Sample records for acetabularia

  1. Preparation and Evaluation of Acetabularia-Modified Carbon Paste Electrode in Anodic Stripping Voltammetry of Copper and Lead Ions

    Directory of Open Access Journals (Sweden)

    Muhammad Raziq Rahimi Kooh


    Full Text Available Seaweed is well known about for potential in chelating heavy metals. In this study, carbon paste electrodes were fabricated with siphonous seaweed Acetabularia acetabulum as the modifiers to sense lead (II and copper (II by square-wave anodic stripping voltammetry. Various scan rates and deposition potentials were measured to obtain the optimal peak current for Pb(II and Cu(II. Optimum conditions of Acetabularia-CPE for sensing Pb(II were at the scan rate of 75 mV/s and deposition potential of −800 mV, while for Cu(II sensing were at 100 mV/s and −300 mV, respectively. The electrodes were characterized by the duration of accumulation time, preconcentration over a range of standards, supporting electrolyte, and standard solutions of various pH values. Interference studies were carried out. Both Zn(II and Cu(II were found to interfere with Pb(II sensing, whereas only Zn(II causes interference with Cu(II sensing. The electrode was found to have good regeneration ability via electrochemical cleaning. Preliminary testing of complex samples such as NPK fertilisers, black soil, and sea salt samples was included.

  2. Comparison of ESTs from juvenile and adult phases of the giant unicellular green alga Acetabularia acetabulum

    Directory of Open Access Journals (Sweden)

    Grotewold Erich


    Full Text Available Abstract Background Acetabularia acetabulum is a giant unicellular green alga whose size and complex life cycle make it an attractive model for understanding morphogenesis and subcellular compartmentalization. The life cycle of this marine unicell is composed of several developmental phases. Juvenile and adult phases are temporally sequential but physiologically and morphologically distinct. To identify genes specific to juvenile and adult phases, we created two subtracted cDNA libraries, one adult-specific and one juvenile-specific, and analyzed 941 randomly chosen ESTs from them. Results Clustering analysis suggests virtually no overlap between the two libraries. Preliminary expression data also suggests that we were successful at isolating transcripts differentially expressed between the two developmental phases and that many transcripts are specific to one phase or the other. Comparison of our EST sequences against publicly available sequence databases indicates that ESTs from the adult and the juvenile libraries partition into different functional classes. Three conserved sequence elements were common to several of the ESTs and were also found within the genomic sequence of the carbonic anhydrase1 gene from A. acetabulum. To date, these conserved elements are specific to A. acetabulum. Conclusions Our data provide strong evidence that adult and juvenile phases in A. acetabulum vary significantly in gene expression. We discuss their possible roles in cell growth and morphogenesis as well as in phase change. We also discuss the potential role of the conserved elements found within the EST sequences in post-transcriptional regulation, particularly mRNA localization and/or stability.

  3. Light-triggered action potentials in plants


    Kazimierz Trębacz


    Special attention is paid in this paper to the criteria of the light-triggered action potential, namely the all-or-none law, propagation, the occurrence of refractory periods. Such action potentials have been recorded in Acetabularia mediterranea, Asplenium trichomanes, Bryum pseudotriquetrum, Eremosphaera viridis and Concephalum conicum. In Acetabularia, action potentials are generated after sudden cessation of light stimuli of sufficient intensity. The depolarization phase of the action pot...

  4. Recent changes in macroalgae distribution patterns in the Orbetello lagoon (Italy)


    Giovani, Andrea; Mari, Elena; Specchiulli, Antonietta; Focardi, Silvano; RENZI, Monia


    This study related recent distribution changes in seven macroalgae taxa (Acetabularia acetabulum, Chaetomorpha linum, Cladophora sp., Gracilariopsis longissima, Spyridia sp., Ulva laetevirens, Valonia aegagrophyla) to spatial (basin) and temporal (time) trophic differences in a meso-eutrophic Mediterranean coastal lagoon (Orbetello, Italy). In July 2003 and July 2009, the coverage percentage (CP) of each considered taxon was measured in 38 stations equally distributed in the Western and Easte...

  5. Cell probing by delayed luminescence (United States)

    Musumeci, Francesco; Ballerini, Monica; Baroni, Giuliana; Costato, Michele; Ferraro, Lorenzo; Milani, Marziale; Scordino, Agata; Triglia, Antonio


    Delayed luminescence (D.L.) is a measure that provides important information on biological systems fields, structures and activities, by counting impinging and emitted photons. Many recent experimental works have shown the existence of a close connection, sometimes analytically expressed between the biological state of the system and D.L. parameters. Our investigations aim to show that D.L. is a workable analytical technique covering a large number of disciplinary fields, from agriculture to pollution control and from medical diagnostics to food quality control. The authors have conducted systematic research about D.L. from unicellular alga Acetabularia acetabulum to Saccharomyces cerevisiae yeast cultures and about more complex systems such as Soya seed (Glycine max, L.) and its dependence on sample preparation, history, intracellular signaling, metabolism and pollutant presence. We will discuss the most relevant results together with theoretical considerations on the basic interaction at work between biological systems and electromagnetic fields.

  6. Clorofíceas marinhas bentônicas da Praia de Serrambi, Pernambuco, Brasil Benthic marine Chlorophyceae from Serrambi Beach, Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Sônia Maria Barreto Pereira


    Full Text Available É apresentado o levantamento florístico sobre as clorofíceas marinhas bentônicas encontradas na Praia de Serrambi, litoral Sul do Estado de Pernambuco. O material estudado foi coletado em três estações, as quais foram visitadas mensalmente durante o período de abril de 1986 a setembro de 1987. As clorofíceas foram representadas na flora local por 39 espécies, três variedades e uma forma, pertencentes às ordens Ulotrichales, Ulvales, Siphonocladales, Cladophorales, Caulerpales e Dasycladales. Acetabularia calyculus Quoy & Gaimard. In Freycinet, Bryopsis pennata Lamouroux, Bryopsis plumosa (Hudson C. Agardh, Caulerpa ambigua Okamura, Caulerpa serrulata (Forsskål J. Agardh emend Børgesen, Chaetomorpha brachygona Harvey, Cladophora coelothrix Kützing, Cladophoropsis membranacea (C. Agardh Børgesen, Codium intertextum Collins & Hervey, Ernodesmis verticillata (Kützing Børgesen são novas referências para a flora do litoral de Pernambuco. Pringsheimiella scutata (Reinke von Höhnel ex Marchewianka o é também para o litoral continental do Brasil. Halimeda opuntia (L. Lamouroux foi hospedeira de maior número de epífitas, enquanto Bryopsis plumosa, quando epífita, foi a que cresceu sobre maior número de hospedeiros.This survey presents studies about benthics marine chlorophyceae found in the Serrambi Beach, South coast of Pernambuco. The material studied was collected in three stations, which were visited monthly during the period from April, 1986 to September, 1987. The chlorophyceae were represented in this flora by 39 species, three varieties and one form, from orders Ulotrichales, Ulvales, Siphonocladales, Cladophorales, Caulerpales and Dasycladales. Acetabularia calyculus Quoy & Gaimard. In Freycinet, Bryopsis pennata Lamouroux, Bryopsis plumosa (Hudson C. Agardh, Caulerpa ambigua Okamura, Caulerpa serrulata (Forsskål J. Agardh emend Børgesen, Chaetomorpha brachygona Harvey, Cladophora coelothrix Kützing, Cladophoropsis

  7. Cllmodulin in tip-growing plant cells, visualized by fluorescing calmodulin-binding phenothiazines. (United States)

    Haußer, I; Herth, W; Reiss, H D


    Calmodulin (CaM) was visualized light-microscopically by the fluorescent CaM inhibitors fluphenazine and chlorpromazine, both phenothiazines, during polar tip growth of pollen tubes of Lilium longiflorum, root hairs of Lepidium sativum, moss caulonema of Funaria hygrometrica, fungal hyphae of Achlya spec. and in the alga Acetabularia mediterranea, as well as during multipolar tip growth in Micrasterias denticulata. Young pollen tubes and root hairs showed tip fluorescence; at later stages and in the growing parts of the other subjects the fluorescence was almost uniform. After treatment with cytochalasin B, punctuate fluorescence occurred in the clear zone adjacent to the tip of pollen tubes. The observations indicate that there is CaM in all our tested systems detectable with this method. It may play a key role in starting polar growth. As in pollen tubes, CaM might be in part associated with the microfilament network at the tip, and thus regulate vesicle transport and cytoplasmic streaming. PMID:24253945

  8. Ocean acidification bends the mermaid's wineglass. (United States)

    Newcomb, Laura A; Milazzo, Marco; Hall-Spencer, Jason M; Carrington, Emily


    Ocean acidification lowers the saturation state of calcium carbonate, decreasing net calcification and compromising the skeletons of organisms such as corals, molluscs and algae. These calcified structures can protect organisms from predation and improve access to light, nutrients and dispersive currents. While some species (such as urchins, corals and mussels) survive with decreased calcification, they can suffer from inferior mechanical performance. Here, we used cantilever beam theory to test the hypothesis that decreased calcification would impair the mechanical performance of the green alga Acetabularia acetabulum along a CO₂ gradient created by volcanic seeps off Vulcano, Italy. Calcification and mechanical properties declined as calcium carbonate saturation fell; algae at 2283 µatm CO₂ were 32% less calcified, 40% less stiff and 40% droopier. Moreover, calcification was not a linear proxy for mechanical performance; stem stiffness decreased exponentially with reduced calcification. Although calcifying organisms can tolerate high CO₂ conditions, even subtle changes in calcification can cause dramatic changes in skeletal performance, which may in turn affect key biotic and abiotic interactions. PMID:26562936

  9. Recent evidence for evolution of the genetic code (United States)

    Osawa, S.; Jukes, T. H.; Watanabe, K.; Muto, A.


    The genetic code, formerly thought to be frozen, is now known to be in a state of evolution. This was first shown in 1979 by Barrell et al. (G. Barrell, A. T. Bankier, and J. Drouin, Nature [London] 282:189-194, 1979), who found that the universal codons AUA (isoleucine) and UGA (stop) coded for methionine and tryptophan, respectively, in human mitochondria. Subsequent studies have shown that UGA codes for tryptophan in Mycoplasma spp. and in all nonplant mitochondria that have been examined. Universal stop codons UAA and UAG code for glutamine in ciliated protozoa (except Euplotes octacarinatus) and in a green alga, Acetabularia. E. octacarinatus uses UAA for stop and UGA for cysteine. Candida species, which are yeasts, use CUG (leucine) for serine. Other departures from the universal code, all in nonplant mitochondria, are CUN (leucine) for threonine (in yeasts), AAA (lysine) for asparagine (in platyhelminths and echinoderms), UAA (stop) for tyrosine (in planaria), and AGR (arginine) for serine (in several animal orders) and for stop (in vertebrates). We propose that the changes are typically preceded by loss of a codon from all coding sequences in an organism or organelle, often as a result of directional mutation pressure, accompanied by loss of the tRNA that translates the codon. The codon reappears later by conversion of another codon and emergence of a tRNA that translates the reappeared codon with a different assignment. Changes in release factors also contribute to these revised assignments. We also discuss the use of UGA (stop) as a selenocysteine codon and the early history of the code.

  10. What remains after 2 months of starvation? Analysis of sequestered algae in a photosynthetic slug, Plakobranchus ocellatus (Sacoglossa, Opisthobranchia), by barcoding. (United States)

    Christa, Gregor; Wescott, Lily; Schäberle, Till F; König, Gabriele M; Wägele, Heike


    The sacoglossan sea slug, Plakobranchus ocellatus, is a so-called long-term retention form that incorporates chloroplasts for several months and thus is able to starve while maintaining photosynthetic activity. Little is known regarding the taxonomy and food sources of this sacoglossan, but it is suggested that P. ocellatus is a species complex and feeds on a broad variety of Ulvophyceae. In particular, we analysed specimens from the Philippines and starved them under various light conditions (high light, low light and darkness) and identified the species of algal food sources depending on starvation time and light treatment by means of DNA-barcoding using for the first time the combination of two algal chloroplast markers, rbcL and tufA. Comparison of available CO1 and 16S sequences of specimens from various localities indicate a species complex with likely four distinct clades, but food analyses do not indicate an ecological separation of the investigated clades into differing foraging strategies. The combined results from both algal markers suggest that, in general, P. ocellatus has a broad food spectrum, including members of the genera Halimeda, Caulerpa, Udotea, Acetabularia and further unidentified algae, with an emphasis on H. macroloba. Independent of the duration of starvation and light exposure, this algal species and a further unidentified Halimeda species seem to be the main food source of P. ocellatus from the Philippines. It is shown here that at least two (or possibly three) barcode markers are required to cover the entire food spectrum in future analyses of Sacoglossa. PMID:23108662

  11. Chronobiology at the cellular and molecular levels: models and mechanisms for circadian timekeeping. (United States)

    Edmunds, L N


    This review considers cellular chronobiology and examines, at least in a superficial way, several classes of models and mechanisms that have been proposed for circadian rhythmicity and some of the experimental approaches that have appeared to be most productive. After a brief discussion of temporal organization and the metabolic, epigenetic, and circadian time domains, the general properties of circadian rhythms are enumerated. A survey of independent oscillations in isolated organs, tissues, and cells is followed by a review of selected circadian rhythms in eukaryotic microorganisms, with particular emphasis placed on the rhythm of cell division in the algal flagellate Euglena as a model system illustrating temporal differentiation. In the ensuing section, experimental approaches to circadian clock mechanisms are considered. The dissection of the clock by the use of chemical inhibitors is illustrated for the rhythm of bioluminescence in the marine dinoflagellate Gonyaulax and for the rhythm of photosynthetic capacity in the unicellular green alga Acetabularia. Alternatively, genetic analysis of circadian oscillators is considered in the green alga Chlamydomonas and in the bread mold Neurospora, both of which have yielded clock mutants and mutants having biochemical lesions that exhibit altered clock properties. On the basis of the evidence generated by these experimental approaches, several classes of biochemical and molecular models for circadian clocks have been proposed. These include strictly molecular models, feedback loop (network) models, transcriptional (tape-reading) models, and membrane models; some of their key elements and predictions are discussed. Finally, a number of general unsolved problems at the cellular level are briefly mentioned: cell cycle interfaces, the evolution of circadian rhythmicity, the possibility of multiple cellular oscillators, chronopharmacology and chronotherapy, and cell-cycle clocks in development and aging. PMID:6229999

  12. Gain and loss of polyadenylation signals during evolution of green algae

    Directory of Open Access Journals (Sweden)

    Glöckner Gernot


    Full Text Available Abstract Background The Viridiplantae (green algae and land plants consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related sequence 13 to 30 nucleotides upstream from the cleavage site, which is commonly referred to as the near upstream element (NUE. However, it has been reported that the pentanucleotide UGUAA is used as polyadenylation signal for some genes in volvocalean algae. Results We set out to investigate polyadenylation signal differences between streptophytes and chlorophytes that may have emerged shortly after the evolutionary split between Streptophyta and Chlorophyta. We therefore analyzed expressed genes (ESTs from three streptophyte algae, Mesostigma viride, Klebsormidium subtile and Coleochaete scutata, and from two early-branching chlorophytes, Pyramimonas parkeae and Scherffelia dubia. In addition, to extend the database, our analyses included ESTs from six other chlorophytes (Acetabularia acetabulum, Chlamydomonas reinhardtii, Helicosporidium sp. ex Simulium jonesii, Prototheca wickerhamii, Scenedesmus obliquus and Ulva linza and one streptophyte (Closterium peracerosum. Our results indicate that polyadenylation signals in green algae vary widely. The UGUAA motif is confined to late-branching Chlorophyta. Most streptophyte algae do not have an A-rich sequence motif like that in embryophytes, animals and fungi. We observed polyadenylation signals similar to those of Arabidopsis and other land plants only in Mesostigma. Conclusion Polyadenylation signals in green algae show considerable variation. A new NUE (UGUAA was invented in derived chlorophytes and replaced