver Failure

    Directory of Open Access Journals (Sweden)

    Keerthana Kesavarapu

    2017-01-01

    Full Text Available We present a case of acute fulminant liver failure from a liver detoxification tea. We present a 60-year-old female with weakness, lethargy, scleral icterus, jaundice, and worsening mental status. She drank herbal tea three times a day for 14 days prior to symptom development. Liver tests were elevated. Remaining laboratory tests and imaging were negative for other etiologies. An ultrasound-guided liver biopsy showed submassive necrosis. A literature search on the ingredients shows six ingredients as having hepatotoxic effects and remaining ingredients as having very sparse hepatoprotective data. Healthcare professionals should discuss herbal medication and tea use and report adverse effects.

  6. New therapeutic aspect for carvedilol: Antifibrotic effects of carvedilol in chronic carbon tetrachloride-induced liver damage

    International Nuclear Information System (INIS)

    Hamdy, Nadia; El-Demerdash, Ebtehal

    2012-01-01

    Portal hypertension is a common complication of chronic liver diseases associated with liver fibrosis and cirrhosis. At present, beta-blockers such as carvedilol remain the medical treatment of choice for protection against variceal bleeding and other complications. Since carvedilol has powerful antioxidant properties we assessed the potential antifibrotic effects of carvedilol and the underlying mechanisms that may add further benefits for its clinical usefulness using a chronic model of carbon tetrachloride (CCl4)-induced hepatotoxicity. Two weeks after CCl4 induction of chronic hepatotoxicity, rats were co-treated with carvedilol (10 mg/kg, orally) daily for 6 weeks. It was found that treatment of animals with carvedilol significantly counteracted the changes in liver function and histopathological lesions induced by CCl4. Also, carvedilol significantly counteracted lipid peroxidation, GSH depletion, and reduction in antioxidant enzyme activities; glutathione-S-transferase and catalase that was induced by CCl4. In addition, carvedilol ameliorated the inflammation induced by CCl4 as indicated by reducing the serum level of acute phase protein marker; alpha-2-macroglobulin and the liver expression of nuclear factor-kappa B (NF-κB). Finally, carvedilol significantly reduced liver fibrosis markers including hydroxyproline, collagen accumulation, and the expression of the hepatic stellate cell (HSC) activation marker; alpha smooth muscle actin. In conclusion, the present study provides evidences for the promising antifibrotic effects of carvedilol that can be explained by amelioration of oxidative stress through mainly, replenishment of GSH, restoration of antioxidant enzyme activities and reduction of lipid peroxides as well as amelioration of inflammation and fibrosis by decreasing collagen accumulation, acute phase protein level, NF-κB expression and finally HSC activation. -- Highlights: ► Carvedilol is a beta blocker with antioxidant and antifibrotic

  7. New therapeutic aspect for carvedilol: Antifibrotic effects of carvedilol in chronic carbon tetrachloride-induced liver damage

    Energy Technology Data Exchange (ETDEWEB)

    Hamdy, Nadia [Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); El-Demerdash, Ebtehal, E-mail: ebtehal_dm@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2012-06-15

    Portal hypertension is a common complication of chronic liver diseases associated with liver fibrosis and cirrhosis. At present, beta-blockers such as carvedilol remain the medical treatment of choice for protection against variceal bleeding and other complications. Since carvedilol has powerful antioxidant properties we assessed the potential antifibrotic effects of carvedilol and the underlying mechanisms that may add further benefits for its clinical usefulness using a chronic model of carbon tetrachloride (CCl4)-induced hepatotoxicity. Two weeks after CCl4 induction of chronic hepatotoxicity, rats were co-treated with carvedilol (10 mg/kg, orally) daily for 6 weeks. It was found that treatment of animals with carvedilol significantly counteracted the changes in liver function and histopathological lesions induced by CCl4. Also, carvedilol significantly counteracted lipid peroxidation, GSH depletion, and reduction in antioxidant enzyme activities; glutathione-S-transferase and catalase that was induced by CCl4. In addition, carvedilol ameliorated the inflammation induced by CCl4 as indicated by reducing the serum level of acute phase protein marker; alpha-2-macroglobulin and the liver expression of nuclear factor-kappa B (NF-κB). Finally, carvedilol significantly reduced liver fibrosis markers including hydroxyproline, collagen accumulation, and the expression of the hepatic stellate cell (HSC) activation marker; alpha smooth muscle actin. In conclusion, the present study provides evidences for the promising antifibrotic effects of carvedilol that can be explained by amelioration of oxidative stress through mainly, replenishment of GSH, restoration of antioxidant enzyme activities and reduction of lipid peroxides as well as amelioration of inflammation and fibrosis by decreasing collagen accumulation, acute phase protein level, NF-κB expression and finally HSC activation. -- Highlights: ► Carvedilol is a beta blocker with antioxidant and antifibrotic

  8. ASOTHEMIA EFFECT UPON THE LIVER ARGINASE ACTIVITY IN THE ACUTE KIDNEY DAMAGE

    Directory of Open Access Journals (Sweden)

    Jelena Djordjevic

    2002-07-01

    Full Text Available The acute damage of the kidney function leads to an outstanding disbalance of many homeostatic mechanisms in the organism that emerges as a consequence of the reduced glomerulic filtration and the accompanying oliguria. This conditions the emergence of asothemia, that is, the state caracterized by an increase of the level of urea, creatinine and other ureic toxins in the blood. The results of the previous exami-nations show that the acute renal insufficiency is a disturbance accompanied with ac-celerated protein catabolism. The urea is a terminal product of the protein catabolism whose synthesis is mainly taking place in the liver; that is why the research aimed at examining the liver arginase activity, terminal enzyme in the urea synthesis cycle in various experimental models of the acute renal insufficiency. The acute asothemia is experimentally caused upon the male Spraque Dawlly rats by means of two models, namely, the model of bilateral binding of the urethra (BPU and the clycerolic model. The arginase activity in the liver tissue homogenate is measured by the Porembsky and Cedra method on the basis of the liberated ornithine liberation. In the plasma of the experimental animals the level of urea and creatinine was measured for the sake of estimating the renal function. In both the models of the acute kidney damage there was a considerable increase of the urea and creatinine concentration in the plasma (p<0,001 which is followed by a significant increase of the hepatic arginase activity with respect to the control group of the animals. On the basis of the obtained results it can be conclude that asothemia in the acute renal insufficiency is followed by an in-crease in the liver arginase activity.

  9. GSK-3β Inhibition Attenuates CLP-Induced Liver Injury by Reducing Inflammation and Hepatic Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-01-01

    Full Text Available Liver dysfunction has been known to occur frequently in cases of sepsis. Excessive inflammation and apoptosis are pathological features of acute liver failure. Recent studies suggest that activation of glycogen synthase kinase- (GSK- 3β is involved in inflammation and apoptosis. We aimed to investigate the protective effects of GSK-3β inhibition on polymicrobial sepsis-induced liver injury and to explore the possible mechanisms. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP, and SB216763 was used to inhibit GSK-3β in C57BL/6 mice. GSK-3β was activated following CLP. Administration of SB216763 decreased mortality, ameliorated liver injury, and reduced hepatic apoptosis. The inhibition of GSK-3β also reduced leukocyte infiltration and hepatic inflammatory cytokine expression and release. Moreover, GSK-3β inhibition suppressed the transcriptional activity of nuclear factor-kappa B (NF-κB but enhanced the transcriptional activity of cAMP response element binding protein (CREB in the liver. In in vitro studies, GSK-3β inhibition reduced inflammatory cytokine production via modulation of NF-κB and CREB signaling pathways in lipopolysaccharide-stimulated macrophages. In conclusion, these findings suggest that GSK-3β blockade protects against CLP-induced liver via inhibition of inflammation by modulating NF-κB and CREB activity and suppression of hepatic apoptosis.

  10. Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba.

    Science.gov (United States)

    Nunes, Bruno; Pinto, Glória; Martins, Liliana; Gonçalves, Fernando; Antunes, Sara C

    2014-09-01

    Acetaminophen is globally one of the most prescribed drugs due to its antipyretic and analgesic properties. However, it is highly toxic when the dosage surpasses the detoxification capability of an exposed organism, with involvement of an already described oxidative stress pathway. To address the issue of the ecotoxicity of acetaminophen, we performed acute exposures of two aquatic plant species, Lemna gibba and Lemna minor, to this compound. The selected biomarkers were number of fronds, biomass, chlorophyll content, lipid peroxidation (TBARS assay), and proline content. Our results showed marked differences between the two species. Acetaminophen caused a significant decrease in the number of fronds (EC50 = 446.6 mg/L), and the establishment of a dose-dependent peroxidative damage in L. minor, but not in L. gibba. No effects were reported in both species for the indicative parameters chlorophyll content and total biomass. However, the proline content in L. gibba was substantially reduced. The overall conclusions point to the occurrence of an oxidative stress scenario more prominent for L. minor. However, the mechanisms that allowed L. gibba to cope with acetaminophen exposure were distinct from those reported for L. minor, with the likely involvement of proline as antioxidant.

  11. Potential Effect of Bacopa monnieri on Nitrobenzene Induced Liver Damage in Rats

    OpenAIRE

    Menon, B. Rajalakshmy; Rathi, M. A.; Thirumoorthi, L.; Gopalakrishnan, V. K.

    2010-01-01

    The study was designed to evaluate the hepatoprotective activity of ethanolic extract of Bacopa monnieri in acute experimental liver injury induced by Nitrobenzene in rats. The extract at the dose of 200 mg/kg body weight was administered orally once every day for 10 days. The increased serum marker enzymes, Aspartate transaminase, Alanine transaminase and alkaline phosphatase were restored towards normalization significantly by the extract. Significant increase in SOD, CAT and GPx was observ...

  12. Dipyrone and acetaminophen: correct dosing by parents?

    Directory of Open Access Journals (Sweden)

    João Guilherme Bezerra Alves

    Full Text Available CONTEXT AND OBJECTIVE: Several studies in developed countries have documented that a significant percentage of children are given inappropriate doses of acetaminophen and ibuprofen. The objective of this paper was to investigate parents’ accuracy in giving dipyrone and acetaminophen to their children, in a poor region. DESIGN AND SETTING: Cross-sectional study at the pediatric emergency department of Instituto Materno-Infantil Prof. Fernando Figueira, a teaching hospital in Pernambuco. METHODS: The inclusion criteria were age between 3 and 36 months, main complaint of fever and at least one dose of dipyrone or acetaminophen given to the child during the 24 hours preceding their arrival at the emergency department. The mothers were asked for demographic information and about the antipyretic doses given, which were compared with the recommended dosage. RESULTS: Among the 200 patients studied, 117 received dipyrone and 83 received acetaminophen. Overall, 75 % received an incorrect dose of antipyretic. Of the patients who received dipyrone, 105 (89.7% were given an incorrect dose; 16 (15.2% received too little dipyrone, and 89 (84.8% received too much. Of the patients who received acetaminophen, 45 (54.2% were given an incorrect dose; 38 (84.4% received too little acetaminophen, and 7 (15.6% received too much. There were no differences in maternal and child characteristics between the groups receiving correct and incorrect doses of medication, except for the type of medication (dipyrone versus acetaminophen. CONCLUSIONS: Most of the children treated were given inappropriate doses, mainly dipyrone overdosing and acetaminophen underdosing.

  13. Antithrombin III is associated with acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support.

    Science.gov (United States)

    Hoefer, Judith; Ulmer, Hanno; Kilo, Juliane; Margreiter, Raimund; Grimm, Michael; Mair, Peter; Ruttmann, Elfriede

    2017-06-01

    There are few data on the role of liver dysfunction in patients with end-stage heart failure supported by mechanical circulatory support. The aim of our study was to investigate predictors for acute liver failure in patients with end-stage heart failure undergoing mechanical circulatory support. A consecutive 164 patients with heart failure with New York Heart Association class IV undergoing mechanical circulatory support were investigated for acute liver failure using the King's College criteria. Clinical characteristics of heart failure together with hemodynamic and laboratory values were analyzed by logistic regression. A total of 45 patients (27.4%) with heart failure developed subsequent acute liver failure with a hospital mortality of 88.9%. Duration of heart failure, cause, cardiopulmonary resuscitation, use of vasopressors, central venous pressure, pulmonary capillary wedge pressure, pulmonary pulsatility index, cardiac index, and transaminases were not significantly associated with acute liver failure. Repeated decompensation, atrial fibrillation (P failure in univariate analysis only. In multivariable analysis, decreased antithrombin III was the strongest single measurement indicating acute liver failure (relative risk per %, 0.84; 95% confidence interval, 0.77-0.93; P = .001) and remained an independent predictor when adjustment for the Model for End-Stage Liver Disease score was performed (relative risk per %, 0.89; 95% confidence interval, 0.80-0.99; P = .031). Antithrombin III less than 59.5% was identified as a cutoff value to predict acute liver failure with a corresponding sensitivity of 81% and specificity of 87%. In addition to the Model for End-Stage Liver Disease score, decreased antithrombin III activity tends to be superior in predicting acute liver failure compared with traditionally thought predictors. Antithrombin III measurement may help to identify patients more precisely who are developing acute liver failure during mechanical

  14. Protective Effects of Cultivated Ginseng, Cultivated Wild Ginseng of Korean and Chinese Against CCl4 and t-BHP Induced Acute Hepatotoxicity in ICR Mice

    Directory of Open Access Journals (Sweden)

    Kim, Young-Jin

    2007-02-01

    Full Text Available Objectives : This study was aimed at investigating live protection mechanism of Cultivated Ginseng and Cultivated Wild Ginseng of Korean and Chinese by inducing liver toxicity through and t-BHP in mice and evaluated serological findings. Methods : Experiment groups was categorized into untreated normal group, treated control group, and orally administered Cultivated Ginseng and Cultivated Wild Ginseng of Korean and Chinese experimental groups. At the termination of experiment, gross examination of the liver as well as Total bilirubin, AST, and ALT contents in the serum were evaluated. Results : 1. In the induced acute hepatotoxicity test, total bilirubin, AST and ALT didn't show significant differences between the control and experimental groups. 2. In the t-BHP induced acute hepatotoxicity test, total bilirubin, AST and ALT didn't show significant differences between the control and experimental groups. Conclusion : Taken together, Cultivated Ginseng and Cultivated Wild Ginseng of Korean and Chinese cannot be effectively used for recovering the liver functions in acute hepatotoxicity tests using and t-BHP. Further researches, for example treated long period, must be tried to verify the efficacies.

  15. Hepato- and neuro-protective effects of watermelon juice on acute ethanol-induced oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Omolola R. Oyenihi

    Full Text Available Chronic and acute alcohol exposure has been extensively reported to cause oxidative stress in hepatic and extra-hepatic tissues. Watermelon (Citrullus lanatus is known to possess various beneficial properties including; antioxidant, anti-inflammatory, analgesic, anti-diabetic, anti-ulcerogenic effects. However, there is a lack of pertinent information on its importance in acute alcohol-induced hepato- and neuro-toxicity. The present study evaluated the potential protective effects of watermelon juice on ethanol-induced oxidative stress in the liver and brain of male Wistar rats. Rats were pre-treated with the watermelon juice at a dose of 4 ml/kg body weight for a period of fifteen days prior to a single dose of ethanol (50%; 12 ml/kg body weight. Ethanol treatment reduced body weight gain and significantly altered antioxidant status in the liver and brain. This is evidenced by the significant elevation of malondialdehyde (MDA concentration; depletion in reduced glutathione (GSH levels and an increased catalase (CAT activity in the brain and liver. There was no significant difference in the activity of glutathione peroxidase (GPX in the liver and brain.Oral administration of watermelon juice for fifteen (15 days prior to ethanol intoxication, significantly reduced the concentration of MDA in the liver and brain of rats. In addition, water melon pre-treatment increased the concentration of GSH and normalized catalase activity in both tissues in comparison to the ethanol control group. Phytochemical analysis revealed the presence of phenol, alkaloids, saponins, tannins and steroids in watermelon juice. Our findings indicate that watermelon juice demonstrate anti-oxidative effects in ethanol-induced oxidation in the liver and brain of rats; which could be associated with the plethora of antioxidant phyto-constituents present there-in. Keywords: Watermelon, Neuro-protective, Hepatoprotective, Ethanol intoxication

  16. Spondias mombin L. (Anacardiaceae) enhances detoxification of hepatic and macromolecular oxidants in acetaminophen-intoxicated rats.

    Science.gov (United States)

    Saheed, Sabiu; Taofik, Sunmonu Olatunde; Oladipo, Ajani Emmanuel; Tom, Ashafa Anofi Omotayo

    2017-11-01

    Oxidative stress is a common pathological condition associated with drug-induced hepatotoxicity. This study investigated Spondias mombin L. aqueous leaf extract on reactive oxygen species and acetaminophen-mediated oxidative onslaught in rats' hepatocytes. Hepatotoxic rats were orally administered with the extract and vitamin C for 4 weeks. The extract dose-dependently scavenged DPPH, hydrogen peroxide and hydroxyl radicals, with IC 50 values of 0.13, 0.66, and 0.64 mg/mL, and corresponding % inhibitions of 89, 80, and 90%, respectively at 1.0 mg/mL. Ferric ion was also significantly reduced. The marked (p<0.05) increases in the activities of alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase were reduced following treatment with the extract. The extract also significantly (p<0.05) induced the activities of antioxidant enzymes. These inductions reversed the acetaminophen-enhanced reduction in the specific activities of these enzymes as well as attenuated the observed elevated concentrations of autooxidized products and rived DNA in the acetaminophen-intoxicated animals. The observed effects competed with those of vitamin C and are suggestive of hepatoprotective and antioxidative attributes of the extract. Overall, the data from the present findings suggest that S. Mombin aqueous leaf extract is capable of ameliorating acetaminophen-mediated oxidative hepatic damage via enhancement of antioxidant defense systems.

  17. IgA against gut-derived endotoxins: does it contribute to suppression of hepatic inflammation in alcohol-induced liver disease?

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Bode, C.

    2002-01-01

    Endotoxins of intestinal origin are supposed to play an important role in the development of alcoholic hepatitis in man. To estimate the role of immunoglobulin response to gut-derived endotoxin in the development of alcohol-induced liver disease, serum levels of IgA and IgG against fecal endotoxin......, endotoxin, and acute-phase proteins were measured in patients with different stages of alcoholic liver disease and in healthy controls. Antibodies of type IgA, but not IgG, against fecal endotoxins were significantly increased in patients with alcohol-induced liver disease. IgA antibodies against fecal...... endotoxin were found to be closely correlated with the plasma concentrations of alanine aminotransferase, gamma-glutamyl transferase, and C-reactive protein in patients with alcoholic liver disease. In conclusion, as IgA located in body tissue was shown to suppress the inflammatory process, enhanced...

  18. Scrub typhus causing neonatal hepatitis with acute liver failure-A case series.

    Science.gov (United States)

    Vajpayee, Shailja; Gupta, R K; Gupta, M L

    2017-05-01

    Neonatal hepatitis with acute liver failure due to varied etiology including various infections is reported in the past. Scrub typhus as a cause of neonatal hepatitis has rarely been reported in literature. A high index of clinical suspicion is required for early diagnosis and timely treatment. Severity and prognosis of the disease varies widely because several different strains of Orientia tsutsugamushi exist with different virulence. Delayed diagnosis can result in complication and significant morbidity and mortality. Here, we report three cases of neonatal hepatitis with acute liver failure caused by scrub typhus to increase awareness.

  19. Influence of matrix nature on the functional efficacy of biomedical cell product for the regeneration of damaged liver (experimental model of acute liver failure

    Directory of Open Access Journals (Sweden)

    S. V. Gautier

    2017-01-01

    Full Text Available Aim. A comparative analysis of the functional efficacy of biomedical cell products (BMCP for the regeneration of damaged liver based on biopolymer scaffolded porous and hydrogel matrices was performed on the experimental model of acute liver failure. Materials and methods. Matrices allowed for clinical use were employed for BMCP in the form of a sponge made from biopolymer nanostructured composite material (BNCM based on a highly purified bacterial copolymers of poly (β-hydroxybutyrate-co-β-oxyvalerate and polyethylene glycol and a hydrogel matrix from biopolymer microheterogeneous collagen-containing hydrogel (BMCH. Cellular component of BMCP was represented by liver cells and multipotent mesenchymal bone marrow stem cells. The functional efficacy of BMCP for the regeneration of damaged liver was evaluated on the experimental model of acute liver failure in Wistar rats (n = 40 via biochemical, morphological, and immunohistochemical methods. Results. When BMCP was implanted to regenerate the damaged liver on the basis of the scaffolded BNCM or hydrogel BMCH matrices, the lethality in rats with acute liver failure was absent; while in control it was 66.6%. Restoration of the activity of cytolytic enzyme levels and protein-synthetic liver function began on day 9 after modeling acute liver failure, in contrast to the control group, where recovery occurred only by days 18–21. Both matrices maintained the viability and functional activity of liver cells up to 90 days with the formation of blood vessels in BMCP. The obtained data confirm that scaffolded BNCM matrix and hydrogel BMCH matrix retain for a long time (up to 90 days the vital activity of the adherent cells in the BMCP composition, which allows using them to correct acute liver failure. At the same time, hydrogel matrix due to the presence of bioactive components contributes to the creation of the best conditions for adhesion and cell activity which accelerate the regeneration processes

  20. Mechanism of the Inhibitory Effects of Eucommia ulmoides Oliv. Cortex Extracts (EUCE in the CCl4-Induced Acute Liver Lipid Accumulation in Rats

    Directory of Open Access Journals (Sweden)

    Chang-Feng Jin

    2013-01-01

    Full Text Available Eucommia ulmoides Oliv. (EU has been used for treatment of liver diseases. The protective effects of Eucommia Ulmoides Oliv. cortex extracts (EUCE on the carbon tetrachloride- (CCl4- induced hepatic lipid accumulation were examined in this study. Rats were orally treated with EUCE in different doses prior to an intraperitoneal injection of 1 mg/kg CCl4. Acute injection of CCl4 decreased plasma triglyceride but increased hepatic triglyceride and cholesterol as compared to control rats. On the other hand, the pretreatment with EUCE diminished these effects at a dose-dependent manner. CCl4 treatment decreased glutathione (GSH and increased malondialdehyde (MDA accompanied by activated P450 2E1. The pretreatment with EUCE significantly improved these deleterious effects of CCl4. CCl4 treatment increased P450 2E1 activation and ApoB accumulation. Pretreatment with EUCE reversed these effects. ER stress response was significantly increased by CCl4, which was inhibited by EUCE. One of the possible ER stress regulatory mechanisms, lysosomal activity, was examined. CCl4 reduced lysosomal enzymes that were reversed with the EUCE. The results indicate that oral pretreatment with EUCE may protect liver against CCl4-induced hepatic lipid accumulation. ER stress and its related ROS regulation are suggested as a possible mechanism in the antidyslipidemic effect of EUCE.