WorldWideScience

Sample records for acero inoxidable 316l

  1. Vida a la fatiga de juntas soldadas del acero inoxidable AISI 316L obtenidas mediante el proceso GMAW

    Directory of Open Access Journals (Sweden)

    Puchi-Cabrera, E. S.

    2007-06-01

    Full Text Available An investigation has been conducted in order to determine the effect of both the metallic transfer mode (pulsed arc or short circuit and the O2 content in the Ar/O2 gas mixture, of the gas-metal arc welding process (GMAW, on the fatigue life under uniaxial conditions of welded joints of 316L stainless steel. It has been concluded that the mixture of the protective gases employed in the process could have an important influence on the fatigue life of the welded joints of such steel in two different ways. Firstly, through the modification of the radius of curvature at the joint between the welding toe and the base metal and, secondly, through a more pronounced degree of oxidation of the alloying elements induced by a higher O2 content in the mixture. As far as the metallic transfer mode is concerned, it has been determined that the welded joints obtained under a pulsed arc mode show a greater fatigue life in comparison with the joints obtained under short circuit for both gas mixtures.

    Se ha llevado a cabo una investigación con la finalidad de determinar el efecto, tanto del modo de transferencia metálica (arco pulsado o cortocircuito como del contenido de O2 en la mezcla de gases protectores Ar/O2, del proceso de soldadura a tope mediante arco metálico con protección gaseosa (GMAW, sobre la vida a la fatiga en condiciones uniaxiales de juntas soldadas del acero inoxidable AISI 316L. Dicho trabajo ha permitido concluir que la composición de la mezcla de gases protectores del proceso GMAW pudiera tener una influencia importante en la vida a la fatiga de las juntas soldadas de dicho material, a través de dos formas distintas: primero, mediante la modificación del radio de curvatura entre la raíz del cordón de soldadura y el metal base y, en segundo lugar, a través del mayor grado de oxidación de los elementos de aleación. En cuanto al modo de transferencia metálica, se determinó que las juntas soldadas mediante arco pulsado

  2. Estudio de impedancia de la corrosión del acero inoxidable AISI 316L en las regiones pasiva y de picadura

    Directory of Open Access Journals (Sweden)

    Polo Sanz, José Luis

    1999-12-01

    Full Text Available Impedance measurements were performed on an AISI 316L stainless steel immersed in a 5% NaCl solution at room temperature. Some samples were polarized up to the passive and pitting regions, respectively. The Nyquist plots in the rest potential and in the passive region show high impedance with capacitive behaviour. The impedance diagram in the pitting region shows three loops: a capacitive loop at high frequencies, a loop with inductive effects at intermediate frequencies, and a second capacitive response at low frequencies. To validate the impedance data Kramers-Kronig relations were applied in the pitting región.

    Se estudia la corrosión del acero inoxidable AISI 316L en solución de NaCl al 5% y a temperatura ambiente, utilizándose probetas polarizadas hasta las regiones pasiva y de picadura. Se obtuvieron diagramas de impedancia en el potencial de corrosión y en esas dos regiones. Los diagramas de impedancia en el potencial de corrosión y en la región pasiva muestran comportamiento capacitivo. En la región de picadura los diagramas de impedancia presentan tres bucles capacitivos: un bucle capacitivo a altas frecuencias, un bucle con efectos inductivos a frecuencias intermedias y un segundo bucle capacitivo a bajas frecuencias. Se aplicaron las transformadas de Kramers-Kronig a los resultados de impedancia obtenidos en la región de picadura.

  3. Decapado del acero inoxidable AISI 316L utilizando una mezcla ecológica de H2O2-H2SO4-HF

    Directory of Open Access Journals (Sweden)

    Gómez, P. P.

    2005-12-01

    Full Text Available This study reports the pickling of austenitic AISI 316L stainless steel (SS using a mixture of hydrogen peroxide (H2O2, sulphuric acid (H2SO4 and hydrofluoric acid (HF at pH 2.0. The stability of H2O2 was also studied using different concentrations of ferric ion from 0 to 40 g/l and temperature from 25 to 60 °C. The pickling rate at 50 °C in the presence and absence of 40 g/l ferric ion was 2.6 and 0.2 mg/dm2 day (mdd, respectively. p-Toluene sulphonic acid was used as stabilizer of H2O2.En la presente investigación se estudia el decapado del acero inoxidable AISI 316L utilizando una mezcla de agua oxigenada (H2O2 y los ácidos sulfúrico (H2SO4 y fluorhídrico (HF a pH 2,0. La estabilidad de la mezcla H2O2-H2SO4-HF se ha ensayado variando el contenido de iones férrico de O a 40 g/l y la temperatura de 25 a 60 °C. La velocidad de decapado a 50 °C ha sido de 2,6 y 0,2 mg/dm2 día (mdd, en ausencia y presencia de 40 g/l de iones férrico, respectivamente. Se ha utilizado el ácido p-toluen sulfónico como estabilizante del H2O2.

  4. Análisis experimental del desgaste entre UHMWPE y acero inoxidable 316l empleados en la manufactura de prótesis coxofemorales

    Directory of Open Access Journals (Sweden)

    Ricardo Gustavo Rodríguez Cañizo

    2010-10-01

    Full Text Available Título en inglés: Experimental wear analysis of UHMWPE and stainless 316l used in the manufacturing of coxofemoral prosthesis. Resumen La causa más común de falla en prótesis coxofemorales es el aflojamiento entre los componentes que conforman el sistema, de manera específica la copa acetabular y la cabeza femoral. En esta investigación se presenta un análisis tribológico del desgaste en los componentes mencionados, ya que cuando las superficies en contacto se desgastan, la funcionalidad mecánica del sistema se compromete, debido al cambio de geometría de los mismos, dando como resultado un juego mecánico entre la copa y la cabeza. Los materiales considerados en este estudio son el polietileno de ultra elevado peso molecular (UHMWPE, por sus siglas en inglés para la copa acetabular, y acero inoxidable 316L para la cabeza femoral. Esta combinación de materiales representa hoy en día la recomendación más usual por parte de los cirujanos para pacientes de la tercera edad. La tasa anual de desgaste se determinó de manera experimental y se cuantificó la cantidad de material desprendido durante el contacto. Se establecieron las condiciones de carga de forma analítica, considerando las que actúan sobre la cabeza femoral a lo largo del área de desgaste durante la marcha humana. Posteriormente, se realizó el análisis experimental de desgaste utilizando una máquina tribológica de configuración perno-sobre-disco (pin-on-disk, diseñada de manera específica para este estudio. Las pruebas para determinar la pérdida volumétrica de los componentes se realizaron bajo tres condiciones de operación: en seco, lubricada con agua destilada y lubricada con suero bovino. El marco experimental considerado consistió en pernos de UHMWPE sobre discos de acero inoxidable 316L simulando el desgaste equivalente a diez años de uso de la prótesis. Finalmente, de los resultados obtenidos se puede establecer que el desgaste y la cantidad de part

  5. Estudio in vitro de la citotoxicidad y genotoxicidad de los productos liberados del acero inoxidable 316L con recubrimientos cerámicos bioactivos Cytotoxic and genotoxic study of in Vitro released products of stainless Steel 316l with bioactive ceramic Coatings

    Directory of Open Access Journals (Sweden)

    María Elena Márquez Fernández

    2007-03-01

    Full Text Available El acero inoxidable AISI 316L es el biomaterial mas utilizado para la fabricación de implantes temporales, pero presenta limitaciones para implantes permanentes debido a la liberación de iones metálicos hacia los tejidos circundantes, produciendo especies reactivas de oxígeno (ERO y daño en ADN, factores que aumentan el riesgo de aparición de tumores locales y fallas mecánicas del implante. Una estrategia utilizada para disminuir la liberación de iones es la modificación superficial de los implantes metálicos por medio de recubrimientos inorgánicos, cerámicos o vítreos, aplicados por el método sol-gel, el cual presenta una serie de ventajas comparativas con otras técnicas de deposición, como buena adherencia, aplicación sencilla, mínimos problemas de secado, bajas temperaturas de densificación y posibilidad de agregar partículas y/o grupos orgánicos que mejoran la adherencia celular al implante aumentando su biocompatibilidad. En el presente trabajo se evaluaron los efectos citotóxico por medio de la técnica MTT, y genotóxico por electroforesis en gel de células individuales (Ensayo Cometa, sobre células de la línea celular CHO, de los productos liberados en medio MEM por el acero inoxidable 316L sin recubrir, recubierto con una monocapa de vidrio de sílice (MC, o con doble capa que contiene partículas bioactivas de hidroxiapatita (HA, vidrio (V o vitrocerámico (VC, después de un periodo de 30 días. Los resultados muestran que a los 30 días de envejecimiento en medio MEM no se encuentra ningún efecto citotóxico, pero se encontró efecto genotóxico en las probetas de A y MC que no representa un peligro inminente a sistemas celulares. The stainless steel AISI 316L is the must used biomaterial for the making of temporal prosthesis, but it presents severe limitations for permanent implants due to the generation and migration of metallic ions to the surrounding peripheral tissues, which produces oxygen reactive

  6. Efecto del nitrógeno y la corriente media pulsada de soldadura en la formación de grietas de solidificación en aceros inoxidables AI5I 316L

    Directory of Open Access Journals (Sweden)

    Trevisan, R. E.

    2002-08-01

    Full Text Available An analysis of the influence of nitrogen concentration in the weld zone and the pulsed mean welding current in the solidification crack formation is presented in this paper. The AISI 316L austenitic stainless steel was employed as the metal base. The welding was done using CC+ pulsed flux cored arc welding process and AWS E316LT-1 wire type. The tests were conducted using CO2 shielding gas with four different nitrogen levels (0, 5, 10 and 15 % in order to induce different nitrogen weld metal concentrations. The pulsed mean welding current was varied in three levels and the Transvarestraint tangential strain test was fixed of 5 %. The results showed that the solidification cracking decreased as the pulsed mean welding current increase. It was also verified that an increase of the weld zone nitrogen level was associated with a decrease in both the total length of solidification crack and the amount of δ ferrite.

    En este trabajo se expone un análisis de la influencia de la concentración de nitrógeno y de la corriente media pulsada de soldadura en la formación de grietas de solidificación. Como metal base se usó el acero inoxidable austenítico AISI 316L. Las soldaduras se realizaron con el proceso de almbre tubular con pulsación del arco en CC+ y metal de aporte del tipo AWS E316LT-1. Se usó CO2 como gas de protección, añadiéndole cuatro diferentes porcentajes de nitrógeno 0, 5, 10 y 15 %, para inducir diferentes concentraciones de este elemento en la zona fundida. La corriente media de pulso se varió en tres niveles. La deformación tangencial de las probetas se mantuvo constante en 5 %, empleando el ensayo Transvarestraint. Los resultados indican que la longitud total de las grietas de solidificación es inversamente proporcional al aumento de la corriente media de pulso, comprobándose, además, que el incremento del nivel de nitrógeno en la zona fundida provocó una disminución en las grietas de

  7. Fatigue life of AISI 316L stainless steel welded joints, obtained by GMAW; Vida a la fatiga de juntas soldadas del acero inoxidable AISI 316L obtenidas mediante el proceso GMAW

    Energy Technology Data Exchange (ETDEWEB)

    Puchi-Cabrera, E. S.; Saya-Gamboa, R. A.; Barbera-Sosa, J. G. la; Staia, M. H.; Ignoto-Cardinale, V.; Berrios-Ortiz, J. A.; Mesmacque, G.

    2007-07-01

    An investigation has been conducted in order to determine the effect of both the metallic transfer mode (pulsed arc or short circuit) and the O{sub 2} content in the Ar/O{sub 2} gas mixture, of the gas-metal arc welding process (GMAW), on the fatigue life under uniaxial conditions of welded joints of 316L stainless. it has been concluded that the mixture of the protective gases employed in the process could have an important influence on the fatigue life of the welded joints of such steel in two different ways. firstly, through the modification of the radius of curvature at the joint between the welding tow and the base metal and, secondly, through a more pronounced degree of oxidation of the alloying elements induced by a higher O{sub 2} content in the mixture. As far as the metallic transfer mode is concerned, it has been determined that the welded joints obtained under a pulsed arc mode show a greater fatigue life in comparison with the joints obtained under short circuit for both gas mixtures. (Author) 25 refs.

  8. Transformaciones Microestructurales en Soldaduras Disímiles de Acero Inoxidable Austenítico con Acero Inoxidable Ferrítico

    OpenAIRE

    Sara María Aguilar-Sierra; Claudia Patricia Serna-Giraldo; Ricardo Emilio Aristizábal-Sierra

    2015-01-01

    En este trabajo se estudian los fenómenos metalúrgicos que ocurren en la soldadura SMAW de un acero inoxidable ferrítico AISI 430 con un acero inoxidable austenítico AISI 316L. Para el estudio se utilizaron dos tipos de electrodos: austenítico AWS E309L y dúplex AWS E2209-16, ambos con un diámetro de 3,2 mm. Las uniones soldadas se realizaron con un solo pase y se variaron simultáneamente la corriente y la velocidad de soldadura; las condiciones fueron ...

  9. Effects of nitrogen and pulsed mean welding current in AISI 316 austenitic stainless steel solidification cracks; Efecto del nitrogeno y la corriente media pulsada de soldadura en la formacion de grietas de solidificacion en aceros inoxidables AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, R. E.; Braga, E.; Fals, H. C.

    2002-07-01

    An analysis of the influence of nitrogen concentration in the weld zone and the pulsed mean welding current in the solidification crack formation is presented in this paper. The AISI 316L austenitic stainless steel was employed as the metal base. The welding was done using CC+ pulsed flux cored are welding process and AWS E316L wire type. The tests were conducted using CO{sub 2} shielding gas with four different nitrogen levels (0,5; 10 and 15%) in order to induce different nitrogen weld metal concentrations. The pulsed mean welding current was varied in three levels and the. Transvarestraint tangential strain test was fixed of 5%. The results showed that the solidification cracking decreased as the pulsed mean welding current increase. It was also verified that an increase of the weld zone nitrogen level was associated with a decrease in both the total length of solidification crack and the amount of {delta} ferrite. (AUthor) 20 refs.

  10. Comportamiento del desgaste del flanco en el torneado en seco de alta velocidad del acero AISI 316L//Flank wear behavior in the dry high‐speed turning of AISI 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Yoandrys Morales-Tamayo

    2013-09-01

    Full Text Available El presente estudio experimental se centra en investigar los efectos de los parámetros corte en el desgaste de flanco con dos insertos recubiertos durante el torneado de acabado en seco a altas velocidades del acero inoxidable AISI 316L. Los efectos de los parámetros de corte fueron determinados utilizando un análisis de varianza y de regresión simple. Como principal resultado se obtuvo el efectosignificativo del avance y del tiempo de maquinado en el desgaste del flanco. El inserto de tres capas no sobrepasó el criterio de fin de vida del desgaste, mientras que el inserto de una capa sufrió un desgaste catastrófico para la mayor velocidad de corte. El desgaste del flanco tuvo mejor comportamiento para el avance de 0,08 mm/rev en todas las velocidades empleadas en este estudio.Palabras claves: torneado de alta velocidad, desgaste de flanco, acero inoxidable AISI 316L, estudio experimental, análisis de varianza y regresión.______________________________________________________________________________AbstractThe current experimental study is focused on investigating the effects of cutting parameters on flank wear in two coated carbide inserts during dry high speed finish turning of AISI 316L stainless steel. The effects of cutting parameters were determinate using analysis of variance and simple regression. As a main resulta significant effect of cutting feed and the machining time on flank wear was found. The three coating layers insert did not exceed the criterion of end of life of wear while the insert with one layer suffered a catastrophic wear at the highest cutting speed. The flank wear showed the best performance for the cuttingfeed of 0,08 mm/rev at all the speeds used in the study.Key words: high speed turning; flank wear; AISI 316L stainless steel, experimental study; analysis of variance and regression.

  11. Comportamiento a la corrosión del acero 316L sinterizado con distinto grado de porosidad

    Directory of Open Access Journals (Sweden)

    Soria, L.

    1998-05-01

    Full Text Available AISI 316L sintered samples, with porosities ranging from 9 to 40 %, and without alloying losses at the surface, have been prepared. Those samples, along with conventional (rolled steel samples, have been subjected to electrochemical and immersion corrosion tests. According to porosity size quantitative measurements, before and after corrosion tests, two corrosion mechanisms, general and pitting, are proposed depending on the initial porosity.

    A partir de polvos de acero inoxidable AISI 316L, se han preparado muestras con distinto grado de porosidad, entre el 9 y el 40 %, asegurando que la superficie externa no resulta alterada durante el procesado pulvimetalúrgico. Junto a muestras de chapa laminada de la misma composición, han sido sometidas a ensayos de inmersión y a ensayos electroquímicos de corrosión. Estudios cuantitativos de la evolución de la porosidad superficial, antes y después de los ensayos, permiten plantear diversas hipótesis acerca de los mecanismos de corrosión actuantes en función de la porosidad de las piezas.

  12. Caracterización microestructural de uniones soldadas de acero AISI 316L en tuberías

    Directory of Open Access Journals (Sweden)

    Tomás H. Fernández-Columbié

    2016-03-01

    Full Text Available Se analizó el comportamiento microestructural de uniones soldadas de acero AISI 316L empleado en la fabricación de tuberías, las cuales se ven afectadas por agrietamiento en el cordón de soldadura. Se emplearon electrodos revestidos de acero inoxidables de los tipos E 309–16; 310–16 y E 316L–16, según norma de la AWS, los que fueron evaluados por su depósito en uniones a tope preparadas con biseles en V, soldadas por un solo lado del material de la tubería, así como la selección y preparación de muestra en zonas donde la tubería presenta daños mecánicos, fisuras y corrosión severa con pérdida del espesor de pared crítica para soportar las presiones de trabajo. Se caracterizó la microestructura de la zona fundida y la zona de influencia térmica de cada cordón luego de realizado el proceso de soldadura. Se concluye que la soldadura con electrodos del tipo E 309-16 y del tipo E 316-16 no son recomendables debido a que se obtiene una microestructura sensible al agrietamiento.

  13. Transformaciones Microestructurales en Soldaduras Disímiles de Acero Inoxidable Austenítico con Acero Inoxidable Ferrítico

    Directory of Open Access Journals (Sweden)

    Sara María Aguilar-Sierra

    2015-03-01

    Full Text Available En este trabajo se estudian los fenómenos metalúrgicos que ocurren en la soldadura SMAW de un acero inoxidable ferrítico AISI 430 con un acero inoxidable austenítico AISI 316L. Para el estudio se utilizaron dos tipos de electrodos: austenítico AWS E309L y dúplex AWS E2209-16, ambos con un diámetro de 3,2 mm. Las uniones soldadas se realizaron con un solo pase y se variaron simultáneamente la corriente y la velocidad de soldadura; las condiciones fueron 49 A y 2,4 mm.s–1como valores bajos y 107 A y 4,3 mm.s–1como valores altos. Se evaluó la influencia del tipo de electrodo y de los parámetros de soldadura en la evolución microestructural de las zonas afectadas por el calor y de las zonas de fusión, encontrando diferencias en la morfología y cantidad de ferrita delta para todas las condiciones estudiadas. Se evidenció crecimiento y refinación de grano ferrítico y formación de martensita en la zona afectada por el calor del metal base ferrítico. Se evaluó también la resistencia a la tensión hallando similitudes en todas las soldaduras.

  14. Zircon coatings deposited by electrophoresis on steel 316L; Recubrimientos de circonia depositados por electroforesis sobre acero 316L

    Energy Technology Data Exchange (ETDEWEB)

    Espitia C, I. [Facultad de Ingenieria Quimica, UMSNH, Edificio D, C.U., 58060 Morelia, Michoacan (Mexico); Contreras G, M.E. [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, C.U., 58060 Morelia , Michoacan (Mexico); Bartolo P, P.; Pena, J.L. [CINVESTAV-IPN, A.P. 73 Cordemex97310 Merida, Yucatan (Mexico); Reyes G, J. [IFUNAM, 01000 Mexico D.F. (Mexico); Martinez, L. [Centro de Ciencias Fisicas, UNAM, Cuernavaca, Morelos (Mexico)

    2005-07-01

    The present research involved zirconia coatings prepared using electrophoretic deposition (EPD) on 316l stainless steel, via hydrolysis of ZrOCI{sub 2} aqueous solution. Initially, a first zirconia thin film was obtained and treated at 400 C for consolidation. Then a second zirconia film was deposited to obtain a homogeneous and fully covered 316l stainless steel plate. The XPS analyses show that on the first zirconia film, the elements Fe, Cr, O and Zr are present. In this first film the compounds Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and ZrO{sub 2} are formed. While in the second film only the Zr and O are observed so that the surface is formed by ZrO{sub 2}. (Author)

  15. Fragilización por envejecimiento de aceros inoxidables moldeados

    OpenAIRE

    Mazorra Incera, Luis; Gutiérrez-Solana Salcedo, Federico; González Martínez, Javier Jesús; Varona Ruiz, José María

    1989-01-01

    RESUMEN. En este artículo se presenta, por una parte, la exposición resumida de los modelos teóricos existentes sobre la fragilización de aceros inoxidables moldeados austenoferríticos causada por envejecimiento térmico a 280ºC y, por otra, el análisis-aplicación a un acero real fragilizado, procedente del circuito de recirculación de una central nuclear. Los resultados obtenidos advierten de una importante fragilización al prever una reducción del 50% de la tenacidad a temperatura ambiente e...

  16. Algunas observaciones sobre la sinterización del acero austenítico 316L en atmósfera de argón

    Directory of Open Access Journals (Sweden)

    Gómez, F.

    1998-05-01

    Full Text Available PM high speed steels are prone to higher corrosion rates due to residual porosity as well as chromium depletion of the matrix during sintering AISI 316L powders have been cold compacted (100-1,000 MPa and sintered (1,000-1,250°C, 15-240 min under several argon containing or vacuum atmospheres. Better densification rates can be achieved as sintering time or temperature increase in the presence of argon. No surface oxidation has been observed with the use of low pressure argon atmospheres, as long as samples are protected in a stainless steel partially sealed container.

    La utilización de acero inoxidable pulvimetalúrgico está limitada, entre otras razones, por la presencia de porosidad que pueda favorecer procesos corrosivos, así como a posibles pérdidas de cromo en la matriz durante los procesos de sinterización. Se han realizado experiencias de procesado de polvos de acero 316L con distintas presiones de compactación (100-1.000 MPa, temperaturas de sinterización (1.100-1.250°C, tiempos de sinterización (15-240 min y en distintas atmósferas de sinterización, de argón y vacío. Se obtiene una mejor densificación con elevada temperatura y tiempos de sinterización en atmósferas de argón a baja presión. En dicha atmósfera, no se produce oxidación superficial aislando parcialmente las muestras del flujo directo del argón.

  17. Estudo comparativo entre os aços inoxidáveis dúplex e os inoxidáveis AISI 304L/316L

    Directory of Open Access Journals (Sweden)

    Marcelo Senatore

    2007-03-01

    Full Text Available Os aços inoxidáveis dúplex ferríticos-austeníticos fazem parte de uma classe de materiais com microestrutura bifásica, composta por uma matriz ferrítica e ilhas de austenita, com frações volumétricas aproximadamente iguais dessas fases. Essa classe de materiais é caracterizada por apresentar interessante combinação de elevadas propriedades mecânicas e de resistência à corrosão e, por isso, é considerada bastante versátil. Os aços inoxidáveis dúplex são, freqüentemente, utilizados nas indústrias química e petroquímica, de papel e celulose, siderúrgicas, alimentícias e de geração de energia. O presente trabalho estabelece um comparativo entre as propriedades físicas, mecânicas e de resistência à corrosão dos aços inoxidáveis duplex e os tradicionais aços inoxidáveis austeníticos AISI 304L e 316L, largamente utilizados na indústria brasileira. Resultados de ensaios laboratoriais e dados relevantes de experiências práticas desses materiais também são apresentados.Ferritic-austenitic duplex stainless steels are part of a class of material having a two-phase microestructure, comprised of a ferritic matrix and austenitic islands, with the volumetric fractions approximately the same in these phases. This class of material is characterized by the presentation of an interesting combination of high mechanical properties and corrosion resistance and is therefore considered quite versatile. The duplex stainless steels are often used in the chemical, petrochemical, pulp & paper and food industries, as well as in steel foundaries and energy power plants. This paper shows a comparison between the physical, mechanical and corrosion resistance properties of duplex stainless steels and the traditional austenitic stainless steels 304L and 316L, largely used in the Brazilian industry. Results of laboratory tests and relevant data on practical experiments on these materials are also presented.

  18. Influencia de la adición de cobre y de bronce sobre las propiedades de los aceros inoxidables austeníticos sinterizados

    Directory of Open Access Journals (Sweden)

    Velasco, F.

    1997-04-01

    Full Text Available The effect that, on AISI 316L and 304L stainless steels alloyed with copper and bronze in different percentages up to a maximun of 20 % wt, produce both the alloying content and the sintering temperature over physical and mechanical properties and over the microstructure of sintered stainless steels are studied. Alloying with copper and bronze improves the density of sintered steels at the two sintering temperatures used. Copper and bronze promote liquid phase sintering (transitory or permanent, that activates sintering process. Tensile strength of stainless steel is highly improved for higher alloying contents. Moreover, tensile strength presents greater values alloying with bronze than with copper.

    Partiendo de los aceros inoxidables AISI 316L y 304L a los que se añadió cobre y bronce en diferentes porcentajes hasta el 20 % en peso, se estudia el efecto que la cantidad de aleante y la temperatura de sinterización tienen sobre las propiedades físicas y mecánicas y sobre la microestructura de los aceros inoxidables sinterizados. La aleación con cobre y con bronce aumenta la densidad de los aceros sinterizados para las dos temperaturas de sinterización utilizadas. El cobre y el bronce provocan la aparición de fase líquida (transitoria o permanente que activa el proceso de sinterización. La resistencia a la tracción del acero inoxidable experimenta un fuerte incremento para los contenidos más elevados de aleante. Además, la resistencia a la tracción alcanza mayores valores para la aleación con bronce que con cobre.

  19. Análisis térmico de soldadura GTAW sobre placa de acero AISI 316L empleando el método de elementos finitos GTAW welding thermal analysis on AISI 316L steel plate using the finite elements method

    Directory of Open Access Journals (Sweden)

    Juan A. Pozo-Morejón

    2011-09-01

    Full Text Available En el presente trabajo se realiza la modelación térmica de soldadura GTAW sobre placa de acero inoxidable AISI 316L. Se analizan los aspectos teóricos más relevantes a considerar durante la ejecución de un análisis de este tipo. En la simulación se emplea un software de análisis por elementos finitos de uso general y se enriquece una metodología, previamente desarrollada, para la modelación en 3D no lineal transitoria del proceso de soldeo. En dicha metodología se implementa una subrutina en lenguaje APDL, programada con el modelo volumétrico de fuente calor de doble elipsoide, en un sistema de coordenadas cartesiano. Se analiza la influencia del paso de tiempo seleccionado sobre los resultados de la simulación. Finalmente se valida la metodología enriquecida, en base a la correlación de los resultados del modelo respecto a los resultados experimentales.In the present work, thermal modeling of GTAW welding on AISI 316L stainless steel plate is presented. More relevant theoretical aspects to be considered during the implementation of an analysis of this type are discussed. For the simulation a general purpose finite element analysis software has been used. A previously developed methodology for 3D nonlinear transient modeling of welding process has also been improved. In this methodology a subroutine in APDL language is implemented, programmed with the double ellipsoid volumetric heat source model, in a Cartesian coordinated system. The influence of the selected time step on the simulation results is analyzed. The good correlation obtained among the results calculated by means of the model and the experimental data validates this improved methodology.

  20. Análisis de soldabilidad de aceros inoxidables con aceros de medio y bajo carbono por SMAW

    Directory of Open Access Journals (Sweden)

    José Luddey Marulanda Arevalo

    2013-12-01

    Full Text Available Se presenta un estudio de la soldabilidad de aceros inoxidables austeníticos AISI 304 y AISI 316 con aceros de bajo y medio carbono AISI 1020 – AISI 1045, empleando como materiales de aporte los electrodos EutecTrode® 52 NG, 54 NG y 57 NG, mediante el proceso de arco eléctrico con electrodo revestido (SMAW. Para analizar la soldabilidad de estos electrodos cuando se realiza la unión de aceros inoxidables con aceros al carbono, se practicaron pruebas metalográficas y ensayos mecánicos de dureza, doblez y tracción, con el fin de observar el comportamiento tanto de la zona afectada térmicamente como del cordón de soldadura, a partir del cambio en las propiedades mecánicas y metalúrgicas en las diferentes regiones de las uniones soldadas. Durante el proceso de soldadura se siguió una especificación del procedimiento de soldadura (WPS, para que los resultados fueran repetibles, minimizando los problemas de agrietamiento en caliente, agrietamiento en frío, formación de fase sigma y precipitación de carburos.

  1. Predicción del desgaste del flanco de la herramienta de corte durante el torneado en seco de alta velocidad para piezas de acero AISI 316L en la industria minera

    Directory of Open Access Journals (Sweden)

    Yusimit K. Zamora-Hernández

    2015-07-01

    Full Text Available Se realizó un estudio experimental sobre la influencia de los parámetros de corte en el torneado del acero inoxidable AISI 316L con insertos recubiertos de TiCN, Al2O3, TiN. Un microscopio electrónico de barrido fue utilizado para medir y analizar el desgaste de las herramientas de corte. Los resultados fueron comparados utilizando el análisis de varianza y el análisis de regresión múltiple para describir la relación entre el desgaste del flanco de las herramientas de corte, el tiempo de maquinado y el avance de corte, obteniéndose las ecuaciones de los modelos ajustados. La investigación demostró el efecto significativo del avance y del tiempo de maquinado en el desgaste del flanco. El inserto de tres capas no sobrepasó el criterio de fin de vida del desgaste, mientras que el inserto de una capa sufrió un desgaste elevado para la mayor velocidad de corte. El desgaste del flanco tuvo mejor comportamiento para el avance de 0,08 mm/rev en todas las velocidades empleadas en este estudio. Los errores medios absolutos no superaron el 15 %.

  2. Tecnología para la obtención de polvos microporosos de acero inoxidable

    Directory of Open Access Journals (Sweden)

    Martínez, M.

    2001-10-01

    Full Text Available En el trabajo se trata el desarrollo de la tecnología de obtención de polvos microporosos de acero inoxidable mediante atomización y recocido de descarburación. La esencia del proceso consiste en recarburar el metal en estado líquido y, posteriormente, descarburar el polvo en estado sólido mediante recocido en hidrógeno o amoniaco disociado. Con esta tecnología se logra la formación de una microporosidad interna en la partícula, que aligera el material y mejora los procesos de conformación, ya que aumenta la deformación que puede experimentar una partícula. A su vez, se reduce el costo de producción y los gastos de inversión, para asimilar la tecnología. Además, se exponen los resultados del estudio cinético acerca de la descarburación y la caracterización del polvo de acero inoxidable obtenido.

    En el trabajo se trata el desarrollo de la tecnología de obtención de polvos microporosos de acero inoxidable mediante atomización y recocido de descarburación. La esencia del proceso consiste en recarburar el metal en estado líquido y, posteriormente, descarburar el polvo en estado sólido mediante recocido en hidrógeno o amoniaco disociado. Con esta tecnología se logra la formación de una microporosidad interna en la partícula, que aligera el material y mejora los procesos de conformación, ya que aumenta la deformación que puede experimentar una partícula. A su vez, se reduce el costo de producción y los gastos de inversión, para asimilar la tecnología. Además, se exponen los resultados del estudio cinético acerca de la descarburación y la caracterización del polvo de acero inoxidable obtenido.

  3. Estudio de la corrosión producida en aceros inoxidables 304 en procesos de soldadura

    OpenAIRE

    Terán, G.; Tovar, C.; Portocarrero, J.; Sánchez, N. A. de

    2004-01-01

    En este trabajo de investigación se analizan las probetas de aceros inoxidables 304 que después de haber sido soldadas mediante los procesos de soldadura SMAW, GMAW y GTAW, se sometieron a un ambiente corrosivo propio de las condiciones de trabajo. Se estudió la microestructura del cordón de soldadura utilizando microscopía electrónica de barrido (SEM), la interfase entre el material base y el de aporte se estudió utilizando un microscopio óptico y analizador de imágenes.

  4. Estudio de la corrosión producida en aceros inoxidables 304 en procesos de soldadura

    Directory of Open Access Journals (Sweden)

    G. Terán

    2004-01-01

    Full Text Available En este trabajo de investigación se analizan las probetas de aceros inoxidables 304 que después de haber sido soldadas mediante los procesos de soldadura SMAW, GMAW y GTAW, se sometieron a un ambiente corrosivo propio de las condiciones de trabajo. Se estudió la microestructura del cordón de soldadura utilizando microscopía electrónica de barrido (SEM, la interfase entre el material base y el de aporte se estudió utilizando un microscopio óptico y analizador de imágenes.

  5. "CARACTERIZACIÓN Y PROPIEDADES MECANICAS DE LA SOLDADURA DE UN ACERO INOXIDABLE FERRIRICO AISI 430"

    OpenAIRE

    Moreno Rodríguez, Arturo

    2012-01-01

    En la presente trabajo se investiga la soldabilidad del acero inoxidable ferrítico AISI 430. Las propiedades mecánicas y la microestructura se relacionan con las variables operativas del proceso de soldadura, de ahí que jueguen un papel importante para lograr óptimas propiedades. Buscando la mejora de las propiedades mecánicas de las uniones soldadas, posteriormente, se les aplicó un tratamiento térmico post-soldadura. Las uniones se realizaron mediante el proceso de soldadu...

  6. Estudio de propagación de grietas por fatiga en un acero inoxidable austenítico metaestable

    OpenAIRE

    Bouet, Nicolas

    2010-01-01

    Doble titulació Este proyecto evalúa el comportamiento de la propagación de grietas en un acero inoxidable austenítico metaestable, el AISI 301. Este acero puede transformar una parte de su microestructura en martensita bajo deformación aplicada. Las experiencias han sido llevadas a cabo en el Centro de Integridad Estructural y de Fiabilidad de materiales de la ETSEIB-UPC durante el primer semestre del curso escolar 2009 - 2010. Se estudia cuatro tipos de aceros AISI 301, ca...

  7. Decapado de un acero inoxidable austenítico mediante mezclas ecológicas basadas en H2O2 - H2SO4 - iones F-

    Directory of Open Access Journals (Sweden)

    Narváez, L.

    2013-04-01

    Full Text Available This study reports the pickling of 316L stainless steel using mixtures of hydrogen peroxide (H2O2, sulphuric acid (H2SO4 and fluoride ions as hydrofluoric acid (HF, sodium fluoride (NaF and potassium fluoride (KF. The decomposition of H2O2 in the mixtures was assessed at different temperatures 25 °C to 60 °C, with ferric ion contents from 0 to 40 g/l. According to the results obtained, were established the optimal condition pickling at 20 g/l of ferric ions, 25 °C and p-toluensulphonic acid as stabilizer of H2O2. The HF pickling mixture was the only capable to remove totally the oxide layer from the 316L stainless steel after 300 s. The fluoride salts pickling mixtures only remove partially the oxide layer (20 to 40 % aprox. after 300 s. When the pickling time was increased until 1200 s, the removal percentages were around to 80 %.En este estudio se presenta el decapado del acero inoxidable austenítico 316L utilizando mezclas de peróxido de hidrógeno (H2O2/ácido sulfúrico (H2SO4/iones fluoruro; los iones fluoruro provienen del ácido fluorhídrico (HF, fluoruro de sodio (NaF y fluoruro de potasio (KF. La estabilidad del H2O2 fue valorada modificando las concentraciones del ión férrico de 0 a 40 g/l y las temperaturas de 25 °C a 60 °C en las mezclas decapantes. Se establecieron las condiciones óptimas de decapado utilizando 20 g/l de iones férrico a 25 °C empleando el ácido p-toluensulfónico como estabilizante del H2O2. La mezcla que contenía HF fue la única capaz de eliminar completamente los óxidos superficiales del acero a tiempos de 300 s. Las mezclas a base de sales fluoradas eliminaron parcialmente los óxidos (20 y 40 % aprox. en 300 s. Al incrementar el tiempo de decapado hasta 1200 s se obtuvieron porcentajes de eliminación alrededor de un 80 %.

  8. Evaluación electroquímica de soldaduras en tubos capilares de acero inoxidable

    OpenAIRE

    Javier E. Rodríguez-Yáñez; Ericka Saborío-Leiva; Daniel Mora-Montoya

    2014-01-01

    La recuperación de capilares de acero 316L utilizados en pozos geotérmicos neutros, por medio de soldadura orbital autógena, se evalúa desde el punto de vista de su resistencia a la corrosión en las condiciones de utilización, mediante técnicas electroquímicas básicas. En el pretratamiento se encuentra que es más conveniente realizar un decapado químico previo a la soldadura por 5 minutos. Mientras que posteriormente a la soldadura, la aplicación de tratamiento térmico de reducción de ten...

  9. Análisis económico de la utilización de armaduras de acero inoxidable en estructuras de hormigón

    OpenAIRE

    Medina Sanchez, Eduardo; Cobo Escamilla, Alfonso; Martínez Bastidas, David

    2012-01-01

    La utilización de armaduras de acero inoxidable, de los tipos austeníticos y dúplex, con el objetivo de prolongar la vida útil de las estructuras de hormigón, es una alternativa que está recibiendo cada vez más consideración. Los aceros inoxidables son aleaciones fundamentalmente de cromo y níquel, con muy alta resistencia a la corrosión, especialmente frente a cloruros. El elevado coste del níquel y sus grandes fluctuaciones en el mercado, han favorecido la aparición de nuevos aceros inoxida...

  10. “CARACTERIZACION NO DESTRUCTIVA DE TRATAMIENTOS TÉRMICOS DE ENVEJECIMIENTO EN ACERO INOXIDABLE DÚPLEX 2205”

    OpenAIRE

    Ortiz Lara, Noemí

    2012-01-01

    Los aceros inoxidables dúplex presentan una microestructura de dos fases con cantidades aproximadamente iguales de ferrita (α) y austenita (γ) lo cual le dan una combinación de buenas propiedades mecánicas y excelente resistencia al agrietamiento por corrosión lo cual los hace atractivos para ser usados en la industria petrolera, química y nuclear. La buena relación entre propiedades mecánicas y resistencia a la corrosión que presenta este tipo de aceros puede ser perdida por l...

  11. Comportamiento Tribológico de Aceros Inoxidables para Cubertería Tribologic Behavior of Stainless Steels for Cutlery

    OpenAIRE

    José D.B de Mello; Paulo S. de S Bálsamo

    2006-01-01

    Se estudió el comportamiento tribológico de los aceros inoxidables utilizados en cubertería. Se sometieron aceros martensíticos y ferríticos con diferentes contenidos de carbono y cromo a ensayos con micro-abrasión y desgaste por deslizamiento alternado. A pesar de que la composición química haya afectado considerablemente la micro estructura y dureza de las aleaciones, el comportamiento en la abrasión y en el coeficiente de fricción no fueron afectados por estos factores. La velocidad de des...

  12. Resistência à corrosão de junta dissimilar soldada pelo processo TIG composta pelos aços inoxidáveis AISI 316L e AISI 444

    Directory of Open Access Journals (Sweden)

    Luis Henrique Guilherme

    2014-03-01

    Full Text Available O aço inoxidável AISI 444 tornou-se uma opção para substituir a liga AISI 316L devido ao seu menor custo e satisfatória resistência à corrosão. Entretanto, o uso da liga AISI 444 no feixe tubular de trocadores de calor acarreta na soldagem de uma junta dissimilar. O presente estudo teve por objetivo avaliar a resistência à corrosão da junta tubo-espelho soldada pelo processo TIG composta pelas ligas AISI 316L e AISI 444. A manufatura das amostras consistiu em replicar o projeto da junta tubo-espelho de trocadores de calor. Realizou-se em juntas soldadas ensaios de sensitização, perda de massa por imersão desde a temperatura ambiente até 90 ºC, e ensaios eletroquímicos de polarização potenciodinâmica nos eletrólitos 0,5 mol/L de HCl e 0,5 mol/L de H2SO4. Os resultados mostraram que a junta dissimilar sofreu corrosão galvânica com maior degradação na zona afetada pelo calor (ZAC do tubo AISI 444. Porém, os mecanismos de corrosão localizada (pite e intergranular demonstraram ser mais ativos para a liga AISI 316L. Conclui-se que a junta dissimilar apresentou melhor resistência à corrosão do que a junta soldada composta unicamente pela liga AISI 316L em temperaturas de até 70 ºC, conforme as condições observadas neste trabalho.

  13. Propagación de la transformación martensítica inducida por deformación en la velocidad de crecimiento de grietas por fatiga de aceros inoxidables austeníticos metaestables

    OpenAIRE

    Rodríguez Nogal, Javier

    2007-01-01

    En este proyecto se ha realizado una introducción a los aceros inoxidables, su uso, aplicación y breve historia de su origen. A continuación se ha estudiado en detalle la transformación martensítica inducida por deformación en los aceros inoxidables austeníticos metaestables, por ser este tipo de inoxidables los analizados en el proyecto. Se ha realizado la caracterización microestructural de un redondo de acero inoxidable austenítico metaestable calidad AISI 301, así como una ...

  14. Comportamiento electroquímico de un acero inoxidable AISI 430 implantado con cerio

    Directory of Open Access Journals (Sweden)

    Abreu, C. M.

    2002-10-01

    Full Text Available Chemical treatment in solutions containing cerium compounds has been widely used for prevention of localized corrosion in aluminium alloys (pitting corrosion as well as in stainless steels (crevice corrosion. Ionic implantation presents several advantages for stainless steels. The present paper is devoted to study the effect of cerium implantation on the properties of passive films formed on an AISI 430 stainless steel in alkaline medium. The electrochemical study is performed by cyclic voltammetry and EIS. The chemical characterisation of the oxides film developed is performed by XPS, and the morphological study corresponds to SEM examination. The results show that cerium implantation hinders magnetite formation as well as chromium oxidation processes.

    En los últimos años, se ha extendido el uso de disoluciones de sales de cerio como tratamiento para mejorar la resistencia localizada de las aleaciones de aluminio y para incrementar la resistencia a la corrosión en resquicio de diversos aceros inoxidables. En el caso de estos últimos, la adición de cerio mediante implantación iónica supone notables ventajas con respecto a otros tratamientos. En este artículo se investiga el efecto que ejerce la implantación de cerio sobre la película pasivante de un acero inoxidable ferrítico AISI 430. Para ello, se analiza el comportamiento electroquímico en medio básico mediante la utilización de voltametría cíclica y espectroscopia de impedancia electroquímica. La caracterización química de la película de óxidos formada se realiza mediante XPS, y el estudio morfológico mediante SEM. Los resultados muestran una importante inhibición en la formación de magnetita, así como una reducción en el proceso de oxidación que experimenta el cromo en el acero implantado con cerio.

  15. Evaluación electroquímica de soldaduras en tubos capilares de acero inoxidable

    Directory of Open Access Journals (Sweden)

    Javier E. Rodríguez-Yáñez

    2014-02-01

    Full Text Available La recuperación de capilares de acero 316L utilizados en pozos geotérmicos neutros, por medio de soldadura orbital autógena, se evalúa desde el punto de vista de su resistencia a la corrosión en las condiciones de utilización, mediante técnicas electroquímicas básicas. En el pretratamiento se encuentra que es más conveniente realizar un decapado químico previo a la soldadura por 5 minutos. Mientras que posteriormente a la soldadura, la aplicación de tratamiento térmico de reducción de tensiones no se justifica desde el punto de vista de la resistencia a la corrosión. También se plantea la comparación de los capilares soldados respecto a capilares nuevos y usados, teniendo los capilares soldados un comportamiento intermedio entre ambos.

  16. “ESTUDIO DEL EFECTO DEL NITROGENO ADICIONADO AL GAS DE PROTECCION MEDIANTE EL PROCESO DE SOLDADURA GMAW, SOBRE UN RECARGUE DE ACERO INOXIDABLE 410”

    OpenAIRE

    Avila Cruz, Luis Adrian

    2012-01-01

    Los aceros inoxidables martensíticos de la serie 400, son utilizados en la industria del gas, tuberías de vapor, álabes de turbinas de vapor, los rodillos de colada continua y otras piezas de aplicación industrial. Debido a las condiciones de trabajo a los que está sometido el acero inoxidable martensítico, este puede ser reforzado para un mejor funcionamiento, ya que las condiciones a los que esta sometidos con el tiempo inducen la falla en el recargue y por consiguiente una r...

  17. PRECIPITACIÓN DE LA FASE SIGMA BAJO LA APLICACIÓN DE CICLOS TERMICOS EN UN ACERO INOXIDABLE SUPERDÚPLEX SAF 2507

    OpenAIRE

    Villalobos Vera, Doris Ivette

    2012-01-01

    El acero inoxidable superdúplex es utilizado principalmente en la industria química, petroquímica y del petróleo ya que consiste aproximadamente de 50% ferrita y 50% austenita, lo que permite una combinación de excelentes propiedades mecánicas y una elevada resistencia a la corrosión. Las características y propiedades que ofrecen los aceros inoxidables superdúplex, se deben a los contenidos de Cr, Mo, Ni y N, los cuales también promueven la formación de fase sigma. Esta fase...

  18. Efectos gammágenos del cobre en los aceros inoxidables 18Cr8Ni

    Directory of Open Access Journals (Sweden)

    Botella, J.

    1997-10-01

    Full Text Available From a series of 22 typical 18Cr8Ni stainless steel 40 kg ingots, with copper variable concentrations from 0.6 to 3.0 weight %, δ-ferrite is measured with a ferrite-meter device, calculating a nickel equivalent of 0.27 for copper. Some differences between the 8-ferrite and that on calculated by DeLong -excluding the copper γ-gene action- have been found because of different solidification and cooling regimes in ingot and weld cases.

    A partir de una serie de 22 lingotes de 40 kg de aceros inoxidables típicos 18Cr8Ni, con concentraciones variables de cobre entre 0,6 y 3,0 % en masa, se mide la ferrita δ mediante un medidor de ferrita y se deduce para el cobre un equivalente en níquel de 0,27, a la vez que se establecen ciertas diferencias entre los contenidos de ferrita δ medida y la deducida según DeLong -excluida la acción gammágena del cobre- por el hecho de solidificar en lingotes en vez de la típica solidificación de soldaduras.

  19. Metalografía en color de los aceros inoxidables mediante la técnica de ataque coloreado

    Directory of Open Access Journals (Sweden)

    Fosca, C.

    1996-08-01

    Full Text Available The color metallography by tint etching allows the identification and quantification by optical microscopy of phases and constituents present in the microstructure of a great number alloys. The principle of this technique consists of the build up of an interference film on the alloy surface as consequence of electrochemical reactions between the metallic surface and the tint etching reagent. The application of the tint etching to the metallographic analysis of stainless steels enable the identification and quantification, by image analysis, of secondary phases, as ferrite in the austenitic stainless steels, or secondary austenite and sigma phase in the duplex stainless steels.

    La metalografía en color mediante la técnica de ataque coloreado permite la identificación y cuantificación, por el contraste de color, de diversas fases y constituyentes presentes en la microestructura de un gran número de aleaciones. La técnica consiste en depositar una película de interferencia en la superficie del material como consecuencia de reacciones electroquímicas entre el metal y el reactivo de ataque coloreado. La aplicación de la técnica de ataque coloreado en los aceros inoxidables permite la identificación y cuantificación, mediante análisis de imagen, de fases secundarias como la ferrita en los aceros inoxidables austeníticos o la austenita secundaria y la fase sigma en los aceros inoxidables dúplex.

  20. Placas de aço inoxidável 316L aplicadas no reparo de fratura experimental diafisária do rádio e ulna de cães

    Directory of Open Access Journals (Sweden)

    Brasil F.B.J.

    2001-01-01

    Full Text Available O objetivo do presente trabalho foi o de estudar a resistência à corrosão em placas de aço inoxidável 316L, com diferentes tipos de acabamento e tratamento superficial, e a possível interferência dessa reação corrosiva na consolidação óssea. Utilizaram-se placas semi-acabadas, polidas, tratadas com jatos de microesferas de vidro e passivadas, as quais foram aplicadas na epífise distal do rádio de cães. Foram utilizados 12 animais, divididos em dois grupos, nos quais, após osteotomia bilateral do rádio e ulna, foram realizadas osteossínteses do rádio, totalizando 24 procedimentos. Avaliou-se a evolução clínica e radiográfica das regiões que receberam os implantes aos 30, 60, 90, 180, 240 e 360 dias. Os animais do grupo 1 (GI foram sacrificados aos 180 dias e os do GII aos 360 dias para estudo histológico e de microscopia eletrônica de varredura do local da osteotomia sob a região dos implantes metálicos e para estudo da resistência à corrosão no organismo, pelos implantes metálicos, por meio de análises química e metalográfica (microscopia óptica e eletrônica de varredura e espectroscopia de espalhamento de energia por raios X. Os animais recuperaram a função dos membros operados 24 horas após a cirurgia. Radiograficamente, verificou-se a consolidação óssea em todos os animais. Macro e microscopicamente não foram observados sinais de corrosão nos implantes metálicos, exceto em uma placa passivada, aplicada no rádio esquerdo de um animal, na qual a corrosão foi detectada pela microscopia óptica e eletrônica de varredura. Este estudo permite concluir que as placas de aço inoxidável 316L, independente do acabamento superficial a que foram submetidas, não sofreram corrosão ou reações adversas e foram efetivas no tratamento das fraturas experimentais do rádio e ulna de cães.

  1. Precipitación de la fase sigma bajo la aplicación de ciclos térmicos en un acero inoxidable superduplex SAF 2507

    OpenAIRE

    Villalobos Vera, Doris Ivette

    2011-01-01

    El acero inoxidable superdúplex es utilizado principalmente en la industria química, petroquímica y del petróleo ya que consiste aproximadamente de 50% ferrita y 50% austenita, lo que permite una combinación de excelentes propiedades mecánicas y una elevada resistencia a la corrosión.

  2. Identificación de Fases y Precipitados por MFA en Uniones de Acero Inoxidable Dúplex

    Directory of Open Access Journals (Sweden)

    María Eugenia Herrera López

    Full Text Available Resumen La Microscopía de Fuerza Atómica (MFA, técnica de caracterización que genera imágenes topográficas de superficies a muy altas resoluciones, opera registrando los detalles de relieve superficial del material con un cantiléver que se mueve sobre la muestra, mientras un detector piezoeléctrico monitorea los cambios de altura. Ésta técnica, adquiere relevancia en el campo de la identificación de fases, partículas y precipitados a niveles de nanoescala por lo que se propone para su identificación en la zona de fusión de componentes soldados y para la identificación temprana de fallas por agrietamiento. Es una técnica que no requiere de muestras conductoras, o la especial preparación metalográfica de probetas como es el caso de la microscopia electrónica. El material de estudio es un acero inoxidable dúplex 2205, unido por arco metálico y electrodo de tungsteno (GTAW. Al material soldado se le practicó ensayo de tensión. Las probetas fueron caracterizadas mediante microscopia óptica, microscopía electrónica de barrido, microscopía de fuerza atómica y pruebas de nanoindentación. Los resultados se concentran en la identificación de las características magnéticas, topográficas y dureza específicos de cada una de las fases, partículas y regiones presentes en el metal base, zona de fusión y la zona deformada por la fractura.

  3. Comportamiento Tribológico de Aceros Inoxidables para Cubertería Tribologic Behavior of Stainless Steels for Cutlery

    Directory of Open Access Journals (Sweden)

    José D.B de Mello

    2006-01-01

    Full Text Available Se estudió el comportamiento tribológico de los aceros inoxidables utilizados en cubertería. Se sometieron aceros martensíticos y ferríticos con diferentes contenidos de carbono y cromo a ensayos con micro-abrasión y desgaste por deslizamiento alternado. A pesar de que la composición química haya afectado considerablemente la micro estructura y dureza de las aleaciones, el comportamiento en la abrasión y en el coeficiente de fricción no fueron afectados por estos factores. La velocidad de desgaste por deslizamiento crece con el potencial de contacto, sugiriendo que el desgaste por deslizamiento de estos aceros se asocia con la formación de una capa protectora de óxidos.A study was made of the tribologic behavior of stainless steel used in cutlery. Abrasive and sliding wear tests were carried out on martensitic and ferritic stainless steels which had different contents of carbon and chromium. Although the chemical composition and heat treatment considerably modified the microstructure and hardness of the steels, these treatments had no significant effect on abrasion resistance and the friction coefficient. The sliding wear rate grows with the contact potential, suggesting that sliding wear in these steels is associated with the formation of protective oxide coatings

  4. Funcionalización electroquímica y tribológica de películas de quitosano en fosfato tricálcico depositados en acero 316L

    Directory of Open Access Journals (Sweden)

    Alexis Mina Escobar

    2013-12-01

    Full Text Available Se depositaron recubrimientos de fosfato tricálcico-β/quitosano sobre sustratos de acero 316L vía electrodeposición, a una temperatura de 60 °C, aplicando una corriente de 260 mA. Con el fin de estudiar el efecto del contenido de quitosano en la velocidad de corrosión y la respuesta tribológica de los aceros recubiertos, se utilizaron seis concentraciones de quitosano en la mezcla acuosa. Los enlaces químicos presentes en las capas fueron estudiados mediante Espectroscopia de Infrarrojo con Transformada de Fourier (FTIR; la cristalinidad de los depósitos fue examinada mediante difracción de rayos-X (DRX; la resistencia a la corrosión del TCP-β/quitosano depositado sobre los aceros se estudió mediante Espectroscopia de Impedancia Electroquímica (EIS y curvas anódicas Tafel, encontrándose una disminución del 54% en la velocidad de corrosión para la relación 50-50, con respecto a 100% TCP. La respuesta tribológica se analizó mediante pin-on-disc, evidenciando una reducción del 73% en el coeficiente de fricción con mayor concentración de quitosano.

  5. Efecto de la biopelícula en la corrosión de aceros inoxidables

    Directory of Open Access Journals (Sweden)

    Bethencourt, M.

    2010-02-01

    Full Text Available In this work, the influence of the biofilms in the corrosion process of different alloys of stainless steel was studied in two sampling points in a wastewater treatment plant during 4 years. The physicochemical microenvironment within the biofilms was characterized through O2, H2S and pH microelectrodes. Corrosion rates were quantified from the number, diameter and depth of pits. The results show a remarkable development of the biofilm and a significantly greater number of pits in the grit removal channel than in the sludge recirculation channel. Based on the characteristics of the water phase and microelectrode measurements, our results suggest that biofilms induced corrosion throughout 3 mechanisms: creation of differential aeration cells, areas with different pH and areas having high sulphide production which may react with metal ions.

    En este trabajo se ha estudiado la influencia de las biopelículas en los procesos de corrosión de diferentes aleaciones de acero inoxidable, situadas durante 4 años en dos puntos de una estación depuradora de aguas residuales. Se caracterizó el microambiente físico-químico en el interior de las biopelículas mediante microelectrodos de O2, H2S y pH, y se cuantificaron las tasas de corrosión a partir del número, diámetro y profundidad de picadura. Los resultados obtenidos muestran un desarrollo más notable de las biopelículas y un número de picaduras significativamente mayor en el canal de salida de desbastes que en el canal de recirculación de fangos. Con base en las características del agua sobrenadante y en las medidas realizadas con microelectrodos, se sugiere que la biopelícula induce la corrosión a través de tres posibles mecanismos: creación de celdas de aireación diferencial, zonas con diferente pH y zonas con elevada producción de sulfuro capaz de reaccionar con iones metálicos.

  6. Propiedades mecánicas de las uniones por láser de aceros inoxidables dúplex

    Directory of Open Access Journals (Sweden)

    Amigó, V.

    2005-04-01

    Full Text Available The welded joints of stainless steels always present problems for the microstructural modifications that occur in the heat affected zone. Particularly, duplex stainless steels present very important changes when the weld pool solidifies forming fundamentally ferritic structures with some austenite in grain boundaries. These microstructural modifications, and those which occur in the HAZ, justify the mechanical properties of the joint and mainly those of plasticity, being all of them influenced by the processing conditions. In this work the influence of the laser welding speed on the tensile behaviour of duplex stainless steel welded joints is presented. The microstructure of the obtained seams and of the heat affected zone will be evaluated by means of optic and scanning electron microscopy. Also, different microhardness profiles have been obtained to evaluate the modifications in the mechanical properties both in the seam and the zone of thermal affection.

    Las uniones soldadas de aceros inoxidables siempre presentan problemas por las modificaciones microestructurales que suceden en la zona afectada por el calor. Particularmente, los aceros inoxidables dúplex presentan cambios microestructurales muy importantes al solidificar el cordón y formar estructuras, fundamentalmente ferríticas, con formación de austenita en borde de grano. Estas modificaciones microestructurales, junto a las que suceden en la ZAC, son las que justifican las propiedades mecánicas de la unión y fundamentalmente las de plasticidad. Y todo ello en función de las condiciones de procesado. En este trabajo se presenta la influencia de la velocidad de soldeo en las propiedades a tracción de uniones soldadas por láser de chapas de acero inoxidables dúplex. La microestructura de los cordones obtenidos y de la zona afectada por el calor se ha evaluado mediante microscopía óptica y electrónica de barrido, y se han obtenido diferentes perfiles de microdureza que

  7. Tratamiento térmico del acero inoxidable ferrítico AISI 430L sinterizado en atmósfera de N2-H2

    Directory of Open Access Journals (Sweden)

    Ruiz-Prieto, J. M.

    2005-12-01

    Full Text Available In this Work the influence of sintering AISI 430L stainless steel in N2-H2 atmosphere on its properties and microstructure have been studied. The presence of nitrogen in the sintering atmosphere leads to complex nitrides formation the AISI 430L sintered steel microstructure. A subsequent heat treatment was applied to modify this microstructure in order to improve the mechanical properties and corrosion resistance of these ferritic stainless steels.Los aceros inoxidables ferríticos, son aceros que contienen esencialmente cromo (12-30 % junto con níquel y molibdeno en cantidades que, en general, no sobrepasan el 1 % y, en ocasiones, se les adicionan otros elementos como son el aluminio, silicio, titanio o niobio. En el presente trabajo de investigación se ha evaluado la influencia del nitrógeno presente en la atmósfera de sinterización sobre la microestructura y propiedades del acero inoxidable ferrítico AISI 430L. Además, se ha realizado un tratamiento térmico posterior de hipertemple y maduración con el objeto de incrementar las propiedades mecánicas y a corrosión de este acero inoxidable, mediante la modificación microestructural de los nitruros complejos de hierro y cromo precipitados durante la etapa de sinterización.

  8. Evaluación del grado de sensibilización en el acero inoxidable AISI

    Directory of Open Access Journals (Sweden)

    González, O.

    2003-12-01

    Full Text Available Austenitic stainless steel, when heat-treated at 550-850 °C, became susceptible to intergranular corrosion in acids. This phenomenon, know as sensitization, it is result from the precipitation of chrome carbides in the grain boundary, making these areas less resistant to corrosion. Two different electrochemical reactivation tests are compared with a destructive test and related to the classification of its respective microstructures. It was established a quantitative methodology to evaluate the degree of sensitization in AISI 304 and also to compare the correspondence of the results with the data of the automatic and portable EPR device for non-destructive field measurement of the degree of sensitization. The used electrochemical techniques were the EPR (Electrochemical Potentiokinetic Reactivation or single loop test and the PRP (Pasivation Reactivation Potentiokinetic or double loop test. The destructive test used was boiling, 120 h ferric sulfate-50 % sulfuric acid, according to the standard practices ASTM A-262 practices B. The classifications of each structures were according to the standard practices ASTM A-262 practices B.

    El acero inoxidable austenítico, cuando se calienta en un rango de temperatura entre 550 y 850 °C es susceptible a corrosión intergranular en ácidos. Este fenómeno, conocido como sensibilización, es resultado de la precipitación de carburos de cromo en el límite de grano, haciendo esas áreas menos resistentes a la corrosión. Se comparan dos pruebas diferentes de reactivación electroquímica con una prueba destructiva, relacionándolas con su respectiva microestructura. Se estableció una metodología cuantitativa para evaluar el grado de sensibilización del acero AISI 304 y se comparó con los datos generados de una herramienta no destructiva de campo, automática y portátil, para medir el grado de sensibilización. Las técnicas electroquímicas usadas fueron: la EPR (Reactivación electroqu

  9. Formación de microporosidad interna en polvos de acero inoxidable: cinética y mecanismo

    Directory of Open Access Journals (Sweden)

    Martínez, M.

    2002-06-01

    Full Text Available The internal microporosity of stainless steel powders is obtained by a technology developed in the Metallurgical Research Center (CIME in collaboration with ISPETP, which consists of carbon enrichment of alloy during the fusion process, and after powder atomization a subsequent decarburization annealing. The internal microporosity, which can reach up to 10 volume percent of the steel particle, reduces powder density and improves powder compressibility, while costs for technology installation are also reduced. In this paper the technology for obtaining the microporosity, the mathematical models of the process, and the structural transformations undergone by stainless steel powder are shown. It is concluded that for carbon contents lower than 0.05% internal microporosity tends to disappear.

    El Centro de Investigaciones Metalúrgicas (CIME de La Habana, en colaboración con el Instituto Superior Pedagógico para la Educación Técnica Profesional (ISPETP, ha desarrollado una tecnología para la obtención de los polvos de acero inoxidable con microporosidad interna. La tecnología consiste en enriquecer la aleación con carbono durante la fusión y, una vez atomizado el polvo, someterlo a un recocido de descarburación. La microporosidad interna, que puede alcanzar hasta un 10 % en volumen de la partícula, reduce la densidad de los polvos y mejora su compresibilidad, al tiempo que reduce los costes de instalación. El presente trabajo muestra la tecnología de obtención de la microporosidad, los modelos matemáticos del proceso y las transformaciones estructurales que sufre el polvo de acero inoxidable. Se concluye que la microporosidad tiende a desaparecer para contenidos de carbono menores de 0,05 %.

  10. Diseño, construcción y puesta en funcionamiento de un alambique modificado de acero inoxidable a nivel de laboratorio

    OpenAIRE

    Otiniano Cáceres, Manuel Eduardo; Departamento Académico de Operaciones Unitarias, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos; Romero y Otiniano, P.; Departamento de Análisis y Diseño de Procesos, Facultad de Química e Ingeniería Química, UNMSM.; Garrido, A.; Departamento Académico de Operaciones Unitarias, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos; Flores, R.; Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos; Deza, E.; Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos; Cárdenas, J.; Departamento de Análisis y Diseño de Procesos, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos; Lombira, J.; Departamento Académico de Operaciones Unitarias, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos; Mori, V.; Estudiante de la E.A.P. de Ingeniería Química, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos.; Meneses, K.; Estudiante de la E.A.P. de Ingeniería Química, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos.

    2016-01-01

    Se presenta en el presente trabajo las características principales del alambique modificado de acero inoxidable a nivel de laboratorio, construido en un proyecto de investigación del año 2014. La puesta en funcionamiento se hicieron con ensayos de mosto fermentado de uva quebranta proveniente del Valle de Lunahuana, Cañete, obteniéndose pisco de aceptable calidad.

  11. Análisis de las películas pasivas generadas en aceros inoxidables implantados con cromo

    Directory of Open Access Journals (Sweden)

    Abreu, C. Mª

    2004-06-01

    Full Text Available This work studies the effect of chromium implantation on the development of passive layers generated electrochemically in alkaline medium over two stainless steels. The XPS analyses show that the layers generated on the implanted steels present less thickness together with similar composition compared to the unimplanted steels layers. However, SEM micrographs show that the layers grown on implanted steels present more defects and less adherence that the films on unimplanted steels. These changes together with the results obtained by Cyclic Voltammetry suggest an oxide structure modification, lattice structure or cristalinity state.

    En este trabajo se estudia el efecto de la implantación de cromo en el desarrollo de capas pasivas generadas electroquímicamente en medio básico sobre dos aceros inoxidables (AISI 430 y AISI 304L. Los análisis de XPS muestran que las películas desarrolladas sobre ambos aceros implantados presentan espesores menores, junto con composiciones similares, a las formadas sobre los no implantados. Sin embargo, en los resultados del examen con MEB se puede apreciar que las películas tienen más defectos (agrietamientos y peor adherencia (especialmente en el AISI 430. Este cambio, junto con los datos de voltametría cíclica, parece sugerir una modificación en la estructura de los óxidos, bien en su grado de cristalinidad o bien en la estructura de su red cristalina.

  12. Fenómenos de envejecimiento y oxidación a altas temperaturas en tres aceros inoxidables altamente aleados

    Directory of Open Access Journals (Sweden)

    Botella, J.

    1999-02-01

    Full Text Available The oxidation kinetics in air up to 50 h at 1,373 and 1,473 K of three refractory stainless steels (25Cr20Ni, 21Cr11Ni(1, 21Cr11Ni(2 are studied. At 1,373 K, the best results are those of 25Cr20Ni followed by those of 21Cr11Ni(1, with 0,036 % lanthanides, and the worst behaviour is that of 21Cr11Ni(2, with 0,010 % lanthanides. A 2 h oxidation treatment at 1,323 K in air produces oxidation layers from 1 to 3 μm in thickness for the three materials. Scanning electron microscopy and energy dispersive microanalysis (SEM-EDX and X-ray diffraction (XRD characterisation of the oxidation layers give the same characteristics for the three steels: Mn Cr2O4 spinel type in the outer part, Cr2O3 in the inner one, with a SiO2 barrier in the oxide-metal interface and a large amount of internal and intergranular precipitates (also Si02 in 21Cr11Ni materials. After ageing tests, at 1,073 K for 400 h, about 10 vol. % of the σ-phase is present in the 25Cr20Ni (AISI 310 S material, while no a-phase is present in the 21Cr11Ni materials perhaps due to the high nitrogen content. The application of field emission SEM with EDX allows the analysis of σ-phase and carbides, nitrides and carbonitrides present. The steel 25Cr20Ni only forms, in addition to the σ-phase, M23C6 type carbides, while the steel 21Cr11Ni(1 forms these carbides and M15N nitrides (M8N in the surface and the steel 21Cr11Ni(2 forms mainly carbonitrides M6(CN. The relatively higher nitrogen level in the 21Cr11Ni(1 alloy could explain the different behaviour of both 21Cr11Ni steels.

    Se parte de tres aceros inoxidables austeníticos refractarios (25Cr20Ni, 21Cr11Ni(1, 21Cr11Ni(2 y se estudian las cinéticas de oxidación al aire, hasta 50 h a 1.373 y 1.473 K. El mejor comportamiento a 1

  13. Influencia de la temperatura en las propiedades a tracción de un acero inoxidable superdúplex

    Directory of Open Access Journals (Sweden)

    Gironès, A.

    2001-04-01

    Full Text Available Tensile tests, at temperatures ranging between 275 and 475 °C were performed in a superduplex stainless steel EN 1.4410. The dependence of yield stress and ultimate tensile strength on temperature indicates the existence of dynamic strain aging (DSA. In order to evaluate the influence of strain rate on this phenomenon, tests were conducted at two different strain rates, both at 325 °C, temperature at which DSA is maximum for this material. The results show that the flow stress has an inverse strain rate sensitivity which confirms the existence of DSA in the steel under study.

    Un acero inoxidable superduplex tipo EN 1.4410 se ensayó a tracción en el rango de temperaturas de 275 a 475 °C. La evolución, en función de la temperatura, de los valores de límite elástico y resistencia máxima indica la existencia de un fenómeno de envejecimiento por deformación (Dynamic Strain Aging, DSA. Para evaluar la influencia de la velocidad de deformación sobre dicho comportamiento se realizaron ensayos de tracción a dos velocidades diferentes, ambos a la temperatura de 325 °C, para la cual se había registrado la máxima manifestación de DSA. Dichos ensayos reflejaron una sensibilidad inversa a la velocidad de deformación lo que confirma la presencia de DSA en el acero bifásico estudiado.

  14. Formación de maclas durante el enfriamiento en aceros inoxidables superferríticos envejecidos

    Directory of Open Access Journals (Sweden)

    Salán, M. N.

    2005-12-01

    Full Text Available Superferritic stainless steels show a BCC structure free of austenite at any temperature. Intermediate ageing temperatures, close to 475 °C, induce a-chromium content modulation and only after long periods of time, it is possible to detect chromium rich α' phase, which is responsible for embrittlement (475 °C embrittlement. In this work, ageing thermal treatments at intermediate temperatures in the superferritic stainless steel DIN 1.4575, have allowed to relate the associated hardness increase with time and temperature by means of a relationship that is compatible with a thermally activated process. After quenching from ageing temperature, twinning formation has been observed, and the extent of twinning is proportional to the increase in hardness, showing in this way that twinning density is proportional to embrittlement level.

    Los aceros inoxidables superferríticos se caracterizan por su estructura cúbica centrada, libre de austenita a cualquier temperatura. Sometidos a temperaturas intermedias, próximas a 475 °C, revelan una modulación del contenido en Cr de la red. Después de tiempos prolongados se forma fase α', fragilizante y rica en cromo, fenómeno conocido como fragilización a 475 °C. En este trabajo, los tratamientos de envejecimiento realizados a temperaturas intermedias para un superferrítico DIN 1.4575 han permitido relacionar el incremento de dureza asociado a éstos con el tiempo de tratamiento, mediante una expresión coherente con un proceso térmicamente activado. Por otra parte, se ha detectado la presencia de maclas en el acero envejecido y templado en agua, siendo proporcional su densidad al grado de endurecimiento provocado por el tratamiento.

  15. “IDENTIFICACIÓN DE LA CORROSIÓN EN LOS ALAMBRES DE NIQUEL TITANIO Y ACERO INOXIDABLE Y LA PRESENCIA DE BACTERIAS ASOCIADAS EN UNA MUESTRA DE ARCOS UTILIZADOS EN PACIENTES DE LA CLÍNICA DE ORTODONCIA”.

    OpenAIRE

    Vargas Morales, Karla Odette

    2012-01-01

    El propósito de este trabajo de investigación fue identificar la presencia de corrosión en alambres de Níquel Titanio y Acero Inoxidable, así como presencia de bacterias asociadas en los mismos colocados en boca durante 4 meses en pacientes de la clínica de ortodoncia de la Universidad Michoacana de San Nicolás Hidalgo. En el tamaño de la muestra del presente estudio se utilizaron diez arcos: cinco de níquel titanio termoactivados y cinco de acero inoxidable. Los siguientes ...

  16. Corrosión de la soldadura de un acero inoxidable supermartensítico mediante una minicelda electroquímica

    OpenAIRE

    Bilmes, Pablo David; Llorente, Carlos Luis; Gervasi, Claudio Alfredo; Pereda, María Dolores

    2011-01-01

    En el presente trabajo se investigó la influencia de los ciclos térmicos de una soldadura en la corrosión localizada de aceros inoxidables martensíticos de bajo carbono. A tal fin se utilizó una minicelda electroquímica (MCE) y se evaluó separadamente el metal de soldadura (MS), el metal base (MB) y la zona afectada por el calor (ZAC) como también diferentes áreas dentro del cordón de soldadura multipasada.

  17. Efecto de los ciclos térmicos sobre la ZAT de una soldadura multipasos de un acero inoxidable superdúplex SAF 2507

    OpenAIRE

    Villalobos,D.; C. Maldonado; Albiter,A.; Robles-Piedras,E.

    2010-01-01

    Los ciclos térmicos de una soldadura multipasos que experimenta un acero inoxidable superdúplex SAF 2507, pueden promover la precipitación de fases secundarias reduciendo significativamente las propiedades mecánicas y la resistencia a la corrosión. Debido a su aplicación en la industria petroquímica, el estudio de las aleaciones superdúplex es de suma importancia para predecir su comportamiento en servicio cuando están involucrados procesos de soldadura por arco eléctrico. En este trabajo, se...

  18. Metodología de detección de óxido residual en superficies de acero inoxidable mediante visión por computador

    OpenAIRE

    Cañero Nieto, Juan Miguel

    2016-01-01

    La presente tesis doctoral es una investigación que propone una alternativa basada en visión por computador a la detección, por parte de un operador humano, de un defecto superficial denominado óxido residual que puede producirse durante el procesamiento de bobinas de acero inoxidable en una línea de recocido y decapado de la industria siderúrgica. Se trata de un defecto cuya eliminación incompleta puede producir problemas operativos durante el procesamiento posterior que va a sufrir la bob...

  19. Estudio comparativo de la cavidad de acceso radicular en conductos curvos con limas de níquel-titanio y taladros de acero inoxidable

    OpenAIRE

    Oncins Rodríguez, J.; Pumarola Suñé, José; Canalda Sahli, Carlos

    2005-01-01

    El propósito de este estudio fue comparar la cantidad de dentina radicular removida y evaluar el mantenimiento de la forma del conducto tras la instrumentación de los dos tercios coronarios radiculares, utilizando instrumentos de acero inoxidable (taladros de Gates Glidden) y de níqueltitanio (limas GT Flare y limas Orifice Shaper). Un total de 42 dientes humanos extraídos con conductos radiculares curvos fueron divididos en tres grupos. Los conductos se instrumentaron mecánicamente usando ta...

  20. ESTUDIO EXPERIMENTAL PRELIMINAR DE LA DESHIDRATACIÓN DEL ETANOL CON CLORURO DE SODIO EN UN EQUIPO DE DESTILACIÓN DISCONTINUA CON COLUMNA EMPACADA DE ACERO INOXIDABLE

    OpenAIRE

    Otiniano Cáceres, Manuel Eduardo; Departamento de Operaciones Unitarias, Facultad de Química e Ingeniería Química UNMSM; Romero y Otiniano, P.; Departamento de Análisis y Diseño de Procesos, Facultad de Química e Ingeniería Química, UNMSM.; Guerrero, M.; Departamento de Química Orgánica,Facultad de Química e Ingeniería Química,Universidad Nacional Mayor de San Marcos,Lima,Perú.; Linares, T.; Departamento de Química Orgánica, Facultad de Química e Ingeniería Química, UNMSM.; Salas, G.; Departamento de Operaciones Unitarias, Facultad de Química e Ingeniería Química UNMSM; Lombira, J.; Departamento de Operaciones Unitarias, Facultad de Química e Ingeniería Química UNMSM; Helfer, H.; Departamento de Análisis y Diseño de Procesos, Facultad de Química e Ingeniería Química, UNMSM.; Cárdenas, J.; Departamento de Análisis y Diseño de Procesos, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos

    2015-01-01

    Se presentan los resultados preliminares de los ensayos experimentales realizados para la obtención del etanol anhidro utilizando destilación discontinua extractiva con una sal disuelta como el cloruro de sodio. Para los ensayos se utilizaron una planta piloto de destilación discontinua de acero inoxidable que cuenta con un sistema de adquisición de datos.  Los resultados muestran que no se alcanza la composición del azeótropo que es de 95.6 % en peso de etanol.

  1. Influencia de la microestructura en el comportamiento a fatiga de aceros inoxidables austeníticos con alto contenido en molibdeno

    Directory of Open Access Journals (Sweden)

    Oñoro, J.

    2006-02-01

    Full Text Available Austenitic stainless steels with molybdenum present high mechanical properties and corrosion resistance to aggressive environments. These steels have been used to tank and vessel components for high corrosive liquids as phosphoric, nitric and sulphuric acids. These materials with low carbon and nitrogen addition have been proposed candidates as structural materials for the international thermonuclear experimental reactor (ITER in-vessel components. Molybdenum addition in austenitic stainless steel improves mechanical and corrosion properties, but with it can produce the presence of nitrogen microstructure modifications by presence or precipitation of second phases. This paper summarises the fatigue and corrosion fatigue behaviour of two 317LN stainless steels with different microstructure. Fully austenitic steel microstructure show better fatigue, corrosion fatigue resistance and better ductility than austenitic steel with delta ferrite microstructure, mainly at low stresses.

    Los aceros inoxidables austeníticos con elevados contenidos en molibdeno presentan alta resistencia mecánica y resistencia a los medios corrosivos. Se utilizan en la construcción de depósitos y recipientes para el almacenamiento y transporte de líquidos altamente corrosivos, tales como ácido fosfórico, nítrico o sulfúrico. Estos materiales con bajo carbono y adiciones de nitrógeno han sido propuestos como candidatos para materiales estructurales en la fabricación de la vasija del reactor experimental termonuclear internacional (ITER. La adición de molibdeno mejora las propiedades frente a la corrosión de los aceros inoxidables austeníticos. Sin embargo, este aumento del contenido en molibdeno, junto con la presencia de nitrógeno, puede producir modificaciones microestructurales, por la aparición de fases precipitadas o segundas fases. En este trabajo, se analiza el comportamiento la fatiga y corrosión-fatiga de dos aceros inoxidables austen

  2. Efecto del boro en la sinterización de un acero inoxidable ferrítico

    Directory of Open Access Journals (Sweden)

    Cabral-Miramontes, J. A.

    2008-12-01

    Full Text Available This work studies the effect of boron on the density of a 409Nb ferritic stainless steel obtained by powder metallurg during the process of sintering. The purpose of adding boron is to promote the formation of a liquid phase during sintering at temperatures below 1200 °C. The boron contents varied from 0.0 to 1.5%wt. Specimens were compacted at 700MPa, and sintering was made at 1075 and 1150 ºC during 60 minutes under a hydrogen atmosphere, using a heating rate of 20 ºC/min. Density values were determined by the Archimedes method, and the samples were analyzed using scanning electron microscopy. This work shows the dependence of the steel density and morphology of the microestructure as a function of boron content and the temperature of sintering.

    En este trabajo se analiza el efecto del boro sobre la densidad del acero inoxidable ferrítico 409Nb en el proceso de sinterización. La finalidad de adicionar boro es promover la formación de una fase líquida durante la sinterización, a una temperatura por debajo de 1.200 °C. Las adiciones de boro variaron entre 0,0 y 1,5 % en peso. Las muestras se compactaron a 700 MPa y las sinterizaciones se realizaron a 1.075 y 1.150 ºC, durante 60 min en una atmósfera de hidrógeno, calentando a una velocidad de 20 ºC/min. La densidad se determinó por el método de Arquímedes y las muestras se analizaron en el microscopio electrónico de barrido. Este trabajo muestra la dependencia de la densidad del acero y morfología de la microestructura, en función del contenido de boro y la temperatura de sinterización.

  3. Evolución microestrutural durante la soldaddura flerte de um acero inoxidablesúper dúplex UNS S32705 usando Ni-P como metal de aporte

    OpenAIRE

    Andrade Centeno, Dany Michell; Brandi, Sergio Duarte

    2014-01-01

    Los aceros inoxidables dúplex (AID), al ser sometidos a ciclos térmicos, pueden tener sus propiedades alteradas, sobre todo cuando se emplean procesos de soldadura o unión en altas temperaturas. Por lo tanto, muchas investigaciones se han desarrollado con respecto a la soldabilidad de estos aceros. Una de estas opciones de soldadura se viene dando con la soldadura fuerte de estos aceros. En este trabajo se realizó la soldadura fuerte, en horno continuo con atmósfera de hidrógeno, de cuerpos d...

  4. Detección de la corrosión por picadura en aceros inoxidables empleando ultrasonidos

    Directory of Open Access Journals (Sweden)

    Rodríguez, Cristina

    2014-03-01

    Full Text Available Passive metallic systems are able to develop in a spontaneous way a protective layer on the metallic surface that offers excellent corrosion resistance since really in a physical barrier for the reaction with the environment. However, some factors can break locally this layer, promoting one of the most insidious attack, pitting corrosion, which produces local chemical conditions that favouring the corrosive process causing defects in the material, as externals and internals ones, with a random distribution on the metal surface. In this work, ultrasounds non destructive technique has been employed using as variable the maximum amplitude of the backwall echo in order to detect this type of attack. The material employed is an austenitic stainless steel AISI 304, wherein appear several defectology distributions as superficial such as depths simulating pits.Los sistemas pasivables, capaces de desarrollar una capa protectora, delgada, adherente y continua sobre el substrato metálico, presentan excelente resistencia a la corrosión ya que dicha capa se produce instantáneamente al reaccionar con el medio. Ahora bien, en determinadas circunstancias, esa capa se puede romper localmente, dando lugar a uno de los ataques más insidiosos que se conocen, corrosión por picadura, que producen unas condiciones químicas locales que aceleran el proceso corrosivo provocando defectos en el material, tanto externos como internos, con una distribución aleatoria en la superficie metálica. En este trabajo se ha planteado el empleo de técnicas de ensayos no destructivas mediante ultrasonidos para detectar este tipo de ataque en un acero inoxidable austenítico AISI 304, con distinta distribución superficial de defectología y profundidades de ataque, que simulan picaduras, tomando como variable fundamental de la onda ultrasónica la amplitud máxima del eco de fondo.

  5. Diseño y puesta a punto de un sistema de vacío para sinterización de probetas pulvimetalúrgicas de acero

    OpenAIRE

    Álvaro Perrote, Óscar; Ferrero Peña, Carlos

    2013-01-01

    El objetivo principal del proyecto es diseñar y poner en funcionamiento un sistema de vacío de dos bombas (rotativa y difusora) para sinterizar probetas pulvimetalúrgicas de los aceros inoxidables AISI 316L, AISI 430L y DÚPLEX 50/50 a las que se practicarán ensayos de tracción para conocer su comportamiento mecánico. Una vez optimizado el proceso, se estudian las propiedades mecánicas. El comportamiento de estos aceros frente a la corrosión se evaluará de forma cualitativa mediante la práctic...

  6. Tribological properties of BixTiyOz films grown via RF sputtering on 316L steel substrates

    Directory of Open Access Journals (Sweden)

    Johanna Parra

    2015-01-01

    Full Text Available En este trabajo se presentan los resultados obtenidos en el análisis químico superficial, la caracterización morfológica y evaluación de las propiedades tribológicas de recubrimientos de titanato de bismuto amorfo (BixTiyOz depositados sobre sustratos de acero inoxidable 316L utilizando la técnica de pulverización catódica rf. El análisis químico elemental se realizó por medio de espectroscopia de electrones Auger (EEA, la morfología de los recubrimientos se determinó mediante microscopia de fuerza atómica (MFA. Las medidas del coeficiente de fricción y la tasa de desgaste fueron obtenidas mediante pruebas de bola sobre disco. Los análisis de EEA permitieron establecer que los primeros 10 nm de los recubrimientos están formados probablemente por óxidos de Bi4Ti3O12 y Ti2O3, las medidas de AFM indican que los recubrimientos tienen una rugosidad promedio de 22.28nm y un tamaño de grano de 50nm. Finalmente, las pruebas tribológicas establecieron que el coeficiente de fricción y la tasa de desgaste del acero recubierto tiene valores similares al acero desnudo.

  7. Caracterización y propiedades mecánicas a alta temperatura de un acero inoxidable dúplex

    Directory of Open Access Journals (Sweden)

    Jiménez, J. A.

    1998-05-01

    Full Text Available The microstructure and mechanical behavior at high temperature of a thermomechanical processed duplex stainless steel have been studied. Recrystalization of the material takes place during heating to test temperature, and a microstructure consisting of islands of austenitic grains of about 10-15 μm in size included in a more or less continuous matrix of ferrite is observed. Tensile tests at temperatures above 1,000°C and at low strain rates show a stress exponent of about 2 and elongations to failure up to 290 %. These values suggest that deformation is controlled by a grain boundary sliding mechanism, which causes a decrease in the size of the islands during deformation. Finally, an activation energy for plastic deformation of 167 kJ/mol was observed that was related to the activation energy for grain boundary diffusion of iron.

    Se ha estudiado la microestructura y el comportamiento mecánico a alta temperatura de un acero inoxidable dúplex procesado termomecánicamente. Durante el calentamiento a la temperatura de ensayo, el material recristaliza y se obtiene una microestructura de granos austeníticos de tamaños comprendidos entre 10 y 15 μm agrupados en islas incluidas en una matriz más o menos continua de ferrita. Ensayos de tracción a temperaturas superiores a 1.000°C y bajas velocidades de deformación muestran un exponente de la tensión igual a 2 y alargamientos a rotura de hasta 290 %. Estos valores permiten asociar el mecanismo de deformación al deslizamiento de fronteras de grano, el cual determina la desaparición progresiva de las islas de granos austeníticos durante la deformación. Finalmente, se encontró un valor de 167 kJ/mol para la energía de activación de la deformación plástica, la cual se relacionó con la energía de autodifusión del hierro a lo largo de las fronteras de grano.

  8. Influencia de los tratamientos térmicos en la deformación en frío de los aceros inoxidables dúplex

    Directory of Open Access Journals (Sweden)

    Fargas, G.

    2004-06-01

    Full Text Available The purpose of this paper is to study the compression behavior of a duplex stainless steel after several annealing conditions, in order to simulate the response during cold rolling in the industrial process. For each studied condition, stress-strain curves present serrations in the flow zone due to austenite and ferrite twinning and the austenite phase transformation to martensite. At the same time, it is shown that sigma phase increases the strength and diminish the cold deformation capacity of the steel.

    Se realizó un estudio del comportamiento a compresión de un acero inoxidable dúplex sometido a distintos tratamientos térmicos de recocido, con el fin de simular su respuesta durante la laminación en frío que tiene lugar en el proceso industrial. Para todas las condiciones estudiadas, las curvas esfuerzo-deformación presentan inestabilidades en la zona plástica, provocadas por el maclado de ambas fases y la transformación de la austenita a martensita. Al mismo tiempo, puede observarse cómo la presencia de fase sigma endurece el acero y limita su capacidad de deformación.

  9. Corrosión en caliente de un acero inoxidable 304h para calderas en presencia de sales fundidas de vanadatos y sulfatos

    Directory of Open Access Journals (Sweden)

    Sonia Rincón

    2003-01-01

    Full Text Available El presente trabajo busca indagar y establecer el tipo de mecanismo de daño que sufre el acero inoxidable 304H en contacto con depósitos de sal fundida, junto con un estudio preliminar de la cinética de la corrosión. Para ello, se analizarán los depósitos fundidos, la composición química de éstos y se medirá la pérdida de material luego de ser sometido a períodos continuos de ataque, con el uso de la técnica gravimétrica en crisol. Con esto se pretende conocer las variables que influyen directamente sobre el deterioro del acero 304H, para en un futuro, adoptar medidas predictivas y/o preventivas que incrementen su vida útil, aumentando de ésta manera la eficiencia de las calderas y disminuyendo el tiempo entre paradas programadas.

  10. Estudio de la influencia microbiológica en la corrosión de latones (UNS C68700, UNS C443 y acero inoxidable AISI 316;

    Directory of Open Access Journals (Sweden)

    Ohanian, Mauricio

    2014-06-01

    Full Text Available Microorganisms may play an important role in the corrosion process and generate conditions which affect the rate and/or the mechanism of deterioration. They become visible by the formation of biofilms: clusters of microorganisms and extracellular polymers. These biofilms affect not only the durability of the material, but also reduce the heat transfer. The present work studied the growth of aerobic and anaerobic heterotrophic microorganisms and sulfate reducing bacteria on aluminum brass (UNS C68700, admiralty brass (UNS C443 and stainless steel AISI 316 in exposure experiments held in the Bay of Montevideo (Uruguay. The influence of the biofilm growth on the corrosion behavior was studied by electrochemical techniques: polarization curves and Electrochemical Impedance Spectroscopy (EIS. The selection of the most suitable material for the exposure conditions is discussed and hypotheses of the corrosion mechanism are presented. Although stainless steel AISI 316 presented the lowest corrosion rate it showed localized deterioration.Los microorganismos influyen de manera significativa en el proceso corrosivo y generan condiciones que afectan la velocidad y/o el mecanismo de deterioro. Su presencia se manifiesta por la formación de bio-películas: conglomerados de bacterias y polímeros extracelulares. Dichas bio-películas afectan la durabilidad del material, la velocidad de flujo y la transferencia de calor. En el presente trabajo se evalúa el crecimiento de microorganismos heterótrofos aerobios, heterótrofos anaerobios y bacterias sulfato-reductoras sobre latón aluminio (UNS C68700, latón almirantazgo (UNS C443 y acero inoxidable AISI 316. Asimismo, se estudia la influencia del crecimiento de la bio-película sobre el comportamiento corrosivo mediante técnicas electroquímicas: curvas de polarización y espectroscopia de impedancia electroquímica. Las exposiciones se realizan en la Bahía de Montevideo, estuario del Río de la Plata

  11. CATALIZADOR ESTRUCTURADO DE Pt/Al2O3 SOBRE UNA ESPUMA DE ACERO INOXIDABLE (AISI 314 PARA LA OXIDACIÓN DE CO

    Directory of Open Access Journals (Sweden)

    Juan P. Bortolozzi

    2011-01-01

    Full Text Available Se obtuvo un catalizador estructurado por recubrimiento de Pt/Al2O3 sobre las paredes de una espuma de acero inoxidable AISI 314. Para estabilizar térmicamente e incrementar la rugosidad de la superficie de la espuma original se realizó un tratamiento a 900°C por 2 h. El soporte, Al2O3, y el metal activo, Pt, se incorporaron por inmersión. Las técnicas de caracterización aplicadas, XRD, LRS y SEM-EDX, permiten concluir que el tratamiento térmico previo indujo la formación de óxido de cromo y de las espinelas Mn1+xCr2-xO4-x y FeCr2O4 como fases principales en las paredes del sustrato. El espesor de la capa formada es cercano a 1 μm y los cristales producidos tienen forma octaédrica. El cubrimiento de alúmina presentó en general una apariencia homogénea, sin interacción con los óxidos formados durante el tratamiento. El Pt se distribuyó de manera uniforme, resultando un catalizador muy activo para la reacción test elegida: oxidación de monóxido de carbono.

  12. Estudio de corrosión galvánica en pares latón/acero inoxidable y latón/fundición de hierro

    Directory of Open Access Journals (Sweden)

    Ohanian, M.

    2011-08-01

    Full Text Available Corrosion attack in heat exchanger systems is a topic of main interest for the maintenance in each industrial plant. These are multigalvanic systems with particular geometric and fluidodynamic complexity. Corrosive damages include zinc selective dealeation in copper alloys. In order to explain zinc dealeation attack, this paper deals with laboratory scale testing, characterization and interactions between two copper and zinc alloys (Yellow brass –UNS C268– and Admiralty brass –UNS C443– compared to AISI 316 stainless steel and cast iron. The tests were performed at 20 °C in 1.5 % NaCl and 1.5 % Na2SO4 solutions, pH 8 and each material was characterized by potentiodynamic sweeps. The couples are analyzed by studying transient galvanic currents. We conclude about the cause of the analyzed pathology, brass protection potential ranges and its coupling compatibility with other metals.

    El ataque por corrosión en los sistemas intercambiadores de calor constituye un problema para el mantenimiento de cualquier planta industrial. Se trata de sistemas multigalvánicos con particular complejidad geométrica y fluidodinámica. Las patologías corrosivas incluyen el fenómeno de dealeación selectiva de cinc en las aleaciones de cobre. A fin de explicar un caso particular de ataque por decinficación (deterioro en placa de intercambiador de calor de tubos de inoxidable, el presente trabajo aborda en ensayos a escala de laboratorio, la caracterización e interacciones entre dos aleaciones de cobre y cinc, (Yellow brass –UNS C268– y Admiralty brass –UNS C443–, respecto a acero inoxidable AISI 316 y fundición gris de hierro. Los ensayos se realizan a 20 °C en disoluciones de NaCl 1,5 % y Na2SO4 1,5 % y pH 8. Se caracterizan electroquímicamente las aleaciones y materiales involucrados mediante barridos potenciodinámicos. Los pares galvánicos formados se analizan mediante el

  13. Comportamiento a altas temperaturas de aceros inoxidables austeníticos refractarios: Formación de fase σ y oxidación al aire

    Directory of Open Access Journals (Sweden)

    Botella, J.

    1998-05-01

    Full Text Available Three stainless steels: 25Cr20Ni, 21Cr11Ni(1 and 21Cr11Ni(2 have been oxidised in air at 1,323 K for 2 h. The three materials form oxide layers 1 to 3 μm thick with MnCr2O4 external crystals and Cr2O3 inner ones. There are a SiO2 barrier below Cr2O3, in the oxide-metal interface. SiO2 also forms intra and intergranular precipitates in the metal, which are specially abundant in 21Cr11Ni materials. The theoretical predictions about σ-phase formation tendencies are confirmed after a treatment at 1,073 K for 400 h: 25Cr20Ni forms 10 % vol. σ-phase, while both 21Cr11Ni form few σ-phase or they do not form it at all.

    Se oxidan al aire durante 2 h a 1.323 K tres aceros inoxidables: 25Cr20Ni, 21Cr11Ni(1 y 21Cr11Ni(2. Los tres materiales forman capas de óxido de 1 a 3 μm de espesor, con cristales externos de MnCr2O4 e internos de Cr2O3. Debajo del Cr2O3, en la intercara óxido-metal, se forma SiO2, en forma de precipitados intra e intergranulares en el metal, especialmente abundantes en los 21Cr11Ni. Las predicciones teóricas sobre las tendencias a la formación de fase σ se ven confirmadas tras un tratamiento de 400 h a 1.073 K; el 25Cr20Ni forma un 10 % en volumen de σ, mientras que los aceros 21Cr11Ni o no forman σ, o lo hacen escasamente.

  14. Influencia del material de aporte en la resistencia a corrosión por picadura en uniones soldadas de un acero inoxidable dúplex 2205

    Directory of Open Access Journals (Sweden)

    Múnez, C. J.

    2007-08-01

    Full Text Available In this work, it has been studied the pitting corrosion resistance of welding duplex stainless steel 2205. Unions were made by GMAW process with different fillers: duplex ER 2209 and two austenitic (ER 316LSi and ER 308LSi. The microstructure obtained with the duplex ER 2209 filler is similar to the duplex 2205 base material, but the unions produced with the austenitic fillers cause a decrease of the phases relation a/g. To evaluate the influence of the filler on the weld, the pitting corrosion resistance was determined by electrochemical critical pitting temperature test (TCP and the mechanical properties by the hardness. The phases imbalance produced for the dissimilar fillers bring out a variation of the pitting corrosion resistance and the mechanical properties.

    En este trabajo se ha estudiado la resistencia a la corrosión localizada por picadura, de soldaduras realizadas sobre un acero inoxidable dúplex 2205. Se hicieron uniones mediante el proceso GMAW, utilizando como material de aporte un hilo dúplex ER 2209 y dos austeníticos ER 316LSi y ER 308LSi. Metalúrgicamente, se observa como para el hilo ER 2209 las microestructuras que se obtienen son similares a la del dúplex 2205, mientras que en las uniones con hilo austenítico, pueden verse microestructuras muy diferentes en las que la relación de fases a/g disminuye. Al evaluar la resistencia a la corrosión por picadura, mediante la Temperatura Crítica de Picadura (TCP, se comprobó como el desequilibrio entre las fases, generado por el aporte, provoca la variación en la resistencia a la corrosión localizada por picadura. También, se estudió la variación en las propiedades mecánicas del material mediante ensayos de dureza.

  15. Recuperación de ácidos y metales en baños agotados del decapado de aceros inoxidables

    Directory of Open Access Journals (Sweden)

    Frías, C.

    1998-05-01

    Full Text Available During the pickling of stainless steels around 300.000 m3/year of effluents from spent baths are produced in Europe. The usual treatment of these effluents by neutralisation and slurry disposal gives important disadvantages which are necessary to solve. A new process is being developed, called PIBARE, which shows a good future market in base of a preliminary technical-economical study for a plant of 10.000 m m3/year, where a pay-back period of two years is obtained. Furthermore, other environmental advantages are produced, as free and complex acids recycling and metals recovery as commercial by-products or recycled alloys. This article shows a general review of PIBARE project and the results obtained in the laboratory step which is been developed at the moment.

    En la operación del decapado de los aceros inoxidables se producen anualmente en Europa unos 300.000 m3/año de efluentes de baños agotados. El tratamiento normal de estos efluentes mediante neutralización y depósito de los lodos generados presenta graves inconvenientes que requieren ser subsanados, para lo cual se ha comenzado a desarrollar un nuevo proceso denominado proceso PIBARE, que presenta una gran potencialidad comercial basado en el análisis técnico-económico preliminar para una planta de 10.000 m3/año, donde se obtiene un "pay back period" de unos dos años, con otras ventajas medioambientales, ya que se reciclarían los ácidos libres y complejos y se recuperarían los metales como subproductos comerciales o aleaciones reciclables. Se presenta una visión general del proyecto PIBARE y los resultados obtenidos en la etapa de laboratorio que se desarrolla actualmente.

  16. Recubrimientos de aluminio-silicio realizados por deposición química de vapor en lecho fluidizado sobre el acero inoxidable AISI 316

    Directory of Open Access Journals (Sweden)

    José Luddey Marulanda Arevalo

    2013-12-01

    Full Text Available Los recubrimientos de aluminio-silicio fueron depositados sobre el acero inoxidable AISI 316 mediante deposición química de vapor en lecho fluidizado (CVD-FBR, en el rango de temperaturas de 540 a 560 ºC, utilizando un lecho formado por 2,5 g de silicio y 7,5 g de aluminio en polvo, y 90 g de lecho inerte (Alúmina, el cual se hizo fluidizar con Ar. Como gases activadores se usó una mezcla de HCl/H2, en relaciones de 1/10 a 1/16. Además, se varió el tiempo de deposición de los recubrimientos de 45 minutos a 1.5 horas, con una relación en volumen de 50% de gases activos y 50% de gases neutros. Se realizó una simulación termodinámica con la ayuda del programa informático Thermocalc, para obtener información de la posible composición y cantidad de material depositado, para las condiciones seleccionadas. En los recubrimientos se encuentran FeAl2Si, Fe2Al5 y FeAl2. Los recubrimientos aluminio-silicio fueron tratados térmicamente, para mejorar sus propiedades mecánicas y su comportamiento frente a la oxidación, por la interdifusión de los elementos de aleación, ya que el tratamiento térmico hace que el aluminio difunda hacia el substrato, y el hierro difunda hacia la superficie del recubrimiento, logrando la transformación de los compuestos anteriores en FeAl, Al2FeSi, Cr3Si, AlCrFe y AlFeNi.

  17. Separación selectiva de hierro y cromo de las lejías agotadas del decapado de acero inoxidable

    Directory of Open Access Journals (Sweden)

    Gálvez, J. L.

    2005-12-01

    Full Text Available Stainless steel spent pickling baths are very complex solutions of metals and acids (HNO3 and HF and are a very important environmental concern. Several processes have been developed for acid recovery (free and bounded acid with techniques like acid retardation, solvent extraction, evaporation and dialysis diffusion. In these processes, metallic content is precipitated and treated for its disposal. We have developed a process that permits the separation of metals by means of a selective precipitation, induced by adding free fluoride. Iron (Fe and chromium (Cr precipitate as pentafluorides and nitrogennickel (Ni remains in solution. After this stage, complex fluorides can be hydrolized with alkali to give iron and chromium hydroxides, releasing fluoride in solution

    Los baños ácidos agotados del decapado de acero inoxidable son disoluciones muy complejas debido al alto contenido de metales y ácidos (HNO3 y HF, por lo que constituyen un grave problema medioambiental. Existen tratamientos comerciales para la recuperación del ácido (libre o complejado que se basan en técnicas de retardo ácido, extracción con disolventes, evaporación o membranas. En estos procesos el contenido metálico es precipitado y tratado como un residuo. El grupo de investigación formado por los autores del presente trabajo ha desarrollado un procedimiento que permite el aprovechamiento de dichos metales mediante su recuperación selectiva con una técnica de precipitación modificada inducida por fluoruro libre. Se consigue la precipitación de hierro (Fe y cromo (Cr como pentafluoruros (pH 3-4,5 dejando el níquel en disolución. Posteriormente, los fluoruros complejos son hidrolizados con álcali dando lugar a hidróxidos de hierro y cromo, mientras que el fluoruro es redisuelto.

  18. Influencia de la composición química, del tratamiento térmico y del acabado superficial en el bioensuciamiento de aceros inoxidables austeníticos

    Directory of Open Access Journals (Sweden)

    Sarró, M.

    2004-02-01

    Full Text Available The main objective of this study was to analyse the biofouling processes in three kinds of stainless steels used normally in industry (UNS S30400, UNS S30403 and UNS S31600, with different surface treatments after grinding and polishing. The study was developed using two microscopy techniques. Scanning Electron Microscopy (SEM was used to evaluate the microorganisms distribution in the materials, and Epifluorescence Microscopy was used to evaluate the viability of cells in the biofilm. The results revealed the influence of the material, heat treatment, surface treatment and roughness in the biofouling processes in the stainless steel assays.

    El objetivo de este estudio es analizar el comportamiento frente al bioensuciamiento de tres aceros inoxidables austeníticos, utilizados habitualmente en la industria (UNS S30400, UNS S30403, UNS S31600, con diferentes tratamientos térmicos y acabados superficiales de lijado y pulido. Para ello, se utilizaron diferentes técnicas de microscopía. Por microscopía electrónica de barrido se evaluó la distribución de los microorganismos en la superficie del material, y por microscopía de epifluorescencia se analizó la viabilidad de los mismos. Los resultados obtenidos revelan una influencia del material, del tratamiento térmico, del acabado superficial y de la rugosidad en el bioensuciamiento de los aceros inoxidables austeníticos.

  19. Efecto del contenido de azufre y del grado de desoxidación sobre la ductilidad en caliente de aceros inoxidables austeníticos resulfurados en estado de solidificación

    Directory of Open Access Journals (Sweden)

    Botella, J.

    1998-05-01

    Full Text Available The manufacture of free machining austenitic stainless steels features a specific drawback derived from their high sulphur content, which is needed for generating, into the austenitic matrix, inclusions to optimize the different machining operations. However, sulphur has a harmful effect on hot workability. This paper deals with assessing the effect of sulphur content and deoxidation level on the hot ductility of resulphurized austenitic stainless steels in as cast condition. Hot tensile tests were conducted on a Gleeble machine, at temperatures between 1,150 and 1,250°C, studying a ductility factor as a function of sulphur content, deoxidation degree, as well as type, size and distribution of sulfides. Results point out the harmful effect of increasing sulphur and oxygen contents on the hot workability of resulphurized austenitic stainless steels, and the need to control carefully the level of oxides of these steels.

    La fabricación de aceros inoxidables austeníticos de alta maquinabilidad presenta una problemática específica derivada de su elevado contenido de azufre; elemento necesario para generar en la matriz austenítica inclusiones que faciliten las diferentes operaciones de mecanizado, pero perjudicial en cuanto al deterioro que produce en la deformabilidad en caliente. Este artículo describe el estudio realizado para evaluar el efecto del contenido de azufre y el grado de desoxidación sobre la ductilidad en caliente de aceros inoxidables austeníticos resulfurados, partiendo de una estructura de solidificación (as cast condition. Se realizaron ensayos de tracción en un sistema Gleeble, a temperaturas entre 1.150 y 1.250°C, analizándose el parámetro de ductilidad en función del contenido de azufre, nivel de desoxidación, y del tipo, tamaño y distribución de los sulfuros presentes. Los resultados ponen de manifiesto el efecto perjudicial de los contenidos de azufre y oxígeno sobre la deformabilidad en

  20. Evolución microestructural de un acero inoxidable superdúplex bajo ciclos térmicos de corta duración Microstructural evolution of a superduplex stainless steel under short duration thermal cycles

    Directory of Open Access Journals (Sweden)

    Ivan Mendoza Bravo

    2010-09-01

    Full Text Available Este trabajo investiga el efecto de los ciclos térmicos sobre la microestructura de un acero inoxidable superdúplex específicamente sobre la formación de fase sigma. Los ciclos térmicos examinados son similares a los que se producen en la zona afectada térmicamente del acero inoxidable cuando se aplica el proceso de soldadura GTAW. Las temperaturas y tiempo de permanencia para el ciclo térmico se determinan usando un modelo de distribución de temperatura típico. La aplicación de los ciclos térmicos permite conocer la evolución microestructural del acero en el rango de 475ºC a 1100ºC con un tiempo corto de calentamiento y determinar la temperatura de formación y disolución de la fase sigma, pasando por su temperatura de máxima formación. Se examina la formación preferencial y la composición química de la fase sigma.This work investigates the effect of thermal cycling on the microstructure of a stainless steel superduplex, specifically on the sigma phase formation. The examined thermal cycles are similar to those produced in the heat affected zone of stainless steel when applying GTAW welding process. The temperatures and residence time for the cycle was determined using a typical thermal model of temperature distribution. The application of thermal cycles shows the microstructural evolution of steel in the range of 475ºC to 1100ºC with a short heating time and determines the temperature of formation and disolution of the sigma phase, and its maximum temperature of formation. The formation mechanism and chemical composition of the sigma phase is also examined.

  1. Efecto del nitrógeno en la atmósfera de sinterización del acero inoxidable ferrítico AISI430L P/M

    Directory of Open Access Journals (Sweden)

    Corpas, F. A.

    2005-04-01

    Full Text Available In this paper, we have studied the nitrogen effects different sintering atmospheres (nitrogen-hydrogen, and dissociate ammonia on ferritic stainless steels (430L, fabricated by powder metallurgy process. We have carried out a study of the physical (density, porosity and dimensional variation and mechanical properties (hardness, tensile strength, and lengthening of the ferritic stainless steels sintered in the afore-mentioned atmospheres, as well as of their behaviour in pitting corrosion. We have studied, also the microstructure of the steels, which depends on the atmosphere used for sintering

    En el presente artículo, se ha estudiado el efecto del nitrógeno presente en las diferentes atmósferas de sinterización (nitrógeno-hidrógeno y amoniaco disociado en los aceros inoxidables ferríticos (430L, fabricados mediante procedimientos pulvimetalúrgicos. Por lo cual, se ha tomado como referencia la sinterización en vacío. Se han estudiado las propiedades físicas (densidad, porosidad y variación dimensional y las propiedades mecánicas (dureza, resistencia a la tracción y alargamiento de los aceros inoxidables ferríticos sinterizados en las diferentes atmósferas, así como su comportamiento a la corrosión por picaduras. Del mismo modo, se ha estudiado la microestructura de los aceros dependiendo de la atmósfera utilizada en la sinterización

  2. Estudio de la influencia de la microestructura sobre la deformabilidad en caliente de un acero inoxidable dúplex

    Directory of Open Access Journals (Sweden)

    Iza-Mendia, A.

    1998-05-01

    Full Text Available The complexity of the hot deformation behaviour of the ferrite and austenite in a duplex structure is increased as compared with that of single phase ferritic or austenitic steels. Important factors are: the spatial phase distribution with respect to the direction of the imposed deformation, the codeformation of both phases having considerably different mechanical properties, and the nature of the interface between austenite and ferrite. In the present study, the influence of these factors on the crack formation during the hot deformation is analyzed.

    El comportamiento frente al conformado en caliente de la ferrita y de la austenita, en una estructura dúplex, es muy diferente al que presentan ambas fases por separado en los aceros monofásicos austeníticos o ferríticos. A ello contribuyen, entre otros, la distribución espacial de las fases con respecto a la deformación impuesta, la codeformación de dos fases, con propiedades mecánicas muy diferentes, y la naturaleza de la intercara. En el presente trabajo se analiza la influencia de estos factores en la formación de daño bajo condiciones de deformación en caliente.

  3. Formación de fase sigma en uniones soldadas de acero inoxidable súper dúplex fundido

    Directory of Open Access Journals (Sweden)

    Garin, J. L.

    2011-08-01

    Full Text Available This paper decribes the microstructural characteristics of weldments of cast super duplex stainless steel (J93404, being subjected to annealing processes to induce formation of sigma-phase at high temperatures. The influence of heating time at 1073 K, 1123 K and 1173 K upon precipitation of sigma in the heat affected zone, base metal and fusion zone of the weldments was analyzed. The experimental results revealed the formation of this intermetallic compound throughout decomposition of the ferritic phase into austenite and sigma. At earlier stages of the transformation the phase rapidly nucleates and growth along the ferrite-austenite grain boundaries, and then massively advances towards the bulk of the ferritic zone with greater effectiveness as temperature increases. The formation of sigma-phase in all weldments resembles the Johnson-Mehl-Avrami’s mechanism stated for nucleation and growth.

    El presente trabajo describe las características microestructurales de uniones soldadas de acero súper dúplex fundido (J93404, al ser sometidas a procesos de recocido para inducir la formación de fase sigma a altas temperaturas. Se analizó la influencia del tiempo de calentamiento a 1.073 K, 1.123 K y 1.173 K sobre la precipitación de fase sigma en la zona afectada térmicamente, metal base y zona de fusión de los conjuntos soldados. Los resultados experimentales evidenciaron la formación de este compuesto intermetálico por descomposición de la fase ferrítica en austenita y sigma. Al comienzo de la transformación la fase nuclea y crece rápidamente en los bordes de grano austenita-ferrita, extendiéndose luego masivamente hacia el seno de la zona ferrítica, con mayor efectividad en términos del aumento de la temperatura de proceso. La formación de sigma en todas las uniones soldadas obedece a un mecanismo de nucleación y crecimiento del tipo Jonson-Mehl-Avrami.

  4. Ensayos de rozamiento plano sobre aceros inoxidables austeníticos con diferente acabado superficial. Determinación de las condiciones de adhesión en el rozamiento

    Directory of Open Access Journals (Sweden)

    Coello, J.

    2008-12-01

    Full Text Available The main purpose of this work is to evaluate the tribological behaviour of austenic stainless steels AISI 304 with bright annealed surface finishing (BA (ASTM a 240; AISI 304 DDQ and AISI 316 with bright surface finishing (B. The assays have been carried out in flat faced dies system with mineral oil of 200 cts viscosity, S2Mo grease and in dry conditions.. The relationship between friction coefficient and pressure and velocity has been established for the mineral oil as lubricant. In these conditions, a strong adhesive tendency has been found in boundary lubrication regime. The results obtained here, show us that S2Mo grease leads to lowest values for the friction coefficient. A minor adhesive behaviour tendency for AISI 316 steel, harder than 304 grades, has been found. A relevant plowing phenomena has been observed for the more critical friction conditions tried out. A surface hardener is produced as a consequence of that.

    El objetivo de este trabajo es determinar el comportamiento tribológico de los aceros inoxidables austeníticos 304 con acabado brillante BA (ASTM A 240, 304 DDQ y 316 con acabado mate 2B, en sistemas de contacto plano, con el fin de simular el rozamiento en la zona del flanco en los procesos de embutición de acero inoxidable. Para ello, se ha estudiado la influencia del acabado superficial del acero, la velocidad de deslizamiento y la presión normal sobre el coeficiente de rozamiento, utilizando un ensayo de fricción con matrices planas. Los ensayos se han realizado con aceite mineral de 200 cst, grasa de bisulfuro de molibdeno y en seco. En presencia de aceite, se ha establecido una correlación de m con la velocidad de deslizamiento y la presión de contacto con comportamiento fuertemente adhesivo en las condiciones de lubricación límite consideradas. Los resultados obtenidos muestran que la grasa de bisulfuro de molibdeno disminuye en un 50 % los valores del coeficiente de rozamiento

  5. Biocompatibility of MIM 316L stainless steel

    Institute of Scientific and Technical Information of China (English)

    ZHU Shai-hong; WANG Guo-hui; ZHAO Yan-zhong; LI Yi-ming; ZHOU Ke-chao; HUANG Bai-yun

    2005-01-01

    To evaluate the bioeompatibility of MIM 316L stainless steel, the percentage of S-period cells were detected by flow cytometry after L929 incubated with extraction of MIM 316L stainless steel, using titanium implant materials of clinical application as the contrast. Both materials were implanted in animal and the histopathological evaluations were carried out. The statistical analyses show that there are no significant differences between two groups (P>0.05), which demonstrates that MIM 316L stainless steel has a good biocompatibility.

  6. Soldabilidad del acero inoxidable austenitico

    Directory of Open Access Journals (Sweden)

    Pedro Pablo Torres-Medina

    2002-01-01

    Full Text Available This work involves welding stainless steel AISI 321H applying technical specifications according to welding standards, know the properties and phenomena that occur in the base metal and select the appropriate input material to ensure good quality of the process.

  7. Aplicación del ensayo miniatura de embutido para la evaluación de la tenacidad a temperaturas criogénicas de aceros inoxidables austeníticos envejecidos isotérmicamente

    Directory of Open Access Journals (Sweden)

    Saucedo-Muñoz, M. L.

    2003-10-01

    Full Text Available Two types of austenitic stainless steels JJl and JNl were isothermally aged at temperatures from 873 to 1173 K for 10 to 1000 min in order to study the microstructural evolution and its effect on fracture toughness at cryogenic temperatures. The Charpy V-Notch (CVN and Small-Punch (SPTesting methods were conducted at 77 K to evaluate the toughness of both solution treated and aged specimens. The fracture energy at 77 K determined for both methods showed a significant decrease with aging time for both steels. A linear correlation between the fracture energies of both methods was found. The intergranular precipitation of carbides and nitrides was responsible for the fracture toughness deterioration. The scanning electron microscope fractographs showed an intergranular brittle fracture and its fraction also increased with aging time and temperature. The presence of a more abundant intergranular precipitation resulted in a more rapid decrease in fracture toughness with aging time in JNl steel due to its higher content of C and N, compared to that of JJl steel.

    Dos tipos de aceros inoxidables austeníticos, JJl y JNl, se envejecieron isotérmicamente a temperaturas entre 873 y 1.173 K por tiempos de 10 a 1.000 min, para estudiar la evolución microestructural y su efecto sobre la tenacidad a la fractura a temperaturas criogénicas. Los métodos de ensayo de impacto Charpy y el ensayo miniatura de embutido se llevaron a cabo a 77 K para evaluar la tenacidad de las muestras tratadas térmicamente. La energía de fractura determinada por ambos métodos mostró una disminución con el tiempo de envejecido para ambos aceros. Se encontró una relación lineal entre ambos valores de energía. La precipitación intergranular de carburos y nitruros fue la responsable de la pérdida de la tenacidad en las muestras envejecidas. La fractografía indicó que la fractura intergranular se incrementa con la temperatura y el tiempo de envejecido. La presencia

  8. Efecto de la modificación superficial de alambres delgados de acero inoxidable AISI 302 mediante plasma electrolítico sobre sus propiedades mecánicas

    Directory of Open Access Journals (Sweden)

    Gallegos, A.

    2012-12-01

    Full Text Available In this work different tests using electrolytic plasma (EP on thin wires of stainless steel AISI 302 in an inert solution were performed. Tensile tests were carried out in order to measure changes in the mechanical strength of the samples; moreover, both the morphological and microstructural changes also were evaluated. It was found that after 10 s of the application of EP, the samples surface was uniformly covered by nodules-like and craters similar to those found in the melting and cooling periods of EP. The results show a significant surface grain refinement, leading to crystalline arrangements with sizes less than 200 nm and also an increase in the samples tensile strength of at least 57 % respect to steel base.

    En este trabajo se realizaron ensayos de aplicación de plasma electrolítico (PE sobre alambres delgados de acero inoxidable AISI 302 en una solución inerte. Las probetas se sometieron a ensayos de tracción, con el fin de medir cambios en su resistencia mecánica; adicionalmente fueron evaluadas en sus cambios morfológicos y microestructurales. Se encontró que después de 10 s de aplicación de PE, la superficie de las probetas estaba uniformemente cubierta por nódulos y cráteres propios del ciclo de fusión y enfriamiento del PE; se evidenció un significativo afinamiento del grano superficial, llegando a ordenamientos cristalinos de tamaño menor a 200 nm y también se observó que la capa superficial afectada presentó un incremento de la resistencia a la tracción de al menos un 57 % respecto al acero base.

  9. Efecto de las condiciones de corte de un láser de Nd:YAG sobre la estructura y microcomposición de la superficie de aceros inoxidables

    Directory of Open Access Journals (Sweden)

    Ramírez, A.

    1998-04-01

    Full Text Available A study is presented of the effect of laser parameters (time distribution, spatial distribution and speed on both the finishing quality of austenitic stainless steel and its microstructure. An Nd-YAG laser with nitrogen as protection gas has been used. The samples were studied by SEM, metallography and microprobe analysis. At 500 Hz and 10 % of the spatial distribution, any increase of the time distribution produces higher power; this effect allows working at higher speed. Quality increases with the cutting speed. The laser cutting of 304 stainless steel using speeds higher than 200 mm/min and power lower than 1,000 W and a nitrogen flow of 18 bar of pressure do not produce significative changes in the structure.

    Se presenta un estudio de la influencia de los parámetros de procesado láser (distribución temporal, distribución espacial y velocidad en la calidad de acabado y microestructura de aceros inoxidables austeníticos. Se ha utilizado un láser Nd:YAG con nitrógeno como gas de protección, analizándose los resultados mediante SEM, microsonda electrónica y análisis metalográfico. Para una distribución espacial fija (10 %, y una frecuencia de 500 Hz, el aumento de la distribución temporal produce mayor potencia, lo que permite trabajar a velocidades más altas. La calidad del acabado aumenta al hacerlo la velocidad de corte. El corte de acero 304 con láser a velocidades superiores a 0,0033 m/s y potencias inferiores a 1.000 W usando nitrógeno a 18 bar no produce modificaciones apreciables en la estructura.

  10. Evaluación del comportamiento estructural y de resistencia a la corrosión de armaduras de acero inoxidable austenítico AISI 304 y dúplex AISI 2304 embebidas en morteros de cemento Pórtland

    Directory of Open Access Journals (Sweden)

    Medina, E.

    2012-12-01

    Full Text Available The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304 and duplex EN 1.4362 (AISI 2304 have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR, of reinforcements embedded in ordinary Portland cement (OPC mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure.

    Se ha evaluado el comportamiento mecánico y estructural de dos aceros inoxidables corrugados, el austenítico EN 1.4301 (AISI 304 y el dúplex EN 1.4362 (AISI 2304, y se han comparado con el tradicional acero al carbono B500SD. El estudio se ha realizado en tres niveles: a nivel de barra, de sección y de pieza. Las diferentes características mecánicas de los aceros inoxidables condicionan el comportamiento a nivel de sección y de pieza estructural. El estudio del comportamiento frente a la corrosión de los dos aceros inoxidables se ha realizado mediante mediciones electroquímicas monitorizando el potencial de corrosión y la resistencia de polarización de armaduras embebidas en probetas de mortero contaminado con diferentes concentraciones de cloruros durante un tiempo de exposición de un año. Ambos aceros inoxidables permanecen en estado pasivo en las probetas para todos los contenidos de cloruros.

  11. MODELOS EMPÍRICOS PARA LA PREDICCIÓN DE LA GEOMETRÍA DEL CORDÓN EN SOLDADURAS A TOPE DE UN ACERO INOXIDABLE DÚPLEX 2205

    Directory of Open Access Journals (Sweden)

    MINERVA DORTA ALMENARA

    2011-01-01

    Full Text Available La presente investigación muestra dos modelos empíricos que permiten predecir la geometría del cordón de soldadura a tope de un acero inoxidable dúplex tipo 2205. Para obtener dichos modelos se empleó una metodología que permite utilizar los parámetros operacionales más importantes de la soldadura, como son: la intensidad de corriente (I, el voltaje (E, la velocidad de pasada (v y calor aportado (HI. Se realizaron diferentes combinaciones de dichos parámetros para realizar la soldadura por arco sumergido (SAW. A cada muestra se le realizó la medición de la geometría del cordón a través de un barrido de 360° con 38 mediciones para obtener los modelos, los cuales luego fueron validados a través de gráficas de control. Se pudo observar que al aumentar la intensidad de corriente y el calor aportado, aumenta la geometría del cordón, es decir, la penetración, el ancho y la altura, mientras que lo inverso ocurre cuando se incrementa la velocidad de pasada.

  12. Caracterización mecánica de recubrimientos de aluminio por CVD-FBR sobre aceros inoxidables y resistencia a la oxidación en vapor de agua

    Directory of Open Access Journals (Sweden)

    Diego Pérez-Muñoz

    2015-09-01

    Full Text Available Los recubrimientos de aluminio depositados sobre el acero inoxidable austenítico AISI 317 por Deposición Química de Vapor en Lecho Fluidizado (CVD-FBR presentan a altas temperaturas una reducción de la velocidad de corrosión de más de 80 veces. Se realizó la caracterización mecánica de los recubrimientos por medio de microdureza, nanoindentación, para conocer cómo se vieron afectas las propiedades mecánicas (en especial la dureza y el módulo de Young del recubrimiento y del sustrato luego de ser sometidos a la oxidación a alta temperatura. También se hicieron análisis por medio de Microscopia Electrónica de Barrido (MEB, para observar los cambios microestructurales, y de Microscopia de Fuerza Atómica (MFA, para observar cómo varía la topografía y el gradiente de rugosidad en función de la distancia recorrida por la punta del cantiléver durante los barridos.

  13. Soldadura TIG de los aceros inoxidables dúplex del tipo 22-05 (Uranus 45N y Avesta. Estudio de la microestructura y de las propiedades mecánicas

    Directory of Open Access Journals (Sweden)

    Gómez de Salazar, J. M.

    1998-05-01

    Full Text Available TIG welding of two different duplex stainless steels is carried out. Arc-discharge on base-material plates by means of the TIG technique without filler metal and varying the energetic conditions (E.N.A. has been performed, A comparative study concerning the microstructural evolution as well as mechanical properties is carried out, The relation between hardness profiles, the microstructural variations and the ferrita δ concentration is established. Further, the above mentioned properties are related to the E.N.A. for each welded joint.

    Se estudia la soldadura TIG de dos aceros inoxidables dúplex. Para ello, se ha descargado un arco sobre las chapas de material base mediante la técnica TIG, sin aportación de material y variando las E.N.A. Se realiza un estudio comparativo de la evolución microestructural, así como de las propiedades mecánicas. Se establece la relación entre los perfiles de dureza obtenidos y la variación microestructural y de la concentración de ferrita δ, así como estas propiedades con el E.N.A, de cada cordón.

  14. Simulación del efecto de la irradiación mediante el trabajado en frío y los tratamientos térmicos en dos aceros inoxidables austeníticos

    Directory of Open Access Journals (Sweden)

    de Diego, G.

    1998-10-01

    Full Text Available In the present study, annealed type 304 SS was cold worked and heat treated to simúlate irradiation hardening, ductility loss and grain boundary segregation. Constant Extension Rate Tensile (CERT tests were conducted to reproduce Irradiation Assisted Stress Corrosion Cracking (IASCC in BWR (Boiling Water Reactor environment.

    En este trabajo se simulan los efectos que produce la irradiación, pérdida de ductilidad y segregación de impurezas en borde de grano, mediante trabajado en frío y posterior tratamiento térmico, para aceros inoxidables austeníticos AISI 304. Mediante ensayos de velocidad de extensión constante y en medios similares a los de los reactores de agua en ebullición se intenta relacionar la susceptibilidad a la corrosión bajo tensión con la susceptibilidad a la corrosión asistida por irradiación.

  15. Desarrollo de un modelo matemático de diferencias finitas para el análisis del campo de temperaturas en la soldadura por arco de chapas finas de acero inoxidable

    Directory of Open Access Journals (Sweden)

    Miguel, V.

    2010-12-01

    Full Text Available This work develops a finite difference method to evaluate the temperature field in the heat affected zone in butt welding applied to AISI 304 stainless steel thin sheet by GTAWprocess. A computer program has been developed and implemented by Visual Basic for Applications (VBA in MS-Excel spreadsheet. The results that are obtained using the numerical application foresee the thermal behaviour of arc welding processes. An experimental methodology has been developed to validate the mathematical model that allows to measure the temperature in several points close to the weld bead. The methodology is applied to a stainless steel sheet with a thickness lower than 3 mm, although may be used for other steels and welding processes as MIG/MAG and SMAW. The data which has been obtained from the experimental procedure have been used to validate the results that have been calculated by the finite differences numerical method. The mathematical model adjustment has been carried out taking into account the experimental results. The differences found between the experimental and theoretical approaches are due to the convection and radiation heat losses, which have not been considered in the simulation model.With this simple model, the designer will be able to calculate the thermal cycles that take place in the process as well as to predict the temperature field in the proximity of the weld bead.

    En este trabajo se desarrolla un método de diferencias finitas para calcular el campo de temperaturas en la zona afectada por el calor en la soldadura de dos chapas de acero inoxidable AISI 304, soldadas mediante el procedimiento GTAW. Se ha desarrollado un programa informático implementado en libros de cálculo MS-Excel con Visual Basic para Aplicaciones (VBA. Los experimentos modelizados a través de la aplicación numérica predicen el comportamiento térmico de un procedimiento de soldadura. Para la validación del modelo matemático se ha desarrollado un

  16. “MEDICION DE PARAMETROS GENERADORES DE ESFUERZOS RESIDUALES DURANTE EL PROCESO DE SOLDADURA DE ACERO INOXIDABLE AUSTENITICO AISI 304L”.

    OpenAIRE

    García López, Christian Jesus

    2012-01-01

    En la actualidad los procesos de soldadura por arco eléctrico se han convertido en la técnica por excelencia para la unión del acero y sus aleaciones. Se puede mencionar que la importancia de la soldadura, es tal, que sin ella no serían posibles muchos de los productos y servicios que cotidianamente son consumidos o requeridos por las sociedades contemporáneas actuales. Cada vez con mayor longitud y diámetro se instalan líneas de tubería para la distribución y conducción de tod...

  17. Efecto de la velocidad y ángulo de impacto en la resistencia a corrosión - erosión de aceros inoxidables recubiertos con TiN

    Directory of Open Access Journals (Sweden)

    José Ricardo Cano Rodas

    2004-01-01

    Full Text Available Fueron estudiados los mecanismos de degradación superficial en aceros inoxidables austenítico AISI 304 y martensítico AISI 420, con y sin recubrimiento cerámico de TiN, aplicado mediante técnica de deposición física de vapor PVD por arco pulsado, sometidos a erosión (solución de agua destilada con 30% en peso de partículas de sílice, corrosión (solución ½ M H2SO4 + 3.5% NaCl y efectos sinérgicos corrosión - erosión. Fue construido un dispositivo para realizar los ensayos descritos con la posibilidad de variar la velocidad y el ángulo medio de impacto de las partículas sobre la superficie de las muestras. Marcas características fueron observadas en las superficies desgastadas, siendo la condición de ángulo rasante la de mayor efecto nocivo tanto para las superficies desnudas como para las recubiertas con TiN. El nivel de deterioro superficial aumentó con la velocidad de impacto, al tiempo que se evidenció la importancia de la adherencia de las películas protectoras al substrato para la obtención de una buena resistencia a corrosiónerosión. La sinergia corrosión-erosión presentó, en algunas ocasiones, un efecto positivo para la superficie, ya que el impacto de las partículas duras causó intensa deformación plástica pero no consiguió remover material de la superficie.

  18. Resistencia a la oxidación de aleaciones Ni-Cr-Al plaqueadas por láser sobre aceros al carbono e inoxidables austeníticos

    Directory of Open Access Journals (Sweden)

    de Damborenea, J.

    1995-04-01

    Full Text Available Laser surface cladding has been carried out by means of a 5 kW CO2 continuous wave laser on both a mild and a stainless steel. A powder injection technique has been used to deliver a Ni-Cr-Al alloy onto the steel molten pool. After processing, samples were analyzed by optical and scanning electron microscopy in order to know the microstructure and composition of present phases. High temperature corrosion resistance tests were done in an oxidant environment at temperatures of 950 °C. Phase transformations and corrosion behaviour are discussed. A general conclusion is the suitability of these alloys to bear oxidation due to the formation of protective oxide layers on their surface.

    Se realiza un estudio sobre la obtención de recubrimientos de superficie mediante un láser continuo de CO2 de 5 kW de potencia de salida. Mediante la técnica de inyección de partículas, se realizaron plaqueados en superficie de Ni-Cr-Al sobre un acero suave y otro inoxidable de tipo 316. Tras el procesado, se estudió la microestructura de las probetas obtenidas. Posteriormente, se procedió a su ensayo en atmósfera oxidante a 950 °C, observándose la evolución de la microestructura, la formación de las capas de óxido y la cinética del proceso. Como conclusión general, destaca, independientemente de la base sobre la que se obtienen los recubrimientos, la gran resistencia del material a la oxidación, seguramente debida a la formación de capas de alúmina que actúan como barreras frente al ataque del oxidante.

  19. Análisis de los transitorios de ruido electroquímico para aceros inoxidables 316 Y – DUPLEX 2205 en NaCl Y FeCl

    Directory of Open Access Journals (Sweden)

    Almeraya-Calderón, F.

    2012-04-01

    Full Text Available This work shows the results obtained from electrochemical noise measurements for different materials exhibiting pitting corrosion. The transients presented in the potential and current time, correlates with the scanning electron microscopy (SEM surface analysis. Electrochemical measurements were made at different exposure times to obtain the correlation. The materials used were stainless steel austenitic 316 and duplex 2205, immersed in ferric chloride (FeCl3 and sodium chloride (NaCl electrolytes. SEM analysis shows that the transients observed in the time series, really correspond to the activity of pit nucleation developed over the surface of the electrodes.

    En este trabajo se muestran los resultados obtenidos de las mediciones de ruido electroquímico para diferentes materiales que exhiben corrosión por picaduras. Los transitorios presentados en las series de tiempo en corriente y en potencial, se correlacionan con el análisis superficial de microscopía electrónica de barrido (MEB. Las mediciones electroquímicas fueron realizadas a diferentes tiempos de exposición, para obtener una correlación. Los materiales usados fueron los aceros inoxidables 316 y dúplex 2205, inmersos en cloruro férrico (FeCl3 y cloruro de sodio (NaCl como electrolitos. Los análisis por MEB, muestran que los transitorios observados en las series de tiempo, corresponden realmente con la actividad de la nucleación de picaduras desarrollada sobre la superficie de los electrodos.

  20. Relaciones cuantitativas entre los contenidos de azufre y de sulfuros en los aceros inoxidables tipo AISI 303: influencia de la composición química de los sulfuros

    Directory of Open Access Journals (Sweden)

    Botella, J.

    1999-06-01

    Full Text Available The work has been done with ten AISI 303 stainless steel rods which have similar chemical compositions, except for sulphur which varies between 0.25 and 0.36%. These steels are studied by Scanning Electron Microscopy (SEM and Energy Dispersive X-Ray Spectrometry (EDX. The sulphides are chemically microanalysed and the occupied volume determined by automatic image analysis. It can be inferred that the chemical composition of sulphides in AISI 303 steels is variable to some extent even though the steel chemistry is almost invariable. This could mean that solidification conditions and thermomechanical transformations are able to affect resulting in variations of sulphide compositions. Quantitative relations between sulphur and sulphide contents are established and the influence of sulphide chemical compositions on those relations is studied. The experimental results are compared with those obtained from theoretical calculations. A good approach is obtained when the difference between chemical compositions of real sulphides and the theoretical one, MnS, is taken into account.

    Se trabaja con una serie de diez redondos de aceros inoxidables tipo AISI 303 de composiciones químicas prácticamente iguales a excepción del azufre que varía entre 0,25 y 0,36%. Se examinan los aceros mediante Microscopía Electrónica de Barrido (MEB y Espectrometría de Dispersión de Energías de Rayos X (EDX acoplada al MEB, analizándose químicamente los sulfuros y determinando, mediante análisis automático de imágenes, los volúmenes ocupados por los sulfuros. Parece deducible que la composición química de los sulfuros en el AISI 303 puede ser discretamente variable aún siendo prácticamente invariable la composición química del acero. Ello podría significar que las condiciones de solidificación y las transformaciones termomecánicas pueden influir, dando como resultado variaciones en la composición química de los sulfuros. Se establecen

  1. Análisis del Comportamiento Mecánico de Recargues de Inoxidable Sobre Acero de Baja Aleación en Reactores de Proceso Analysis of Mechanical Behavior of Cladding of Stainless Steel over Low Alloyed Steel in Process Reactors

    Directory of Open Access Journals (Sweden)

    B.Y. Moratilla

    2005-01-01

    Full Text Available Se realiza un estudio simple de tensiones considerando dos materiales, acero inoxidable y acero de baja aleación. El estudio es motivado porque en la industria petroquímica es práctica habitual, para reducir costes de materiales, utilizar recargues de inoxidable sobre una pared de acero de baja aleación para la construcción de la pared de reactores. Se determina el coeficiente de dilatación térmica y su evolución a lo largo del espesor de la zona afectada térmicamente, usando una probeta extraída durante la construcción de un reactor. Luego se aplican los resultados obtenidos a un modelo de la pared del reactor usando el método de los elementos finitos. Los resultados muestran que el uso del recargue está científica y tecnológicamente justificado.A simple study of tensions was carried out on stainless steel and low alloyed steel. The reason for the study was that a typical practice in the petrochemical industry for materials cost reduction is the use of layers of stainless steel cladding over low alloy steel in the construction of reactor walls. The coefficient of thermal dilatation and its' evolution throughout the thickness of the thermally affected zone was determined using a test sample obtained during the construction of a reactor. Later, the results obtained were applied to a model of the reactor wall using the finite element method. The results suggested that the use of the cladding was scientifically and technologically justified.

  2. Efecto de la adición de cobre y estaño en el comportamiento a la corrosión por picadura del acero inoxidable AISI 304

    Directory of Open Access Journals (Sweden)

    Pardo, A.

    2004-10-01

    Full Text Available The influence of copper and tin addition on the pitting corrosion resistance of AISI 304 stainless steel in 3.5 % NaCl at 20 °C has been studied using potenciodinamic and cyclic polarization. From that study the effect of alloying elements (Cu and Sn in the corrosion, pitting and repassivation potentials were determined. The effect of copper and tin on the critical pitting temperature (CPT was determined by icon-time-temperature curves. The influence of these alloying elements in FeCl3 under ASTM G48-00 norm was also studied. The addition of copper favours the nucleation of pits. The addition of tin slightly improves the corrosion resistance. The synergic effect of Cu-Sn was positive at low concentrations.

    Se estudia la influencia de la adición de cobre y estaño en la resistencia a la corrosión por picadura del acero inoxidable AISI 304, en 3,5 % NaCl a 20 °C mediante medidas potenciodinámicas de polarización cíclica, con el fin de determinar el efecto de la adición de aleantes (cobre y estaño en los potenciales de corrosión, picadura y repasivación. Se ha determinado el efecto del cobre y estaño en la temperatura crítica de picadura mediante el trazado de curvas icon-tiempo. Asimismo se estudió la influencia de estos aleantes en FeCl3, según norma ASTM 048-00. La adición de cobre favorece la nucleación de picaduras. La adición de estaño presenta una tendencia a mejorar la resistencia a la corrosión. El efecto sinérgico Cu-Sn es positivo en bajas concentraciones.

  3. Estudio de la resistencia a la corrosión localizada del acero inoxidable superaustenítico 24,1Cr22Ni7,1Mo en mezclas que contienen iones cloruro y cloruro-fluoruro

    Directory of Open Access Journals (Sweden)

    Pardo Gutiérrez del Cid, Angel

    2001-08-01

    Full Text Available The localised corrosion resistance (pitting and crevice corrosion of the high alloy 24.1Cr22Ni7.1Mo superaustenitic stainless steel has been studied in solutions with chloride concentrations between 200 and 6.000 ppm. A similar study has been carried out using mixtures of equal concentrations of chloride and fluoride ions in the range of 400 to 12.000 ppm. pH values varied from 2 to 6.5. The critical temperatures for pitting and crevice corrosion have been calculated for these test media using electrochemical techniques (direct current. From the results obtained by cyclic polarisation, the critical pitting temperature (CPT and the critical crevice temperature (CCT have been determined for this material in each of tested media. The resistance of this material to localised corrosion is high, mainly due to the high repassivation rate in the tested media. At the highest tested concentration of chloride and fluoride ions and at pH 6.5, the material undergoes a generalised attack.

    Se estudia la resistencia a la corrosión localizada (picadura y resquicio del acero inoxidable superaustenitico 24,1Cr22Ni7,1Mo, cuando opera en soluciones que contienen concentraciones de iones cloruro entre 200 y 6.000 ppm. Así mismo se estudia el comportamiento en mezclas que contienen concentraciones iguales de iones cloruro y fluoruro entre 400 y 12.000 ppm. El intervalo de pH utilizado se situó entre 2 y 6,5. Las temperaturas críticas de picadura y resquicio se calcularon mediante técnicas electroquímicas de corriente continua. A partir de los resultados obtenidos mediante polarización cíclica, se han obtenido tanto las temperaturas críticas de picadura (TCP como las de resquicio (TCR para el material en cada uno de los medios ensayados. La resistencia de este material a la corrosión localizada es alta, debido principalmente a la elevada capacidad de repasivación en los medios de ensayo empleados. Para la mayor concentración de iones cloruro y

  4. Estudio de corrosión bajo tensión en los aceros inoxidables 17-4PH y 17-7PH en presencia de NaCl y NaOH (20 % a 90 °C

    Directory of Open Access Journals (Sweden)

    Gaona-Tiburcio, Citlalli

    2000-04-01

    Full Text Available One of the problems that affects to the electric industry is the not programmed stoppages in the power plants, due to the failure of any main component: boiler, turbine and generator. In the turbine, the combined action of a corrosive agent (humid polluted vapor and a mechanical effort generally will result in Stress Corrosion Cracking (SCC. In this work the SCC susceptibility of the precipitation hardening stainless steels 17-4PH and 17- 7PH, thoroughly used in steam turbine blades of power stations is analyzed. The specimens were tested in the presence of NaCl and NaOH (20 % to 90 °C and different pH. The CERT test (Constant Extension Rate Test was used, at 10-6 s-1 supplementing it with electrochemical noise; the aim was to identify the conditions of maximum susceptibility and the performance of the studied materials. The fractographic analysis revealed ductile and brittle fracture. Intergranular crackings, characteristic of the anodic dissolution mechanism of the material was observed. Nevertheless, the main mechanism responsible the failure was hydrogen embrittlement.

    Uno de los problemas que afecta a la industria eléctrica es el de los paros no programados en las plantas generadoras de electricidad, debidos al fallo de algún componente principal: caldera, turbina y generador. En la turbina, la acción combinada de un agente corrosivo (vapor húmedo contaminado y un esfuerzo mecánico, generalmente provocará corrosión bajo tensión (CBT. En este trabajo se analiza la susceptibilidad a la CBT de los aceros inoxidables, endurecibles por precipitación, 17-4PH y 17-7PH, ampliamente usados en alabes de turbina de vapor de centrales termoeléctricas. Las muestras se ensayaron en presencia de NaCl y NaOH (20 % a 90 °C, y distintos valores de pH. Se empleó el ensayo CERT (Constant Extensión Rate Test, a velocidades de 10-6 s-1, complementándolo con ruido electroquímico, buscando

  5. Efecto de los ciclos térmicos sobre la ZAT de una soldadura multipasos de un acero inoxidable superdúplex SAF 2507 Effect of thermal cycles on the HAZ of a stainless steel multipass weld of superduplex SAF 2507

    Directory of Open Access Journals (Sweden)

    D. Villalobos

    2010-09-01

    Full Text Available Los ciclos térmicos de una soldadura multipasos que experimenta un acero inoxidable superdúplex SAF 2507, pueden promover la precipitación de fases secundarias reduciendo significativamente las propiedades mecánicas y la resistencia a la corrosión. Debido a su aplicación en la industria petroquímica, el estudio de las aleaciones superdúplex es de suma importancia para predecir su comportamiento en servicio cuando están involucrados procesos de soldadura por arco eléctrico. En este trabajo, se estudia el cambio microestructural de la zona afectada térmicamente correspondiente al primer cordón depositado de una unión multipasos de acero inoxidable superdúplex SAF 2507 mediante el proceso GTAW y bajo tres temperaturas de interpasos. Los resultados muestran que la temperatura de interpasos tiene una influencia sobre la precipitación de fase sigma en la zona afectada térmicamente del primer cordón depositado.Thermal cycles experienced by a superduplex stainless steel SAF 2507 when is welded, can promote the precipitation of secondary phases which decrease the mechanical properties as well as the corrosion resistance. Due to the application of the duplex alloys in the petrochemical industry, the study of these alloys has become very important in order to predict its service behavior. The aim of this work is to study the microstructural changes in the superduplex stainless steel weld joint after applying the GTAW process under three interpass temperatures after the deposition of every single pass. The results showed that slow cooling rates promoted by the deposition of the subsecuent passes and the higher interpass temperature, promote the precipitation of sigma phase in the HAZ while rapid cooling rates promoted by the lower interpass temperature do not promote the sigma phase precipitation.

  6. Irradiation behavior of Ti-stabilized 316L type steel

    Science.gov (United States)

    Rodchenkov, B. S.; Kalinin, G. M.; Strebkov, Yu. S.; Shamardin, V. K.; Prokhorov, V. I.; Bulanova, T. M.

    2009-04-01

    Type 316L austenitic steels are widely used for the in-vessel internal structures of fission reactors (core, core support, etc.) and for experimental irradiation facilities. The modifications of 316L Type steel (316L, 316L(N), US 316, J 316, JPCA, etc.) have been considered as structural material for International Thermonuclear Experimental Reactor (ITER). The results of investigation the irradiation behaviour of Ti-stabilized 316 L type steel (0.04 C-15 Cr-11 Ni-2.5 Mo-0.5 Ti) are presented in this work. The specimens cut out from 316L-Ti steel forging were irradiated in the SM-2 reactor up to a dose ˜4 and 10 dpa at 265 ± 15 °C. The tensile properties, fracture toughness and changes in resistance to intergranular stress corrosion cracking (IGSCC) have been investigated after irradiation. The results for Ti-stabilized 316L steel were compared with those for 316L(N)-IG steel irradiated at the same condition.

  7. Irradiation behavior of Ti-stabilized 316L type steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodchenkov, B.S. [Research and Development Institute of Power Engineering (RDIPE), P.O. Box 788, 101000 Moscow (Russian Federation)], E-mail: rodchen@nikiet.ru; Kalinin, G.M.; Strebkov, Yu.S. [Research and Development Institute of Power Engineering (RDIPE), P.O. Box 788, 101000 Moscow (Russian Federation); Shamardin, V.K.; Prokhorov, V.I.; Bulanova, T.M. [State Scientific Center ' Research Institute of Atomic Reactors' , Dimitrovgrad-10, 433510 Ulyanovsk Region (Russian Federation)

    2009-04-30

    Type 316L austenitic steels are widely used for the in-vessel internal structures of fission reactors (core, core support, etc.) and for experimental irradiation facilities. The modifications of 316L Type steel (316L, 316L(N), US 316, J 316, JPCA, etc.) have been considered as structural material for International Thermonuclear Experimental Reactor (ITER). The results of investigation the irradiation behaviour of Ti-stabilized 316 L type steel (0.04 C-15 Cr-11 Ni-2.5 Mo-0.5 Ti) are presented in this work. The specimens cut out from 316L-Ti steel forging were irradiated in the SM-2 reactor up to a dose {approx}4 and 10 dpa at 265 {+-} 15 deg. C. The tensile properties, fracture toughness and changes in resistance to intergranular stress corrosion cracking (IGSCC) have been investigated after irradiation. The results for Ti-stabilized 316L steel were compared with those for 316L(N)-IG steel irradiated at the same condition.

  8. Caracterización mediante la técnica EBSD de la deformación de chapa de acero inoxidable AISI 304 DDQ bajo tensiones multiaxiales típicas de la embutición

    Directory of Open Access Journals (Sweden)

    Coello, J.

    2009-10-01

    Full Text Available The main aim of this work is to evaluate AISI 304 DDQ stainless steel behaviour under deep drawing deformation condition, that is, pure shear deformation in which material suffers a typical deformation under tension-biaxial compression stresses system. The microestructural evolution has been investigated by optical microscopy and by EBSD technique. The success of the EBSD analysis has been established for the deformation conditions experimented here. It has been determined the rolling direction and the equivalent strain influence on the crystallographic orientation maps, misorientation diagrams and poles figures. The results let the authors say the low angle misorientations corresponding to 0, 45 and 90° rolling directions have an inverse correlation with the material anisotropy. Initial prestraining has been considered also and the analysis of this aspects lead to establish that the increment of the intragranular misorientations with the strain depends on the initial state of the steel; this increment is observed to be minor for samples with initial prestraining. High angle misorientation analysis (>15° indicates that the grain boundaries character distributions depends on the deformation.

    El objetivo de este trabajo es evaluar el comportamiento del acero inoxidable AISI 304 DDQ durante un proceso de deformación típico del conformado de chapa por embutición, tracción-compresión biaxial (T-CC, determinando la evolución microestructural mediante microscopía óptica y EBSD. Se ha establecido la validez del análisis efectuado por EBSD para las condiciones de deformación consideradas en este trabajo. Se ha analizado la influencia de la dirección de laminación y de la deformación equivalente sobre los mapas de orientación cristalina, diagramas de desorientación y figuras de polos inversa, determinando que las desorientaciones de ángulo bajo obtenidas en muestras deformadas a 0°, 45°, y 90° respecto a la dirección de

  9. Análisis de la deformabilidad del acero inoxidable AISI 304 DDQ en condiciones multiaxiales de embutición. Evaluación de la influencia de la acritud inicial

    Directory of Open Access Journals (Sweden)

    Ferrer, C.

    2010-10-01

    ón-compresión biaxial existentes en la zona del ala de un proceso de embutición profunda. El material estudiado es acero inoxidable AISI 304 con calidad de embutición. También se establece la influencia existente para estados de acritud inicial diferentes, laminación y tracción biaxial. Los resultados obtenidos permiten establecer la validez del ensayo realizado desde el punto de vista de la deformación que impone al material. También, se demuestra el efecto predominante de la acritud inicial del material frente al provocado en condiciones multiaxiales de embutición y se establece la variación del coeficiente de anisotropía del material con la deformación de embutición para la dirección coincidente con la de laminación del material.

  10. [Study on biocompatibility of MIM 316L stainless steel].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Li, Yiming; Zhao, Yanzhong; Zhou, Kechao; Huang, Boyun

    2007-04-01

    This study was aimed to evaluate the biocompatibility of metal powder injection molding (MIM) 316L stainless steel. The percentage of S-period cells was detected by flow cytometry after L929 cells being incubated with extraction of MIM 316L stainless steel, and titanium implant materials for clinical application were used as control. In addition, both materials were implanted in animals and the histopathological evaluations were carried out. The statistical analyses show that there are no significant differences between the two groups (P > 0.05), which demonstrate that MIM 316L stainless steel has good biocompatibility.

  11. Study of Ce-modified antibacterial 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Yuan Junping

    2012-11-01

    Full Text Available 316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin-film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.

  12. Estudio de la susceptibilidad de un acero inoxidable dúplex del tipo 22Cr5NiMoN al dañado por hidrógeno en condiciones estáticas (HIC y bajo carga (SSC

    Directory of Open Access Journals (Sweden)

    Gutiérrez de Saiz-Solabarría, S.

    1998-05-01

    Full Text Available The behavior to hydrogen damage caused by corrosion in a H2S medium is studied in a molded ferrite- austenite (52-48 % duplex stainless steel 22Cr5NiMoN type (UNS-J9.22.05 under both, static (damaging mechanism called Hydrogen Induced Cracking (HIC and sustained load (damaging mechanism called Sulfide Stress Cracking (SSC, conditions.

    Se estudia el comportamiento de un mismo acero moldeado inoxidable dúplex austeno-ferrítico (48-52 % del tipo 22Cr5NiMoN (UNS-J9.22.05 frente al dañado por hidrógeno generado por corrosión en medio H2S, tanto en condiciones estáticas, mecanismo de dañado conocido como HIC (Hydrogen Induced Cracking, como bajo carga de tracción, mecanismo de dañado conocido como SSC (Sulfide Stress Cracking.

  13. Quantification of fibrinogen adsorption onto 316L stainless steel.

    Science.gov (United States)

    Gettens, Robert T T; Gilbert, Jeremy L

    2007-05-01

    Adsorption of the plasma protein fibrinogen (Fb) onto 316L stainless steel (316L SS) was observed and quantified using both in situ and ex situ atomic force microscopy techniques. Industry standard mechanical and electrochemical polishing techniques were used to prepare bulk alloy 316L SS samples, rendering the surfaces flat enough to directly observe and measure Fb adsorption. The data were analyzed kinetically using a Langmuir model. Largely irreversible adsorption was found on the 316L SS surface with an adsorption rate constant (k(o)) of 1.9 x 10(-4) mL microg(-1) s(-1) using the ex situ method and 1.7 x 10(-4) mL microg(-1) s(-1) using the in situ method. Additionally, protein conformation and assembly orientation on these surfaces were documented, where the adsorption pattern appeared random. Complete area coverage was never obtained. That is, after adsorption for over 5 time constants (5tau), voids in the structure were always observed.

  14. Caracterizaci\\'on de austenita expandida generada por cementaci\\'on i\\'onica de aceros inoxidables. Estudio de la estabilidad frente a la irradiaci\\'on con haces de iones ligeros energ\\'eticos

    CERN Document Server

    Molleja, Javier García

    2014-01-01

    This thesis was focused on the surface modification with plasma discharge. Austenitic AISI 316L stainless steel sample was carburised under different experimental conditions and mechanical properties have been studied (thickness, lattice parameter, elemental composition, hardness, wear resistance and corrosion resistance). After that, steel substrates have been nitrided or carburised in order to analyse their stability under ion bombardment using a plasma focus device. Helium and deuterium were the gases used in 0, 1, 5, and 10 discharges. Optical and X-ray characterisations were used. Finally, using magnetron sputtering nitrided/carburised samples were coated with an AlN thin film in order to study their stability under long treatments at high temperatures.

  15. On high-cycle fatigue of 316L stents.

    Science.gov (United States)

    Barrera, Olga; Makradi, Ahmed; Abbadi, Mohammed; Azaouzi, Mohamed; Belouettar, Salim

    2014-01-01

    This paper deals with fatigue life prediction of 316L stainless steel cardiac stents. Stents are biomedical devices used to reopen narrowed vessels. Fatigue life is dominated by the cyclic loading due to the systolic and diastolic pressure and the design against premature mechanical failure is of extreme importance. Here, a life assessment approach based on the Dang Van high cycle fatigue criterion and on finite element analysis is applied to explore the fatigue reliability of 316L stents subjected to multiaxial fatigue loading. A finite element analysis of the stent vessel subjected to cyclic pressure is performed to carry out fluctuating stresses and strain at some critical elements of the stent where cracks or complete fracture may occur. The obtained results show that the loading path of the analysed stent subjected to a pulsatile load pressure is located in the safe region concerning infinite lifetime.

  16. Linear friction welding of AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Bhamji, Imran, E-mail: imran.bhamji@postgrad.manchester.ac.uk [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, M1 7HS (United Kingdom); Preuss, Michael [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, M1 7HS (United Kingdom); Threadgill, Philip L. [Formerly with TWI Ltd., Cambridge, UK (now retired) (United Kingdom); Moat, Richard J. [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, M1 7HS (United Kingdom); Addison, Adrian C. [TWI Ltd., Cambridge (United Kingdom); Peel, Matthew J. [University of Bristol, Queens Building, University Walk, Bristol BS8 1TR (United Kingdom)

    2010-12-15

    Research highlights: {yields} Linear friction welding is a feasible process for joining AISI316L. {yields} Most welds had tensile strengths superior to the parent material. {yields} Welding parameters had a significant impact on weld microstructure. {yields} Control of microstructure by controlling welding parameters is a process benefit. - Abstract: Linear friction welding is a solid state joining process established as a niche technology for the joining of aeroengine bladed disks. However, the process is not limited to this application, and therefore the feasibility of joining a common engineering austenitic steel, AISI 316L, has been explored. It was found that mechanically sound linear friction welds could be produced in 316L, with tensile properties in most welds exceeding those of the parent material. The mechanical properties of the welds were also found to be insensitive to relatively large changes in welding parameters. Texture was investigated in one weld using high energy synchrotron X-ray diffraction. Results showed a strong {l_brace}1 1 1{r_brace}< 1 1 2 > type texture at the centre of the weld, which is a typical shear texture in face centre cubic materials. Variations in welding parameters were seen to have a significant impact on the microstructures of welds. This was particularly evident in the variation of the fraction of delta ferrite, in the thermo-mechanically affected zone of the welds, with different process parameters. Analysis of the variation in delta ferrite, with different welding parameters, has produced some interesting insights into heat generation and dissipation during the process. It is hoped that a greater understanding of the process could help to make the parameter optimisation process, when welding 316L as well as other materials, more efficient.

  17. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Directory of Open Access Journals (Sweden)

    Massimiliano Filippi

    2009-03-01

    Full Text Available The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing, in comparison with those obtained under standard/conventional process (EP conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material - medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES and X-ray photoelectron spectroscopy (XPS were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size, EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  18. Laser surface modification of 316L stainless steel.

    Science.gov (United States)

    Balla, Vamsi Krishna; Dey, Sangeetha; Muthuchamy, Adiyen A; Janaki Ram, G D; Das, Mitun; Bandyopadhyay, Amit

    2017-02-28

    Medical grade 316L stainless steel was laser surface melted (LSM) using continuous wave Nd-YAG laser in argon atmosphere at 1 and 5 mm/s. The treated surfaces were characterized using electron backscatter diffraction to study the influence of top surface crystallographic orientation and type of grain boundaries on corrosion resistance, wettability, and biocompatibility. The laser scan velocity was found to have a marginal influence on the surface roughness and the type of grain boundaries. However, the crystal orientation density was found to be relatively high in 1 mm/s samples. The LSM samples showed a higher concentration of {101} and {123} planes parallel to the sample surface as well as a higher fraction of low-angle grain boundaries. The LSM samples were found to exhibit better surface wettability and enhanced the viability and proliferation of human fetal osteoblast cells in vitro when compared to the untreated samples. Further, the corrosion protection efficiency of 316L stainless steel was improved up to 70% by LSM in as-processed condition. The increased concentration of {101} and {123} planes on surfaces of LSM samples increases their surface energy, which is believed to be responsible for the improved in vitro cell proliferation. Further, the increased lattice spacing of these planes and high concentration of low-energy grain boundaries in LSM samples would have contributed to the better in vitro corrosion resistance than untreated 316L stainless steel. Our results indicate that LSM can be a potential treatment option for 316L stainless steel-based biomedical devices to improve biocompatibility and corrosion resistance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  19. Study of hydroxyapatite behaviour during sintering of 316L steel

    Directory of Open Access Journals (Sweden)

    A. Szewczyk-Nykiel

    2010-07-01

    Full Text Available 316L stainless steel – hydroxyapatite composite biomaterials with different hydroxyapatite weight fraction in the composite wereinvestigated. Hydroxyapatite (HAp – Ca10(PO46(OH2 is well known biomaterial. HAp reveals excellent chemical and biological affinitywith bony tissues. On the other hand hydroxyapatite shows low mechanical properties. The combination of very good biocompatibility of hydroxyapatite and high mechanical properties of stainless steel seems to be a good solution. In presented research natural originhydroxyapatite and 316L austenitic stainless steel were used. In this work, metal-ceramics composites were fabricated by the powdermetallurgy technology (involving pressing and sintering process. Sintering was carried out at 1250oC in hydrogen atmosphere. Thedensity, porosity and hardness were investigated. Metallographic microscope and SEM were carried out in order to investigate themicrostructure. The horizontal NETZSCH DIL 402E dilatometer was used to evaluate the dimensional changes and phenomena occurringduring sintering. The research displayed that physical properties of sintered 316L-HAp composites decrease with increase ofhydroxyapatite content. Microstructure of investigated composites consists of austenitic and probably inclusions of hydroxyapatite andheterogeneous eutectic occurring on the grain boundaries. It was shown that amount of hydroxyapatite in the powder mixtures influencethe dimensional changes occurring during sintering.

  20. Characterization of gold and nickel coating on AISI 304 stainless steel for use in the fabrication of current collector plates for fuel cells; Caracterizacion de recubrimientos de oro y niquel realizados sobre acero inoxidable AISI 304 para su empleo en la fabricacion de placas colectoras de corriente para celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Aguilar Gama, M. Tulio [UNAM. Facultad de Quimica, Mexico D.F. (Mexico); Cano Castillo, Ulises; Albarran, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Olvera, J. Carlos; Orozco, German [CIDETEQ, Pedro Escobedo, Queretaro (Mexico)

    2009-09-15

    Among the different components that compose fuel cell technology (MEA, bipolar plates, seals, etc.) current collector plates play an important role in the good performance of fuel cells, since they collect all of the current generated and distribute it to the external circuit. Therefore, the most important properties that the current collector plates should have are excellent conductivity and good resistance to the corrosive conditions present in the fuel cell. This document presents results obtained during the nickel and gold electrodeposition process on AISI 304 stainless steel and the morphology and thickness of each coating, their adhesion, hardness and conductivity values. Finally, results obtained during some of the electrochemical tests performed on the coatings are shown. [Spanish] De los diferentes componentes que integran la tecnologia de celdas de combustible (MEA's, placas bipolares, sellos, etc.), las placas colectoras de corriente tienen un importante rol en el buen desempeno de la celdas de combustibles, ya que en estas placas se colecta toda la corriente generada y se distribuye al circuito externo. Debido a esto, las propiedades mas importantes que deben tener las placas colectaras de corriente son: excelente conductividad y buena resistencia a las condiciones corrosivas presentes en la celda de combustible. En este documento se presentan los resultados obtenidos en el proceso de electrodeposicion de niquel y oro sobre acero inoxidable AISI 304, asi como la morfologia y el espesor de cada recubrimiento, sus valores de adherencia, dureza y conductividad. Finalmente se muestran tambien los resultados obtenidos de algunas pruebas electroquimicas a los que fueron sometidos los recubrimientos.

  1. Surface modification of investment cast-316L implants: microstructure effects.

    Science.gov (United States)

    El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel

    2015-03-01

    Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase.

  2. Laser borided composite layer produced on austenitic 316L steel

    OpenAIRE

    Mikołajczak Daria; Kulka Michał; Makuch Natalia

    2016-01-01

    Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel w...

  3. Fibrinogen adsorption onto 316L stainless steel under polarized conditions.

    Science.gov (United States)

    Gettens, Robert T T; Gilbert, Jeremy L

    2008-04-01

    Adsorption of the plasma protein fibrinogen onto electrically polarized 316L stainless steel was observed and quantified using both in situ and ex situ atomic force microscopy (AFM) techniques. Significant differences in fibrinogen adsorption were observed across voltages. Ex situ studies showed significantly lower area coverage (theta) and height of adsorbed Fb on cathodically polarized surfaces when compared to anodically polarized surfaces. Conformational differences in the protein may explain the distinctions in Fb surface area coverage (theta) and height between the anodic and cathodic cases. In situ studies showed significantly slower kinetics of Fb adsorption onto surfaces below -100 mV (vs. Ag/AgCl) compared to surfaces polarized above -100 mV. Electrochemical current density data showed large charge transfer processes (approximately 1 x 10(-5) to 1 x 10(-4) A/cm(2)) taking place on the 316L SS surfaces at voltages below -100 mV (vs. Ag/AgCl). These relatively large current densities point to flux of ionic species away from the surface as a major source of the reduction in adsorption kinetics rather than just hydrophilic or electrostatic effects.

  4. Physico-chemical properties and microstructure of hydroxyapatite-316L stainless steel biomaterials

    Institute of Scientific and Technical Information of China (English)

    邹俭鹏; 阮建明; 黄伯云; 刘建本; 周小霞

    2004-01-01

    Sintering shrinkage, compressive strength, bending strength, metallurgical morphology, microstructure and chemical composition diffusion of hydroxyapatite-316L stainless steel(HA-316L SS) composites were investigated. The results show that the sintering shrinkage of HA-316L SS composites decreases from 27.38% to 8.87% for cylinder sample or from 27.18% to 8.62% for cuboid sample with decreasing the volume ratio of HA to 316L SS, which leads to higher sintering activity of HA compared with that of 316L SS. The compressive strength of HA-316L SS composites changes just like parabolic curve (245.3→126.3→202.8 MPa) with reducing the volume ratio of HA to 316L SS. Bending strength increases from 86.3MPa to 124. 2 MPa with increasing the content of 316L SS. Furthermore, comprehensive mechanical properties of 1.0∶3.0 (volume ratio of HA to 316L SS) composite are optimal with compressive strength and bending strength equal to 202.8 MPa and 124.2 MPa, respectively. The microstructure and metallurgical structure vary regularly with the volume ratio of HA to 316L SS. Some chemical reaction takes place at the interface of the composites during sintering.

  5. Ionic implantation by plasma in titanium and stainless steels used in prosthesis and medical instruments; Implantacion ionica por plasma en titanio y aceros inoxidables usados en protesis e instrumental medico

    Energy Technology Data Exchange (ETDEWEB)

    Munoz C, A. E. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    A study of a process known as plasma immersion ion implantation (PIII) of nitrogen at low voltages (< 4 kV) into three kind of samples: 1) austenitic stainless AISI 316-L steel plates, 2) ferritic stainless AISI 434 steel-based dentistry drills and 3) commercially pure titanium (CPTi) disks. On the case of CPTi the study was conducted in nitrogen- oxygen calibrated mixtures: 90% N-10% O, 80% N-20% O, 70% N-30% O and in 99.5% pure oxygen and 99.9% pure nitrogen. The PIII process was carried out by using a direct current plasma source controlled both in voltage and current, a negative voltage pulse modulator, a stainless AISI 304 steel vacuum chamber and a rod of the same material, horizontally located in the upper region of the chamber, which plays the role of anode in the plasma discharge. The purpose of the nitriding is forming a relatively thick layer on the surface of the steel specimens in order to enhance their both microhardness and general corrosion performances, desirable in medical applications. This layer contains interstitial nitrogen atoms ({approx}24% at.) which gives place to a deformed lattice (expanded phase) of the steel. Vickers microhardness and potentiodynamic tests (the latter in agreement to the norm ASTM G-61-89) confirm an increase of microhardness up to three times and a decrease of general corrosion rate in one order of magnitude. The nitriding of de dentistry drills is aimed at inhibiting the pitting corrosion produced by the asepsis process which results in pit nucleations, their propagation and consequent fractures when being under cyclic stress (fatigue). Scanning electron microscope micrographs reveal the risks involved in surpassing the critical treatment simple temperature of 450 C as the PIII process itself induces pitting. On its part, cyclic (ASTM G-61) potentiodynamic tests indicate an excellent pitting corrosion resistance of the samples treated under 450 C. In turn, the treatment of CPTi was meant to develop oxidized and

  6. INFLUENCIA DE LA NITRURACIÓN POR PLASMA SOBRE EL COMPORTAMIENTO A LA CORROSIÓN Y LA ADHESIÓN DE RECUBRIMIENTOS DLC SOBRE ACERO INOXIDABLE AISI 420

    Directory of Open Access Journals (Sweden)

    Jorge N. Pecina

    2016-01-01

    Full Text Available En este trabajo se estudió el comportamiento a la corrosió n y la adhesión de dos rec ubrimientos DLC (“Diamond Like Carbon ” , “Soft” y “Hard”, depositados por PACVD (“Plasma Assisted Chemical Vapour Deposition” sobre acero AISI 420, templado y revenido y /o nitrurado por plasma . Se analizaron por espectroscopía Raman y midió dureza en superficie. Se observó la microestructura por OM y SEM. Se realizaron pruebas de adhesión con indentación Rockwell C . S e practicaron ensayos de Niebla Salina e inmersión en HCl . Los DLC “ Soft ” presentaron una dureza de 5 00 HV y un espesor de 2 0 μm , mientras que los “ Hard ” tuvieron 1400 HV y 2 ,5 μm. Ambos recubrimientos presentaron bajo coeficiente de fricción y buena adhesión sobre el sustrato nitrurado . También presentaron buena resistencia a la corrosión atmosférica. En HCl el DLC retardó la degradación que se presentó rápidamente en las muestras sin recubrir.

  7. Multiaxial elastoplastic cyclic loading of austenitic 316L steel

    Directory of Open Access Journals (Sweden)

    V. Mazánová

    2017-04-01

    Full Text Available Cyclic stress-strain response and fatigue damage character has been investigated in austenitic stainless steel 316L. Hollow cylindrical specimens have been cyclically deformed in combined tension-compression and torsion under constant strain rate condition and different constant strain and shear strain amplitudes. In-phase and 90° out-of-phase cyclic straining was applied and the stress response has been monitored. Cyclic hardening/softening curves were assessed in both channels. Cyclic softening followed for higher strain amplitudes by long-term cyclic hardening was observed. Cyclic stress-strain curves were determined. Study of the surface damage in fractured specimens revealed the types and directions of principal cracks and the sources of fatigue crack initiation in slip bands.

  8. Laser borided composite layer produced on austenitic 316L steel

    Science.gov (United States)

    Mikołajczak, Daria; Kulka, Michał; Makuch, Natalia

    2016-12-01

    Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides) and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  9. Laser borided composite layer produced on austenitic 316L steel

    Directory of Open Access Journals (Sweden)

    Mikołajczak Daria

    2016-12-01

    Full Text Available Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  10. Long-term stability of self-assembled monolayers on 316L stainless steel.

    Science.gov (United States)

    Kaufmann, C R; Mani, G; Marton, D; Johnson, D M; Agrawal, C M

    2010-04-01

    316L stainless steel (316L SS) has been extensively used for making orthopedic, dental and cardiovascular implants. The use of phosphonic acid self-assembled monolayers (SAMs) on 316L SS has been previously explored for potential biomedical applications. In this study, we have investigated the long-term stability of methyl (-CH(3)) and carboxylic acid (-COOH)-terminated phosphonic acid SAMs on 316L under physiological conditions. The stability of SAMs on mechanically polished and electropolished 316L SS was also investigated as a part of this study. Well-ordered and uniform -CH(3)- and -COOH-terminated SAMs were coated on mechanically polished and electropolished 316L SS surfaces. The long-term stability of SAMs on 316L SS was investigated for up to 28 days in Tris-buffered saline (TBS) at 37 degrees C using x-ray photoelectron spectroscopy, atomic force microscopy and contact angle goniometry. A significant amount of phosphonic acid molecules was desorbed from the 316L SS surfaces within 1 to 7 days of TBS immersion followed by a slow desorption of molecules over the remaining days. The -COOH-terminated SAM was found to be more stable than the -CH(3)-terminated SAM on both mechanically and electropolished surfaces. No significant differences in the desorption behavior of SAMs were observed between mechanically and electropolished 316L SS surfaces.

  11. Sintering activation of 316L powder using a liquid phase forming powder

    Directory of Open Access Journals (Sweden)

    Nattaya Tosangthum

    2010-03-01

    Full Text Available It was found that the addition of a liquid forming powder (up to 6 wt.% of a gas-atomized tin powder to 316L powdercould activate the sintering process. Sintering activation could be observed by an increase of the sintered density and selected mechanical properties. When optimized tin powder content was used, shorter sintering time and lower sintering temperaturecould produce sintered 316L+tin materials with excellent mechanical properties. Electron dispersive spectroscopy analyses across 316L-tin-316L grains indicated that Ni transportation during the sintering process was enhanced by the presence of liquid tin.

  12. Estudio de la susceptibilidad de un acero inoxidable austenítico estabilizado con niobio al dañado por tensocorrosión en medio H2S (SSC y corrosión intergranular (IGC en otros medios agresivos

    Directory of Open Access Journals (Sweden)

    Gutiérrez de Saiz-Solabarría, S.

    1998-05-01

    Full Text Available Behavior to hydrogen damage caused by stress corrosion in a H2S medium (SSC and to intergranular corrosion (IGC in different mediums, such as oxalic acid (C2H2O4-2H20, iron sulphate-50 % sulfuric acid [Fe2(SO43-50 % H2SO4], nitric acid (HNO3, copper sulphate-16 % sulfuric acid (CuSO4-5H2O-16 % H2SO4 and cooper sulphate-50 % sulfuric acid (CuSO4-5H2O-50 % H2SO4, is studied in an AISI 347 austenitic stainless steel stabilized with 0.61 mass % Nb and hot rolled to a seamless pipe with 273.1 mm in diameter and 18.2 mm in thickness.

    Se estudia el comportamiento de un acero inoxidable austenítico del tipo AISI 347 estabilizado con un 0,61 % en masa de Nb, laminado en caliente para producir una tubería sin soldadura de 273,1 mm de diámetro y 18,2 mm de espesor, frente al dañado por hidrógeno generado por tensocorrosión en medio H2S (SSC y frente a la corrosión intergranular (IGC en diferentes medios agresivos tales como ácido oxálico (C2H2O4∙2H2O, sulfato de hierro-50% ácido sulfúrico [Fe2 (SO43-50 % H2SO4], ácido nítrico (HNO3, sulfato de cobre-16% ácido sulfúrico (CuSO4-5H2O-16 % H2SO4 y sulfato de cobre-50 % ácido sulfúrico (CuSO4-5H2O-50 % H2SO4, respectivamente.

  13. Influencia de los elementos residuales cobre, estaño, fósforo y arsénico en el agrietamiento de la superficie del acero inoxidable 18-8 durante la compresión a altas temperaturas

    Directory of Open Access Journals (Sweden)

    Botella, J.

    1998-05-01

    Full Text Available The effect of certain different concentrations of Cu, Sn, P and As on the surface cracking of 18-8 austenitic stainless steel hot compressed specimens has been studied, at 1,123 and 1,273 K, in an oxidizing atmosphere (air. A procedure for determining surface cracking has been established, and the cracking factor obtained in this way is correlated with the chemical composition of the materials at both temperatures. The cracking factors obtained at 1,273 K have been compared with the reduction of area drops obtained by hot tension tests at the same temperature.

    Esta investigación aborda el estudio del efecto de concentraciones variables de cobre, estaño, fósforo y arsénico en el agrietamiento de la superficie de un acero 18-8, sometido a ensayos de compresión, a 1.123 y 1.273 K, en atmósfera oxidante (aire. Se desarrolla un procedimiento de cuantificación del grado de agrietamiento y se relaciona cada índice de agrietamiento así obtenido, a las distintas temperaturas, con la composición química" de los materiales. Los índices de agrietamiento correspondientes a los materiales comprimidos a 1.273 K se comparan con los valores de pérdida de reducción de área obtenidos mediante ensayos de tracción a la misma temperatura.

  14. Evaluación de la fuerza de doblado y de fricción en el conformado de chapa de acero inoxidable AISI 304 DDQ mediante ensayos de doblado en condiciones multiaxiales de embutición

    Directory of Open Access Journals (Sweden)

    Coello, J.

    2012-08-01

    Full Text Available Die radius is a critical area from the viewpoint of friction in forming processes. Moreover the sheet, that has been previously deformed in flange area, suffers bending and unbending stresses. Then, die-sheet contact in die radius must be especially considered in order to guarantee the suitable lubrication conditions. In the present work, a test method is carried out for evaluating an AISI 304 DDQ steel under similar conditions to those existing in the die radius area and that, usually, are not really reproduced in traditional bending under tensions tests. Deformation under pure shear condition, the bending and the radius angle have been established as variables of the tests. Results allow to obtain the apparent pressure sheet-bending tool, that increases with bending angle and decreases with tool radius. This last variable is the most significant while the bending angle has lesser influence. Although experimental results present some concordances with values obtained by analytical methods, some corrections must be considered in them in order to improve the theoretical values.

    El radio de entrada a la matriz se considera una de las zonas críticas en los procesos de conformado de chapa mediante embutición profunda. El análisis de la fuerza de fricción y de doblado existentes resulta importante para predecir el comportamiento de la chapa en dicha zona, así como para garantizar una lubricación adecuada a las condiciones de procesado. En el presente trabajo, se aplica un método de ensayo que evalúa las acciones en el proceso de doblado del acero AISI 304 DDQ bajo condiciones similares a las que sufre el material en los procesos de embutición y que no son reproducidas por los clásicos ensayos de doblado bajo tensión. Se establecen como variables la deformación experimentada previamente por el material en condiciones típicas de cortante puro, “pure shear”, el ángulo de doblado y el radio de doblado. Los resultados obtenidos

  15. Enhancement of cavitation erosion resistance of 316 L stainless steel by adding molybdenum.

    Science.gov (United States)

    Li, D G; Chen, D R; Liang, P

    2017-03-01

    The influence of Mo on ultrasonic cavitation erosion of 316 L stainless steel in 3.5% NaCl solution were investigated using an ultrasonic cavitation erosion (CE) facility. The morphologies of specimen after cavitation erosion were observed by scanning electron microscopy (SEM). The results showed that the addition of Mo can sharply decrease the mean depth of erosion (MDE) of 316 L SS, implying the increased resistance of cavitation erosion. In order to better understanding the influence of Mo on the cavitation erosion of 316 L SS, the semi-conductive property of passive films on 316 L SS containing different concentrations of Mo were studied by Mott-Schottky plot. Based on Mott-Schottky results and semiconductor physics, a physical model was proposed to explain the effect mechanism of Mo on cavitation erosion of 316 L SS.

  16. Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel.

    Science.gov (United States)

    Gopi, D; Ramya, S; Rajeswari, D; Kavitha, L

    2013-07-01

    Polypyrrole/strontium hydroxyapatite bilayer coatings were achieved on 316L stainless steel (316L SS) by the electropolymerisation of pyrrole from sodium salicylate solution followed by the electrodeposition of porous strontium hydroxyapatite. The formation and the morphology of the bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM), respectively. The corrosion resistance of the coated 316L SS specimens was investigated in Ringer's solution by electrochemical techniques and the results were substantiated with inductively coupled plasma atomic emission spectrometry (ICP-AES). The passive film underneath the polypyrrole layer is effective in protecting 316L SS against corrosion in Ringer's solution. Moreover, we believe that the top porous strontium hydroxyapatite layer can provide potential bioactivity to the 316L SS.

  17. Recubrimiento de Stellite 6 sobre acero inoxidable realizado con láser de CO2 para válvulas de escape de motores diesel

    Directory of Open Access Journals (Sweden)

    Cadenas, M.

    2002-12-01

    Full Text Available To reduce the recovery or the replacement costs of diesel engine exhaust valves, they are manufactured with an economic base material, and a coating which is deposited on the seat valve in order to reach high hardness and good impact, corrosion and high temperature wear resistance (>550 °C and without lubrication. In this work, appropriate laser cladding parameters have been determined to obtain Stellite 6 coatings over AISI 304 steel (as plane test specimens and SAE EV8 steel (as valves substrates. One and two superimposed tracks were deposited on the seat valves, and modifying the laser power as a function of the rotated angle at the beginning and the end of the circular tracks, pores and cracks have been minimized and the thickness of the track were made uniform. Hardness, dilution and final microstructure of the different coatings have been analysed. A 10 % dilution and 550 HV in the tracks over plane test specimens was observed, while valves with one track showed 25 % and 430 HV respectively. With two superimposed tracks the hardness was up to 470 HV in the upper track.

    Para abaratar el coste de recuperación o sustitución de válvulas de escape en motores diesel, estas se fabrican con un material base económico, recubriéndose el asiento de la válvula con otro material al que se exigirá elevada dureza y buena resistencia al impacto, a la corrosión y al desgaste erosivo en caliente (>550 °C y sin lubricación. Partiendo de esta idea, en el presente trabajo se han determinado los parámetros adecuados para realizar, mediante la técnica de plaqueado láser, un recubrimiento con Stellite 6, sobre sustratos de acero AISI 304 (probetas planas y SAE EV8 (válvulas reales. Sobre las válvulas, se depositaron uno y dos cordones superpuestos, se minimizó la presencia de poros y grietas, modificando el grado de solape inicial y final de los cordones circulares y la potencia en función del ángulo girado. Así, se

  18. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Kruszewski, Kristen M., E-mail: kruszewskik@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States); Nistico, Laura, E-mail: lnistico@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Longwell, Mark J., E-mail: mlongwel@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Hynes, Matthew J., E-mail: mjhynes@go.wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Maurer, Joshua A., E-mail: maurer@wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Hall-Stoodley, Luanne, E-mail: L.Hall-Stoodley@soton.ac.uk [Southampton Wellcome Trust Clinical Research Facility/NIHR Respiratory BRU, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD (United Kingdom); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, McGowan Institute for Regenerative Medicine, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States)

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (− CH{sub 3}) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. - Highlights: ► SS316L was modified with glycol terminated SAMs in order to reduce biofilm growth. ► Antibiotics gentamicin and vancomycin were immobilized on SS316L via SAMs. ► Only the antibiotic modifications reduced biofilm development on SS316L.

  19. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Science.gov (United States)

    Shyr, Tien-Wei; Huang, Shih-Ju; Wur, Ching-Shuei

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α‧-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α‧-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy.

  20. Barnacle cement: an etchant for stainless steel 316L?

    Science.gov (United States)

    Sangeetha, R; Kumar, R; Doble, M; Venkatesan, R

    2010-09-01

    Localized corrosion of stainless steel beneath the barnacle-base is an unsolved issue for the marine industry. In this work, we clearly bring out for the first time the role of the barnacle cement in acting as an etchant, preferentially etching the grain boundaries, and initiating the corrosion process in stainless steel 316L. The investigations include structural characterization of the cement and corroded region, and also chemical characterization of the corrosion products generated beneath the barnacle-base. Structural characterization studies using scanning electron microscopy (SEM) reveals the morphological changes in the cement structure across the interface of the base-plate and the substrate, modification of the steel surface by the cement and the corrosion pattern beneath the barnacle-base. Fourier transform infrared spectroscopy (FTIR) of the corrosion products show that they are composed of mainly oxides of iron thereby implying that the corrosion is aerobic in nature. A model for the etching and corrosion mechanism is proposed based on our observations.

  1. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    Science.gov (United States)

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively.

  2. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    Science.gov (United States)

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  3. Determinación de las modificaciones estructurales de la soldadura tipo SMAW en acero S355J2W

    OpenAIRE

    AIBAR MOSCOSO, ÁNGEL IVÁN

    2011-01-01

    La finalidad del presente proyecto es poder determinar las características de la soldadura por arco eléctrico tipo SMAW mediante tres diferentes electrodos, como son los básico con alma de acero al carbono, los de rutilo y los básico con alma de acero inoxidable sobre un acero st-52 así como los métodos destructivos y no destructivos para verificar el estado en el que se encuentra la soldadura. Estos objetivos se llevan a cabo mediante el seguimiento de una metodología de trabajo, así como...

  4. Caracterização microestrutural de soldas dissimilares dos aços ASTM A-508 e AISI 316L Characterization of dissimilar metal weld between low alloy steel ASTM A-508 and 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Luciana Iglésias Lourenço Lima

    2010-06-01

    Full Text Available As soldas dissimilares (dissimilar metal welds - DMWs são utilizadas em diversos segmentos da indústria. No caso específico de usinas nucleares, tais soldas são necessárias para conectar tubulações de aço inoxidável com componentes fabricados em aços baixa liga. Os materiais de adição mais utilizados neste tipo de solda são as ligas de níquel 82 e 182. Este trabalho consistiu na soldagem de uma junta dissimilar de aço baixa liga ASTM A-508 G3 e aço inoxidável austenítico AISI 316L utilizando as ligas de níquel 82 e 182 como metais de adição. A soldagem foi realizada manualmente empregando os processos de soldagem ao arco SMAW (Shielded Metal Arc Welding e GTAW (Gas Tungsten Arc Welding. Os corpos de prova foram caracterizados microestruturalmente utilizando-se microscópio óptico e microscópio eletrônico de varredura com microanálise por dispersão de energia de raios X (EDS e ensaios de microdureza Vickers. Observou-se uma microestrutura constituída de dendritas de austenita com a presença de precipitados com formas e dimensões definidas pelo aporte térmico e pela direção de soldagem. Não houve variação significativa da dureza ao longo da junta soldada, demonstrando a adequação dos parâmetros de soldagem utilizados.The dissimilar metal welds (DMWs are used in several areas of the industries. In the nuclear power plant, this weld using nickel alloy welding wires is used to connect stainless steel pipes to low alloy steel components on the reactor pressured vessels. The filler materials commonly used in this type of weld are nickel alloys 82 and 182.. In this study, dissimilar metal welds composed of low alloy steel ASTM A-508 G3, nickel alloys 82 e 182 as weld metals, and austenitic stainless steel AISI 316L were prepared by manual shielded metal arc welding (SMAW and gas tungsten arc welding techniques (GTAW. Samples were microstructural characterized by optical microscopy and scanning electron microscopy

  5. Evaluación del springback mediante ensayos de doblado bajo tensión en condiciones de multiaxialidad típicas de los procesos de embutición profunda. Aplicación a chapa de acero inoxidable AISI 304 DDQ

    Directory of Open Access Journals (Sweden)

    Miguel, V.

    2013-06-01

    Full Text Available In this paper, a methodology has been developed for evaluating the springback of AISI 304 DDQ stainless steel sheet based on a bending under tension test. The main difference of the methodology herein carried out is that tests are made under the multiaxial stresses state that take place in deep drawing processes. This affects to the level of stress value in the test and to the hardening state of the sheet. Springback evaluation has been done in two different areas. Bending area has been evaluated from elastic recovery ratio defined as the ratio between the bending radius after and before bending. Bending and unbending extreme has been studied from the measured curvature radius in this area and taking into account the geometric equivalence of the test with the drawing cups process. Results found allow to state that drawing ratio or deformation ratio have a negligible influence on the springback into the range of values experimented here. Bending radius has hardly influence as well while bending angle is the most significant variable. The results obtained are compared to those measured in deep-drawn cups, finding a great agreement.En este trabajo se presenta una metodología para evaluar la recuperación elástica o springback de chapa de acero inoxidable AISI 304 DDQ basada en la realización de ensayos bajo tensión. A diferencia de los estudios existentes en la literatura, los ensayos realizados son efectuados en condiciones multiaxiales típicas de los procesos de embutición de chapa. Esto afecta fundamentalmente a las tensiones involucradas en el proceso así como al estado de endurecimiento que experimenta el material. La evaluación del springback se ha efectuado en dos áreas diferentes. En la zona de doblado se ha evaluado a partir del factor de recuperación definido como la razón entre el radio de doblado y el radio con el que queda finalmente el material. La zona de doblado y desdoblado se ha evaluado en base a la inversa del radio

  6. Development of Pack Cementation Aluminizing Process on Inner Surface of 316L Stainless Steel Tube

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In order to form the FeAl coatings on the inner surface of the 316L stainless steel tube,the pack cementation aluminizing process is introduced in this paper. The outside diameter,wall thickness and

  7. Inlfuence of Marine Aerobic Bioiflms on Corrosion of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Feng-ling XU; Ji-zhou DUAN; Cun-guo LIN; Bao-rong HOU

    2015-01-01

    The inlfuence of marine aerobic bioiflms on the corrosion of 316L stainless steel (SS) in aerated and deaerated seawater was studied by electrochemical impedance spectroscopy (EIS), potentiodynamic polarisation curves, current-potential curves and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). EIS and SEM-EDS results showed that the aero-bic bioiflms inhibited 316L SS corrosion within the test duration. Comparison of results under aerated and deaerated conditions revealed that O2 enhanced the inhibition efifciency of the aerobic bioiflms. This result indicated that living cells were necessary for the aerobic bioiflms to inhibit the corrosion of 316L SS. Polarization curves indicated that the bioiflms mainly inhibited anode ac-tion. Current-potential curves under deaerated conditions showed that electron transfer processes occurred between microorganisms and electrodes. Moreover, 316L SS as an electron acceptor was protected from corrosion.

  8. Effect of the La alloying addition on the antibacterial capability of 316L stainless steel.

    Science.gov (United States)

    Yuan, J P; Li, W; Wang, C

    2013-01-01

    316L stainless steel is widely used for fashion jewelry but it can carry a large number of bacteria and cause the potential risk of infection since it has no antimicrobial ability. In this paper, La is used as an alloying addition. The antibacterial capability, corrosion resistance and processability of the La-modified 316L are investigated by microscopic observation, thin-film adhering quantitative bacteriostasis, electrochemical measurement and mechanical test. The investigations reveal that the La-containing 316L exhibits the Hormesis effect against Staphylococcus aureus ATCC 25923 and Escherichia coli DH5α, 0.05 wt.% La stimulates their growth, as La increases, the modified 316L exhibits the improved antibacterial effect. The more amount of La is added, the better antibacterial ability is achieved, and 0.42 wt.% La shows excellent antibacterial efficacy. No more than 0.11 wt.% La addition improves slightly the corrosion resistance in artificial sweat and has no observable impact on the processability of 316L, while a larger La content degrades them. Therefore, the addition of La alone in 316L is difficult to obtain the optimal combination of corrosion resistance, antibacterial capability and processability. In spite of that, 0.15 wt.% La around is inferred to be the trade-off for the best overall performance.

  9. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts.

    Science.gov (United States)

    Hiromoto, Sachiko; Hanawa, Takao

    2006-08-22

    Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells.

  10. New route to form micro-pores on 316L stainless steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xinxin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 (China)], E-mail: maxin@hit.edu.cn; Wang Yujiang; Tang Guangze [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 (China); Chen Qingfu [Jiangyin Fasten-PLT Materials Science Co., Ltd (Peier), 998 Changjiang Donglu, Jiangyin, 214434 (China)

    2008-11-15

    In order to seek an effective way for preventing restenosis after coronary stent implantation, a proposal of increasing the amount of loaded drug without changing the size of struts was given. Thereafter, a process of fabricating in-situ formed sub-micro-pores on 316L stainless steel (316L SS) was demonstrated. An aluminum thin film was deposited by magnetron sputtering on a 316L substrate. The aluminum film was then anodized in different acids (0.3 M oxalic and 10 vol.% sulfuric) by regulating direct current power supply. Through an appropriate chemical dissolution, the anodic alumina film was removed and the underlying porous 316L was obtained. The morphology of the porous 316L surface was examined by scanning electron microscope and the composition of the pores was investigated by energy dispersive X-ray analysis. The corrosion behavior of the porous 316L was evaluated by the polarization measurement. The results indicate that the shape and size of pores could be affected evidently by the acids used in anodization. The pores density is found to change with variation of the applied voltage in anodization. The corrosion current of the anodized specimens decrease and the corrosion voltage increase, compared with the untreated specimens.

  11. 316L 超低碳不锈钢的焊接性分析%Analysis of the Welding Character of Extra Low Carbon Stainless Steel 316L

    Institute of Scientific and Technical Information of China (English)

    王敏华; 顾天杰

    2015-01-01

    用不同焊接方式和同一焊接方式不同焊口坡度焊接多种316L超低碳不锈钢焊接试板。通过外观观察、 X射线检验、机械性能检验等方法对成品进行分析,掌握了316L材料的焊接性能。结果表明通过采取适当的工艺措施,316L奥氏体不锈钢焊接接头可以避免热裂纹、晶间腐蚀、刀状腐蚀等缺陷。同时验证了316L焊接接头良好的耐蚀性和机械性能。%A variety of extra low carbon stainless steel 316 L welding test plates were made by different welding ways and different weld slope in the same way.Through visual observation, X-ray inspection, mechanical properties test to analyze the products, the welding properties of 316L materials were mastered.The results showed that by adopting the appropriate process measures, welding joint of 316L austenitic stainless steel can prevent hot crack, intergranular corrosion, knife shaped corrosion.At the same time, it was verified that 316L welded joints had good corrosion resistance and mechanical properties.

  12. Corrosión intergranular en aceros inoxidables

    Directory of Open Access Journals (Sweden)

    Álvaro Forero Mora

    2011-02-01

    Full Text Available Con alguna frecuencia llegan al IEI consultas acerca de la posibilidad de que se presente este problema en ciertas instalaciones industriales. El siguiente es un estudio sobre dicho fenómeno.

  13. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    Science.gov (United States)

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.

  14. Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Shirai, Yuma; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-10-15

    Highlights: • The microstructure of F82H/SUS316L dissimilar joint can be divided into four regions. • In the case without beam position shift, hardness of WM cannot be reduced by PWHT. • The fiber laser welding would be applicable for constructing the dissimilar joint. -- Abstract: As one of the high beam quality heat sources, 4 kW fiber laser was applied for joining between reduced activation ferritic/martensitic steel, F82H and SUS316L austenitic stainless steel, and the microstructural analyses and Vickers hardness measurements were carried out before and after post-weld heat treatment (PWHT). The microstructure of joint can be divided into four regions which are base metal of F82H, heat affected zone (HAZ) in F82H, weld metal (WM) and base metal of SUS316L. Also, it is revealed that the high-power fiber laser can be employed for constructing butt joint between F82H and SUS316L by applying PWHT and shifting the laser beam position to SUS316L, where the distance between the contact face and beam should be set as a range from radius to diameter of laser beam.

  15. Análisis de la fragilización por envejecimiento a baja temperatura de los aceros CF8M

    OpenAIRE

    Mazorra Incera, Luis; Gutiérrez-Solana Salcedo, Federico; González Martínez, Javier Jesús; Varona Ruiz, José María

    1989-01-01

    RESUMEN. En el marco de una investigación de carácter más general, en la que se analiza la fragilización térmica a 280º de los aceros inoxidables austenoferríticos moldeados, en el presente trabajo se estudia el comportamiento de los aceros CF8M frente a este problema como continuación a los resultados expuestos en un artículo anterior. Los modelos de comportamiento a que se llega, se basan en los efectos que ejercen los diferentes elementos que entran en la composición del acero y en la cant...

  16. Wear and Corrosion Study of Sputtered Zirconium thin films on SS316L for Windmill Application

    Directory of Open Access Journals (Sweden)

    Arunkumar N

    2015-05-01

    Full Text Available The Aim of this study is to observe the Wear and Corrosion behavior of Zirconium coated 316L stainless steel. After polishing, SS316L was coated with Zirconium employing DC sputtering process (a technique of physical vapor deposition.Structure characterization techniques including Scanning Electron Microscope (SEM and X-Ray Diffraction (XRD were utilized to investigate the microstructure and crystallinity of the coating. Salt spray test was performed by spraying Sodium chloride in order to determine corrosion resistance behavior of the coated sample. Pin on disc wear test was performed by hardened and tempered EN31 steel pin in order to determine and compare the Wear resistance behavior of Coated and uncoated samples. The Objective is to recommend the zirconium coated Stainless steel SS316L can be a choice for Off-shore wind mills where the shafts undergo Wear and corrosion problems.

  17. Pitting Corrosion of 316L Stainless Steel under Low Stress below Yield Strength

    Institute of Scientific and Technical Information of China (English)

    L(U) Shengjie; CHENG Xuequn; LI Xiaogang

    2012-01-01

    Pitting corrosion of 316L stainless steel (316L SS) under various stress was studied by potentiodynamic polarization,electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis in 3.5% NaCl solution.The results of polarization curves show that,with the increase of the stress,the pitting potentials and the passive current density markedly decrease firstly (180 MPa),and then increase greatly (200 MPa).The corresponding surface morphologies of the samples after the polarization test well correspond to the results.Mott-Schottky analysis proved the least Cl- adsorbed to the surface of passive film with more positive flat potential,indicating that a moderate stress could increase the pitting corrosion resistance of 316L SS in 3.5% NaCl solution.

  18. Processing and mechanical properties of porous 316L stainless steel for biomedical applications

    Institute of Scientific and Technical Information of China (English)

    Montasser M.DEWIDAR; Khalil A.KHALIL; J. K. LIM

    2007-01-01

    Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.

  19. Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application

    Science.gov (United States)

    2010-03-01

    AFRL-RX-WP-TP-2010-4149 EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR AIRCRAFT LANDING GEAR...March 2010 – 01 March 2010 4. TITLE AND SUBTITLE EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR...Code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on

  20. Short-term low-temperature glow discharge nitriding of 316L austenitic steel

    Directory of Open Access Journals (Sweden)

    T. Frączek

    2011-07-01

    Full Text Available The AISI 316L austenitic steel after glow discharge nitriding at temperature of T = 673 K and duration of τ=14,4 ks, for two different variants of specimen arrangement in the glow-discharge chamber was investigated. In order to assess the effectiveness of nitriding process, the surface layers profile analysis examination, surface hardness and hardness profile examination, the analysis of surface layer structures and corrosion resistance tests were performed. It has been found that application of a booster screen effects in a nitrogen diffusion depth increment into the 316L austenitic steel surface, what results in the surface layer thickness escalation.

  1. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    Science.gov (United States)

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  2. 凝胶离心成型制备316L-TiC复合材料%Centrifugal gel forming of 316L - TiC composites

    Institute of Scientific and Technical Information of China (English)

    石永亮; 郭志猛; 方哲成; 曾鲜

    2012-01-01

    将凝胶离心成型工艺应用于316L-TiC复合粉末的坯体成型,研究了固含量对316L-TiC复合粉末浆料流变性的影响以及引发剂的加入量对粉末浆料固化时间的影响,分析了凝胶离心成型工艺中离心转速与316L-TiC坯体的密度和强度的关系。结果表明:以油酸作分散剂,制备稳定且流动性好的浆料的最佳固含量为55%(体积分数);引发剂的加入量为0.7%(占预混液的质量分数),采用自行设计的离心成型机,选择最佳转速3000r/min,制备出的坯体密度高、无残留气孔,相对密度64.3%,强度26.3MPa。坯体经真空脱胶1380℃烧结保温1h制备出316L-TiC合金管,烧结体收缩均匀无变形,TiC颗粒呈均匀分布。%Centrifugal gel forming was applied to the molding of 316L-TiC composite powders. The effect of the solids loading on the rheological behavior of 316L -TiC composite powders slurry was investigated, and the effect of the amount of initiator on the solidification time was also studied. Moreover, the relationship between the rotation speed and the density and strength of green body by centrifugal gel forming was analyzed. The results show that, using oleic acid as dispersion, slurry with good flowability and good stability has been prepared, at which a maximum solids volume fraction of 55 % and the amount of initiator of 0.7%(mass fraction in the premix) can be obtained. Using the device made by ourselves and choosing the optimum rotation speed 3000 r/rain, the green body with high density and no residue stomatal has been prepared, while the relative density and strength is 64.3% and 26.3 MPa, respectively. 316L - TiC alloy pipe is achieved by sintered at 1380 ℃ for 1 h in vacuum, which has a uniform shrinkage without deformation and the homogeneous distribution of the TiC particles.

  3. Electrochemical behavior of SUS316L stainless steel after surface modification

    Institute of Scientific and Technical Information of China (English)

    梁成浩; 郭亮; 陈婉; 刘敬肖

    2003-01-01

    The surface modification for SUS316L stainless steel was carried out by electroplating Rh, ion beam assisted deposition Ta2O5 and sol-gel-derived TiO2. In Tyrodes stimulated body fluid, the surface modified samples were investigated with electrochemical techniques. The results indicate that the electrochemical stability and dissolution are improved significantly after surface modification. Moreover, as to ion beam assisted deposition Ta2O5 and sol-gel-derived TiO2 film, the metals d orbit electron holes filled up by the oxygen electrons make against the adsorption of hydrogen. Thus the cathode process, which is controlled by the hydrogen reduction, is held back. X-ray diffraction analysis of SUS316L stainless steel after surface modification reveal that each method forms the uniform and compact film on SUS316L stainless steel. These films prevent the dissolving of elements and improve passivation property of the SUS316L stainless steel.

  4. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    Science.gov (United States)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  5. Parameter Optimization Of Natural Hydroxyapatite/SS316l Via Metal Injection Molding (MIM)

    Science.gov (United States)

    Mustafa, N.; Ibrahim1, M. H. I.; Amin, A. M.; Asmawi, R.

    2017-01-01

    Metal injection molding (MIM) are well known as a worldwide application of powder injection molding (PIM) where as applied the shaping concept and the beneficial of plastic injection molding but develops the applications to various high performance metals and alloys, plus metal matrix composites and ceramics. This study investigates the strength of green part by using stainless steel 316L/ Natural hydroxyapatite composite as a feedstock. Stainless steel 316L (SS316L) was mixed with Natural hydroxyapatite (NHAP) by adding 40 wt. % Low Density Polyethylene and 60 %wt. Palm Stearin as a binder system at 63 wt. % powder loading consist of 90 % wt. of SS316 L and 10 wt. % NHAP prepared thru critical powder volume percentage (CPVC). Taguchi method was functional as a tool in determining the optimum green strength for Metal Injection Molding (MIM) parameters. The green strength was optimized with 4 significant injection parameter such as Injection temperature (A), Mold temperature (B), Pressure (C) and Speed (D) were selected throughout screening process. An orthogonal array of L9 (3)4 was conducted. The optimum injection parameters for highest green strength were established at A1, B2, C0 and D1 and where as calculated based on Signal to Noise Ratio.

  6. Influence of temperature on AISI 316L corrosion in phosphoric acid solutions under hydrodynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Tovar, R.; Montanes, M.T.; Garcia-Anton, J. [Valencia Univ. Politecnica, Dept. de Ingenieria Quimica y Nuclear. ETSI Industriales, Valencia (Spain); Ben Bachir, A.; Abdelkebir, B.; Elmandoubi, N. [University Mohammed V-Agdal, Lab. Corrosion-Electrochimie, Faculty of Sciences, Rabat (Morocco)

    2009-07-01

    AISI 316L stainless steel, due to its good mechanical properties and corrosion resistance, is widely used in the phosphoric acid industry, including piping lines. However, phosphoric acid (H{sub 3}PO{sub 4}) is a medium-strong acid, and corrosion problems could occur, especially working with concentrated solutions and increasing temperature. Furthermore, fluid flow can increase corrosion rates. The objective of this work is to study the dynamic corrosion of AISI 316L stainless steel in a range of temperature from 25 C to 60 C by means of cyclic potentiodynamic curves. A hydrodynamic circuit was used in order to study dynamic corrosion. The experiments were carried out in an oxygen-free environment at different Reynolds numbers: 1,456, 3,166 and 5,066. The results show that uniform corrosion mechanisms can be expected for AISI 316L stainless steel in 5.5 M H{sub 3}PO{sub 4} solutions, since no hysteresis loop was observed. Moreover, temperature affects the corrosion parameters obtained from the polarization curves. Temperature shifts corrosion potential to nobler values, reduces the passivity region and enhances passivation current density. On the other hand, little influence of Reynolds number was observed on AISI 316L stainless steel corrosion. (authors)

  7. Effects of simulated inflammation on the corrosion of 316L stainless steel.

    Science.gov (United States)

    Brooks, Emily K; Brooks, Richard P; Ehrensberger, Mark T

    2017-02-01

    Stainless steel alloys, including 316L, find use in orthopaedics, commonly as fracture fixation devices. Invasive procedures involved in the placement of these devices will provoke a local inflammatory response that produces hydrogen peroxide (H2O2) and an acidic environment surrounding the implant. This study assessed the influence of a simulated inflammatory response on the corrosion of 316L stainless steel. Samples were immersed in an electrolyte representing either normal or inflammatory physiological conditions. After 24h of exposure, electrochemical impedance spectroscopy (EIS) and inductively coupled plasma mass spectroscopy (ICPMS) were used to evaluate differences in corrosion behavior and ion release induced by the inflammatory conditions. Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) were used to evaluate surface morphology and corrosion products formed on the sample surface. Inflammatory conditions, involving the presence of H2O2 and an acidic pH, significantly alter the corrosion processes of 316L stainless steel, promoting aggressive and localized corrosion. It is demonstrated that particular consideration should be given to 316L stainless steel implants with crevice susceptible areas (ex. screw-head/plate interface), as those areas may have an increased probability of rapid and aggressive corrosion when exposed to inflammatory conditions.

  8. [Corrosion of stainless steel 201, 304 and 316L in the simulated sewage pipes reactor].

    Science.gov (United States)

    Bao, Guo-Dong; Zuo, Jian-E; Wang, Ya-Jiao; Gan, Li-Li

    2014-08-01

    The corrosion behavior of stainless steel 201, 304 and 316L which would be used as sewer in-situ rehabilitation materials was studied in the simulated sewage pipes reactor. The corrosion potential and corrosion rate of these three materials were studied by potentiodynamic method on the 7th, 14th, 21st, 56th day under two different conditions which were full immersion condition or batch immersion condition with a 2-day cycle. The electrode process was studied by Electrochemical Impedance Spectroscopy (EIS) on the 56th day. The microstructure and composition of the corrosion pitting were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS) on the 56th day. The results showed that 304 and 316L had much better corrosion resistance than 201 under both conditions. 304 and 316L had much smaller corrosion rate than 201 under both conditions. The corrosion resistance of all three kinds of stainless steel under the batch immersion condition was much better than those under the full immersion condition. The corrosion rate of all three kinds of stainless steel under the batch immersion condition was much smaller than those under the full immersion condition. Point pitting corrosion was formed on the surfaces of 304 and 316L. In comparison, a large area of corrosion was formed in the surface of 201.

  9. Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel

    Science.gov (United States)

    Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha

    2016-03-01

    Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.

  10. Corrosive Metabolic Activity of Desulfovibrio sp. on 316L Stainless Steel

    Science.gov (United States)

    Arkan, Simge; Ilhan-Sungur, Esra; Cansever, Nurhan

    2016-12-01

    The present study investigated the effects of chemical parameters (SO4 2-, PO4 3-, Cl-, pH) and the contents of extracellular polymeric substances (EPS) regarding the growth of Desulfovibrio sp. on the microbiologically induced corrosion of 316L stainless steel (SS). The experiments were carried out in laboratory-scaled test and control systems. 316L SS coupons were exposed to Desulfovibrio sp. culture over 720 h. The test coupons were removed at specific sampling times for enumeration of Desulfovibrio sp., determination of the corrosion rate by the weight loss measurement method and also for analysis of carbohydrate and protein in the EPS. The chemical parameters of the culture were also established. Biofilm/film formation and corrosion products on the 316L SS surfaces were investigated by scanning electron microscopy and energy-dispersive x-ray spectrometry analyses in the laboratory-scaled systems. It was found that Desulfovibrio sp. led to the corrosion of 316L SS. Both the amount of extracellular protein and chemical parameters (SO4 2- and PO4 3-) of the culture caused an increase in the corrosion of metal. There was a significantly positive relationship between the sessile and planktonic Desulfovibrio sp. counts ( p < 0.01). It was detected that the growth phases of the sessile and planktonic Desulfovibrio sp. were different from each other and the growth phases of the sessile Desulfovibrio sp. vary depending on the subspecies of Desulfovibrio sp. and the type of metal when compared with the other published studies.

  11. Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating.

    Science.gov (United States)

    Tasnim, Nishat; Kumar, Alok; Joddar, Binata

    2017-04-01

    A persistent theme in biomaterials research comprises of surface engineering and modification of bare metallic substrates for improved cellular response and biocompatibility. Graphene Oxide (GO), a derivative of graphene, has outstanding chemical and mechanical properties; its large surface to volume ratio, ease of surface modification and processing make GO an attractive coating material. GO-coatings have been extensively studied as biosensors. Further owing to its surface nano-architecture, GO-coated surfaces promote cell adhesion and growth, making it suitable for tissue engineering applications. The need to improve the long-term durability and therapeutic effectiveness of commercially available bare 316L stainless steel (SS) surfaces led us to adopt a polymer-free approach which is cost-effective and scalable. GO was immobilized on to 316L SS utilizing amide linkage, to generate a strongly adherent uniform coating with surface roughness. GO-coated 316L SS surfaces showed increased hydrophilicity and biocompatibility with SHSY-5Y neuronal cells, which proliferated well and showed decreased reactive oxygen species (ROS) expression. In contrast, cells did not adhere to bare uncoated 316L SS meshes nor maintain viability when cultured in the vicinity of bare meshes. Therefore the combination of the improved surface properties and biocompatibility implies that GO-coating can be utilized to overcome pertinent limitations of bare metallic 316L SS implant surfaces, especially SS neural electrodes. Also, the procedure for making GO-based protective coatings can be applied to numerous other implants where the development of such protective films is necessary.

  12. Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid.

    Science.gov (United States)

    Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki

    2011-01-01

    To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.

  13. Effect of irradiation on the steels 316L/LN type to 12 dpa at 400 °C

    Science.gov (United States)

    Bulanova, T.; Fedoseev, A.; Kalinin, G.; Rodchenkov, B.; Shamardin, V.

    2004-08-01

    The 316L type stainless steel is widely used as a structural material for the fission reactors internal structures (core, core supports, etc.) and for experimental irradiation facilities. The 316L(N)-IG type steel is proposed as a main structural material for the ITER reactor (first wall, blanket, vacuum vessel, cooling pipe lines). It is obvious that different steel grades should exhibit different reaction to neutron irradiation. The main objective of this work was to study of irradiation behaviour of three different commercial steels: AISI 316LN, AISI 316L (US grades) and 02X17H14M2 (Russian steel grade that is similar to 316L). Irradiation effect on the three commercial steels of 316L family to ˜12 dpa at the temperature ˜370-400 °C on the tensile properties, microstructure, swelling and susceptibility to SCC are described in the paper.

  14. Effect of irradiation on the steels 316L/LN type to 12 dpa at 400 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Bulanova, T. E-mail: fae@niiar.rukalinig@nikiet.ru; Fedoseev, A.; Kalinin, G.; Rodchenkov, B.; Shamardin, V

    2004-08-01

    The 316L type stainless steel is widely used as a structural material for the fission reactors internal structures (core, core supports, etc.) and for experimental irradiation facilities. The 316L(N)-IG type steel is proposed as a main structural material for the ITER reactor (first wall, blanket, vacuum vessel, cooling pipe lines). It is obvious that different steel grades should exhibit different reaction to neutron irradiation. The main objective of this work was to study of irradiation behaviour of three different commercial steels: AISI 316LN, AISI 316L (US grades) and 02X17H14M2 (Russian steel grade that is similar to 316L). Irradiation effect on the three commercial steels of 316L family to {approx}12 dpa at the temperature {approx}370-400 deg. C on the tensile properties, microstructure, swelling and susceptibility to SCC are described in the paper.

  15. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Cem; Denkbas, Emir Baki [Nanotechnology and Nanomedicine Division, The Institute For Graduate Studies in Science and Engineering, Hacettepe University, 06800, Ankara (Turkey); Mizrak, Alpay Koray [Institute of Materials Science and Nanotechnology, Bilkent University, UNAM, 06800, Ankara (Turkey); Aktuerk, Selcuk [Department of Physics, Mugla University, 48000 Koetekli, Mugla (Turkey); Kursaklioglu, Hurkan; Iyisoy, Atila [Department of Cardiology, School of Medicine, Gulhane Military Medicine Academy, 06018, Ankara (Turkey); Ifran, Ahmet, E-mail: denkbas@hacettepe.edu.t [Department of Hematology, School of Medicine, Gulhane Military Medicine Academy, 06018, Ankara (Turkey)

    2010-10-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test.

  16. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents.

    Science.gov (United States)

    Bayram, Cem; Mizrak, Alpay Koray; Aktürk, Selçuk; Kurşaklioğlu, Hurkan; Iyisoy, Atila; Ifran, Ahmet; Denkbaş, Emir Baki

    2010-10-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p 316L and control groups in each test.

  17. Stainless steel pickling using ecologies friendly mixtures composed of H{sub 2}O{sub 2} - H{sub 2}SO{sub 4} - F{sup -} ions; Decapado de un acero inoxidable austenitico mediante mezclas ecologicas basadas en H{sub 2}O{sub 2} - H{sub 2}SO{sub 4} - iones F{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Narvaez, L.; Miranda, J. M.; Ronquillo, A.

    2013-06-01

    This study reports the pickling of 316L stainless steel using mixtures of hydrogen peroxide (H{sub 2}O{sub 2}), sulphuric acid (H{sub 2}SO{sub 4}) and fluoride ions as hydrofluoric acid (HF), sodium fluoride (NaF) and potassium fluoride (KF). The decomposition of H{sub 2}O{sub 2} in the mixtures was assessed at different temperatures 25 degree centigrade to 60 degree centigrade, with ferric ion contents from 0 to 40 g/l. According to the results obtained, were established the optimal condition pickling at 20 g/l of ferric ions, 25 degree centigrade and p-toluen sulphonic acid as stabilizer of H{sub 2}O{sub 2}. The HF pickling mixture was the only capable to remove totally the oxide layer from the 316L stainless steel after 300 s. The fluoride salts pickling mixtures only remove partially the oxide layer (20 to 40 % aprox.) after 300 s. When the pickling time was increased until 1200 s, the removal percentages were around to 80 %. (Author)

  18. Experimental Study on Uniaxial and Multiaxial Strain Cyclic Characteristics and Ratcheting of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An experimental study was carried out on the strain cycliccharacteristics and ratcheting of 316Lstainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tensioncompression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting.

  19. Study on behavior of plasma nitrided 316L in PEMFC working conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Rujin [Institute of Materials and Technology, Dalian Maritime University, Linghailu No.1, Ganjingzi District, Dalian, Lianoing 116026 (China); College of Materials and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Sun, Juncai [Institute of Materials and Technology, Dalian Maritime University, Linghailu No.1, Ganjingzi District, Dalian, Lianoing 116026 (China); Wang, Jianli [Department of Basic Science, Changchun University of Technology, Changchun 130012 (China)

    2008-12-15

    Stainless steel bipolar plates for the polymer electrolyte membrane fuel cell (PEMFC) offer many advantages over conventional machined graphite and graphite-composites. However, the interfacial ohmic loss between the metallic bipolar plate and membrane electrode assembly due to corrosion decreases the overall power output of PEMFC. A lower temperature (at 370 C) plasma nitriding was applied to modify the surface of stainless steel 316L bipolar plates. The results of electrochemical measurements show that corrosion resistance of the plasma nitrided 316L is improved in simulated PEMFC anode/cathode environments purged with H{sub 2}/air at 70 C. The surface conductivity of the nitrided layer is better than that of the air-formed oxide film. The interfacial contact resistance (ICR) between the passive film and carbon paper increases very little after potentiostatic polarization for 4 h, which indicates potential for good stability of this material in highly corrosive fuel cell environments. (author)

  20. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-04-01

    In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  1. Characterization of 316L Steel Cellular Dodecahedron Structures Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Konda Gokuldoss Prashanth

    2016-10-01

    Full Text Available The compression behavior of different 316L steel cellular dodecahedron structures with different density values were studied. The 316L steel structures produced using the selective laser melting process has four different geometries: single unit cells with and without the addition of base plates beneath and on top, and sandwich structures with multiple unit cells with different unit cell sizes. The relation between the relative compressive strength and the relative density was compared using different Gibson-Ashby models and with other published reports. The different aspects of the deformation and the mechanical properties were evaluated and the deformation at distinct loading levels was recorded. Finite element method (FEM simulations were carried out with the defined structures and the mechanical testing results were compared. The calculated theory, simulation estimation, and the observed experimental results are in good agreement.

  2. Effects of Admixed Titanium on Densification of 316L Stainless Steel Powder during Sintering

    Directory of Open Access Journals (Sweden)

    Aslam Muhammad

    2014-07-01

    Full Text Available Effects of admixed titanium on powder water atomized (PWA and powder gas atomized (PGA 316L stainless steel (SS have been investigated in terms of densification. PGA and PWA powders, having different shapes and sizes, were cold pressed and sintered in argon atmosphere at 1300°C. The admixed titanium compacts of PGA and PWA have shown significant effect on densification through formation of intermetallic compound and reducing porosity during sintering process. PWA, having particle size 8 μm, blended with 1wt% titanium has exhibited higher sintered density and shrinkage as compared to gas atomized powder compacts. Improved densification of titanium blended PGA and PWA 316L SS at sintering temperature 1300°C is probably due to enhanced diffusion kinetics resulting from stresses induced by concentration gradient in powder compacts.

  3. Damage mechanism at different transpassive potentials of solution-annealed 316 and 316l stainless steels

    Institute of Scientific and Technical Information of China (English)

    K Morshed Behbahani; M Pakshir; Z Abbasi; P Najafisayar

    2015-01-01

    Electrochemical impedance spectroscopy (EIS), anodic polarization and scanning electron microscopy techniques were used to investigate the damage mechanism in the transpassive potential region of AISI 316 and AISI 316L solution-annealed stainless steels (SS) with different degrees of sensitization. Depending on the DC potential applied during EIS tests, the AC responses in the transpassive region included three different regions:the first one associated with anodic dissolution of the passive layer, the second one contributed to the disso-lution at the area near grain boundaries, and the last one attributed to pitting corrosion. In addition, the fitting results to experimental data showed that as the DC bias during the EIS test increases the charge transfer resistance (Rct) decreases. Moreover, the Rct values decreased as the sensitization temperature increases but the AISI 316L SS samples exhibited a higher resistance to intergranular corrosion than 316 SS samples.

  4. Oxide Formation In Metal Injection Molding Of 316L Stainless Steel

    Directory of Open Access Journals (Sweden)

    Jang Jin Man

    2015-06-01

    Full Text Available The effects of sintering condition and powder size on the microstructure of MIMed parts were investigated using water-atomized 316L stainless steel powder. The 316L stainless steel feedstock was injected into micro mold with micro features of various shapes and dimensions. The green parts were debound and pre-sintered at 800°C in hydrogen atmosphere and then sintered at 1300°C and 1350°C in argon atmosphere of 5torr and 760torr, respectively. The oxide particles were formed and distributed homogeneously inside the sample except for the outermost region regardless of sintering condition and powder size. The width of layer without oxide particles are increased with decrease of sintering atmosphere pressure and powder size. The fine oxides act as the obstacle on grain growth and the high sintering temperature causes severe grain growth in micro features due to larger amount of heat gain than that in macro ones.

  5. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  6. Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel.

    Science.gov (United States)

    Abdel-Fattah, Tarek M; Loftis, Derek; Mahapatro, Anil

    2011-12-01

    Stainless steel (AISI 316L) is a medical grade stainless steel alloy used extensively in medical devices and in the biomedical field. 316L stainless steel was successfully electropolished via an ecologically friendly and biocompatible ionic liquid (IL) medium based on Vitamin B4 (NB4) and resulting in nanosized surface roughness and topography. Voltammetry and chronoamperometry tests determined optimum polishing conditions for the stainless steel alloy while atomic force microscopy (AFM) and scanning electron microscopy (SEM) provided surface morphology comparisons to benchmark success of each electropolishing condition. Energy dispersive X-ray analysis (EDX) combined with SEM revealed significantly smoother surfaces for each alloy surface while indicating that the constituent metals comprising each alloy effectively electropolished at uniform rates.

  7. Fe-Mo-B Enhanced Sintering of P/M 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    YANG Xia; GUO Shi-ju

    2008-01-01

    Liquid-phase enhanced sintering of powder metallurgy (P/M) 316L stainless steel by addition of sintering aids was studied. 2%-8% of pre-alloyed Fe-Mo-B powder with two different particle sizes was added as sintering aids, and the specimens were sintered in vacuum at 1 200-1 350 ℃. The results show that the fine Fe-Mo-B powder (5-10 μm) has stronger activated effect. The sintered density increases with the increase in sintering aid content or sintering temperature. Warm compaction has a better effect on the control of dimensional precision of compacts. The prealloyed Fe-Mo-B powder deviated from Mo2FeB2 component can also be sintering aid of P/M 316L stainless steel.

  8. Effect of in site strain on passivated property of the 316L stainless steels.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Ting, Guo

    2016-04-01

    The effect of the strain of 316L stainless steel on its corrosion resistance in borate buffer solution was investigated by in site tensile test and the electrochemical impedance spectroscopy measurements. It was found that the corrosion resistance of the 316L stainless steel decreased with the increasing of in site strain. The lower corrosion resistance of the stainless steel during in site strain was mainly attributed to the higher doping concentration in passive film. Especially, with the increasing of in site strain, the concentrations of acceptor (i.e., cation vacancies) in the passive films significantly increased. More acceptor concentrations reduced the compactness of the passive film and its corrosion resistance. Moreover, two exponential relationships were found between in site strain and the charge transfer resistance of the passive film and between in site strain and total doping concentrations in passive film, respectively.

  9. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  10. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications

    Science.gov (United States)

    Zhong, Yuan; Rännar, Lars-Erik; Liu, Leifeng; Koptyug, Andrey; Wikman, Stefan; Olsen, Jon; Cui, Daqing; Shen, Zhijian

    2017-04-01

    A feasibility study was performed to fabricate ITER In-Vessel components by one of the metal additive manufacturing methods, Electron Beam Melting® (EBM®). Solid specimens of SS316L with 99.8% relative density were prepared from gas atomized precursor powder granules. After the EBM® process the phase remains as austenite and the composition has practically not been changed. The RCC-MR code used for nuclear pressure vessels provides guidelines for this study and tensile tests and Charpy-V tests were carried out at 22 °C (RT) and 250 °C (ET). This work provides the first set of mechanical and microstructure data of EBM® SS316L for nuclear fusion applications. The mechanical testing shows that the yield strength, ductility and toughness are well above the acceptance criteria and only the ultimate tensile strength of EBM® SS316L is below the RCC-MR code. Microstructure characterizations reveal the presence of hierarchical structures consisting of solidified melt pools, columnar grains and irregular shaped sub-grains. Lots of precipitates enriched in Cr and Mo are observed at columnar grain boundaries while no sign of element segregation is shown at the sub-grain boundaries. Such a unique microstructure forms during a non-equilibrium process, comprising rapid solidification and a gradient 'annealing' process due to anisotropic thermal flow of accumulated heat inside the powder granule matrix. Relations between process parameters, specimen geometry (total building time) and sub-grain structure are discussed. Defects are formed mainly due to the large layer thickness (100 μm) which generates insufficient bonding between a few of the adjacently formed melt pools during the process. Further studies should focus on adjusting layer thickness to improve the strength of EBM® SS316L and optimizing total building time.

  11. Investigation into the joining of MoSi{sub 2} to 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, R.U.; Bartlett, A.H.; Conzone, S.D.; Butt, D.P.

    1996-10-01

    Partial transient liquid phase joining and low temperature brazing were applied in joining MoSi{sub 2} to 316L ss. Exploratory studies were carried out on various interlayer materials. Mechanical, physical, and chemical compatibilities between various interlayers, brazing material, and substrate materials were investigated. Effect of thermal expansion mismatch between various components of the joint on the overall joint integrity was also studied. Preliminary findings are outlined.

  12. Microscopic work function anisotropy and surface chemistry of 316L stainless steel using photoelectron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, N., E-mail: nick.barrett@cea.fr [CEA, IRAMIS, SPEC, LENSIS, F-91191 Gif-sur-Yvette (France); Renault, O. [CEA, LETI, Minatec Campus, F-38054 Grenoble Cedex 09 (France); Lemaître, H. [Université de Cergy-Pontoise, Rue d’Eragny, Neuville sur Oise, 95 031 Cergy-Pontoise (France); Surface Dynamics Laboratory, Institut for Fysik og Astronomi Aarhus Universitet, Ny Munkegade 120, 8000 Aarhus C (Denmark); Bonnaillie, P. [CEA, DEN, DANS, DMN, SRMP, F-91191 Gif-sur-Yvette (France); Barcelo, F. [CEA, DEN, DANS, DMN, SRMA, LA2M, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DANS, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Wang, M.; Corbel, C. [Laboratoire des Solides Irradis, Ecole Polytechnique, route de Saclay, F-91128 Palaiseau (France)

    2014-08-15

    Highlights: • PEEM and EBSD study of spatial variations in local work function of 316L steel. • Correlation between work function and crystal grain orientation at the surface of 316L steel. • Spatially resolved chemistry of residual oxide layer. - Abstract: We have studied the variation in the work function of the surface of sputtered cleaned 316L stainless steel with only a very thin residual oxide surface layer as a function of grain orientation using X-ray photoelectron emission microscopy (XPEEM) and Electron Backscattering Diffraction. The grains are mainly oriented [1 1 1] and [1 0 1]. Four distinct work function values spanning a 150 meV energy window are measured. Grains oriented [1 1 1] have a higher work function than those oriented [1 0 1]. From core level XPEEM we deduce that all grain surfaces are Cr enriched and Ni depleted whereas the Cr/Fe ratio is similar for all grains. The [1 1 1] oriented grains show evidence for a Cr{sub 2}O{sub 3} surface oxide and a higher concentration of defective oxygen sites.

  13. Metallurgical and Mechanical Research on Dissimilar Electron Beam Welding of AISI 316L and AISI 4340

    Directory of Open Access Journals (Sweden)

    A. R. Sufizadeh

    2016-01-01

    Full Text Available Dissimilar electron beam welding of 316L austenitic stainless steel and AISI 4340 low alloy high strength steel has been studied. Studies are focused on effect of beam current on weld geometry, optical and scanning electron microscopy, X-ray diffraction of the weld microstructures, and heat affected zone. The results showed that the increase of beam current led to increasing depths and widths of the welds. The optimum beam current was 2.8 mA which shows full penetration with minimum width. The cooling rates were calculated for optimum sample by measuring secondary dendrite arm space and the results show that high cooling rates lead to austenitic microstructure. Moreover, the metallography result shows the columnar and equiaxed austenitic microstructures in weld zone. A comparison of HAZ widths depicts the wider HAZ in the 316L side. The tensile tests results showed that the optimum sample fractured from base metal in AISI 316L side with the UTS values is much greater than the other samples. Moreover, the fractography study presents the weld cross sections with dimples resembling ductile fracture. The hardness results showed that the increase of the beam current led to the formation of a wide softening zone as HAZ in AISI 4340 side.

  14. Microstructure of Au-ion irradiated 316L and FeNiCr austenitic stainless steels

    Science.gov (United States)

    Jublot-Leclerc, S.; Li, X.; Legras, L.; Lescoat, M.-L.; Fortuna, F.; Gentils, A.

    2016-11-01

    Thin foils of 316L were irradiated in situ in a Transmission Electron Microscope with 4 MeV Au ions at 450 °C and 550 °C. Similar irradiations were performed at 450 °C in FeNiCr. The void and dislocation microstructure of 316L is found to depend strongly on temperature. At 450 °C, a dense network of dislocation lines is observed in situ to grow from black dot defects by absorption of other black dots and interstitial clusters whilst no Frank loops are detected. At 550 °C, no such network is observed but large Frank loops and perfect loops whose sudden appearance is concomitant with a strong increase in void density as a result of a strong coupling between voids and dislocations. Moreover, differences in both alloys microstructure show the major role played by the minor constituents of 316L, increasing the stacking fault formation energy, and possibly leading to significant differences in swelling behaviour.

  15. Stress corrosion (Astm G30-90 standard) in 08x18H10T stainless steel of nuclear fuel storage pool in WWER reactors; Corrosion bajo esfuerzo (Norma ASTM G30-90) en acero inoxidable 08x18H10T de piscinas de almacenamiento de combustible nuclear en reactores V.V.E.R

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, V.; Zamora R, L. [Centro de Estudios Aplicados al Desarrollo Nuclear (Cuba)

    1997-07-01

    At the water storage of the irradiated nuclear fuel has been an important factor in its management. The actual pools have its walls covered with inoxidable steel and heat exchangers to dissipate the residual heat from fuel. It is essential to control the water purity to eliminate those conditions which aid to the corrosion process in fuel and at related components. The steel used in this research was obtained from an austenitic inoxidizable steel standardized with titanium 08x18H10T (Type 321) similar to one of the two steel coatings used to cover walls and the pools floor. the test consisted in the specimen deformation through an U ply according to the Astm G30-90 standard. The exposition of the deformed specimen it was realized in simulated conditions to the chemical regime used in pools. (Author)

  16. L2 Milestone 5433: Characterization of Dynamic Behavior of AM and Conventionally Processed Stainless Steel (316L and 304L)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, George Thompson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Livescu, Veronica [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rigg, P. A. [Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics; Trujillo, Carl Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cady, Carl McElhinney [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Shuh-Rong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carpenter, John S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lienert, Thomas J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fensin, Saryu Jindal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Knapp, Cameron M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beal, Roberta Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morrow, Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dippo, Olivia F. [Univ. of California, San Diego, CA (United States); Jones, David Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Daniel Tito [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valdez, James Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    For additive manufacturing (AM) of metallic materials, the certification and qualification paradigm needs to evolve as there currently exists no broadly accepted “ASTM- or DIN-type” additive manufacturing certified process or AM-material produced specifications. Accordingly, design, manufacture, and thereafter implementation and insertion of AM materials to meet engineering applications requires detailed quantification of the constitutive (strength and damage) properties of these evolving materials, across the spectrum of metallic AM methods, in comparison/contrast to conventionally-manufactured metals and alloys. This report summarizes the 316L SS research results and presents initial results of the follow-on study of 304L SS. For the AM-316L SS investigation, cylindrical samples of 316L SS were produced using a LENS MR-7 laser additive manufacturing system from Optomec (Albuquerque, NM) equipped with a 1kW Yb-fiber laser. The microstructure of the AM-316L SS was characterized in both the “as-built” Additively Manufactured state and following a heat-treatment designed to obtain full recrystallization to facilitate comparison with annealed wrought 316L SS. The dynamic shock-loading-induced damage evolution and failure response of all three 316L SS materials was quantified using flyer-plate impact driven spallation experiments at peak stresses of 4.5 and 6.35 GPa. The results of these studies are reported in detail in the first section of the report. Publication of the 316L SS results in an archival journal is planned. Following on from the 316L SS completed work, initial results on a study of AM 304L SS are in progress and presented herein. Preliminary results on the structure/dynamic spallation property behavior of AM-304L SS fabricated using both the directed-energy LENS and an EOS powder-bed AM techniques in comparison to wrought 304L SS is detailed in this Level 2 Milestone report.

  17. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.

    Science.gov (United States)

    Bayraktaroglu, Esra; Gulsoy, H Ozkan; Gulsoy, Nagihan; Er, Ozay; Kilic, Hasan

    2012-01-01

    The research was investigated the effect of boron additions on sintering characteristics, mechanical, corrosion properties and biocompatibility of injection molded austenitic grade 316L stainless steel. Addition of boron is promoted to get high density of sintered 316L stainless steels. The amount of boron plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders have been used with the elemental NiB powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperature. The debinded samples were sintered at different temperature for 60 min. Mechanical property, microstructural characterization and electrochemical property of the sintered samples were performed using tensile testing, hardness, optical, scanning electron microscopy and electrochemical corrosion experiments. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. Results of study showed that sintered 316L and 316L with NiB addition samples exhibited high mechanical and corrosion properties in a physiological environment. Especially, 316L with NiB addition can be used in some bioapplications.

  18. Investigation on 316L/W functionally graded materials fabricated by mechanical alloying and spark plasma sintering

    Science.gov (United States)

    Tan, Chao; Wang, Guoyu; Ji, Lina; Tong, Yangang; Duan, Xuan-Ming

    2016-02-01

    316L-W (Tungsten) composite materials were fabricated by spark plasma sintering (SPS) of mechanically alloyed 316L-W powders for the development of functionally graded materials (FGMs). The effect of milling parameters on the morphology of the blended 316L/W powders and its subsequent effect on the transition between 316L and W particles during the SPS process were investigated. Samples were characterized by SEM, EDS and XRD analyses. The results so obtained show that with the increase of milling time, the mechanically activated W powder particles become thinner and smoother, with some broken fragments aggregated or inserted in the severely deformed 316L particles. A further SPS process under the conditions of 1050 °C × 45.5 MPa × 5 min leads to the densification of the powder compact and the formation of a distinguishable gray belt surrounding the retained W particles. Such a belt, which has a width of about 2-8 μm depending on different milling parameters and mainly contains Fe7W6, Fe3W3C and Fe2W phases, is bound to be a transitional region between the retained W particles and the 316L matrix. This favorable behavior with regards to the formation of a transitional belt, is accompanied by a substantial increase in the hardness values of the composite.

  19. Drug delivery from therapeutic self-assembled monolayers (T-SAMs) on 316L stainless steel.

    Science.gov (United States)

    Mahapatro, Anil; Johnson, Dave M; Patel, Devang N; Feldman, Marc D; Ayon, Arturo A; Agrawal, C Mauli

    2008-01-01

    Delivery of therapeutic agents from self-assembled monolayers (SAMs) on 316L stainless steel (SS) has been demonstrated as a viable method to deliver drugs for localized coronary artery stent application. SAMs are highly-ordered, nano-sized molecular coatings, adding 1-10 nm thickness to a surface. Hydroxyl terminated alkanethiol SAMs of 11-mercapto-1-undecanol (-OH SAM) were formed on 316L SS with 48 hr immersion in ethanolic solutions. Attachment of ibuprofen (a model drug) to the functional SAMs was carried out in toluene for 5 hrs at 60 degrees C using Novozume-435 as a biocatalyst. SAM formation and subsequent attachment of ibuprofen was characterized collectively using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and contact angle (CA) measure-ments. The quantitative in vitro release of ibuprofen into a "physiological" buffer solution was characterized using reverse phase HPLC. Drug release kinetics showed that 14.1 microg of ibuprofen eluted over a period of 35 days with 2.7microg being eluted in the first day and the remaining being eluted over a period of 35 days. The drug release kinetics showed an increase in ibuprofen elution that occurred during first 14 days (2.7microg in 1 day to 9.5 microg in 14 days), following which there was a decrease in the rate of elution. Thus, functional SAMs on 316L SS could be used as tethers for drug attachment and could serve as a drug delivery mechanism from stainless steel implants such as coronary artery stents.

  20. 316L-20G双金属复合管焊缝组织元素扩散分析%Analysis on weld metal and element migration of 316L-20G clad pipe

    Institute of Scientific and Technical Information of China (English)

    范兆廷; 张胜涛; 殷林亮; 刘佳; 戴志向

    2012-01-01

    The proliferation of weld and major alloying elements are studied and analyzed by scanning the EDS element of 316L/20G clad pipe weld joint,316L substrate and 20G steel,and by scanning the electron microscopy and the energy spectrum analysis of 316L-weld zone and 20G steel-weld zone.The results show that the alloying elements in the weld transition layer are diluted by carbon steel,and the carbon atoms spread to the 316L and weld,while alloying elements in the 316L and wire,such as Cr,Ni,penetrate to the carbon steel,but the transition layer plays a good role in isolation,resulting in 316L stainless steel alloy element content is not significantly reduced,maintaining the 316L base metal resistant to corrosion.%通过对20G钢内衬316L金属复合管的焊缝区、316L基体以及20G钢进行EDS元素扫描,再采用扫描电镜对316L焊缝区、20G钢焊缝区进行线扫描分析,对焊缝组织主要合金元素的扩散进行了研究。结果表明:焊缝过渡层中合金元素被碳钢稀释,碳原子向316L和焊缝扩散,同时316L和焊丝中的合金元素Cr、Ni也向碳钢中渗透,但过渡层起到了良好的隔离作用,致使316L不锈钢金属中合金元素含量没有明显降低,保持了316L母材耐腐蚀性能。

  1. HTS SQUID application for measuring the magnetic properties of AISI type 316L(N) steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, D.G. E-mail: dgpark@nanum.kaeri.re.kr; Kim, D.W.; Hong, J.H.; Timofeev, V.P.; Kim, C.G

    2000-06-02

    A portable RF HTS SQUID-based susceptometer was used for small-size magnetized sample testing in weak DC (up to 200 A/m) and AC (up to 4 A/m) magnetic fields. The system resolution for the magnetic moment is of the order of 1.6x10{sup -10} A m{sup 2}. The measured DC susceptibility of a tested sample of Gd{sub 88}La{sub 12} agrees well with the value obtained by using a commercial liquid helium susceptometer. The measured volume susceptibility of AISI type 316L(N) steel increases after fatigue due to the microcrack induced by cyclic stress.

  2. Structure and mechanical properties of austenitic 316L steel produced by selective laser melting

    Science.gov (United States)

    Kuznetsov, P. A.; Zisman, A. A.; Petrov, S. N.; Goncharov, I. S.

    2016-10-01

    The mechanical properties and the impact toughness of austenitic 316L steel produced by selective laser melting at a laser power of 175-190 W have been studied. It is shown that the selective laser melting method makes it possible to significantly increase the strength properties of the steel with some decrease in the ductility and the impact toughness as compared to those of the steel produced by a traditional technology. The laser power influences insignificantly. The methods of making notches and its orientation is found to influence the impact toughness.

  3. Cytotoxicity difference of 316L stainless steel and titanium reconstruction plate

    Directory of Open Access Journals (Sweden)

    Ni Putu Mira Sumarta

    2011-03-01

    Full Text Available Background: Pure titanium is the most biocompatible material today and used as a gold standard for metallic implants. However, stainless steel is still being used as implants because of its strength, ductility, lower price, corrosion resistant and biocompatibility. Purpose: This study was done to revealed the cytotoxicity difference between reconstruction plate made of 316L stainless steel and of commercially pure (CP titanium in baby hamster kidney-21 (BHK-21 fibroblast culture through MTT assay. Methods: Eight samples were prepared from reconstruction plates made of stainless steel type 316L grade 2 (Coen’s reconstruction plate® that had been cut into cylindrical form of 2 mm in diameter and 3 mm long. The other one were made of CP titanium (STEMA Gmbh® of 2 mm in diameter and 2,2 mm long; and had been cleaned with silica paper and ultrasonic cleaner, and sterilized in autoclave at 121° C for 20 minutes.9 Both samples were bathed into microplate well containing 50 μl of fibroblast cells with 2 x 105 density in Rosewell Park Memorial Institute-1640 (RPMI-1640 media, spinned at 30 rpm for 5 minutes. Microplate well was incubated for 24 and 48 hours in 37° C. After 24 hours, each well that will be read at 24 hour were added with 50 μl solution containing 5mg/ml MTT reagent in phosphate buffer saline (PBS solutions, then reincubated for 4 hours in CO2 10% and 37° C. Colorometric assay with MTT was used to evaluate viability of the cells population after 24 hours. Then, each well were added with 50 μl dimethyl sulfoxide (DMSO and reincubated for 5 minutes in 37° C. the wells were read using Elisa reader in 620 nm wave length. Same steps were done for the wells that will be read in 48 hours. Each data were tabulated and analyzed using independent T-test with significance of 5%. Results: This study showed that the percentage of living fibroblast after exposure to 316L stainless steel reconstruction plate was 61.58% after 24 hours and 62

  4. Modeling of the Tension and Compression Behavior of Sintered 316L Using Micro Computed Tomography

    Directory of Open Access Journals (Sweden)

    Doroszko Michał

    2015-06-01

    Full Text Available This paper describes the method of numerical modeling of the tension and compression behavior of sintered 316L. In order to take into account the shape of the mesostructures of materials in the numerical modeling, X-ray microtomography was used. Based on the micro-CT images, three-dimensional geometrical models mapped shapes of the porosity were generated. To the numerical calculations was used finite element method. Based on the received stress and strain fields was described the mechanism of deformation of the materials until fracture. The influence of material discontinuities at the mesoscopic scale on macromechanical properties of the porous materials was investigated.

  5. Mechanical Properties of Stellite-6 coated AISI 316L Stainless Steel

    Directory of Open Access Journals (Sweden)

    Pushpinderjit Singh

    2016-01-01

    Full Text Available Present paper describes the mechanical properties of Stellite-6 coated AISI 316 L stainless steel. Specimens were coated using Detonation Gun thermal spray process, with different coating thicknesses of Stellite-6 ranging from 50 µm to 150 µm. Afterwards their properties like tensile strength, impact strength and micro hardness were evaluated on the basis of the results obtained from the experimentation. For comparison of substrate and coated material the graphs were plotted. The coated specimens exhibited superior impact strength and microhardness than that of the bare specimens, whereas the tensile strength of coated specimens decreased marginally with the increase in coating thickness.

  6. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    Energy Technology Data Exchange (ETDEWEB)

    Anghelina, F.V.; Ungureanu, D.N.; Bratu, V. [Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 18-24 Unirii Bd., 130082 (Romania); Popescu, I.N., E-mail: pinicoleta24@yahoo.com [Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 18-24 Unirii Bd., 130082 (Romania); Rusanescu, C.O. [Politehnica University, 060042 Bucharest (Romania)

    2013-11-15

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal–ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  7. Passivation Mechanism of 316L Stainless Steel in Oxidizing Acid Solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The compositions and the chemical valence states of elements of 316L stainless steel passive film formed in the oxidizing acid solution were studied by X-ray Photoelectron Spectroscopic (XPS) analysis. The electrochemical polarization curve was measured. The passivation process in the oxidizing acid solution was studied by AC impedance technology. The results indicated that the stable compounds layer was formed on the surface of the sample and the adsorption was the main step in the nitrite solution during passivation process. The catalysis passivation mechanism was put forward according to the experimental results. During passivation process, the water molecule was adsorbed on the surface of the sample at first in the oxidizing acid solution. The oxidizer in the solution played a role as catalyst. The oxide and hydroxide, which could be changed each other and finally formed stable passive film, were generated from adsorbing intermediate under the catalytic action. The mathematical models for predicting the steady polarization curve and the AC impedance spectra at certain conditions have been obtained. The passivation mechanism of 316L stainless steel in the oxidizing acid solution can be interpreted by the catalysis passivation mechanism.

  8. Preparation and characterization of stainless steel 316L/HA biocomposite

    Directory of Open Access Journals (Sweden)

    Gilbert Silva

    2013-04-01

    Full Text Available The austenitic stainless steel 316L is the most used metallic biomaterials in orthopedics applications, especially in the manufacture of articulated prostheses and as structural elements in fracture fixation, since it has high mechanical strength. However, because it is biologically inactive, it does not form chemical bond with bone tissue, it is fixed only by morphology. The development of biocomposites of stainless steel with a bioactive material, such as hydroxyapatite - HA, is presented as an alternative to improve the response in the tissue-implant interface. However significant reductions in mechanical properties of the biocomposite can occur. Different compositions of the biocomposite stainless steel 316L/HA (5, 20 and 50 wt. (% HA were prepared by mechanical alloying. After milling the powders for 10 hours, the different compositions of the biocomposite were compacted isostatically and sintered at 1200 ºC for 2 hours. The mechanical properties of the biocomposites were analyzed by compression tests. The powders and the sintered composites were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD.

  9. Systematic Study of Nanocrystalline Plasma Electrolytic Nitrocarburising of 316L Austenitic Stainless Steel for Corrosion Protection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A number of studies have been reported on the use of nanocrystalline plasma electrolytic nitrocarburising technology for surface hardening of stainless steels for higher corrosion resistance resulted from this technique. However, very few studies have focused on the optimization of the nanocrystalline plasma electrolytic nitrocarburising process parameters. In this study, a design of experiment (DOE) technique, the Taguchi method, has been used to optimize the nanocrystalline plasma electrolytic nitrocarburising not only for surface hardening but also for the corrosion protection of 316L austenitic stainless steel by controlling the coating process's factors. The experimental design consisted of four factors (Urea concentration, electrical conductivity of electrolyte, voltage and duration of process), each containing three levels. Potentiodynamic polarization measurements were carried out to determine the corrosion resistance of the coated samples. The results were analyzed with related software. An analysis of the mean of signal-to-noise (S/N) ratio indicated that the corrosion resistance of nanocrystalline plasma electrolytic nitrocarburised 316L stainless steel was influenced significantly by the levels in the Taguchi orthogonal array. The optimized coating parameters for corrosion resistance are 1150 g/L for urea concentration, 360 mS/cm for electrical conductivity of electrolyte, 260 V for applied voltage, 6 min for treatment time. The percentage of contribution for each factor was determined by the analysis of variance (ANOVA). The results showed that the applied voltage is the most significant factor affecting the corrosion resistance of the coatings.

  10. Strain rate dependence of impact properties of sintered 316L stainless steel

    Science.gov (United States)

    Lee, Woei-Shyan; Lin, Chi-Feng; Liu, Tsung-Ju

    2006-12-01

    This paper uses a material testing system (MTS) and a compressive split-Hopkinson bar to investigate the impact behaviour of sintered 316L stainless steel at strain rates ranging from 10 -3 s -1 to 7.5 × 10 3 s -1. It is found that the true stress, the rate of work hardening and the strain rate sensitivity vary significantly as the strain rate increases. The flow behaviour of the sintered 316L stainless steel can be accurately predicted using a constitutive law based on Gurson's yield criterion and the flow rule proposed by Khan, Huang and Liang (KHL). Microstructural observations reveal that the degree of localized grain deformation increases, but the pore density and the grain size decrease, with increasing strain rate. Adiabatic shear bands associated with cracking are developed at strain rates higher than 5.6 × 10 3 s -1. The fracture surfaces exhibit ductile dimples. The depth and density of these dimples decrease with increasing strain rate.

  11. Strain rate dependence of impact properties of sintered 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.-S. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)]. E-mail: wslee@mail.ncku.edu.tw; Lin, C.-F. [National Center for High-Performance Computing, Hsin-Shi Tainan County 744, Taiwan (China); Liu, T.-J. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2006-12-15

    This paper uses a material testing system (MTS) and a compressive split-Hopkinson bar to investigate the impact behaviour of sintered 316L stainless steel at strain rates ranging from 10{sup -3} s{sup -1} to 7.5 x 10{sup 3} s{sup -1}. It is found that the true stress, the rate of work hardening and the strain rate sensitivity vary significantly as the strain rate increases. The flow behaviour of the sintered 316L stainless steel can be accurately predicted using a constitutive law based on Gurson's yield criterion and the flow rule proposed by Khan, Huang and Liang (KHL). Microstructural observations reveal that the degree of localized grain deformation increases, but the pore density and the grain size decrease, with increasing strain rate. Adiabatic shear bands associated with cracking are developed at strain rates higher than 5.6 x 10{sup 3} s{sup -1}. The fracture surfaces exhibit ductile dimples. The depth and density of these dimples decrease with increasing strain rate.

  12. Cytocompatibility and mechanical properties of novel porous 316 L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Komei, E-mail: kkato@mmc.co.jp [Mitsubishi Material Corp. 1-297 Kitabukuro-cho, Omiya-ku, Saitama, 330-8508 (Japan); Yamamoto, Akiko [Biomaterials Center, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ochiai, Shojiro [Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501 (Japan); Wada, Masahiro; Daigo, Yuzo [Mitsubishi Materials Corp. Advanced and Tools Company, High Performance Alloy Products Div. 476 Shimoishido-shimo, Kitamoto, Saitama 364-0023 (Japan); Kita, Koichi [Mitsubishi Materials C.M.I. Corp. Alloy Products Div. 46-1 Sempuku Susono Shizuoka-ken 410-1116 (Japan); Omori, Kenichi [Biomaterials Center, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2013-07-01

    Novel 316 L stainless steel (SS) foam with 85% porosity and an open pore diameter of 70–440 μm was developed for hard tissue application. The foam sheet with a 200-μm diameter had superior cell proliferation and penetration as identified through in vitro experiments. Calcification of human osteosarcoma cells in the SS foam was observed. Multi-layered foam preparation is a potential alternative technique that satisfies multi-functional requirements such as cell penetration and binding strength to the solid metal. In tensile tests, Young's modulus and the strength of the SS foam were 4.0 GPa and 11.2 MPa respectively, which is comparable with human cancellous bone. - Highlights: • Novel 316 L stainless steel foam with 85% porosity and a pore diameter of 70–440 μm was developed. • The optimum pore diameter of the foam was 200 μm for cell proliferation and penetration. • Cell penetration in the multi-layered foam was controlled by the pore structures of the top layer. • Calcification of human osteosarcoma was confirmed in the foam and increased with incubation time. • Young's modulus and the tensile strength of the foam were comparable with human cancellous bone.

  13. Corrosion of type 316L stainless steel in a mercury thermal convection loop

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1999-04-01

    Two thermal convection loops fabricated from 316L stainless steel containing mercury (Hg) and Hg with 1000 wppm gallium (Ga), respectively, were operated continuously for about 5000 h. In each case, the maximum loop temperature was constant at about 305 degrees C and the minimum temperature was constant at about 242 degrees C. Coupons in the hot leg of the Hg-loop developed a posous surface layer substantially depleted of nickel and chromium, which resulted in a transformation to ferrite. The coupon exposed at the top of the hot leg in the Hg-loop experienced the maximum degradation, exhibiting a surface layer extending an average of 9-10 mu m after almost 5000 h. Analysis of the corrosion rate data as a function of temperature (position) in the Hg-loop suggests wetting by the mer cury occurred only above about 255 degrees C and that the rate limiting step in the corrosion process above 255 degrees C is solute diffusion through the saturated liquid boundary layer adjacent to the corroding surface. The latter factor suggests that the corrosion of 316L stainless steel in a mercury loop may be velocity dependent. No wetting and no corrosion were observed on the coupons and wall specimens removed from the Hg/Ga loop after 5000 h of operation.

  14. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, M. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Rezaei-Nejad, S.S.; Assadi, H. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Hadavi, S.M.M. [Department of Materials Science and Engineering, MA University of Technology, Tehran (Iran, Islamic Republic of); Chung, K. [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Engineering Research Institute, Seoul National University, Seoul (Korea, Republic of); Shokouhimehr, M. [Department of Chemical Engineering, College of Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  15. Double Step Sintering Behavior Of 316L Nanoparticle Dispersed Micro-Sphere Powder

    Directory of Open Access Journals (Sweden)

    Jeon Byoungjun

    2015-06-01

    Full Text Available 316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present study, a nanoparticle dispersed micro-sphere powder is synthesized by pulse wire explosion of 316L stainless steel wire in order to facilitate compaction ability and sintering ability. Nanoparticles which are deposited on the surface of micro-powder are advantageous for a rigid die compaction while spherical micro-powder is not to be compacted. Additionally, double step sintering behavior is observed for the powder in the dilatometry of cylindrical compact body. Earlier shrinkage peak comes from the sintering of nanoparticle and later one results from the micro-powder sintering. Microstructure as well as phase composition of the sintered body is investigated.

  16. Partially degradable friction-welded pure iron-stainless steel 316L bone pin.

    Science.gov (United States)

    Nasution, A K; Murni, N S; Sing, N B; Idris, M H; Hermawan, H

    2015-01-01

    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable.

  17. Surface Nanostructure Formations in an AISI 316L Stainless Steel Induced by Pulsed Electron Beam Treatment

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2015-01-01

    Full Text Available High current pulsed electron beam (HCPEB is an efficient technique for surface modifications of metallic materials. In the present work, the formations of surface nanostructures in an AISI 316L stainless steel induced by direct HCPEB treatment and HCPEB alloying have been investigated. After HCPEB Ti alloying, the sample surface contained a mixture of the ferrite and austenite phases with an average grain size of about 90 nm, because the addition of Ti favors the formation of ferrite. In contrast, electron backscattered diffraction (EBSD analyses revealed no structural refinement on the direct HCPEB treated sample. However, transmission electron microscope (TEM observations showed that fine cells having an average size of 150 nm without misorientations, as well as nanosized carbide particles, were formed in the surface layer after the direct HCPEB treatment. The formation of nanostructures in the 316L stainless steel is therefore attributed to the rapid solidification and the generation of different phases other than the steel substrate in the melted layer.

  18. Stability of passivated 316L stainless steel oxide films for cardiovascular stents.

    Science.gov (United States)

    Shih, Chun-Che; Shih, Chun-Ming; Chou, Kuang-Yi; Lin, Shing-Jong; Su, Yea-Yang

    2007-03-15

    Passivated 316L stainless steel is used extensively in cardiovascular stents. The degree of chloride ion attack might increase as the oxide film on the implant degrades from exposure to physiological fluid. Stability of 316L stainless steel stent is a function of the concentration of hydrated and hydrolyated oxide concentration inside the passivated film. A high concentration of hydrated and hydrolyated oxide inside the passivated oxide film is required to maintain the integrity of the passivated oxide film, reduce the chance of chloride ion attack, and prevent any possible leaching of positively charged ions into the surrounding tissue that accelerate the inflammatory process. Leaching of metallic ions from corroded implant surface into surrounding tissue was confirmed by the X-ray mapping technique. The degree of thrombi weight percentage [W(ao): (2.1 +/- 0.9)%; W(ep): (12.5 +/- 4.9)%, p < 0.01] between the amorphous oxide (AO) and the electropolishing (EP) treatment groups was statistically significant in ex-vivo extracorporeal thrombosis experiment of mongrel dog. The thickness of neointima (T(ao): 100 +/- 20 microm; T(ep): 500 +/- 150 microm, p < 0.01) and the area ratio of intimal response at 4 weeks (AR(ao): 0.62 +/- 0.22; AR(ep): 1.15 +/- 0.42, p < 0.001) on the implanted iliac stents of New Zealand rabbit could be a function of the oxide properties.

  19. Bioceramic dip-coating on Ti-6Al-4V and 316L SS implant materials.

    Science.gov (United States)

    Aksakal, Bunyamin; Hanyaloglu, C

    2008-05-01

    The focus of the present study is based on more economical and rapid bioceramic coating on the most common implant substrates such as Ti-6Al-4V and 316L SS used often in orthopedics. For ceramic dip coating of implant substrates, Hydroxyapatite (HA) powder, Ca10(PO4)6(OH)2, P2O5, Na2CO3 and KH2PO4 are used to provide the gel. Ceramic films on sandblasted substrates have been deposited by using a newly manufactured dip-coating apparatus. Sample characterization is evaluated by SEM and XRD analysis. A smooth and homogeneous coating films have been obtained and average of 20 MPa bonding strength has been achieved for both Ti-6Al-4V and 316L SS alloys after sintering at 750 degrees C under flowing argon. The level of importance of the process parameters on coating was determined by using analysis of variance (ANOVA). The current process appears to be cheap, easy, and flexible to shape variations and high production rates for orthopedic applications.

  20. Inhalation toxicity of 316L stainless steel powder in relation to bioaccessibility.

    Science.gov (United States)

    Stockmann-Juvala, H; Hedberg, Y; Dhinsa, N K; Griffiths, D R; Brooks, P N; Zitting, A; Wallinder, I Odnevall; Santonen, T

    2013-11-01

    The Globally Harmonized System for Classification and Labelling of Chemicals (GHS) considers metallic alloys, such as nickel (Ni)-containing stainless steel (SS), as mixtures of substances, without considering that alloys behave differently compared to their constituent metals. This study presents an approach using metal release, explained by surface compositional data, for the prediction of inhalation toxicity of SS AISI 316L. The release of Ni into synthetic biological fluids is >1000-fold lower from the SS powder than from Ni metal, due to the chromium(III)-rich surface oxide of SS. Thus, it was hypothesized that the inhalation toxicity of SS is significantly lower than what could be predicted based on Ni metal content. A 28-day inhalation study with rats exposed to SS 316L powder (<4 µm, mass median aerodynamic diameter 2.5-3.0 µm) at concentrations up to 1.0 mg/L showed accumulation of metal particles in the lung lobes, but no signs of inflammation, although Ni metal caused lung toxicity in a similar published study at significantly lower concentrations. It was concluded that the bioaccessible (released) fraction, rather than the elemental nominal composition, predicts the toxicity of SS powder. The study provides a basis for an approach for future validation, standardization and risk assessment of metal alloys.

  1. Preparation and surface characterization of HMDI-activated 316L stainless steel for coronary artery stents.

    Science.gov (United States)

    Chuang, T-W; Chen, M-H; Lin, F-H

    2008-06-01

    Poor compatibility between blood and metallic coronary artery stents is one reason for arterial restenosis. Immobilization of anticoagulant agents on the stent's surface is feasible for improving compatibility. We examined possible surface-coupling agents for anticoagulant agent immobilization. Hexamethylene diisocyanate (HMDI) and 3-aminopropyl-triethoxysilane (APTS) were examined as surface-coupling agents to activate 316L stainless steel (e.g., stent material). The activated surface was characterized using Fourier transformation infrared spectroscopy (FTIR), atomic force microscope (AFM), surface plasmon resonance (SPR), and trinitrobenzene sulfonic acid (TNBS) assay. In FTIR analysis, HMDI and APTS were both covalently linked to 316L stainless steel. In AFM analysis, it was found that the HMDI-activated surface was smoother than the APTS-activated one. In SPR test, the shift of SPR angle for the APTS-activated surface was much higher than that for the HMDI-activated surface after being challenged with acidic solution. TNBS assay was used to determine the amount of immobilized primary amine groups. The HMDI-activated surface was found to consist of about 1.32 micromol/cm(2) amine group, whereas the APTS-activated surface consisted of only 0.89 micromol/cm(2) amine group. We conclude that the HMDI-activated surface has more desirable surface characteristics than the APTS-activated surface has, such as chemical stability and the amount of active amine groups.

  2. Influence of the surface finishing on electrochemical corrosion characteristics of AISI 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Sylvia Dundeková

    2015-05-01

    Full Text Available Stainless steels from 316 group are very often and successfully uses for medical applications where the good mechanical and chemical properties in combination with non-toxicity of the material assure its safe and long term usage. Corrosion properties of AISI 361L stainless steel are strongly influenced by surface roughness and treatment of the engineering parts (specimens and testing temperature. Electrochemical characteristics of ground, mechanically polished and passivated AISI 316L stainless steel specimens were examined with the aim to identify the polarization resistance evolution due to the surface roughness decrease. Results obtained on mechanically prepared specimens where only natural oxide layer created due to the exposure of the material to the corrosion environment was protecting the materials were compared to the passivated specimens with artificial oxide layer. Also the influence of temperature and stabilization time before measurement were taken into account when discussing the obtained results. Positive influence of decreasing surface roughness was obtained as well as increase of polarization resistance due to the chemical passivation of the surface. Increase of the testing temperature and short stabilization time of the specimen in the corrosion environment were observed negatively influencing corrosion resistance of AISI 316L stainless steel.

  3. Fabrication of antibacterial and hydrophilic electroless Ni-B coating on 316L stainless steel

    Science.gov (United States)

    Bülbül, Ferhat; Bülbül, Leman Elif

    2016-01-01

    Biomaterial-associated bacterial infection is one of the most common complications with medical vehicles and implants made of stainless steel. A surface coating treatment like electroless Ni-B deposition, a new candidate to be used in a broad range of engineering applications owing to many advantages such as low cost, thickness uniformity, good wear resistance, may improve the antibacterial activity and physical properties of biomedical devices made of stainless steel. In this study, the antibacterial property of the electroless Ni-B film coated on AISI 316L (UNS S31603) stainless steel is basically investigated. Inhibition halo diameter measurement after incubation at 37 °C and 24 h demonstrates the existence of antimicrobial activity of the electroless Ni-B coating deposited on 316L stainless steel over the Escherichia coli test bacteria. The results of X-ray diffraction, scanning electron microscopy, atomic force microscopy and microhardness measurement studies confirms that the coating deposited on the substrate has an uniform amorphous and a harder structure. Besides, the wettability property of the uncoated substrate and the coating was measured as the contact angle of water. The water contact angle reduced about from 97.7 to 69.25°.

  4. Mechanical properties and biocompatibility of plasma-nitrided laser-cut 316L cardiovascular stents.

    Science.gov (United States)

    Arslan, Erdem; Iğdil, Mustafa C; Yazici, Hilal; Tamerler, Candan; Bermek, Hakan; Trabzon, Levent

    2008-05-01

    The effect of surface modification of laser-cut 316L cardiovascular stents by low-T plasma nitriding was evaluated in terms of mechanical properties and biocompatibility of the stents. The plasma nitriding was performed at 400, 450 or 500 degrees C using various ratios of nitrogen-hydrogen gas mixtures. The flexibility and radial strength were measured in crimped and expanded state of the stents, respectively. The mechanical properties could be adjusted and improved by plasma nitriding conducted at temperatures lower than 450 degrees C and/or nitrogen content less than 10% in the treatment gas. An osteoblast cell culture model system was utilized to investigate the effect of plasma nitriding of the stents on the biological response towards the stents, using biological criteria such as cell viability, alkaline phosphatase and nitric oxide production. In terms of cell viability and alkaline phosphatase production, the plasma nitriding procedure did not appear to negatively affect the biocompatibility of the 316L steel stents. However, in terms of nitric oxide production that was slightly increased in the presence of the plasma-nitrided stents, an indirect improvement in the biocompatibility could possibly be expected.

  5. Electrodeposition of polypyrrole on 316L stainless steel for corrosion prevention

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.B. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Saidman, S.B., E-mail: ssaidman@criba.edu.a [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2011-01-15

    Research highlights: {yields} PPy films were electrodeposited on 316L SS in solutions containing MoO{sub 4}{sup 2-} and/or NO{sub 3}{sup -}. {yields} The coatings completely inhibit pitting corrosion in chloride solutions. {yields} At pH 12, the PPy is electroactive and the oxide film is more stable. {yields} The more protective films were obtained in presence of MoO{sub 4}{sup 2-} and NO{sub 3}{sup -} at pH 12. - Abstract: The electrosynthesis of polypyrrole films onto 316L stainless steel from near neutral and alkaline solutions containing molybdate and nitrate is reported. The corrosion behavior of the coated electrodes was investigated in NaCl solutions by electrochemical techniques and scanning electron microscopy. The polymer formed potentiostatically in a solution of pH 12 is the most efficient in terms of adhesion and corrosion protection. The coating significantly reduces the pitting corrosion of the substrate. The results are interpreted in terms of the nature of dopants, the good electroactivity of the polymer formed in alkaline solution and the passivating properties of the oxide layer.

  6. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    Science.gov (United States)

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application.

  7. Effect of Mercury Velocity on Corrosion of Type 316L Stainless Steel in a Thermal Convection Loop

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, SJ

    2001-03-23

    Two 316L thermal convection loops (TCLs) containing several types of 316L specimens circulated mercury continuously for 2000 h at a maximum temperature of 300 C. Each TCL was fitted with a venturi-shaped reduced section near the top of the hot leg for the purpose of locally increasing the Hg velocity. Results suggest that an increase in velocity from about 1.2 m/min (bulk flow) to about 5 mmin (reduced section) had no significant impact on compatibility of 316L with Hg. In addition, various surface treatments such as gold-plating, chemical etching, polishing, and steam cleaning resulted in little or no influence on compatibility of 316L with Hg when compared to nominal mill-annealed/surface-ground material. A sensitizing heat treatment also had little/no effect on compatibility of 316L with Hg for the bulk specimen, although intergranular attack was observed around the specimen holes in each case. It was determined that carburization of the hole area had occurred as a result of the specimen fabrication process potentially rendering the specimens susceptible to corrosion by Hg at these locations. To avoid sensitization-related compatibility issues for SNS components, selection of low carbon grades of stainless steel and control of the fabrication process is recommended.

  8. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel

    Science.gov (United States)

    Zhao, Jinlong; Xu, Dake; Shahzad, M. Babar; Kang, Qiang; Sun, Ying; Sun, Ziqing; Zhang, Shuyuan; Ren, Ling; Yang, Chunguang; Yang, Ke

    2016-11-01

    The resistance for pitting corrosion, passive film stability and antibacterial performance of 316L-Cu SS passivated by nitric acid solution containing certain concentration of copper sulfate, were studied by electrochemical cyclic polarization, electrochemical impedance spectroscopy (EIS) and co-culture with bacteria. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Cu2+ ions release from 316L-Cu SS surface. XPS analysis proved that the enrichment of CuO, Cr2O3 and Cr(OH)3 on the surface of specimen could simultaneously guarantee a better corrosion resistance and stable antibacterial properties. The biocompatibility evaluation determined by RTCA assay also indicated that the 316L-Cu SS after antibacterial passivation was completely biocompatible.

  9. Effect of Cold-Rolling on Precipitation Phenomena in Sensitized Type 316L and 340L Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    H.Tsubakino; A.Yamamoto; T. Yamada; L.Liu; M.Terasawa; S.Nakahigashi; H.Harada

    2004-01-01

    Precipitation phenomena in Type 316L and 304L stainless steels were studied mainly by transmission electron microscopic (TEM) observations after cold-rolling ranging from 0% (as solution annealed) to 80% reduction in thickness,and then by sensitization treatment. Precipitates were identified by electron diffraction analysis and EDS analysis.Precipitates observed in sensitized 316L stainless steel were sigma and chi phases, whereas carbide and sigma were observed in sensitized 304L stainless steel. Recrystallized grains were formed in 30% cold-rolled and sensitized 304L.However, the tendency toward recrystallization in sensitized 316L was much lower than in 304L. Precipitation of sigma and chi phases was accelerated by cold-rolling and they were observed at grain boundaries in lower cold-rolling; they were also seen, in grain interiors in higher cold-rolling. Higher deformation induced partially recrystallization combined with precipitation, resulting in the formation of heterogeneous microstructures.

  10. Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid

    Institute of Scientific and Technical Information of China (English)

    FAN Xin; CHEN Jian; ZOU Jian-peng; WAN Qian; ZHOU Zhong-cheng; RUAN Jian-ming

    2009-01-01

    HA/316L stainless steel(316L SS) biocomposites were prepared by hot-pressing technique. The formation of bone-like apatite on the biocomposite surfaces in simulated body fluid(SBF) was analyzed by digital pH meter, plasma emission spectrometer, scanning electron microscope(SEM) and energy dispersive X-ray energy spectrometer(EDX). The results indicate that the pH value in SBF varies slightly during the immersion. It is a dynamic process of dissolution-precipitation for the formation of apatite on the surface. With prolonging immersion time, Ca and P ion concentrations increase gradually, and then approach equilibrium. The bone-like apatite layer forms on the composites surface, which possesses benign bioactivity and favorable biocompatibility and achieves osseointegration, and can provide firm fixation between HA60/316L SS composite implants and human body bone.

  11. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].

    Science.gov (United States)

    Liang, Chenghao; Guo, Liang; Chen, Wan

    2006-08-01

    Electrochemical constant current linear polarization and atomic absorption spectroscopy were used to measure the corrosion rate of coronary stents made of 316L and 317L stainless steel in 30 degrees C Tyrode's solution. The results indicated that the corrosion rate of 316L and 317L stainless steel was 21 X 10(-3) microm/a, 9.8 X 10(-3) microm/a and 0.8 X 10(-3) m/a, 0.6 X 10(-3) microm/a, respectively. All corrosion rates were lower than the medical materials corrosion rate criteria, i.e. 0.25 microm/a. Moreover the corrosion resistance of 317L stainless steel was much higher than that of 316L stainless steel. The results from atomic absorption spectroscopy may correctly reflect the quantity of releasing metal ions in the solution.

  12. Aceros aluminotérmicos. Nuevas aplicaciones

    Directory of Open Access Journals (Sweden)

    Duart Blay, J. M.

    2004-02-01

    . Particular aplicación o interés presentan en la tecnología de los ferrocarriles para la obtención del carril continuo, prácticamente implantado en todo el mundo y en soldaduras cable de cobre-carril de acero empleadas en las señalizaciones para control de tráfico. En este trabajo se aportan las bases termodinámicas de la aluminotermia del hierro y su aplicación a la soldadura compleja de cruzamientos, juntas de dilatación y desvíos en FF.CC, que combinan aceros Hadfield, aceros inoxidables y aceros perlíticos de diferentes propiedades mecánicas. Las uniones deben ser compactas, resistentes y duras en los niveles que se citan en el trabajo, según requisitos exigidos por la circulación en líneas de alta velocidad (350 km/h., actualmente en construcción en España, pero que resultan generalizables a otro tipo de líneas menos exigentes y a ferrocarriles mineros.

  13. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application

    Energy Technology Data Exchange (ETDEWEB)

    Prem Ananth, K., E-mail: kpananth01@gmail.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India); Joseph Nathanael, A. [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Jose, Sujin P. [Department of Materials Science and Nano engineering, Rice University, Texas 77005 (United States); School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Oh, Tae Hwan [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India)

    2016-02-01

    An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out. These results confirmed the significant improvement of the corrosion resistance of the 316L SS alloy by the I-HAp/SiNTs/PPy bilayer composite coating. The adhesion strength and hardness test confirmed the anticipated mechanical properties of the composite. A low contact angle value revealed the hydrophilic nature. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used for the leach out analysis of the samples. Added to this, the bioactivity of the composite was analyzed by observing the apatite formation in the SBF solution for 7, 14, 21 and 28 days of incubation. An enhancement of in vitro osteoblast attachment and cell viability was observed, which could lead to the optimistic orthopedic and dental applications. - Highlights: • Polypyrrole (PPy) coated 316L SS substrates were fabricated using electrodeposition method. • A novel silica nanotube (SiNTs) and ionic substituted (Sr, Zn, Mg) hydroxyapatite composite (I-HAp) were prepared. • The composite (I-HAp/SiNTs) was coated on PPy coated 316L SS substrate using electrophoretic deposition. • These results are favorable for corrosion resistance and enhanced osteoblast cell attachment for bone formation.

  14. EFFECT OF NANOCRYSTALLINE AND TWIN BOUNDARIES ON CORROSION BEHAVIOR OF 316L STAINLESS STEEL USING SMAT

    Institute of Scientific and Technical Information of China (English)

    A.Q. Lü; Y. Zhang; Y. Li; G. Liu; Q.H. Zang; C.M. Liu

    2006-01-01

    By means of surface mechanical attrition treatment (SMAT), the grain size with a diameter of about 60nm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were synthesized in 316L stainless steel because of the different distributions of strain and strain rate along depth orientation. For instance the maximum strain rate reached103-104s-1 on the top surface. The relationship between the microstructure and the corrosion property was studied in 0. 05M H2SO4+ 0.25M Na2SO4 aqueous solution, and the results show an extreme improvement of corrosion resistance owing to the appearance of twin boundaries and the obvious reduction in corrosion resistance attributed to the presence of nanocrystaline boundaries.

  15. The surface cleanliness of 316 L + N stainless steel studied by SIMS and AES

    CERN Document Server

    Mathewson, A G

    1974-01-01

    Some cleaning methods for 316 L+N stainless steel including solvent cleaning, high temperature treatment in vacuo and gas discharge cleaning have been studied by SIMS and AES with a view to providing a clean vacuum chamber surface with low gas desorption under ion bombardment. After solvent cleaning the main surface contaminant was found to be C and its associated compounds. Laboratory investigations on small samples of stainless steel showed that clean surfaces could be obtained by heating in vacuo to 800 degrees C followed by exposure to air and by argon or argon/10% oxygen discharge cleaning. Due to a cross contamination within the vacuum system, the 800 degrees C treated chamber gave positive desorption coefficients under ion bombardment. The pure argon discharge cleaned chambers proved stable giving negative desorption coefficients up to 2200 eV ion energy even after several weeks storage discharge treatment and installation. (10 refs).

  16. Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shahir Mohd Yusuf

    2017-02-01

    Full Text Available This study investigates the porosity and microhardness of 316L stainless steel samples fabricated by selective laser melting (SLM. The porosity content was measured using the Archimedes method and the advanced X-ray computed tomography (XCT scan. High densification level (≥99% with a low average porosity content (~0.82% were obtained from the Archimedes method. The highest porosity content in the XCT-scanned sample was ~0.61. However, the pores in the SLM samples for both cases (optical microscopy and XCT were not uniformly distributed. The higher average microhardness values in the SLM samples compared to the wrought manufactured counterpart are attributed to the fine microstructures from the localised melting and rapid solidification rate of the SLM process.

  17. Influence of the direction of selective laser sintering on machinability of parts from 316L steel

    Science.gov (United States)

    Alexeev, V. P.; Balyakin, A. V.; Khaimovich, A. I.

    2017-02-01

    This work presents the results of research of the impact of layer-by-layer growing of workpieces made of 316L steel on their machinability. The results of determination of residual stresses and measurement of hardness of the workpieces grown have been demonstrated. A series of experimental studies has been performed in order to determine the cutting force which occurs in the process of machining. The microstructure of the workpieces grown has been examined. It has been shown that the workpieces machined using Selective Laser Melting technology have the microstructure which is a totality of ‘microwelded seams’, which have a significant influence on the behavior of deformation processes in case of machining. The studies have shown that in case of lateral milling of the horizontally grown workpiece, the codirectional microwelded borders prevent any significant deformation of the misalignment which increases the cutting force by up to 10% as compared with milling of the vertically grown workpiece.

  18. Acoustic emission detection of 316L stainless steel welded joints during intergranular corrosion

    Institute of Scientific and Technical Information of China (English)

    Meng-yu Chai; Quan Duan; Wen-jie Bai; Zao-xiao Zhang; Xu-meng Xie

    2015-01-01

    This study analyzes acoustic emission (AE) signals during the intergranular corrosion (IGC) process of 316L stainless steel welded joints under different welding currents in boiling nitric acid. IGC generates several AE signals with high AE activity. The AE tech-nique could hardly distinguish IGC in stainless steel welded joints with different welding heat inputs. However, AE signals can effectively distinguish IGC characteristics in different corrosion stages. The IGC resistance of a heat-affected zone is lower than that of a weld zone. The initiation and rapid corrosion stages can be distinguished using AE results and microstructural analysis. Moreover, energy count rate and am-plitude are considered to be ideal parameters for characterizing different IGC processes. Two types of signals are detected in the rapid corro-sion stage. It can be concluded that grain boundary corrosion and grain separation are the AE sources of type 1 and type 2, respectively.

  19. Effects of dissolved oxygen on electrochemical and semiconductor properties of 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng Zhicao [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Cheng Xuequn, E-mail: chxq2000@hotmail.co [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Dong Chaofang; Xu Lin [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Li Xiaogang, E-mail: lixiaogang99@263.ne [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-12-31

    The effects of dissolved oxygen on the electrochemical behavior and semiconductor properties of passive film formed on 316L SS in three solutions with different dissolved oxygen were studied by using polarization curve, Mott-Schottky analysis and the point defect model (PDM). The results show that higher dissolved oxygen accelerates both anodic and cathodic process. Based on Mott-Schottky analysis and PDM, the key parameters for passive film, donor density N{sub d}, flat-band potential E{sub fb} and diffusivity of defects D{sub 0} were calculated. The results display that N{sub d}(1-7 x 10{sup 27}m{sup -3}) and D{sub 0}(1-18 x 10{sup -16}cm{sup 2}/s) increase and E{sub fb} value reduces with the dissolved oxygen in solution.

  20. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    XUEQi; JINYong; HUDong-ping; HUANGBen-sheng; DENGBai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported. The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainlesss teel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2 to 2.0. The Ti [C,N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion hetween the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  1. Study of TiC+TiN Multiple Films On Type of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    XUE Qi; JIN Yong; HU Dong-ping; HUANG Ben-sheng; DENG Bai-quan

    2004-01-01

    In this paper, the synthesis process of TiC+TiN multiple films on super-low-carbon stainless steels is reported.The TiC layer is coated as the first layer in the multiple film, the change of growth rate of the film on the 316L Stainless steel is not same as the one on carbides substrates, while the mole ratio of CH4 to TiCl4 (mCH4/TiCl4) is changed from 1.2to 2.0. The Ti [C, N], as a kind of inter-layer between TiC and TiN layers, is helpful to improve the adhesion between the TiC and TiN layer. The cooling rate greatly influences the quality of the adhesion between the TiC+TiN film and substrates.

  2. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  3. Parylene coatings on stainless steel 316L surface for medical applications--mechanical and protective properties.

    Science.gov (United States)

    Cieślik, Monika; Kot, Marcin; Reczyński, Witold; Engvall, Klas; Rakowski, Wiesław; Kotarba, Andrzej

    2012-01-01

    The mechanical and protective properties of parylene N and C coatings (2-20 μm) on stainless steel 316L implant materials were investigated. The coatings were characterized by scanning electron and confocal microscopes, microindentation and scratch tests, whereas their protective properties were evaluated in terms of quenching metal ion release from stainless steel to simulated body fluid (Hanks solution). The obtained results revealed that for parylene C coatings, the critical load for initial cracks is 3-5 times higher and the total metal ions release is reduced 3 times more efficiently compared to parylene N. It was thus concluded that parylene C exhibits superior mechanical and protective properties for application as a micrometer coating material for stainless steel implants.

  4. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel.

    Science.gov (United States)

    Thanh, Dinh Thi Mai; Nam, Pham Thi; Phuong, Nguyen Thu; Que, Le Xuan; Anh, Nguyen Van; Hoang, Thai; Lam, Tran Dai

    2013-05-01

    Hydroxyapatite (HAp) coatings were prepared on 316L stainless steel (316LSS) substrates by electrochemical deposition in the solutions containing Ca(NO3)2·4H2O and NH4H2PO4 at different electrolyte concentrations. Along with the effect of precursor concentration, the influence of temperature and H2O2 content on the morphology, structure and composition of the coating was thoroughly discussed with the help of X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra. The in vitro tests in simulated body fluids (SBF) were carried out and then the morphological and structural changes were estimated by SEM and electrochemical techniques (open circuit potential, polarization curves, Nyquist and Bode spectra measurements). Being simple and cost-effective, this method is advantageous for producing HAp implant materials with good properties/characteristics, aiming towards in vivo biomedical applications.

  5. Analysis of deformation induced martensite in AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jagarinec, Darko; Kirbis, Peter; Predan, Jozef; Vuherer, Tomaz; Gubeljak, Nenad [Maribor Univ. (Slovenia). Faculty of Mechanical Engineering

    2016-08-01

    Metastable austenite stainless steel AISI 316L is sensitive to cold deformation, where transformation from austenite to martensite occurred. The bending deformation as the formation process leads to tensile and compression throughout the thickness of the billet. Tensile testing of the specimen causes differences in the true stress-strain along the contraction neck prior to fracture as well. The aim of the paper is to find correlation between microhardness as brief inspection parameters and extension of martensitic transformation. The total equivalent plastic strain extend diagram obtained by numerical simulation of bending was compared with tensile true stress-strain diagram. Results show very good correlation between hardness, true strain and martesite content. Therefore, one can conclude that by hardness measurement, it is possible to measure the level of equivalent plastic strain until ultimate tensile stress as a linear correlation between hardness, true strain and martesite content.

  6. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    Science.gov (United States)

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  7. The fracture and fragmentation behaviour of additively manufactured stainless steel 316L

    Science.gov (United States)

    Amott, R.; Harris, E. J.; Winter, R. E.; Stirk, S. M.; Chapman, D. J.; Eakins, D. E.

    2017-01-01

    Expanding cylinder experiments using a gas gun technique allow investigations into the ductility of metals and the fracture and fragmentation mechanisms that occur during rapid tensile failure. These experiments allow the radial strain-rate of the expansion to be varied in the range 102 to 104 s-1. Presented here is a comparative study of the fracture and fragmentation behaviour of rapidly expanded stainless steel 316L cylinders manufactured from either a wrought bar or additive manufacturing techniques. The results show that in the strain-rate regime studied, an additively manufactured cylinder failed at a higher strain and produced larger fragment widths when compared to cylinders manufactured from a wrought bar. In addition, an investigation into the role of macroscopic elongated voids that were introduced into the cylinder wall, at an angle of 45° to the cylinder radius, was undertaken. A comparison between experimental and simulated results (using the Eulerian hydrocode CTH) was also completed.

  8. Mechanical and Electrochemical Characterization of Super-Solidus Sintered Austenitic Stainless Steel (316L)

    Science.gov (United States)

    Muthuchamy, A.; Raja Annamalai, A.; Ranka, Rishabh

    2016-08-01

    The present study compares the mechanical and electrochemical behaviour of austenitic (AISI 316L) stainless steel compacted at various pressures (200, 400 and 600 MPa) and conventionally sintered at super-solidus temperature of 1,400°C. The electrochemical behaviour was investigated in 0.1 N H2SO4 solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The shrinkage decreased and densification has been increased with increasing pressure. The mechanical and electrochemical behaviour with pressure has been correlated with densification response and microstructure (pore type, volume and morphology). Highest densification ( 92% theoretical) achieved at 600 MPa (compaction pressure) and 1,400°C (sintering temperature) resulted in excellent combination of tensile strength and ductility (456 ± 40 MPa, 25 ± 1.1%), while showing excellent corrosion resistance (0.1 mmpy or 4.7 mpy).

  9. An investigation of the aseptic loosening of an AISI 316L stainless steel hip prosthesis.

    Science.gov (United States)

    Godec, Matjaz; Kocijan, Aleksandra; Dolinar, Drago; Mandrino, Djordje; Jenko, Monika; Antolic, Vane

    2010-08-01

    The total replacement of joints by the implantation of permanently indwelling prosthetic components has been one of the major successes of modern surgery in terms of relieving pain and correcting deformity. However, the aseptic loosening of a prosthetic-joint component is the most common reason for joint-revision surgery. Furthermore, it is thought that wear particles are one of the major contributors to the development and perpetuation of aseptic loosening. The aim of the present study was to identify the factors related to the aseptic loosening of an AISI 316L stainless steel total hip prosthesis. The stem was evaluated by x-ray photoelectron spectroscopy, with polished and rough regions being analyzed in order to establish the differences in the chemical compositions of both regions. Specific areas were examined using scanning electron microscopy with energy dispersive x-ray spectroscopy and light microscopy.

  10. Electrophoretic deposition of a bioactive Si, Ca-rich glass coating on 316L stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    H. H. Rodríguez

    2011-12-01

    Full Text Available This work consisted in the development and characterization of a vitroceramic coating on 316L stainless steel bymeans of electrophoretic deposition (EPD. This vitroceramic coating was obtained through a Si-, Ca-rich glas coating crystallization. The electrophoretic deposition tests were performed on 316L stainless steel mechanically polished substrates. The results suggest that the electrophoretic coatings adhered well to the metallic surfaces. Theresults demonstrate that the crystallized coatings are potentially bioactive, because a dense and homogeneous apatite layer, similar to a bone, makes up.

  11. Corrosion, haemocompatibility and bacterial adhesion behaviour of TiZrN-coated 316L SS for bioimplants

    Indian Academy of Sciences (India)

    Gobi Saravanan Kaliaraj; Vinita Vishwakarma; Ananthakumar Ramadoss; D Ramachandran; Arul Maximus Rabel

    2015-08-01

    TiZrN coating was deposited on 316L stainless steel (SS) by the reactive magnetron co-sputtering technique. Cubic phase of TiZrN with uniform surface morphology was observed by X-ray diffraction and atomic force microscopy. Bacterial adhesion, haemocompatibility and corrosion behaviour of TiZrN coating were examined in order to evaluate the coating’s compatibility for ideal implant. Results revealed that TiZrN coatings exhibited less bacterial attachment against Staphylococcus aureus and Escherichia coli bacteria, negligible platelets activation and superior corrosion resistance than the uncoated 316L SS.

  12. Improved corrosion resistance of 316L stainless steel by nanocrystalline and electrochemical nitridation in artificial saliva solution

    Science.gov (United States)

    Lv, Jinlong; Liang, Tongxiang

    2015-12-01

    The fluoride ion in artificial saliva significantly changed semiconductor characteristic of the passive film formed on the surface of 316L stainless steels. The electrochemical results showed that nanocrystalline α‧-martensite improved corrosion resistance of the stainless steel in a typical artificial saliva compared with coarse grained stainless steel. Moreover, comparing with nitrided coarse grained stainless steel, corrosion resistance of the nitrided nanocrystalline stainless steel was also improved significantly, even in artificial saliva solution containing fluoride ion. The present study showed that the cryogenic cold rolling and electrochemical nitridation improved corrosion resistance of 316L stainless steel for the dental application.

  13. Determination of physical properties for β-TCP + chitosan biomaterial obtained on metallic 316L substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mina, A. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Tecno-Academia ASTIN SENA Reginal Valle (Colombia); Castaño, A. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Caicedo, J.C., E-mail: julio.cesar.caicedo@correo.univalle.edu.co [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Caicedo, H.H. [Biologics Research, Biotechnology Center of Excellence, Janssen R& D, LLC, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA 19477 (United States); National Biotechnology & Pharmaceutical Association, Chicago, IL 60606 (United States); Aguilar, Y. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia)

    2015-06-15

    Material surface modification, particularly the deposition of special coatings on the surface of surgical implants, is extensively used in bone tissue engineering applications. β-Tricalcium phosphate/Chitosan (β-TCP/Ch) coatings were deposited on 316L stainless steel (316L SS) substrates by a cathodic electro-deposition technique at different coating compositions. The crystal lattice arrangements were analyzed by X-Ray diffraction (XRD), and the results indicated that the crystallographic structure of β-TCP was affected by the inclusion of the chitosan content. The changes in the surface morphology as a function of increasing chitosan in the coatings via scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that root-mean square values of the β-TCP/Ch coatings decreased by further increasing chitosan percentage. The elastic–plastic characteristics of the coatings were determined by conducting nanoindentation test, indicating that increase of chitosan percentage is directly related to increase of hardness and elastic modulus of the β-TCP/Ch coatings. Tribological characterization was performed by scratch test and pin-on-disk test to analyze the changes in the surface wear of β-TCP/Ch coatings. Finally, the results indicated an improvement in the mechanical and tribological properties of the β-TCP/Ch coatings as a function of increasing of the chitosan percentage. This new class of coatings, comprising the bioactive components, is expected not only to enhance the bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. - Highlights: • Superficial phenomenon that occurs in tribological surface of β-tricalcium phosphate-chitosan coatings. • Improvement on surface mechanical properties of ceramic-polymeric and response to surface tribological damage. • β-tricalcium phosphate-chitosan coatings that offer highest performance in the biomedical devices.

  14. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    Science.gov (United States)

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream.

  15. Low friction and high strength of 316L stainless steel tubing for biomedical applications.

    Science.gov (United States)

    Amanov, Auezhan; Lee, Soo-Wohn; Pyun, Young-Sik

    2017-02-01

    We propose herein a nondestructive surface modification technique called ultrasonic nanocrystalline surface modification (UNSM) to increase the strength and to improve the tribological performance of 316L stainless steel (SS) tubing. Nanocrystallization along nearly the complete tube thickness of 200μm was achieved by UNSM technique that was confirmed by electron backscatter diffraction (EBSD). Nano-hardness of the untreated and UNSM-treated specimens was measured using a nanoindentation. Results revealed that a substantial increase in hardness was obtained for the UNSM-treated specimen that may be attributed to the nanocrystallization and refined grains. Stress-strain behavior of the untreated and UNSM-treated specimens was assessed by a 3-point bending test. It was found that the UNSM-treated specimen exhibited a much higher strength than that of the untreated specimen. In addition, the tribological behavior of the untreated and UNSM-treated specimens with an outer diameter (OD) of 1.6mm and an inner diameter (ID) of 1.2mm was investigated using a cylinder-on-cylinder (crossed tubes of equal radius) tribo-tester against itself under dry conditions at ambient temperature. The friction coefficient and wear resistance of the UNSM-treated specimen were remarkably improved compared to that of the untreated specimen. The significant increase in hardness after UNSM treatment is responsible for the improved friction coefficient and wear resistance of the tubing. Thus, the UNSM technique was found to be beneficial to improving the mechanical and tribological properties of 316L SS tubing for various potential biomedical applications, in particular for coronary artery stents.

  16. Investigating the correlation between some of the properties of plasma nitrided AISI 316L stainless steel

    Directory of Open Access Journals (Sweden)

    M. Olzon-Dionysio

    2013-01-01

    Full Text Available When AISI 316L stainless steels are submitted to the nitriding process at temperatures lower than 450 °C, a high nitrogen content expanded austenite phase is formed, which shows higher hardness and higher pitting corrosion resistance compared to the untreated material. As a result, this material becomes adequate for biomedical application. The conditions of the nitriding technique, such as gas mixture, pressure, time and temperature, play an important role in some properties of the modified layer, including: thickness, hardness and N concentration along the layer. This paper explores a set of six samples of AISI 316L, nitrided at different times and temperatures, whose properties show important differences. The aim of this research is to investigate the correlation between the nitrided layer thickness (in the range of 0.77 to 11 µm with both X-ray patterns characteristics and hardness measurements, which used two distinct loads. The results of this study show that: whereas the 3.6 gf load was suitable to measure the real hardness for four of the nitrided layers showing thickness ≥ 2.9 µm, the 50 gf load measured a substrate contribution, probably even for the highest thickness, 11 µm. Moreover, analyzing different reflections of the X-ray patterns showed evidence of the clear consistency between the X-Ray depths and the nitrided layer thicknesses: if the layer thickness is lower than the penetration depth of X-rays, two phases (austenite and expanded substrate are present. If the layer thickness is higher, only the austenite is observed. Finally, concerning the citotoxicity property, all the samples, nitrided or not, were approved in the test for biocompatibility, indicating their potential use for biomedical applications.

  17. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants.

    Science.gov (United States)

    Madhan Kumar, A; Nagarajan, S; Ramakrishna, Suresh; Sudhagar, P; Kang, Yong Soo; Kim, Hyongbum; Gasem, Zuhair M; Rajendran, N

    2014-10-01

    The present investigation describes the versatile fabrication and characterization of a novel composite coating that consists of polypyrrole (PPy) and Nb2O5 nanoparticles. Integration of the two materials is achieved by electrochemical deposition on 316L stainless steel (SS) from an aqueous solution of oxalic acid containing pyrrole and Nb2O5 nanoparticles. Fourier transform infrared spectral (FTIR) and X-ray diffraction (XRD) studies revealed that the existence of Nb2O5 nanoparticles in PPy matrix with hexagonal structure. Surface morphological analysis showed that the presence of Nb2O5 nanoparticles strongly influenced the surface nature of the nanocomposite coated 316L SS. Micro hardness results revealed the enhanced mechanical properties of PPy nanocomposite coated 316L SS due to the addition of Nb2O5 nanoparticles. The electrochemical studies were carried out using cyclic polarization and electrochemical impedance spectroscopy (EIS) measurements. In order to evaluate the biocompatibility, contact angle measurements and in vitro characterization were performed in simulated body fluid (SBF) and on MG63 osteoblast cells. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than pure PPy coatings.

  18. Effect of thermal exposure in helium on mechanical properties and microstructure of 316L and P91

    Science.gov (United States)

    Kunzova, Klara; Berka, Jan; Siegl, Jan; Hausild, Petr

    2016-04-01

    In this paper, the effects of high temperature exposure in air as well as in impure He on mechanical properties of 316L and P91 steels were investigated. The experimental programme was part of material design of new experimental facility - high temperature helium loop. Some of the specimens were exposed in air at 750 °C for up to 1000 h. Another set of specimens were exposed in impure helium containing 1 ppmv CO2, 2 ppmv O2, 35 ppmv CH4, 250 ppmv CO and 400 ppmv H2 at 750 °C for up to 1000 h. Metalographical analysis, tensile tests, fracture toughness and hardness tests of exposed and non-exposed specimens were carried out. After the exposure both in air and He, the ultimate tensile strength of P91 decreased significantly more than that of 316L. After the exposure in He, the fracture toughness of 316L was reduced to 60% while fracture toughness of P91 showed no significant changes. The hardness of P91 decreased with exposure time in air. The measurement of the hardness of 316L was very scattered the most probably due to the heterogeneities in microstructure, the trend was not possible to evaluate.

  19. Tensile properties of explosively formed 316L(N)-IG stainless steel with and without an electron beam weld

    NARCIS (Netherlands)

    Hegeman, J.B.J.; Luzginova, N.V.; Jong, M.; Groeneveld, H.D.; Borsboom, A.; Stuivinga, M.E.C.; Laan, J.G. van der

    2011-01-01

    The mechanical properties of two explosively formed saddle shaped 60 mm thick plates of 316L(N)-IG steel with and without an electron beam weld have been investigated. Two different conditions have been characterized: (1) Reference condition and (2) ITER relevant condition. The reference material ex

  20. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application.

    Science.gov (United States)

    Prem Ananth, K; Joseph Nathanael, A; Jose, Sujin P; Oh, Tae Hwan; Mangalaraj, D

    2016-02-01

    An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out. These results confirmed the significant improvement of the corrosion resistance of the 316L SS alloy by the I-HAp/SiNTs/PPy bilayer composite coating. The adhesion strength and hardness test confirmed the anticipated mechanical properties of the composite. A low contact angle value revealed the hydrophilic nature. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used for the leach out analysis of the samples. Added to this, the bioactivity of the composite was analyzed by observing the apatite formation in the SBF solution for 7, 14, 21 and 28days of incubation. An enhancement of in vitro osteoblast attachment and cell viability was observed, which could lead to the optimistic orthopedic and dental applications.

  1. Comportamiento termomecánico de aceros AISI 304

    Directory of Open Access Journals (Sweden)

    El Wahabi, M.

    2001-04-01

    Full Text Available The hot deformation behaviour of three AISI 304 (H, L and HP austenitic stainless steel with different carbon contents has been studied. An analysis of the parameters describing their hot flow curves was carried out. No heavy effect of the carbon content was found on most of the latter parameters. However, the work hardening and dynamic recovery behaviour showed clear differences depending on the given alloy, especially at high temperatures and low strain rates where the high carbon steel displayed larger work hardening and dynamic recovery rates than the other steels. The high purity steel (interstitial free displayed the lower stress levels as its hardening rate was slower than in the other two steels.

    Se llevó a cabo un estudio del comportamiento termomecánico de tres aceros inoxidables austeníticos tipo AISI 304 (H, L y HP con diferentes contenido en carbono, mediante la determinación de los parámetros que describen las etapas de deformación en caliente. No se notó un fuerte efecto del carbono en dichos parámetros, excepto en los que describen los procesos de endurecimiento y de restauración dinámica que muestran una cierta dependencia con la composición química, especialmente a bajos valores del parámetro de Zener-Hollomon, donde el acero de alto carbono (304H endurece y restaura más rápido que el de bajo carbono (304L, alcanzándose valores de tensión de pico similares en ambos casos. El material de alta pureza (libre de intersticiales toma valores de tensión de pico más bajos que los otros aceros, endureciendo más lentamente y con una velocidad de restauración similar a la del 304H.

  2. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    Science.gov (United States)

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment.

  3. Properties of passive film formed on 316L/2205 stainless steel by Mott-Schottky theory and constant current polarization method

    Institute of Scientific and Technical Information of China (English)

    CHENG XueQun; LI XiaoGang; DU CuiWei

    2009-01-01

    Semiconductor properties of the passive films formed on 316L and 2205 stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS) in the high-temperature acetic acid.The results showed that the corrosion resistance of 2205 was higher than that of 316L,and the passive films formed on 316L and 2205 stainless steel showed p-type and n-type semiconductor behavior,respectively.Destruction and self-repairing of passive films were studied by using the constant current polarization method.The results showed that for 316L,the self-repairing process would occur when the destruction was lower than the critical extent or it would not do;for 2205,the self-repairing process only happened in a short time when the destruction was in the same extent as 316L.

  4. Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Hisashi, E-mail: serizawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Mori, Daiki; Ogiwara, Hiroyuki; Mori, Hiroaki [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The micro hardness of weld metal in F82H/SUS316L joint partially decreases after PWHT by shifting beam position to SUS316L. • Charpy impact energy of F82H/SUS316L joint obviously increases after PWHT due to the release of residual stress. • The tensile strength of weld metal in F82H/SUS316L joint is higher than that of SUS316L. • The fiber laser welding seems to be one of the most candidate methods to join between F82H and SUS316L pipes practically. - Abstract: A dissimilar butt-joint between reduced activation ferritic/martensitic steel F82H and SUS316L austenitic stainless steel was made by 4 kW fiber laser and the influence of laser beam position on its mechanical properties before and after post-weld heat treatment (PWHT) was examined at room temperature. From the nano-indentation measurements and the microstructural observations, it is found that the micro hardness of weld metal partially decreases after PWHT by shifting beam position to SUS316L because its phase seems to move from only the martensitic phase to the mixture of austenitic and martensitic phases. In addition, Charpy impact test suggests that the impact energy slightly increases by shifting beam position before PWHT and obviously increases after PWHT due to the release of residual stress. Moreover, the tensile test indicates that the tensile strength of weld metal is higher than that of SUS316L and the fracture occurs at the base metal of SUS316L regardless of laser beam position.

  5. Low-temperature plasma nitriding of sintered PIM 316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Aecio Fernando; Scheuer, Cristiano Jose; Joanidis, Ioanis Labhardt; Cardoso, Rodrigo Perito; Mafra, Marcio; Klein, Aloisio Nelmo; Brunatto, Silvio Francisco, E-mail: brunatto@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Grupo de Tecnologia de Fabricacao Assistida pro Plasma e Metalurgia do Po

    2014-08-15

    This work reports experimental results on sintered PIM 316L stainless steel low-temperature plasma nitriding. The effect of treatment temperature and time on process kinetics, microstructure and surface characteristics of the nitrided samples were investigated. Nitriding was carried out at temperatures of 350, 380, 410 and 440 °C , and times of 4, 8 and 16 h, using a gas mixture composed by 60% N2 + 20% H2 + 20% Ar, at a gas flow rate of 5.00 X 10{sup 6} Nm{sup 3-1}, and a pressure of 800 Pa. The treated samples were characterized by scanning electron microscopy, X-ray diffractometry and microhardness measurements. Results indicate that low-temperature plasma nitriding is a diffusion controlled process. The calculated activation energy for nitrided layer growth was 111.4 kJmol{sup -1}. Apparently precipitation-free layers were produced in this study. It was also observed that the higher the treatment temperature and time the higher is the obtained surface hardness. Hardness up to 1343 HV{sub 0.025} was verified for samples nitrided at 440 °C. Finally, the characterization of the treated surface indicates the formation of cracks, which were observed in regions adjacent to the original pores after the treatment. (author)

  6. Study of the Mechanical Properties of a Nanostructured Surface Layer on 316L Stainless Steel

    Directory of Open Access Journals (Sweden)

    F. C. Lang

    2016-01-01

    Full Text Available A nanostructured surface layer (NSSL was generated on a 316L stainless steel plate through surface nanocrystallization (SNC. The grains of the surface layer were refined to nanoscale after SNC treatment. Moreover, the microstructure and mechanical properties of NSSL were analyzed with a transmission electron microscope (TEM and scanning electron microscope (SEM, through nanoindentation, and through reverse analysis of finite element method (FEM. TEM results showed that the grains in the NSSL measured 8 nm. In addition, these nanocrystalline grains took the form of random crystallographic orientation and were roughly equiaxed in shape. In situ SEM observations of the tensile process confirmed that the motions of the dislocations were determined from within the material and that the motions were blocked by the NSSL, thus improving overall yielding stress. Meanwhile, the nanohardness and the elastic modulus of the NSSL, as well as those of the matrix, were obtained with nanoindentation technology. The reverse analysis of FEM was conducted with MARC software, and the process of nanoindentation on the NSSL and the matrix was simulated. The plastic mechanical properties of NSSL can be derived from the simulation by comparing the results of the simulation and of actual nanoindentation.

  7. In-Built Customised Mechanical Failure of 316L Components Fabricated Using Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Andrei Ilie

    2017-02-01

    Full Text Available The layer-by-layer building methodology used within the powder bed process of Selective Laser Melting facilitates control over the degree of melting achieved at every layer. This control can be used to manipulate levels of porosity within each layer, effecting resultant mechanical properties. If specifically controlled, it has the potential to enable customisation of mechanical properties or design of in-built locations of mechanical fracture through strategic void placement across a component, enabling accurate location specific predictions of mechanical failure for fail-safe applications. This investigation examined the process parameter effects on porosity formation and mechanical properties of 316L samples whilst maintaining a constant laser energy density without manipulation of sample geometry. In order to understand the effects of customisation on mechanical properties, samples were manufactured with in-built porosity of up to 3% spanning across ~1.7% of a samples’ cross-section using a specially developed set of “hybrid” processing parameters. Through strategic placement of porous sections within samples, exact fracture location could be predicted. When mechanically loaded, these customised samples exhibited only ~2% reduction in yield strength compared to samples processed using single set parameters. As expected, microscopic analysis revealed that mechanical performance was closely tied to porosity variations in samples, with little or no variation in microstructure observed through parameter variation. The results indicate that there is potential to use SLM for customising mechanical performance over the cross-section of a component.

  8. Computaional Modeling of the Stability of Crevice Corrosion of Wetted SS316L

    Energy Technology Data Exchange (ETDEWEB)

    F. Cui; F.J. Presuel-Moreno; R.G. Kelly

    2006-04-17

    The stability of localized corrosion sites on SS 316L exposed to atmospheric conditions was studied computationally. The localized corrosion system was decoupled computationally by considering the wetted cathode and the crevice anode separately and linking them via a constant potential boundary condition at the mouth of the crevice. The potential of interest for stability was the repassivation potential. The limitations on the ability of the cathode that are inherent due to the restricted geometry were assessed in terms of the dependence on physical and electrochemical parameters. Physical parameters studied include temperature, electrolyte layer thickness, solution conductivity, and the size of the cathode, as well as the crevice gap for the anode. The current demand of the crevice was determined considering a constant crevice solution composition that simulates the critical crevice solution as described in the literature. An analysis of variance showed that the solution conductivity and the length of the cathode were the most important parameters in determining the total cathodic current capacity of the external surface. A semi-analytical equation was derived for the total current from a restricted geometry held at a constant potential at one end. The equation was able to reproduce all the model computation results both for the wetted external cathode and the crevice and give good explanation on the effects of physicochemical and kinetic parameters.

  9. Effect of nitrogen on creep properties of type 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.W.; Lee, Y.K.; Kuk, I.H.; Ryu, W.S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The effect of nitrogen on the creep properties of type 316L stainless steels with three different nitrogen contents from 0.04 to 0.15% was investigated. The plate was solution treated for 1 hr at 1100 deg C and then water quenched. Specimens were obtained from the plate parallel to the rolling direction. The geometry of specimen was 4mm diameter and 30mm gauge length. Creep tests were carried out using constant-load single-lever machines in the initial stress range from 120 to 380MPa at 550, 600 and 650 deg C and in air. The temperature deviation along the gauge length of the specimen was strictly controlled less than {+-}2 deg C. The time to rupture increased and the minimum creep strain rate decreased with the addition of nitrogen. On the other hand, the rupture elongation and fracture mode was not strongly influenced by the nitrogen content. The effect of nitrogen content on the creep properties were found to be more pronounced at higher temperatures. The intergranular fracture mode was found in all specimens and increased with decreasing applied stress. (author). 7 refs., 41 figs.

  10. Effect of Beam Oscillation on Microstructure and Mechanical Properties of AISI 316L Electron Beam Welds

    Science.gov (United States)

    Kar, Jyotirmaya; Roy, Sanat Kumar; Roy, Gour Gopal

    2017-04-01

    The properties of electron beam-welded AISI 316L stainless steel butt joints prepared with and without beam oscillation were evaluated by microstructural analysis, mechanical testing like microhardness measurements, tensile tests at room and elevated temperature 973 K (700 °C), three-point bend, and Charpy impact tests. All joints, irrespective of being prepared with or without beam oscillation, were found to be defect free. Welds produced by beam oscillation exhibited narrower fusion zone (FZ) with lathy ferrite morphology, while the weld without beam oscillation was characterized by wider FZ and skeletal ferrite morphology. During tensile tests at room and elevated temperature 973 K (700 °C), all samples fractured in the base metal (BM) and showed almost the same tensile properties as that of the BM. However, the notch tensile tests at room temperature demonstrated higher strength for joints prepared with the oscillating beam. Besides, face and root bend tests, as well as Charpy impact tests, showed higher bending strength and notch toughness, respectively, for joints prepared with beam oscillation.

  11. Adipose tissue-derived stem cell response to the differently processed 316L stainless steel substrates.

    Science.gov (United States)

    Faghihi, Shahab; Zia, Sonia; Taha, Masoumeh Fakhr

    2012-12-01

    Stainless steel (SS) is one of the most applicable materials in fabrication of cardiac implants. The aim of this study is to investigate the effect of atomic structure of polycrystalline stainless steel on the response of adipose tissue-derived stem cells (ADSCs). Samples are prepared from differently processed extruded rod and rolled sheet of 316L SS having different crystallographic structure. X-ray diffraction analysis indicated (200) and (111) orientations with distinct volume fractions in the specimens. Morphology and ADSCs behavior including adhesion, proliferation and differentiation are assessed. The expression of cardiac specific protein (cardiac troponin I) and genes of differentiating cardiomyocytes is analyzed by immunofluorescence and RT-PCR. The number of attached and grown cells on the rod sample is higher than the sheet sample also the scanning electron microscopy (SEM) analysis of ADSCs grown on the samples demonstrates higher cell density and spreading pattern on the surface of rod sample. In differentiated ADSCs on the rod sample the expression of all genes except ANF are detectable, while on the sheet sample only the MEF2C and β-MHC are expressed. This study shows that the cellular response is influenced by the crystal structure of the substrate therefore; the skill to alter the structure of substrate may lend itself to engineer a biomaterial which could be suitable for differentiation of stem cells into a definite lineage.

  12. Macrophage responses to 316L stainless steel and cobalt chromium alloys with different surface topographies.

    Science.gov (United States)

    Anderson, Jordan A; Lamichhane, Sujan; Mani, Gopinath

    2016-11-01

    The surface topography of a biomaterial plays a vital role in determining macrophage interactions and influencing immune response. In this study, we investigated the effect of smooth and microrough topographies of commonly used metallic biomaterials such as 316 L stainless steel (SS) and cobalt-chromium (CoCr) alloys on macrophage interactions. The macrophage adhesion was greater on CoCr compared to SS, irrespective of their topographies. The macrophage activation and the secretion of most pro-inflammatory cytokines (TNF-α, IL-6, and IP-10) were greater on microrough surfaces than on smooth surfaces by day-1. However, by day-2, the macrophage activation on smooth surfaces was also significantly increased up to the same level as observed on the microrough surfaces, with more amount of cytokines secreted. The secretion of anti-inflammatory cytokine (IL-10) was significantly increased from day-1 to day-2 on all the alloy surfaces with the effect most prominently observed on microrough surfaces. The production of nitric oxide by the macrophages did not show any major substrate-dependent effect. The foreign body giant cells formed by macrophages were least observed on the microrough surfaces of CoCr. Thus, this study demonstrated that the nature of material (SS or CoCr) and their surface topographies (smooth or microrough) strongly influence the macrophage responses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2658-2672, 2016.

  13. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    Science.gov (United States)

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance.

  14. The electrochemical impedance of polarized 316L stainless steel: structure-property-adsorption correlation.

    Science.gov (United States)

    Gettens, Robert T T; Gilbert, Jeremy L

    2009-07-01

    Electrochemical (EC) impedance and polarization data were synergistically coupled with AFM micrographs providing insight on the polarized alloy-electrolyte interface. Several regions of oxide topography/ impedance characteristic were apparent on a 316L SS surface. A relatively rough surface with apparent EC reaction products was observed below -500 mV. Smooth surfaces were seen from -500 mV to 200 mV. A transition region which displayed the aggregation of particles on the surface was seen from 200 mV to 600 mV. Above 600 mV these particles disappeared revealing a smooth topography. These topographical observations matched closely with the impedance behavior of the system, particularly the capacitance (C), polarization resistance (R(p)) and current density. The presence of pre-adsorbed Fb had a significant impact on C below approximately -500 mV (increased capacitance). The deviation from ideality of the current response as determined by a KWW empirical dielectric decay function showed significant differences between PBS-immersed and pre-adsorbed Fb cases. Earlier, changes in Fb area coverage, height, and eccentricity were observed between voltages lower and higher than 0 mV. The presence of the flat-band potential around -150 mV as well as high cathodic charge-transfer reactions taking place below -100 mV relate to these observations.

  15. Dynamic Mechanical Response of Biomedical 316L Stainless Steel as Function of Strain Rate and Temperature.

    Science.gov (United States)

    Lee, Woei-Shyan; Chen, Tao-Hsing; Lin, Chi-Feng; Luo, Wen-Zhen

    2011-01-01

    A split Hopkinson pressure bar is used to investigate the dynamic mechanical properties of biomedical 316L stainless steel under strain rates ranging from 1 × 10(3) s(-1) to 5 × 10(3) s(-1) and temperatures between 25°C and 800°C. The results indicate that the flow stress, work-hardening rate, strain rate sensitivity, and thermal activation energy are all significantly dependent on the strain, strain rate, and temperature. For a constant temperature, the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate, while the thermal activation energy decreases. Catastrophic failure occurs only for the specimens deformed at a strain rate of 5 × 10(3) s(-1) and temperatures of 25°C or 200°C. Scanning electron microscopy observations show that the specimens fracture in a ductile shear mode. Optical microscopy analyses reveal that the number of slip bands within the grains increases with an increasing strain rate. Moreover, a dynamic recrystallisation of the deformed microstructure is observed in the specimens tested at the highest temperature of 800°C.

  16. Reduced graphene oxide growth on 316L stainless steel for medical applications.

    Science.gov (United States)

    Cardenas, L; MacLeod, J; Lipton-Duffin, J; Seifu, D G; Popescu, F; Siaj, M; Mantovani, D; Rosei, F

    2014-08-07

    We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm(-1) and 1350 cm(-1), respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.

  17. Laser Surface Alloying of 316L Stainless Steel with Ru and Ni Mixtures

    Directory of Open Access Journals (Sweden)

    M. B. Lekala

    2012-01-01

    Full Text Available The surfaces of AISI 316L stainless steel were laser alloyed with ruthenium powder and a mixture of ruthenium and nickel powders using a cw Nd:YAG laser set at fixed operating parameters. The microstructure, elemental composition, and corrosion characteristics of the alloyed zone were analyzed using optical and scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDX, and corrosion potential measurements. The depth of alloyed zone was measured using the AxioVision program and found to be approximately 1.8 mm for all the alloyed specimens. Hardness profile measurements through the surface-substrate interface showed a significant increase from 160 HV for the substrate to a maximum of 247 HV for the alloyed layer. The sample laser alloyed with 80 wt% Ni-20 wt% presented the most noble corrosion potential (Ecorr of −0.18 V and the lowest corrosion current density (icorr.

  18. Microbiological test results using three urine pretreatment regimes with 316L stainless steel

    Science.gov (United States)

    Huff, Timothy L.

    1993-01-01

    Three urine pretreatments, (1) Oxone (Dupont) and sulfuric acid, (2) sodium hypochlorite and sulfuric acid, (3) and ozone, were studied for their ability to reduce microbial levels in urine and minimize surface attachment to 316L stainless steel coupons. Urine samples inoculated with Bacillus insolitus and a filamentous mold, organisms previously recovered from the vapor compression distillation subsystem of NASA Space Station Freedom water recovery test were tested in glass corrosion cells containing base or weld metal coupons. Microbial levels, changes in pH, color, turbidity, and odor of the fluid were monitored over the course of the 21-day test. Specimen surfaces were examined by scanning electron microscopy at completion of the test for microbial attachment. Ozonated urine samples were less turbid and had lower microbial levels than controls or samples receiving other pretreatments. Base metal coupons receiving pretreatment were relatively free of attached bacteria. However, well-developed biofilms were found in the heat-affected regions of welded coupons receiving Oxone and hypochlorite pretreatments. Few bacteria were observed in the same regions of the ozone pretreatment sample.

  19. Fabrication of low-cost, cementless femoral stem 316L stainless steel using investment casting technique.

    Science.gov (United States)

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Suhasril, Andril Arafat; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Omar, Mohd Afian; Abd Kader, Ab Saman; Mohd Noor, Alias; A Harris, Arief Ruhullah; Abdul Majid, Norazman

    2014-07-01

    Total hip arthroplasty is a flourishing orthopedic surgery, generating billions of dollars of revenue. The cost associated with the fabrication of implants has been increasing year by year, and this phenomenon has burdened the patient with extra charges. Consequently, this study will focus on designing an accurate implant via implementing the reverse engineering of three-dimensional morphological study based on a particular population. By using finite element analysis, this study will assist to predict the outcome and could become a useful tool for preclinical testing of newly designed implants. A prototype is then fabricated using 316L stainless steel by applying investment casting techniques that reduce manufacturing cost without jeopardizing implant quality. The finite element analysis showed that the maximum von Mises stress was 66.88 MPa proximally with a safety factor of 2.39 against endosteal fracture, and micromotion was 4.73 μm, which promotes osseointegration. This method offers a fabrication process of cementless femoral stems with lower cost, subsequently helping patients, particularly those from nondeveloped countries.

  20. Human aortic endothelial cell response to 316L stainless steel material microstructure.

    Science.gov (United States)

    Choubey, Animesh; Marton, Denes; Sprague, Eugene A

    2009-10-01

    The role of metal microstructure (e.g. grain sizes) in modulating cell adherence behavior is not well understood. This study investigates the effect of varying grain sizes of 316L stainless steel (SS) on the attachment and spreading of human aortic endothelial cells (HAECs). Four different grain size samples; from 16 to 66 microm (ASTM 9.0-4.9) were sectioned from sheets. Grain structure was revealed by polishing and etching with glycergia. Contact angle measurement was done to assess the hydrophilicity of the specimens. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the roughness and surface chemistry of the specimens. Cells were seeded on mechanically polished and chemically etched specimens followed by identification of activated focal adhesion sites using fluorescently tagged anti-pFAK (phosphorylated focal adhesion kinase). The 16 microm grain size etched specimens had significantly (P < 0.01) higher number of cells attached per cm(2) than other specimens, which may be attributed to the greater grain boundary area and associated higher surface free energy. This study shows that the underlying material microstructure may influence the HAEC behavior and may have important implications in endothelialization.

  1. Effect of Beam Oscillation on Microstructure and Mechanical Properties of AISI 316L Electron Beam Welds

    Science.gov (United States)

    Kar, Jyotirmaya; Roy, Sanat Kumar; Roy, Gour Gopal

    2017-02-01

    The properties of electron beam-welded AISI 316L stainless steel butt joints prepared with and without beam oscillation were evaluated by microstructural analysis, mechanical testing like microhardness measurements, tensile tests at room and elevated temperature 973 K (700 °C), three-point bend, and Charpy impact tests. All joints, irrespective of being prepared with or without beam oscillation, were found to be defect free. Welds produced by beam oscillation exhibited narrower fusion zone (FZ) with lathy ferrite morphology, while the weld without beam oscillation was characterized by wider FZ and skeletal ferrite morphology. During tensile tests at room and elevated temperature 973 K (700 °C), all samples fractured in the base metal (BM) and showed almost the same tensile properties as that of the BM. However, the notch tensile tests at room temperature demonstrated higher strength for joints prepared with the oscillating beam. Besides, face and root bend tests, as well as Charpy impact tests, showed higher bending strength and notch toughness, respectively, for joints prepared with beam oscillation.

  2. Evaluación de diferentes aceros para la evolución de hidrógeno en KOH

    Directory of Open Access Journals (Sweden)

    Falk Michel Julke

    2014-05-01

    Full Text Available Se estudió el comportamiento electroquímico de los diferentes tipos de aceros comerciales de bajo costo (A36, 430 y 304 como electrodos para la obtención de hidrógeno. El propósito de este trabajo fue estudiar la evolución de hidrógeno, para lo cual se utilizaron técnicas electroquímicas como cronoamperometría y curvas voltamperométricas, en diferentes concentraciones de KOH (5% y 25% m/m. El acero inoxidable 304 en una concentración de 25%m/m tuvo el mejor desempeño, pues en estas condiciones el inicio de liberación de hidrógeno disminuyó y presentó el menor requerimiento de potencial para su uso como placa bipolar.

  3. Effect of Copper and Bronze Addition on Corrosion Resistance of Alloyed 316L Stainless Steel Cladded on Plain Carbon Steel by Powder Metallurgy

    Institute of Scientific and Technical Information of China (English)

    Wenjue CHEN; Yueying WU; Jianian SHEN

    2004-01-01

    A sandwich structure with cladding alloyed 316L stainless steel on plain carbon steel was prepared by means of powder metallurgy (PM) processing. Electrolytic Cu and prealloyed bronze (95Cu wt pct, 5Sn wt pct) were added in different contents up to 15% into the surface cladded 316L layers and the effect of alloying concentrations on the corrosion resistance of the 316L cladding layers was studied. The corrosion performances of the cladding samples were studied by immersion tests and potentio-dynamic anodic polarization tests in H2SO4 and FeCl3 solutions. Both 316L and alloyed 316L surface layers with 1.0 mm depth produced by PM cladding had an effect to improve corrosion resistance in H2SO4 and FeCl3 solutions. Small Cu and bronze addition (4%) had a positive effect in H2SO4 and FeCl3 solutions. 4% Cu alloyed 316L surface layer produced by PM cladding showed similar anodic polarization behaviour to the 316L cladding layer in H2SO4 and FeCl3 solutions.

  4. Martensite transformation induced by deformation and its phase electrochemical behavior for stainless steels AISI 304 and 316L

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The martensite transformation induced by tensile elongation and its effect on the behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. The results show that the content of ((-martensite in stainless steel 304 increases with the true strain. As ((-martensite content increased, free corrosion potential and pitting potential of stainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also found that pitting nucleated preferentially at the phase interfaces between martensite and austenite. There existed apparent difference between electrochemical properties of austenite and of martensite for stainless steel 304 and 316L in 3.5% NaCl solution.

  5. Microstructural, Micro-hardness and Sensitization Evaluation in HAZ of Type 316L Stainless Steel Joint with Narrow Gap Welds

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Faisal Shafiqul; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kang, Shi Chull [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    From Micro-hardness measurement HAZ zone was found approximately 1-1.5 mm in NGW and DL-EPR test confirmed that 316L NGW HAZ was not susceptible to sensitization as DOS <1% according to sensitization criteria based on reference. In nuclear power plants 316L stainless steels are commonly used material for their metallurgical stability, high corrosion resistance, and good creep and ductility properties at elevated temperatures. Welding zone considered as the weakest and failure initiation source of the components. For safety and economy of nuclear power plants accurate and dependable structural integrity assessment of main components like pressure vessels and piping are need as it joined by different welding process. In similar and dissimilar metal weld it has been observed that weld microstructure cause the variation of mechanical properties through the thickness direction. In the Heat Affected Zone (HAZ) relative to the fusion line face a unique thermal experience during welding.

  6. COMPUTATIONAL MODELING OF CATHODIC LIMITATIONS ON LOCALIZED CORROSION OF WETTED SS 316L, AT ROOM TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    F. Cui; F.J. Presuel-Moreno; R.G. Kelly

    2005-10-13

    The ability of a SS316L surface wetted with a thin electrolyte layer to serve as an effective cathode for an active localized corrosion site was studied computationally. The dependence of the total net cathodic current, I{sub net}, supplied at the repassivation potential E{sub rp} (of the anodic crevice) on relevant physical parameters including water layer thickness (WL), chloride concentration ([Cl{sup -}]) and length of cathode (Lc) were investigated using a three-level, full factorial design. The effects of kinetic parameters including the exchange current density (i{sub o,c}) and Tafel slope ({beta}{sub c}) of oxygen reduction, the anodic passive current density (i{sub p}) (on the cathodic surface), and E{sub rp} were studied as well using three-level full factorial designs of [Cl{sup -}] and Lc with a fixed WL of 25 {micro}m. The study found that all the three parameters WL, [Cl{sup -}] and Lc as well as the interactions of Lc x WL and Lc x [Cl{sup -}] had significant impact on I{sub net}. A five-factor regression equation was obtained which fits the computation results reasonably well, but demonstrated that interactions are more complicated than can be explained with a simple linear model. Significant effects on I{sub net} were found upon varying either i{sub o,c}, {beta}{sub c}, or E{sub rp}, whereas i{sub p} in the studied range was found to have little impact. It was observed that I{sub net} asymptotically approached maximum values (I{sub max}) when Lc increased to critical minimum values. I{sub max} can be used to determine the stability of coupled localized corrosion and the critical Lc provides important information for experimental design and corrosion protection.

  7. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Blanda, Giuseppe [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Piazza, Salvatore; Sunseri, Carmelo [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Inguanta, Rosalinda, E-mail: rosalinda.inguanta@unipa.it [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO{sub 4}·H{sub 2}O; HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO{sub 3}){sub 2}·4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  8. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Science.gov (United States)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  9. Laser Surface Treatment of Stellite 6 Coating Deposited by HVOF on 316L Alloy

    Science.gov (United States)

    Shoja-Razavi, Reza

    2016-07-01

    This research aimed to study the effects of laser glazing treatment on microstructure, hardness, and oxidation behavior of Stellite 6 coating deposited by high velocity oxygen fuel (HVOF) spraying. The as-sprayed Stellite 6 coating (ST-HVOF) was subjected to single-pass and multiple-pass laser treatments to achieve the optimum glazing parameters. Microstructural characterizations were performed by x-ray diffractometry and field emission scanning electron microscopy equipped with energy-dispersive spectroscopy. Two-step optimization showed that laser treatment at the power of 200 W with a scan rate of 4 mm/s causes a surface layer with a thickness of 208 ± 32 µm to be remelted, while the underlying layers retain the original ST-HVOF coating structure. The obtained sample (ST-Glazing) exhibited a highly dense and uniform structure with an extremely low porosity of ~0.3%, much lower than that of ST-HVOF coating (2.3%). The average microhardness of ST-Glazing was measured to be 519 Hv0.3 indicating a 17% decrease compared to ST-HVOF (625 Hv0.3) due to the residual stress relief and dendrite coarsening from submicron size to ~3.4 µm after laser treatment. The lowest oxidation mass gain was obtained for ST-Glazing by 2 mg/cm2 after 8 cycles at 900 °C indicating 52 and 84% improvement in oxidation resistance in comparison to ST-HVOF and bare 316L steel substrates, respectively.

  10. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  11. Laser Rapid Manufacturing of Stainless Steel 316L/Inconel718 Functionally Graded Materials: Microstructure Evolution and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Dongjiang Wu

    2010-01-01

    Full Text Available Two patterns of functionally graded materials (FGMs were successfully fabricated whose compositions gradually varied from 100% stainless steel 316L to 100% Inconel718 superalloy using laser engineered net shaping process. The microstructure characterization, composition analysis, and microhardness along the graded direction were investigated. The comparison revealed the distinctions in solidification behavior, microstructure evolution of two patterns. In the end, the abrasive wear resistance of the material was investigated.

  12. Effect of forming technique BixSiyOz coatings obtained by sol- gel and supported on 316L stainless steel

    Science.gov (United States)

    Bautista Ruiz, J.; Olaya Flórez, J.; Aperador, W.

    2016-02-01

    BixSiyOz type coatings via sol-gel synthesized from bismuth nitrate pentahydrate, and tetraethyl orthosilicate as precursors; glacial acetic acid and 2-ethoxyethanol as solvents, and ethanolamine as complexing. The coatings were supported on AISI 316L stainless steel substrate through dip-coating and spin-coating techniques. The study showed that the spin-coating technique is efficient than dip-coating because it allows more dense and homogeneous films.

  13. Microstructure Evolution and Cracking Control of 316L Stainless Steel Manufactured by Multi-layer Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    SONGJian-li; DENGQi-lin; HUDe-jin; SUNKang-kai; ZHOUGuang-cai

    2004-01-01

    Multi-layer laser cladding manufacturing is a newly developed rapid manufacturing technology. It is a powerful tool for direct fabrication of three-dimensional fully dense metal components and part repairing. In this paper, the microstructure evolution and properties of 316L stainless steel deposited with this technology was investigated, compact components with properties similar to the as-cast and wrought annealed material was obtained. Cracking was eliminated by introducing of supersonic vibration and application of parameter adjustment technologies.

  14. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    Science.gov (United States)

    Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.

    2016-12-01

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

  15. Fabrication, property characterization and toushening mechanism of HA-ZrO2(CaO)/316L fibre composite biomaterials

    Institute of Scientific and Technical Information of China (English)

    ZOU JianPeng; HE ZeQiang; ZHOU ZhongCheng; HUANG BaiYun; CHEN QiYuan; RUAN JianMing

    2008-01-01

    HA-ZrO2(CaO)/316L fibre composites were successfully fabricated with vacuum sintering method and their properties and toughening mechanism were studied.The results showed that HA-ZrO2(CaO)/316L fibre biocomposite having 20 vol% fibres had optimal comprehensive properties with bending strength,Young's modulus,fracture toughness and relative density equal to 140.1 MPa,117.8 GPa,5.81 MPa.m1/2and 87.1%,respectively.The research also addressed that different volume ratios of the composites led to different metallographic microstructures,and that metallographic morphologies change regularly with volume ratios of the composites.316L fibres were distributed randomly and evenly in the composites and the integration circumstance of the two phases was very well since there were no obvious flaws or pores in the composites.Two toughening mechanisms in-cluding ZrO2 phase transformation toughening mechanism and fibre pulling-out toughening mechanism existed in the compsites with the latter being the main toughening mechanism.

  16. Corrosion kinetics of 316L stainless steel bipolar plate with chromiumcarbide coating in simulated PEMFC cathodic environment

    Science.gov (United States)

    Huang, N. B.; Yu, H.; Xu, L. S.; Zhan, S.; Sun, M.; Kirk, Donald W.

    Stainless steel with chromium carbide coating is an ideal candidate for bipolar plates. However, the coating still cannot resist the corrosion of a proton exchange membrane fuel cell (PEMFC) environment. In this work, the corrosion kinetics of 316L stainless steel with chromium carbide is investigated in simulated PEMFC cathodic environment by combining electrochemical tests with morphology and microstructure analysis. SEM results reveal that the steel's surface is completely coated by Cr and chromium carbide but there are pinholes in the coating. After the coated 316L stainless steel is polarized, the diffraction peak of Fe oxide is found. EIS results indicate that the capacitive resistance and the reaction resistance first slowly decrease (2-32 h) and then increase. The potentiostatic transient curve declines sharply within 2000 s and then decreases slightly. The pinholes, which exist in the coating, result in pitting corrosion. The corrosion kinetics of the coated 316L stainless steel are modeled and accords the following equation: i0 = 7.6341t-0.5, with the corrosion rate controlled by ion migration in the pinholes.

  17. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    Science.gov (United States)

    Tang, Yee-Chin; Katsuma, Shoji; Fujimoto, Shinji; Hiromoto, Sachiko

    2006-11-01

    The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurements indicated that the stainless steels were resistant to Hanks' and MEM solutions. Type 304 was more susceptible to pitting corrosion than Type 316L in Hanks' and MEM solutions. The uniform corrosion resistance of stainless steels, determined by R(p), was lower in culturing medium than in Hanks' and MEM. The low corrosion resistance was due to surface passive film with less protective to reveal high anodic dissolution rate. When cells were present, the initial corrosion resistance was low, but gradually increased after 3 days, consistent with the trend of cell coverage. The presence of cells was found to suppress the cathodic reaction, that is, oxygen reduction, and increase the uniform corrosion resistance as a consequence. On the other hand, both Type 304 and 316L stainless steels became more susceptible to pitting corrosion when they were covered with cells.

  18. Effect of ascorbic acid on the pitting resistance of 316L stainless steel in synthetic tap water

    Science.gov (United States)

    Hong, Min-Sung; Kim, Seon-Hong; Im, Shin-Young; Kim, Jung-Gu

    2016-07-01

    This study examined the effect of L-ascorbic acid (A.A) concentration on the pitting corrosion properties of 316L stainless steel (316L STS) of heat exchanger in synthetic tap water containing 400 ppm of Cl- ion. The pitting corrosion of 316L STS can be effectively inhibited by the 10-4 M of A.A concentration. In this condition, the adsorption of A.A reinforced the passive film of steel by blocking the Cl- ions at the active site. However, the passive film was deteriorated and severe pitting corrosion occurred above the 10-4 M of A.A concentration. Above the 10-4 M of A.A concentration, A.A generates soluble chelate rather than absorbs on the steel surface and it causes passive film deterioration and severe pitting corrosion. The critical ratio, which is a critical ratio of surface coverage of aggressive to inhibitive ion necessary to initiate localized corrosion, calculated 2.93 up to the 10-4 M. It has approximately 2.93:1 ratio of the coverage of local Cl- ions to A.A. Above the critical ratio, the pitting corrosion will occur with degradation of the passive film. On the other hands, above the 10-4 M A.A concentration caused a negative effect because the heat energy for adsorption is increased.

  19. Effect of post-weld heat treatment on the mechanical properties of CLAM/316L dissimilar joint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junyu [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China); Huang, Bo [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Qingsheng, E-mail: qingsheng.wu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Chunjing; Huang, Qunying [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2015-11-15

    Highlights: • Dissimilar joints between CLAM and 316L steels welded by TIG were investigated. • After PWHTs, the hardening in HAZ on the CLAM steel side decreased remarkably. • Tempering at 740 °C for 2 h was considered as the preferable treatment rule. - Abstract: Dissimilar welding between China low activation martensitic (CLAM) steel and 316L austenitic stainless steel was investigated to achieve the reliable connection between test blanket modules (TBMs) and piping system in the international thermonuclear experimental reactor (ITER). The dissimilar joints were welded by tungsten inert gas (TIG) welding process with a filler material type-309. In order to stabilize the microstructure and improve the strength and toughness, post-weld heat treatments (PWHTs) of tempering at 740 °C, 780 °C and 820 °C, respectively, for 2 h were performed. The microstructure observation showed that tempering at 740 °C for 2 h was the preferable PWHT rule in this work. After the treatment, the hardening in heat affected zone (HAZ) on the CLAM steel side decreased remarkably. The tensile strength of the joint was roughly the same as that of the base metal. The impact toughness of HAZ on the CLAM steel side was 77% of that of the base metal. The absorbed energy of HAZ of 316L steel decreased by 93 J, and that of weld metal (WM) was 110 J after the treatment.

  20. A mechanism for the enhanced attachment and proliferation of fibroblasts on anodized 316L stainless steel with nano-pit arrays.

    Science.gov (United States)

    Ni, Siyu; Sun, Linlin; Ercan, Batur; Liu, Luting; Ziemer, Katherine; Webster, Thomas J

    2014-08-01

    In this study, 316L stainless steel with tunable nanometer pit sizes (0, 25, 50, and 60 nm) were fabricated by an anodization procedure in an ethylene glycol electrolyte solution containing 5 vol % perchloric acid. The surface morphology and elemental composition of the 316L stainless steel were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The nano-pit arrays on all of the 316L stainless steel samples were in a regular arrangement. The surface properties of the 316L stainless steel nano-pit surface showed improved wettability properties as compared with the untreated 316L stainless steel, as demonstrated by the lower contact angles which dropped from 83.0° to 28.6 to 45.4°. The anodized 316L stainless steel surfaces with 50 nm and 60 nm diameter pits were also more rough at the nanoscale. According to MTT assays, compared with unanodized (that is, nano-smooth) surfaces, the 50 and 60 nm diameter nano-pit surfaces dramatically enhanced initial human dermal fibroblast attachment and growth for up to 3 days in culture. Mechanistically, this study also provided the first evidence of greater select protein adsorption (specifically, vitronectin and fibronectin which have been shown to enhance fibroblast adhesion) on the anodized 316L stainless steel compared with unanodized stainless steel. Such nano-pit surfaces can be designed to support fibroblast growth and, thus, improve the use of 316L stainless steel for various implant applications (such as for enhanced skin healing for amputee devices and for percutaneous implants).

  1. Comparative study of mechanical properties of 316L stainless steel between traditional production methods and selective laser melting

    Science.gov (United States)

    Lackey, Alton Dale

    Additive manufacturing, also known as 3D printing, is a technology which has recently seen expanding use, as well as expansion of the materials and methods able to be used. This thesis looks at the comparison of mechanical properties of 316L stainless steel manufactured by both traditional methods and selective laser melting found by tensile testing. The traditional method used here involved cold rolled 316L steel being machined to the desired part geometry. Selective laser melting used additive manufacturing to produce the parts from powdered 316L stainless steel, doing so in two different build orientations, flat and on edge with regards to the build plate. Solid test specimens, as well as specimens containing a circular stress concentration in the center of the parts, were manufactured and tensile tested. The tensile tests of the specimens were used to find the mechanical properties of the material; including yield strength, ultimate tensile strength (UTS), and Young's modulus of elasticity; where statistical analyses were performed to determine if the different manufacturing processes caused significant differences in the mechanical properties of the material. These analysis consisting of f-tests, to test for variance, and t-test, testing for significant difference of means. Through this study it was found that there were statistically significant differences existing between the mechanical properties of selective laser melting, and its orientations, and cold roll forming of production of parts. Even with a statistical difference, it was found that the results were reasonably close between flat oriented SLM parts and purchased parts. So it can be concluded that, with regards to strength, SLM methods produce parts similar to traditional production methods.

  2. One-dimensional migration of interstitial clusters in SUS316L and its model alloys at elevated temperatures

    Science.gov (United States)

    Satoh, Y.; Abe, H.; Matsukawa, Y.; Matsunaga, T.; Kano, S.; Arai, S.; Yamamoto, Y.; Tanaka, N.

    2015-05-01

    For self-interstitial atom (SIA) clusters in various concentrated alloys, one-dimensional (1D) migration is induced by electron irradiation around 300 K. But at elevated temperatures, the 1D migration frequency decreases to less than one-tenth of that around 300 K in iron-based bcc alloys. In this study, we examined mechanisms of 1D migration at elevated temperatures using in situ observation of SUS316L and its model alloys with high-voltage electron microscopy. First, for elevated temperatures, we examined the effects of annealing and short-term electron irradiation of SIA clusters on their subsequent 1D migration. In annealed SUS316L, 1D migration was suppressed and then recovered by prolonged irradiation at 300 K. In high-purity model alloy Fe-18Cr-13Ni, annealing or irradiation had no effect. Addition of carbon or oxygen to the model alloy suppressed 1D migration after annealing. Manganese and silicon did not suppress 1D migration after annealing but after short-term electron irradiation. The suppression was attributable to the pinning of SIA clusters by segregated solute elements, and the recovery was to the dissolution of the segregation by interatomic mixing under electron irradiation. Next, we examined 1D migration of SIA clusters in SUS316L under continuous electron irradiation at elevated temperatures. The 1D migration frequency at 673 K was proportional to the irradiation intensity. It was as high as half of that at 300 K. We proposed that 1D migration is controlled by the competition of two effects: induction of 1D migration by interatomic mixing and suppression by solute segregation.

  3. Surface analysis of localized corrosion of austenitic 316L and duplex 2205 stainless steels in simulated body solutions

    Energy Technology Data Exchange (ETDEWEB)

    Conradi, Marjetka, E-mail: marjetka.conradi@imt.si [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Schoen, Peter M. [Materials Science and Technology of Polymers and MESA Institute for Nanotechnology, University of Twente, Enschede 7500 AE (Netherlands); Kocijan, Aleksandra; Jenko, M. [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Vancso, G. Julius [Materials Science and Technology of Polymers and MESA Institute for Nanotechnology, University of Twente, Enschede 7500 AE (Netherlands)

    2011-10-17

    Highlights: {yields} In situ steel surface morphology observations in simulated body solutions. {yields} Pitting, square-like and elliptic-like corrosion products. {yields} Corrosion products' shapes related to the growth of Cr and Fe oxides. {yields} Direct relation of the size of the deposition products to surface roughness. - Abstract: We report on cyclic voltammetry and in situ electrochemical atomic force microscopy (EC-AFM) studies of localized corrosion of duplex 2205 stainless steel (DSS 2205) and austenitic stainless steel of the type AISI 316L in two model solutions, including artificial saliva (AS) and a simulated physiological solution known as - Hank's solution (PS). The AFM topography analysis illustrated the higher corrosion resistance of DSS 2205 steel for the chosen range of electrochemical potentials that were applied to the steel surface in both solutions. In contrast, pitting corrosion was observed at the surface of AISI 316L steel, with the pits becoming more evident, larger and deeper, when the sample was electrochemically treated in the PS. On both surfaces the growth of corrosion products formed during the oxidation process was observed. As a result, depending on the sample's metallurgical structure, different types of oxides covered the surface close to the breakdown potential. We distinguished between the square-like type of oxides on the surface of the DSS 2205, and the AISI 316L with its ellipse-like oxide deposits. The X-ray photoelectron spectroscopy (XPS) revealed the chemical composition of the deposition products, which consisted of two main elements, Fe and Cr. However, the oxides of the alloying elements Ni and Mo were negligible compared to the bulk.

  4. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wilbraham, Richard J., E-mail: r.wilbraham@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Boxall, Colin, E-mail: c.boxall@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Goddard, David T., E-mail: dave.t.goddard@nnl.co.uk [National Nuclear Laboratory, Preston Laboratory, Springfields, Preston, Lancashire PR4 0XJ (United Kingdom); Taylor, Robin J., E-mail: robin.j.taylor@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom); Woodbury, Simon E., E-mail: simon.woodbury@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom)

    2015-09-15

    Highlights: • The first report of the presence of both UO{sub 2} and polymeric UO{sub 2}{sup 2+} in the same electrodeposited U oxide sample. • The action of H{sub 2}O{sub 2} on electrodeposited U oxides is described using corrosion based concepts. • Electrodeposited U oxide freely dissolves at hydrogen peroxide concentrations <100 μmol dm{sup −3}. • At [H{sub 2}O{sub 2}] > 0.1 mmol dm{sup −3} dissolution is inhibited by formation of a studtite passivation layer. • At [H{sub 2}O{sub 2}] ⩾ 1 mol dm{sup −3} studtite formation competes with uranyl–peroxide complex formation. - Abstract: For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H{sub 2}O{sub 2}-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H{sub 2}O{sub 2}] ⩽ 100 μmol dm{sup −3} the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H{sub 2}O{sub 2} concentrations between 1 mmol dm{sup −3} and 0.1 mol dm{sup −3}, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H{sub 2}O{sub 2}] > 0.1 mol dm{sup −3} the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO{sub 2} films has not hitherto been observed or explored, either in terms

  5. Mechanical properties of type 316L stainless steel welded joint for ITER vacuum vessel (1). Experiment of unirradiated welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takahashi, Hiroyuki; Koizumi, Kouichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-01-01

    In design activity of ITER, the vacuum vessel (VV) is ranked as one of the most important components in core reactor from the view point of first barrier to tritium release from the reactor. The VV of ITER is designed as double walled structure so that some parts of them are not qualified in the conventional design standards. So it is necessary to prepare the new design standards to be applied them. JAERI has executed the preparation activity of the new design standards and the technical data to support them. In this study, the results of metallographic observation and mechanical properties of unirradiated type 316L stainless steel welded joint were reported. (author)

  6. Crack growth behavior of warm-rolled 316L austenitic stainless steel in high-temperature hydrogenated water

    Science.gov (United States)

    Choi, Kyoung Joon; Yoo, Seung Chang; Jin, Hyung-Ha; Kwon, Junhyun; Choi, Min-Jae; Hwang, Seong Sik; Kim, Ji Hyun

    2016-08-01

    To investigate the effects of warm rolling on the crack growth of 316L austenitic stainless steel, the crack growth rate was measured and the oxide structure was characterized in high-temperature hydrogenated water. The warm-rolled specimens showed a higher crack growth rate compared to the as-received specimens because the slip bands and dislocations produced during warm rolling served as paths for corrosion and cracking. The crack growth rate increased with the dissolved hydrogen concentration. This may be attributed to the decrease in performance and stability of the protective oxide layer formed on the surface of stainless steel in high-temperature water.

  7. Investigation into Effects of Scanning Speed on in Vitro Biocompatibility of Selective Laser Melted 316L Stainless Steel Parts

    Directory of Open Access Journals (Sweden)

    Shang Yitong

    2017-01-01

    Full Text Available In recent years, selective laser melting (SLM has gained an important place in fabrication due to their strong individualization which cannot be manufactured using conventional processes such as casting or forging. By proper control of the SLM processing parameters, characteristics of the alloy can be optimized. In the present work, 316L stainless steel (SS, as a widely used biomedical material, is investigated in terms of the effects of scanning speed on in vitro biocompatibility during SLM process. Cytotoxicity assay is adopted to assess the in vitro biocompatibility. The results show the scanning speed strongly affects the in vitro biocompatibility of 316L SS parts and with prolongs of incubation time, the cytotoxicity increase and the in vitro biocompatibility gets worse. The optimal parameters are determined as follows: scanning speed of 900 mm/s, laser power of 195 W, hatch spacing of 0.09 mm and layer thickness of 0.02 mm. The processing parameters lead to the change of surface morphology and microstructures of samples, which can affect the amount of toxic ions release, such as Cr, Mo and Co, that can increase risks to patient health and reduce the biocompatibility.

  8. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel.

    Science.gov (United States)

    Xi, Tong; Shahzad, M Babar; Xu, Dake; Sun, Ziqing; Zhao, Jinlong; Yang, Chunguang; Qi, Min; Yang, Ke

    2017-02-01

    The effects of addition of different Cu content (0, 2.5 and 3.5wt%) on mechanical properties, corrosion resistance and antibacterial performance of 316L austenitic stainless steel (SS) after solution and aging treatment were investigated by mechanical test, transmission electron microscope (TEM), X-ray diffraction (XRD), electrochemical corrosion, X-ray photoelectron spectroscopy (XPS) and antibacterial test. The results showed that the Cu addition and heat treatment had no obvious influence on the microstructure with complete austenite features. The yield strength (YS) after solution treatment was almost similar, whereas the aging treatment obviously increased the YS due to formation of tiny Cu-rich precipitates. The pitting and protective potential of the solution treated Cu-bearing 316L SS in 0.9wt% NaCl solution increased with increasing Cu content, while gradually declined after aging, owing to the high density Cu-rich precipitation. The antibacterial test proved that higher Cu content and aging were two compulsory processes to exert good antibacterial performance. The XPS results further indicated that aging enhanced the Cu enrichment in passive film, which could effectively stimulate the Cu ions release from the surface of passive film.

  9. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Directory of Open Access Journals (Sweden)

    Uğur GÖKMEN

    2016-02-01

    Full Text Available In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG based and can be dissolved in water, were used. Polypropylene was used as binder and steric acid was used as lubricant for both binder systems as skeleton binder. Dry binder system were mixed for 30 min in a three dimensional Turbola. Capillary rheometer was used to characterize the rheological properties of feed stocks at 150-200 °C and a pressures of 0.165-2.069 MPa. Powder loading capacity of PEG and PW based feed stocks were found to be %55 and %61 respectively. The lowest viscosity of PEG and PW based feed stocks were found to be 304.707 Pa.s and 48.857 Pa.s respectively.Keywords: PIM, Binder, Rheological properties

  10. In vitro corrosion investigations of plasma-sprayed hydroxyapatite and hydroxyapatite–calcium phosphate coatings on 316L SS

    Indian Academy of Sciences (India)

    Gurpreet Singh; Hazoor Singh; Buta Singh Sidhu

    2014-10-01

    The present paper discusses various issues associated with biological corrosion of uncoated and plasma-sprayed hydroxyapatite (HA)-coated 316L SS and studies the effect of contents of calcium phosphate (CaP) on corrosion behaviour of hydroxyapatite (HA) coatings in simulated body fluid (Ringer’s solution). Three types of coatings, i.e. HA + 20 wt% CaP (type 1), HA + 10 wt% CaP (type 2), HA (type 3), were laid on 316L SS using plasma-spraying technique. Structural characterization techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to investigate the crystallinity, microstructure and morphology of the coatings. Electrochemical potentiodynamic tests were performed to determine the corrosion resistance of uncoated and all the three coatings. After the electrochemical corrosion testing, the samples were examined by XRD, SEM and EDX. The electrochemical study showed a significant improvement in the corrosion resistance after HA coating and corrosion resistance of type 3 coating was found maximum.

  11. Complexation- and ligand-induced metal release from 316L particles: importance of particle size and crystallographic structure.

    Science.gov (United States)

    Hedberg, Yolanda; Hedberg, Jonas; Liu, Yi; Wallinder, Inger Odnevall

    2011-12-01

    Iron, chromium, nickel, and manganese released from gas-atomized AISI 316L stainless steel powders (sized 316L particles immersed in ALF. Iron was mainly released, while manganese was preferentially released as a consequence of the reduction of manganese oxide on the surface. These processes resulted in highly complexing media in a partial oxidation of trivalent chromium to hexavalent chromium on the surface. The extent of metal release was partially controlled by surface properties (e.g., availability of elements on the surface and structure of the outermost surface) and partially by the complexation capacity of the different metals with the complexing agents of the different media. In general, compared to the coarse powder (<45 μm), the fine (<4 μm) powder displayed significantly higher released amounts of metals per surface area, increased with increased solution complexation capacity, while less amounts of metals were released into non-complexing solutions. Due to the ferritic structure of lower solubility for nickel of the fine powder, more nickel was released into all solutions compared with the coarser powder.

  12. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    Science.gov (United States)

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-09-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  13. Surface modification of 316L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications.

    Science.gov (United States)

    Subramanian, B; Ananthakumar, R; Kobayashi, Akira; Jayachandran, M

    2012-02-01

    Nanoscale multilayered TiN/VN coatings were developed by reactive dc magnetron sputtering on 316L stainless steel substrates. The coatings showed a polycrystalline cubic structure with (111) preferential growth. XPS analysis indicated the presence of peaks corresponding to Ti2p, V2p, N1s, O1s, and C1s. Raman spectra exhibited the characteristic peaks in the acoustic range of 160-320 cm(-1) and in the optic range between 480 and 695 cm(-1). Columnar structure of the coatings was observed from TEM analysis. The number of adherent platelets on the surface of the TiN/VN multilayer, VN, TiN single layer coating exhibit fewer aggregation and pseudopodium than on substrates. The wear resistance of the multilayer coatings increases obviously as a result of their high hardness. Tafel plots in simulated bodily fluid showed lower corrosion rate for the TiN/VN nanoscale multilayer coatings compared to single layer and bare 316L SS substrate.

  14. Cross-sectional transmission electron microscopy of ultra-fine wires of AISI 316L stainless steel

    Science.gov (United States)

    Wang, H. S.; Wei, R. C.; Huang, C. Y.; Yang, J. R.

    2006-01-01

    Starting with 190?µm diameter wire of 316L stainless steel, ultra-thin wire just 8?µm in diameter has been made and characterized. There was no intermediate heat treatment used in the process of drawing, and the amount of true stain was about 6.3. A specimen preparation method for the cross-sectional transmission electron microscopy (TEM) of ultra-fine wires of 316L stainless steel has been developed. The ultra-fine wire was sandwiched between silicon chips and the bonded assembly then sliced to produce longitudinal and transverse sections of the wire in a form suitable for further processing into electron transparent samples. TEM reveals that the heavily deformed wire consists of nanoscale fine elongated structures along the drawing direction. The diffraction patterns indicate that a substantial amount of austenite has transformed into martensite. The TEM dark field images show nanosized patches of martensite distributed among the debris of austenite along the drawing direction. The evidence strongly suggests that severe deformation leads to mechanical stabilization of austenite against the growth of martensite.

  15. Conformabilidad en caliente de aceros Twip

    OpenAIRE

    Pineda huitrón, Rosa M.

    2009-01-01

    En el presente proyecto de investigación, se trabajó con un acero de alto contenido en manganeso austenitico, TWIP, este acero se clasifica dentro de los aceros denominados: Aceros Avanzados de Alta Resistencia mecánica (AHSS). En este estudio se pretende estudiar las condiciones de trabajo en caliente óptimas para este acero, de modo que se pueda potenciar al máximo su resistencia sin penalizar su ductilidad. Para ello se efectuarán ensayos de compresión en caliente bajo difer...

  16. 增强体含量对 TiC/316L 复合材料性能的影响%Effect of reinforcing particles content on properties of TiC/316L composites

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      采用粉末冶金法制备增强体颗粒含量为0%、2%、5%、10%和15%的 TiC/316L 不锈钢复合材料。利用Zwick Roell Z202拉伸试验机测试复合材料的拉伸性能,利用 MM-200型环块磨损试验机测试复合材料在干摩擦条件下的摩擦磨损性能,研究 TiC 颗粒含量对复合材料性能的影响。结果表明:随 TiC 颗粒的引入,复合材料的强度得到提高,但 TiC 含量过高,TiC 颗粒容易在晶界聚集,导致孔隙的产生和界面连接性的恶化,使复合材料的性能下降。当 TiC 含量为5%时,复合材料的耐磨性能最好;当 TiC 含量为10%时,复合材料表现出最高的抗拉强度(655.3 MPa)。%TiC/316L stainless steel composites with various TiC content (0%, 2%, 5%, 10% and 15%) were prepared by powder metallurgy technology. The tensile properties of the composites were characterized by tensile testing machine (Zwick Roell Z202), and the friction wear behaviors of the composites were measured using a block-on-ring wear test machine (MM-200) under dry-sliding condition; the effect of reinforcing particles content on properties of the composites was also studied. The results show that, the mechanical properties of the composites can be improved by adding TiC particles, however, when TiC particle content is too high there will be too many TiC particles together in grain boundary, which can reduce the mechanical properties of the composites; the best wear resistance of the composites is obtained when TiC particles content is 5%. The TiC/316L composites with particles content of 10% can demonstrate the highest tensile strength of 655.3 MPa.

  17. The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel.

    Science.gov (United States)

    Lin, Feng-Huei; Hsu, Yao-Shan; Lin, Shih-Hsun; Sun, Jui-Sheng

    2002-10-01

    316L-SS is one of the important materials both in orthopaedics and dentistry for bone screw/plate, intra-medullary rod, fixation wire, HIP joint, and knee joint. However, the biocompatibility and bone-bonding ability troubled researches for years. In the study, a simple chemical method was tried so as to establish and induce a bioactive HA layer on the surface of 316L stainless steel. When the metallic substrates treated with 10 M NaOH aqueous solution and subsequently heated at 600 degrees C, a thin sodium chromium oxide layer was formed on the surfaces as the linking layer for HA and 316L-SS. After 316L-SS treated with alkali solution, it would soak into a simulated body fluid with higher concentration of calcium and phosphorous ions to increase the possibility of nucleation of HA. However, the iron oxide and iron chromium oxides were formed on the surface when calcium and phosphorous ions increased. This resulted in loosening the HA layer. When the alkali-treated 316L-SS was soaked into SBF at a temperature of 80 degrees C, it could form a dense and uniform bone-like hydroxyapatite layer on the surface. In the research, the mechanism of the formation of sodium chromium oxide and HA would also be described by the analysis of X-ray diffractometer, scanning electron microscope, energy-dispersion spectrophotometer, and Fourier transformation infrared.

  18. Localized Corrosion Behavior of 6% Mo Super Austenitic & 316L Stainless Steels in Low pH 3% NaCl Solution

    Institute of Scientific and Technical Information of China (English)

    M.M.A.Gad; H.G.Salem; A.M. Nasreldin; H.Sabry; A.A.El-Sayed

    2005-01-01

    Electrochemical techniques were applied to study the crevice corrosion resistance of two types of stainless steel alloys namely, conventional 316L and 6% Mo super austenitic in acidified 3% NaCl solution at room temperature.Potentiodynamic results showed that 6% Mo alloy possessed a remarkable resistance to crevice corrosion compared with 316L alloy when they are tested in the same solution. The breakdown potential at which passivity broke down for 316L alloy was 0.00 mV (SCE). The corresponding value for 6% Mo alloy could not reach up to the potential value of 700 mV (SCE). 316L alloy suffered extremely from crevice corrosion at room temperature (about 25℃), which indicates that the critical crevice corrosion temperature, below which crevice corrosion does not occur, was lower than the test temperature. For 6% Mo alloy, the critical crevice corrosion temperature was higher than the testing temperature. Electrochemical parameters indicated that 6% Mo alloy exhibited higher crevice corrosion resistance than 316L alloy.

  19. Uptake of nickel from 316L stainless steel into contacting osteoblastic cells and metal ion interference with BMP-2-induced alkaline phosphatase.

    Science.gov (United States)

    Mölders, Martina; Felix, Joachim; Bingmann, Dieter; Hirner, Alfred; Wiemann, Martin

    2007-11-01

    Bone cells contacting nickel (Ni)-containing implant materials may be affected by Ni species via disturbed signaling pathways involved in bone cell development. Here we analyze effects of the Ni-containing steel 316L and major metal constituents thereof on bone morphogenetic protein-2 (BMP-2)-induced alkaline phosphatase (ALP) of MC3T3-E1 cells. While cells grew normally on 316L, cellular Ni content increased 10-fold vs. control within 4 days. With respect to the major components of 316L, Ni2+ (3-50 microM) was most inhibitory to BMP-2-induced ALP, whereas even 50 microM Fe3+, Cr3+, Mo5+, or Mn2+ had no such effect. In line with this, BMP-2-induced ALP was significantly reduced in cells on 316L. This effect was not prevented by the metal ion chelator diethylenetriaminepentaacetic acid (DTPA). Instead, DTPA abolished the stimulatory effect of BMP-2 on ALP, pointing to chelatable metal ions involved. Zn2+, as one possible candidate, antagonized the Ni2+ inhibition of BMP-2-induced ALP in both MC3T3-E1 and human bone marrow stromal cells. Results show that cells contacting 316L steel are exposed to increased concentrations of Ni which suffice to impair BMP-2-induced ALP activity. Zn2+, as a competitor of this inhibition, may help to restore normal osteoblastic function and bone development under these conditions.

  20. Efecto de las sales fundidas en la termofluencia del acero inoxidable tipo 304

    Directory of Open Access Journals (Sweden)

    González-Rodríguez, G.

    1995-06-01

    Full Text Available Problems caused by both hot corrosion and creep type-damage occurring on superheater and reheater tubes of power plants using heavy oil as fuel shorten their design lives. The acceleration of hot corrosion attack of boilers is caused by the presence of fuel ash deposits containing mainly vanadium, sodium and sulphur, in the form of Na2SO4 y V2O5 and V2O5 which form low melting point compounds. In addition to this, the tubes are exposed to the action of both high stresses and high temperatures, producing the so called creep damage. In this work, creep rupture tests were carried out in the temperature range of 620 to 660 °C in static air and in corrosive environments. The corrosive environments included 100 % Na2SO4, 100 % V2O5 and a 80 % V2O5 + 20 % Na2SO4 mixture.

    Los problemas causados tanto por la corrosión por sales fundidas, así como por la termofluencia en los tubos de los sobrecalentadores y recalentadores de una planta de potencia que usa combustibles fósiles, reducen su vida prevista en diseño. La aceleración de la corrosión por sales fundidas es causada por la presencia de cenizas que contienen principalmente vanadio, sodio y azufre en la forma de Na2SO4 y V2O5, los cuales forman mezclas con eutécticos de bajo punto de fusión. Adicionalmente, los tubos están expuestos a la acción de altos esfuerzos y altas temperaturas, lo cual propicia la termofluencia del material. En este trabajo, se han realizado ensayos de termofluencia hasta la rotura en aire y en ambientes corrosivos en el rango de temperaturas de 620 a 660 °C. Los ambientes corrosivos fueron 100 % Na2SO4, 100 % V2O5, y una mezcla 20 % Na2SO4-80 % V2O5.

  1. Comportamiento de armaduras de acero inoxidable en morteros con cenizas volantes

    OpenAIRE

    Paredes Cárdenas, Evelyn Carol

    2016-01-01

    Mención Internacional en el título de doctor Esta tesis contiene artículos de investigación en anexo. La sustitución parcial del cemento por adiciones de cenizas volantes (CV) tiene ventajas de tipo medioambiental (reduce la extracción en canteras, la emisión de CO₂ y reutiliza los residuos), económicas (reduce el gasto en cemento y evita costes de eliminación de residuos) y en algunos casos tecnológicas (dependiendo del tipo de cemento puede mejorar las propiedades mecánicas en hormigo...

  2. Phosphate coating on stainless steel 304 sensitized;Recubrimiento fosfatado sobre acero inoxidable 304 sensibilizado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz V, J. P. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Km. 14.5 Carretera Tampico-Puerto Industrial Altamira, 89600 Altamira, Tamaulipas (Mexico); Vite T, J. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Castillo S, M.; Vite T, M., E-mail: jpcruz@ipn.m [IPN, Escuela Superior de Ingenieria Mecanica y Electrica, Seccion de Estudios de Posgrado e Investigacion, Unidad Profesional -Adolfo Lopez Mateos-, Zacatenco, 07738 Mexico, D. F. (Mexico)

    2009-07-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  3. un acero importado

    Directory of Open Access Journals (Sweden)

    Wilson A. Hormaza R.

    2007-01-01

    Full Text Available Este trabajo busca determinar las causas que llevaron al deterioro superficial de un conjunto de láminas y bobinas importadas de acero. Lo anterior implica precisar el tipo de deterioro de los componentes, es decir, si este se presentó durante el transporte marítimo o durante el almacenamiento. Los ensayos realizados fueron: análisis visual, análisis de espectrofotometría de infrarrojo y comparativo de los cristales de Cloruro de Sodio (NaCl, análisis de la morfología de la superficie deteriorada a través de microscopia óptica, análisis químico, metalografía y dureza. Los análisis determinaron la presencia de cristales de NaCl, los cuales, al disociarse, generan iones de Cl- (Cloruros y Na+ (Sodio, responsables del proceso de corrosión, indicándose, así la presencia de un ambiente marino

  4. The hardiness of numerical simulation of TIG welding. Application to stainless steel 316L structures; La robustesse de la simulation numerique du soudage TIG. Application sur des structures en acier 316L

    Energy Technology Data Exchange (ETDEWEB)

    El-Ahmar, Walid; Jullien, Jean-Francois [INSA-Lyon, LaMCoS, CNRS UMR 551, 20 Avenue Albert Einstein, 69621 Villeurbanne, (France); Gilles, Philippe [AREVA NP, 92084 Paris La Defense, (France); Taheri, Said [EDF, 92141 Clamart, (France); Boitout, Frederic [ESI-GROUP, 69458 Lyon, (France)

    2006-07-01

    The welding numerical simulation is considered as one of the mechanics problems the most un-linear on account of the great number of the parameters required. The analysis of the hardiness of the welding numerical simulation is a current questioning whose expectation is to specify welding numerical simulation procedures allowing to guarantee the reliability of the numerical result. In this work has been quantified the aspect 'uncertainties-sensitivity' imputable to different parameters which occur in the simulation of stainless steel 316L structures welded by the TIG process: that is to say the mechanical and thermophysical parameters, the types of modeling, the adopted behaviour laws, the modeling of the heat contribution.. (O.M.)

  5. Evaluation of the contact corrosion of the nano structured 316L stainless steel by SMAT process; Comportement en corrosion de contact de l'acier inoxydable 316L nanostructure par procede SMAT

    Energy Technology Data Exchange (ETDEWEB)

    Seeva Durmooa [Laboratoire de Mecanique Roberval, FRE CNRS 2833, Universite de Technologie de Compiegne (France); Faculte d' Ingenierie, Universite de Maurice (Mauritius); Caroline Richarda [Laboratoire de Mecanique Roberval, FRE CNRS 2833, Universite de Technologie de Compiegne (France); Jian Lub [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee, FRE CNRS 2719, Universite de Technologie de Troyes (France)

    2005-07-01

    This study was carried out in view to evaluate the efficiency of ultrasonic shot peening (Surface Mechanical Attrition Treatment: SMAT), on the tribological behaviour of 316L due to fretting effects. The amount of samples to be prepared was based on an experimental plan which account the various parameters incur in our fretting test. These experimental conditions were the: load, sliding velocity, stroke length and temperature. As a first experimental outcome, it is noted that the surface roughness plays a determinant role in the friction mechanism, i.e when the roughness of the surface is more and more damaged, the wear debris are located in the cavities area and contribute to increase the friction coefficient significantly. Hence, the treatment time of the samples is directly link to the surface roughness. The optimum time of SMAT was 12 minutes, and gave the best tribological properties results. Added to this fretting test, an induce vibration analysis was carried out to appreciate wear mechanism. (author)

  6. Biocompatibility behavior of β–tricalcium phosphate-chitosan coatings obtained on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mina, A. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Caicedo, H.H. [Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, 60612 (United States); National Biotechnology & Pharmaceutical Association, Chicago, IL, 60606 (United States); Uquillas, J.A. [Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud COCSA, Escuela de Medicina, Hospital de los Valles, Edificio de Especialidades Médicas, Av. Interoceánica km 12 1/2 Cumbayá, Quito (Ecuador); Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA, 02139 (United States); Aperador, W. [Departament of Engineering, Universidad Militar Nueva Granada, Bogotá (Colombia); Gutiérrez, O. [Departament of Pharmacology Universidad del Valle, Cali (Colombia); Caicedo, J.C., E-mail: julio.cesar.caicedo@correounivalle.edu.co [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia)

    2016-06-01

    Biological interfaces involve the interaction of complex macromolecular systems and other biomolecules or biomaterials. Researchers have used a combination of cell, material sciences and engineering approaches to create functional biointerfaces to help improve biological functions. Materials such as hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and chitosan are important biomaterials to be used in biomedical applications such as bone-prosthesis interfaces. In this work, it was evaluated the effect of different concentrations of chitosan on the structural, electrochemical and biocompatible properties of β-tricalcium phosphate-chitosan ((β-Ca{sub 3}(PO{sub 4}){sub 2})-(C{sub 6}H{sub 11}NO{sub 4})n) hybrid coatings. β–tricalcium phosphate-chitosan coatings were deposited on 316L stainless steel substrates applying 260 mA AC, an agitation velocity of 250 rpm, and temperature deposition of 60 °C. It was possible to obtain coatings of 600 μm of thickness. Structure and surface properties were analyzed by X-ray diffraction (XRD) and dispersive X-ray analysis (EDX). It was found that the arrangement of the β-TCP crystal lattice changed with increasing chitosan weight concentration, showing that the orthorhombic structure of β-TCP is under tensile stress. The electrochemical properties of β–tricalcium phosphate/chitosan (β-TCP–Ch) coatings were analyzed by electrochemical impedance spectroscopy (EIS). Cellular biocompatibility was determined by lactate dehydrogenase (LDH) cytotoxicity assay using primary chinese hamster ovary (CHO) cells. β-TCP–Ch coatings with chitosan concentrations up to 25% caused cytotoxic effects to only 5–10% of CHO cells. Obtained results showed the influence of chitosan in the structural, electrochemical, and biocompatible properties of AISI 316L Stainless Steel. Consequently, the electrochemical and cytotoxic behavior of β-TCP–Ch on 316L Stainless Steel indicated that the coatings might be a promising material in

  7. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang; Zhuo Chengzhi; Tao Jie; Liu Linlin [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Jiang Shuyun [Department of Mechanical Engineering, Southeast University, 2 Sipailou, Nanjing 210096 (China)], E-mail: xujiang73@nuaa.edu.cn

    2009-01-07

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO{sub 2} predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 deg. C) conditions, amorphous nano-SiO{sub 2} particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr{sub 6.5}Ni{sub 2.5}Si and Cr{sub 23}C{sub 6}. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO{sub 2} particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO{sub 2} particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO{sub 2} particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix

  8. Effect of relative humidity in high temperature oxidation of ceria nanoparticles coating on 316L austenitic stainless steel

    Science.gov (United States)

    Giraldez Pizarro, Luis Miguel

    A solution of 20 wt. % colloidal dispersion of Cerium Oxide (CeO2) in 2.5% of acetic acid, was used for depositing a coating film on an austenitic stainless steel 316L. Cerium compounds have been distinguished as potential corrosion inhibitors in coatings over several alloys. The oxidation behavior of the cerium oxide coating on 316L austenitic stainless steel alloy was evaluated in dry and humid environments, the weight changes (W/A) was monitored as a function of time using a custom built Thermogravimetrical Analysis (TGA) instrument at temperatures of 750°C, 800°C and 850°C, and different relative humidity levels (0%, 10% and 20%) respectively. The parabolic oxidation rate and activation energy is calculated experimentally for each relative humidity level. A measurement of the effective diameter size of the ceria nanoparticles was performed using a Light Scattering technique. A characterization of the film morphology and thickness before the oxidation was executed using Atomic Force Microscopy (AFM). Microstructure and chemical composition of the oxidized coated substrates were analyzed using Scanning Electronic Microscopy (SEM) with energy dispersive spectroscopy (EDS). X-Ray Diffractometer (XRD) was used to characterize oxides formed in the surface upon isothermal treatment. A comparison of activation energy values obtained to identify the influence of relative humidity in the oxidation process at high temperature was conducted. Cerium oxides coating may prevent crevice corrosion and increase pitting resistance of 316L relative to the uncoated substrate at high temperatures and different levels of relative humidity acting as a protective oxidation barrier. The calculated parabolic rate constants, kp, at the experimental temperatures tend to increase as a function of humidity levels. The activation energy tends to increase proportionally to higher level of humidity exposures. At 0% relative humidity a value of 319.29 KJ/mol of activation energy is being

  9. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L.

    Science.gov (United States)

    Kao, W H; Su, Y L; Horng, J H; Zhang, K X

    2016-08-01

    Ti-C:H coatings were deposited on original, nitrided, and polished-nitrided AISI 316L stainless steel substrates using a closed field unbalanced magnetron sputtering system. Sliding friction wear tests were performed in 0.89 wt.% NaCl solution under a load of 30 N against AISI 316L stainless steel, Si3N4, and Ti6Al4V balls, respectively. The electrochemical properties of the various specimens were investigated by means of corrosion tests performed in 0.89 wt.% NaCl solution at room temperature. Finally, the biocompatibility properties of the specimens were investigated by performing cell culturing experiments using purified mouse leukemic monocyte macrophage cells (Raw264.7). In general, the results showed that plasma nitriding followed by Ti-C:H coating deposition provides an effective means of improving the wear resistance, anti-corrosion properties, and biocompatibility performance of AISI 316L stainless steel.

  10. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    Science.gov (United States)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  11. On the corrosion resistance of AISI 316L-type stainless steel coated with manganese and annealed with flow of oxygen

    Science.gov (United States)

    Savaloni, Hadi; Agha-Taheri, Ensieh; Abdi, Fateme

    2016-06-01

    AISI 316L-type stainless steel was coated with 300-nm-thick Mn thin films and post-annealed at 673 K with a constant flow of oxygen (250 cm3/min). The films crystallographic and morphological structures were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM) before corrosion test and scanning electron microscopy (SEM) after corrosion test. Corrosion behavior of the samples in 0.3, 0.5 and 0.6 M NaCl solutions was investigated by means of potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques. Results showed that the corrosion inhibition of annealed Mn/SS316L in all NaCl solutions with different concentrations is higher than that of bare SS316L. A correlation is achieved between the structural variation of the films with the potentiodynamic and EIS corrosion results.

  12. Influence of oversized elements (Hf, Zr, Ti and Nb) on the thermal stability of vacancies in type 316L stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, A., E-mail: yabuuchi.atsushi@21c.osakafu-u.ac.jp [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Maekawa, M.; Kawasuso, A. [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-11-15

    To reveal the influence of oversized elements on the thermal stability of vacancies in type 316L stainless steels, vacancy recovery processes were investigated by means of positron annihilation spectroscopy. Although vacancies in additive-free 316L stainless steels were mobile at 300 Degree-Sign C, which is a typical nuclear reactor operating temperature, vacancies in oversized elements doped 316L were stable up to 300-350 Degree-Sign C. This result indicates that oversized elements stabilize vacancies in stainless steels. Stability of vacancies inhibits the radiation-induced grain boundary segregation and may also lead to suppression of high-temperature water stress corrosion cracking that is observed in nuclear materials.

  13. Electrodos austeníticos inoxidables semisintéticos para la soldadura manual por arco eléctrico: Una variante económica para las pequeñas y medianas empresas (PIME. // Semi-synthetic austenitics stainless steel electrodes for shielded metal arc welding: A

    Directory of Open Access Journals (Sweden)

    A. Paz Iglesias

    2002-09-01

    Full Text Available En el presente trabajo se brinda una valoración económica para la producción de electrodos austeníticos inoxidables tiposE308L, E309, E312 y E316L en las pequeñas y medianas empresas (PIME. Lo significativo de la presente valoración esque se brindan los resultados obtenidos al fabricar los electrodos de forma semisintética; es decir, utilizando un solo tipo dealambre inoxidable (308L y añadiendo las ferroaleaciones necesarias en el revestimiento. Los resultados que se muestranestán basados en las experiencias de investigación, producción y comercialización de una planta con capacidad para 200toneladas al año, a la cual le es muy difícil insertarse en el mercado utilizando los mismos procedimientos tecnológicos yfinancieros de una gran empresa con grandes capitales y recursos.Palabras claves: Electrodos austeníticos inoxidables, electrodos sintéticos, ferroaleaciones, electrodossemisintéticos, electrodos convencionales, metal depositado.___________________________________________________________________Abstract.This paper offers an economic valuation for the production of stainless electrodes type E308L, E309, E312 and E316L,for small and middle companies (PIME. The significant part of the present valuation gives the results obtained in theproduction of semi-synthetic electrodes; using just one type of stainless wire (308L and adding the ferroalloys neededin the coat. The results shown are based on investigation experiences, production and trading of companies with acapacity for 200 T/year, so it is very difficult to enter in the market using the same technological procedures of a bigcompany with higher capital and financial resources.Key words: Nonrusting austenistic electrodes, sintetic electrodes, semisintetic electrodes, iron alloy,conventional electrodes, metal deposition.

  14. Effect of Temperature on Galling Behavior of SS 316, 316 L and 416 Under Self-Mated Condition

    Science.gov (United States)

    Harsha, A. P.; Limaye, P. K.; Tyagi, Rajnesh; Gupta, Ankit

    2016-11-01

    Galling behavior of three different stainless steels (SS 316, 316 L and 416) was evaluated at room temperature and 300 °C under a self-mated condition. An indigenously fabricated galling tester was used to evaluate the galling performance of mated materials as per ASTM G196-08 standard. The variation in frictional torque was recorded online during the test to assess the onset of galling. The galling50 (G50) stress value was used to compare the galling resistance of a combination of materials, and the results indicate a significant influence of temperature on the galling resistance of the materials tested. This has been attributed to the decrease in hardness and yield strength at elevated temperature which results in softening of the steel and limits its ability to resist severe deformation. Scanning electron micrographs of the galled surface reflected a severe plastic deformation in sliding direction, and a typical adhesive wear mechanism is prevalent during the galling process.

  15. Effects of Thermocapillary Forces during Welding of 316L-Type Wrought, Cast and Powder Metallurgy Austenitic Stainless Steels

    CERN Document Server

    Sgobba, Stefano

    2003-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). This 27 km long accelerator requires 1248 superconducting dipole magnets operating at 1.9 K. The cold mass of the dipole magnets is closed by a shrinking cylinder with two longitudinal welds and two end covers at both extremities of the cylinder. The end covers, for which fabrication by welding, casting or Powder Metallurgy (PM) was considered, are dished-heads equipped with a number of protruding nozzles for the passage of the different cryogenic lines. Structural materials and welds must retain high strength and toughness at cryogenic temperature. AISI 316L-type austenitic stainless steel grades have been selected because of their mechanical properties, ductility, weldability and stability of the austenitic phase against low-temperature spontaneous martensitic transformation. 316LN is chosen for the fabrication of the end covers, while the interconnection components to be welded on the protrud...

  16. Effects of micro-magnetic field at the surface of 316L and NiTi alloy on blood compatibility.

    Science.gov (United States)

    Liu, Qiang; Cheng, Xiao Nong; Fei, Huang Xia

    2011-03-01

    We have established the micro-magnetic field on the surfaces of 316L stainless steel and NiTi alloy through the magnetization process of sol-gel prepared TiO(2) thin film with the powder of SrFe(12)O(19). The nano-sized with brown color of SrFe(12)O(19) powder was verified by transmission electron microscope. By using X-ray diffraction, surface roughometer, and corrosion experimental test, the deposited thin film can decrease the etching of body fluid as well as prevent the hazardous Ni ions released from the metal. Moreover, with evaluation of dynamic cruor time test and blood platelets adhesion test, we found the micro-magnetic field of the thin film can improve the blood compatibility.

  17. Corrosion resistance of multilayer hybrid sol-gel coatings deposited on the AISI 316L austenitic stainless steel

    Science.gov (United States)

    Caballero, Y. T.; Rondón, E. A.; Rueda, L.; Hernández Barrios, C. A.; Coy, A.; Viejo, F.

    2016-02-01

    In the present work multilayer hybrid sol-gel coatings were synthesized on the AISI 316L austenitic stainless steel employed in the fabrication of orthopaedic implants. Hybrid sols were obtained from a mixture of inorganic precursor, TEOS, and organic, GPTMS, using ethanol as solvent, and acetic acid as catalyst. The characterization of the sols was performed using pH measurements, rheological tests and infrared spectroscopy (FTIR) for different ageing times. On the other hand, the coatings were characterized by scanning electron microscopy (SEM), while the corrosion resistance was evaluated using anodic potentiodynamic polarization in SBF solution at 37±2°C. The results confirmed that sol-gel synthesis employing TEOS-GPTMS systems produces uniform and homogeneous coatings, which enhanced the corrosion resistance with regard to the parent alloy. Moreover, corrosion performance was retained after applying more than one layer (multilayer coatings).

  18. Performance Optimization of Cold Rolled Type 316L Stainless Steel by Sand Blasting and Surface Linishing Treatment

    Science.gov (United States)

    Krawczyk, B.; Heine, B.; Engelberg, D. L.

    2016-03-01

    Sand blasting followed by a surface linishing treatment was applied to optimize the near-surface microstructure of cold rolled type 316L stainless steel. The introduction of cold rolling led to the formation of α-martensite. Specimens with large thickness reductions (40, 53%) were more susceptible to localized corrosion. The application of sand blasting produced a near-surface deformation layer containing compressive residual stresses with significantly increased surface roughness, resulting in reduced corrosion resistance. The most resistant microstructure was obtained with the application of a final linishing treatment after sand blasting. This treatment produced microstructures with compressive near-surface residual stresses, reduced surface roughness, and increased resistance to localized corrosion.

  19. Laser surface alloying of 316L stainless steel coated with a bioactive hydroxyapatite-titanium oxide composite.

    Science.gov (United States)

    Ghaith, El-Sayed; Hodgson, Simon; Sharp, Martin

    2015-02-01

    Laser surface alloying is a powerful technique for improving the mechanical and chemical properties of engineering components. In this study, laser surface irradiation process employed in the surface modification off 316L stainless steel substrate using hydroxyapatite-titanium oxide to provide a composite ceramic layer for the suitability of applying this technology to improve the biocompatibility of medical alloys and implants. Fusion of the metal surface incorporating hydroxyapatite-titania ceramic particles using a 30 W Nd:YAG laser at different laser powers, 40, 50 and 70% power and a scan speed of 40 mm s(-1) was observed to adopt the optimum condition of ceramic deposition. Coatings were evaluated in terms of microstructure, surface morphology, composition biocompatibility using XRD, ATR-FTIR, SEM and EDS. Evaluation of the in vitro bioactivity by soaking the treated metal in SBF for 10 days showed the deposition of biomimetic apatite.

  20. TEM and AES investigations of the natural surface nano-oxide layer of an AISI 316L stainless steel microfibre.

    Science.gov (United States)

    Ramachandran, Dhanya; Egoavil, Ricardo; Crabbe, Amandine; Hauffman, Tom; Abakumov, Artem; Verbeeck, Johan; Vandendael, Isabelle; Terryn, Herman; Schryvers, Dominique

    2016-11-01

    The chemical composition, nanostructure and electronic structure of nanosized oxide scales naturally formed on the surface of AISI 316L stainless steel microfibres used for strengthening of composite materials have been characterised using a combination of scanning and transmission electron microscopy with energy-dispersive X-ray, electron energy loss and Auger spectroscopy. The analysis reveals the presence of three sublayers within the total surface oxide scale of 5.0-6.7 nm thick: an outer oxide layer rich in a mixture of FeO.Fe2 O3 , an intermediate layer rich in Cr2 O3 with a mixture of FeO.Fe2 O3 and an inner oxide layer rich in nickel.

  1. Ti-WC nanocrystalline coating formed by surface mechanical attrition treatment process on 316L stainless steel.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour; Ghobadi, E

    2011-10-01

    Nanocrystalline coatings were performed on the surface of 316L stainless steel plates mechanically with a mixture of Ti and WC powders under vacuum conditions. The targets were replaced in the end of the high energy milling rig, while Ti-WC mixture was milled as usual. It is shown that the coatings are nanocrystalline in nature with narrow distribution of average size of nanocrystallites. X-ray diffraction and scanning electron microscopy (with energy-dispersive spectrometer) revealed that the top layer of the coatings is uniform. Microhardness, roughness and primary corrosion tests (tafel tests) proved enhancement of coated samples with respect to raw materials. Transmission electron microscope image of deformed surface confirmed surrounding of nanoparticles by dislocation loops after plastic deformation.

  2. Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Kim, Y. S. [School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of)

    2015-12-15

    Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering.

  3. Experimental investigations on effects of frequency in ultrasonically-assisted end-milling of AISI 316L: A feasibility study.

    Science.gov (United States)

    Maurotto, A; Wickramarachchi, C T

    2016-02-01

    The effects of frequency in ultrasonic vibration assisted milling (UVAM) with axial vibration of the cutter is investigated in this paper. A series of face-mill experiment in dry conditions were conducted on AISI 316L, an alloy of widespread use in industry. The finished surfaces roughness were studied along with basic considerations on tool wear for both conventional milling and an array of frequencies for UVAM (20–40–60 kHz) in a wide range of cutting conditions. Surface residual stresses and cross-cut metallographic slides were used to investigate the hidden effects of UVAM. Experimental results showed competitive results for both surface roughness and residual stress in UVAM when compared with conventional milling especially in the low range of frequency with similar trend for tool wear.

  4. STUDIES OF ACOUSTIC EMISSION SIGNATURES FOR QUALITY ASSURANCE OF SS 316L WELDED SAMPLES UNDER DYNAMIC LOAD CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. V. RANGANAYAKULU

    2016-10-01

    Full Text Available Acoustic Emission (AE signatures of various weld defects of stainless steel 316L nuclear grade weld material are investigated. The samples are fabricated by Tungsten Inert Gas (TIG Welding Method have final dimension of 140 mm x 15 mm x 10 mm. AE signals from weld defects such as Pinhole, Porosity, Lack of Penetration, Lack of Side Fusion and Slag are recorded under dynamic load conditions by specially designed mechanical jig. AE features of the weld defects were attained using Linear Location Technique (LLT. The results from this study concluded that, stress release and structure deformation between the sections in welding area are load conditions major part of Acoustic Emission activity during loading.

  5. 316L stainless steel silver plated plate vacuum heat treatment technology%316L不锈钢镀银板的真空热处理工艺

    Institute of Scientific and Technical Information of China (English)

    王红涛

    2012-01-01

      本文分别通过探讨真空环境下热处理温度和热处理时间对316L不锈钢镀银板性能的影响,从而确定316L不锈钢镀银板的最佳真空热处理工艺。%  This paper through the study of the vacuum heat treatment temperature on properties of 316L stainless steel silver plate, so as to determine the optimal 316L stainless steel silver plated vacuum heat treatment technology.

  6. Radiative and convective properties of 316L Stainless Steel fabricated using the Laser Engineered Net Shaping process

    Science.gov (United States)

    Knopp, Jonathan

    Temperature evolution of metallic materials during the additive manufacturing process has direct influence in determining the materials microstructure and resultant characteristics. Through the power of Infrared (IR) thermography it is now possible to monitor thermal trends in a build structure, giving the power to adjust building parameters in real time. The IR camera views radiation in the IR wavelengths and determines temperature of an object by the amount of radiation emitted from the object in those wavelengths. Determining the amount of radiation emitted from the material, known as a materials emissivity, can be difficult in that emissivity is affected by both temperature and surface finish. It has been shown that the use of a micro-blackbody cavity can be used as an accurate reference temperature when the sample is held at thermal equilibrium. A micro-blackbody cavity was created in a sample of 316L Stainless Steel after being fabricated during using the Laser Engineered Net Shaping (LENS) process. Holding the sample at thermal equilibrium and using the micro-blackbody cavity as a reference and thermocouple as a second reference emissivity values were able to be obtained. IR thermography was also used to observe the manufacturing of these samples. When observing the IR thermography, patterns in the thermal history of the build were shown to be present as well as distinct cooling rates of the material. This information can be used to find true temperatures of 316L Stainless Steel during the LENS process for better control of desired material properties as well as future work in determining complete energy balance.

  7. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  8. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    Science.gov (United States)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  9. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.

    Science.gov (United States)

    Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J

    2015-12-01

    Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram

  10. Fuego y acero

    Directory of Open Access Journals (Sweden)

    Sfintesco, D.

    1965-03-01

    Full Text Available In a brief and appealing manner the author analysis the basic considerations which should be taken into account to deal effectively with the safety of steel structures in case of fire. He makes it clear that the safety measures must not be the result of a rather intuitive and hasty reaction to the possibility of a fire: for example, the costly covering of steel columns with fire resisting material, which in most cases is not necessary. A careful assessment of possible risks must be made, available means to reduce these must be adopted, and the potential losses in case of fire must be taken into account. The article is completed with a brief commentary on the new Italian Regulations, which are probably the most modern and advanced on this matter.El autor expone en este trabajo, en forma breve y llamativa, las bases en que conviene apoyarse para poder resolver racionalmente el problema de la seguridad de las estructuras de acero frente al fuego. Su lectura hace comprender claramente que no puede constituir esta base el temor irreflexivo, con sus secuelas de revestimientos y precauciones onerosos, e innecesarios la mayor parte de las veces, sino la ponderación prudente de los riesgos posibles, de los medios disponibles para combatir el peligro y de los daños probables que del incendio se puedan derivar. Termina el artículo con un rápido comentario del nuevo Reglamento italiano, probablemente el más moderno y avanzado de todos los existentes sobre esta materia de protección contra el fuego.

  11. Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water

    Institute of Scientific and Technical Information of China (English)

    Li Jinbo; Zhai Wen; Zheng Maosheng; Zhu Jiewu

    2008-01-01

    The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days' immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the electrochemical property of 316L stainless steel in simulated cooling water and the pitting potential declines with the concentration of chloride ions; the passivation current has no obvious effect; the rise of the concentration of sulfide ions obviously increases the passivation current, but the pitting potential changes little, which indicates that the two types of ions may have different effects on destructing passive film of stainless steel. The critical concentration of chloride ions causing anodic potential curve's change in simulated cooling water is 250 mg/L for 316 L stainless. The effect of sulfide ions on the corrosion resistance behavior of stainless steel is increasing the passivation current density Ip. The addition of 6mg/L sulfide ions to the solution makes Ip of 316 L increase by 0.5 times.

  12. Characterization of porous TiO2 surfaces formed on 316L stainless steel by plasma electrolytic oxidation for stent applications

    NARCIS (Netherlands)

    Huan, Z.; Fratila-Apachitei, L.E.; Apachitei, I.; Duszczyk, J.

    2012-01-01

    In this study, a porous oxide layer was formed on the surface of 316L stainless steel (SS) by combining Ti magnetron sputtering and plasma electrolytic oxidation (PEO) with the aim to produce a polymer-free drug carrier for drug eluting stent (DES) applications. The oxidation was performed galvanost

  13. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility.

    Science.gov (United States)

    Yang, Zhilu; Wang, Jin; Luo, Rifang; Maitz, Manfred F; Jing, Fengjuan; Sun, Hong; Huang, Nan

    2010-03-01

    For an improved hemocompatibility of 316L stainless steel (SS), we develop a facile and effective approach to fabricating a pulsed-plasma polymeric allylamine (P-PPAm) film that possesses a high cross-linking degree and a high density of amine groups, which is used for subsequent bonding of heparin. The P-PPAm film as a stent coating shows good resistance to the deformation behavior of compression and expansion of a stent. Using deionized water as an aging medium, it is demonstrated that the heparin-immobilized P-PPAm (Hep-P-PPAm) surface has a good retention of heparin. The systematic in vitro hemocompatibility evaluation reveals lower platelet adhesion, platelet activation and fibrinogen activation on the Hep-P-PPAm surface, and the activated partial thromboplastin time prolongs for about 15 s compared with 316L SS. The P-PPAm surface significantly promotes adhesion and proliferation of endothelial cells (ECs). For the Hep-P-PPAm, although EC adhesion and proliferation is slightly suppressed initially, after cultivation for 3 days, the growth behavior of ECs is remarkably improved over 316L SS. In vivo results indicate that the Hep-P-PPAm surface successfully restrain thrombus formation by growing a homogeneous and intact shuttle-like endothelium on its surface. The Hep-P-PPAm modified 316L SS shows a promising application for vascular devices.

  14. Multilayered Zr-C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells

    Science.gov (United States)

    Bi, Feifei; Peng, Linfa; Yi, Peiyun; Lai, Xinmin

    2016-05-01

    A multilayered zirconium-carbon/amorphous carbon (Zr-C/a-C) coating is synthesized by magnetron sputtering in order to improve the corrosion resistance and interfacial conductivity of stainless steel 316L (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). Zr-C/a-C film contains an outmost pure amorphous carbon layer and a sub zirconium containing carbon layer. Interfacial contact resistance (ICR) between carbon paper and coated SS316L decreases to 3.63 mΩ cm2 at 1.4 MPa. Potentiodynamic polarization results reveal that the corrosion potential of Zr-C/a-C coated sample is more positive than pure a-C coated sample and the current density is only 0.49 μA cm-2 at the cathode applied potential 0.6 V. Electrochemical impendence spectroscopy also indicates that multilayered Zr-C/a-C film coated SS316L has much higher charge transfer resistance than the bare sample. After potentiostatic polarization, ICR values are 3.92 mΩ cm2 and 3.82 mΩ cm2 in the simulated PEMFCs cathode and anode environment, respectively. Moreover, XPS analysis of the coated samples before and after potential holding tests shows little difference, which disclose the chemical stability of multilayered Zr-C/a-C film. Therefore, the multilayered Zr-C/a-C coating exhibits excellent performance in various aspects and is preferred for the application of stainless steel bipolar plates.

  15. Study of a design criterion for 316L irradiated represented by a strain hardened material; Etude d'un critere de dimensionnement d'un acier 316L irradie represente par un materiau ecroui

    Energy Technology Data Exchange (ETDEWEB)

    Gouin, H

    1999-07-01

    The aim of this study is to analyse the consequence of radiation on different structure submitted to imposed displacement loading and for damages due to plastic instability or rupture. The main consequence of radiation is a material hardening with a ductility decrease. This effect is similar to initial mechanical hardening: the mechanical properties (determined on smooth tensile specimen) evolve in the same way while irradiation or mechanical hardening increase. So in this study, radiation hardening is simulated by mechanical hardening (swaging). Tests were carried out for which two damages were considered: plastic instability and rupture. These two damages were studied with initial mechanical hardening (5 tested hammering rate 0, 15, 25, 35 and 45% on 316L stainless steel). Likewise two types of loading were studied: tensile or bending loading on specimens with or without geometrical singularities (notches). From tensile tests, two deformation criteria are proposed for prevention against the two quoted damages. Numerical study is carried out allowing to confirm hypothesis made at the time of the tensile test result interpretation and to validate the rupture criterion by applying on bending test. (author)

  16. Study of the S phase structure on the AISI 316L steel by X-ray diffraction and Moessbauer spectroscopy; Estudo da estrutura da fase S no aco AISI 316L por difracao de raios X e espectroscopia Moessbauer

    Energy Technology Data Exchange (ETDEWEB)

    Gontijo, L.C. [Centro Federal de Educacao Tecnologica do Espirito Santo, Vitoria, ES (Brazil). Coordenadoria de Ciencia e Tecnologia; Machado, R.; Nascente, P.A.P. [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Engenharia de Materiais]. E-mail: nascente@power.ufscar.br; Miola, E.J. [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Fisica; Casteletti, L.C. [Universidade de Sao Paulo, Sao Carlos, SP (Brazil). Dept. de Engenharia de Materiais, Aeronautica e Automobilistica

    2005-07-01

    The plasma-nitriding technology has been employed in the industry with the objective of improving the surface properties of metals and alloys. By using the conventional nitriding process at low temperature, some of the properties of the austenitic stainless steels are enhanced by the formation of the S phase, also called expanded austenite. This phase is formed on the surfaces of the austenitic stainless steels nitrided under certain conditions. In the past years, an extensive research has been carried out for the understanding of the S phase, but some questions remain with no answer or with contradictory explanations. In this work, the AISI 316L steel was plasma-nitrided at 350 and 400 deg C, and the samples were characterized by X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS) in order to investigate the S phase. XRD analysis identified the presence of a distorted cubic structure phase. The layer consists of a distribution of nitrogen austenite with different content of nitrogen, ranging from approximately 10 to 40 at-%, and also {gamma}-Fe{sub 4}N and {epsilon}-Fe{sub 2-3}N phases. Moessbauer spectroscopy corroborates these results, and shows a decrease in nitrogen austenite with the increase in nitriding temperature. This decrease is related to the transformation of the nitrogen austenite to the {gamma}-Fe{sub 4}N phase. (author)

  17. Soldagem por Difusão de Aços Inoxidáveis para Fabricação de Trocadores de Calor Compactos

    Directory of Open Access Journals (Sweden)

    Marcus Vinícius Volponi Mortean

    2016-03-01

    Full Text Available Resumo A união de materiais diferentes ou componentes com geometrias complexas muitas vezes requer processos de uniões especiais, como por exemplo, uma fonte de energia de alta densidade como laser ou feixe de elétrons para soldagem por fusão ou mesmo um processo de soldagem no estado sólido. Em particular, este trabalho descreve os experimentos recentes da aplicação da soldagem por difusão no estado sólido (SDES para diferentes tipos de aços inoxidáveis: austenítico AISI 316L, duplex UNS 31803 e superduplex UNS 327250. A soldagem por difusão foi realizada sob alto vácuo a 1050 °C, durante 60 minutos, empregando uma pressão uniaxial de 18-35 MPa. A qualidade da união foi avaliada por microscopia óptica e testes mecânicos. Os resultados preliminares indicam a necessidade de otimização dos parâmetros de processo para os aços duplex e superduplex. Os resultados positivos alcançados no presente trabalho permitiram a fabricação de protótipos de trocadores de calor compacto em aço inoxidável, utilizando o novo método de fabricação, desenvolvido por LABTUCAL / UFSC, através do qual o processo de corte a jato de água é aplicado para confeccionar com precisão os canais do núcleo do permutador de calor.

  18. Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel

    Science.gov (United States)

    Li, Suning; Wang, Qian; Chen, Tao; Zhou, Zhihua; Wang, Ying; Fu, Jiajun

    2012-04-01

    Many methods have been reported on improving the photogenerated cathodic protection of nano-TiO2 coatings for metals. In this work, nano-TiO2 coatings doped with cerium nitrate have been developed by sol-gel method for corrosion protection of 316 L stainless steel. Surface morphology, structure, and properties of the prepared coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The corrosion protection performance of the prepared coatings was evaluated in 3 wt% NaCl solution by using electrochemical techniques in the presence and absence of simulated sunlight illumination. The results indicated that the 1.2% Ce-TiO2 coating with three layers exhibited an excellent photogenerated cathodic protection under illumination attributed to the higher separation efficiency of electron-hole pairs and higher photoelectric conversion efficiency. The results also showed that after doping with an appropriate concentration of cerium nitrate, the anti-corrosion performance of the TiO2 coating was improved even without irradiation due to the self-healing property of cerium ions.

  19. TEM study of the nucleation of bubbles induced by He implantation in 316L industrial austenitic stainless steel

    Science.gov (United States)

    Jublot-Leclerc, S.; Lescoat, M.-L.; Fortuna, F.; Legras, L.; Li, X.; Gentils, A.

    2015-11-01

    10 keV He ions were implanted in-situ in a TEM into thin foils of 316L industrial austenitic stainless steel at temperatures ranging from 200 to 550 °C. As a result, overpressurized nanometric bubbles are created with density and size depending strongly on both the temperature and fluence of implantation. An investigation on their nucleation and growth is reported through a rigorous statistical analysis whose procedure, including the consideration of free surface effects, is detailed. In the parameter range considered, the results show that an increase of fluence promotes both the nucleation and growth of the bubbles whilst an increase of temperature enhances the growth of the bubbles at the expense of their nucleation. The confrontation of resulting activation energies with existing models for bubble nucleation enables the identification of the underlying mechanisms. In spite of slight differences resulting from different conditions of implantation among which the He concentration, He production rate and He/dpa ratio, it appears that the dominating mechanisms are the same as those obtained in metals in previous studies, which, in addition to corroborating literature results, shows the suitability of in-situ TEM experiments to simulate the production of helium in nuclear materials.

  20. Effect of oxygen partial pressure on oxidation performance of iron-aluminide layers on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong-guang; Zhan, Qin; Zhao, Wei-wei; Yuan, Xiao-ming [China Institute of Atomic Energy, Beijing (China). Dept. of Reactor Engineering Research and Design

    2009-07-01

    Tritium permeation barriers (TPB) are required in fusion technology in order to reduce the tritium permeation rate through the structural materials such as type 316 stainless steel. Iron-aluminide layers with alumina on top have been selected as the reference materials for TPB. Aluminide were prepared on the 316L (00Cr17Ni14Mo2) stainless steel by a specific aluminizing process and its oxidation behaviors have been studied in CIAE. This paper is focused on the effect of oxygen partial pressure on the characterization of the surface alumina films. Alumina films were formed on the Fe-Al coatings under the oxygen partial pressure below 200Pa, which is mainly composed of Al{sub 2}O{sub 3} with the thickness upto 300nm, and a little CeO{sub 2} and Cr{sub 2}O{sub 3}. It shows the formation of alumina films because of the selective oxidation of the aluminide on the top surface. (orig.)

  1. An in vitro evaluation of novel NHA/zircon plasma coating on 316L stainless steel dental implant

    Directory of Open Access Journals (Sweden)

    Ebrahim Karamian

    2014-04-01

    Full Text Available The surface characteristics of an implant that influence the speed and strength of osseointegration include crystal structure and bioactivity. The aim of this study was to evaluate the bioactivity of a novel natural hydroxyapatite/zircon (NHA/zircon nanobiocomposite coating on 316L stainless steel (SS dental implants soaking in simulated body fluid. A novel NHA/zircon nanobiocomposite was fabricated with 0 (control, 5, 10, and 15 wt% of zircon in NHA using ball mill for 1 h. The composite mixture was coated on SS implants using a plasma spray method. Scanning electron microscopy (SEM was used to evaluate surface morphology, and X-ray diffraction (XRD was used to analyze phase composition and crystallinity (Xc. Further, calcium ion release was measured to evaluate the coated nanobiocomposite samples. The prepared NHA/zircon coating had a nanoscale morphological structure with a mean crystallite size of 30–40 nm in diameter and a bone-like composition, which is similar to that of the biological apatite of a bone. For the prepared NHA powder, high bioactivity was observed owing to the formation of apatite crystals on its surface. Both minimum crystallinity (Xc=41.1% and maximum bioactivity occurred in the sample containing 10 wt% of zircon because of minimum Xc and maximum biodegradation of the coating sample.

  2. Effect of thermal treatment on the corrosion resistance of Type 316L stainless steel exposed in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Department of Materials Science & Engineering, McMaster University, Hamilton, ON (Canada); Zheng, W. [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON (Canada); Guzonas, D.A. [Canadian Nuclear Laboratories Chalk River Laboratories, ON (Canada); Cook, W.G. [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB (Canada); Kish, J.R., E-mail: kishjr@mcmaster.ca [Department of Materials Science & Engineering, McMaster University, Hamilton, ON (Canada)

    2015-09-15

    There are still unknown aspects about the growth mechanism of oxide scales formed on candidate stainless steel fuel cladding materials during exposure in supercritical water (SCW) under the conditions relevant to the Canadian supercritical water-cooled reactor (SCWR). The tendency for intermetallic precipitates to form within the grains and on grain boundaries during prolonged exposure at high temperatures represents an unknown factor to corrosion resistance, since they tend to bind alloyed Cr. The objective of this study was to better understand the extent to which intermetallic precipitates affects the mode and extent of corrosion in SCW. Type 316L stainless steel, used as a model Fe–Cr–Ni–Mo alloy, was exposed to 25 MPa SCW at 550 °C for 500 h in a static autoclave for this purpose. Mechanically-abraded samples were tested in the mill-annealed (MA) and a thermally-treated (TT) condition. The thermal treatment was conducted at 815 °C for 1000 h to precipitate the carbide (M{sub 23}C{sub 6}), chi (χ), laves (η) and sigma (σ) phases. It was found that although relatively large intermetallic precipitates formed at the scale/alloy interface locally affected the oxide scale formation, their discontinuous formation did not affect the short-term overall apparent corrosion resistance.

  3. An in vitro evaluation of novel NHA/zircon plasma coating on 316L stainless steel dental implant

    Institute of Scientific and Technical Information of China (English)

    Ebrahim Karamian; Mahmood Reza Kalantar Motamedi; Amirsalar Khandan; Parisa Soltani; Sahel Maghsoudi

    2014-01-01

    The surface characteristics of an implant that influence the speed and strength of osseointegration include crystal structure and bioactivity. The aim of this study was to evaluate the bioactivity of a novel natural hydroxyapatite/zircon (NHA/zircon) nanobiocomposite coating on 316L stainless steel (SS) dental implants soaking in simulated body fluid. A novel NHA/zircon nanobiocomposite was fabricated with 0 (control), 5, 10, and 15 wt%of zircon in NHA using ball mill for 1 h. The composite mixture was coated on SS implants using a plasma spray method. Scanning electron microscopy (SEM) was used to evaluate surface morphology, and X-ray diffraction (XRD) was used to analyze phase composition and crystallinity (Xc). Further, calcium ion release was measured to evaluate the coated nanobiocomposite samples. The prepared NHA/zircon coating had a nanoscale morphological structure with a mean crystallite size of 30-40 nm in diameter and a bone-like composition, which is similar to that of the biological apatite of a bone. For the prepared NHA powder, high bioactivity was observed owing to the formation of apatite crystals on its surface. Both minimum crystallinity (Xc = 41.1%) and maximum bioactivity occurred in the sample containing 10 wt%of zircon because of minimum Xc and maximum biodegradation of the coating sample.

  4. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-09-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  5. Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation.

    Science.gov (United States)

    Kenar, Halime; Akman, Erhan; Kacar, Elif; Demir, Arif; Park, Haiwoong; Abdul-Khaliq, Hashim; Aktas, Cenk; Karaoz, Erdal

    2013-08-01

    Cell-material surface interaction plays a critical role in osseointegration of prosthetic implants used in orthopedic surgeries and dentistry. Different technical approaches exist to improve surface properties of such implants either by coating or by modification of their topography. Femtosecond laser treatment was used in this study to generate microspotted lines separated by 75, 125, or 175μm wide nanostructured interlines on stainless steel (316L) plates. The hydrophobicity and carbon content of the metallic surface were improved simultaneously through this method. In vitro testing of the laser treated plates revealed a significant improvement in adhesion of human endothelial cells and human bone marrow mesenchymal stem cells (hBM MSCs), the cells involved in microvessel and bone formation, respectively, and a significant decrease in fibroblast adhesion, which is implicated in osteolysis and aseptic loosening of prostheses. The hBM MSCs showed an increased bone formation rate on the laser treated plates under osteogenic conditions; the highest mineral deposition was obtained on the surface with 125μm interline distance (292±18mg/cm(2) vs. 228±43mg/cm(2) on untreated surface). Further in vivo testing of these laser treated surfaces in the native prosthetic implant niche would give a real insight into their effectiveness in improving osseointegration and their potential use in clinical applications.

  6. Influence of the cutting parameters on flank wear of coated inserts during turning of AISI 316L

    Directory of Open Access Journals (Sweden)

    Yusimit Zamora Hernández

    2015-03-01

    Full Text Available (Received: 2015/01/20 - Accepted: 2015/03/25The continuous improvement of manufacturing processes is critical to achieve optimum levels of productivity, quality and cut production of components and products. This research aims to determine the cutting tool flank wearing progression, during a high speed dry turning, for AISI 316L steel parts. Experimental data were acquired using two cutting feed levels, two material levels, three cutting speeds, and four principal cutting times. A scanning electron microscope (SEM was used to measure and analyze the wear of the cutting tools. Results were compared using analysis of variance and multiple regression for describing the relation between the variables used in the study. The analysis showed that the three layers coating insert did not exceed the end of life wearing criterion, while the one layer insert suffered a catastrophic wearing at the highest cutting speed. It was found that a relation exists between the experimental data and the predicted values for flank wear with a general average error of 4.1182%.

  7. The Effect of Post-Heat Treatment on Microstructure of 316L Cold-Sprayed Coatings and Their Corrosion Performance

    Science.gov (United States)

    Dikici, B.; Yilmazer, H.; Ozdemir, I.; Isik, M.

    2016-04-01

    The combined effects of process gases and post-heat treatment temperature on the microstructure of 316L cold-sprayed coatings on Al5052 substrates have been investigated in this study. The stainless steel coatings were subjected to heat treatment at four different temperatures (250, 500, 750, and 1000 °C) to study the effect of heat treatment. In addition, the corrosion performances of the coatings at different process temperatures have been compared using the potentiodynamic scanning technique. Microstructural characterization of the coatings was carried out using scanning and transmission electron microscopy and x-ray diffraction. The results of present study showed that cold-sprayed stainless steel coatings processed with helium exhibited higher corrosion resistance than those of coatings sprayed with nitrogen process gas. This could partially be attributed to the reduction in porosity level (4.9%) and improvement of particle-particle bonding. In addition, evaluation of the mechanical and microstructural properties of the coatings demonstrated that subsequent heat treatment has major influence on the deposited layers sprayed with He process gas.

  8. Optimum temperature on corrosion resistance for plasma ion nitrided 316L stainless steel in sea water solution

    Science.gov (United States)

    Chong, Sang-Ok; Kim, Seong-Jong

    2017-01-01

    The aim of this research is to investigate the optimum plasma ion nitriding temperature on corrosion resistance in natural sea water for plasma ion nitrided 316L stainless steel. Plasma ion nitriding was conducted at different temperatures of 350, 400, 450, and 500 °C with a mixture of 75% of nitrogen and 25% of hydrogen during 10 h. In conclusion of anodic polarization test, a wide passive potential region and a high corrosion potential were observed at a plasma ion nitriding temperature of 450 °C. Moreover, relatively less damage depth and clean surface micrographs were observed at 450 °C as results of observation of three-dimensional (3D) microscope and scanning electron microscope (SEM) after polarization experiments. In addition, higher corrosion potential and lower corrosion current density were indicated at plasma ion nitrided samples than the value of untreated substrate after Tafel analysis. Hence, plasma ion nitrided at 450 °C in sea water solution represented optimum corrosion resistance among the all the plasma ion nitriding temperature parameters.

  9. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    Science.gov (United States)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  10. A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate

    Directory of Open Access Journals (Sweden)

    Qin Qin

    2015-07-01

    Full Text Available This article describes an investigation into interface bonding research of 316L/Q345R stainless clad plate. A three-dimensional thermal–elastic–plastic model has been established using finite element analysis to model the multi-pass hot rolling process. Results of the model have been compared with those obtained from a rolling experiment of stainless clad plate. The comparisons of temperature and profile of the rolled stainless clad plate have indicated a satisfactory accuracy of finite element analysis simulation. Effects on interface bonding by different parameters including pre-heating temperature, multi-pass thickness reduction rules, rolling speed, covering rate, and different assemble patterns were analyzed systematically. The results show that higher temperature and larger thickness reduction are beneficial to achieve the bonding in vacuum hot rolling process. The critical reduction in the bond at the temperature of 1200 °C is 28%, and the critical thickness reduction reduces by about 2% when the temperature increases by 50 °C during the range from 1000 °C to 1250 °C. And the relationship between the minimum pass number and thickness reduction has been suggested. The results also indicate that large covering rate in the assemble pattern of outer soft and inner hard is beneficial to achieve the bond of stainless clad plate.

  11. Surface interactions of a W-DLC-coated biomedical AISI 316L stainless steel in physiological solution.

    Science.gov (United States)

    Antunes, Renato A; de Lima, Nelson Batista; Rizzutto, Márcia de Almeida; Higa, Olga Zazuco; Saiki, Mitiko; Costa, Isolda

    2013-04-01

    The corrosion stability of a W-DLC coated surgical AISI 316L stainless steel in Hanks' solution has been evaluated. Particle induced X-ray emission (PIXE) measurements were performed to evaluate the incorporation of potentially bioactive elements from the physiological solution. The film structure was analyzed by X-ray diffractometry and micro-Raman spectroscopy. The wear behavior was assessed using the sphere-on-disc geometry. The in vitro biocompatibility of the W-DLC film was evaluated by cytotoxicity tests. The corrosion resistance of the stainless steel substrate decreased in the presence of the PVD layer. EIS measurements suggest that this behavior was closely related to the corrosion attack through the coating pores. PIXE measurements revealed the presence of Ca and P in the W-DLC film after immersion in Hanks' solution. This result shows that the PIXE technique can be applied to identify and evaluate the incorporation of bioactive elements by W-DLC films. The film showed good wear resistance and biocompatibility.

  12. Biocompatibility studies of low temperature nitrided and collagen-I coated AISI 316L austenitic stainless steel.

    Science.gov (United States)

    Martinesi, M; Stio, M; Treves, C; Borgioli, F

    2013-06-01

    The biocompatibility of austenitic stainless steels can be improved by means of surface engineering techniques. In the present research it was investigated if low temperature nitrided AISI 316L austenitic stainless steel may be a suitable substrate for bioactive protein coating consisting of collagen-I. The biocompatibility of surface modified alloy was studied using as experimental model endothelial cells (human umbilical vein endothelial cells) in culture. Low temperature nitriding produces modified surface layers consisting mainly of S phase, the supersaturated interstitial solid solution of nitrogen in the austenite lattice, which allows to enhance surface microhardness and corrosion resistance in PBS solution. The nitriding treatment seems to promote the coating with collagen-I, without chemical coupling agents, in respect of the untreated alloy. For biocompatibility studies, proliferation, lactate dehydrogenase levels and secretion of two metalloproteinases (MMP-2 and MMP-9) were determined. Experimental results suggest that the collagen protection may be favourable for endothelial cell proliferation and for the control of MMP-2 release.

  13. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.

    Science.gov (United States)

    Huang, Qiaoling; Yang, Yun; Hu, Ronggang; Lin, Changjian; Sun, Lan; Vogler, Erwin A

    2015-01-01

    Superhydrophilic and superhydrophobic TiO2 nanotube (TNT) arrays were fabricated on 316L stainless steel (SS) to improve corrosion resistance and hemocompatibility of SS. Vertically-aligned superhydrophilic amorphous TNTs were fabricated on SS by electrochemical anodization of Ti films deposited on SS. Calcination was carried out to induce anatase phase (superhydrophilic), and fluorosilanization was used to convert superhydrophilicity to superhydrophobicity. The morphology, structure and surface wettability of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and contact angle goniometry. The effects of surface wettability on corrosion resistance and platelet adhesion were investigated. The results showed that crystalline phase (anatase vs. amorphous) and wettability strongly affected corrosion resistance and platelet adhesion. The superhydrophilic amorphous TNTs failed to protect SS from corrosion whereas superhydrophobic amorphous TNTs slightly improved corrosion resistance of SS. Both superhydrophilic and superhydrophobic anatase TNTs significantly improved corrosion resistance of SS. The superhydrophilic amorphous TNTs minimized platelet adhesion and activation whereas superhydrophilic anatase TNTs activated the formation of fibrin network. On the contrary, both superhydrophobic TNTs (superhydrophobic amorphous TNTs and superhydrophobic anatase TNTs) reduced platelet adhesion significantly and improved corrosion resistance regardless of crystalline phase. Superhydrophobic anatase TNTs coating on SS surface offers the opportunity for the application of SS as a promising permanent biomaterial in blood contacting biomedical devices, where both reducing platelets adhesion/activation and improving corrosion resistance can be effectively combined.

  14. Optimization of Process Parameters of Hybrid Laser-Arc Welding onto 316L Using Ensemble of Metamodels

    Science.gov (United States)

    Zhou, Qi; Jiang, Ping; Shao, Xinyu; Gao, Zhongmei; Cao, Longchao; Yue, Chen; Li, Xiongbin

    2016-08-01

    Hybrid laser-arc welding (LAW) provides an effective way to overcome problems commonly encountered during either laser or arc welding such as brittle phase formation, cracking, and porosity. The process parameters of LAW have significant effects on the bead profile and hence the quality of joint. This paper proposes an optimization methodology by combining non-dominated sorting genetic algorithm (NSGA-II) and ensemble of metamodels (EMs) to address multi-objective process parameter optimization in LAW onto 316L. Firstly, Taguchi experimental design is adopted to generate the experimental samples. Secondly, the relationships between process parameters ( i.e., laser power ( P), welding current ( A), distance between laser and arc ( D), and welding speed ( V)) and the bead geometries are fitted using EMs. The comparative results show that the EMs can take advantage of the prediction ability of each stand-alone metamodel and thus decrease the risk of adopting inappropriate metamodels. Then, the NSGA-II is used to facilitate design space exploration. Besides, the main effects and contribution rates of process parameters on bead profile are analyzed. Eventually, the verification experiments of the obtained optima are carried out and compared with the un-optimized weld seam for bead geometries, weld appearances, and welding defects. Results illustrate that the proposed hybrid approach exhibits great capability of improving welding quality in LAW.

  15. MC3T3-E1 cell response to stainless steel 316L with different surface treatments.

    Science.gov (United States)

    Zhang, Hongyu; Han, Jianmin; Sun, Yulong; Huang, Yongling; Zhou, Ming

    2015-11-01

    In the present study, stainless steel 316L samples with polishing, aluminum oxide blasting, and hydroxyapatite (HA) coating were prepared and characterized through a scanning electron microscope (SEM), optical interferometer (surface roughness, Sq), contact angle, surface composition and phase composition analyses. Osteoblast-like MC3T3-E1 cell adhesion on the samples was investigated by cell morphology using a SEM (4h, 1d, 3d, 7d), and cell proliferation was assessed by MTT method at 1d, 3d, and 7d. In addition, adsorption of bovine serum albumin on the samples was evaluated at 1h. The polished sample was smooth (Sq: 1.8nm), and the blasted and HA coated samples were much rougher (Sq: 3.2μm and 7.8μm). Within 1d of incubation, the HA coated samples showed the best cell morphology (e.g., flattened shape and complete spread), but there was no significant difference after 3d and 7d of incubation for all the samples. The absorbance value for the HA coated samples was the highest after 1d and 3d of incubation, indicating better cell viability. However, it reduced to the lowest value at 7d. Protein adsorption on the HA coated samples was the highest at 1h. The results indicate that rough stainless steel surface improves cell adhesion and morphology, and HA coating contributes to superior cell adhesion, but inhibits cell proliferation.

  16. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  17. Residual stress in nano-structured stainless steel (AISI 316L) prompted by Xe+ ion bombardment at different impinging angles

    Science.gov (United States)

    Cucatti, S.; Droppa, R.; Figueroa, C. A.; Klaus, M.; Genzel, Ch.; Alvarez, F.

    2016-10-01

    The effect of low energy (316L steel) is reported. The results take into account the influence of the ion incident angle maintaining constant all other bombarding parameters (i.e., ion energy and current density, temperature, and doses). The bombarded surface topography shows that ions prompt the formation of nanometric regular patterns on the surface crystalline grains and stressing the structure. The paper focalizes on the study of the surface residual stress state stemming from the ion bombardment studied by means of the "sin2 ψ" and "Universal Plot" methods. The analysis shows the absence of shear stress in the affected material region and the presence of compressive in-plane residual biaxial stress (˜200 MPa) expanding up to ˜1 μm depth for all the studied samples. Samples under oblique bombardment present higher compressive stress values in the direction of the projected ion beam on the bombarded surface. The absolute value of the biaxial surface stress difference (σ11-σ22) increases on ion impinging angles, a phenomenon associated with the momentum transfer by the ions. The highest stress level was measured for ion impinging angles of 45° ( σ 11 = -380 ± 10 MPa and σ 22 = -320 ± 10 MPa). The different stresses obtained in the studied samples do not affect significantly the formation of characteristic surface patterns.

  18. Effect of tensile pre-strain at different orientation on martensitic transformation and mechanical properties of 316L stainless steel

    Science.gov (United States)

    Wibowo, F.; Zulfi, F. R.; Korda, A. A.

    2017-01-01

    Deformation induced martensite was studied in 316L stainless steel through tensile pre-strain deformation in the rolling direction (RD) and perpendicular to the rolling direction (LT) at various %pre-strain. The experiment was carried out at various given %pre-strain, which were 0%, 4.6%, 12%, 17.4%, and 25.2% for the RD, whereas for LT were 0%, 4.6%, 12%, 18%, and 26% for LT. Changes in the microstructure and mechanical properties were observed using optical microscope, tensile testing, hardness testing, and X-ray diffraction (XRD) analysis. The experimental results showed that the volume fraction of martensite was increased as the %pre-strain increased. In the same level of deformation by tensile pre-strain, the volume of martensite for RD was higher than that with LT direction. The ultimate tensile strength (UTS), yield strength (YS), and hardness of the steel were increased proportionally with the increases in %pre-strain, while the value of elongation and toughness were decreased with the increases in %pre-strain.

  19. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions.

    Science.gov (United States)

    López, Danián Alejandro; Durán, Alicia; Ceré, Silvia Marcela

    2008-05-01

    Titanium and cobalt alloys, as well as some stainless steels, are among the most frequently used materials in orthopaedic surgery. In industrialized countries, stainless steel devices are used only for temporary implants due to their lower corrosion resistance in physiologic media when compared to other alloys. However, due to economical reasons, the use of stainless steel alloys for permanent implants is very common in developing countries. The implantation of foreign bodies is sometimes necessary in the modern medical practice. However, the complex interactions between the host and the can implant weaken the local immune system, increasing the risk of infections. Therefore, it is necessary to further study these materials as well as the characteristics of the superficial film formed in physiologic media in infection conditions in order to control their potential toxicity due to the release of metallic ions in the human body. This work presents a study of the superficial composition and the corrosion resistance of AISI 316L stainless steel and the influence of its main alloying elements when they are exposed to an acidic solution that simulates the change of pH that occurs when an infection develops. Aerated simulated body fluid (SBF) was employed as working solution at 37 degrees C. The pH was adjusted to 7.25 and 4 in order to reproduce normal body and disease state respectively. Corrosion resistance was measured by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves.

  20. Explosive welding method for manufacturing ITER-grade 316L(N)/CuCrZr hollow structural member

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui, E-mail: mr9980@163.com [PLA University of Science and Technology, Nanjing 210007 (China); Wang, Yaohua [PLA University of Science and Technology, Nanjing 210007 (China); Wu, Jihong [Southwestern Institute of Physics, Chengdu 610041 (China); Duan, Mianjun [PLA University of Science and Technology, Nanjing 210007 (China)

    2014-12-15

    Highlights: • Develop a new explosive welding method to fabricate the cooling channel of FW. • Utilize effective energy model to accurately calculate optimal welding parameters. • Provide an efficient way for manufacturing high-ductility hollow structural member. - Abstract: In this study, a new explosive welding method provided an effective way for manufacturing ITER-grade 316L(N)/CuCrZr hollow structural member. The welding parameters (stand-off distance and explosion rate) were calculated respectively using equivalent frontal collision wave model and effective energy model. The welded samples were subject to two step heat treatment cycles (solution annealing and aging). Optical microscopy (OM) and scanning electron microscopy (SEM) were utilized to analyze the microstructure of bonding interface. The mechanical properties of the welded samples were evaluated through microhardness test and tensile test. Moreover, the sealing property of the welded specimens was measured through helium leak test. Microstructural analysis showed that the welded sample using effective energy model had an ideal wavy interface. The results of microhardness test revealed an increase in hardness for both sides near to the bonding interface. And the hardening phenomenon of interface region disappeared after the solution annealing. SEM observation indicated that the samples with the post heat treatments exhibited a ductile fracture with dimple features after tensile test. After the specimens undergo aging strengthening, there was an obvious increase in the strength for all specimens. The helium leak test results have proven that the welded specimens are soundness.

  1. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    Science.gov (United States)

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  2. An EBSD investigation on flow localization and microstructure evolution of 316L stainless steel for Gen IV reactor applications

    Science.gov (United States)

    Wu, Xianglin; Pan, Xiao; Mabon, James C.; Li, Meimei; Stubbins, James F.

    2007-09-01

    Type 316L stainless steel has been selected as a candidate structural material in a series of current accelerator driven systems and Generation IV reactor conceptual designs. The material is sensitive to irradiation damage in the temperature range of 150-400 °C: even low levels of irradiation exposure, as small as 0.1 dpa, can cause severe loss of ductility during tensile loading. This process, where the plastic flow becomes highly localized resulting in extremely low overall ductility, is referred as flow localization. The process controlling this confined flow is related to the difference between the yield and ultimate tensile strengths such that large irradiation-induced increases in the yield strength result in very limited plastic flow leading to necking after very small levels of uniform elongation. In this study, the microstructural evolution controlling flow localization is examined. It is found that twinning is an important deformation mechanism at lower temperatures since it promotes the strain hardening process. At higher temperatures, twinning becomes energetically impossible since the activation of twinning is determined by the critical twinning stress, which increases rapidly with temperature. Mechanical twinning and dislocation-based planar slip are competing mechanisms for plastic deformation.

  3. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baicheng, E-mail: baicheng.zhang@utbm.fr; Dembinski, Lucas; Coddet, Christian

    2013-11-01

    In this work, a systematic analysis of the main parameters for the selective laser melting (SLM) of a commercial stainless steel 316L powder was conducted to improve the mechanical properties and dimensional accuracy of the fabricated parts. First, the effects of the processing parameters, such as the laser beam scanning velocity, laser power, substrate condition and thickness of the powder layer, on the formation of single tracks for achieving a continuous melting and densification of the material were analysed. Then, the influence of the environmental conditions (gas nature) and of the preheating temperature on the density and dimensional accuracy of the parts was considered. The microstructural features of the SLM SS 316L parts were carefully observed to elucidate the melting-solidification mechanism and the thermal history, which are the basis of the manufacturing process. Finally, the mechanical properties of the corresponding material were also determined.

  4. Corrosion Behavior of V2AlC and Cr2AlC Compared with SS 316L in NaOH at Four Temperatures

    Directory of Open Access Journals (Sweden)

    Rana A. Anaee

    2015-06-01

    Full Text Available This work involves the manufacturing of MAX phase materials include V2AlC and Cr2AlC using powder metallurgy as a new class of materials which characterized by regular crystals in lattice. Corrosion behavior of these materials was investigated by Potentiostat to estimate corrosion resistance and compared with the most resistant material represented by SS 316L. The experiments were carried out in 0.01N of NaOH solution at four temperatures in the range of 30–60oC. Polarization resistance values which calculated by Stern-Geary equation indicated that the MAX phase materials more resistant than SS 316L. Also cyclic polarization tests confirmed the resistivity of MAX phase materials through disappears of hysteresis loop.

  5. Metallic ions in organs of rats injected with metallic particles of stainless steel 316L and Ti6Al4V alloy

    Directory of Open Access Journals (Sweden)

    Silvia Helena Giertz

    2010-03-01

    Full Text Available Despite the interest in identifying systemic effects caused by the metallic particles released from long term metallic implants in the body, few works support reliable conclusions about the effects of those particles in organs. The aim of the present work is to look for damages in tissues of liver, kidney, lung and heart of rats submitted to injection of Hank's solution contained particles of Ti6Al4V alloy and Stainless Steel 316L, obtained by metal friction. The particles size ranges from 50 to 200 µm for the Ti alloy and from 100 to 500 µm for the 316L. Tissues isolated from the organs after the euthanasia were prepared and analyzed in an optical microscope and Energy Dispersive Spectrometer (EDS. Lesions caused by an inflammatory response such as strange body epithelioid granuloma and giant cells were found in some of the tissues containing yttrium and aluminum.

  6. MC3T3-E1 cell response to stainless steel 316L with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongyu [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Han, Jianmin, E-mail: siyanghan@163.com [Dental Materials Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081 (China); Sun, Yulong [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Huang, Yongling [Jinghang Biomedicine Engineering Division, Beijing Institute of Aeronautical Material, Beijing 100095 (China); Zhou, Ming [State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-11-01

    In the present study, stainless steel 316L samples with polishing, aluminum oxide blasting, and hydroxyapatite (HA) coating were prepared and characterized through a scanning electron microscope (SEM), optical interferometer (surface roughness, Sq), contact angle, surface composition and phase composition analyses. Osteoblast-like MC3T3-E1 cell adhesion on the samples was investigated by cell morphology using a SEM (4 h, 1 d, 3 d, 7 d), and cell proliferation was assessed by MTT method at 1 d, 3 d, and 7 d. In addition, adsorption of bovine serum albumin on the samples was evaluated at 1 h. The polished sample was smooth (Sq: 1.8 nm), and the blasted and HA coated samples were much rougher (Sq: 3.2 μm and 7.8 μm). Within 1 d of incubation, the HA coated samples showed the best cell morphology (e.g., flattened shape and complete spread), but there was no significant difference after 3 d and 7 d of incubation for all the samples. The absorbance value for the HA coated samples was the highest after 1 d and 3 d of incubation, indicating better cell viability. However, it reduced to the lowest value at 7 d. Protein adsorption on the HA coated samples was the highest at 1 h. The results indicate that rough stainless steel surface improves cell adhesion and morphology, and HA coating contributes to superior cell adhesion, but inhibits cell proliferation. - Highlights: • Rough stainless steel surface improves cell adhesion and proliferation. • HA coating results in superior cell morphology and cell attachment. • HA coating inhibits osteoblast cell proliferation after 7 d of incubation.

  7. Influence of the Carbo-Chromization Process on the Microstructural, Hardness, and Corrosion Properties of 316L Sintered Stainless Steel

    Science.gov (United States)

    Iorga, Sorin; Cojocaru, Mihai; Chivu, Adriana; Ciuca, Sorin; Burdusel, Mihail; Badica, Petre; Leuvrey, Cédric; Schmerber, Guy; Ulhaq-Bouillet, Corinne; Colis, Silviu

    2014-06-01

    We report on the changes on the microstructural, hardness, and corrosion properties induced by carbo-chromization of 316L stainless steel prepared by Spark Plasma Sintering technique. The thermo-chemical treatments have been performed using pack cementation. The carburizing and chromization were carried out between 1153 K (880 °C)/4 h to 1253 K (980 °C)/12 h and 1223 K (950 °C)/6 h to 1273 K (1000 °C)/12 h in a solid powder mixture of charcoal/BaCO3 and ferrochromium/alumina/NH4Cl, respectively. The obtained layers were investigated using X-ray and electron diffraction, optical and scanning electron microscopies, Vickers micro-hardness, and potentiodynamic measurements. The thickness of the carbo-chromized layer ranges between 300 and 500 μm. Besides the host γ-phase, the layers are mainly constituted of carbides (Fe7C3, Cr23C6, Cr7C3, and Fe3C) and traces of α'-martensite. The average hardness values decrease smoothly from 650 HV at the sample surface down to 200 HV at the center of the sample. The potentiodynamic tests revealed that the carbo-chromized samples have smaller corrosion resistance with respect to the untreated material. For strong chromization regimes, the corrosion rate is increased by a factor of four with respect to that of the untreated material, while the micro-hardness of the layer is three times larger. Such materials are suited to be used in environments where good corrosion resistance and wear properties are required.

  8. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  9. The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant

    Science.gov (United States)

    Sharifnabi, A.; Fathi, M. H.; Eftekhari Yekta, B.; Hossainalipour, M.

    2014-01-01

    In this study, Mg-substituted fluorapatite coatings were deposited on medical grade AISI 316L stainless steel via sol-gel dip coating method. Phase composition, crystallite size and degree of crystallinity of the obtained coatings were evaluated by X-ray diffraction (XRD) analysis. Fourier transform infrared (FTIR) spectroscopy was also used to evaluate functional groups of the obtained coatings. The surface morphology and cross-section of the final coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy was used to determine elemental chemical composition of the obtained coatings. In order to determine and compare the corrosion behavior of uncoated and Mg-substituted fluorapatite coated 316L stainless steel, electrochemical potentiodynamic polarization tests were performed in physiological solutions at 37 ± 1 °C. Moreover, the released metallic ions from uncoated and coated substrates were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) within 2 months of immersing in Ringer's solution at 36.5 ± 1 °C as an indication of biocompatibility. The results showed that fluoride and magnesium were successfully incorporated into apatite lattice structure and the prepared coatings were nanostructured with crystallinity of about 70%. Obtained coatings were totally crack-free and uniform and led to decrease in corrosion current densities of 316L stainless steel in physiological solutions. In addition, coated sample released much less ions such as Fe, Cr and Ni in physiological media. Therefore, it was concluded that Mg-substituted fluorapatite coatings could improve the corrosion resistance and biocompatibility of 316L stainless steel human body implants.

  10. Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days' immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the elect...

  11. Ion release and surface oxide composition of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys immersed in human serum albumin solutions

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Shima, E-mail: shimak80@gmail.com; Alfantazi, Akram M.

    2014-07-01

    The long-term weight loss, ion release, and surface composition of 316L, Co–28Cr–6Mo and Ti–6Al–4V alloys were investigated in a simulated body environment. The samples were immersed in phosphate-buffered saline (PBS) solutions with various human serum albumin (HSA) concentrations for 8, 14, and 22 weeks. The specimens initially lost weight up to 14 weeks and then slightly gained weight. The analysis of the released ions was performed by induced coupled plasma-optical emission spectrometer (ICP-OES). The results revealed that the precipitation of the dissolved Fe and Co could cause the weight gain of the 316L and Co–28Cr–6Mo alloys. The surface chemistry of the specimens was determined by X-ray photoelectron spectroscopy (XPS). The XPS analysis of Co–28Cr–6Mo alloy showed that the interaction of Mo with HSA is different from Mo with bovine serum albumin (BSA). This was also observed for Na adsorption into the oxide layer of Ti–6Al–4V alloy in the presence of HSA and BSA. - Highlights: • Long-term study of weight loss, ion release, and surface composition in HSA solution • Comparison between HSA and BSA as protein simulators in PBS solutions • The most ions released from 316L and Co–28Cr–6Mo were Fe and Co. • The oxide composition of 316L contained Fe{sub 2}O{sub 3}, MoO{sub 2}, and MoO{sub 3} in only HSA solutions.

  12. Characterization of Porous TiO2 Surfaces Formed on 316L Stainless Steel by Plasma Electrolytic Oxidation for Stent Applications

    OpenAIRE

    Iulian Apachitei; Jurek Duszczyk; Zhiguang Huan; Fratila-Apachitei, Lidy E.

    2011-01-01

    In this study, a porous oxide layer was formed on the surface of 316L stainless steel (SS) by combining Ti magnetron sputtering and plasma electrolytic oxidation (PEO) with the    aim to produce a polymer-free drug carrier for drug eluting stent (DES) applications. The oxidation was performed galvanostatically in Na3PO4 electrolyte. The surface porosity, average pore size and roughness varied with PEO treatment duration, and under optimum conditio...

  13. The use of alkanethiol self-assembled monolayers on 316L stainless steel for coronary artery stent nanomedicine applications: an oxidative and in vitro stability study.

    Science.gov (United States)

    Mahapatro, Anil; Johnson, Dave M; Patel, Devang N; Feldman, Marc D; Ayon, Arturo A; Agrawal, C Mauli

    2006-09-01

    The use of self-assembled monolayers (SAMs) on medical devices offers a methodology for the incorporation of nanotechnology into medicine. SAMs are highly ordered nanosized molecular coatings, adding 1 to 10 nm thickness to a surface. This work is part of an overall goal to deliver therapeutic drugs from the surface of metal coronary stents using SAMs. In this study the oxidative and in vitro stability of functional alkylthiol SAMs on 316L stainless steel (SS) has been demonstrated. SAMs of 11-mercaptoundecanoic acid (-COOH SAM) and 11-mercapto-1-undecanol (-OH SAM) were formed on 316L SS. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and contact angle (CA) measurements collectively confirmed the formation of functional alkylthiol SAMs on 316L SS. Well-formed SAMs (CA: 82 deg +/- 9 deg) were achieved within 48 hours of immersion in ethanolic solutions, after which no significant improvement in CA was observed. The ratio of the thiolate peak (163.5 eV) to the oxidized sulfur (sulfonates) peak (166.5 eV) gives us an indication of the percentage SAMs that would bind to the metal and serve as a drug reservoir in vivo; which in turn represents the stability and viability of these SAMs, keeping in mind the cardiovascular application under consideration. Oxidative and in vitro stability studies showed that alkanethiol SAMs oxidized completely within 14 days. The SAMs tend to desorb and leave the metal surface after longer time periods (21 days) in phosphate-buffered saline (PBS) immersion, whereas for oxidative exposure the SAMs continue to remain on the metal surface in the form of sulfonates. Although the chemistry of bonding of alkylthiol with the 316L SS is not well understood, the nanosized alkylthiol SAMs demonstrate sufficient stability to justify further study on these systems for potential in vivo drug delivery in the chosen coronary artery stent applications.

  14. Austenitic Stainless Steel AISI 316L Corrosion Test Research%奥氏体不锈钢AISI 316L腐蚀试验研究

    Institute of Scientific and Technical Information of China (English)

    王金刚; 刘江涛; 程珊珊

    2014-01-01

    在精对苯二甲酸(PTA)生产中,选取干燥机BM302壳体常用材料奥氏体不锈钢AISI 316L为研究对象,在醋酸环境中,对AISI 316L 受Br-及Cl-作用的电化学极化试验和电化学阻抗试验进行腐蚀性试验研究。试验结果表明,Br-或Cl-浓度的增加都会导致AISI 316L不锈钢腐蚀速率增加、击穿电位降低、腐蚀反应电阻减小,导致其耐腐蚀性能下降,腐蚀加剧。为PTA设备腐蚀的现场监测和设备维护提供参考依据。%In purified terephthalic acid (PTA) production, selected the drying machine BM302 shell commonly use material austenitic stainless steel AISI 316L as the research object. In the acetic acid environment, for corrosive test research of AISI 316L, through Br-and Cl-the role of electrochemical polarization test and electrochemical impedance test. The test results show that Br-or Cl-will lead to the increasing of the concentration of seawater AISI 316L stainless steel corrosion rate increase, breakdown voltage is reduced, and the corrosion reaction resistance decreases, and lead to its corrosion resistance drop, corrosion intensifies. That will provide reference for PTA equipment corrosion field monitoring and equipment maintenance.

  15. The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant

    Energy Technology Data Exchange (ETDEWEB)

    Sharifnabi, A., E-mail: sharifnabi@yahoo.com [Biomaterials Group, Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 16844 (Iran, Islamic Republic of); Fathi, M.H. [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 8415683111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Eftekhari Yekta, B.; Hossainalipour, M. [Biomaterials Group, Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 16844 (Iran, Islamic Republic of)

    2014-01-01

    In this study, Mg-substituted fluorapatite coatings were deposited on medical grade AISI 316L stainless steel via sol–gel dip coating method. Phase composition, crystallite size and degree of crystallinity of the obtained coatings were evaluated by X-ray diffraction (XRD) analysis. Fourier transform infrared (FTIR) spectroscopy was also used to evaluate functional groups of the obtained coatings. The surface morphology and cross-section of the final coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy was used to determine elemental chemical composition of the obtained coatings. In order to determine and compare the corrosion behavior of uncoated and Mg-substituted fluorapatite coated 316L stainless steel, electrochemical potentiodynamic polarization tests were performed in physiological solutions at 37 ± 1 °C. Moreover, the released metallic ions from uncoated and coated substrates were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) within 2 months of immersing in Ringer's solution at 36.5 ± 1 °C as an indication of biocompatibility. The results showed that fluoride and magnesium were successfully incorporated into apatite lattice structure and the prepared coatings were nanostructured with crystallinity of about 70%. Obtained coatings were totally crack-free and uniform and led to decrease in corrosion current densities of 316L stainless steel in physiological solutions. In addition, coated sample released much less ions such as Fe, Cr and Ni in physiological media. Therefore, it was concluded that Mg-substituted fluorapatite coatings could improve the corrosion resistance and biocompatibility of 316L stainless steel human body implants.

  16. Influence of Prior Fatigue Damage on Tensile Properties of 316L(N) Stainless Steel and Modified 9Cr-1Mo Steel

    Science.gov (United States)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Mathew, M. D.; Bhaduri, A. K.

    2015-02-01

    In the current study, the effect of prior low-cycle fatigue (LCF) damage on the tensile properties of 316L(N) stainless steel (SS) and modified 9Cr-1Mo steel were systematically investigated. The LCF tests were interrupted at 5, 10, 30, and 50 pct of the total fatigue life followed by tensile tests on the same specimens at the same strain rate (3 × 10-3 s-1) and temperatures of 300 K, 823 K, and 873 K (27 °C, 550 °C, and 600 °C). Prior strain cycling at elevated temperatures had remarkable effect on the tensile properties of both cyclically hardening and cyclically softening materials. An exponential relationship between the yield stress and the amount of pre-strain cycles is obtained for both the materials. The initial drastic change in the yield strength values up to 10 pct of fatigue life may be due to the microstructural changes that lead to hardening or softening in 316L(N) SS and modified 9Cr-1Mo steel, respectively. Saturation in the yield strength values beyond 10 pct of fatigue life has practical importance for remnant fatigue life assessment. Evolution of fatigue damage in both the 316L(N) SS and modified 9Cr-1Mo steel was analyzed using the surface replica technique.

  17. Effect of Surface Condition and Heat Treatment on Corrosion of Type 316L Stainless Steel in a Mercury Thermal Convection Loop

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, S J

    2001-09-25

    Two thermal convection loops (TCLs) fabricated from 316L stainless steel and containing mercury and a variety of 316L coupons representing variable surface conditions and heat treatments have been operated continuously for 2000 h. Surface conditions included surface ground, polished, gold-coated, chemically etched, bombarded with Fe to simulate radiation damage, and oxidized. Heat treatments included solution treated, welded, and sensitized. In addition, a nitrogen doped 316L material, termed 316LN, was also examined in the solution treated condition. Duplicate TCLs were operated in this experiment--both were operated with a 305 C peak temperature, a 65 C temperature gradient, and mercury velocity of 1.2 m/min--but only one included a 36 h soak in Hg at 310 C just prior to operation to encourage wetting. Results indicate that the soak in Hg at 310 C had no lasting effect on wetting or compatibility with Hg. Further, based on examination of post-test wetting and coupon weight loss, only the gold-coated surfaces revealed significant interaction with Hg. In areas wetted significantly by Hg, the extreme surface of the stainless steel (ca 10 {micro}m) was depleted in Ni and Cr compared to the bulk composition.

  18. Effect of Surface Condition and Heat Treatment on Corrosion of Type 316L Stainless Steel in a Mercury Thermal Convection Loop

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, S.J.

    2000-10-17

    Two thermal convection loops (TCLs) fabricated from 316L stainless steel and containing mercury and a variety of 316L coupons representing variable surface conditions and heat treatments have been operated continuously for 2000 h. Surface conditions included surface ground, polished, gold-coated, chemically etched, bombarded with Fe to simulate radiation damage, and oxidized. Heat treatments included solution treated, welded, and sensitized. In addition, a nitrogen doped 316L material, termed 316LN, was also examined in the solution treated condition. Duplicate TCLs were operated in this experiment--both were operated with a 305 C peak temperature, a 65 C temperature gradient, and mercury velocity of 1.2 m/min--but only one included a 36 h soak in Hg at 310 C just prior to operation to encourage wetting. Results indicate that the soak in Hg at 310 C had no lasting effect on wetting or compatibility with Hg. Further, based on examination of post-test wetting and coupon weight loss, only the gold-coated surfaces revealed significant interaction with Hg. In areas wetted significantly by Hg, the extreme surface of the stainless steel (ca 10 {micro}m) was depleted in Ni and Cr compared to the bulk composition.

  19. In vitro response of human peripheral blood mononuclear cells to AISI 316L austenitic stainless steel subjected to nitriding and collagen coating treatments.

    Science.gov (United States)

    Stio, Maria; Martinesi, Maria; Treves, Cristina; Borgioli, Francesca

    2015-02-01

    Surface modification treatments can be used to improve the biocompatibility of austenitic stainless steels. In the present research two different modifications of AISI 316L stainless steel were considered, low temperature nitriding and collagen-I coating, applied as single treatment or in conjunction. Low temperature nitriding produced modified surface layers consisting mainly of S phase, which enhanced corrosion resistance in PBS solution. Biocompatibility was assessed using human peripheral blood mononuclear cells (PBMC) in culture. Proliferation, lactate dehydrogenase (LDH) levels, release of cytokines (TNF-α, IL-1β, IL-12, IL-10), secretion of metalloproteinase (MMP)-9 and its inhibitor TIMP-1, and the gelatinolytic activity of MMP-9 were determined. While the 48-h incubation of PBMC with all the sample types did not negatively influence cell proliferation, LDH and MMP-9 levels, suggesting therefore a good biocompatibility, the release of the pro-inflammatory cytokines was always remarkable when compared to that of control cells. However, in the presence of the nitrided and collagen coated samples, the release of the pro-inflammatory cytokine IL-1β decreased, while that of the anti-inflammatory cytokine IL-10 increased, in comparison with the untreated AISI 316L samples. Our results suggest that some biological parameters were ameliorated by these surface treatments of AISI 316L.

  20. Characterization of mechanical properties and electrochemical behaviour in a Hank´s solution of 316L/Cr1- xAlxN system

    Science.gov (United States)

    Osorio, D. M.; Caicedo, J. C.; Aperador, W.; Benitez-Castro, A. M.; Giraldo-Betancur, A. L.; Muñoz-Saldaña, J.; Yañez-Limón, J. M.; Sanchez, O.; Zambrano, G.

    2017-01-01

    Cr1-xAlxN hard coatings were successfully deposited by R.F. reactive magnetron co-sputtering in an Ar/N2 gas mixture using chromium and aluminium targets on 316L stainless steel substrates. Crystallographic orientations associated to the Cr1-xAlxN FCC based in the conjugate complex of CrN and w-AlN phases, with ao=4.18Å lattice parameter for the ternary Cr1-xAlxN compound were identified by X-Ray diffraction. The thickness and roughness of the deposited coatings are 1.00±0.05nm and 2.65±0.6nm, respectively. The mechanical properties were determined by nanoindentation leading to a hardness of 27.8±2.6GPa and elastic modulus of 346GPa. The corrosion resistance of the coated 316L/Cr1-xAlxN system under simulated body fluid (SBF, Hank’s solution) was determined via electrochemical impedance spectroscopy. A reduction in the corrosion rate of 99% in relation to uncoated 316L stainless steel substrate was found by Tafel. Thus, these coatings seem to be excellent candidates to be used in biomedical applications.

  1. Fabrication,property characterization and toughening mechanism of HA-ZrO2(CaO)/316L fibre composite biomaterials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    HA-ZrO2(CaO)/316L fibre composites were successfully fabricated with vacuum sintering method and their properties and toughening mechanism were studied. The results showed that HA-ZrO2(CaO)/316L fibre biocomposite having 20 vol% fibres had optimal comprehensive properties with bending strength, Young’s modulus, fracture toughness and relative density equal to 140.1 MPa, 117.8 GPa, 5.81 MPa·m1/2 and 87.1%, respectively. The research also addressed that different volume ratios of the composites led to different metallographic microstructures, and that metallographic morphologies change regularly with volume ratios of the composites. 316L fibres were distributed randomly and evenly in the composites and the integration circumstance of the two phases was very well since there were no obvious flaws or pores in the composites. Two toughening mechanisms including ZrO2 phase transformation toughening mechanism and fibre pulling-out toughening mechanism existed in the compsites with the latter being the main toughening mechanism.

  2. The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H. S.; Sun, D. B.; Yu, H. Y.; Meng, H. M. [University of Science and Technology Beijing, Beijing (China)

    2015-12-15

    The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution (i{sub diss}) and film formation (i{sub film}) components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 V{sub SCE} to 0.8 V{sub SCE} resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (θ=1), the electric field strength through the thin passive film reached 1.6 x 10{sup 7} V/cm.

  3. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium--a comparison.

    Science.gov (United States)

    Herting, G; Wallinder, I Odnevall; Leygraf, C

    2008-09-01

    Metal release rates from stainless steel grade 316L were investigated in artificial lysosomal fluid (ALF), simulating a human inflammatory cell response. The main focus was placed on release rates of main alloying elements using graphite furnace atomic absorption spectroscopy, and changes in surface oxide composition by means of X-ray photoelectron spectroscopy. To emphasise that alloys and pure metals possess totally different intrinsic properties, comparative studies were performed on the pure alloying constituents: iron, nickel and chromium. Significant differences in release rates were observed due to the presence of a passive surface film on stainless steel. Iron and nickel were released at rates more than 300 times lower from the 316L alloy compared with the pure metals whereas the release rate of chromium was similar. Iron was preferentially released compared with nickel and chromium. Immersion in ALF resulted in the gradual enrichment of chromium in the surface film, a small increase of nickel, and the reduction of oxidized iron with decreasing release rates of alloy constituents as a result. As expected, released metals from stainless steel grade 316L were neither in proportion to the bulk alloy composition nor to the surface film composition.

  4. 医用316L不锈钢表面改性的研究进展%Research Progress in Surface Modification of Biomedical 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    孙建华; 刘金龙; 王庆良; 吴高峰

    2011-01-01

    316L不锈钢作为生物医用材料在近20年内被广泛应用在矫形外科植入物、牙种植体和冠状动脉支架等领域.分析了目前医用316L不锈钢在临床应用中存在的主要问题.指出生物相客性、耐腐蚀性和耐磨损性有待提高和表面改性是改善上述问题的有效途径.综述了医用316L不锈钢表面改性的各种途径及研究成果,并展望了316L不锈钢表面改性的研究趋势.%316L stainless steel is an extensively used biomedical material for orthopedic implants, dental implant and cardiovascular stents in the last two decades. Based on the primary problem of biomedical 316L stainless steel in biocompatibility, corrosion resistance and wear resistance properties, it is pointed out that surface modifacation is an effective way to improve these properties. The various approaches and research achievement of surface modification for biomeical 316L stainless steel are reviewed, and the research trend of surface modification is also presented.

  5. The Interfacial Microstructure and Mechanical Properties of Diffusion-Bonded Joints of 316L Stainless Steel and the 4J29 Kovar Alloy Using Nickel as an Interlayer

    Directory of Open Access Journals (Sweden)

    Tingfeng Song

    2016-11-01

    Full Text Available 316L stainless steel (Fe–18Cr–11Ni and a Kovar (Fe–29Ni–17Co or 4J29 alloy were diffusion-bonded via vacuum hot-pressing in a temperature range of 850–950 °C with an interval of 50 °C for 120 min and at 900 °C for 180 and 240 min, under a pressure of 34.66 MPa. Interfacial microstructures of diffusion-bonded joints were characterized by optical microscopy (OM, scanning electron microscopy (SEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS. The inter-diffusion of the elements across the diffusion interface was revealed via electron probe microanalysis (EPMA. The mechanical properties of the joints were investigated via micro Vickers hardness and tensile strength. The results show that an Ni interlayer can serve as an effective diffusion barrier for the bonding of 316L stainless steel and the 4J29 Kovar alloy. The composition of the joints was 316L/Ni s.s (Fe–Cr–Ni/remnant Ni/Ni s.s (Fe–Co–Ni/4J29. The highest tensile strength of 504.91 MPa with an elongation of 38.75% was obtained at 900 °C for 240 min. After the width of nickel solid solution (Fe–Co–Ni sufficiently increased, failure located at the 4J29 side and the fracture surface indicated a ductile nature.

  6. Estudio de la conformabilidad en aceros AHSS y aceros de embutición

    OpenAIRE

    Gutiérrez Castillo, Joan David

    2009-01-01

    El presente Proyecto de Final de Carrera tiene como objeto el estudio de la conformabilidad de chapas de acero TRIP(Transformation Induced Plasticity), acero que pertenece a La familia de aceros avanzados de alta resistencia mecánica AHSS (Advanced High Strength Steel), en comparación con un acero de embutición. Para ello se han utilizado los diagramas FLD (Forming Limit Diagram) los cuales indican las deformaciones existentes en diferentes condiciones de tensión y/o deformació...

  7. An electrochemical method for functionalization of a 316L stainless steel surface being used as a stent in coronary surgery: irreversible immobilization of fibronectin for the enhancement of endothelial cell attachment.

    Science.gov (United States)

    Harvey, Jeffrey; Bergdahl, Andreas; Dadafarin, Hesam; Ling, Li; Davis, Elaine C; Omanovic, Sasha

    2012-06-01

    An electrochemistry-based method for the formation of functionalized alkanethiol layers on a 316L stainless steel surface was developed. The method was efficient in forming a very stable, irreversibly-attached COOH-terminated (mercaptoundecanoic acid) surface layer. This layer was used as a 'linker' to immobilize the extracellular matrix protein fibronectin to the 316L stainless steel surface. Fibronectin was irreversibly attached to the surface and, unlike physisorbed fibronectin, resisted detachment more in aggressive 0.1 M NaOH under sonication. The fibronectin-modified 316L stainless steel surface was more biocompatible towards attachment of endothelial cells than a bare (unmodified) 316L stainless steel surface, yielding a 25% improvement in cell density.

  8. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    Science.gov (United States)

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant.

  9. Immobilization of NaIO4-treated heparin on PEG-modified 316L SS surface for high anti-thrombin-III binding.

    Science.gov (United States)

    Chuang, Tzu-Wen; Lin, Dong-Tsamn; Lin, Feng-Huei

    2008-09-01

    Poor compatibility between blood and metallic coronary artery stents is one reason for arterial restenosis; however, the immobilization of anticoagulant agents on the surface of the stent is a feasible method of improving stent compatibility. Heparin, a well-known anticoagulant, has been frequently used to coat the surfaces of certain biomaterials to attain blood compatibility. The compound 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide has often been utilized for the immobilization of heparin, but the critical carboxyl groups of heparin (with regards to heparin's anticoagulant activity) will be reduced by this method. This study examined possible methods of heparin immobilization without consuming these carboxyl groups. The 316L stainless steel surface was first activated with hexamethylene diisocyanate and then coupled with bis-amine-terminated poly (ethylene glycol) (BA-PEG) so as to create active amine groups. Sodium periodate (NaIO(4); SP) was then used to oxidize heparin to form aldehyde groups. The treated heparin could then be grafted onto the activated surface of the test material without losing its carboxyl groups. Effective surface modification of the hexamethylene diisocyanate-activated and BA-PEG-grafted 316L SS surface was confirmed using Fourier Transform Infrared Spectroscopy, electron spectroscopy for chemical analysis and a water contact angle test. After the heparin was immobilized on the BA-PEG-grafted 316L SS surface by SP, the surface showed an improvement in antithrombrin III (AT III) binding ability, its anticoagulant property, and hemocompatibility in comparison with heparin grafted by 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide.

  10. The passive oxide films growth on 316L stainless steel in borate buffer solution measured by real-time spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haisong; Wang, Lu; Sun, Dongbai [National Center for Materials Service Safety (NCMS), University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongying, E-mail: hyyu@ustb.edu.cn [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-10-01

    Highlights: • The optical properties of passive oxide films on 316L stainless steel were studied. • The thickness of the oxide films (1.5–2.6 nm) increased linearly with the potentials. • The growth of passive film followed high electric field ion conduction model. • Selective solubility of oxide induced compositional change of passive film. - Abstract: Passive film growth on 316L stainless steel was investigated in borate buffer electrolyte (pH = 9.1) by real-time spectroscopic ellipsometry (SE) and the composition was estimated by X-ray photoelectron spectroscopy (XPS). Anodic passivation of 316L SS was carried out in the potential range from 0 V{sub SCE} to 0.9 V{sub SCE}, after potentiostatic polarization for 1800s, the current density decayed from 10{sup −2} A cm{sup −2} to 10{sup −6} A cm{sup −2}. The passive film thickness was simulated from Frenel and Drude reflection equations, the average complex refractive index was assumed to be N = 2.3 − j0.445. The estimated thickness increased linearly with potential from 1.5 nm at 0 V to 2.6 nm at 0.8 V. The growth of passive film followed high electric field ion conduction model. The passive film mainly contained the oxide/hydroxide of iron and chromium. The selective solubility of oxide in passive film explained the change of iron and chromium content at different potentials. Few nickel and molybdenum also contributed to the passive film with a constant content.

  11. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment

    Directory of Open Access Journals (Sweden)

    A. Ruiz

    2016-06-01

    Full Text Available This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure.

  12. Development and Characterization of 316 L Stainless Steel Coated by Melt-derived and Sol-gel derived 45S5 Bioglass for orthopedic applications

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Naghib

    2012-03-01

    Full Text Available The 316L austenitic stainless steel (SS was coated by 45S5 bioactive glass produced by melting and sol-gel techniques to increase the bioactivity and to provide a high mechanical strength for orthopedic and dental applications. The morphologies of coated specimens were investigated by scanning electron microscopy (SEM. Then, the coated specimens were immersed in simulated body fluid (SBF at 37°C for 14 days, and their microstructures after withdrawal were also investigated by SEM. All the specimens were analyzed by FTIR and XRD in order to survey the formation of hydroxyapatite layer.

  13. Laser surface texturing of 316L stainless steel in air and water: A method for increasing hydrophilicity via direct creation of microstructures

    Science.gov (United States)

    Razi, Sepehr; Madanipour, Khosro; Mollabashi, Mahmoud

    2016-06-01

    Laser processing of materials in water contact is sometimes employed for improving the machining, cutting or welding quality. Here, we demonstrate surface patterning of stainless steel grade 316L by nano-second laser processing in air and water. Suitable adjustments of laser parameters offer a variety of surface patterns on the treated targets. Furthermore alterations of different surface features such as surface chemistry and wettability are investigated in various processing circumstances. More than surface morphology, remarkable differences are observed in the surface oxygen content and wettability of the samples treated in air and water at the same laser processing conditions. Mechanisms of the changes are discussed extensively.

  14. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment.

    Science.gov (United States)

    Ruiz, A; Timke, T; van de Sande, A; Heftrich, T; Novotny, R; Austin, T

    2016-06-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure.

  15. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cárcel-Carrasco

    2016-04-01

    Full Text Available This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds is analyzed. Welded material from inert Ar gas chamber TIG showed better characteristics and lesser irradiation damage effects.

  16. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and 316L Stainless Steel with Two Sliver-Based Fillers

    Science.gov (United States)

    Shiue, Ren-Kae; Chen, Chia-Pin; Wu, Shyi-Kaan

    2015-06-01

    Dissimilar infrared brazing Ti50Ni50 and AISI 316L stainless steel using two silver-based fillers, Cusil-ABA and Ticusil, was evaluated. The shear strength of the Ticusil brazed joint is higher than that of the Cusil-ABA brazed one due to the formation of better fillet. The maximum shear strength of 237 MPa is obtained for the Ticusil joint brazed at 1223 K (950 °C) for 60 seconds. The presence of interfacial Ti-Fe-(Cu) layer is detrimental to the shear strength of all joints.

  17. Plasma nitriding of AISI 304L and AISI 316L stainless steels: effect of time in the formation of S phase and the chromium nitrides; Nitretacao a plasma dos acos inoxidaveis AISI 304L e AISI 316L: efeito do tempo na formacao da fase S e dos nitretos de cromo

    Energy Technology Data Exchange (ETDEWEB)

    Souza, D.A. de; Barbosa, G.C.; Pinto, F.A.M.; Gontijo, L.C. [Instituto Federal de Educacao, Ciencia e Tecnologia do Espirito Santo - IFES, Vitoria, ES (Brazil); Canal, G.P.; Cunha, A.G., E-mail: disouzam@yahoo.com.br [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Fisica

    2009-07-01

    Plasma nitriding can improve hardness and wear resistance of austenitic stainless steels without losses in corrosion resistance. This fact relies on a nitrided layer constituted only by S phase, without chromium nitrides precipitation. In this work, the effect of nitriding time on phases formed on nitrided layer was investigated in two austenitic stainless steels: AISI 304L e AISI 316L. The samples were nitrided at 420 deg C, using a mixture of 60 % N{sub 2} and 40% H{sub 2}, during 5, 7 and 9 hours. It was noted that chromium nitrides were formed on samples of AISI 304L, nitrided for 7 e 9 hours, while all nitrided samples of AISI 316L showed only formation of S phase. The nitrided layers were characterized using optical microscope and x-ray diffraction. (author)

  18. Improvement of stress corrosion cracking (SCC) resistance by cyclic pre-straining of 316L austenitic stainless steel in an aqueous boiling MgCl{sub 2} solution; Amelioration de la tenue a la corrosion sous contrainte (CSC) de l'acier inoxydable austenitique 316L en solution bouillante de MgCl{sub 2} par application d'une predeformation cyclique

    Energy Technology Data Exchange (ETDEWEB)

    Curiere, I. de; Bayle, B.; Magnin, Th. [Ecole Nationale Superieure des Mines, URA CNRS 1884, 42 - Saint-Etienne (France)

    2000-07-01

    Improving the materials resistance to stress corrosion cracking (SCC) has become a topic of wide interest for theoretical, engineering and financial reasons. The aim of this paper is to propose a process to delay the SCC damage. Recent studies of 316L austenitic stainless steel in boiling MgCl{sub 2} solutions show an improvement in SCC resistance by cyclic pre-straining in low cycle fatigue. This improvement consists of an increase in both strain to failure and crack initiation strain, during Slow Rate Tensile (SSRT) tests in aqueous solution. This paper analyses the effect of pre-fatigue in 316L on its mechanical and electrochemical responses to better understand the delay of SCC damage in boiling MgCl{sub 2}. The explanation for this beneficial effect is related to a modification of both surface electrochemical reactions kinetics and corrosion/plasticity interactions at the crack tip, due to the particular dislocation structure. (authors)

  19. Evaluación del coeficiente de fricción y las propiedades mecánicas de los recubrimientos 140MXC-530AS Y 140MXC-560AS sobre acero AISI-SAE 4340 utilizando la técnica de proyección térmica

    OpenAIRE

    Patiño Infante, Maritza

    2015-01-01

    En este trabajo se produjeron recubrimientos mediante la técnica de proyección térmica por arco, se depositaron tres materiales diferentes: acero de bajo carbono (530 AS), acero inoxidable (560 AS) y una aleación a base de FeCrNbW (140 MXC). Con el fin de mejorar la adhesión, mediante la misma técnica se aplicó al sustrato una aleación de NiAl (500 AS) cuya aplicación está recomendada para mejorar esta propiedad. Se caracterizaron las fases cristalinas del recubrimiento mediante difracción de...

  20. Effect of tensile stress on the formation of S-phase during low-temperature plasma carburizing of 316L foil

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei [School of Metallurgy and Materials, University of Birmingham, B15 2TT (United Kingdom); Li Xiaoying, E-mail: X.LI.1@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, B15 2TT (United Kingdom); Dong Hanshan [School of Metallurgy and Materials, University of Birmingham, B15 2TT (United Kingdom)

    2011-08-15

    Low-temperature plasma carburizing of austenitic stainless steel can produce a carbon-supersaturated austenite layer, the 'S-phase', on the surface, which has high hardness, excellent wear and fatigue properties, and good corrosion resistance. Although the S-phase was discovered some years ago, the basic understanding of S-phase formation remains incomplete. In this paper, the effect of tensile stresses (0-80 MPa) on the formation and stability of S-phase during carburizing of 316L stainless steel foils at 400, 425 and 450 deg. C for 10 h has been investigated for the first time. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy and the mechanical properties were evaluated by microhardness and tensile tests. The results showed that the in situ applied tensile stress effectively thickened S-phase layers. The calculated activation energy for carbon diffusion in 316L was reduced from 142.76 to 133.91 kJ mol{sup -1} when a tensile stress of 40 MPa was applied. However, chromium carbides were formed in the outmost surface when the tensile stress exceeded 40 MPa. The results are discussed and explained through appropriate thermodynamic calculations.

  1. Microstructure, Strength, and Fracture Topography Relations in AISI 316L Stainless Steel, as Seen through a Fractal Approach and the Hall-Petch Law

    Directory of Open Access Journals (Sweden)

    Oswaldo Antonio Hilders

    2015-01-01

    Full Text Available The influence of the fracture surface fractal dimension DF and the fractal dimension of grain microstructure DM on the strength of AISI 316L type austenitic stainless steel through the Hall-Petch relation has been studied. The change in complexity experimented by the net of grains, as measured by DM, is translated into the respective fracture surface irregularity through DF, in such a way that the higher the grain size (lower DM values the lower the fracture surface roughness (lower values of DF and the shallower the dimples on the fractured surfaces. The material was heat-treated at 904, 1010, 1095, and 1194°C, in order to develop equiaxed grain microstructures and then fractured by tension at room temperature. The fracture surfaces were analyzed with a scanning electron microscope, DF was determined using the slit-island method, and the values of DM were taken from the literature. The relation between grain size, DM, mechanical properties, and DF, developed for AISI 316L steel, could be generalized and therefore applied to most of the common micrograined metal alloys currently used in many key engineering areas.

  2. Nano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement

    Directory of Open Access Journals (Sweden)

    Mohammadreza Foruzanmehr

    2014-04-01

    Full Text Available   Objective(s: Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis.   Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were deposited on nano-scale electro-polished stainless steel 316L with 1 to 5 nano-sized layers. Surface morphology and structure of the film were studied with X-ray diffraction and atomic force microscopy. Blood compatibility was also determined by measuring the platelet activation (CD62P expression, platelet adhesion (Scanning Electron Microscopy, and the blood clotting time on these samples. Results: The films were compact and smooth and existed mainly in the form of anatase. By increasing the number of TiO2 thin layer, clotting time greatly extended, and the population of activated platelet and P-selectine expression changed according to the surface characteristics of each layer. Conclusion: The findings revealed that stainless steel 316L coated with nano-structured TiO2 layer improved blood compatibility, in terms of both blood platelet activity and coagulation cascade, which can decrease the thrombogenicity of blood contacting devices which were made from stainless steel.

  3. Immobilization of the direct thrombin inhibitor-bivalirudin on 316L stainless steel via polydopamine and the resulting effects on hemocompatibility in vitro.

    Science.gov (United States)

    Lu, Lei; Li, Quan-Li; Maitz, Manfred F; Chen, Jia-Long; Huang, Nan

    2012-09-01

    Bivalirudin (BV), a peptidic direct thrombin inhibitor, derived from hirudin, has gained increasing interest in clinical anticoagulant therapy in the recent years. In this work, a hemocompatible surface was prepared by immobilization of BV on 316L stainless steel (SS) using a bonding layer of polydopamine (DA). X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition of the surfaces to characterize polydopamine intermediate layer and the immobilized BV. The quantity of bound BV was measured by quartz crystal microbalance (QCM). The hemocompatibility in vitro was evaluated by coagulating time of activated partial thromboplastin time (aPTT) and prothrombin time (PT) assay, platelet adhesion and activation, fibrinogen adsorption, and activation and whole blood test. The effect of sterilizing method on the bioactivity of immobilized BV was also evaluated. The results showed that BVs were successfully immobilized on SS surface with the DA interlayer at a density of 98 ng/cm(2) . BV coating surface prolonged aPTT and PT, inhibited the activation of platelet and fibrinogen significantly. Sterilization by ultraviolet radiation was possible with only marginal loss of activity. Thus, the approach described here may provide a basis for the preparation of 316L SS surface modification for use in cardiovascular implants.

  4. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel.

    Science.gov (United States)

    Stio, Maria; Martinesi, Maria; Treves, Cristina; Borgioli, Francesca

    2016-12-01

    Samples of AISI 316L austenitic stainless steel were subjected either to grinding and polishing procedure, or to grinding and then low temperature glow-discharge nitriding treatment, or to grinding, nitriding and subsequently coating with collagen-I. Nitrided samples, even if only ground, show a higher corrosion resistance in PBS solution, in comparison with ground and polished AISI 316L. Biocompatibility was evaluated in vitro by incubating the samples with either peripheral blood mononuclear cells (PBMC) or human umbilical vein endothelial cells (HUVEC), tested separately or in co-culture. HUVEC-PBMC co-culture and co-incubation of HUVEC with PBMC culture medium, after the previous incubation of PBMC with metallic samples, allowed to determine whether the incubation of PBMC with the different samples might affect HUVEC behaviour. Many biological parameters were considered: cell proliferation, release of cytokines, matrix metalloproteinases (MMPs) and sICAM-1, gelatinolytic activity of MMPs, and ICAM-1 protein expression. Nitriding treatment, with or without collagen coating of the samples, is able to ameliorate some of the biological parameters taken into account. The obtained results point out that biocompatibility may be successfully tested in vitro, using cultures of normal human cells, as blood and endothelial cells, but more than one cell line should be used, separately or in co-culture, and different parameters should be determined, in particular those correlated with inflammatory phenomena.

  5. Effect of Oxygen Content Upon the Microstructural and Mechanical Properties of Type 316L Austenitic Stainless Steel Manufactured by Hot Isostatic Pressing

    Science.gov (United States)

    Cooper, Adam J.; Cooper, Norman I.; Dhers, Jean; Sherry, Andrew H.

    2016-09-01

    Although hot isostatic pressing (HIP) has been shown to demonstrate significant advances over more conventional manufacture routes, it is important to appreciate and quantify the detrimental effects of oxygen involvement during the HIP manufacture process on the microstructural and material properties of the resulting component. This paper quantifies the effects of oxygen content on the microstructure and Charpy impact properties of HIP'd austenitic stainless steel, through combination of detailed metallographic examination and mechanical testing on HIP'd Type 316L steel containing different concentrations (100 to 190 ppm) of oxygen. Micron-scale pores were visible in the microstructure of the HIP'd materials postmetallographic preparation, which result from the removal of nonmetallic oxide inclusions during metallographic preparation. The area fraction of the resulting pores is shown to correlate with the oxygen concentration which influences the Charpy impact toughness over the temperature range of 77 K to 573 K (-196 °C to 300 °C), and demonstrates the influence of oxygen involved during the HIP manufacture process on Charpy toughness. The same test procedures and microstructural analyses were performed on commercially available forged 316L. This showed comparatively fewer inclusions and exhibited higher Charpy impact toughness over the tested temperature range.

  6. Ion release and surface oxide composition of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys immersed in human serum albumin solutions.

    Science.gov (United States)

    Karimi, Shima; Alfantazi, Akram M

    2014-07-01

    The long-term weight loss, ion release, and surface composition of 316L, Co-28Cr-6Mo and Ti-6Al-4V alloys were investigated in a simulated body environment. The samples were immersed in phosphate-buffered saline (PBS) solutions with various human serum albumin (HSA) concentrations for 8, 14, and 22 weeks. The specimens initially lost weight up to 14 weeks and then slightly gained weight. The analysis of the released ions was performed by induced coupled plasma-optical emission spectrometer (ICP-OES). The results revealed that the precipitation of the dissolved Fe and Co could cause the weight gain of the 316L and Co-28Cr-6Mo alloys. The surface chemistry of the specimens was determined by X-ray photoelectron spectroscopy (XPS). The XPS analysis of Co-28Cr-6Mo alloy showed that the interaction of Mo with HSA is different from Mo with bovine serum albumin (BSA). This was also observed for Na adsorption into the oxide layer of Ti-6Al-4V alloy in the presence of HSA and BSA.

  7. Effective Duration of Gas Nitriding Process on AISI 316L for the Formation of a Desired Thickness of Surface Nitrided Layer

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassan R. S.

    2014-07-01

    Full Text Available High temperature gas nitriding performed on AISI 316L at the temperature of 1200°C. The microstructure of treated AISI 316L samples were observed to identify the formation of the microstructure of nitrided surface layer. The grain size of austenite tends to be enlarged when the nitriding time increases, but the austenite single phase structure is maintained even after the long-time solution nitriding. Using microhardness testing, the hardness values drop to the center of the samples. The increase in surface hardness is due to the high nitrogen concentration at or near the surface. At 245HV, the graph of the effective duration of nitriding process was plotted to achieve the maximum depth of nitrogen diffuse under the surface. Using Sigma Plot software best fit lines of the experimental result found and plotted to find out effective duration of nitriding equation as Y=1.9491(1-0.7947x, where Y is the thickness of nitrided layer below the surface and X is duration of nitriding process. Based on this equation, the duration of gas nitriding process can be estimated to produce desired thickness of nitrided layer.

  8. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells

    Science.gov (United States)

    Alishahi, M.; Mahboubi, F.; Mousavi Khoie, S. M.; Aparicio, M.; Hübner, R.; Soldera, F.; Gago, R.

    2016-08-01

    Insufficient corrosion resistance and surface conductivity are two main issues that plague large-scale application of stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). This study explores the use of nanocrystalline Ta/TaN multilayer coatings to improve the electrical and electrochemical performance of polished 316L SS bipolar plates. The multilayer coatings have been deposited by (reactive) magnetron sputtering and characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The electrochemical behavior of bare and coated substrates has been evaluated in simulated PEMFC working environments by potentiodynamic and potentiostatic polarization tests at ambient temperature and 80 °C. The results show that the Ta/TaN multilayer coating increases the polarization resistance of 316L SS by about 30 and 104 times at ambient and elevated temperatures, respectively. The interfacial contact resistance (ICR) shows a low value of 12 mΩ × cm2 before the potentiostatic test. This ICR is significantly lower than for the bare substrate and remains mostly unchanged after potentiostatic polarization for 14 h. In addition, the high contact angle (92°) with water for coated substrates indicates a hydrophobic character, which can improve the water management within the cell in PEMFC stacks.

  9. Structural and chemical analysis of silica-doped β-TCP ceramic coatings on surgical grade 316L SS for possible biomedical application

    Directory of Open Access Journals (Sweden)

    Karuppasamy Prem Ananth

    2015-09-01

    Full Text Available We have developed a novel approach to introduce silica-doped β-tricalcium phosphate (Si-β-TCP on 316L SS substrates for enhanced biological properties. Doping of β-TCP with silica loadings ranging from 0 to 8 mol% was carried out using chemical precipitation method. Si-β-TCP powder was sintered at 800 °C followed by coating it on 316L SS substrate using electrophoretic deposition. The coated and uncoated samples were investigated by various characterization techniques such as X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, field emission scanning electron microscopy (FESEM and X-ray fluorescence spectroscopy (XRF. Biomineralization ability of the coatings was evaluated by immersing in simulated body fluid (SBF solution for different number of days such as 7, 14, 21 and 28 days. The results obtained in our study have shown that the apatite formation ability was high for the 8 mol% of Si-β-TCP. This will promote better biomineralization ability compared to the other coatings.

  10. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    Energy Technology Data Exchange (ETDEWEB)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V., E-mail: veerajendran@gmail.com

    2013-10-15

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid.

  11. Mechanical properties of duple stainless steels laser joints; Propiedades mecanicas de las uniones por laser de aceros inoxidables duplex

    Energy Technology Data Exchange (ETDEWEB)

    Amigo, V.; Bonache, V.; Teruel, L.; Vicente, A.

    2005-07-01

    The welded joints of stainless steels always present problems for the microstructural modifications that occur in the heat affected zone. Particularly, duplex stainless steels present very important changes when the weld pool solidifies forming fundamentally ferritic structures with some austenite in grain boundaries. These microstructural modifications, and those which occur in the HAZ, justify the mechanical properties of the joint and mainly those of plasticity, being all of them influenced by the processing conditions. In this work the influence of the laser welding speed on the tensile behaviour od duplex stainless steel welded joints is presented. The microstructure of the obtained seams and of the heat affected zone will be evaluated by means of optic and scanning electron microscopy. Also, different microhardness profiles have been obtained to evaluate the modifications in the mechanical properties both in the seam and the zone of thermal affection. (Author) 23 refs.

  12. Pitting corrosion detection in stainless steels using ultrasounds; Deteccion de la corrosion por picadura en aceros inoxidables empleando ultrasonidos

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, C.; Biezma, M. V.

    2014-04-01

    Passive metallic systems are able to develop in a spontaneous way a protective layer on the metallic surface that offers excellent corrosion resistance since really in a physical barrier for the reaction with the environment. However, some factors can break locally this layer, promoting one of the most insidious attack, pitting corrosion, which produces local chemical conditions that favouring the corrosive process causing defects in the material, as externals and internals ones, with a random distribution on the metal surface. In this work, ultrasounds non destructive technique has been employed using as variable the maximum amplitude of the back wall echo in order to detect this type of attack. The material employed is an austenitic stainless steel AISI 304, wherein appear several defectology distributions as superficial such as depths simulating pits. (Author)

  13. Formación de maclas durante el enfriamiento en aceros inoxidables superferríticos envejecidos

    OpenAIRE

    Salán, M. N.; Anglada, M. J.

    2005-01-01

    Superferritic stainless steels show a BCC structure free of austenite at any temperature. Intermediate ageing temperatures, close to 475 °C, induce a-chromium content modulation and only after long periods of time, it is possible to detect chromium rich α' phase, which is responsible for embrittlement (475 °C embrittlement). In this work, ageing thermal treatments at intermediate temperatures in the superferritic stainless steel DIN 1.4575, have allowed to relate the associated hardness incre...

  14. Modificación de las propiedades superficiales de aceros inoxidables Dúplex mediante recubrimientos por láser

    Directory of Open Access Journals (Sweden)

    Amigo, V.

    2004-12-01

    Full Text Available Laser cladding is one of the most promissing techniques to restore damaged surfaces and achieve properties similar to those of the base metal. In this work, duplex stainless steels have been cladded by a nickel alloy under different processing conditions. The influence of the beam speed and defocusing variables has been evaluated in the microstructure both of the cladding and heat affected zone, HAZ. These results have been correlated to mechanical properties by means of microhardness measurements from cladding area to base metal through the interface. This technique has shown to be very appropriate to obtain controlled mechanical properties as they are determined by the solidification microstructure, originated by the transfer of mass and heat in the system.

    La posibilidad de restaurar superficies y, con ello, las propiedades de las mismas mediante el recubrimiento por láser de polvos constituye uno de los mayores intereses en las investigaciones actuales. En este trabajo se ha obtenido un recubrimiento de una aleación base níquel, mediante el tratamiento láser de polvos elementales para diferentes condiciones de procesado. Se ha evaluado la influencia de las variables de proceso, velocidad del láser y desenfoque del haz láser en la microestructura de los recubrimientos y con ello en las propiedades finales de los mismos, así como en la transición de estas a través de la interfase y la zona afectada por el calor, ZAC, evaluada mediante perfiles de microdureza. La obtención de recubrimientos a partir de polvos resulta muy adecuada, en este caso, al obtener unas propiedades mecánicas que están determinadas por la microestructura de solidificación, originada por la transferencia de masa y calor en el sistema.

  15. Duplex stainless steel surface bay laser cladding; Modificacion de las propiedades superficiales de aceros inoxidables Duplex mediante recubrimientos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Amigo, V.; Pineda, Y.; Segovia, F.; Vicente, A.

    2004-07-01

    Laser cladding is one of the most promising techniques to restore damaged surfaces and achieve properties similar to those of the base metal. In this work, duplex stainless steels have been cladded by a nickel alloy under different processing conditions. The influence of the beam speed and defocusing variables ha been evaluated in the microstructure both of the cladding and heat affected zone, HAZ. These results have been correlated to mechanical properties by means of microhardness measurements from cladding area to base metal through the interface. This technique has shown to be very appropriate to obtain controlled mechanical properties as they are determined by the solidification microstructure, originated by the transfer of mass and heat in the system. (Author) 21 refs.

  16. Evaluation of the Effect of Dynamic Sodium on the Low Cycle Fatigue Properties of 316L(N) Stainless Steel Base and Weld Joints

    Science.gov (United States)

    Ganesan, V.; Kannan, R.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Rao, K. Bhanu Sankara

    2012-06-01

    Low cycle fatigue (LCF) tests on 316L(N) austenitic stainless steel base and weld joints were at 823 K and 873 K at a constant strain rate of 3 × 10 -3 s -1 with strain ranges varying from {±}0.4% to {±}1.0% in a servo-hydraulic fatigue test system under flowing sodium environment. The cyclic stress response exhibited a similar trend as that in air comprising of an initial rapid hardening, followed by a slight softening stage before saturation. The fatigue lives are significantly improved in sodium environment when compared to identical testing conditions in air environment. The lack of oxidation in sodium environment is attributed to the delayed crack initiation, reduced crack propagation rate and consequent increase in fatigue life. Comparison of the data evaluated in sodium with RCC-MR design code, derived on the basis of data obtained from air shows that the design based on air tests is conservative.

  17. Radiation-induced segregation and corrosion behavior on Σ3 coincidence site lattice and random grain boundaries in proton-irradiated type-316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, N., E-mail: sakaguchi@eng.hokudai.ac.jp [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido (Japan); Endo, M.; Watanabe, S. [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido (Japan); Kinoshita, H. [Fukushima National College of Technology, Iwaki 970-8034, Fukushima (Japan); Yamashita, S. [Fuels and Materials Department, O-arai Research and Development Center, Japan Atomic Energy Agency, Ibaraki 311-1393 (Japan); Kokawa, H. [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2013-03-15

    The behavior of radiation-induced segregation (RIS) and intergranular corrosion at random grain boundaries and Σ3 coincidence site lattice (CSL) boundaries in proton-irradiated 316L stainless steel was examined. The frequency of the CSL boundaries was enhanced up to 86.6% by grain boundary engineering treatment prior to irradiation. Significant nickel enrichment and chromium depletion were induced at the random grain boundary owing to the RIS. At faceted Σ3 CSL boundaries, chromium depletion occurred at the asymmetrical boundary facet plane whereas no RIS was observed at the coherent twin boundary. After the electrochemical etching test, an intergranular corrosion groove was found along the random grain boundaries because of the low chromium concentration (∼12%) at the boundaries. At the faceted Σ3 CSL boundaries, the discontinuous groove along the asymmetric facet plane was completely disrupted by the non-corrosive coherent twin boundary.

  18. Effect of the applied potential of the near surface microstructure of a 316L steel submitted to tribocorrosion in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Favero, M [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Stadelmann, P [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Mischler, S [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)

    2006-08-07

    The tribocorrosion behaviour of a 316L austenitic stainless steel sliding against alumina was investigated under electrochemical control in sulfuric acid using a tribometer with a ball on flat configuration. Tests were conducted by applying either a passive potential (metal covered by an oxide film) or a cathodic potential (no passive film, negligible corrosion) to the steel. Friction, wear and anodic current were monitored. The near surface microstructure of wear tracks was analysed by transmission electron microscopy (TEM). Significantly higher wear was observed at the passive potential compared with the cathodic potential. Chemical reactions could not account for this difference in deterioration. TEM analysis revealed that the plastic behaviour of the metal, and thus its response to wear, depends on the prevailing electrochemical conditions, the passive potential showing larger deformation than the cathodic. This effect was attributed to the presence of the passive film that induces residual stresses and interferes with dislocation activity.

  19. Effects of passive films on corrosion resistance of uncoated SS316L bipolar plates for proton exchange membrane fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying, E-mail: yingyang@nwu.edu.cn [Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Institute of Analytical Science, Northwest University, Xi’an, Shaanxi 710069 (China); International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Ning, Xiaohui; Tang, Hongsheng [Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Institute of Analytical Science, Northwest University, Xi’an, Shaanxi 710069 (China); Guo, Liejin [International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Liu, Hongtan [Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33124 (United States)

    2014-11-30

    Highlights: • The passive film formed at PEMFC anode side shows a single layer structure. • The passive film formed at PEMFC cathode side shows a bi-layer structure. • The Cr/Fe atomic ratios in passive films formed at different side are different. • The passive films behave as n-type semiconductor at both anode and cathode sides. • The anode/cathode potential is positive than the flatband potential of passive film. - Abstract: The effects of passive films on the corrosion behaviors of uncoated SS316L in anode and cathode environments of proton exchange membrane fuel cells (PEMFCs) are studied. Potentiodynamic and potentiostatic polarizations are employed to study the corrosion behavior; Mott-Schottky measurements are used to characterize the semiconductor properties of passive films; X-ray photoelectron spectroscopy (XPS) analyses are used to identify the compositions and the depth profiles of passive films. The passive films formed in the PEMFC anode and cathode environments under corresponding conditions both behave as n-type semiconductor. The passive film formed in the anode environment has a single-layer structure, Cr is the major element (Cr/Fe atomic ratio > 1), and the Cr/Fe atomic ratio decreases from the surface to the bulk; while the passive film formed in the PEMFC cathode environment has a bi-layer structure, Fe is the major element (Cr/Fe atomic ratio < 0.5), and in the external layer of the bi-layer structure Fe content increases rapidly and gradually in the internal layer. SS316L shows better corrosion resistance owing to both the high content of Cr oxide in the passive film and low band bending in normal PEMFC anode environments.

  20. Influences of Restaurant Waste Fats and Oils (RWFO from Grease Trap as Binder on Rheological and Solvent Extraction Behavior in SS316L Metal Injection Molding

    Directory of Open Access Journals (Sweden)

    Mohd Halim Irwan Ibrahim

    2016-02-01

    Full Text Available This article deals with rheological and solvent extraction behavior of stainless steel 316L feedstocks using Restaurant Waste Fats and Oils (RWFO from grease traps as binder components along with Polypropylene (PP copolymer as a backbone binder. Optimal binder formulation and effect of solvent extraction variables on green compacts are being analyzed. Four binder formulations based on volumetric ratio/weight fraction between PP and RWFO being mixed with 60% volumetric powder loading of SS316L powder each as feedstock. The rheological analysis are based on viscosity, shear rate, temperature, activation energy, flow behavior index, and moldability index. The optimal feedstock formulation will be injected to form green compact to undergo the solvent extraction process. Solvent extraction variables are based on solvent temperature which are 40 °C, 50 °C, and 60 °C with different organic solvents of n-hexane and n-heptane. Analysis of the weight loss percentage and diffusion coefficient is done on the green compact during the solvent extraction process. Differential Scanning Calorimeter (DSC is used to confirm the extraction of the RWFO in green compacts. It is found that all binder fractions exhibit pseudoplastic behavior or shear thinning where the viscosity decreases with increasing shear rate. After considering the factors that affect the rheological characteristic of the binder formulation, feedstock with binder formulation of 20/20 volumetric ratio between PP and RWFO rise as the optimal binder. It is found that the n-hexane solvent requires less time for extracting the RWFO at the temperature of 60 °C as proved by its diffusion coefficient.

  1. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    Science.gov (United States)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  2. Metallography and fractography in nuclear materials research. Repair welding of irradiated ASI316L and damage tolerance in reactor vessel material A508c13; Metallografie en fractografie in nucleair materiaalonderzoek. Reparatielassen van bestraald ASI316L en schadetolerantie in reactorvatmeratiaal A508cl3

    Energy Technology Data Exchange (ETDEWEB)

    Schuring, E.W. [ECN Technologische Services and Consultancy, Petten (Netherlands)

    2001-06-01

    For a safe operation of nuclear power plants and new reactors, physical radiation effects on materials for reactor vessels must be studied, while neutron radiation causes displacement damage in the metal lattice (radiation hardening). Neutron reactions with alloy element produce other isotopes with different properties. Metallographical and fractographical properties of metals (AISI316L, A508c13) for nuclear applications are described. [Dutch] Voor het veilig bedrijven van kerncentrales en nieuw te ontwikkelen reactoren, is onderzoek naar stralingseffecten op materialen van essentieel belang. De neutronenstraling veroorzaakt verplaatsingsschade in het metaalrooster. Dat leidt tot stralingsharding. Neutronenreacties met legeringselementen leveren andere isotopen op waardoor de materiaaleigenschappen veranderen. Door transmutaties ten gevolge van neutronenreacties met boor kan helium ontstaan tijdens bedrijf. Stralingsverbrossing, en met name de aanwezigheid van helium, is een belangrijk aspect bij het herlassen van AISI316L. Bij herlassen kan helium onder invloed van de warmte-inbreng en lasspanningen naar korrelgrenzen diffunderen, waar heliumgasbellen ontstaan, welke een verbrossende werking op het materiaal hebben. Onderzoek van laser- en TIG-lassen moet uitwijzen of defecten in bestraald materiaal toelaatbaar zijn. Laserlassen blijken defectvrij te zijn tot 35 appm He. Echter, afhankelijk van de warmte-inbreng en de stralingsschade treedt een verlaging van de taaiheid op. Met TIG-lassen blijkt het moeilijker defectvrije verbindingen te maken in bestraald AISI316L. Voor onderzoek naar toelaatbare defecten in reactorvatmateriaal, zijn kunstmatige defecten aangebracht in thermisch verouderd materiaal en is de optredende belasting tijdens een noodstop gesimuleerd. Met de thermische veroudering is stralingschade gesimuleerd. Fractografisch en metallografisch onderzoek aan scheuruitbreiding in reactorvat materiaal, A508cl3, wijst uit dat het materiaal mogelijk

  3. RESEARCH AND DEVELOPMENT OF SURFACE MODIFICATION OF MEDICAL 316 L STAINLESS STEEL%医用316 L不锈钢表面改性研究及发展

    Institute of Scientific and Technical Information of China (English)

    徐林; 巴德纯; 王庆; 姜媛媛

    2014-01-01

    316L不锈钢因其优良的性能和低廉的价格广泛应用于临床及医疗领域。通过分析医用316L不锈钢目前存在的主要问题及发展状况,对医用316L不锈钢近年来表面改性的新方法和新成果进行了较为详细的介绍,表明表面改性技术是解决临床应用问题的良好途径,为医用316L不锈钢的医学应用提供了新的发展机遇。%316L stainless steel is widely used in clinical and medical fields owing to its excellent properties and low price. The major existing problems and research progresses of medical 316L stainless steel are analyzed. The new methods and research achievement of surface modification for medical 316L stainless steel in recent years are described in detail. It indicates that surface modification is an effective way to solve clinical application problems. The new opportunities for medi-cal 316L stainless steel in medical applications are provided.

  4. The effect of CO{sub 2} laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Köse, Ceyhun, E-mail: ceyhun.kose@gop.edu.tr [Faculty of Natural Sciences and Engineering, Department of Mechanical Engineering, Gaziosmanpaşa University, Tokat (Turkey); Kaçar, Ramazan, E-mail: rkacar@karabuk.edu.tr [Faculty of Technology Department of Manufacturing Engineering, Karabuk University, Karabuk 78050 (Turkey); Zorba, Aslı Pınar, E-mail: aslipinarzorba@gmail.com [Graduate School of Natural and Applied Sciences, Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Bağırova, Melahat, E-mail: mbagir@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Allahverdiyev, Adil M., E-mail: adil@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey)

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO{sub 2} laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and

  5. DEFORMACIÓN ELÁSTICA RESIDUAL EN LÁMINAS DE ACERO AISI 304 RECUBIERTAS CON UNA PELÍCULA DE NITRURO DE TITANIO DEPOSITADA POR PVD-MAGNETRON SPUTTERING

    OpenAIRE

    COLORADO, H. A.; SALVA, H. R.; GHILARDUCCI, A. A.

    2009-01-01

    se realizó una caracterización mediante difracción de rayos x (DRX) en láminas de acero inoxidable AISI 304 recubierto con una capa de nitruro de titanio de 3 mm de espesor, obtenida mediante deposición física de vapor (PVD-magnetron sputtering) a una temperatura de 200 ˚C. se tomaron imágenes de microscopía electrónica de barrido (MEB), microscopía óptica (MO) y microscopía de fuerza atómica (MFA) para caracterizar el sustrato, la capa y la zona cercana a la intercara. adicionalmente se dete...

  6. DEFORMACIÓN ELÁSTICA RESIDUAL EN LÁMINAS DE ACERO AISI 304 RECUBIERTAS CON UNA PELÍCULA DE NITRURO DE TITANIO DEPOSITADA POR PVD-MAGNETRON SPUTTERING

    Directory of Open Access Journals (Sweden)

    H. A. COLORADO

    2009-01-01

    Full Text Available Se realizó una caracterización mediante difracción de rayos x (DRX en láminas de acero inoxidable AISI 304 recubierto con una capa de nitruro de titanio de 3 um de espesor, obtenida mediante deposición física de vapor (PVD-MAGNETRON SPUTTERING a una temperatura de 200 °C. se tomaron imágenes de microscopía electrónica de barrido (MEB, microscopía óptica (MO y microscopía de fuerza atómica (MFA para caracterizar el sustrato, la capa y la zona cercana a la intercara. adicionalmente se determinó la deformación elástica residual asociada con el ensanchamiento de los picos de DRX.

  7. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    Science.gov (United States)

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded

  8. Mechanical properties and microstructural investigations of TIG welded 40 mm and 60 mm thick SS 316L samples for fusion reactor vacuum vessel applications

    Energy Technology Data Exchange (ETDEWEB)

    Buddu, Ramesh Kumar, E-mail: brkumar75@gmail.com; Chauhan, N.; Raole, P.M.

    2014-12-15

    Highlights: • Austenitic stainless steels (316L) of 40 mm and 60 mm thickness plates were joined by Tungsten Inert Gas welding (TIG) process which are probable materials for advanced fusion reactor vacuum vessel requirements. • Mechanical properties and detailed microstructure studies have been carried out for welded samples. • Fractography analysis of impact test specimens indicated ductile fracture mode in BM, HAZ and WZ samples. • Presence of delta ferrite phase was observed in the welded zone and ferrite number data was measured for the base and weld metal and was found high in welds. - Abstract: The development of advanced fusion reactors like DEMO will have various challenges in materials and fabrication. The vacuum vessel is important part of the fusion reactor. The double walled design for vacuum vessel with thicker stainless steel material (40–60 mm) has been proposed in the advanced fusion reactors like ITER. Different welding techniques will have to be used for such vacuum vessel development. The required mechanical, structural and other properties of stainless steels have to be maintained in these joining processes of components of various shapes and sizes in the form of plates, ribs, shells, etc. The present paper reports characterization of welding joints of SS316L plates with higher thicknesses like 40 mm and 60 mm, prepared using multi-pass Tungsten Inert Gas (TIG) welding process. The weld quality has been evaluated with non-destructive tests by X-ray radiography and ultrasonic methods. The mechanical properties like tensile, bend tests, Vickers hardness and impact fracture tests have been carried out for the weld samples. Tensile property test results indicate sound weld joints with efficiencies over 100%. Hardening was observed in the weld zone in non-uniform manner. Macro and microstructure studies have been carried out for Base Metal (BM), Heat Affected Zone (HAZ) and Weld Zone (WZ). Scanning Electron Microscopy (SEM) analysis carried

  9. Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication

    Science.gov (United States)

    Wang, Xinlin; Deng, Dewei; Qi, Meng; Zhang, Hongchao

    2016-06-01

    Direct laser fabrication (DLF) developed from laser cladding and rapid prototyping technique has been widely used to fabricate thin-walled parts exhibiting more functions without expending weight and size. Oblique thin-walled parts accompanied with inhomogeneous mechanical properties are common in application. In the present study, a series of AISI316L stainless steel oblique thin-walled parts are successfully produced by DLF, in addition, deposition strategies, microstructure, and mechanical property of the oblique thin-walled parts are investigated. The results show that parallel deposition way is more valuable to fabricate oblique thin-walled part than oblique deposition way, because of the more remarkable properties. The hardness of high side initially increases until the distance to the substrate reaches about 25 mm, and then decreases with the increase of the deposition height. Oblique angle has a positive effect on the tensile property but a negative effect on microstructure, hardness and elongation due to the more tempering time. The maximum average ultimate tensile strength (UTS) and elongation are presented 744.3 MPa and 13.5% when the angle between tensile loading direction and horizontal direction is 45° and 90°, respectively.

  10. Mechanisms of hardening, wear and corrosion improvement of 316 L stainless steel by low energy high current pulsed electron beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zou, J.X. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, UMR-CNRS 7078), Universite Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz (France); Shanghai Engineering Research Center of Mg Materials and Applications and School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of Materials Modification by Laser, Electron and Ion beams, Dalian University of Technology, Dalian 116024 (China); Zhang, K.M. [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Hao, S.Z.; Dong, C. [Key Laboratory of Materials Modification by Laser, Electron and Ion beams, Dalian University of Technology, Dalian 116024 (China); Grosdidier, T., E-mail: thierry.grosdidier@univ-metz.f [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, UMR-CNRS 7078), Universite Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz (France); Key Laboratory of Materials Modification by Laser, Electron and Ion beams, Dalian University of Technology, Dalian 116024 (China)

    2010-12-01

    The mechanisms of corrosion and wear improvements by low energy high current pulsed electron beam (LEHCPEB) have been investigated for an AISI 316 L steel. Selective purification followed by epitaxial growth occurred in the top surface melted layer (2-3 {mu}m thick) that was softened by tensile stresses and, to a much lower extent, by lower efficiency of MnS precipitation hardening. Electrochemical impedance spectroscopy and potentiodynamic polarization analyses used to model the corrosion behavior revealed that, while craters initiated at MnS inclusions initially served as pitting sites, the resistance was increased by 3 orders of magnitude after sufficient number of pulses by the formation of a homogeneous covering layer. The wear resistance was effectively improved by sub-surface (over 100 {mu}m) work hardening associated with the combine effect of the quasi-static thermal stress and the thermal stress waves. The overall results demonstrate the potential of the LEHCPEB technique for improving concomitantly the corrosion and wear performances of metallic materials.

  11. Effect of prior cold work on the degree of sensitisation of welded joints of AISI 316L austenitic stainless steel studied by using an electrochemical minicell

    Energy Technology Data Exchange (ETDEWEB)

    De Tiedra, Pilar [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain); Martin, Oscar, E-mail: oml@eis.uva.es [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain); Garcia, Cristina; Martin, Fernando; Lopez, Manuel [Ciencia de los Materiales e Ingenieria Metalurgica, Departamento CMeIM/EGI/ICGF/IM/IPF, Universidad de Valladolid, Escuela de Ingenierias Industriales, Paseo del Cauce 59, Valladolid 47011 (Spain)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Double loop shows greater sensitivity to interdendritic corrosion than single loop. Black-Right-Pointing-Pointer Fusion line sensitisation is lower than that of weld metal for all prior cold works. Black-Right-Pointing-Pointer Heat affected zone sensitisation is maximum at a prior cold work of 10%. Black-Right-Pointing-Pointer Heat affected zone sensitisation Much-Less-Than base material sensitisation for a prior cold work of 20%. - Abstract: This work aims to assess the effect of prior cold work on the degree of sensitisation of each of the four welding zones of welded joints of AISI 316L subjected to post-welding sensitisation. Electrochemical potentiokinetic reactivation and double loop electrochemical potentiokinetic reactivation tests are performed on each of the four zones by using a small-scale electrochemical cell (minicell). The results show that the degree of sensitisation of heat affected zone, which achieves its maximum at a prior cold work level of 10%, is significantly lower than that of base material for a prior cold work of 20%.

  12. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel

    Science.gov (United States)

    Kianersi, Danial; Mostafaei, Amir; Mohammadi, Javad

    2014-09-01

    This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.

  13. Characterization of Stainless Steel 316L Feedstock for Metal Injection Molding (MIM) Using Waste Polystyrene and Palm Kernel Oil Binder System

    Science.gov (United States)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.

    2016-11-01

    This paper presents the homogeneity characterisation of MIM feedstock consisting Stainless steel alloy (316 L) powder mix with binder 60wt% of waste polystyrene and 40wt% palm kernel oil. It is one of a critical step that must be conducted in MIM process in order to have a feedstock that is homogeneous and moldable. Water atomised Stainless Steel powder was mixed with the newly developed binder system in a Brabender Plastograph EC rotary mixer. Several tests were performed to assess the homogeneity of the feedstock that was produced at 60 vol % powder loading . The 60 vol.% was chosen because the Critical Powder Volume Concentration (CPVC) of the Powder was found to be 64.8 vol.%. The tests conducted were feedstock density, binder burn-out, rheology and SEM morphology observation. Rheological results exhibited pseudoplastic or shear thinning flow behavior, where its viscosity decreased with increasing shear rate. The feedstock viscosity also decreased with increasing temperature and was found to be suitable for molding. From all the tests conducted, it was found that the feedstock shows good homogeneity and suitable for subsequent processes in MIM.

  14. Effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel in the presence of Desulfovibrio sp.

    Science.gov (United States)

    Unsal, Tuba; Ilhan-Sungur, Esra; Arkan, Simge; Cansever, Nurhan

    2016-08-01

    The utilization of Ag and Cu ions to prevent both microbial corrosion and biofilm formation has recently increased. The emphasis of this study lies on the effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel (SS) induced by Desulfovibrio sp. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to analyze the corrosion behavior. The biofilm formation, corrosion products and Ag and Cu ions on the surfaces were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and elemental mapping. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and culture interfaces. EIS results indicated that the metabolic activity of Desulfovibrio sp. accelerated the corrosion rate of SS in both conditions with and without ions. However, due to the retardation in the growth of Desulfovibrio sp. in the presence of Ag and Cu ions, significant decrease in corrosion rate was observed in the culture with the ions. In addition, SEM and EIS analyses revealed that the presence of the ions leads to the formation on the SS of a biofilm with different structure and morphology. Elemental analysis with EDS detected mainly sulfide- and phosphorous-based corrosion products on the surfaces.

  15. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Science.gov (United States)

    Chen, Junjie; Lu, Zhanpeng; Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen; Zhou, Bangxin; Shoji, Tetsuo

    2016-04-01

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T-L and L-T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T-L orientation with a higher crack growth rate than that in the specimen L-T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L-T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant.

  16. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.

    Science.gov (United States)

    García, Sergio; Trueba, Alfredo; Vega, Luis M; Madariaga, Ernesto

    2016-11-01

    The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.

  17. Influence of LBE long term exposure and simultaneous fast neutron irradiation on the mechanical properties of T91 and 316L

    Science.gov (United States)

    Stergar, E.; Eremin, S. G.; Gavrilov, S.; Lambrecht, M.; Makarov, O.; Iakovlev, V.

    2016-05-01

    The LEXUR-II-LBE irradiation campaign was conducted from 2011 to 2012 and was aimed to investigate the combined influence of irradiation and LBE environment. In this irradiation campaign tensile test samples, pressurized tubes and corrosion samples were irradiated in LBE filled capsules. To separate the effect of exposure to LBE and neutron irradiation a parallel furnace experiment where the samples were exposed to LBE at the irradiation temperature for the corresponding time was conducted. Here we report results of the first extracted capsule which was irradiated about 6 months and dismantled after a cooling phase to decrease activity. The results of SSRT tests for irradiated T91 show that the exposure to LBE at 350 °C for a long time leads to the appearance of liquid metal embrittlement without any pre-treatment which is usually necessary to promote LME. Irradiation increases the effect of LME on the ductility of T91. In contrast to the findings for T91 the gained results also show that tensile tests on irradiated austenitic stainless steel 316L show no influence of LBE environment on the tensile properties.

  18. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L Substrates

    Directory of Open Access Journals (Sweden)

    Namir S. Raddaha

    2014-03-01

    Full Text Available This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN and chitosan/h-BN/titania (TiO2 composites on SS316L substrates using electrophoretic deposition (EPD for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  19. Drug-eluting coating of ginsenoside Rg1 and Re incorporated poly(lactic-co-glycolic acid) on stainless steel 316L: Physicochemical and drug release analyses.

    Science.gov (United States)

    Miswan, Zulaika; Lukman, Siti Khadijah; Abd Majid, Fadzilah Adibah; Loke, Mun Fai; Saidin, Syafiqah; Hermawan, Hendra

    2016-12-30

    Active ingredients of ginsenoside, Rg1 and Re, are able to inhibit the proliferation of vascular smooth muscle cells and promote the growth of vascular endothelial cells. These capabilities are of interest for developing a novel drug-eluting stent to potentially solve the current problem of late-stent thrombosis and poor endotheliazation. Therefore, this study was aimed to incorporate ginsenoside into degradable coating of poly(lactic-co-glycolic acid) (PLGA). Drug mixture composed of ginseng extract and 10% to 50% of PLGA (xPLGA/g) was coated on electropolished stainless steel 316L substrate by using a dip coating technique. The coating was characterized principally by using attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscopy and contact angle analysis, while the drug release profile of ginsenosides Rg1 and Re was determined by using mass spectrometry at a one month immersion period. Full and homogenous coating coverage with acceptable wettability was found on the 30PLGA/g specimen. All specimens underwent initial burst release dependent on their composition. The 30PLGA/g and 50PLGA/g specimens demonstrated a controlled drug release profile having a combination of diffusion- and swelling-controlled mechanisms of PLGA. The study suggests that the 30PLGA/g coated specimen expresses an optimum composition which is seen as practicable for developing a controlled release drug-eluting stent.

  20. Coating process and early stage adhesion evaluation of poly(2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications.

    Science.gov (United States)

    Indolfi, Laura; Causa, Filippo; Netti, Paolo Antonio

    2009-07-01

    In this study, a spray-coating method has been set up with the aim to control the coating of poly(2-hydroxy-ethyl-methacrylate) (pHEMA), an hydrophilic polymeric hydrogel, onto the complex surface of a 316L steel stent for percutaneous coronary intervention (PCI). By varying process parameters, tuneable thicknesses, from 5 to 20 microm, have been obtained with uniform and homogeneous surface without crack or bridges. Surface characteristics of pHEMA coating onto metal surface have been investigated through FTIR-ATR, contact angle measurement, SEM, EDS and AFM. Moreover, results from Single-Lap-Joint and Pull-Off adhesion tests as well as calorimetric analysis of glass transition temperature suggested that pHEMA deposition is firmly adhered on metallic surface. The pHEMA coating evaluation of roughness, wettability together with its morphological and chemical stability after three cycles of expansion-crimping along with preliminary results after 6 months demonstrates the suitability of the coating for surgical implantation of stent.

  1. Effect of Ringer's Solution on Wear and Friction of Stainless Steel 316L after Plasma Electrolytic Nitrocarburising at Low Voltages

    Institute of Scientific and Technical Information of China (English)

    N. Afsar Kazerooni; M.E. Bahrololoom; M.H. Shariat; F.Mahzoon; T. Jozaghi

    2011-01-01

    A plasma electrolytic nitrocarburising (PEN/C) process was performed on stainless steel 316L to improve the surface properties for using as medical implants. A bath was optimised to reduce the required voltage to 150 volts. Aqueous urea-based solutions with 10% NH4Cl were prepared with slightly different amounts of Na2CO3 to optimise the electrolyte composition. The surface and the cross-section morphologies were studied by scanning electron microscopy. The microstructure and the chemical composition of samples were investigated by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) techniques. The microstructure of the outer layer of the coatings was found to be a complex oxide containing Cr and Fe. The wear properties of the samples were examined by using a pin on disk wear test with Ringer's solution and were compared with their wear properties in the ambient atmosphere. The Ringe(s solution acted as a lubricant, reducing friction coefficient. Hardness and roughness were also studied. The bath with the composition of 10% NH4CI and 3% Na2CO3 exhibited the best tribological properties. The results showed that the tribological properties of treated samples were improved and the wear mechanism was abrasion of the pin.

  2. Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties

    Science.gov (United States)

    Prem Ananth, K.; Nathanael, A. Joseph; Jose, Sujin P.; Oh, Tae Hwan; Mangalaraj, D.; Ballamurugan, A. M.

    2015-10-01

    Hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) bioactive materials have been used as individual coatings on steel implants employed in the fields of orthopedics and dentistry due to their excellent properties, which foster effective healing of the repair site. However, slow dissolution of HAp and fairly little fast dissolution of β-TCP present a major obstacle for such applications and this leads to the focus on the investigation of a mixture of HAp and β-TCP composite that forms biphasic calcium phosphate (BCP). The BCP coatings were achieved by thickness controlled electrophoretic deposition on piranha treated 316L SS. This method is well controlled and the anticipated dissolution rate could be attained with faster formation of new bone at the implant site, when compared to the individual HAp or β-TCP coating. The structural, functional, morphological and elemental composition of the coatings were characterized by using various analytical techniques. The BCP coating has been shown to have a role in obstructing the corrosion to a greater extent when in contact with SBF solution. The BCP coating also shows excellent in vitro and mechanical properties and osteoblasts cellular tests revealed that the coating was more effective in improving biocompatibility. This makes it an ideal candidate material for hard tissue replacement.

  3. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    Science.gov (United States)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  4. Study of carbonitriding thermochemical treatment by plasma screen in active with pressures main austenitic stainless steels AISI 409 and AISI 316L; Estudo do tratamento termoquimico de carbonitretacao por plasma em tela ativa com pressoes variaveis nos acos inoxidaveis austenitico AISI 316L e ferririco AISI 409

    Energy Technology Data Exchange (ETDEWEB)

    Melo, M.S.; Oliveira, A.M.; Leal, V.S.; Sousa, R.R.M. de; Alves Junior, C. [Centro Federal de Educacao Tecnologica do Maranhao (CEFET/MA), Sao Luis, MA (Brazil); Centro Federal de Educacao Tecnologica do Piaui (CEFET/PI), Teresina, PI (Brazil); Universidade Federal do Rio Grande do Norte (DF/UFRN), Natal, RN (Brazil). Dept. de Fisica. Labplasma

    2010-07-01

    The technique called Active Screen Plasma Nitriding (ASPN) is being used as an alternative once it offers several advantages with respect to conventional DC plasma. In this method, the plasma does not form directly in the sample's surface but on a screen, in such a way that undesired effects such as the edge effect is minimized. Stainless steels present not very satisfactory wearing characteristics. However, plasma carbonitriding has been used as to improve its resistance to wearing due to the formation of a fine surface layer with good properties. In this work, samples of stainless steel AISI 316L and AISI 409 were treated at pressures of 2.5 and 5 mbar. After the treatments they were characterized by microhardness, microscopy and Xray diffraction. Microscopy and hardness analysis showed satisfactory layers and toughness in those steels. (author)

  5. Inorganic inhibitor study in the steel corrosion in the mixture of LiBr+Etilenglicol+H{sub 2}O; Estudio de inhibidores inorganicos en la corrosion de aceros en la mezcla de LiBr+Etilenglicol+H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento Bustos, Estela

    2008-07-15

    develop this work. Fourth chapter is the results presentation and discussion divided in four sections: each one for material electrochemically tested in the LiBr+ etilene glycol+ H{sub 2}O solution. Also presents the results obtained for the extended study made to carbon steel under different temperature and electrochemical test conditions. This includes the EIS and electrochemical noise Hurst results analysis and simulations. Finally, the fifth chapter presents the conclusions and recommendations of this work. An appendix with the solution preparation is included. [Spanish] En esta tesis doctoral se presentan los resultados obtenidos de cinetica electroquimica de la corrosion de 4 aceros: acero al carbon, 304, 316 y 316L, en una solucion de LiBr+ etilenglicol+H{sub 2}O. Estos sistemas son utilizados en bombas de calor por absorcion para la recuperacion de calor de desecho a la salida de procesos industriales. Sin embargo, la solucion absorbente es altamente corrosiva en este tipo de equipos. Por lo anterior se evaluaron tres diferentes inhibidores inorganicos: nitrato de litio, molibdato de litio y cromato de litio los cuales son fuertes oxidantes y promueven la formacion de la capa pasiva de los aceros y se aplicaron a diferentes temperaturas: 25, 50 y 80 grados dentigrados. A traves de tecnicas electroquimicas como curvas de polarizacion, ruido electroquimico, impedancia electroquimica, resistencia a la polarizacion lineal y mediciones de potencial de corrosion a circuito abierto en el tiempo. Se determino el compuesto inhibidor mas adecuado obteniendo su eficiencia bajo las diferentes condiciones, de los tres inhibidores considerados el que presento el mejor comportamiento y eficiencia para el acero al carbon fue el nitrato de litio a 50 ppm; para el 304 el cromato de litio a 5 ppm; para el acero 316 molibdato de litio a 5 ppm y para el 316L el cromato de litio a 5 ppm. Debido a que el acero al carbon es el material mas economico y presento una mejor respuesta por

  6. Electro-chemical Corrosion Property of Nuclear-grade 316L Stainless Steel in Zn-containing Water Environment%加Zn水环境中核级316L不锈钢的电化学腐蚀性能分析

    Institute of Scientific and Technical Information of China (English)

    朱宪龙

    2014-01-01

    The effect of the temperature on the electro-chemical corrosion property of nuclear-grade 316L stainless steel (316L SS) in the Zn-containing water environment was investigated by polarization curves and in-situ impedance spectroscopy (EIS).The results show that the protectiveness of the 316L SS oxide film becomes weak with the increase of the temperature.The surface oxide film changes from the single layer to bilayer when the temperature increases,and the Cr-rich oxide layer suppresses the oxidation of the matrix.The growth mechanism of 316L SS is unchanged in Zn-containing water environment,but the corrosion resistance increases.%通过极化曲线和原位阻抗谱(EIS)研究了加Zn水环境中核级316L不锈钢(316L SS)电化学腐蚀性能受温度的影响.结果表明,316L SS氧化膜的保护性随温度的升高而变弱.当温度升高时,其表面的氧化膜从单层变为双层,其中阻挡基体氧化的主要为富Cr氧化层.在加Zn水环境中,316L SS的生长机制虽然不变,但耐腐蚀性会增强.

  7. Proventricular nematodiasis in wrinkled hornbills (Aceros corrugatus).

    Science.gov (United States)

    Ferrell, Shannon T; Pope, Katherine A; Gardiner, Chris; Bradway, Daniel S; Ambrose, Dana L; MacLean, Robert A; Norton, Terry M; Stedman, Nancy L; Garner, Michael M

    2009-09-01

    Three immature Sunda wrinkled hornbills (Aceros corrugatus) were diagnosed postmortem with proventricular spirurid nematodiasis. Concurrent severe disseminated larval granulomatosis in other visceral organs was considered contributory to mortality in each case. Clinical signs of nematodiasis were vague but generally consisted of weight loss, anorexia, and lethargy. Frequent antemortem fecal examinations were negative for spirurid eggs. In these present cases, based on routine histopathology, both prophylactic and empirically based therapeutic anthelmintic treatments had no evident benefit in the elimination of the proventricular nematodes. Spirurid nematodiasis may be an important cause of mortality in young hornbills.

  8. Tensiones residuales en alambres de acero trefilados

    OpenAIRE

    Atienza Riera, José Miguel

    2001-01-01

    El alambre de acero eutectoide trefilado es un material de gran interés industrial. Se emplea masivamente en las obras de hormigón pretensado, en los cables de la minería y de la industria pesquera y en la industria del automóvil como hilos muy finos para refuerzo de neumáticos. El proceso de trefilado con el que se obtienen estos alambres es una de las más antiguas operaciones de conformado de metales. Consiste esencialmente en reducir las dimensiones de una barra haciéndola pasar a través d...

  9. Penetration treatment of plasma spray SUS316L stainless steel coatings by molten MnO–SiO{sub 2} oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyusyu (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyusyu (Japan); Zeng, Zhensu; Sakoda, Nobuaki [Kurashiki Boring Kiko Co., Ltd., Okayama (Japan); Fukami, Naotaka [Taiko Refractories Co., Ltd., Fukuoka (Japan)

    2015-01-15

    Highlights: • MnO–SiO{sub 2} oxides could penetrate into stainless steel coating with in 5 min. • MnO–SiO{sub 2} oxides infiltrated to interface (300 μm) when treatment extended to 20 min. • Spinel-type MnCr{sub 2}O{sub 4} crystal particles emerged in MnO–SiO{sub 2} oxides after penetration. - Abstract: A study of the penetration treatment of plasma sprayed SUS316L stainless steel coatings by molten MnO–SiO{sub 2} oxides with near-eutectic composition was performed. The penetration treatment was introduced at 1353 K for 5, 20, and 45 min, and the effectiveness of the penetration and the underlying mechanisms of interfacial reactions are discussed on the basis of structural observation (EPMA), high-temperature wetting measurements and further supported by a thermodynamic calculation and analysis. The results indicated that at 1353 K, the MnO–SiO{sub 2} oxides could infiltrate into the stainless steel coating within a depth of approximately 100 μm within 5 min due to the very good wettability of the stainless steel coating by molten MnO–SiO{sub 2} oxides. The oxide could further penetrate to the coating/substrate interface when the treatment was extended to 20 min. During the penetration into the coating, a reaction between the MnO–SiO{sub 2} oxides and adjacent stainless steel particles occurred, which produced MnCr{sub 2}O{sub 4} crystalline particles characterized by a spinel structure. As a result, a variation of the MnO–SiO{sub 2} oxides composition was observed.

  10. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    Science.gov (United States)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  11. The Tribological Performance of Surface Treated Ti6A14V as Sliding Against Si3N4 Ball and 316L Stainless Steel Cylinder

    Science.gov (United States)

    Kao, W. H.; Su, Y. L.; Horng, J. H.; Huang, H. C.

    2016-12-01

    Closed field unbalanced magnetron sputtering was used to deposit diamond-like carbon (Ti-C:H) coatings on Ti6Al4V alloy and gas nitrided Ti6Al4V alloy. Four different specimens were prepared, namely untreated Ti6Al4V alloy (Ti6Al4V), gas nitrided Ti6Al4V alloy (N-Ti6Al4V), Ti-C:H-coated Ti6Al4V alloy (Ti-C:H/Ti6Al4V) and Ti-C:H-coated gas nitrided Ti6Al4V alloy (Ti-C:H/N-Ti6Al4V). The tribological properties of the four specimens were evaluated using a reciprocating wear tester sliding against a Si3N4 ball (point contact mode) and 316L stainless steel cylinder (line contact mode). The wear tests were performed in a 0.89 wt.% NaCl solution. The results showed that the nitriding treatment increased the surface roughness and hardness of the Ti6Al4V alloy and improved the wear resistance as a result. In addition, the Ti-C:H coating also improved the tribological performance of Ti6Al4V. For example, compared to the untreated Ti6Al4V sample, the Ti-C:H coating reduced the wear depth and friction coefficient by 340 times and 10 times, respectively, in the point contact wear mode, and 151 times and 9 times, respectively, in the line contact wear mode. It is thus inferred that diamond-like carbon coatings are of significant benefit in extending the service life of artificial biomedical implants.

  12. Investigation of microstructure and mechanical properties of explosively welded ITER-grade 316L(N)/CuCrZr hollow structural member

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui, E-mail: mr9980@163.com [PLA University of Science and Technology, Nanjing 210007 (China); Navy Command Academy, Nanjing 210007 (China); Wang, Yaohua [PLA University of Science and Technology, Nanjing 210007 (China); Wu, Jihong [Southwestern Institute of Physics, Chengdu 610041 (China); Duan, Mianjun [PLA University of Science and Technology, Nanjing 210007 (China)

    2015-04-15

    Highlights: • Develop a new explosive welding method to fabricate the hollow structural member. • Effects of solution annealing on microstructure of welding interface researched. • Influence of heat treatments on hardness evolution in welding interface studied. • The ultimate strength and elongation were increased after solution annealing. • The interface of samples was exhibited ductile fracture after solution annealing. - Abstract: In this study, a new explosive welding method furnished an effective way for manufacturing ITER-grade 316L(N) stainless steel/CuCrZr alloy hollow structural member. In order to recover some hardening effects, caused by plastic deformation during explosion welding in the materials bonding