WorldWideScience

Sample records for acellular human dermis

  1. Evaluation of human acellular dermis versus porcine acellular dermis in an in vivo model for incisional hernia repair.

    Science.gov (United States)

    Ngo, Manh-Dan; Aberman, Harold M; Hawes, Michael L; Choi, Bryan; Gertzman, Arthur A

    2011-05-01

    Incisional hernias commonly occur following abdominal wall surgery. Human acellular dermal matrices (HADM) are widely used in abdominal wall defect repair. Xenograft acellular dermal matrices, particularly those made from porcine tissues (PADM), have recently experienced increased usage. The purpose of this study was to compare the effectiveness of HADM and PADM in the repair of incisional abdominal wall hernias in a rabbit model. A review from earlier work of differences between human allograft acellular dermal matrices (HADM) and porcine xenograft acellular dermal matrices (PADM) demonstrated significant differences (P strength 15.7 MPa vs. 7.7 MPa for HADM and PADM, respectively. Cellular (fibroblast) infiltration was significantly greater for HADM vs. PADM (Armour). The HADM exhibited a more natural, less degraded collagen by electrophoresis as compared to PADM. The rabbit model surgically established an incisional hernia, which was repaired with one of the two acellular dermal matrices 3 weeks after the creation of the abdominal hernia. The animals were euthanized at 4 and 20 weeks and the wounds evaluated. Tissue ingrowth into the implant was significantly faster for the HADM as compared to PADM, 54 vs. 16% at 4 weeks, and 58 vs. 20% for HADM and PADM, respectively at 20 weeks. The original, induced hernia defect (6 cm(2)) was healed to a greater extent for HADM vs. PADM: 2.7 cm(2) unremodeled area for PADM vs. 1.0 cm² for HADM at 20 weeks. The inherent uniformity of tissue ingrowth and remodeling over time was very different for the HADM relative to the PADM. No differences were observed at the 4-week end point. However, the 20-week data exhibited a statistically different level of variability in the remodeling rate with the mean standard deviation of 0.96 for HADM as contrasted to a mean standard deviation of 2.69 for PADM. This was significant with P < 0.05 using a one tail F test for the inherent variability of the standard deviation. No

  2. Aplicação de substituto de pele em oncologia cutânea: estudo experimental com derme acelular e ceratinócitos cultivados Application of skin substitutes in skin oncology: experimental study using acellular dermis and cultured keratinocytes

    Directory of Open Access Journals (Sweden)

    José Anselmo Lofêgo Filho

    2008-02-01

    Full Text Available FUNDAMENTOS: As neoplasias malignas da pele de grandes dimensões apresentam dificuldades de reconstrução após a excisão. OBJETIVO: O objetivo deste estudo foi avaliar a exeqüibilidade de uma nova proposta de cobertura para feridas cirúrgicas criadas após a ressecção de grandes tumores cutâneos, a combinação da derme acelular humana com epitélio autólogo cultivado. MÉTODOS: A aplicação dos substitutos de pele foi feita em quatro pacientes com área de implante variando de 33 a 120 cm2. Além da observação dos resultados clínicos, realizou-se estudo morfológico para avaliação da integração dos implantes. RESULTADOS: Ceratinócitos autólogos cultivados foram enxertados em dois pacientes e não demonstraram integração. A derme acelular foi aplicada em quatro pacientes, sendo que em um deles foram feitas duas aplicações. Dos cinco implantes de derme acelular realizados, dois não apresentaram integração, em dois a integração foi de 70%, e de 50% no último. CONCLUSÃO: A cobertura imediata e definitiva de defeitos cirúrgicos através da aplicação de derme acelular humana combinada com epitélio autólogo cultivado é exeqüível. Em oncologia cutânea apenas em situações especiais o uso de substitutos de pele pode ser conveniente no sentido de evitar reconstruções mais complexas.BACKGROUND: Reconstruction difficulties may arise after excision of large malignant skin neoplasms.a OBJECTIVE: The objective of this study was to assess the feasibility of a new coverage for surgical wounds following resection of large skin tumors: a combination of human acellular dermis with cultured autologous epithelium. METHODS: The skin substitute was implanted in four patients, one of them received two implants and the area ranged from 33 to 120 cm2. Clinical results and morphologic studies were assessed as to implant integration. RESULTS: Cultured autologous epithelium was grafted in two patients and no integration was

  3. Expanding the applications of Cadaveric skin - the properties and uses of an acellular dermal matrix

    International Nuclear Information System (INIS)

    Greenleaf, G.; Livesey, S.

    1999-01-01

    The ability to transplant organs and tissues has been one of the most significant advances of modern medicine. The availability of cadaveric allograft skin has greatly facilitated the practice of aggressive, early excision of massive burn injuries. Due to its ultimate rejection however, the role of allograft skin has historically been limited to that of a temporary wound dressing. Development of an acellular dermal allograft has greatly expanded the applications for donated human skin. AlloDerm(r) preserved dermal graft (LifeCell, The Woodlands, TX) is prepared via ionic separation of allograft skin followed by detergent removal of antigenic cells. Acellular dermal grafts are then cryoprotected and freeze-dried. The process maintains the structural integrity of the extracellular matrix and preserves the biochemical composition of the basement membrane. The resultant immunologically inert allograft can be used in a variety of applications. In burn injuries, lack of an adequate dermal component at either the donor or wound site may result in complications including contraction, delayed healing, hypertrophic scarring and keloid formation. Utilizing allogenic dermis eliminates the need for autologous dermis at the wound site and minimizes donor site trauma by allowing procurement of ultra-thin (0.006 ) autografts. Expanding the scope of traditional uses for allograft skin, acellular dermal grafts have been successfully utilized in a variety of procedures including duraplasty, orbital reconstruction, and hemia repar. In periodontal surgery, allograft tissue eliminates the need for painful palatal autografts and has been used to increase attached gingiva and reduce gingival recession. Resorption of autologous grafts or extrusion of synthetic material often hampers repair or reconstruction of soft tissue deficits. Transplantation of acellular allograft dermis provides a biochemically and structurally intact matrix, which persists and is ultimately repopulated with

  4. One-stage human acellular nerve allograft reconstruction for digital nerve defects

    Directory of Open Access Journals (Sweden)

    Xue-yuan Li

    2015-01-01

    Full Text Available Human acellular nerve allografts have a wide range of donor origin and can effectively avoid nerve injury in the donor area. Very little is known about one-stage reconstruction of digital nerve defects. The present study observed the feasibility and effectiveness of human acellular nerve allograft in the reconstruction of < 5-cm digital nerve defects within 6 hours after injury. A total of 15 cases of nerve injury, combined with nerve defects in 18 digits from the Department of Emergency were enrolled in this study. After debridement, digital nerves were reconstructed using human acellular nerve allografts. The patients were followed up for 6-24 months after reconstruction. Mackinnon-Dellon static two-point discrimination results showed excellent and good rates of 89%. Semmes-Weinstein monofilament test demonstrated that light touch was normal, with an obvious improvement rate of 78%. These findings confirmed that human acellular nerve allograft for one-stage reconstruction of digital nerve defect after hand injury is feasible, which provides a novel trend for peripheral nerve reconstruction.

  5. Use of a collagen-elastin matrix as transport carrier system to transfer proliferating epidermal cells to human dermis in vitro.

    Science.gov (United States)

    Waaijman, Taco; Breetveld, Melanie; Ulrich, Magda; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan

    2010-01-01

    This in vitro study describes a novel cell culture, transport, and transfer protocol that may be highly suitable for delivering cultured proliferating keratinocytes and melanocytes to large open skin wounds (e.g., burns). We have taken into account previous limitations identified using other keratinocyte transfer techniques, such as regulatory issues, stability of keratinocytes during transport (single cell suspensions undergo terminal differentiation), ease of handling during application, and the degree of epidermal blistering resulting after transplantation (both related to transplanting keratinocyte sheets). Large numbers of proliferating epidermal cells (EC) (keratinocytes and melanocytes) were generated within 10-14 days and seeded onto a three-dimensional matrix composed of elastin and collagen types I, III, and V (Matriderm®), which enabled easy and stable transport of the EC for up to 24 h under ambient conditions. All culture conditions were in accordance with the regulations set by the Dutch Central Committee on Research Involving Human Subjects (CCMO). As an in vitro model system for clinical in vivo transfer, the EC were then transferred from Matriderm onto human acellular dermis during a period of 3 days. After transfer the EC maintained the ability to regenerate into a fully differentiated epidermis containing melanocytes on the human dermis. Proliferating keratinocytes were located in the basal layer and keratin-10 expression was located in differentiating suprabasal layers similar to that found in human epidermis. No blistering was observed (separation of the epidermis from the basement membrane). Keratin-6 expression was strongly upregulated in the regenerating epidermis similar to normal wound healing. In summary, we show that EC-Matriderm contains viable, metabolically active keratinocytes and melanocytes cultured in a manner that permits easy transportation and contains epidermal cells with the potential to form a pigmented reconstructed

  6. Nonexpansive immediate breast reconstruction using human acellular tissue matrix graft (AlloDerm).

    Science.gov (United States)

    Salzberg, C Andrew

    2006-07-01

    Immediate breast reconstruction has become a standard of care following mastectomy for cancer, largely due to improved esthetic and psychologic outcomes achieved with this technique. However, the current historical standards--transverse rectus abdominis myocutaneous flap reconstruction and expander--implant surgery-still have limitations as regards patient morbidity, short-term body-image improvements, and even cost. To address these shortcomings, we employ a novel concept of human tissue replacement to enhance breast shape and provide total coverage, enabling immediate mound reconstruction without the need for breast expansion prior to permanent implant placement. AlloDerm (human acellular tissue matrix) is a human-derived graft tissue with extensive experience in various settings of skin and soft tissue replacement surgery. This report describes the success using acellular tissue matrix to provide total coverage over the prosthesis in immediate reconstruction, with limited muscle dissection. In this population, 49 patients (76 breasts) successfully underwent the acellular tissue matrix-based immediate reconstruction, resulting in durable breast reconstruction with good symmetry. These findings may predict that acellular tissue matrix-supplemented immediate breast reconstruction will become a new technique for the immediate reconstruction of the postmastectomy breast.

  7. Cytocompatibility and biologic characteristics of synthetic scaffold materials of rabbit acellular vascular matrix combining with human-like collagen I.

    Science.gov (United States)

    Liu, Xuqian; Wang, Jie; Dong, Fusheng; Song, Peng; Tian, Songbo; Li, Hexiang; Hou, Yali

    2017-10-01

    Scaffold material provides a three-dimensional growing environment for seed cells in the research field of tissue engineering. In the present study, rabbit arterial blood vessel cells were chemically removed with trypsin and Triton X-100 to prepare rabbit acellular vascular matrix scaffold material. Observation by He&Masson staining revealed that no cellular components or nuclei existed in the vascular intima and media after decellularization. Human-like collagen I was combined with acellular vascular matrix by freeze-drying to prepare an acellular vascular matrix-0.25% human-like collagen I scaffold to compensate for the extracellular matrix loss during the decellularization process. We next performed a series of experiments to test the water absorbing quality, biomechanics, pressure resistance, cytotoxicity, and ultra-micro structure of the acellular vascular matrix composite material and natural rabbit artery and found that the acellular vascular matrix-0.25% human-like collagen I material behaved similarly to natural rabbit artery. In conclusion, the acellular vascular matrix-0.25% human-like collagen I composite material provides a new approach and lays the foundation for novel scaffold material research into tissue engineering of blood vessels.

  8. Effect of temperature on the optical properties of ex vivo human dermis and subdermis

    International Nuclear Information System (INIS)

    Laufer, Jan; Simpson, Rebecca; Kohl, Matthias; Cope, Mark; Essenpreis, M.

    1998-01-01

    The effect of temperature on the optical properties of human dermis and subdermis as a function of near-infrared wavelength has been studied between 25 deg. C and 40 deg. C. Measurements were performed ex vivo on a total of nine skin samples taken from the abdomen of three individuals. The results show a reproducible effect of temperature on the transport scattering coefficient of dermis and subdermis. The relative change of the transport scattering coefficient showed an increase for dermis ((4.7±0.5)x10 -3 deg. C -1 ) and a decrease for subdermis ((-1.4±0.28)x10 -3 deg. C -1 ). Note that the magnitude of the temperature coefficient of scattering was greater for dermis than subdermis. A reproducible effect of temperature on the absorption coefficient could not be found within experimental errors. System reproducibility in transport scattering coefficient with repeated removal and repositioning of the same tissue sample at the same temperature was excellent at ±0.35% for all measurements. This reproducibility enabled such small changes in scattering coefficient to be detected. (author)

  9. Coverage of Megaprosthesis with Human Acellular Dermal Matrix after Ewing's Sarcoma Resection: A Case Report

    Directory of Open Access Journals (Sweden)

    Robert M. Whitfield

    2011-01-01

    Full Text Available A 23-year-old female with Ewing's Sarcoma underwent tibial resection and skeletal reconstruction using proximal tibial allograft prosthetic reconstruction with distal femur endoprosthetic reconstruction and rotating hinge. Human acellular dermal matrix, (Alloderm, LifeCell, Branchburg, NJ, USA, was used to wrap the skeletal reconstruction. Soft tissue reconstruction was completed with a rotational gastrocnemius muscle flap and skin graft. Despite prolonged immobilization, the patient quickly regained full range of motion of her skeletal reconstruction. Synthetic mesh, tapes and tubes are used to perform capsule reconstruction of megaprosthesis. This paper describes the role of human acellular dermal matrix in capsule reconstruction around a megaprosthesis.

  10. Optimization of human tendon tissue engineering: peracetic acid oxidation for enhanced reseeding of acellularized intrasynovial tendon.

    Science.gov (United States)

    Woon, Colin Y L; Pridgen, Brian C; Kraus, Armin; Bari, Sina; Pham, Hung; Chang, James

    2011-03-01

    Tissue engineering of human flexor tendons combines tendon scaffolds with recipient cells to create complete cell-tendon constructs. Allogenic acellularized human flexor tendon has been shown to be a useful natural scaffold. However, there is difficulty repopulating acellularized tendon with recipient cells, as cell penetration is restricted by a tightly woven tendon matrix. The authors evaluated peracetic acid treatment in optimizing intratendinous cell penetration. Cadaveric human flexor tendons were harvested, acellularized, and divided into experimental groups. These groups were treated with peracetic acid in varying concentrations (2%, 5%, and 10%) and for varying time periods (4 and 20 hours) to determine the optimal treatment protocol. Experimental tendons were analyzed for differences in tendon microarchitecture. Additional specimens were reseeded by incubation in a fibroblast cell suspension at 1 × 10(6) cells/ml. This group was then analyzed for reseeding efficacy. A final group underwent biomechanical studies for strength. The optimal treatment protocol comprising peracetic acid at 5% concentration for 4 hours produced increased scaffold porosity, improving cell penetration and migration. Treated scaffolds did not show reduced collagen or glycosaminoglycan content compared with controls (p = 0.37 and p = 0.65, respectively). Treated scaffolds were cytotoxic to neither attached cells nor the surrounding cell suspension. Treated scaffolds also did not show inferior ultimate tensile stress or elastic modulus compared with controls (p = 0.26 and p = 0.28, respectively). Peracetic acid treatment of acellularized tendon scaffolds increases matrix porosity, leading to greater reseeding. It may prove to be an important step in tissue engineering of human flexor tendon using natural scaffolds.

  11. Chondrogenesis of human infrapatellar fat pad stem cells on acellular dermal matrix

    Directory of Open Access Journals (Sweden)

    Ken eYe

    2016-01-01

    Full Text Available Acellular dermal matrix (ADM has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation and revascularisation, and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6.Human infrapatellar fat pad derived adipose stem cells (IPFP-ASC were cultured with ADM derived from rat dermis under chondrogenic (TGFβ3 and BMP6 in vitro for 2 and 4 weeks. Histology, qPCR and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans. At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increases of COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks.We believe the principles which make ADM versatile and successful for tissue regeneration are application to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair.

  12. The Superficial Dermis May Initiate Keloid Formation: Histological Analysis of the Keloid Dermis at Different Depths

    Directory of Open Access Journals (Sweden)

    Hu Jiao

    2017-11-01

    Full Text Available Several studies have reported on certain aspects of the characteristics of different sites within a keloid lesion, but detailed studies on the keloid dermis at different depths within a keloid lesion are scarce. The aim of this study was to investigate the histology of the keloid dermis at different depths. This study included 19 keloid tissue samples that were collected from 19 patients and 19 normal skin samples, which were harvested from subjects without keloids or hypertrophic scar. Samples were studied by light microscopy using routine hematoxylin and eosin histochemical staining, and immunohistochemistry to detect CD20-positive B-lymphocytes and CD3-positive T-lymphocytes. Sirius Red histochemical staining was used to determine the type of collagen in keloid tissue and normal skin samples. The migratory properties of fibroblasts within the keloid dermis at different depths was compared, using an in vitro migration assay. The findings of this study showed that although the papillary and reticular dermis could be clearly distinguished in normal skin, three tissue layers were identified in the keloid dermis. The superficial dermis of keloid was characterized by active fibroblasts and lymphocytes; the middle dermis contained dense extracellular matrix (ECM with large numbers fibroblasts, and the deep dermis was poorly cellular and characterized by hyalinized collagen bundles. In the keloid samples, from the superficial to the deep dermis, type I collagen increased and type III collagen decreased, and fibroblasts from the superficial dermis of the keloid were found to migrate more rapidly. In conclusion, the findings of this study showed that different depths within the keloid dermis displayed different biological features. The superficial dermis may initiate keloid formation, in which layer intralesional injection of pharmaceuticals and other treatments should be performed for keloid.

  13. Generation of Genetically Modified Organotypic Skin Cultures Using Devitalized Human Dermis.

    Science.gov (United States)

    Li, Jingting; Sen, George L

    2015-12-14

    Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

  14. Analysis of human acellular nerve allograft reconstruction of 64 injured nerves in the hand and upper extremity: a 3 year follow-up study.

    Science.gov (United States)

    Zhu, Shuang; Liu, Jianghui; Zheng, Canbin; Gu, Liqiang; Zhu, Qingtang; Xiang, Jianping; He, Bo; Zhou, Xiang; Liu, Xiaolin

    2017-08-01

    Human acellular nerve allografts have been increasingly applied in clinical practice. This study was undertaken to investigate the functional outcomes of nerve allograft reconstruction for nerve defects in the upper extremity. A total of 64 patients from 13 hospitals were available for this follow-up study after nerve repair using human acellular nerve allografts. Sensory and motor recovery was examined according to the international standards for motor and sensory nerve recovery. Subgroup analysis and logistic regression analysis were conducted to identify the relationship between the known factors and the outcomes of nerve repair. Mean follow-up time was 355 ± 158 (35-819) days; mean age was 35 ± 11 (14-68) years; average nerve gap length was 27 ± 13 (10-60) mm; no signs of infection, tissue rejection or extrusion were observed among the patients; 48/64 (75%) repaired nerves experienced meaningful recovery. Univariate analysis showed that site and gap length significantly influenced prognosis after nerve repair using nerve grafts. Delay had a marginally significant relationship with the outcome. A multivariate logistic regression model revealed that gap length was an independent predictor of nerve repair using human acellular nerve allografts. The results indicated that the human acellular nerve allograft facilitated safe and effective nerve reconstruction for nerve gaps 10-60 mm in length in the hand and upper extremity. Factors such as site and gap length had a statistically significant influence on the outcomes of nerve allograft reconstruction. Gap length was an independent predictor of nerve repair using human acellular nerve allografts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Regenerative and Antibacterial Properties of Acellular Fish Skin Grafts and Human Amnion/Chorion Membrane: Implications for Tissue Preservation in Combat Casualty Care.

    Science.gov (United States)

    Magnusson, Skuli; Baldursson, Baldur Tumi; Kjartansson, Hilmar; Rolfsson, Ottar; Sigurjonsson, Gudmundur Fertram

    2017-03-01

    Improvised explosive devices and new directed energy weapons are changing warfare injuries from penetrating wounds to large surface area thermal and blast injuries. Acellular fish skin is used for tissue repair and during manufacturing subjected to gentle processing compared to biologic materials derived from mammals. This is due to the absence of viral and prion disease transmission risk, preserving natural structure and composition of the fish skin graft. The aim of this study was to assess properties of acellular fish skin relevant for severe battlefield injuries and to compare those properties with those of dehydrated human amnion/chorion membrane. We evaluated cell ingrowth capabilities of the biological materials with microscopy techniques. Bacterial barrier properties were tested with a 2-chamber model. The microstructure of the acellular fish skin is highly porous, whereas the microstructure of dehydrated human amnion/chorion membrane is mostly nonporous. The fish skin grafts show superior ability to support 3-dimensional ingrowth of cells compared to dehydrated human amnion/chorion membrane (p fish skin is a bacterial barrier for 24 to 48 hours. The unique biomechanical properties of the acellular fish skin graft make it ideal to be used as a conformal cover for severe trauma and burn wounds in the battlefield. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  16. Construction of synthetic dermis and skin based on a self-assembled peptide hydrogel scaffold.

    Science.gov (United States)

    Kao, Bunsho; Kadomatsu, Koichi; Hosaka, Yoshiaki

    2009-09-01

    Using biocompatible peptide hydrogel as a scaffold, we prepared three-dimensional synthetic skin that does not contain animal-derived materials or pathogens. The present study investigated preparation methods, proliferation, and functional expression of fibroblasts in the synthetic dermis and differentiation of keratinocytes in the epidermis. Synthetic dermis was prepared by mixing fibroblasts with peptide hydrogel, and synthetic skin was prepared by forming an epidermal layer using keratinocytes on the synthetic dermis. A fibroblast-rich foamy layer consisting of homogeneous peptide hydrogel subsequently formed in the synthetic dermis, with fibroblasts aggregating in clusters within the septum. The epidermis consisted of three to five keratinocyte layers. Immunohistochemical staining showed human type I collagen, indicating functional expression around fibroblasts in the synthetic dermis, keratinocyte differentiation in the epidermis, and expression of basement membrane proteins. The number of fibroblasts tended to increase until the second week and was maintained until the fourth week, but rapidly decreased in the fifth week. In the synthetic dermis medium, the human type I collagen concentration increased after the second week to the fifth week. These findings suggest that peptide hydrogel acts as a synthetic skin scaffold that offers a platform for the proliferation and functional expression of fibroblasts and keratinocytes.

  17. Usefulness of Cross-Linked Human Acellular Dermal Matrix as an Implant for Dorsal Augmentation in Rhinoplasty.

    Science.gov (United States)

    Yang, Chae Eun; Kim, Soo Jung; Kim, Ji Hee; Lee, Ju Hee; Roh, Tai Suk; Lee, Won Jai

    2018-02-01

    Asian noses are relatively small and flat compared to Caucasians; therefore, rhinoplasty procedures often focus on dorsal augmentation and tip projection rather than reduction in the nasal framework. Various autologous and alloplastic implant materials have been used for dorsal augmentation. Recently, human acellular dermal matrices have been introduced as an implant material for dorsal augmentation, camouflaging autologous implants without an additional donor site. Here, we introduce a cross-linked human acellular dermal matrix as an implant material in augmentation rhinoplasty and share the clinical experiences. Eighteen patients who underwent augmentation rhinoplasty using acellular dermal matrix from April 2014 to November 2015 were reviewed retrospectively. Clinical outcomes and complications were assessed at the outpatient clinic during the follow-up period ranging from 8 to 38 months. Contour changes were assessed through comparison of preoperative and postoperative photographs by two independent plastic surgeons. Patient satisfaction was assessed at the outpatient clinic by six questions regarding aesthetic and functional aspects. Postoperative photographs demonstrated the height of the nasal dorsum did not decrease over time except two patients whose ADM was grafted into a subperiosteal pocket. Others who underwent supraperiosteal implantation showed acceptable maintenance of dorsal height. No major complication was reported. Overall, patient satisfaction scored 81.02 out of 100. Cross-linked human ADM has advantages of both autogenous and alloplastic materials. The surgical results remain stable without complications. Therefore, it is a suitable alternative implant material for dorsal augmentation in rhinoplasty. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  18. [Penile augmentation using acellular dermal matrix].

    Science.gov (United States)

    Zhang, Jin-ming; Cui, Yong-yan; Pan, Shu-juan; Liang, Wei-qiang; Chen, Xiao-xuan

    2004-11-01

    Penile enhancement was performed using acellular dermal matrix. Multiple layers of acellular dermal matrix were placed underneath the penile skin to enlarge its girth. Since March 2002, penile augmentation has been performed on 12 cases using acellular dermal matrix. Postoperatively all the patients had a 1.3-3.1 cm (2.6 cm in average) increase in penile girth in a flaccid state. The penis had normal appearance and feeling without contour deformities. All patients gained sexual ability 3 months after the operation. One had a delayed wound healing due to tight dressing, which was repaired with a scrotal skin flap. Penile enlargement by implantation of multiple layers of acellular dermal matrix was a safe and effective operation. This method can be performed in an outpatient ambulatory setting. The advantages of the acellular dermal matrix over the autogenous dermal fat grafts are elimination of donor site injury and scar and significant shortening of operation time.

  19. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine.

    Science.gov (United States)

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C; Nolta, Jan A; Athanasiou, Kyriacos A

    2015-10-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides

  20. Three-dimensional digital reconstruction of skin epidermis and dermis.

    Science.gov (United States)

    Liu, P; Zhu, J-Y; Tang, B; Hu, Z-C

    2018-05-01

    This study describes how three-dimensional (3D) human skin tissue is reconstructed, and provides digital anatomical data for the physiological structure of human skin tissue based on large-scale thin serial sections. Human skin samples embedded in paraffin were cut serially into thin sections and then stained with hematoxylin-eosin. Images of serial sections obtained from lighting microscopy were scanned and aligned by the scale-invariant feature transform algorithm. 3D reconstruction of the skin tissue was generated using Mimics software. Fibre content, porosity, average pore diameter and specific surface area of dermis were analysed using the ImageJ analysis system. The root mean square error and mutual information based on the scale-invariant feature transform algorithm registration were significantly greater than those based on the manual registration. Fibre distribution gradually decreased from top to bottom; while porosity showed an opposite trend with irregular average pore diameter distribution. A specific surface area of the dermis showed a 'V' shape trend. Our data suggested that 3D reconstruction of human skin tissue based on large-scale serial sections could be a valuable tool for providing a highly accurate histological structure for analysis of skin tissue. Moreover, this technology could be utilized to produce tissue-engineered skin via a 3D bioprinter in the future. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Structural and biochemical alterations of human diabetic dermis studied by 3H-lysine incorporation and microscopy

    International Nuclear Information System (INIS)

    Moczar, M.; Allard, R.; Ouzilou, J.; Robert, L.; Pieraggi, M.-T.; Bouissou, H.; Julian, M.

    1976-01-01

    The alteration of the structural organization of dermal connective tissue was studied by light and electron microscopy and by biochemical techniques in normal human and in diabetic patients using skin biopsies. Part of the tissue was used for light and electron microscopy, the rest was incubated in the presence of 3 H-lysine for four hours. The 3 H-lysine labelled biopsies were submitted to a sequential extraction procedure in order to obtain representative macromolecular fractions containing the matrix macromolecules. The extracts were analyzed for their chemical composition and radioactivity. Electron microscopy revealed microstructural modifications of the fibroblasts, of the collagen and elastic fibers in the diabetic dermis. The incorporation pattern of 3 H-lysine into the macromolecular fractions was different in the normal and diabetic skin biopsies. The percentage of total radioactivity incorporated increased significantly in the 1M CaCl 2 extractable fraction and in the 6M urea extractable fraction and decreased significantly in the collagenase and elastase extracts in diabetic skin biopsy. These results demonstrate the existence of morphological and biochemical alterations in diabetic connective tissue (dermis) reflecting alterations in the relative rates of synthesis and/or degradation of the intercellular matrix macromolecules as well as of their microarchitectural arrangement

  2. Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, Simona, E-mail: s.salerno@itm.cnr.it [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); Messina, Antonietta [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); Giordano, Francesca [Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS) (Italy); Bader, Augustinus [Biomedical-Biotechnological Center, BBZ, University of Leipzig, D-04103 Leipzig (Germany); Drioli, Enrico [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); WCU Energy Engineering Department, Hanyang University, Seoul (Korea, Republic of); De Bartolo, Loredana, E-mail: l.debartolo@itm.cnr.it [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy)

    2017-02-01

    Dermal-epidermal membrane systems were developed by co-culturing human keratinocytes with Skin derived Stem Cells (SSCs), which are Mesenchymal Stem Cells (MSCs) isolated from dermis, on biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT and PCL. The membranes display physico-chemical, morphological, mechanical and biodegradation properties that could satisfy and fulfil specific requirements in skin tissue engineering. CHT membrane exhibits an optimal biodegradation rate for acute wounds; CHT-PCL for the chronic ones. On the other hand, PCL membrane in spite of its very slow biodegradation rate exhibits mechanical properties similar to in vivo dermis, a lower hydrophilic character, and a surface roughness, all properties that make it able to sustain cell adhesion and proliferation for in vitro skin models. Both CHT–PCL and PCL membranes guided epidermal and dermal differentiation of SSCs as pointed out by the expression of cytokeratins and the deposition of the ECM protein fibronectin, respectively. In the dermal-epidermal membrane systems, a more suitable microenvironment for the SSCs differentiation was promoted by the interactions and the mutual interplay with keratinocytes. Being skin tissue-biased stem cells committed to their specific final dermal and/or epidermal cell differentiation, SSCs are more suitable for skin tissue engineering than other adult MSCs with different origin. For this reason, they represent a useful autologous cell source for engineering skin substitutes for both in vivo and in vitro applications.

  3. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Directory of Open Access Journals (Sweden)

    Wei-ling Cui

    2016-01-01

    Full Text Available Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group. As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  4. [Preparation of acellular matrix from antler cartilage and its biological compatibility].

    Science.gov (United States)

    Fu, Jing; Zhang, Wei; Zhang, Aiwu; Ma, Lijuan; Chu, Wenhui; Li, Chunyi

    2017-06-01

    To study the feasibility of acellular matrix materials prepared from deer antler cartilage and its biological compatibility so as to search for a new member of the extracellular matrix family for cartilage regeneration. The deer antler mesenchymal (M) layer tissue was harvested and treated through decellular process to prepare M layer acellular matrix; histologic observation and detection of M layer acellular matrix DNA content were carried out. The antler stem cells [antlerogenic periosteum (AP) cells] at 2nd passage were labelled by fluorescent stains and by PKH26. Subsequently, the M layer acellular matrix and the AP cells at 2nd passage were co-cultured for 7 days; then the samples were transplanted into nude mice to study the tissue compatibility of M layer acellular matrix in the living animals. HE and DAPI staining confirmed that the M layer acellular matrix did not contain nucleus; the DNA content of the M layer acellular matrix was (19.367±5.254) ng/mg, which was significantly lower than that of the normal M layer tissue [(3 805.500±519.119) ng/mg]( t =12.630, P =0.000). In vitro co-culture experiments showed that AP cells could adhere to or even embedded in the M layer acellular matrix. Nude mice transplantation experiments showed that the introduced AP cells could proliferate and induce angiogenesis in the M layer acellular matrix. The deer antler cartilage acellular matrix is successfully prepared. The M layer acellular matrix is suitable for adhesion and proliferation of AP cells in vitro and in vivo , and it has the function of stimulating angiogenesis. This model for deer antler cartilage acellular matrix can be applied in cartilage tissue engineering in the future.

  5. Evaluation of Elastin/Collagen Content in Human Dermis in-Vivo by Multiphoton Tomography—Variation with Depth and Correlation with Aging

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Pittet

    2014-08-01

    Full Text Available The aim of this study was to evaluate the influence of the depth of the dermis on the measured collagen and elastin levels and to establish the correlation between the amount of these two extracellular matrix (ECM components and age. Multiphoton Microscopy (MPM that measures the autofluorescence (AF and second harmonic generation (SHG was used to quantify the levels of elastin and collagen and to determine the SAAID (SHG-to-AF Aging Index of Dermis at two different skin depths. A 50 MHz ultrasound scanner was used for the calculation of the Sub Epidermal Non Echogenic Band (SENEB. The measurements of the skin mechanical properties were done with a cutometer. All measurements were performed on two groups of 30 healthy female volunteers. The MPM showed a decrease of the quantity of collagen and elastin as a function of depth of the dermis as well as age. The SAAID was lower for the older skin in the deeper dermis. Ultrasound imaging revealed a significant decrease of SENEB as a function of aging. The mechanical properties confirmed a loss of cutaneous elasticity and firmness. Although multiphoton microscopy is a powerful technique to study the characteristics of the dermis and its age-related damage, the location of the measurements (depth remains very important for the validation of these variations. These variations do not seem to be homogeneous according to the part of the dermis that is studied.

  6. Dermis-Fat Graft in Children as Primary and Secondary Orbital Implant.

    Science.gov (United States)

    Quaranta-Leoni, Francesco M; Sposato, Sabrina; Raglione, Pietro; Mastromarino, Angelo

    2016-01-01

    To report the experience with the use of dermis-fat graft in the pediatric population and to evaluate the outcome of this procedure as a primary or secondary orbital implant. Case series. Analysis of the clinical charts of 22 patients. Age at the time of surgery ranged from 2.1 to 13 years. Three patients affected were submitted to evisceration with primary dermis-fat graft. Six patients had explantation of exposed implants and a replacement with a dermis-fat graft. Three patients had a dermis-fat graft to repair contracted sockets. Ten patients were affected by congenital anophthalmia: 4 patients had a primary dermis-fat graft, 6 patients had a removal of a socket expander, or an orbital spherical expander, or pellet expanders and a replacement with a dermis-fat graft. This study adheres to the principles outlined in the Declaration of Helsinki. The patients' follow up ranged between 2.5 and 8 years. Only 1 child who had a primary dermis-fat graft experienced excessive growth of the implant, managed by surgical debulking. In the end, all the patients showed satisfactory orbital volume along with adequate fornices. The dermis-fat graft as a primary implant may be useful in children with severe scleromalacia or following ocular trauma. It is a suitable option in children affected by congenital anophthalmia as it helps continued socket expansion. It can also be considered in the pediatric population to address the volume deficit following explantation of exposed implants and in contracted sockets.

  7. [NEW PROGRESS OF ACELLULAR FISH SKIN AS NOVEL TISSUE ENGINEERED SCAFFOLD].

    Science.gov (United States)

    Wei, Xiaojuan; Wang, Nanping; He, Lan; Guo, Xiuyu; Gu, Qisheng

    2016-11-08

    To review the recent research progress of acellular fish skin as a tissue engineered scaffold, and to analyze the feasibility and risk management in clinical application. The research and development, application status of acellular fish skin as a tissue engineered scaffold were comprehensively analyzed, and then several key points were put forward. Acellular fish skin has a huge potential in clinical practice as novel acellular extracellular matrix, but there have been no related research reports up to now in China. As an emerging point of translational medicine, investigation of acellular fish skin is mainly focused on artificial skin, surgical patch, and wound dressings. Development of acellular fish skin-based new products is concerned to be clinical feasible and necessary, but a lot of applied basic researches should be carried out.

  8. Acellular organ scaffolds for tumor tissue engineering

    Science.gov (United States)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  9. Original technique for penile girth augmentation through porcine dermal acellular grafts: results in a 69-patient series.

    Science.gov (United States)

    Alei, Giovanni; Letizia, Piero; Ricottilli, Francesco; Simone, Pierfranco; Alei, Lavinia; Massoni, Francesco; Ricci, Serafino

    2012-07-01

    Although different techniques for augmentation phalloplasty have been reported in the medical literature, this issue is still highly controversial, and none of the proposed procedures has been unanimously approved. The aim of this study is to describe an innovative surgical technique for penile girth augmentation with porcine dermal acellular grafts, through a small transverse incision at the penile base, along the penopubic junction. Between 2000 and 2009, 104 patients were referred to our institution for penile enhancement. After a preoperative psychosexual consultation and a general medical assessment, 69 patients were deemed suitable good candidates for surgery. The average penis circumference was measured at the mid-length of the penis and was 8.1 cm (5.4-10.7 cm) and 10.8 cm (6.5-15.8 cm) during flaccidity and erection, respectively. All patients received penile augmentation with porcine dermal acellular grafts. Results evaluation of an innovative technique for penile girth augmentation through exogenous porcine grafts and small penobubic incision. Postoperative measurements were performed at 6 and 12 months. At the 1-year follow-up, the average penis circumference was 11.3 cm (8.2-13.2 cm, 3.1 cm mean increase) during flaccidity and 13.2 cm (8.8-14.5 cm, 2.4 cm mean increase) during erection. No major complications occurred in the series. Minor complications were resolved with conservative treatment within 3 weeks. Sexual activity was resumed from 1 to 2 months after surgery. The psychosexual impact of the operation was beneficial in the majority of cases. Penile girth enlargement with acellular dermal matrix grafts has several advantages over augmentation with autogenous dermis-fat grafts: the elimination of donor site morbidity and a significantly shorter operation time. With this approach, through a short dorsal incision at the base of the penis, the scar is concealed in a crease covered by pubic hair and thus hardly visible. © 2012

  10. Cytoplasmic vitamin A binding proteins in chick embryo dermis and epidermis

    International Nuclear Information System (INIS)

    Gates, R.E.; King, L.E. Jr.

    1985-01-01

    Excess vitamin A has striking morphologic and developmental effects on chick embryo skin. While cytoplasmic retinoic acid-binding protein (CRABP) was known to be abundant in chick embryo skin, neither quantitative values nor the distribution between dermis and epidermis have been established. The authors determined CRABP levels in collagenase-separated dermis and epidermis from 8-day-old embryos using specific binding of all-trans-[11- 3 H]retinoic acid in cytosols prepared from gram quantities of these tissues. The level of CRABP in dermis was twice the level in epidermis whether calculated on the basis of wet weight, cytosol protein, or DNA. When averaged over many preparations, 3 times as much dermis as epidermis was recovered from a single piece of skin. Therefore, the dermis contained 85% of the extremely high CRABP levels found in collagenase-treated skin, while epidermis contributed only 15%. Cytoplasmic retinol binding protein (CRBP) was also detected in chick embryo skin, but the binding was low and the levels in epidermis and dermis were not significantly different. The amount of CRABP in chick embryo skin (1600 pmol/g wet weight or 100 pmol/mg cytosol protein) is the highest level reported in any tissue and suggests an important role for vitamin A in the normal development and maturation of skin

  11. New Insights on the Composition and the Structure of the Acellular Extrinsic Fiber Cementum by Raman Analysis

    Science.gov (United States)

    Colard, Thomas; Falgayrac, Guillaume; Bertrand, Benoit; Naji, Stephan; Devos, Olivier; Balsack, Clara; Delannoy, Yann; Penel, Guillaume

    2016-01-01

    Acellular extrinsic fiber cementum is a mineralized tissue that covers the cervical half of the tooth root surface. It contains mainly extrinsic or Sharpey’s fibers that run perpendicular to the root surface to anchor the tooth via the periodontal ligament. Acellular cementum is continuously and slowly produced throughout life and exhibits an alternating bright and dark pattern under light microscopy. However, although a better understanding of the structural background of acellular cementum is relevant to many fields, such as cementochronology, periodontology and tissue engineering, acellular cementum remains rarely studied and poorly understood. In this work, we studied the acellular cementum at the incremental line scale of five human mandibular canines using polarized Raman spectroscopy. We provided Raman imaging analysis and polarized acquisitions as a function of the angular orientation of the sample. The results showed that mineral crystals were always parallel to collagen fibrils, and at a larger scale, we proposed an organizational model in which we found radial collagen fibers, “orthogonal” to the cementum surface, and “non-orthogonal” fibers, which consist of branching and bending radial fibers. Concerning the alternating pattern, we observed that the dark lines corresponded to smaller, more mineralized and probably more organized bands, which is consistent with the zoological assumption that incremental lines are produced during a winter rest period of acellular cementum growth. PMID:27936010

  12. Biological function evaluation and effects of laser micro-pore burn-denatured acellular dermal matrix.

    Science.gov (United States)

    Zhang, Youlai; Zeng, Yuanlin; Xin, Guohua; Zou, Lijin; Ding, Yuewei; Duyin, Jiang

    2018-03-01

    In the field of burns repairs, many problems exist in the shortage of donor skin, the expense of allograft or xenograft skin, temporary substitution and unsatisfactory extremity function after wound healing. Previous studies showed that burn-denatured skin could return to normal dermis formation and function. This study investigates the application of laser micro-pore burn-denatured acellular dermis matrix (DADM) from an escharotomy in the repair of burn wounds and evaluates the biological properties and wound repair effects of DADM in implantation experiments in Kunming mice. Specific-pathogen-free (SPF) Kunming mice were used in this study. A deep II° burn wound was created on the dorsum of the mice by an electric heated water bath. The full-thickness wound tissue was harvested. The necrotic tissue and subcutaneous tissue were removed. The denatured dermis was preserved and treated with 0.25% trypsin, 0.5% Triton X-100. The DADM was drilled by laser micro-pore. The biological properties and grafting effects of laser micro-pore burn-DADM were evaluated by morphology, cytokine expression levels and subcutaneous implantation experiments in Kunming mice. We found statistical significance (Ppore burn-DADM (experimental group) compared to the control group (no laser micro-pore burn-DADM). Cytokine expression level was different in the dermal matrixes harvested at various time points after burn (24h, 48h, 72h and infected wound group). Comparing the dermal matrix from 24h burn tissue to infected wound tissue, the expression level of IL-6, MMP-24, VE-cadherin and VEGF were decreased. We found no inflammatory cells infiltration in the dermal matrix were observed in both experimental and control groups (24h burn group), while the obviously vascular infiltration and fiber fusion were observed in the experimental group after subcutaneous implantation experiments. There was better bio-performance, low immunogenicity and better dermal incorporation after treated by laser

  13. Prevention of burn wound conversion by allogeneic keratinocytes cultured on acellular xenodermis

    Czech Academy of Sciences Publication Activity Database

    Matoušková, Eva; Brož, L.; Pokorná, Eva; Königová, R.

    2002-01-01

    Roč. 3, č. 1 (2002), s. 29-35 ISSN 1389-9333 Institutional research plan: CEZ:AV0Z5052915 Keywords : human keratinocytes * tissue engineered skin * dried porcine dermis Subject RIV: EB - Genetics ; Molecular Biology

  14. Healing rates for challenging rotator cuff tears utilizing an acellular human dermal reinforcement graft

    Science.gov (United States)

    Agrawal, Vivek

    2012-01-01

    Purpose: This study presents a retrospective case series of the clinical and structural outcomes (1.5 T MRI) of arthroscopic rotator cuff repair with acellular human dermal graft reinforcement performed by a single surgeon in patients with large, massive, and previously repaired rotator cuff tears. Materials and Methods: Fourteen patients with mean anterior to posterior tear size 3.87 ± 0.99 cm (median 4 cm, range 2.5–6 cm) were enrolled in the study and were evaluated for structural integrity using a high-field (1.5 T) MRI at an average of 16.8 months after surgery. The Constant-Murley scores, the Flexilevel Scale of Shoulder Function (Flex SF), scapular plane abduction, and strength were analyzed. Results: MRI results showed that the rotator cuff repair was intact in 85.7% (12/14) of the patients studied. Two patients had a Sugaya Type IV recurrent tear (2 of 14; 14.3%), which were both less than 1 cm. The Constant score increased from a preoperative mean of 49.72 (range 13–74) to a postoperative mean of 81.07 (range 45–92) (P value = 0.009). Flexilevel Scale of Shoulder Function (Flex SF) Score normalized to a 100-point scale improved from a preoperative mean of 53.69 to a postoperative mean of 79.71 (P value = 0.003). The Pain Score improved from a preoperative mean of 7.73 to a postoperative mean of 13.57 (P value = 0.008). Scapular plane abduction improved from a preoperative mean of 113.64° to a postoperative mean of 166.43° (P value = 0.010). The strength subset score improved from a preoperative mean of 1.73 kg to a postoperative mean of 7.52 kg (P value = 0.006). Conclusions: This study presents a safe and effective technique that may help improve the healing rates of large, massive, and revision rotator cuff tears with the use of an acellular human dermal allograft. This technique demonstrated favorable structural healing rates and statistically improved functional outcomes in the near term. Level of Evidence: 4. Retrospective case series. PMID

  15. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    Science.gov (United States)

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  16. Aplicaciones de la dermis artificial para la prevención y tratamiento de cicatrices hipertróficas y contracturas Artificial dermis aplications to prevent and treat hypertrofyc scars and skin retractions

    Directory of Open Access Journals (Sweden)

    I. Ferreiro González

    2012-03-01

    Full Text Available En nuestro centro hospitalario fueron ingresados 517 pacientes por quemaduras a lo largo de los últimos 8 años, de los cuales 48 fueron reconstruidos con dermis artificial. Presentamos un grupo de 8 grandes quemados en los que aplicamos Integra® en el periodo agudo y en el periodo de secuelas, con el propósito de tratar o prevenir la formación de cicatrices hipertróficas y contracturas. Evaluamos las siguientes variables: hematoma, infección y pérdida total o parcial de la dermis artificial. Durante el periodo postoperatorio analizamos la pigmentación, vascularización, pliabilidad y altura de la cicatriz con la escala de Vancouver. Medimos el grado de satisfacción de los pacientes empleando una encuesta con puntuación de 0 a 10. Ninguna de las áreas tratadas con dermis artificial presentó cicatrización patológica y no hubo recurrencia en los pacientes con cicatrices hipertróficas. Observamos que en el quemado agudo, las áreas tratadas con dermis artificial desarrollaron mejor calidad de cicatriz que las áreas tratadas únicamente con injertos de piel. Conseguimos una cobertura satisfactoria de las áreas con exposición tendinosa. Consideramos que en pacientes seleccionados, la dermis artificial puede aplicarse en el periodo agudo de la quemadura en zonas especiales para prevenir contracturas y cicatrices hipertróficas; también puede servir como cobertura de estructuras no injertables con defectos menores de 3 cm., en los que normalmente también un colgajo podría servir para solucionar el problema. Durante la fase crónica de la quemadura, la dermis artificial puede ser útil como tratamiento de contracturas y cicatrices hipertróficas.Over the last 8 years, 517 patients were admitted to our centre with burn injuries; of these, 48 had reconstruction with artificial dermis. We present a group of 8 extensively burned patients, who were treated with Integra�� during the acute and later phases to prevent and treat

  17. Complete horizontal skin cell resurfacing and delayed vertical cell infiltration into porcine reconstructive tissue matrix compared to bovine collagen matrix and human dermis.

    Science.gov (United States)

    Mirastschijski, Ursula; Kerzel, Corinna; Schnabel, Reinhild; Strauss, Sarah; Breuing, Karl-Heinz

    2013-10-01

    Xenogenous dermal matrices are used for hernia repair and breast reconstruction. Full-thickness skin replacement is needed after burn or degloving injuries with exposure of tendons or bones. The authors used a human skin organ culture model to study whether porcine reconstructive tissue matrix (Strattice) is effective as a dermal tissue replacement. Skin cells or split-thickness skin grafts were seeded onto human deepidermized dermis, Strattice, and Matriderm. Cellular resurfacing and matrix infiltration were monitored by live fluorescence imaging, histology, and electron microscopy. Proliferation, apoptosis, cell differentiation, and adhesion were analyzed by immunohistochemistry. Epithelial resurfacing and vertical proliferation were reduced and delayed with both bioartificial matrices compared with deepidermized dermis; however, no differences in apoptosis, cell differentiation, or basement membrane formation were found. Vertical penetration was greatest on Matriderm, whereas no matrix infiltration was found on Strattice in the first 12 days. Uncompromised horizontal resurfacing was greatest with Strattice but was absent with Matriderm. Strattice showed no stimulatory effect on cellular inflammation. Matrix texture and surface properties governed cellular performance on tissues. Although dense dermal compaction delayed vertical cellular ingrowth for Strattice, it allowed uncompromised horizontal resurfacing. Dense dermal compaction may slow matrix decomposition and result in prolonged biomechanical stability of the graft. Reconstructive surgeons should choose the adequate matrix substitute depending on biomechanical requirements at the recipient site. Strattice may be suitable as a dermal replacement at recipient sites with high mechanical load requirements.

  18. Development of a tissue-engineered human oral mucosa equivalent based on an acellular allogeneic dermal matrix: a preliminary report of clinical application to burn wounds.

    Science.gov (United States)

    Iida, Takuya; Takami, Yoshihiro; Yamaguchi, Ryo; Shimazaki, Shuji; Harii, Kiyonori

    2005-01-01

    Tissue-engineered skin equivalents composed of epidermal and dermal components have been widely investigated for coverage of full-thickness skin defects. We developed a tissue-engineered oral mucosa equivalent based on an acellular allogeneic dermal matrix and investigated its characteristics. We also tried and assessed its preliminary clinical application. Human oral mucosal keratinocytes were separated from a piece of oral mucosa and cultured in a chemically-defined medium. The keratinocytes were seeded on to the acellular allogeneic dermal matrix and cultured. Histologically, the mucosa equivalent had a well-stratified epithelial layer. Immunohistochemical study showed that it was similar to normal oral mucosa. We applied this equivalent in one case with an extensive burn wound. The equivalent was transplanted three weeks after the harvest of the patient's oral mucosa and about 30% of the graft finally survived. We conclude that this new oral mucosa equivalent could become a therapeutic option for the treatment of extensive burns.

  19. A Mechanics Model for Sensors Imperfectly Bonded to the Skin for Determination of the Young's Moduli of Epidermis and Dermis

    Science.gov (United States)

    Yuan, J. H.; Shi, Y.; Pharr, M.; Feng, X.; Rogers, John A.; Huang, Yonggang

    2016-01-01

    A mechanics model is developed for the encapsulated piezoelectric thin-film actuators/sensors system imperfectly bonded to the human skin to simultaneously determine the Young's moduli of the epidermis and dermis as well as the thickness of epidermis. PMID:27330219

  20. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells

    Directory of Open Access Journals (Sweden)

    Harpa Marius Mihai

    2015-12-01

    Full Text Available Background: We hypothesized that an ideal heart valve replacement would be acellular valve root scaffolds seeded with autologous stem cells. To test this hypothesis, we prepared porcine acellular pulmonary valves, seeded them with autologous adipose derived stem cells (ADSCs and implanted them in sheep and compared them to acellular valves.

  1. Cleft Palate Fistula Closure Utilizing Acellular Dermal Matrix

    Directory of Open Access Journals (Sweden)

    Omri Emodi, DMD

    2018-03-01

    Full Text Available Summary:. Fistulas represent failure of cleft palate repair. Secondary and tertiary fistula repair is challenging, with high recurrence rates. In the present retrospective study, we review the efficacy of using acellular dermal matrix as an interposition layer for cleft palate fistula closure in 20 consecutive patients between 2013 and 2016. Complete fistula closure was obtained in 16 patients; 1 patient had asymptomatic recurrent fistula; 2 patients had partial closure with reduction of fistula size and minimal nasal regurgitation; 1 patient developed a recurrent fistula without changes in symptoms (success rate of 85%. We conclude that utilizing acellular dermal matrix for cleft palate fistula repair is safe and simple with a high success rate.

  2. Cleft Palate Fistula Closure Utilizing Acellular Dermal Matrix.

    Science.gov (United States)

    Emodi, Omri; Ginini, Jiriys George; van Aalst, John A; Shilo, Dekel; Naddaf, Raja; Aizenbud, Dror; Rachmiel, Adi

    2018-03-01

    Fistulas represent failure of cleft palate repair. Secondary and tertiary fistula repair is challenging, with high recurrence rates. In the present retrospective study, we review the efficacy of using acellular dermal matrix as an interposition layer for cleft palate fistula closure in 20 consecutive patients between 2013 and 2016. Complete fistula closure was obtained in 16 patients; 1 patient had asymptomatic recurrent fistula; 2 patients had partial closure with reduction of fistula size and minimal nasal regurgitation; 1 patient developed a recurrent fistula without changes in symptoms (success rate of 85%). We conclude that utilizing acellular dermal matrix for cleft palate fistula repair is safe and simple with a high success rate.

  3. Advantages of implantation of acellular porcine-derived mesh in the treatment of human rectocele – Case report

    Directory of Open Access Journals (Sweden)

    Tomasz Kościński

    2016-09-01

    The clinical experience and review of the literature by the authors suggest that a porcine-derived acellular mesh is non-cytotoxic, pyrogenic or allergenic, and the application of a biomesh in the management of rectocele is effective and safe, and the risk of mesh erosion is very low.

  4. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion.

    Science.gov (United States)

    Laing, Richard W; Bhogal, Ricky H; Wallace, Lorraine; Boteon, Yuri; Neil, Desley A H; Smith, Amanda; Stephenson, Barney T F; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F; Afford, Simon C; Mergental, Hynek

    2017-11-01

    Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions while maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity, and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2 extraction ratio 13.75 vs 9.43 % ×10 per gram of tissue, P = 0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species, and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid.

  5. Construction of a human corneal stromal equivalent with non-transfected human corneal stromal cells and acellular porcine corneal stromata.

    Science.gov (United States)

    Diao, Jin-Mei; Pang, Xin; Qiu, Yue; Miao, Ying; Yu, Miao-Miao; Fan, Ting-Jun

    2015-03-01

    A tissue-engineered human corneal stroma (TE-HCS) has been developed as a promising equivalent to the native corneal stroma for replacement therapy. However, there is still a crucial need to improve the current approaches to render the TE-HCS equivalent more favorable for clinical applications. At the present study, we constructed a TE-HCS by incubating non-transfected human corneal stromal (HCS) cells in an acellular porcine corneal stromata (aPCS) scaffold in 20% fetal bovine serum supplemented DMEM/F12 (1:1) medium at 37 °C with 5% CO2in vitro. After 3 days of incubation, the constructed TE-HCS had a suitable tensile strength for transplantation, and a transparency that is comparable to native cornea. The TE-HCS had a normal histological structure which contained regularly aligned collagen fibers and differentiated HCS cells with positive expression of marker and functional proteins, mimicking a native HCS. After transplantation into rabbit models, the TE-HCS reconstructed normal corneal stroma in vivo and function well in maintaining corneal clarity and thickness, indicating that the completely biological TE-HCS could be used as a HCS equivalent. The constructed TE-HCS has promising potentials in regenerative medicine and treatment of diseases caused by corneal stromal disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Comparison of a novel bone-tendon allograft with a human dermis-derived patch for repair of chronic large rotator cuff tears using a canine model.

    Science.gov (United States)

    Smith, Matthew J; Cook, James L; Kuroki, Keiichi; Jayabalan, Prakash S; Cook, Cristi R; Pfeiffer, Ferris M; Waters, Nicole P

    2012-02-01

    This study tested a bone-tendon allograft versus human dermis patch for reconstructing chronic rotator cuff repair by use of a canine model. Mature research dogs (N = 15) were used. Radiopaque wire was placed in the infraspinatus tendon (IST) before its transection. Three weeks later, radiographs showed IST retraction. Each dog then underwent 1 IST treatment: debridement (D), direct repair of IST to bone with a suture bridge and human dermis patch augmentation (GJ), or bone-tendon allograft (BT) reconstruction. Outcome measures included lameness grading, radiographs, and ultrasonographic assessment. Dogs were killed 6 months after surgery and both shoulders assessed biomechanically and histologically. BT dogs were significantly (P = .01) less lame than the other groups. BT dogs had superior bone-tendon, tendon, and tendon-muscle integrity compared with D and GJ dogs. Biomechanical testing showed that the D group had significantly (P = .05) more elongation than the other groups whereas BT had stiffness and elongation characteristics that most closely matched normal controls. Radiographically, D and GJ dogs showed significantly more retraction than BT dogs (P = .003 and P = .045, respectively) Histologically, GJ dogs had lymphoplasmacytic infiltrates, tendon degeneration and hypocellularity, and poor tendon-bone integration. BT dogs showed complete incorporation of allograft bone into host bone, normal bone-tendon junctions, and well-integrated allograft tendon. The bone-tendon allograft technique re-establishes a functional IST bone-tendon-muscle unit and maintains integrity of repair in this model. Clinical trials using this bone-tendon allograft technique are warranted. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Influence of the Dermis Thickness on the Results of the Skin Treatment with Monopolar and Bipolar Radiofrequency Currents.

    Science.gov (United States)

    Kruglikov, Ilja L

    2016-01-01

    Electrically layered tissue structure significantly modifies distribution of radiofrequency (RF) current in the dermis and in the subcutaneous adipose tissue comparing to that in a homogeneous medium. On the basis of the simple model of RF current distribution in a two-layer skin containing dermis and subcutis, we assess the influence of the dermal thickness on the current density in different skin layers. Under other equal conditions, current density in the dermis is higher for the skin having thinner dermis. This contradicts the main paradigm of the RF theory stating that treatment results are mainly dependent on the maximal temperature reached in a target tissue, since the best short- and long-term clinical results of RF application to the skin were reported in the areas having thicker dermis. To resolve this contradiction, it is proposed that the long-term effect of RF can be realized through a structural modification of the subcutaneous fat depot adjacent to the treated skin area. Stimulation of these cells located near the interface dermis/subcutis will demand the concentration of applied RF energy in this area and will require the optimal arrangement of RF electrodes on the skin surface.

  8. Influence of the Dermis Thickness on the Results of the Skin Treatment with Monopolar and Bipolar Radiofrequency Currents

    Directory of Open Access Journals (Sweden)

    Ilja L. Kruglikov

    2016-01-01

    Full Text Available Electrically layered tissue structure significantly modifies distribution of radiofrequency (RF current in the dermis and in the subcutaneous adipose tissue comparing to that in a homogeneous medium. On the basis of the simple model of RF current distribution in a two-layer skin containing dermis and subcutis, we assess the influence of the dermal thickness on the current density in different skin layers. Under other equal conditions, current density in the dermis is higher for the skin having thinner dermis. This contradicts the main paradigm of the RF theory stating that treatment results are mainly dependent on the maximal temperature reached in a target tissue, since the best short- and long-term clinical results of RF application to the skin were reported in the areas having thicker dermis. To resolve this contradiction, it is proposed that the long-term effect of RF can be realized through a structural modification of the subcutaneous fat depot adjacent to the treated skin area. Stimulation of these cells located near the interface dermis/subcutis will demand the concentration of applied RF energy in this area and will require the optimal arrangement of RF electrodes on the skin surface.

  9. Yeasts from skin colonization are able to cross the acellular dermal matrix.

    Science.gov (United States)

    Jarros, Isabele Carrilho; Okuno, Érika; Costa, Maiara Ignacio; Veiga, Flávia Franco; de Souza Bonfim-Mendonça, Patricia; Negri, Melyssa Fernanda Norman; Svidzinski, Terezinha Inez Estivalet

    2018-04-01

    In recent decades, the prognosis for burn patients has improved considerably with the development of specialized care. The acellular dermal matrix (ADM) is a totally artificial acellular device that functions to control water loss, prevent penetration by bacteria and allow migration of endothelial cells and fibroblasts from patient tissues. However, little is known about its effectiveness against yeasts. The present study evaluated the capacity of colonization and migration of some human commensal yeasts. Three clinical isolates from skin scales, identified as Candida parapsilosis, Candida glabrata and Rhodotorula mucilaginosa, were used. Their ability to cross the ADM was evaluated. After three days, all isolates had crossed the ADM. C. parapsilosis showed the lowest growth, while R. mucilaginosa showed intermediate and C. glabrata the highest growth. In the plates incubated for seven days, the growth of C. parapsilosis and C. glabrata increased by 1 log over the third day. All isolates have the capacity to colonize and migrate through the matrix, increasing the potential risk to burn patients, who can develop severe and even fatal infections by invasive fungi. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Two Crosslinking Technologies for Superficial Reticular Dermis Injection: A Comparative Ultrasound and Histologic Study

    OpenAIRE

    Micheels, Patrick; Besse, Stéphanie; Sarazin, Didier

    2017-01-01

    Background: Few hyaluronic acid fillers have been developed for superficial injection. Objective: To compare the diffusion and integration properties of cohesive polydensified matrix and Vycross® technology hyaluronic acid fillers with lidocaine following injection into the superficial reticular dermis. Methods and materials: Two subjects received two injections each of cohesive polydensified matrix and Vycross® hyaluronic acid (0.2mL/site) in the superficial reticular dermis of the buttock u...

  11. Chest wall reconstruction with acellular dermal matrix (Strattice™) and a TRAM flap

    DEFF Research Database (Denmark)

    Brunbjerg, Mette Eline; Juhl, Alexander Andersen; Damsgaard, Tine Engberg

    2014-01-01

    Mette Eline Brunbjerg, Alexander Andersen Juhl, Tine E. Damsgaard. "Chest wall reconstruction with acellular dermal matrix (Strattice™) and a TRAM flap.” Acta Oncol. 2013 Jun;52(5):1052-4. Epub 2012 Oct 24. PMID: 23095144......Mette Eline Brunbjerg, Alexander Andersen Juhl, Tine E. Damsgaard. "Chest wall reconstruction with acellular dermal matrix (Strattice™) and a TRAM flap.” Acta Oncol. 2013 Jun;52(5):1052-4. Epub 2012 Oct 24. PMID: 23095144...

  12. Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode.

    Science.gov (United States)

    Zhuo, Shuangmu; Chen, Jianxin; Luo, Tianshu; Zou, Dingsong

    2006-08-21

    A Multimode nonlinear optical imaging technique based on the combination of multichannel mode and Lambda mode is developed to investigate human dermis. Our findings show that this technique not only improves the image contrast of the structural proteins of extracellular matrix (ECM) but also provides an image-guided spectral analysis method to identify both cellular and ECM intrinsic components including collagen, elastin, NAD(P)H and flavin. By the combined use of multichannel mode and Lambda mode in tandem, the obtained in-depth two photon-excited fluorescence (TPEF) and second-harmonic generation (SHG) imaging and TPEF/SHG signals depth-dependence decay can offer a sensitive tool for obtaining quantitative tissue structural and biochemical information. These results suggest that the technique has the potential to provide more accurate information for determining tissue physiological and pathological states.

  13. Tetanus–diphtheria–acellular pertussis vaccination for adults: an update

    Science.gov (United States)

    2017-01-01

    Although tetanus and diphtheria have become rare in developed countries, pertussis is still endemic in some developed countries. These are vaccine-preventable diseases and vaccination for adults is important to prevent the outbreak of disease. Strategies for tetanus, diphtheria, and pertussis vaccines vary from country to country. Each country needs to monitor consistently epidemiology of the diseases and changes vaccination policies accordingly. Recent studies showed that tetanus–diphtheria–acellular pertussis vaccine for adults is effective and safe to prevent pertussis disease in infants. However, vaccine coverage still remains low than expected and seroprevalence of protective antibodies levels for tetanus, diphtheria, and pertussis decline with aging. The importance of tetanus–diphtheria–acellular pertussis vaccine administration should be emphasized for the protection of young adult and elderly people also, not limited to children. PMID:28168170

  14. Immunogenicity and safety of an acellular pertussis, diphtheria ...

    African Journals Online (AJOL)

    Objective. To assess the immunogenicity and safety data for a pentavalent combination vaccine containing acellular pertussis, inactivated poliovirus, and Haemophilus influenzae (Hib) polysaccharide-conjugate antigens. Methods. A DTaP-IPV//PRP~T vaccine (Pentaxim™) was given at 6, 10 and 14 weeks of age to 212 ...

  15. Central role of pyrophosphate in acellular cementum formation.

    Directory of Open Access Journals (Sweden)

    Brian L Foster

    Full Text Available Inorganic pyrophosphate (PP(i is a physiologic inhibitor of hydroxyapatite mineral precipitation involved in regulating mineralized tissue development and pathologic calcification. Local levels of PP(i are controlled by antagonistic functions of factors that decrease PP(i and promote mineralization (tissue-nonspecific alkaline phosphatase, Alpl/TNAP, and those that increase local PP(i and restrict mineralization (progressive ankylosis protein, ANK; ectonucleotide pyrophosphatase phosphodiesterase-1, NPP1. The cementum enveloping the tooth root is essential for tooth function by providing attachment to the surrounding bone via the nonmineralized periodontal ligament. At present, the developmental regulation of cementum remains poorly understood, hampering efforts for regeneration. To elucidate the role of PP(i in cementum formation, we analyzed root development in knock-out ((-/- mice featuring PP(i dysregulation.Excess PP(i in the Alpl(-/- mouse inhibited cementum formation, causing root detachment consistent with premature tooth loss in the human condition hypophosphatasia, though cementoblast phenotype was unperturbed. Deficient PP(i in both Ank and Enpp1(-/- mice significantly increased cementum apposition and overall thickness more than 12-fold vs. controls, while dentin and cellular cementum were unaltered. Though PP(i regulators are widely expressed, cementoblasts selectively expressed greater ANK and NPP1 along the root surface, and dramatically increased ANK or NPP1 in models of reduced PP(i output, in compensatory fashion. In vitro mechanistic studies confirmed that under low PP(i mineralizing conditions, cementoblasts increased Ank (5-fold and Enpp1 (20-fold, while increasing PP(i inhibited mineralization and associated increases in Ank and Enpp1 mRNA.Results from these studies demonstrate a novel developmental regulation of acellular cementum, wherein cementoblasts tune cementogenesis by modulating local levels of PP(i, directing and

  16. Role of Demyelination Efficiency within Acellular Nerve Scaffolds during Nerve Regeneration across Peripheral Defects

    Directory of Open Access Journals (Sweden)

    Meiqin Cai

    2017-01-01

    Full Text Available Hudson’s optimized chemical processing method is the most commonly used chemical method to prepare acellular nerve scaffolds for the reconstruction of large peripheral nerve defects. However, residual myelin attached to the basal laminar tube has been observed in acellular nerve scaffolds prepared using Hudson’s method. Here, we describe a novel method of producing acellular nerve scaffolds that eliminates residual myelin more effectively than Hudson’s method through the use of various detergent combinations of sulfobetaine-10, sulfobetaine-16, Triton X-200, sodium deoxycholate, and peracetic acid. In addition, the efficacy of this new scaffold in repairing a 1.5 cm defect in the sciatic nerve of rats was examined. The modified method produced a higher degree of demyelination than Hudson’s method, resulting in a minor host immune response in vivo and providing an improved environment for nerve regeneration and, consequently, better functional recovery. A morphological study showed that the number of regenerated axons in the modified group and Hudson group did not differ. However, the autograft and modified groups were more similar in myelin sheath regeneration than the autograft and Hudson groups. These results suggest that the modified method for producing a demyelinated acellular scaffold may aid functional recovery in general after nerve defects.

  17. [Clinical application of artificial dermis combined with basic fibroblast growth factor in the treatment of cicatrix and deep skin wounds].

    Science.gov (United States)

    Liu, Yang; Zhang, Yilan; Huang, Yalan; Luo, Gaoxing; Peng, Yizhi; Yan, Hong; Luo, Qizhi; Zhang, Jiaping; Wu, Jun; Peng, Daizhi

    2016-04-01

    To observe the effects of artificial dermis combined with basic fibroblast growth factor (bFGF) on the treatment of cicatrix and deep skin wounds. The clinical data of 72 patients with wounds repaired with artificial dermis, hospitalized in our unit from October 2010 to April 2015, conforming to the study criteria, were retrospectively analyzed. The types of wounds were wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone, in a total number of 102. Wounds were divided into artificial dermis group (A, n=60) and artificial dermis+ bFGF group (B, n=42) according to whether or not artificial dermis combined with bFGF. In group A, after release and resection of cicatrices or thorough debridement of deep skin wounds, artificial dermis was directly grafted to wounds in the first stage operation. After complete vascularization of artificial dermis, wounds were repaired with autologous split-thickness skin grafts in the second stage operation. In group B, all the procedures were exactly the same as those in group A except that artificial dermis had been soaked in bFGF for 30 min before grafting. Operation area, complete vascularization time of artificial dermis, survival of skin grafts, and the follow-up condition of wounds in the two groups were recorded. Data were processed with t test and Fisher's exact test. (1) Operation areas of wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in the two groups were about the same (with t values from -1.853 to -0.200, P values above 0.05). Complete vascularization time of artificial dermis in wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in group B were respectively (15.6 ± 2.9), (14.7 ± 2.7), and (20.3 ± 4.4) d, and they were shorter by an

  18. A New Human-Derived Acellular Dermal Matrix for Breast Reconstruction Available for the European Market: Preliminary Results.

    Science.gov (United States)

    Folli, Secondo; Curcio, Annalisa; Melandri, Davide; Bondioli, Elena; Rocco, Nicola; Catanuto, Giuseppe; Falcini, Fabio; Purpura, Valeria; Mingozzi, Matteo; Buggi, Federico; Marongiu, Francesco

    2018-04-01

    The introduction of acellular dermal matrices (ADMs) contributed to the growing diffusion of direct-to-implant breast reconstruction (DTI-BR) following mastectomy for breast cancer. According to specific legislations, European specialists could not benefit from the use of human-derived ADMs, even though most evidence in the literature are available for this kind of device, showed optimal outcomes in breast reconstruction. The Skin Bank of the Bufalini Hospital (Cesena, Italy) obtained in 2009 the approval for the production and distribution of a new human cadaver-donor-derived ADM (named with the Italian acronym, MODA, for matrice omologa dermica acellulata) from the Italian National Transplant Center and National Health Institute. We report preliminary results of MODA application in direct-to-implant breast reconstruction following nipple-areola complex (NAC)-sparing mastectomy for breast cancer treatment. We prospectively enrolled all women undergoing NAC-sparing mastectomy for breast cancer and DTI-BR in our breast surgical unit from June 2015 to January 2017. We enrolled a selected population without previous chest wall irradiation, not being heavy tobacco smokers or diabetic, with a BMI MODA in direct-to-implant breast reconstruction following NAC-sparing mastectomy for breast cancer treatment. This is particularly relevant for the European market, where no other human-derived devices are available for breast reconstruction due to regulatory restrictions. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  19. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    International Nuclear Information System (INIS)

    Mathapati, Santosh; Bishi, Dillip Kumar; Guhathakurta, Soma; Cherian, Kotturathu Mammen; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Verma, Rama Shanker

    2013-01-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  20. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mathapati, Santosh; Bishi, Dillip Kumar [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India); Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Guhathakurta, Soma [Departmet of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Cherian, Kotturathu Mammen [Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Venugopal, Jayarama Reddy; Ramakrishna, Seeram [Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Verma, Rama Shanker, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  1. Method for detection of a suspect viral deoxyribonucleic acid in an acellular biological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Berninger, M S

    1982-10-06

    A method for evaluating an acellular biological fluid for the presence of a suspect viral DNA, such as DNA of the Hepatitis-B virus, is described. The acellular biological fluid is treated to immobilize in denatured form the DNAs including the suspect viral DNA on a solid substrate. This substrate is contacted with a solution including radioisotopically-labelled suspect viral denatured DNA to renature the immobilized suspect viral native DNA. The solid substrate is then evaluated for radioisotopically-labelled suspect viral renatured DNA.

  2. Method for detection of a suspect viral deoxyribonucleic acid in an acellular biological fluid

    International Nuclear Information System (INIS)

    Berninger, M.S.

    1982-01-01

    A method for evaluating an acellular biological fluid for the presence of a suspect viral DNA, such as DNA of the Hepatitis-B virus, is described. The acellular biological fluid is treated to immobilize in denatured form the DNAs including the suspect viral DNA on a solid substrate. This substrate is contacted with a solution including radioisotopically-labelled suspect viral denatured DNA to renature the immobilized suspect viral native DNA. The solid substrate is then evaluated for radioisotopically-labelled suspect viral renatured DNA. (author)

  3. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction.

    Science.gov (United States)

    Courtman, D W; Pereira, C A; Kashef, V; McComb, D; Lee, J M; Wilson, G J

    1994-06-01

    There is evidence to suggest that the cellular components of homografts and bioprosthetic xenografts may contribute to calcification or immunogenic reactions. A four-step detergent and enzymatic extraction process has been developed to remove cellular components from bovine pericardial tissue. The process results in an acellular matrix material consisting primarily of elastin, insoluble collagen, and tightly bound glycosaminoglycans. Light and electron microscopy confirmed that nearly all cellular constituents are removed without ultrastructural evidence of damage to fibrous components. Collagen denaturation temperatures remained unaltered. Biochemical analysis confirmed the retention of collagen and elastin and some differential extraction of glycosaminoglycans. Low strain rate fracture testing and high strain rate viscoelastic characterization showed that, with the exception of slightly increased stress relaxation, the mechanical properties of the fresh tissue were preserved in the pericardial acellular matrix. Crosslinking of the material in glutaraldehyde or poly(glycidyl ether) produced mechanical changes consistent with the same treatments of fresh tissue. The pericardial acellular matrix is a promising approach to the production of biomaterials for heart valve or cardiovascular patching applications.

  4. The use of allodermis prepared from Euro skin bank to prepare autologous tissue engineered skin for clinical use.

    Science.gov (United States)

    Deshpande, P; Ralston, D R; MacNeil, S

    2013-09-01

    Over the past two decades a range of 3D models for human skin have been described. Some include native collagen and intrinsic basement membrane proteins and fibroblasts, others are based on xenogeneic collagen or synthetic supports often without fibroblasts. The aim of this study was to look at the influence of media calcium, basement membrane and fibroblasts on the quality of 3D tissue engineered skin produced using human de-epidermized acellular dermis. In this study we deliberately used Euro skin as the source of the donor dermis to examine to what extent this could provide an effective dermal substrate for producing 3D skin for clinical use. Keratinocytes were cultured in the presence and absence of fibroblasts and both with and without basement membrane on decellularized dermis at calcium concentrations ranging from 250μM to 1.6mM over a period of 14 days. Results showed the formation of a well attached epithelium with many of the features of normal skin in the presence of a basement membrane. This was largely independent of the presence of fibroblasts and not greatly influenced by the concentration of calcium in the media. However there was a clear requirement for physiological levels of calcium in the formation of a stratified epithelium in the absence of a basement membrane. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  5. Increased number of mast cells in the dermis in actinic keratosis lesions effectively treated with imiquimod.

    Science.gov (United States)

    Oyama, Satomi; Funasaka, Yoko; Tsuchiya, Shin-Ichi; Kawana, Seiji; Saeki, Hidehisa

    2017-08-01

    Actinic keratosis (AK) is a cutaneous cancer in situ which develops as a result of excessive exposure to ultraviolet (UV). Toll-like receptor (TLR)7 agonist imiquimod is a topical immune response modifier and is effective for the treatment of non-melanoma skin cancers. Recently, the diagnostic role of the dermatoscope has been reported in the course of treatment of AK. In addition, mast cells are now considered to contribute to both the innate and adaptive immune systems in topical imiquimod therapy. We assessed the effect of imiquimod treatment by dermatoscopic and immunohistochemical findings in 14 patients with a total of 21 AK lesions. With the dermatoscope, though the mean erythema score was not significantly different between the cured lesions and the unresponsive lesions, the erythema/red pseudo-network ("strawberry") pattern was decreased significantly in the cured lesions. By immunohistochemistry, the number of Ki-67-positive proliferative cells in the epidermis was decreased and that of CD117-positive mast cells in the dermis was increased in the responding lesions. To the best of our knowledge, this is the first study demonstrating that the number of mast cells in the dermis was increased in AK lesions effectively treated with imiquimod. Our present result suggests that mast cells may contribute an antitumor effect in human skin treated with topical imiquimod. © 2017 Japanese Dermatological Association.

  6. Surgical Outcomes of Deep Superior Sulcus Augmentation Using Acellular Human Dermal Matrix in Anophthalmic or Phthisis Socket.

    Science.gov (United States)

    Cho, Won-Kyung; Jung, Su-Kyung; Paik, Ji-Sun; Yang, Suk-Woo

    2016-07-01

    Patients with anophthalmic or phthisis socket suffer from cosmetic problems. To resolve those problems, the authors present the surgical outcomes of deep superior sulcus (DSS) augmentation using acellular dermal matrix in patients with anophthalmic or phthisis socket. The authors retrospectively reviewed anophthalmic or phthisis patients who underwent surgery for DSS augmentation using acellular dermal matrix. To evaluate surgical outcomes, the authors focused on 3 aspects: the possibility of wearing contact prosthesis, the degree of correction of the DSS, and any surgical complications. The degree of correction of DSS was classified as excellent: restoration of superior sulcus enough to remove sunken sulcus shadow; fair: gain of correction effect but sunken shadow remained; or fail: no effect of correction at all. Ten eyes of 10 patients were included. There was a mean 21.3 ± 37.1-month period from evisceration or enucleation to the operation for DSS augmentation. All patients could wear contact prosthesis after the operation (100%). The degree of correction was excellent in 8 patients (80%) and fair in 2. Three of 10 (30%) showed complications: eyelid entropion, upper eyelid multiple creases, and spontaneous wound dehiscence followed by inflammation after stitch removal. Uneven skin surface and paresthesia in the forehead area of the affected eye may be observed after surgery. The overall surgical outcomes were favorable, showing an excellent degree of correction of DSS and low surgical complication rates. This procedure is effective for patients who have DSS in the absence or atrophy of the eyeball.

  7. Acellular Dermal Matrix: Treating Periocular Melanoma in a Patient with Xeroderma Pigmentosa

    Directory of Open Access Journals (Sweden)

    Kamlen Pillay, MBChB

    2017-08-01

    Full Text Available We report a 7-year-old girl with xeroderma pigmentosum (XP, who presented in our clinic with a large melanoma (35 × 50 × 20 mm, Breslow depth 18 mm in the zygomatic-malar area. Palliative surgery was performed to maintain her residual vision and to reduce the pain caused by the compression of local structures. Because of the limited access of autologous skin grafts in pediatric patients with XP who are severely affected, we opted to use an acellular dermal matrix. There was 100% graft uptake, and the pain due to compression by the tumor was alleviated. This case demonstrates that acellular dermal matrices can be safely and effectively used in oncological facial reconstruction, especially in patients with progressive conditions such as XP.

  8. Autologous Dermis Graft Implantation: A Novel Approach to Reinforcement in Giant Hiatal Hernias

    Directory of Open Access Journals (Sweden)

    Balázs Kovács

    2018-01-01

    Full Text Available Objectives. Nonreinforced tensile repair of giant hiatal hernias is susceptible to recurrence, and the role of mesh graft implantation remains controversial. Creating a new and viable choice without the use of high-cost biological allografts is desirable. This study presents the application of dermis graft reinforcement, a cost-efficient, easily adaptable alternative, in graft reinforcement of giant hiatal hernia repairs. Methods. A 62-year-old female patient with recurrent giant hiatal hernia (9 × 11 cm and upside down stomach, immediately following the Belsey repair done in another department, was selected for the pilot procedure. The standard three-stitch nonabsorbable reconstruction of diaphragmatic crura was undertaken via laparoscopic approach. A 12 × 6 cm dermis autograft was harvested from the loose abdominal skin. “U” figure onlay reinforcement of diaphragm closure was secured with titanium staples. The procedure was completed with a standard Dor fundoplication. One- and seven-month follow-ups were conducted. Results. No short-term postoperative complications were observed. One-month follow-up showed normal anatomical location of abdominal viscera on computed tomography imaging. High-resolution manometry showed normal lower esophageal sphincter pressure. Preoperative abdominal complaints were resolved. Procedural costs were lower than the average cost following mesh graft reinforcement. Conclusion. Dermis graft reinforcement is a cheap, easily adaptable procedure in the repair of giant hiatal hernias, even in the setting of laparoscopic reoperative procedure.

  9. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    Science.gov (United States)

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003

  10. Risk of Brain Damage Following Pertussis Immunization with Whole-Cell cf Acellular Vaccines

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-06-01

    Full Text Available Serious neurological disorders reported following whole-cell (WC in comparison to acellular (AC pertussis vaccines (PV were evaluated by the Genetic Centers of America, Silver Spring, MD.

  11. A quantitative method to determine the orientation of collagen fibers in the dermis

    NARCIS (Netherlands)

    Noorlander, Maril L.; Melis, Paris; Jonker, Ard; van Noorden, Cornelis J. F.

    2002-01-01

    We have developed a quantitative microscopic method to determine changes in the orientation of collagen fibers in the dermis resulting from mechanical stress. The method is based on the use of picrosirius red-stained cryostat sections of piglet skin in which collagen fibers reflect light strongly

  12. Use of Porcine Acellular Dermal Matrix as a Dermal Substitute in Rats

    Science.gov (United States)

    Srivastava, Anil; DeSagun, Evangeline Z.; Jennings, Lawrence J.; Sethi, Stephen; Phuangsab, Anan; Hanumadass, Marella; Reyes, Hernan M.; Walter, Robert J.

    2001-01-01

    Objective To examine porcine acellular dermal matrix (ADM) as a xenogenic dermal substitute in a rat model. Summary Background Data Acellular dermal matrix has been used in the treatment of full-thickness skin injuries as an allogenic dermal substitute providing a stable wound base in human and animal studies. Methods Xenogenic and allogenic ADMs were produced by treating porcine or rat skin with Dispase and Triton X-100. Full-thickness skin defects (225 mm2) were created on the dorsum of rats (n = 29), porcine or rat ADMs were implanted in them, and these were overlain with ultrathin split-thickness skin grafts (STSGs). In two adjacent wounds, 0.005- or 0.017-inch-thick autografts were implanted. In other experiments, the antimicrobial agent used during ADM processing (azide or a mixture of antibiotics) and the orientation of the implanted ADM (papillary or reticular side of ADM facing the STSG) were studied. Grafts were evaluated grossly and histologically for 30 days after surgery. Results Significant wound contraction was seen at 14, 20, and 30 days after surgery in wounds receiving xenogenic ADM, allogenic ADM, and thin STSGs. Contraction of wounds containing xenogenic ADM was significantly greater than that of wounds containing allogenic ADM at 30 days after surgery. Graft take was poor in wounds containing xenogenic ADM and moderately good in those containing allogenic ADM. Wound healing was not significantly affected by the antimicrobial agent used during ADM preparation or by the ADM orientation. Conclusion Dispase–Triton-treated allogenic ADM was useful as a dermal substitute in full-thickness skin defects, but healing with xenogenic ADM was poor. PMID:11224629

  13. Creation of an acellular vaginal matrix for potential vaginal augmentation and cloacal repair.

    Science.gov (United States)

    Greco, K V; Jones, L G; Obiri-Yeboa, I; Ansari, T

    2018-05-21

    our aim was to use porcine vagina to create a vaginal matrix and test its cellular biocompatibility. vagina was harvested from pigs and de-cellularised (DC) using a combination of detergents (Triton x-100 and sodium deoxycholate) and enzymes (DNAse/RNAse). the presence of cellular material, collagen structural integrity and basement membrane proteins were assessed histologically. To address cytocompatibility, porcine adipose derived-mesenchymal stem cells (AD-MSC) were harvested from abdominal fat together with vaginal epithelial cells (VEC) and seeded onto the mucosal aspect of the vaginal scaffold. Both cells populations were seeded individually and assessed histologically at days 3 and 10. MAIN OUTCOMES/RESULTS: the combination of enzymes and detergents resulted in a totally acellular matrix with very low DNA amount (control= 97.5ng/μl ± 10.8 vs DC= 40.1 ng/μl ±0.33 p=0.02). The extra cellular matrix (ECM) showed retention of collagen fibres and elastin and a 50% retention in glycosaminoglycan content; (control= 1.18μg/mg ± 0.28 DC = 1.35μg/mg ± 0.1 p=0.03) and an intact basement membrane (positive for both laminin and collagen IV). Seeded scaffolds showed cell attachment with both AD-MSC and VEC at days 3 and 10. it is possible to generate an acellular porcine vaginal matrix capable of supporting cells to reconstruct the vagina for future pre-clinical testing, and holds promise for creating clinically relevant sized tissue for human application. Copyright © 2018. Published by Elsevier Inc.

  14. Outcomes of arthroscopic revision rotator cuff repair with acellular human dermal matrix allograft augmentation.

    Science.gov (United States)

    Hohn, Eric A; Gillette, Blake P; Burns, Joseph P

    2018-05-01

    The purpose was to assess the minimum 2-year patient-reported outcomes and failure rate of patients who underwent revision arthroscopic rotator cuff repair augmented with acellular human dermal matrix (AHDM) allograft for repairable retears. From 2008-2014, patients who underwent revision rotator cuff repair augmented with AHDM with greater than 2 years' follow-up by a single surgeon were retrospectively reviewed. Data regarding surgical history, demographic characteristics, and medical comorbidities were collected. Outcome data included American Shoulder and Elbow Surgeons (ASES) and Single Assessment Numeric Evaluation (SANE) scores, as well as rotator cuff healing on magnetic resonance imaging or ultrasound. Retears and subsequent surgical procedures were characterized. A total of 28 patients met our inclusion criteria, and 23 (82%) were available for follow-up at 2 years. The mean age was 60.1 ± 9.3 years (range, 43-79 years), with a mean follow-up period of 48 ± 23 months. All patients had at least 1 prior rotator cuff repair. Of the 23 patients, 13 (56%) underwent postoperative imaging, and 4 of these 13 (31%) had a retear. A reoperation was performed in 3 of 23 patients (13%). Among the 6 patients with both preoperative and postoperative outcome scores, we saw improvement in the ASES score from 56 to 85 (P = .03) and in the SANE score from 42 to 76 (P = .03). The full cohort's mean postoperative ASES and SANE scores were 77 and 69, respectively. AHDM allograft augmentation is a safe and effective treatment method for patients with full-thickness rotator cuff retears. Further research is needed with larger studies to confirm these findings from our small cohort of patients. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. [Medical information systems in the internet : current data about the dermatologic web site www.dermis.net].

    Science.gov (United States)

    Diepgen, T L; Tanko, Z; Weisshaar, E; Matvijets, A; Simon, M

    2009-12-01

    www.dermis.net was established in 1994 as a dermatological information system with now more than 4,000 pages and over 7,500 dermatological images in an atlas. 1,200 dermatological diagnoses and medical information with 1,100 synonyms can be searched by body location and in alphabetical order. Additionally, there are seven information modules about skin cancer, atopic dermatitis, rosacea, skin care, eczema, fungal diseases and hemorrhoids with links to other medical pages like Cochrane Library. Pediatric skin diseases are covered in PeDOIA. www.dermis.net is meanwhile available in German, English, Spanish, Portuguese, French and Turkish language. Current contents of this information system and user behavior are presented in this paper.

  16. Acellular pertussis vaccines--a question of efficacy.

    Science.gov (United States)

    Olin, P

    1995-06-01

    Whole cell pertussis vaccine is considered to offer at least 80% protection against typical whooping cough. The quest for an equally effective but less reactogenic vaccine is now drawing to a close. During the forthcoming year a number of efficacy trials of acellular pertussis vaccines will be terminated. A variety of vaccines containing one, two, three or five purified pertussis antigens are being tested in Germany, Italy, Senegal and Sweden. About 30,000 infants have been enrolled in placebo-controlled studies and more than 100,000 in whole cell vaccine-controlled trials. The final plans for analysis of a Swedish placebo-controlled trial of whole cell and acellular vaccines is presented. Due to the unexpected high incidence of pertussis in Sweden during 1993-1994, relative risk comparisons between vaccines will be attempted in that trial, in addition to estimating absolute efficacy. A crucial issue is to what extent data may be compared between trials, given differences in design, vaccination schedules, and chosen endpoints. A primary case definition of laboratory-confirmed pertussis with at least 21 days of paroxysmal cough have been adopted in most trials. Pre-planned meta-analysis using this single endpoint will facilitate comparisons between vaccines. Serological correlates to protection in individuals will be sought in the ongoing placebo-controlled trials. The concept of a serological correlate valid for a vaccinated population but not necessarily for the vaccinated individual, as is the case with Hib vaccines, may turn out to be the only alternative to performing large efficacy trials in the future.

  17. Organic composite-mediated surface coating of human acellular bone matrix with strontium.

    Science.gov (United States)

    Huang, Yi-Zhou; Wang, Jing-Jing; Huang, Yong-Can; Wu, Cheng-Guang; Zhang, Yi; Zhang, Chao-Liang; Bai, Lin; Xie, Hui-Qi; Li, Zhao-Yang; Deng, Li

    2018-03-01

    Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Silencing p75NTR prevents proNGF-induced endothelial cell death and development of acellular capillaries in rat retina

    Directory of Open Access Journals (Sweden)

    Ahmed Y Shanab

    Full Text Available Accumulation of the nerve growth factor precursor (proNGF and its receptor p75NTR have been associated with several neurodegenerative diseases in both brain and retina. However, whether proNGF contributes to microvascular degeneration remain unexplored. This study seeks to investigate the mechanism by which proNGF/p75NTR induce endothelial cell (EC death and development of acellular capillaries, a surrogate marker of retinal ischemia. Stable overexpression of the cleavage-resistant proNGF and molecular silencing of p75NTR were utilized in human retinal EC and rat retinas in vivo. Stable overexpression of proNGF decreased NGF levels and induced retinal vascular cell death evident by 1.9-fold increase in acellular capillaries and activation of JNK and cleaved-PARP that were mitigated by p75NTRshRNA. In vitro, overexpression of proNGF did not alter TNF-α level, reduced NGF, however induced EC apoptosis evident by activation of JNK and p38 MAPK, cleaved-PARP. Silencing p75NTR using siRNA restored expression of NGF and TrkA activation and prevented EC apoptosis. Treatment of EC with human-mutant proNGF induced apoptosis that coincided with marked protein interaction and nuclear translocation of p75NTR and the neurotrophin receptor interacting factor. These effects were abolished by a selective p75NTR antagonist. Therefore, targeting p75NTR represents a potential therapeutic strategy for diseases associated with aberrant expression of proNGF.

  19. Adaptive bone formation in acellular vertebrae of sea bass (Dicentrarchus labrax L.)

    NARCIS (Netherlands)

    Kranenbarg, S.; Cleynenbreugel, van T.; Schipper, H.; Leeuwen, van J.L.

    2005-01-01

    Mammalian bone is an active tissue in which osteoblasts and osteoclasts balance bone mass. This process of adaptive modelling and remodelling is probably regulated by strain-sensing osteocytes. Bone of advanced teleosts is acellular yet, despite the lack of osteocytes, it is capable of an adaptive

  20. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2016-03-01

    Full Text Available Our previous study has suggested that downregulated microRNA (miR-29a in denatured dermis might be involved in burn wound healing. However, the exact role of miR-29a in healing of burn injury still remains unclear. Here, we found that expression of miR-29a was notably upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury, and thereafter gradually downregulated compared with control group. By contrast, the expression of collagen, type I, alpha 2 (COL1A2 and vascular endothelial growth factor (VEGF-A were first reduced and subsequently upregulated in denatured dermis tissues and skin fibroblast cells after thermal injury. We further identified COL1A2 as a novel target of miR-29a, which is involved in type I collagen synthesis, and showed that miR-29a negatively regulated the expression level of COL1A2 in skin fibroblast cells. In addition, VEGF-A, another target gene of miR-29a, was also negatively mediated by miR-29a in skin fibroblast cells. Inhibition of miR-29a expression significantly promoted the proliferation and migration of skin fibroblast cells after thermal injury, and knockdown of COL1A2 and VEGF-A reversed the effects of miR-29a on the proliferation and migration of skin fibroblast cells. Furthermore, we found that Notch2/Jagged2 signaling was involved in miR-29a response to burn wound healing. Our findings suggest that downregulated miR-29a in denatured dermis may help burn wound healing in the later phase, probably via upregulation of COL1A2 and VEGF-A expression, which can further enhance type I collagen synthesis and angiogenesis.

  1. [Autogenous platelet-rich plasma gel with acellular xenogeneic dermal matrix for treatment of deep II degree burns].

    Science.gov (United States)

    Hao, Tianzhi; Zhu, Jingmin; Hu, Wenbo; Zhang, Hua; Gao, Zhenhui; Wen, Xuehui; Zhou, Zhi; Lu, Gang; Liu, Jingjie; Li, Wen

    2010-06-01

    To investigate the effectiveness of autogenous platelet-rich plasma (PRP) gel with acellular xenogeneic dermal matrix in the treatment of deep II degree burns. From January 2007 to December 2009, 30 cases of deep II degree burns were treated. There were 19 males and 11 females with an average age of 42.5 years (range, 32-57 years). The burn area was 10% to 48% of total body surface area. The time from burn to hospitalization was 30 minutes to 8 hours. All patients were treated with tangential excision surgery, one side of the wounds were covered with autogenous PRP gel and acellular xenogeneic dermal matrix (PRP group), the other side of the wounds were covered with acellular xenogeneic dermal matrix only (control group). The healing rate, healing time, infection condition, and scar formation were observed. At 7 days after operation, the infection rate in PRP group (6.7%, 2/30) was significantly lower than that in control group (16.7%, 5/30, P deep II degree burns as well as alleviate the scar proliferation.

  2. The human homeobox genes MSX-1, MSX-2, and MOX-1 are differentially expressed in the dermis and epidermis in fetal and adult skin.

    Science.gov (United States)

    Stelnicki, E J; Kömüves, L G; Holmes, D; Clavin, W; Harrison, M R; Adzick, N S; Largman, C

    1997-10-01

    In order to identify homeobox genes which may regulate skin development and possibly mediate scarless fetal wound healing we have screened amplified human fetal skin cDNAs by polymerase chain reaction (PCR) using degenerate oligonucleotide primers designed against highly conserved regions within the homeobox. We identified three non-HOX homeobox genes, MSX-1, MSX-2, and MOX-1, which were differentially expressed in fetal and adult human skin. MSX-1 and MSX-2 were detected in the epidermis, hair follicles, and fibroblasts of the developing fetal skin by in situ hybridization. In contrast, MSX-1 and MSX-2 expression in adult skin was confined to epithelially derived structures. Immunohistochemical analysis of these two genes suggested that their respective homeoproteins may be differentially regulated. While Msx-1 was detected in the cell nucleus of both fetal and adult skin; Msx-2 was detected as a diffuse cytoplasmic signal in fetal epidermis and portions of the hair follicle and dermis, but was localized to the nucleus in adult epidermis. MOX-1 was expressed in a pattern similar to MSX early in gestation but then was restricted exclusively to follicular cells in the innermost layer of the outer root sheath by 21 weeks of development. Furthermore, MOX-1 expression was completely absent in adult cutaneous tissue. These data imply that each of these homeobox genes plays a specific role in skin development.

  3. Three dimensional poly(ε-caprolactone) and silk fibroin nanocomposite fibrous matrix for artificial dermis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Min, E-mail: yiyi1124@gmail.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Chae, Taesik, E-mail: apsiky@gmail.com [Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Sheikh, Faheem A., E-mail: faheem99in@yahoo.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Ju, Hyung Woo, E-mail: anabasjoo@gmail.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Moon, Bo Mi, E-mail: toribom@gmail.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Park, Hyun Jung, E-mail: hyunjungpark869@gmail.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Park, Ye Ri, E-mail: payeri89@gmail.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Park, Chan Hum, E-mail: hlpch@paran.com [Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702 (Korea, Republic of); Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Hallym University, Chuncheon 200-704 (Korea, Republic of)

    2016-11-01

    Ideal dermal substitutes should have comparable physicochemical and biological properties to the natural skin tissue. In this study, we report a novel strategy to “engineer” controlled 3D nanocomposite fibrous matrix of poly(ε-caprolactone) (PCL) and silk fibroin (SF) for an artificial dermis application. Using a custom-designed cold-plate electrospinning and automatic magnet agitation system, up to 6 mm of the thickness was achieved resulting from the accumulation of ice crystal layers on the PCL nanofibers surface-modified with the SF particles. The sacrificed ice crystals induced interconnected macro-pores ranging from tens to hundreds μm. The agitation system introduced uniform distribution of the SF protein within/on the nanofibers, preventing the particles from precipitation and agglomeration. NIH 3T3 fibroblasts proliferated in vitro on the PCL and PCL/SF scaffolds for 7 days, but there was no statistical difference between the groups. Conversely, In vivo rat model studies revealed that the wound healing rate and collagen deposition increased with the SF content within the nanocomposites. The unique 3D construct with the PCL/SF nanocomposite fibers provided desirable spatial cues, surface topography, and surface chemistry for the native cells to infiltrate into the scaffolds. The wound healing potential of the nanocomposites was comparable to the commercial Matriderm® artificial dermis. - Highlights: • 3D macro-porous tissue engineering scaffold constructed with PCL nanofibers and SF nanoparticles. • Fabrication of the PCL/SF nanocomposite fibrous scaffold via a custom-designed cold plate electrospinning (CPE) and automatic magnet agitation (AMA) system. • Comparable wound healing capacity of the PCL/SF scaffolds to the commercial Matriderm® artificial dermis.

  4. Three dimensional poly(ε-caprolactone) and silk fibroin nanocomposite fibrous matrix for artificial dermis

    International Nuclear Information System (INIS)

    Lee, Jung Min; Chae, Taesik; Sheikh, Faheem A.; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Park, Ye Ri; Park, Chan Hum

    2016-01-01

    Ideal dermal substitutes should have comparable physicochemical and biological properties to the natural skin tissue. In this study, we report a novel strategy to “engineer” controlled 3D nanocomposite fibrous matrix of poly(ε-caprolactone) (PCL) and silk fibroin (SF) for an artificial dermis application. Using a custom-designed cold-plate electrospinning and automatic magnet agitation system, up to 6 mm of the thickness was achieved resulting from the accumulation of ice crystal layers on the PCL nanofibers surface-modified with the SF particles. The sacrificed ice crystals induced interconnected macro-pores ranging from tens to hundreds μm. The agitation system introduced uniform distribution of the SF protein within/on the nanofibers, preventing the particles from precipitation and agglomeration. NIH 3T3 fibroblasts proliferated in vitro on the PCL and PCL/SF scaffolds for 7 days, but there was no statistical difference between the groups. Conversely, In vivo rat model studies revealed that the wound healing rate and collagen deposition increased with the SF content within the nanocomposites. The unique 3D construct with the PCL/SF nanocomposite fibers provided desirable spatial cues, surface topography, and surface chemistry for the native cells to infiltrate into the scaffolds. The wound healing potential of the nanocomposites was comparable to the commercial Matriderm® artificial dermis. - Highlights: • 3D macro-porous tissue engineering scaffold constructed with PCL nanofibers and SF nanoparticles. • Fabrication of the PCL/SF nanocomposite fibrous scaffold via a custom-designed cold plate electrospinning (CPE) and automatic magnet agitation (AMA) system. • Comparable wound healing capacity of the PCL/SF scaffolds to the commercial Matriderm® artificial dermis.

  5. Histological fate of abdominal dermis-fat grafts implanted in the temporomandibular joint of the rabbit following condylectomy.

    Science.gov (United States)

    Dimitroulis, G; Slavin, J; Morrison, W

    2011-02-01

    The histological fate of abdominal dermis-fat grafts implanted into the temporomandibular joint (TMJ) following condylectomy was studied. 21 rabbits underwent left TMJ discectomies and condylectomies; 6 were controls (Group A; no graft used); 15 (Group B) had autogenous abdominal grafts transplanted into the left TMJ. Animals were killed after 4, 12 and 20 weeks. Specimens of the TMJ were histologically and histomorphometrically evaluated. At 4 weeks, fat necrosis was clear in all specimens. The dermis component survived and formed cysts with no necrosis. By 12 weeks, viable fat deposits appeared with no evidence of necrotic fat. At 20 weeks, large amounts of viable fat were present in Group B specimens. Group A had no fat, although the missing condyles regenerated. In the presence of viable fat, Group B showed little condyle regeneration 20 weeks after condylectomy. Non-vascularised fat grafts do not survive transplantation, but stimulate neoadipogenesis. The fate of the dermis component of the graft is independent of the fat component. Fat in the joint space disrupts the regeneration of a new condylar head. Neoadipogensis inhibits growth of new bone and cartilage. This has clinical implications for TMJ ankylosis management and preventing heterotopic bone formation around prosthetic joints. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  6. Preparation and Characterization of a Novel Skin Substitute

    OpenAIRE

    Carlotta Castagnoli; Mara Fumagalli; Daniela Alotto; Irene Cambieri; Stefania Casarin; Alessia Ostorero; Raffaella Casimiri; Patrizia Germano; Carla Pezzuto; Maurizio Stella

    2010-01-01

    Autologous epidermal cell cultures (CEA) represent a possibility to treat extensive burn lesions, since they allow a significative surface expansion which cannot be achieved with other surgical techniques based on autologous grafting. Moreover currently available CEA preparations are difficult to handle and their take rate is unpredictable. This study aimed at producing and evaluating a new cutaneous biosubstitute made up of alloplastic acellular glycerolized dermis (AAGD) and CEA to ove...

  7. Acellular porcine xenodermis as a temporary wound cover and substratum for cultured keratinocytes

    Czech Academy of Sciences Publication Activity Database

    Matoušková, Eva; Stehlíček, P.; Veselý, Pavel

    2002-01-01

    Roč. 4, - (2002), s. 83-85 ISSN 1473-2262 Institutional research plan: CEZ:AV0Z5052915 Keywords : wound healing * cultured keratinocytes * dried porcine dermis Subject RIV: EB - Genetics ; Molecular Biology

  8. Lichen planus following tetanus-diphtheria-acellular pertussis vaccination: A case report and review of the literature.

    Science.gov (United States)

    Rosengard, Heather C; Wheat, Chikoti M; Tilson, Matthew P; Cuda, Jonathan D

    2018-01-01

    Lichen planus is an inflammatory dermatosis with a prevalence of approximately 1%. Recent meta-analyses show that patients with hepatitis C virus have a 2.5- to 4.5-fold increased risk of developing lichen planus. Lichen planus has also followed vaccinations and has specifically been attributed to the hepatitis B vaccine, the influenza vaccine, and the tetanus-diphtheria-acellular pertussis vaccine. We describe a case of lichen planus in a hepatitis C virus-infected African American male occurring in temporal association with the administration of the tetanus-diphtheria-acellular pertussis vaccine. The patient's presentation was clinically consistent with lichen planus and confirmed by biopsy. It is likely that many cases of vaccine-induced lichen planus have gone unpublished or unrecognized. In areas with high prevalence of hepatitis C virus infection, we may expect to see more cases of vaccine-induced lichen planus especially in light of the updated Centers for Disease Control and Prevention tetanus-diphtheria-acellular pertussis vaccination recommendations. This case serves to educate healthcare providers about vaccine-induced lichen planus and, in particular, the need to counsel hepatitis C virus-infected patients about a potential risk of developing lichen planus following vaccination. We also reflect on current theories suggesting the T-cell-mediated pathogenesis of lichen planus and the role that hepatitis C virus and toxoid or protein vaccines may play in initiating the disease.

  9. Acellular matrix of bovine pericardium bound with L-arginine

    International Nuclear Information System (INIS)

    Kim, Hyo Joo; Bae, Jin Woo; Kim, Chun Ho; Lee, Jin Woo; Shin, Jung Woog; Park, Ki Dong

    2007-01-01

    Surface immobilization of bioactive molecules onto natural tissues has been interestingly studied for the development of new functional matrices for the replacement of lost or malfunctioning tissues. In this study, an acellular matrix of bovine pericardium (ABP) was chemically modified by the direct coupling of L-arginine after glutaraldehyde (GA) cross-linking. The effects of L-arginine coupling on durability and calcification were investigated and the biocompatibility was evaluated in vitro and in vivo. A four-step detergent and enzymatic extraction process has been utilized to remove cellular components from fresh bovine pericardium (BP). Microscopic observation confirmed that nearly all cellular constituents are removed. Thermal and mechanical properties showed that the durability of L-arginine-treated matrices increased as compared with control ABP and GA-treated ABP. Resistance to collagenase digestion revealed that modified matrices have greater resistance to enzyme digestion than control ABP and GA-treated ABP. The in vivo calcification study demonstrated much less calcium deposition on L-arginine-treated ABP than GA-treated one. In vitro cell viability results showed that ABP modified with L-arginine leads to a significant increase in attachment of human dermal fibroblasts. The obtained results attest to the usefulness of L-arginine-treated ABP matrices for cardiovascular bioprostheses

  10. Acellular matrix of bovine pericardium bound with L-arginine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Joo [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Bae, Jin Woo [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Chun Ho [Laboratory of Tissue Engineering, Korea Cancer Center Hospital, Seoul 139-240 (Korea, Republic of); Lee, Jin Woo [Department of Orthopaedic Surgery, College of Medicine, Yonsei University, Seoul 120-749 (Korea, Republic of); Shin, Jung Woog [Department of Biomedical Engineering, Inje University, Gimhae 621-749 (Korea, Republic of); Park, Ki Dong [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2007-09-15

    Surface immobilization of bioactive molecules onto natural tissues has been interestingly studied for the development of new functional matrices for the replacement of lost or malfunctioning tissues. In this study, an acellular matrix of bovine pericardium (ABP) was chemically modified by the direct coupling of L-arginine after glutaraldehyde (GA) cross-linking. The effects of L-arginine coupling on durability and calcification were investigated and the biocompatibility was evaluated in vitro and in vivo. A four-step detergent and enzymatic extraction process has been utilized to remove cellular components from fresh bovine pericardium (BP). Microscopic observation confirmed that nearly all cellular constituents are removed. Thermal and mechanical properties showed that the durability of L-arginine-treated matrices increased as compared with control ABP and GA-treated ABP. Resistance to collagenase digestion revealed that modified matrices have greater resistance to enzyme digestion than control ABP and GA-treated ABP. The in vivo calcification study demonstrated much less calcium deposition on L-arginine-treated ABP than GA-treated one. In vitro cell viability results showed that ABP modified with L-arginine leads to a significant increase in attachment of human dermal fibroblasts. The obtained results attest to the usefulness of L-arginine-treated ABP matrices for cardiovascular bioprostheses.

  11. Sterile Acellular Dermal Collagen as a Treatment for Rippling Deformity of Breast

    Directory of Open Access Journals (Sweden)

    Brittany Busse

    2014-01-01

    Full Text Available Prosthetic implants are frequently used for breast augmentation and breast reconstruction following mastectomy. Unfortunately, long-term aesthetic results of prosthetic breast restoration may be hindered by complications such as rippling, capsular contracture, and implant malposition. The advent of use of acellular dermal matrices has greatly improved the outcomes of prosthetic breast reconstruction. We describe a case of rippling deformity of breast that was treated using an acellular dermal matrix product, AlloMax. The patient presented with visible rippling of bilateral prosthetic breast implants as well as significant asymmetry of the breasts after multiple excisional biopsies for right breast ductal carcinoma in situ. A 6×10 cm piece of AlloMax was placed on the medial aspect of each breast between the implant and the skin flap. Follow-up was performed at 1 week, 3 months, and 1 year following the procedure. The patient recovered well from the surgery and there were no complications. At her first postoperative follow-up the patient was extremely satisfied with the result. At her 3-month and 1-year follow-up she had no recurrence of her previous deformity and no new deformity.

  12. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations.

    Science.gov (United States)

    Philippeos, Christina; Telerman, Stephanie B; Oulès, Bénédicte; Pisco, Angela O; Shaw, Tanya J; Elgueta, Raul; Lombardi, Giovanna; Driskell, Ryan R; Soldin, Mark; Lynch, Magnus D; Watt, Fiona M

    2018-04-01

    Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss

    Science.gov (United States)

    2015-07-01

    Gamba PG, Conconi MT, Lo Piccolo R, et al. Experimental abdominal wall defect repaired with acellular matrix. Pediatr Surg Int. 2002;18:327–331. 41...tissue was removed (*75mg). Sus- tained release buprenorphine (72 h) was delivered (1.2mg/kg SC) before surgery for pain . Construct preparation...regeneration with a dermis/small intestinal submucosa scaffold in a rat full-thickness abdominal wall defect model. J Biomed Mater Res B Appl Biomater

  14. In vitro acellular dissolution of mineral fibres: A comparative study.

    Science.gov (United States)

    Gualtieri, Alessandro F; Pollastri, Simone; Bursi Gandolfi, Nicola; Gualtieri, Magdalena Lassinantti

    2018-05-04

    The study of the mechanisms by which mineral fibres promote adverse effects in both animals and humans is a hot topic of multidisciplinary research with many aspects that still need to be elucidated. Besides length and diameter, a key parameter that determines the toxicity/pathogenicity of a fibre is biopersistence, one component of which is biodurability. In this paper, biodurability of mineral fibres of social and economic importance (chrysotile, amphibole asbestos and fibrous erionite) has been determined for the first time in a systematic comparative way from in vitro acellular dissolution experiments. Dissolution was possible using the Gamble solution as simulated lung fluid (pH = 4 and at body temperature) so to reproduce the macrophage phagolysosome environment. The investigated mineral fibres display very different dissolution rates. For a 0.25 μm thick fibre, the calculated dissolution time of chrysotile is in the range 94-177 days, very short if compared to that of amphibole fibres (49-245 years), and fibrous erionite (181 years). Diffraction and SEM data on the dissolution products evidence that chrysotile rapidly undergoes amorphization with the formation of a nanophasic silica-rich fibrous metastable pseudomorph as first dissolution step whereas amphibole asbestos and fibrous erionite show minor signs of dissolution even after 9-12 months.

  15. Increased acellular and cellular surface mineralization induced by nanogrooves in combination with a calcium-phosphate coating.

    NARCIS (Netherlands)

    Klymov, A.; Song, J.; Cai, X; Riet, J. te; Leeuwenburgh, S.C.; Jansen, J.A.; Walboomers, X.F.

    2016-01-01

    The current work evaluated the influence of nanoscale surface-topographies in combination with a calcium phosphate (CaP) coating on acellular and cellular surface mineralization. Four groups of substrates were produced, including smooth, grooved (940nm pitch, 430nm groove width, 185nm depth), smooth

  16. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    International Nuclear Information System (INIS)

    Okano, Junko; Kojima, Hideto; Katagi, Miwako; Nakae, Yuki; Terashima, Tomoya; Nakagawa, Takahiko; Kurakane, Takeshi; Okamoto, Naoki; Morohashi, Keita; Maegawa, Hiroshi; Udagawa, Jun

    2015-01-01

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP + ) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP + cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin

  17. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Junko, E-mail: jokano@belle.shiga-med.ac.jp [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Kojima, Hideto; Katagi, Miwako [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakae, Yuki [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Terashima, Tomoya [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakagawa, Takahiko [TMK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto (Japan); Kurakane, Takeshi; Okamoto, Naoki; Morohashi, Keita [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Maegawa, Hiroshi [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Udagawa, Jun [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan)

    2015-06-12

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP{sup +}) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP{sup +} cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin.

  18. In vivo effects of human adipose-derived stem cells reseeding on acellular bovine pericardium in nude mice.

    Science.gov (United States)

    Wu, Qingkai; Dai, Miao; Xu, Peirong; Hou, Min; Teng, Yincheng; Feng, Jie

    2016-01-01

    Tissue-engineered biologic products may be a viable option in the reconstruction of pelvic organ prolapse (POP). This study was based on the hypothesis that human adipose-derived stem cells (hASCs) are viable in acellular bovine pericardium (ABP), when reseeded by two different techniques, and thus, aid in the reconstruction. To investigate the reseeding of hASCs on ABP grafts by using non-invasive bioluminescence imaging (BLI), and to identify the effective hASCs-scaffold combinations that enabled regeneration. Thirty female athymic nude mice were randomly divided into three groups: In the VIVO group, ABPs were implanted in the subcutaneous pockets and enhanced green fluorescent protein luciferase (eGFP·Luc)-hASCs (1 × 10(6) cells/50 µL) were injected on the ABP at the same time. In the VITRO group, the mice were implanted with grafts that ABP were co-cultured with eGFP·Luc-hASCs in vitro. The BLANK group mice were implanted with ABP only. The eGFP·Luc-hASCs reseeded on ABP were analyzed by BLI, histology, and immunohistochemistry. The eGFP·Luc-hASCs reseeded on ABP could be visualized at 12 weeks in vivo. Histology revealed that the VIVO group displayed the highest cell ingrowths, small vessels, and percent of collagen content per unit area. Desmin and α-smooth muscle actin were positive at the same site in the VIVO group cells. However, few smooth muscles were observed in the VITRO and BLANK groups. These results suggest that hASCs reseeded on ABP in vivo during surgery may further enhance the properties of ABP and may promote regeneration at the recipient site, resulting in a promising treatment option for POP. © 2016 by the Society for Experimental Biology and Medicine.

  19. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Wu Minjuan

    2016-01-01

    Full Text Available Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs onto the human acellular amniotic membrane (AAM. The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration.

  20. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2017-10-01

    Full Text Available Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies. Cartilage regeneration was expressed on an absolute 0–100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  1. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; van Kuppevelt, Toin H; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; de Vries, Rob B M; Daamen, Willeke F

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0-100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  2. [Antiseptic effect of compound lysostaphin disinfectant and its preventive effect on infection of artificial dermis after graft on full-thickness skin defect wound in rats].

    Science.gov (United States)

    Jin, J; Zhou, H; Cui, Z C; Wang, L; Luo, P F; Ji, S Z; Hu, X Y; Ma, B; Wang, G Y; Zhu, S H; Xia, Z F

    2018-04-20

    Objective: To study the antiseptic effect of compound lysostaphin disinfectant and its preventive effect on infection of artificial dermis after graft on full-thickness skin defect wound in rats. Methods: (1) Each one standard strain of Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus were selected. Each 20 clinical strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus were collected from those isolated from wound exudates of burn patients hospitalized in our wards from January 2014 to December 2016 according to the random number table. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of compound lysostaphin disinfectant to above-mentioned strains were detected. The experiment was repeated 3 times. Compared with the corresponding standard strain, the clinical strain with higher MIC and/or MBC was considered as having decreased sensitivity to the disinfectant. The percentage of strains of each of the three kinds of bacteria with decreased sensitivity was calculated. (2) Artificial dermis pieces were soaked in compound lysostaphin disinfectant for 5 min, 1 h, 2 h, and 4 h, respectively, with 21 pieces at each time point. After standing for 0 (immediately), 12, 24, 36, 48, 60, 72 h (with 3 pieces at each time point), respectively, the diameters of their inhibition zones to standard strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus were measured. The experiment was repeated 3 times. The shortest soaking time corresponding to the longest standing time, after which the disinfectant-soaked artificial dermis could form an effective inhibition zone (with diameter more than 7 mm), was the sufficient soaking time of the disinfectant to the artificial dermis. (3) Forty Sprague-Dawley rats were divided into post injury day (PID) 3, 7, 14, and 21 sampling groups according to the random number table, with 10 rats in each group. A full-thickness skin

  3. Inhibition of collagen production in scleroderma fibroblast cultures by a connective tissue glycoprotein extracted from normal dermis

    International Nuclear Information System (INIS)

    Maquart, F.X.; Bellon, G.; Cornillet-Stoupy, J.; Randoux, A.; Triller, R.; Kalis, B.; Borel, J.P.

    1985-01-01

    It was shown in a previous paper that a connective tissue glycoprotein (CTGP) extracted from normal rabbit dermis was able to inhibit total protein and collagen syntheses by normal dermis fibroblast cultures. In the present study, the effects of CTGP on scleroderma fibroblasts were investigated. [ 14 C]Proline incorporation into total proteins of the supernatant was not significantly different from that found in controls. By contrast, the amount of collagen, expressed as percentage of total secreted protein, was far higher in scleroderma cultures than in normal ones (14.4% +/- 6.0% vs 4.6% +/- 0.9%). Addition of CTGP to the medium induced a concentration-dependent inhibition of [ 14 C]proline incorporation into proteins from both control and scleroderma cells. In control cultures, no significant decrease of the percentage of collagen was observed, but over 60 micrograms/ml, both cytotoxic effects and inhibition of protein synthesis occurred. In scleroderma cultures, the inhibition was twice as effective on collagen as on noncollagen protein synthesis. The inhibition of collagen secretion was not related either to changes in collagen hydroxylation or to the intracellular catabolism of newly synthesized procollagen

  4. Effects of hydroxyapatite nanostructure on channel surface of porcine acellular dermal matrix scaffold on cell viability and osteogenic differentiation of human periodontal ligament stem cells

    Directory of Open Access Journals (Sweden)

    Ge S

    2013-05-01

    Full Text Available Shaohua Ge,1 Ning Zhao,1 Lu Wang,1 Hong Liu,2 Pishan Yang11Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Periodontology, Shandong University; 2State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, Jinan, People's Republic of ChinaAbstract: A new nanostructured hydroxyapatite-coated porcine acellular dermal matrix (HAp-PADM was fabricated by a biomimetic mineralization method. Human periodontal ligament stem cells were seeded on HAp-PADM and the effects of this scaffold on cell shape, cytoskeleton organization, cell viability, and osteogenic differentiation were examined. Periodontal ligament stem cells cultured on HAp-PADM exhibited different cell shape when compared with those on pure PADM. Moreover, HAp-PADM promoted cell viability and alkaline phosphatase activity significantly. Based on quantitative real-time polymerase chain reaction, the expression of bone-related markers runt-related transcription factor 2 (Runx2, osteopontin (OPN, and osteocalcin (OCN upregulated in the HAp-PADM scaffold. The enhancement of osteogenic differentiation of periodontal ligament stem cells on the HAp-PADM scaffold was proposed based on the research results. The results of this study highlight the micro-nano, two-level, three-dimensional HAp-PADM composite as a promising scaffold for periodontal tissue engineering.Keywords: hydroxyapatite, scaffold, nanostructure, proliferation, differentiation, tissue engineering

  5. Discrimination of collagen in normal and pathological dermis through polarization second harmonic generation

    Science.gov (United States)

    Su, Ping-Jung; Chen, Wei-Liang; Hong, Jin-Bon; Li, Tsung-Hsien; Wu, Ruei-Jr; Chou, Chen-Kuan; Lin, Sung-Jan; Dong, Chen-Yuan

    2010-02-01

    We used polarization-resolved, second harmonic generation (P-SHG) microscopy at single pixel resolution for medical diagnosis of pathological skin dermis, and found that P-SHG can be used to distinguish normal and dermal pathological conditions of keloid, morphea, and dermal elastolysis. We find that the histograms of the d33/d31 ratio for the pathological skins to contain two peak values and to be wider than that of the normal case, suggesting that the pathological dermal collagen fibers tend to be more structurally heterogeneous. Our work demonstrates that pixel-resolved, second-order susceptibility microscopy is effective for detecting heterogeneity in spatial distribution of collagen fibers.

  6. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.

    Science.gov (United States)

    Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A

    2010-08-01

    Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.

  7. Whole-cell or acellular pertussis vaccination in infancy determines IgG subclass profiles to DTaP booster vaccination

    NARCIS (Netherlands)

    van der Lee, Saskia; Sanders, Elisabeth A.M.; Berbers, Guy A M; Buisman, Anne-Marie

    2018-01-01

    Introduction Duration of protection against pertussis is shorter in adolescents who have been immunized with acellular pertussis (aP) in infancy compared with adolescents who received whole-cell pertussis (wP) vaccines in infancy, which is related to immune responses elicited by these priming

  8. Whole-cell or acellular pertussis vaccination in infancy determines IgG subclass profiles to DTaP booster vaccination.

    NARCIS (Netherlands)

    van der Lee, Saskia; Sanders, Elisabeth A M; Berbers, Guy A M; Buisman, Anne-Marie

    2018-01-01

    Duration of protection against pertussis is shorter in adolescents who have been immunized with acellular pertussis (aP) in infancy compared with adolescents who received whole-cell pertussis (wP) vaccines in infancy, which is related to immune responses elicited by these priming vaccines. To better

  9. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap.

    Science.gov (United States)

    Zhu, Changlai; Huang, Jing; Xue, Chengbin; Wang, Yaxian; Wang, Shengran; Bao, Shuangxi; Chen, Ruyue; Li, Yuan; Gu, Yun

    2017-12-27

    Extracellular/acellular matrix has been attracted much research interests for its unique biological characteristics, and ACM modified neural scaffolds shows the remarkable role of promoting peripheral nerve regeneration. In this study, skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) were used as parent cells to generate acellular(ACM) for constructing a ACM-modified neural scaffold. SKP-SCs were co-cultured with chitosan nerve guidance conduits (NGC) and silk fibroin filamentous fillers, followed by decellularization to stimulate ACM deposition. This NGC-based, SKP-SC-derived ACM-modified neural scaffold was used for bridging a 10 mm long rat sciatic nerve gap. Histological and functional evaluation after grafting demonstrated that regenerative outcomes achieved by this engineered neural scaffold were better than those achieved by a plain chitosan-silk fibroin scaffold, and suggested the benefits of SKP-SC-derived ACM for peripheral nerve repair. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  10. Structural and biochemical changes in dermis of sea cucumber (Stichopus japonicus) during autolysis in response to cutting the body wall.

    Science.gov (United States)

    Liu, Yu-Xin; Zhou, Da-Yong; Liu, Zi-Qiang; Lu, Ting; Song, Liang; Li, Dong-Mei; Dong, Xiu-Ping; Qi, Hang; Zhu, Bei-Wei; Shahidi, Fereidoon

    2018-02-01

    The autolysis of sea cucumber body wall is caused by endogenous proteolysis of its structural elements. However, changes in collagen fibrils, collagen fibres and microfibrils, the major structural elements in sea cucumber body wall during autolysis are less clear. Autolysis of sea cucumber (S. japonicus) was induced by cutting the body wall, and the structural and biochemical changes in its dermis were investigated using electron microscopy, differential scanning calorimetry, infrared spectroscopy, electrophoresis, and chemical analysis. During autolysis, both collagen fibres and microfibrils gradually degraded. In contrast, damage to microfibrils was more pronounced. Upon massive autolysis, collagen fibres disaggregated into collagen fibril bundles and individual fibrils due to the fracture of interfibrillar bridges. Meanwhile, excessive unfolding of collagen fibrils occurred. However, there was only slight damage to collagen monomers. Therefore, structural damage in collagen fibres, collagen fibrils and microfibrils rather than monomeric collagen accounts for autolysis of S. japonicus dermis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Porcine dermis compared with polypropylene mesh for laparoscopic sacrocolpopexy: a randomized controlled trial.

    Science.gov (United States)

    Culligan, Patrick J; Salamon, Charbel; Priestley, Jennifer L; Shariati, Amir

    2013-01-01

    To compare the surgical outcomes 12 months after laparoscopic sacrocolpopexy performed with porcine dermis and the current gold standard of polypropylene mesh. Patients scheduled for laparoscopic sacrocolpopexy were eligible for this randomized controlled trial. Both our clinical research nurse and the patients were blinded as to which material was used. Our primary end point was objective anatomic cure defined as no pelvic organ prolapse quantification (POP-Q) points Stage 2 or greater at any postoperative interval. Our sample size calculation called for 57 patients in each group to achieve 90% power to detect a 23% difference in objective anatomic cure at 12 months (α=0.05). Our secondary end point was clinical cure. Any patient with a POP-Q point greater than zero, or Point C less than or equal to -5, or any complaints of prolapse symptoms whatsoever on Pelvic Floor Distress Inventory-20 or Pelvic Floor Impact Questionnaire, Short Form 7, or reoperation for prolapse were considered "clinical failures"; the rest were "clinical cures." Statistical comparisons were performed using the χ or independent samples t test as appropriate. As expected, there were no preoperative differences between the porcine (n=57) and mesh (n=58) groups. The 12-month objective anatomic cure rates for the porcine and mesh groups were 80.7% and 86.2%, respectively (P=.24), and the "clinical cure" rates for the porcine and mesh groups were 84.2% and 89.7%, respectively (P=.96). Pelvic Floor Distress Inventory-20 and Pelvic Floor Impact Questionnaire, Short Form 7 score improvements were significant for both groups with no differences found between groups. There were no major operative complications. There were similar outcomes in subjective or objective results 12 months after laparoscopic sacrocolpopexy performed with either porcine dermis or polypropylene mesh. ClinicalTrials.gov, www.clinicaltrials.gov, NCT00564083. I.

  12. [Application of the xenogenic acellular dermal matrix membrane application used in the postoperative tissue shortage repair].

    Science.gov (United States)

    Bai, Yanxia; Yan, Liying; Zhang, Shaoqiang; Shao, Yuan; Yao, Xiaobao; Li, Honghui; Zhao, Ruimin; Zhao, Qian; Zhang, Pengfei; Yang, Qi

    2014-09-01

    To observe the short-term and long-term curative effect of the xenogenic acellular dermal matrix membrane (or joint muscle flap transfer) application used in the 82 cases postoperative tissue shortage repair that after the head neck carcinoma resection. To held the 82 cases head neck carcinoma postoperative mucosa shortage repaired after resection by the xenogenic acellular dermal matrix membrane (or joint muscle flap transfer), 65 cases mucosa shortage wound be directly covered by the repair membrane and the other 17 cases mucosa shortage wound be repaired by the tranfered muscle tissue flap with the repair membrane covered; 53 cases underwent additional postoperative radiotherapy between 2-4 weeks and follow-up in 1, 3, 6, 12, 18, 24, 30, 36, 48, 60 months and observed the operation site repair process through the electronic laryngoscope, observed the patients respiration, swallow, phonation function. Seventy-seven cases patients operation incision reached I phase healing standard, another 5 cases patients operation incision reached II phase healing standard because of the wound infection and fully-recovered through the local wound drainage,dressing process. All the patients tracheal cannula,the stomach tube be extubated successfully and without the local cicatricial constriction occurred. Seventy-eight cases follow up period reached 1 year including 53 cases who underwent postoperative radiotherapy, 49 cases follow up period reached 3 years including 32 cases who underwent postoperative radiotherapy, 14 cases follow up period reached 5 years including 12 cases who underwent postoperative radiotherapy. The patients with static local lesions discovered no reaction such as exclusion, allergy. The application of xenogenic acellular dermal matrix membrane (or joint muscle flap transfer used in in the postoperative tissue shortage repair that after the head neck carcinoma resection have several advantage such as comparatively easily implementation, operation safety

  13. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  14. Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.

    Science.gov (United States)

    Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan

    2016-01-01

    Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation. © 2015 by the Wound Healing Society.

  15. A single-arm trial indirect comparison investigation: a proof-of-concept method to predict venous leg ulcer healing time for a new acellular synthetic matrix matched to standard care control

    OpenAIRE

    Shannon, R; Nelson, A

    2017-01-01

    To compare data on time to healing from two separate cohorts: one treated with a new acellular synthetic matrix plus standard care (SC) and one matched from four large UK pragmatic, randomised controlled trials [venous leg ulcer (VLU) evidence network]. We introduce a new proof-of-concept strategy to a VLU clinical evidence network, propensity score matching and sensitivity analysis to predict the feasibility of the new acellular synthetic matrix plus SC for success in future randomised, cont...

  16. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers

    International Nuclear Information System (INIS)

    Ranjbar-Mohammadi, Marziyeh; Rabbani, Shahram; Bahrami, S. Hajir; Joghataei, M.T.; Moayer, F.

    2016-01-01

    In this study we describe the potential of electrospun curcumin-loaded poly(ε-caprolactone) (PCL)/gum tragacanth (GT) (PCL/GT/Cur) nanofibers for wound healing in diabetic rats. These scaffolds with antibacterial property against methicillin resistant Staphylococcus aureus as gram positive bacteria and extended spectrum β lactamase as gram negative bacteria were applied in two forms of acellular and cell-seeded for assessing their capability in healing full thickness wound on the dorsum of rats. After 15 days, pathological study showed that the application of GT/PCL/Cur nanofibers caused markedly fast wound closure with well-formed granulation tissue dominated by fibroblast proliferation, collagen deposition, complete early regenerated epithelial layer and formation of sweat glands and hair follicles. No such appendage formation was observed in the untreated controls during this duration. Masson's trichrome staining confirmed the increased presence of collagen in the dermis of the nanofiber treated wounds on day 5 and 15, while the control wounds were largely devoid of collagen on day 5 and exhibited less collagen amount on day 15. Quantification analysis of scaffolds on day 5 confirmed that, tissue engineered scaffolds with increased amount of angiogenesis number, granulation tissue area (μ 2 ), fibroblast number, and decreased epithelial gap (μ) can be more effective compared to GT/PCL/Cur nanofibers. - Highlights: • The potential of electrospun curcumin-loaded PCL/gum tragacanth (GT) nanofibers for wound healing in diabetic rats was investigated. • Pathological study showed that the application of GT/PCL/Cur nanofibers caused markedly fast wound closure with well-formed granulation tissue. • Masson’s trichrome staining confirmed the increased presence of collagen in the dermis of the nanofiber treated wounds on day 5 and 15 • Wounds which were treated with cell-seeded scaffolds showed smaller scabs areas in comparison with ones treated with

  17. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar-Mohammadi, Marziyeh, E-mail: m.ranjbar@bonabu.ac.ir [Textile Group, Engineering Department, University of Bonab, Bonab (Iran, Islamic Republic of); Rabbani, Shahram [Tehran Heart Center, Tehran University of Medical Sciences (Iran, Islamic Republic of); Bahrami, S. Hajir [Textile engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Joghataei, M.T. [Cellular and Molecular Research Center, Iran University of Medical Science, Tehran (Iran, Islamic Republic of); Moayer, F. [Department of Pathobiology, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj (Iran, Islamic Republic of)

    2016-12-01

    In this study we describe the potential of electrospun curcumin-loaded poly(ε-caprolactone) (PCL)/gum tragacanth (GT) (PCL/GT/Cur) nanofibers for wound healing in diabetic rats. These scaffolds with antibacterial property against methicillin resistant Staphylococcus aureus as gram positive bacteria and extended spectrum β lactamase as gram negative bacteria were applied in two forms of acellular and cell-seeded for assessing their capability in healing full thickness wound on the dorsum of rats. After 15 days, pathological study showed that the application of GT/PCL/Cur nanofibers caused markedly fast wound closure with well-formed granulation tissue dominated by fibroblast proliferation, collagen deposition, complete early regenerated epithelial layer and formation of sweat glands and hair follicles. No such appendage formation was observed in the untreated controls during this duration. Masson's trichrome staining confirmed the increased presence of collagen in the dermis of the nanofiber treated wounds on day 5 and 15, while the control wounds were largely devoid of collagen on day 5 and exhibited less collagen amount on day 15. Quantification analysis of scaffolds on day 5 confirmed that, tissue engineered scaffolds with increased amount of angiogenesis number, granulation tissue area (μ{sup 2}), fibroblast number, and decreased epithelial gap (μ) can be more effective compared to GT/PCL/Cur nanofibers. - Highlights: • The potential of electrospun curcumin-loaded PCL/gum tragacanth (GT) nanofibers for wound healing in diabetic rats was investigated. • Pathological study showed that the application of GT/PCL/Cur nanofibers caused markedly fast wound closure with well-formed granulation tissue. • Masson’s trichrome staining confirmed the increased presence of collagen in the dermis of the nanofiber treated wounds on day 5 and 15 • Wounds which were treated with cell-seeded scaffolds showed smaller scabs areas in comparison with ones treated

  18. Different IgG-subclass distributions after whole-cell and acellular pertussis infant primary vaccinations in healthy and pertussis infected children

    NARCIS (Netherlands)

    Hendrikx, Lotte H.; Schure, Rose-Minke; Ozturk, Kemal; de Rond, Lia G. H.; de Greeff, S. C.; Sanders, Elisabeth A. M.; Berbers, Guy A. M.; Buisman, Anne-Marie

    2011-01-01

    The distribution of IgG-subclasses provides insight in the immunological mechanisms of protection against whooping cough. We investigated the effect of Dutch whole-cell pertussis and acellular pertussis vaccines administered in infancy on the IgG-subclass distributions in healthy children aged 12

  19. Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors.

    Science.gov (United States)

    Sambi, Manpreet; Chow, Theresa; Whiteley, Jennifer; Li, Mira; Chua, Shawn; Raileanu, Vanessa; Rogers, Ian M

    2017-08-01

    The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.

  20. Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Lü

    Full Text Available Tumor engineering is defined as the construction of three-dimensional (3D tumors in vitro with tissue engineering approaches. The present 3D scaffolds for tumor engineering have several limitations in terms of structure and function. To get an ideal 3D scaffold for tumor culture, A549 human pulmonary adenocarcinoma cells were implanted into immunodeficient mice to establish xenotransplatation models. Tumors were retrieved at 30-day implantation and sliced into sheets. They were subsequently decellularized by four procedures. Two decellularization methods, Tris-Trypsin-Triton multi-step treatment and sodium dodecyl sulfate (SDS treatment, achieved complete cellular removal and thus were chosen for evaluation of histological and biochemical properties. Native tumor tissues were used as controls. Human breast cancer MCF-7 cells were cultured onto the two 3D scaffolds for further cell growth and growth factor secretion investigations, with the two-dimensional (2D culture and cells cultured onto the Matrigel scaffolds used as controls. Results showed that Tris-Trypsin-Triton multi-step treated tumor sheets had well-preserved extracellular matrix structures and components. Their porosity was increased but elastic modulus was decreased compared with the native tumor samples. They supported MCF-7 cell repopulation and proliferation, as well as expression of growth factors. When cultured within the Tris-Trypsin-Triton treated scaffold, A549 cells and human colorectal adenocarcinoma cells (SW-480 had similar behaviors to MCF-7 cells, but human esophageal squamous cell carcinoma cells (KYSE-510 had a relatively slow cell repopulation rate. This study provides evidence that Tris-Trypsin-Triton treated acellular tumor extracellular matrices are promising 3D scaffolds with ideal spatial arrangement, biomechanical properties and biocompatibility for improved modeling of 3D tumor microenvironments.

  1. Preparation and Characterization of a Novel Skin Substitute

    Directory of Open Access Journals (Sweden)

    Carlotta Castagnoli

    2010-01-01

    This study aimed at producing and evaluating a new cutaneous biosubstitute made up of alloplastic acellular glycerolized dermis (AAGD and CEA to overcome these difficulties. A procedure that maintained an intact basement membrane was developed, so as to promote adhesion and growth of CEA on AAGD. Keratinocytes were seeded onto AAGD and cultured up to 21 days. Viability tests and immunohistochemical analysis with specific markers were carried out at 7, 14, and 21 days, to evaluate keratinocyte adhesion, growth, and maturation. Our results support the hypothesis that this newly formed skin substitute could allow its permanent engraftment in clinical application.

  2. Risk of Febrile Seizures and Epilepsy After Vaccination With Diphtheria, Tetanus, Acellular Pertussis, Inactivated Poliovirus, and Haemophilus Influenzae Type b

    DEFF Research Database (Denmark)

    Sun, Yuelian; Christensen, Jakob Christensen; Hviid, Anders

    2012-01-01

    -acellular pertussis–inactivated poliovirus– Haemophilus influenzae type b (DTaP-IPV-Hib) vaccine since September 2002. Objective To estimate the risk of febrile seizures and epilepsy after DTaP-IPV-Hib vaccination given at 3, 5, and 12 months. Design, Setting, and Participants A population-based cohort study of 378...

  3. Diffusion of [2-14C]diazepam across hairless mouse skin and human skin

    International Nuclear Information System (INIS)

    Koch, R.L.; Palicharla, P.; Groves, M.J.

    1987-01-01

    The objectives of this study were to investigate the absorption of diazepam applied topically to the hairless mouse in vivo and to determine the diffusion of diazepam across isolated hairless mouse skin and human skin. [ 14 C]Diazepam was readily absorbed after topical administration to the intact hairless mouse, a total of 75.8% of the 14 C-label applied being recovered in urine and feces. Diazepam was found to diffuse across human and hairless mouse skin unchanged in experiments with twin-chambered diffusion cells. The variation in diffusion rate or the flux for both human and mouse tissues was greater among specimens than between duplicate or triplicate trials for a single specimen. Fluxes for mouse skin (stratum corneum, epidermis, and dermis) were greater than for human skin (stratum corneum and epidermis): 0.35-0.61 microgram/cm2/h for mouse skin vs 0.24-0.42 microgram/cm2/h for human skin. The permeability coefficients for mouse skin ranged from 1.4-2.4 X 10(-2)cm/h compared with 0.8-1.4 X 10(-2)cm/h for human skin. Although human stratum corneum is almost twice the thickness of that of the hairless mouse, the diffusion coefficients for human skin were 3-12 times greater (0.76-3.31 X 10(-6) cm2/h for human skin vs 0.12-0.27 X 10(-6) cm2/h for hairless mouse) because of a shorter lag time for diffusion across human skin. These differences between the diffusion coefficients and diffusion rates (or permeability coefficients) suggest that the presence of the dermis may present some barrier properties. In vitro the dermis may require complete saturation before the diazepam can be detected in the receiving chamber

  4. Differing levels of excision repair in human fetal dermis and brain cells

    International Nuclear Information System (INIS)

    Gibson, R.E.; D'Ambrosio, S.M.; Ohio State Univ., Columbus

    1982-01-01

    The levels of DNA excision repair, as measured by unscheduled DNA synthesis (UDS) and the UV-endonuclease sensitive site assay, were compared in cells derived from human fetal brain and dermal tissues. The level of UDS induced following ultraviolet (UV) irradiation was found to be lower (approx. 60%) in the fetal brain cells than in fetal dermal cells. It was determined, using the UV-endonuclease sensitive site assay to confirm the UDS observation, that 50% of the dimers induced by UV in fetal dermal cells were repaired in 8 h. while only 15% were removed in the fetal brain cells during the same period of time. Even after 24 h. only 44% of the dimers induced by UV in the fetal brain cells were repaired, while 65% were removed in the dermal cells. These data suggest that cultured human fetal brain cells exhibit lower levels of excision repair compared to cultured human fetal dermal cells. (author)

  5. Elevated Immune Response Among Children 4 Years of Age With Pronounced Local Adverse Events After the Fifth Diphtheria, Tetanus, Acellular Pertussis Vaccination.

    NARCIS (Netherlands)

    van der Lee, Saskia; Kemmeren, Jeanet M; de Rond, Lia G H; Öztürk, Kemal; Westerhof, Anneke; de Melker, Hester E; Sanders, Elisabeth A M; Berbers, Guy A M; van der Maas, Nicoline A T; Rümke, Hans C; Buisman, Anne-Marie

    In the Netherlands, acellular pertussis vaccines replaced the more reactogenic whole-cell pertussis vaccines. This replacement in the primary immunization schedule of infants coincided with a significant increase in pronounced local adverse events (AEs) in 4 years old children shortly after the

  6. Investigation of age-related decline of microfibril-associated glycoprotein-1 in human skin through immunohistochemistry study

    Directory of Open Access Journals (Sweden)

    Zheng Q

    2013-12-01

    Full Text Available Qian Zheng, Siming Chen, Ying Chen, John Lyga, Russell Wyborski, Uma SanthanamGlobal Research and Development, Avon Products Inc., Suffern, New York, USAAbstract: During aging, the reduction of elastic and collagen fibers in dermis can lead to skin atrophy, fragility, and aged appearance, such as increased facial wrinkling and sagging. Microfibril-associated glycoprotein-1 (MAGP-1 is an extracellular matrix protein critical for elastic fiber assembly. It integrates and stabilizes the microfibril and elastin matrix network that helps the skin to endure mechanical stretch and recoil. However, the observation of MAGP-1 during skin aging and its function in the dermis has not been established. To better understand age-related changes in the dermis, we investigated MAGP-1 during skin aging and photoaging, using a combination of in vitro and in vivo studies. Gene expression by microarray was performed using human skin biopsies from young and aged female donors. In addition, immunofluorescence analysis on the MAGP-1 protein was performed in dermal fibroblast cultures and in human skin biopsies. Specific antibodies against MAGP-1 and fibrillin-1 were used to examine protein expression and extracellular matrix structure in the dermis via biopsies from donors of multiple age groups. A reduction of the MAGP-1 gene and protein levels were observed in human skin with increasing age and photoexposure, indicating a loss of the functional MAGP-1 fiber network and a lack of structural support in the dermis. Loss of MAGP-1 around the hair follicle/pore areas was also observed, suggesting a possible correlation between MAGP-1 loss and enlarged pores in aged skin. Our findings demonstrate that a critical “pre-elasticity” component, MAGP-1, declines with aging and photoaging. Such changes may contribute to age-related loss of dermal integrity and perifollicular structural support, which may lead to skin fragility, sagging, and enlarged pores

  7. A randomised, double-blind, non-inferiority clinical trial on the safety and immunogenicity of a tetanus, diphtheria and monocomponent acellular pertussis (TdaP) vaccine in comparison to a tetanus and diphtheria (Td) vaccine when given as booster vaccinations to healthy adults

    DEFF Research Database (Denmark)

    Thierry-Carstensen, Birgit; Jordan, Karina; Uhlving, Hilde Hylland

    2012-01-01

    Increasing incidence of pertussis in adolescents and adults has stimulated the development of safe and immunogenic acellular pertussis vaccines for booster vaccination of adolescents and adults.......Increasing incidence of pertussis in adolescents and adults has stimulated the development of safe and immunogenic acellular pertussis vaccines for booster vaccination of adolescents and adults....

  8. Editorial Commentary: The Acellular Osteochondral Allograft, the Emperor Has New Clothes.

    Science.gov (United States)

    Mandelbaum, Bert R; Chahla, Jorge

    2017-12-01

    For larger lesions (>2.5-cm 2 ), clinical evidence and practice have shown that fresh osteochondral allograft have good durability, with 88% return to sport and greater than 75% 10-year survival rates for treatment of large femoral condyle lesions. That said, the use of fresh osteochondral allografts in clinical practice is limited by the availability of acceptable donor tissues for eligible patients in a timely fashion. Significant diminution of chondrocyte viability and density occurs during the preservation and storage period. All osteochondral allografts are not equal in performance and outcome. Chondrocyte density and viability are critical for successful transplantation and outcome in the short and long term. This commentary highlights the high failure rates of tissue when it is acellular. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  9. Placement of a Non–Cross-Linked Porcine-Derived Acellular Dermal Matrix During Preperitoneal Laparoscopic Inguinal Hernia Repair

    OpenAIRE

    Alshkaki, Giath

    2013-01-01

    This retrospective chart review evaluated outcomes following laparoscopic inguinal herniorrhaphies with non–cross-linked intact porcine-derived acellular dermal matrix (PADM) by one surgeon in a community teaching facility hospital. Mesh was sutured and/or tacked in the preperitoneal space. Postoperative visits were scheduled at 2 weeks, 3 months, and 6 months, and then at 6-month intervals up to 2 years. PADM was placed in 14 male patients (mean age, 41.1 years). Seven patients had bilateral...

  10. Cost minimisation analysis of using acellular dermal matrix (Strattice™) for breast reconstruction compared with standard techniques.

    Science.gov (United States)

    Johnson, R K; Wright, C K; Gandhi, A; Charny, M C; Barr, L

    2013-03-01

    We performed a cost analysis (using UK 2011/12 NHS tariffs as a proxy for cost) comparing immediate breast reconstruction using the new one-stage technique of acellular dermal matrix (Strattice™) with implant versus the standard alternative techniques of tissue expander (TE)/implant as a two-stage procedure and latissimus dorsi (LD) flap reconstruction. Clinical report data were collected for operative time, length of stay, outpatient procedures, and number of elective and emergency admissions in our first consecutive 24 patients undergoing one-stage Strattice reconstruction. Total cost to the NHS based on tariff, assuming top-up payments to cover Strattice acquisition costs, was assessed and compared to the two historical control groups matched on key variables. Eleven patients having unilateral Strattice reconstruction were compared to 10 having TE/implant reconstruction and 10 having LD flap and implant reconstruction. Thirteen patients having bilateral Strattice reconstruction were compared to 12 having bilateral TE/implant reconstruction. Total costs were: unilateral Strattice, £3685; unilateral TE, £4985; unilateral LD and implant, £6321; bilateral TE, £5478; and bilateral Strattice, £6771. The cost analysis shows a financial advantage of using acellular dermal matrix (Strattice) in unilateral breast reconstruction versus alternative procedures. The reimbursement system in England (Payment by Results) is based on disease-related groups similar to that of many countries across Europe and tariffs are based on reported hospital costs, making this analysis of relevance in other countries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Complications following Nipple-Sparing Mastectomy and Immediate Acellular Dermal Matrix Implant-based Breast Reconstruction—A Systematic Review and Meta-analysis

    Directory of Open Access Journals (Sweden)

    Lene Nyhøj Heidemann, MD

    2018-01-01

    Conclusion:. The use of acellular dermal matrix in nipple-sparing mastectomy and implant-based breast reconstruction can be done with acceptable complication rates in selected patients. We recommend future studies to include specific definitions when reporting complication rates. Furthermore, future studies should elaborate on demographic characteristics of the included study samples and include predictor analysis to enhance knowledge of high risk patients.

  12. Reactivating the extracellular matrix synthesis of sulfated glycosaminoglycans and proteoglycans to improve the human skin aspect and its mechanical properties

    Directory of Open Access Journals (Sweden)

    Chajra H

    2016-12-01

    Full Text Available Hanane Chajra,1 Daniel Auriol,1 Francine Joly,2 Aurélie Pagnon,3 Magda Rodrigues,4 Sophie Allart,4 Gérard Redziniak,5 Fabrice Lefevre1 1Libragen, Induchem (Givaudan Active Beauty, Toulouse, 2Sephra Pharma, Puteaux, 3Novotec, Bron, 4Centre de Physiopathologie de Toulouse-Purpan, Toulouse, 5Cosmetic Inventions, Antony, France Background: The aim of this study was to demonstrate that a defined cosmetic composition is able to induce an increase in the production of sulfated glycosaminoglycans (sGAGs and/or proteoglycans and finally to demonstrate that the composition, through its combined action of enzyme production and synthesis of macromolecules, modulates organization and skin surface aspect with a benefit in antiaging applications. Materials and methods: Gene expression was studied by quantitative reverse transcription polymerase chain reaction using normal human dermal fibroblasts isolated from a 45-year-old donor skin dermis. De novo synthesis of sGAGs and proteoglycans was determined using Blyscan™ assay and/or immunohistochemical techniques. These studies were performed on normal human dermal fibroblasts (41- and 62-year-old donors and on human skin explants. Dermis organization was studied either ex vivo on skin explants using bi-photon microscopy and transmission electron microscopy or directly in vivo on human volunteers by ultrasound technique. Skin surface modification was investigated in vivo using silicone replicas coupled with macrophotography, and the mechanical properties of the skin were studied using Cutometer. Results: It was first shown that mRNA expression of several genes involved in the synthesis pathway of sGAG was stimulated. An increase in the de novo synthesis of sGAGs was shown at the cellular level despite the age of cells, and this phenomenon was clearly related to the previously observed stimulation of mRNA expression of genes. An increase in the expression of the corresponding core protein of decorin, perlecan

  13. Primary vaccination of adults with reduced antigen-content diphtheria-tetanus-acellular pertussis or dTpa-inactivated poliovirus vaccines compared to diphtheria-tetanus-toxoid vaccines.

    NARCIS (Netherlands)

    Theeten, H.; Rumke, H.C.; Hoppener, F.J.; Vilatimo, R.; Narejos, S.; Damme, P. van; Hoet, B.

    2007-01-01

    OBJECTIVE: To evaluate immunogenicity and reactogenicity of primary vaccination with reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) or dTpa-inactivated poliovirus (dTpa-IPV) vaccine compared to diphtheria-tetanus-toxoid vaccines (Td) in adults > or = 40 years of age without

  14. In vitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model.

    Science.gov (United States)

    Martorina, Francesca; Casale, Costantino; Urciuolo, Francesco; Netti, Paolo A; Imparato, Giorgia

    2017-01-01

    Recent advances in tissue engineering have encouraged researchers to endeavor the production of fully functional three-dimensional (3D) thick human tissues in vitro. Here, we report the fabrication of a fully innervated human skin tissue in vitro that recapitulates and replicates skin sensory function. Previous attempts to innervate in vitro 3D skin models did not demonstrate an effective functionality of the nerve network. In our approach, we initially engineer functional human skin tissue based on fibroblast-generated dermis and differentiated epidermis; then, we promote rat dorsal root ganglion (DRG) neurons axon ingrowth in the de-novo developed tissue. Neurofilaments network infiltrates the entire native dermis extracellular matrix (ECM), as demonstrated by immunofluorescence and second harmonic generation (SHG) imaging. To prove sensing functionality of the tissue, we use topical applications of capsaicin, an agonist of transient receptor protein-vanilloid 1 (TRPV1) channel, and quantify calcium currents resulting from variations of Ca ++ concentration in DRG neurons innervating our model. Calcium currents generation demonstrates functional cross-talking between dermis and epidermis compartments. Moreover, through a computational fluid dynamic (CFD) analysis, we set fluid dynamic conditions for a non-planar skin equivalent growth, as proof of potential application in creating skin grafts tailored on-demand for in vivo wound shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Measurement of tissue-radiation dosage using a thermal steady-state elastic shear wave.

    Science.gov (United States)

    Chang, Sheng-Yi; Hsieh, Tung-Sheng; Chen, Wei-Ru; Chen, Jin-Chung; Chou, Chien

    2017-08-01

    A biodosimeter based on thermal-induced elastic shear wave (TIESW) in silicone acellular porcine dermis (SAPD) at thermal steady state has been proposed and demonstrated. A square slab SAPD treated with ionizing radiation was tested. The SAPD becomes a continuous homogeneous and isotropic viscoelastic medium due to the generation of randomly coiled collagen fibers formed from their bundle-like structure in the dermis. A harmonic TIESW then propagates on the surface of the SAPD as measured by a nanometer-scaled strain-stress response under thermal equilibrium conditions at room temperature. TIESW oscillation frequency was noninvasively measured in real time by monitoring the transverse displacement of the TIESW on the SAPD surface. Because the elastic shear modulus is highly sensitive to absorbed doses of ionizing radiation, this proposed biodosimeter can become a highly sensitive and noninvasive method for quantitatively determining tissue-absorbed dosage in terms of TIESW’s oscillation frequency. Detection sensitivity at 1 cGy and dynamic ranges covering 1 to 40 cGy and 80 to 500 cGy were demonstrated.

  16. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology.

    Science.gov (United States)

    Huang, Yi-Hsun; Tseng, Fan-Wei; Chang, Wen-Hsin; Peng, I-Chen; Hsieh, Dar-Jen; Wu, Shu-Wei; Yeh, Ming-Long

    2017-08-01

    In this study, we developed a novel method using supercritical carbon dioxide (SCCO 2 ) to prepare acellular porcine cornea (APC). Under gentle extraction conditions using SCCO 2 technology, hematoxylin and eosin staining showed that cells were completely lysed, and cell debris, including nuclei, was efficiently removed from the porcine cornea. The SCCO 2 -treated corneas exhibited intact stromal structures and appropriate mechanical properties. Moreover, no immunological reactions and neovascularization were observed after lamellar keratoplasty in rabbits. All transplanted grafts and animals survived without complications. The transplanted APCs were opaque after the operation but became transparent within 2weeks. Complete re-epithelialization of the transplanted APCs was observed within 4weeks. In conclusion, APCs produced by SCCO 2 extraction technology could be an ideal and useful scaffold for corneal tissue engineering. We decellularized the porcine cornea using SCCO 2 extraction technology and investigated the characteristics, mechanical properties, and biocompatibility of the decellularized porcine cornea by lamellar keratoplasty in rabbits. To the best of our knowledge, this is the first report describing the use of SCCO 2 extraction technology for preparation of acellular corneal scaffold. We proved that the cellular components of porcine corneas had been efficiently removed, and the biomechanical properties of the scaffold were well preserved by SCCO 2 extraction technology. SCCO 2 -treated corneas maintained optical transparency and exhibited appropriate strength to withstand surgical procedures. In vivo, the transplanted corneas showed no evidence of immunological reactions and exhibited good biocompatibility and long-term stability. Our results suggested that the APCs developed by SCCO 2 extraction technology could be an ideal and useful scaffold for corneal replacement and corneal tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by

  17. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    Science.gov (United States)

    2016-09-01

    AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...REPORT DATE September 2016 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2015 - 31Aug2016 4. TITLE AND SUBTITLE Acceleration of Regeneration of Large

  18. Nerve Wrapping of the Sciatic Nerve With Acellular Dermal Matrix in Chronic Complete Proximal Hamstring Ruptures and Ischial Apophyseal Avulsion Fractures

    Science.gov (United States)

    Haus, Brian M.; Arora, Danny; Upton, Joseph; Micheli, Lyle J.

    2016-01-01

    Background: Patients with chronic injuries of the proximal hamstring can develop significant impairment because of weakness of the hamstring muscles, sciatic nerve compression from scar formation, or myositis ossificans. Purpose: To describe the surgical outcomes of patients with chronic injury of the proximal hamstrings who were treated with hamstring repair and sciatic neurolysis supplemented with nerve wrapping with acellular dermal matrix. Study Design: Retrospective case series; Level of evidence, 4. Methods: Fifteen consecutive patients with a diagnosis of chronic complete proximal hamstring rupture or chronic ischial tuberosity apophyseal avulsion fracture (mean age, 39.67 years; range, 14-69 years) were treated with proximal hamstring repair and sciatic neurolysis supplemented with nerve wrapping with acellular dermal matrix. Nine patients had preoperative sciatica, and 6 did not. Retrospective chart review recorded clinical outcomes measured by the degree of pain relief, the rate of return to activities, and associated postoperative complications. Results: All 15 patients were followed in the postoperative period for an average of 16.6 months. Postoperatively, there were 4 cases of transient sciatic nerve neurapraxia. Four patients (26%) required postoperative betamethasone sodium phosphate (Celestone Soluspan) injectable suspension USP 6 mg/mL. Among the 9 patients with preoperative sciatica, 6 (66%) had a good or excellent outcome and were able to return to their respective activities/sports; 3 (33%) had persistent chronic pain. One of these had persistent sciatic neuropathy that required 2 surgical reexplorations and scar excision after development of recurrent extraneural scar formation. Among the 6 without preoperative sciatica, 100% had a good or excellent outcomes and 83% returned to their respective activities/sports. Better outcomes were observed in younger patients, as the 3 cases of persistent chronic sciatic pain were in patients older than 45

  19. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Gao, Liang; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2017-09-01

    Type-I/III collagen membranes are advocated for clinical use in articular cartilage repair as being able of inducing chondrogenesis, a technique termed autologous matrix-induced chondrogenesis (AMIC). Area covered: The current in vitro and translational in vivo evidence for chondrogenic effects of solid acellular type-I/III collagen biomaterials. Expert commentary: In vitro, mesenchymal stem cells (MSCs) adhere to the fibers of the type-I/III collagen membrane. No in vitro study provides evidence that a type-I/III collagen matrix alone may induce chondrogenesis. Few in vitro studies compare the effects of type-I and type-II collagen scaffolds on chondrogenesis. Recent investigations suggest better chondrogenesis with type-II collagen scaffolds. A systematic review of the translational in vivo data identified one long-term study showing that covering of cartilage defects treated by microfracture with a type-I/III collagen membrane significantly enhanced the repair tissue volume compared with microfracture alone. Other in vivo evidence is lacking to suggest either improved histological structure or biomechanical function of the repair tissue. Taken together, there is a paucity of in vitro and preclinical in vivo evidence supporting the concept that solid acellular type-I/III collagen scaffolds may be superior to classical approaches to induce in vitro or in vivo chondrogenesis of MSCs.

  20. S100A8 and S100A9 are messengers in the crosstalk between epidermis and dermis modulating a psoriatic milieu in human skin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young; Jang, Sunhyae [Department of Dermatology, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Min, Jeong-Ki; Lee, Kyungmin [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Department of Biomolecular Science, University of Science and Technology, Daejeon (Korea, Republic of); Sohn, Kyung-Cheol [Department of Dermatology, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Lim, Jong-Soon [College of Oriental Medicine, Daejeon University, Daejeon (Korea, Republic of); Im, Myung; Lee, Hae-Eul; Seo, Young-Joon; Kim, Chang-Deok [Department of Dermatology, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Lee, Jeung-Hoon, E-mail: jhoon@cnu.ac.kr [Department of Dermatology, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce cytokine production. Black-Right-Pointing-Pointer Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce migration of immune cells. Black-Right-Pointing-Pointer Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce angiogenesis. Black-Right-Pointing-Pointer S100A8 and/or S100A9 may play a role in the crosstalk between epidermis and dermis in psoriasis. -- Abstract: S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulation of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-{alpha}, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.

  1. S100A8 and S100A9 are messengers in the crosstalk between epidermis and dermis modulating a psoriatic milieu in human skin

    International Nuclear Information System (INIS)

    Lee, Young; Jang, Sunhyae; Min, Jeong-Ki; Lee, Kyungmin; Sohn, Kyung-Cheol; Lim, Jong-Soon; Im, Myung; Lee, Hae-Eul; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon

    2012-01-01

    Highlights: ► Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce cytokine production. ► Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce migration of immune cells. ► Upregulated S100A8 and/or S100A9 in psoriasis epidermis induce angiogenesis. ► S100A8 and/or S100A9 may play a role in the crosstalk between epidermis and dermis in psoriasis. -- Abstract: S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulation of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-α, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.

  2. Management of an irradiated anophthalmic socket following dermis-fat graft rejection: A case report

    Directory of Open Access Journals (Sweden)

    Raizada Kuldeep

    2008-01-01

    Full Text Available Dermis-fat graft (DFG is often the only promising option in cases of severely contracted sockets. However, there is an increased risk of graft failure in irradiated sockets with decreased vascularity. In such difficult cases, repeat DFG implantation also has higher risks of graft failure. We describe an ingenious method of successful management of an irradiated anophthalmic socket following DFG infection and necrosis, with acceptable cosmetic results. At surgery, an orbital impression was taken with ophthalmic grade alginate. Based on this measurement, a custom-made stem pressure socket-expander made up of high density polymethyl methacrylate (PMMA was fitted, a week post surgery and kept in situ for six weeks. On review, the fornices had considerably deepened. The expander device was removed and the patient was now fitted with a custom-made thicker prosthesis made up of high-density PMMA. The patient has followed up for a year subsequently and the prosthesis has remained stable.

  3. Nerve stepping stone has minimal impact in aiding regeneration across long acellular nerve allografts.

    Science.gov (United States)

    Yan, Ying; Hunter, Daniel A; Schellhardt, Lauren; Ee, Xueping; Snyder-Warwick, Alison K; Moore, Amy M; Mackinnon, Susan E; Wood, Matthew D

    2018-02-01

    Acellular nerve allografts (ANAs) yield less consistent favorable outcomes compared with autografts for long gap reconstructions. We evaluated whether a hybrid ANA can improve 6-cm gap reconstruction. Rat sciatic nerve was transected and repaired with either 6-cm hybrid or control ANAs. Hybrid ANAs were generated using a 1-cm cellular isograft between 2.5-cm ANAs, whereas control ANAs had no isograft. Outcomes were assessed by graft gene and marker expression (n = 4; at 4 weeks) and motor recovery and nerve histology (n = 10; at 20 weeks). Hybrid ANAs modified graft gene and marker expression and promoted modest axon regeneration across the 6-cm defect compared with control ANA (P nerve gaps with autografts. Muscle Nerve 57: 260-267, 2018. © 2017 Wiley Periodicals, Inc.

  4. Direct 3D cell-printing of human skin with functional transwell system.

    Science.gov (United States)

    Kim, Byoung Soo; Lee, Jung-Seob; Gao, Ge; Cho, Dong-Woo

    2017-06-06

    Three-dimensional (3D) cell-printing has been emerging as a promising technology with which to build up human skin models by enabling rapid and versatile design. Despite the technological advances, challenges remain in the development of fully functional models that recapitulate complexities in the native tissue. Moreover, although several approaches have been explored for the development of biomimetic human skin models, the present skin models based on multistep fabrication methods using polydimethylsiloxane chips and commercial transwell inserts could be tackled by leveraging 3D cell-printing technology. In this paper, we present a new 3D cell-printing strategy for engineering a 3D human skin model with a functional transwell system in a single-step process. A hybrid 3D cell-printing system was developed, allowing for the use of extrusion and inkjet modules at the same time. We began by revealing the significance of each module in engineering human skin models; by using the extrusion-dispensing module, we engineered a collagen-based construct with polycaprolactone (PCL) mesh that prevented the contraction of collagen during tissue maturation; the inkjet-based dispensing module was used to uniformly distribute keratinocytes. Taking these features together, we engineered a human skin model with a functional transwell system; the transwell system and fibroblast-populated dermis were consecutively fabricated by using the extrusion modules. Following this process, keratinocytes were uniformly distributed onto the engineered dermis by the inkjet module. Our transwell system indicates a supportive 3D construct composed of PCL, enabling the maturation of a skin model without the aid of commercial transwell inserts. This skin model revealed favorable biological characteristics that included a stabilized fibroblast-stretched dermis and stratified epidermis layers after 14 days. It was also observed that a 50 times reduction in cost was achieved and 10 times less medium was

  5. Blood Vessel-Derived Acellular Matrix for Vascular Graft Application

    Directory of Open Access Journals (Sweden)

    Luigi Dall’Olmo

    2014-01-01

    Full Text Available To overcome the issues connected to the use of autologous vascular grafts and artificial materials for reconstruction of small diameter (<6 mm blood vessels, this study aimed to develop acellular matrix- (AM- based vascular grafts. Rat iliac arteries were decellularized by a detergent-enzymatic treatment, whereas endothelial cells (ECs were obtained through enzymatic digestion of rat skin followed by immunomagnetic separation of CD31-positive cells. Sixteen female Lewis rats (8 weeks old received only AM or previously in vitro reendothelialized AM as abdominal aorta interposition grafts (about 1 cm. The detergent-enzymatic treatment completely removed the cellular part of vessels and both MHC class I and class II antigens. One month after surgery, the luminal surface of implanted AMs was partially covered by ECs and several platelets adhered in the areas lacking cell coverage. Intimal hyperplasia, already detected after 1 month, increased at 3 months. On the contrary, all grafts composed by AM and ECs were completely covered at 1 month and their structure was similar to that of native vessels at 3 months. Taken together, our findings show that prostheses composed of AM preseeded with ECs could be a promising approach for the replacement of blood vessels.

  6. Acellular dermal matrix based nipple reconstruction: A modified technique

    Directory of Open Access Journals (Sweden)

    Raghavan Vidya

    2017-09-01

    Full Text Available Nipple areolar reconstruction (NAR has evolved with the advancement in breast reconstruction and can improve self-esteem and, consequently, patient satisfaction. Although a variety of reconstruction techniques have been described in the literature varying from nipple sharing, local flaps to alloplastic and allograft augmentation, over time, loss of nipple projection remains a major problem. Acellular dermal matrices (ADM have revolutionised breast reconstruction more recently. We discuss the use of ADM to act as a base plate and strut to give support to the base and offer nipple bulk and projection in a primary procedure of NAR with a local clover shaped dermal flap in 5 breasts (4 patients. We used 5-point Likert scales (1 = highly unsatisfied, 5 = highly satisfied to assess patient satisfaction. Median age was 46 years (range: 38–55 years. Nipple projection of 8 mm, 7 mm, and 7 mms were achieved in the unilateral cases and 6 mm in the bilateral case over a median 18 month period. All patients reported at least a 4 on the Likert scale. We had no post-operative complications. It seems that nipple areolar reconstruction [NAR] using ADM can achieve nipple projection which is considered aesthetically pleasing for patients.

  7. Radiologic-Pathologic Correlation: Acellular Dermal Matrix (Alloderm®) Used in Breast Reconstructive Surgery.

    Science.gov (United States)

    Lee, Christine U; Bobr, Aleh; Torres-Mora, Jorge

    2017-01-01

    Acellular dermal matrix (ADM) such as Alloderm ® is sometimes used in tissue reconstruction in primary and reconstructive breast surgeries. As ADM is incorporated into the native tissues, the evolving imaging findings that would correlate with varying degrees of host migration and neoangiogenesis into the matrix can be challenging to recognize. In the setting of a palpable or clinical area of concern after breast reconstructive surgery following breast cancer, confident diagnosis of a mass representing ADM rather than recurring or developing disease can be challenging. Such diagnostic imaging uncertainties generally result in short-term imaging and clinical follow-up, but occasionally, biopsy is performed for histopathological confirmation of benignity. A case of biopsy-proven Alloderm ® is described. To the best of our knowledge, this is the first radiologic-pathologic correlation of ADM in the literature.

  8. An Individualized 3-Dimensional Designed and Printed Conformer After Dermis Fat Grafting for Complex Sockets.

    Science.gov (United States)

    Mourits, Daphne L; Remmers, Jelmer S; Tan, Stevie H; Moll, Annette C; Hartong, Dyonne T

    2018-04-03

    To introduce a novel technique to design individually customized conformers for postenucleation sockets with dermis fat implants. We use a 3-dimensional scan of the frontal face/orbit and eyelid contour to design an individualized conformer. This polymethylmetacrylate printed conformer is adapted to patients' socket, palpebral fissures, horizontal eyelid aperture, curvature of the eyelids, and mean diameter of patients' contralateral eye. Sutures through holes in the inferior part of the conformer and in the extension can be placed to fixate the conformer and anchor fornix deepening sutures. A correct fitting conformer can be printed and attached to the socket and eyelids. The shape of this conformer can be used subsequently postsurgically to design the ocular prosthesis. Presurgical planning is important to anticipate for a functional socket to adequately fit an artificial eye. The presented technique using 3-dimensional imaging, designing, and printing promises to prevent conformer extrusion and forniceal shortening.

  9. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin.

    Science.gov (United States)

    Cavinato, Maria; Jansen-Dürr, Pidder

    2017-08-01

    Due to its ability to cross the epidermis and reach the upper dermis where it causes cumulative DNA damage and increased oxidative stress, UVB is considered the most harmful component of sunlight to the skin. The consequences of chronic exposition to UVB are related to photoaging and photocarcinogenesis. There are limitations to the study of human skin aging and for this reason the use of models is required. Human dermal fibroblasts submitted to mild and repeated doses of UVB are considered a versatile model to study UVB effects in the process of skin photoaging, which depends on the accumulation of senescent cells, in particular in the dermis. Here we provide updated information about the current model of UVB-induced senescence with special emphasis on the process of protein quality control. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, Ilona J.; Spiekstra, Sander W. [Department of Dermatology, VU University Medical Center, Amsterdam (Netherlands); Gruijl, Tanja D. de [Department of Dermatology Medical Oncology, VU University Medical Center, Amsterdam (Netherlands); Gibbs, Susan, E-mail: s.gibbs@acta.nl [Department of Dermatology, VU University Medical Center, Amsterdam (Netherlands); Department of Oral Cell Biology, Academic Center for Dentistry (ACTA), Amsterdam (Netherlands)

    2015-08-15

    After allergen or irritant exposure, Langerhans cells (LC) undergo phenotypic changes and exit the epidermis. In this study we describe the unique ability of MUTZ-3 derived Langerhans cells (MUTZ-LC) to display similar phenotypic plasticity as their primary counterparts when incorporated into a physiologically relevant full-thickness skin equivalent model (SE-LC). We describe differences and similarities in the mechanisms regulating LC migration and plasticity upon allergen or irritant exposure. The skin equivalent consisted of a reconstructed epidermis containing primary differentiated keratinocytes and CD1a{sup +} MUTZ-LC on a primary fibroblast-populated dermis. Skin equivalents were exposed to a panel of allergens and irritants. Topical exposure to sub-toxic concentrations of allergens (nickel sulfate, resorcinol, cinnamaldehyde) and irritants (Triton X-100, SDS, Tween 80) resulted in LC migration out of the epidermis and into the dermis. Neutralizing antibody to CXCL12 blocked allergen-induced migration, whereas anti-CCL5 blocked irritant-induced migration. In contrast to allergen exposure, irritant exposure resulted in cells within the dermis becoming CD1a{sup −}/CD14{sup +}/CD68{sup +} which is characteristic of a phenotypic switch of MUTZ-LC to a macrophage-like cell in the dermis. This phenotypic switch was blocked with anti-IL-10. Mechanisms previously identified as being involved in LC activation and migration in native human skin could thus be reproduced in the in vitro constructed skin equivalent model containing functional LC. This model therefore provides a unique and relevant research tool to study human LC biology in situ under controlled in vitro conditions, and will provide a powerful tool for hazard identification, testing novel therapeutics and identifying new drug targets. - Highlights: • MUTZ-3 derived Langerhans cells integrated into skin equivalents are fully functional. • Anti-CXCL12 blocks allergen-induced MUTZ-LC migration.

  11. DFT:B3LYP/3-21G theoretical insights on the confocal Raman experimental observations in skin dermis of healthy young, healthy elderly, and diabetic elderly women

    Science.gov (United States)

    Téllez Soto, Claudio Alberto; Pereira, Liliane; dos Santos, Laurita; Rajasekaran, Ramu; Fávero, Priscila; Martin, Airton Abrahão

    2016-12-01

    In the confocal Raman spectra of skin dermis, the band area in the spectral region of proline and hydroxyproline varies according to the age and health condition of the volunteers, classified as healthy young women, healthy elderly women, and diabetic elderly women. Another observation refers to the intensity variation and negative Raman shift of the amide I band. To understand these effects, we adopted a model system using the DFT/B3LYP:3-21G procedure, considering the amino acid chain formed by glycine, hydroxyproline, proline, and alanine, which interacts with two and six water molecules. Through these systems, polarizability variations were analyzed to correlate its values with the observed Raman intensities of the three groups of volunteers and to assign the vibrational spectra of the skin dermis. As a way to correlate other experimental trends, we propose a model of chemical reaction of water interchange between the bonding amino acids, in which water molecules are attached with glucose by hydrogen bonds. The theoretical results are in accordance with the observed experimental trends.

  12. Artificial Dermis Graft on the Mandible Lacking Periosteum After Excision of an Ossifying Fibroma: A Case Report

    Directory of Open Access Journals (Sweden)

    Chun-Ming Chen

    2007-07-01

    Full Text Available Collagen-based grafts have often been used as artificial tissue substitutes for the repair of tissue and organ defects. It is common surgical knowledge that autogenous or artificial skin grafts take well on the intact periosteum of bone. However, many experienced surgeons indicate that auto-genous or artificial skin grafts subsist poorly on the bone surface without periosteum. Therefore, primary closure is usually recommended in the wound healing of exposed bone. Vestibuloplasty might be needed to create enough depth of vestibule in the future. In this case report, we describe a peripheral ossifying fibroma surgically excised leaving a bony defect, which was covered by a piece of artificial dermis. Satisfactory result of the repaired surgical defect showed no need of vestibuloplasty after 6 years of follow-up.

  13. Prospective randomized comparison of scar appearances between cograft of acellular dermal matrix with autologous split-thickness skin and autologous split-thickness skin graft alone for full-thickness skin defects of the extremities.

    Science.gov (United States)

    Yi, Ju Won; Kim, Jae Kwang

    2015-03-01

    The purpose of this study was to evaluate the clinical outcomes of cografting of acellular dermal matrix with autologous split-thickness skin and autologous split-thickness skin graft alone for full-thickness skin defects on the extremities. In this prospective randomized study, 19 consecutive patients with full-thickness skin defects on the extremities following trauma underwent grafting using either cograft of acellular dermal matrix with autologous split-thickness skin graft (nine patients, group A) or autologous split-thickness skin graft alone (10 patients, group B) from June of 2011 to December of 2012. The postoperative evaluations included observation of complications (including graft necrosis, graft detachment, or seroma formation) and Vancouver Scar Scale score. No statistically significant difference was found regarding complications, including graft necrosis, graft detachment, or seroma formation. At week 8, significantly lower Vancouver Scar Scale scores for vascularity, pliability, height, and total score were found in group A compared with group B. At week 12, lower scores for pliability and height and total scores were identified in group A compared with group B. For cases with traumatic full-thickness skin defects on the extremities, a statistically significant better result was achieved with cograft of acellular dermal matrix with autologous split-thickness skin graft than with autologous split-thickness skin graft alone in terms of Vancouver Scar Scale score. Therapeutic, II.

  14. Spectra from 2.5-15 μm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin

    International Nuclear Information System (INIS)

    Viator, John A; Choi, Bernard; Peavy, George M; Kimel, Sol; Nelson, J Stuart

    2003-01-01

    Infrared measurements have been used to profile or image biological tissue, including human skin. Usually, analysis of such measurements has assumed that infrared absorption is due to water and collagen. Such an assumption may be reasonable for soft tissue, but introduction of exogenous agents into skin or the measurement of tissue phantoms has raised the question of their infrared absorption spectrum. We used Fourier transform infrared spectroscopy in attenuated total reflection mode to measure the infrared absorption spectra, in the range of 2-15 μm, of water, polyacrylamide, Intralipid, collagen gels, four hyperosmotic clearing agents (glycerol, 1,3-butylene glycol, trimethylolpropane, Topicare TM ), and ex vivo human stratum corneum and dermis. The absorption spectra of the phantom materials were similar to that of water, although additional structure was noted in the range of 6-10 μm. The absorption spectra of the clearing agents were more complex, with molecular absorption bands dominating between 6 and 12 μm. Dermis was similar to water, with collagen structure evident in the 6-10 μm range. Stratum corneum had a significantly lower absorption than dermis due to a lower content of water. These results suggest that the assumption of water-dominated absorption in the 2.5-6 μm range is valid. At longer wavelengths, clearing agent absorption spectra differ significantly from the water spectrum. This spectral information can be used in pulsed photothermal radiometry or utilized in the interpretation of reconstructions in which a constant μ ir is used. In such cases, overestimating μ ir will underestimate chromophore depth and vice versa, although the effect is dependent on actual chromophore depth. (note)

  15. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rakesh, E-mail: rs05h@fsu.ed [Departments of Chemical Engineering and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  16. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    International Nuclear Information System (INIS)

    Sharma, Rakesh

    2010-01-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  17. Repair of Primary Cleft Palate and Oronasal Fistula With Acellular Dermal Matrix: A Systematic Review and Surgeon Survey.

    Science.gov (United States)

    Simpson, Andrew; Samargandi, Osama A; Wong, Alison; Graham, M Elise; Bezuhly, Michael

    2018-01-01

    The current review and survey aim to assess the effectiveness of acellular dermal matrix (ADM) in the repair of cleft palate and oronasal fistula and to evaluate the current trends of ADM use in palate surgery. A systematic review of English articles was conducted using MEDLINE (1960 to July 1, 2016), the Cochrane Controlled Trials Register (1960 to July 1, 2016), and EMBASE (1991 to July 1, 2016). Additional studies were identified through a review of references cited in initially identified articles. Search terms included "cleft palate," "palatal," "oronasal fistula," "acellular dermal matrix," and "Alloderm®." An online survey was disseminated to members of the American Cleft Palate-Craniofacial Association to assess current trends in ADM use in palate surgery. All studies evaluating the outcome of primary palate repair or repair of oronasal fistula with the use of aceullar dermal matrix products were included in the review. Twelve studies met inclusion criteria for review. Studies were generally of low quality, as indicated by methodological index for non-randomized studies (MINORS) scores ranging from 7 to 14. The pooled estimate for fistula formation after primary palatoplasty following ADM use was 7.1%. The pooled estimate for recurrence of fistula after attempted repair using ADM was 11%. Thirty-six cleft surgeons responded to the online survey study. Of these, 45% used ADM in primary cleft palate repair, while 67% used ADM for repair of oronasal fistulae. Use of ADM products is commonplace in palate surgery. Despite this, there is a paucity of high-quality data demonstrating benefit. Further randomized controlled trials examining ADM in palate surgery are required to help develop structured guidelines and improve care.

  18. Application of Bladder Acellular Matrix in Urinary Bladder Regeneration: The State of the Art and Future Directions

    Directory of Open Access Journals (Sweden)

    Marta Pokrywczynska

    2015-01-01

    Full Text Available Construction of the urinary bladder de novo using tissue engineering technologies is the “holy grail” of reconstructive urology. The search for the ideal biomaterial for urinary bladder reconstruction has been ongoing for decades. One of the most promising biomaterials for this purpose seems to be bladder acellular matrix (BAM. In this review we determine the most important factors, which may affect biological and physical properties of BAM and its regeneration potential in tissue engineered urinary bladder. We also point out the directions in modification of BAM, which include incorporation of exogenous growth factors into the BAM structure. Finally, we discuss the results of the urinary bladder regeneration with cell seeded BAM.

  19. Multiphoton spectroscopy of human skin in vivo

    Science.gov (United States)

    Breunig, Hans G.; Weinigel, Martin; König, Karsten

    2012-03-01

    In vivo multiphoton-intensity images and emission spectra of human skin are reported. Optical sections from different depths of the epidermis and dermis have been measured with near-infrared laser-pulse excitation. While the intensity images reveal information on the morphology, the spectra show emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, melanin, elastin and collagen as well as of second harmonic generation induced by the excitation-light interaction with the dermal collagen network.

  20. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties

    International Nuclear Information System (INIS)

    Farhat, Walid A; Chen Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Yeger, Herman; Sherman, Christopher; Derwin, Kathleen

    2008-01-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization

  1. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    Science.gov (United States)

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  2. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Farhat, Walid A [Department of Surgery, Division of Urology, University of Toronto and Hospital for Sick Children, Toronto, ON M5G 1X8 (Canada); Chen Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Yeger, Herman [Department of Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8 (Canada); Sherman, Christopher [Department of Anatomic Pathology, Sunnybrook and Women' s College Health Sciences Centre, Toronto, ON (Canada); Derwin, Kathleen [Department of Biomedical Engineering, Lerner Research Institute and Orthopaedic Research Center, Cleveland Clinic Foundation, Cleveland, OH (United States)], E-mail: walid.farhat@sickkids.ca

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  3. Synthesis and characterization of injectable, thermosensitive, and biocompatible acellular bone matrix/poly(ethylene glycol)-poly (ε-caprolactone)-poly(ethylene glycol) hydrogel composite.

    Science.gov (United States)

    Ni, Pei-Yan; Fan, Min; Qian, Zhi-Yong; Luo, Jing-Cong; Gong, Chang-Yang; Fu, Shao-Zhi; Shi, Shuai; Luo, Feng; Yang, Zhi-Ming

    2012-01-01

    In orthopedic tissue engineering, the extensively applied acellular bone matrix (ABM) can seldom be prefabricated just right to mold the cavity of the diverse defects, might induce severe inflammation on account of the migration of small granules and usually bring the patients great pain in the treatment. In this study, a new injectable thermosensitive ABM/PECE composite with good biocompatibility was designed and prepared by adding the ABM granules into the triblock copolymer poly(ethylene eglycol)-poly(ε-caprolactone)-poly(ethylene eglycol) (PEG-PCL-PEG, PECE). The PECE was synthesized by ring-opening copolymerization and characterized by ¹H NMR. The ABM was prepared by acellular treatment of natural bone and ground to fine granules. The obtained ABM/PECE composite showed the most important absorption bands of ABM and PECE copolymer in FT-IR spectroscopy and underwent sol-gel phage transition from solution to nonflowing hydrogel at 37°C. SEM results indicated that the ABM/PECE composite with different ABM contents all presented similar porous 3D structure. ABM/PECE composite presented mild cytotoxicity to rat MSCs in vitro and good biocompatibility in the BALB/c mice subcutis up to 4 weeks. In conclusion, all the results confirmed that the injectable thermosensitive ABM/PECE composite was a promising candidate for orthopedic tissue engineering in a minimally-invasive way. Copyright © 2011 Wiley Periodicals, Inc.

  4. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2016-09-01

    Full Text Available Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found. For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies was assessed and outcome data were collected for meta-analysis (151 studies. Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular

  5. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly

  6. Effects of 12-O-tetradecanoylphorbol-13-acetate on the incorporation of labelled precursors into RNA, DNA and protein in epidermis, dermis and subcutis from precancerous mouse skin with reference to enhanced tumorigenesis

    International Nuclear Information System (INIS)

    Bhisey, R.A.; Ramchandani, A.G.; Sirsat, S.M.

    1984-01-01

    The effects of a single application of 1.8 nmol 12-O-tetradecanoylphorbol-13-acetate (TPA) on precursor incorporation into RNA, DNA and protein in the epidermis, dermis and subcutis from 3-methylcholanthrene (MCA) injected precancerous mouse skin were studied at various time points between 3 and 96 h. In the precancerous tissues, the rates of incorporation of [ 3 H]uridine into RNA did not alter appreciably from those in the control tissues; while the rates of [ 3 H]methylthymidine incorporation into DNA were elevated with peaks appearing between 6 and 12 h, at 24 h and at 72 h in epidermis, dermis and subcutis. The rate of incorporation of [ 14 C]leucine into protein was markedly elevated in all the three tissues which showed 3-4 sharp peaks. The maximum stimulation ranged between 14 and 20 times that of the control. A single application of TPA to the precancerous mouse skin induced early stimulation of precursor incorporation into all the three macromolecules in epidermis, dermis and subcutis. The increased stimulation was maintained for 36-72 h. The patterns of incorporation of [ 3 H]methylthymidine into DNA gave rise to 2-3 peaks of elevated uptake in each tissue up to 36-48 h. A lowered rate of DNA synthesis between 48 and 60 h was followed by a peak at 72 h. In each group, epidermal mitotic activity correlated well with spurts of precursor incorporation into cellular DNA. The observations indicate that TPA recruits more cells into the DNA synthetic phase and accelerates selective growth of preneoplastic cells during tumor progression

  7. [Local reactions after diphtheria-tetanus-acellular pertussis vaccines in mice; changes in histopathology at the injection site].

    Science.gov (United States)

    Nagaoka, Chiharu; Katsuta, Tomohiro; Honjo, Ayako; Tateyama, Satoshi; Tokutake, Tadaomi; Arimoto, Yutaka; Nakajima, Natsuki; Goshima, Toshiro; Kato, Tatsuo

    2006-03-01

    Diphtheria-tetanus-acellular pertussis vaccine (DTaP) developed in Japan is now widely used worldwide. DTaP is safer than the diphtheria-tetanus-whole-cell pertussis vaccine (DTwP) and has fewer severe side effects, but local reactions such as redness, swelling, and induration are still reported. The pathophysiological mechanism of these reactions is controversial. To clarify the cause of local reactions, we conducted studies using the mouse model. After administering either one or two abdominal subcutaneous DTaP inoculations, we observed changes in histopathology at the injection site at 24h, 48h, and 7 days. The control group, inoculated with physiologic saline, showed no significant changes either pathologically or with the naked eye. All mice after DTaP vaccination showed indurations at the injection site. Pathologically, we watched leukocyte invasion into or around the site, especially neutrophils and eosinophils. After the first vaccination, the extent of the invasion was strong 24h and 7 days later. At 24h following the second vaccination, a dramatic leukocyte invasion seen persisted at 7days. At 7 days after the first vaccination, peripheral fibrosis had begun, and when a second vaccination was administered, it began even earlier at the second site. These histopathological changes show that local reactions are caused by both inflammatory and allergic responses. Because this mouse study resulted in the same pattern of reactions observed in humans, this method will be useful for studies focusing on local reactions.

  8. Do cells contribute to tendon and ligament biomechanics?

    Directory of Open Access Journals (Sweden)

    Niels Hammer

    Full Text Available Acellular scaffolds are increasingly used for the surgical repair of tendon injury and ligament tears. Despite this increased use, very little data exist directly comparing acellular scaffolds and their native counterparts. Such a comparison would help establish the effectiveness of the acellularization procedure of human tissues. Furthermore, such a comparison would help estimate the influence of cells in ligament and tendon stability and give insight into the effects of acellularization on collagen.Eighteen human iliotibial tract samples were obtained from nine body donors. Nine samples were acellularized with sodium dodecyl sulphate (SDS, while nine counterparts from the same donors remained in the native condition. The ends of all samples were plastinated to minimize material slippage. Their water content was adjusted to 69%, using the osmotic stress technique to exclude water content-related alterations of the mechanical properties. Uniaxial tensile testing was performed to obtain the elastic modulus, ultimate stress and maximum strain. The effectiveness of the acellularization procedure was histologically verified by means of a DNA assay.The histology samples showed a complete removal of the cells, an extensive, yet incomplete removal of the DNA content and alterations to the extracellular collagen. Tensile properties of the tract samples such as elastic modulus and ultimate stress were unaffected by acellularization with the exception of maximum strain.The data indicate that cells influence the mechanical properties of ligaments and tendons in vitro to a negligible extent. Moreover, acellularization with SDS alters material properties to a minor extent, indicating that this method provides a biomechanical match in ligament and tendon reconstruction. However, the given protocol insufficiently removes DNA. This may increase the potential for transplant rejection when acellular tract scaffolds are used in soft tissue repair. Further research

  9. Stiparin: a glycoprotein from sea cucumber dermis that aggregates collagen fibrils.

    Science.gov (United States)

    Trotter, J A; Lyons-Levy, G; Luna, D; Koob, T J; Keene, D R; Atkinson, M A

    1996-07-01

    The interactions between collagen fibrils in many echinoderm connective tissues are rapidly altered by the secretions of resident neurosecretory cells. Recent evidence has suggested that a secreted protein is responsible for the interactions that lead to an increase in tissue stiffness (Trotter and Koob, 1995). Structurally intact collagen fibrils have been isolated from such a connective tissue- the dermis of the sea cucumber Cucumaria frondosa- and used in an assay in vitro to identify a protein that binds to them and causes them to aggregate. This protein has been purified by anion-exchange and molecular sieve chromatography. It is eluted from a MonoQ column at approximately 0.55 M NaCl. Its isoelectric point is 5.2. It elutes from a Superose-6 column in a position corresponding to a molecule with a Stokes radius of 11.5 nm. Its native molecular weight estimated from sedimentation equilibrium analysis under non-denaturing conditions is 375,000, and its monomer molecular weight, estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, is approximately 350,000. Sedimentation velocity measurements indicated for the native molecule a sedimentation coefficient of 11 x 10(-13)s, a diffusion coefficient of 3.274 x 10(-7) cm2s-1, and a frictional ratio of 1.95, which corresponds to a prolate ellipsoid of revolution with an axial ratio of 19. The highly asymmetric structure suggested by the above correlated well with the images obtained by transmission electron microscopy following rotary shadowing, which revealed a flexible structure approximately 125 nm long. Based on its ability to aggregate collagen fibrils, this protein has been named "stiparin," from the Latin stipare, "to pack together."

  10. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy

    Science.gov (United States)

    Adur, Javier; Pelegati, Vitor B.; de Thomaz, Andre A.; D'Souza-Li, Lilia; Assunção, Maria do Carmo; Bottcher-Luiz, Fátima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2012-08-01

    We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.

  11. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells

    International Nuclear Information System (INIS)

    Morganroth, G.S.; Chan, L.S.; Weinstein, G.D.; Voorhees, J.J.; Cooper, K.D.

    1991-01-01

    Determination of the cell types proliferating in the dermis of patients with psoriasis should identify those cells experiencing activation or responding to growth factors in the psoriatic dermal milieu. Toward that end, sections of formalin-fixed biopsies obtained from 3H-deoxyuridine (3H-dU)-injected skin of eight psoriatic patients were immunostained, followed by autoradiography. Proliferating dermal cells exhibit silver grains from tritium emissions. The identity of the proliferating cells could then be determined by simultaneous visualization with antibodies specific for various cell types. UCHL1+ (CD45RO+) T cells (recall antigen-reactive helper T-cell subset) constituted 36.6 +/- 3.1% (mean +/- SEM, n = 6) of the proliferating dermal cells in involved skin, whereas Leu 18+ (CD45RA+) T cells (recall antigen naive T-cell subsets) comprised only 8.7 +/- 1.5% (n = 6). The Factor XIIIa+ dermal perivascular dendritic cell subset (24.9 +/- 1.5% of proliferating dermal cells, n = 6) and Factor VIII+ endothelial cells represented the two other major proliferating populations in lesional psoriatic dermis. Differentiated tissue macrophages, identified by phase microscopy as melanophages or by immunostaining with antibodies to Leu M1 (CD15) or myeloid histiocyte antigen, comprised less than 5% of the proliferating population in either skin type. In addition to calculating the relative proportions of these cells to each other as percent, we also determined the density of cells, in cells/mm2 of tissue. The density of proliferating cells within these populations was increased in involved versus uninvolved skin: UCHL1+, 9.0 +/- 1.7 cells/mm2 versus 1.8 +/- 0.6 cells/mm2, p less than 0.01; Factor XIIIa+, 6.0 +/- 0.7 cells/mm2 versus 1.5 +/- 0.5 cells/mm2, p less than 0.01; Factor VIII+, 5.5 +/- 1.4 cells/mm2 versus 0.0 cells/mm2, p less than 0.05

  12. Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Zi-Qiang; Liu, Yan-Fei; Song, Liang; Dong, Xiu-Ping; Li, Dong-Mei; Zhu, Bei-Wei; Konno, Kunihiko; Shahidi, Fereidoon

    2017-10-01

    Autolysis of sea cucumber, caused by endogenous enzymes, leads to postharvest quality deterioration of sea cucumber. However, the effects of endogenous proteinases on structures of collagen fibres, the major biologically relevant substrates in the body wall of sea cucumber, are less clear. Collagen fibres were prepared from the dermis of sea cucumber (Stichopus japonicus), and the structural consequences of degradation of the collagen fibres caused by endogenous cysteine proteinases (ECP) from Stichopus japonicus were examined. Scanning electron microscopic images showed that ECP caused partial disaggregation of collagen fibres into collagen fibrils by disrupting interfibrillar proteoglycan bridges. Differential scanning calorimetry and Fourier transform infrared analysis revealed increased structural disorder of fibrillar collagen caused by ECP. SDS-PAGE and chemical analysis indicated that ECP can liberate glycosaminoglycan, hydroxyproline and collagen fragments from collagen fibres. Thus ECP can cause disintegration of collagen fibres by degrading interfibrillar proteoglycan bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography.

    Science.gov (United States)

    Boone, Marc; Draye, Jean Pierre; Verween, Gunther; Pirnay, Jean-Paul; Verbeken, Gilbert; De Vos, Daniel; Rose, Thomas; Jennes, Serge; Jemec, Gregor B E; Del Marmol, Véronique

    2014-10-01

    While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decellularization. Human skin samples were incubated with four different agents: Dispase II, NaCl 1 M, sodium dodecyl sulphate (SDS) and Triton X-100. Epidermal splitting, dermo-epidermal junction, acellularity and 3-D architecture of dermal matrices were evaluated by High-definition optical coherence tomography before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found to be equally efficient in the removal of the epidermis from human split-thickness skin allografts. However, a different epidermal splitting level at the dermo-epidermal junction could be observed and confirmed by immunolabelling of collagen type IV and type VII. Epidermal splitting occurred at the level of the lamina densa with dispase II and above the lamina densa (in the lamina lucida) with NaCl. The 3-D architecture of dermal papillae and dermis was more affected by Dispase II on HD-OCT which corresponded with histopathologic (orcein staining) fragmentation of elastic fibres. With SDS treatment, the epidermal removal was incomplete as remnants of the epidermal basal cell layer remained attached to the basement membrane on the dermis. With Triton X-100 treatment

  14. Design and fabrication of human skin by three-dimensional bioprinting.

    Science.gov (United States)

    Lee, Vivian; Singh, Gurtej; Trasatti, John P; Bjornsson, Chris; Xu, Xiawei; Tran, Thanh Nga; Yoo, Seung-Schik; Dai, Guohao; Karande, Pankaj

    2014-06-01

    Three-dimensional (3D) bioprinting, a flexible automated on-demand platform for the free-form fabrication of complex living architectures, is a novel approach for the design and engineering of human organs and tissues. Here, we demonstrate the potential of 3D bioprinting for tissue engineering using human skin as a prototypical example. Keratinocytes and fibroblasts were used as constituent cells to represent the epidermis and dermis, and collagen was used to represent the dermal matrix of the skin. Preliminary studies were conducted to optimize printing parameters for maximum cell viability as well as for the optimization of cell densities in the epidermis and dermis to mimic physiologically relevant attributes of human skin. Printed 3D constructs were cultured in submerged media conditions followed by exposure of the epidermal layer to the air-liquid interface to promote maturation and stratification. Histology and immunofluorescence characterization demonstrated that 3D printed skin tissue was morphologically and biologically representative of in vivo human skin tissue. In comparison with traditional methods for skin engineering, 3D bioprinting offers several advantages in terms of shape- and form retention, flexibility, reproducibility, and high culture throughput. It has a broad range of applications in transdermal and topical formulation discovery, dermal toxicity studies, and in designing autologous grafts for wound healing. The proof-of-concept studies presented here can be further extended for enhancing the complexity of the skin model via the incorporation of secondary and adnexal structures or the inclusion of diseased cells to serve as a model for studying the pathophysiology of skin diseases.

  15. Nuevos sistemas para la administración de activos a la dermis New drug active delivery systems for dermal controlled release

    Directory of Open Access Journals (Sweden)

    B Martínez

    2010-09-01

    Full Text Available El presente trabajo tiene por objetivo la actualización de las diferentes tecnologías, aplicadas para la administración selectiva y controlada de moléculas con actividad biológica a la piel. Se explican los distintos mecanismos y racionales aplicables, así como el potencial de estas modernas formas farmacéuticas para su uso en aplicaciones terapéuticas y cosméticas.The present work review the state of the art technologies, for the administration of drugs and actives to the dermis. Different mechanisms will be discussed as well many examples are included, to summarize the potential of this new pharmaceutical dosage forms for therapeutic, as well cosmetic applications.

  16. Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study.

    Science.gov (United States)

    Baldursson, Baldur Tumi; Kjartansson, Hilmar; Konrádsdóttir, Fífa; Gudnason, Palmar; Sigurjonsson, Gudmundur F; Lund, Sigrún Helga

    2015-03-01

    A novel product, the fish skin acellular dermal matrix (ADM) has recently been introduced into the family of biological materials for the treatment of wounds. Hitherto, these products have been produced from the organs of livestock. A noninferiority test was used to compare the effect of fish skin ADM against porcine small-intestine submucosa extracellular matrix in the healing of 162 full-thickness 4-mm wounds on the forearm of 81 volunteers. The fish skin product was noninferior at the primary end point, healing at 28 days. Furthermore, the wounds treated with fish skin acellular matrix healed significantly faster. These results might give the fish skin ADM an advantage because of its environmental neutrality when compared with livestock-derived products. The study results on these acute full-thickness wounds might apply for diabetic foot ulcers and other chronic full-thickness wounds, and the shorter healing time for the fish skin-treated group could influence treatment decisions. To test the autoimmune reactivity of the fish skin, the participants were tested with the following ELISA (enzyme-linked immunosorbent assay) tests: RF, ANA, ENA, anti ds-DNA, ANCA, anti-CCP, and anticollagen I and II. These showed no reactivity. The results demonstrate the claims of safety and efficacy of fish skin ADM for wound care. © The Author(s) 2015.

  17. Protoporphyrin IX formation and photobleaching in different layers of normal human skin

    DEFF Research Database (Denmark)

    Togsverd-Bo, Katrine; Idorn, Luise W; Philipsen, Peter A

    2012-01-01

    human skin was tape-stripped and incubated with 20% methylaminolevulinate (MAL) or 20% hexylaminolevulinate (HAL) for 3 h. Fluorescence microscopy quantified PpIX accumulation in epidermis, superficial, mid and deep dermis, down to 2 mm. PpIX photobleaching by light-emitting diode (LED, 632 nm, 18......Topical photodynamic therapy (PDT) is used for various skin disorders, and selective targeting of specific skin structures is desirable. The objective was to assess accumulation of PpIX fluorescence and photobleaching within skin layers using different photosensitizers and light sources. Normal...... and 37 J/cm(2)), intense pulsed light (IPL, 500-650 nm, 36 and 72 J/cm(2)) and long-pulsed dye laser (LPDL, 595 nm, 7.5 and 15 J/cm(2)) was measured using fluorescence photography and microscopy. We found higher PpIX fluorescence intensities in epidermis and superficial dermis in HAL-incubated skin than...

  18. Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery.

    Directory of Open Access Journals (Sweden)

    Mattia Francesco Maria Gerli

    Full Text Available Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.

  19. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Science.gov (United States)

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  20. Decellularization of Human Internal Mammary Artery: Biomechanical Properties and Histopathological Evaluation.

    Science.gov (United States)

    Kajbafzadeh, Abdol-Mohammad; Khorramirouz, Reza; Kameli, Seyede Maryam; Hashemi, Javad; Bagheri, Amin

    2017-01-01

    This study undertook to create small-diameter vascular grafts and assess their structure and mechanical properties to withstand arterial implantation. Twenty samples of intact human internal mammary arteries (IMAs) were collected and decellularized using detergent-based methods. To evaluate residual cellular and extracellular matrix (ECM) components, histological analysis was performed. Moreover, collagen typing and ECM structure were analyzed by Picrosirius red and Movat's pentachrome staining. Scanning electron microscopy was also applied to assess microarchitecture of both endothelial and adventitial surfaces of native and decellularized arterial samples. Furthermore, mechanical tests were performed to evaluate the rigidity and suture strength of the arteries. Human IMAs were completely decellularized in all three segments (proximal, middle, and distal). ECM proteins such as collagen and elastic fibers were efficiently preserved and no structural distortion in intima, media, and adventitial surfaces was observed. The parameters of the mechanical tests revealed no significant differences in the mechanical properties of decellularized arteries in comparison to native arteries with considerable strength, suture retention, and stress relaxation (Young's modulus [MPa] = 0.22 ± 0.023 [native] and 0.22 ± 0.015 [acellular]; and suture strength 0.56 ± 0.19 [native] vs. 0.56 ± 0.12 [acellular], respectively). Decellularized IMA represents a potential arterial scaffold as an alternative to autologous grafts for future arterial bypass surgeries. By this technique, microarchitecture and mechanical integrity of decellularized arteries were considerably similar to native arteries. The goal of this study was to introduce an efficient method for complete decellularization of human IMA and evaluate the ECM and biomechanical properties.

  1. Biologic meshes and synthetic meshes in cancer patients: a double-edged sword: differences in production of IL-6 and IL-12 caused by acellular dermal matrices in human immune cells.

    Science.gov (United States)

    Karsten, Maria Margarete; Enders, Sabine; Knabl, Julia; Kirn, Verena; Düwell, Peter; Rack, Brigitte; Blohmer, Jens-Uwe; Mayr, Doris; Dian, Darius

    2018-05-01

    In 2005, Breuing et al. first described the use of acellular dermal matrices (ADMs) in breast cancer patients. ADMs are assumed to be safe to use in an oncologic setting, but data from controlled studies are still needed. Here, we investigate the effects of ADMs on the production of interleukin (IL)-6 and IL-12, key regulators of immune suppression and activation. Strattice (ST), CollaMend (CM), and Biodesign (BD) biologic meshes and TiLoop, a synthetic mesh (TL), were used in this study. We isolated myeloid dendritic cells (MDCs), untouched plasmacytoid dendritic cells (pDCs), naïve B cells, and CD8+ T cells and co-cultured these cells with either the biologic meshes or TL. As positive controls, we used CpG ODN 2216 or lipopolysaccharide (LPS). The cytokine concentrations of IL-12p70 and IL-6 were determined after 7 days using sandwich ELISA sets. There were highly significant differences between the ADMs and TL in terms of their ability to stimulate immunologic responses. IL-6 expression was significantly increased in B cells (p = 0.0006131) and T cells (p = 0.00418) when comparing TL and ADMs. We also identified significant differences in IL-12 production by B cells (p = 0.0166) and T cells (p = 0.003636) when comparing TL and ADMs. Despite the assumed lack of an immunological response to ADMs, in our experimental study, human immune cells reacted with significantly different cytokine profiles. These findings may have implications for the potential activation or suppression of effector cells in cancer patients and could explain some of the post clinical post surgical signs of ADMS like skin rush and seroma.

  2. Acellular dermal matrix slings in tissue expander breast reconstruction: are there substantial benefits?

    Science.gov (United States)

    Collis, George N; TerKonda, Sarvam P; Waldorf, James C; Perdikis, Galen

    2012-05-01

    Acellular dermal matrix (ADM) slings in breast reconstruction are increasingly used but are not yet validated. This study compares immediate, expander-based breast reconstruction with and without the use of inferolateral ADM slings. There were 63 patients (106 breasts) in the ADM group and 42 patients (68 breasts) in the control group. Initial intraoperative fill volumes were significantly greater in the ADM group, median 69% full (250 mL) versus 50% full (180 mL; P < 0.001). However, the number of days to complete expansion between the 2 groups was similar. One less office visit was required to complete the fills in the ADM group (P < 0.01). Drains were removed 3 days later in the ADM group (P < 0.01). Overall complication rate was greater in the ADM group (18.9% vs. 7.4%, P < 0.05), with a slightly higher percentage of expanders requiring removal due to infection in the ADM group (5.7% vs. 4.4%, P = NS). This study suggests inferolateral ADM slings in expander-based breast reconstruction allow for significantly increased initial fill volumes and may offer an aesthetic advantage; however, its use is costly and increases complications.

  3. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.

    Science.gov (United States)

    Wang, Z J; An, R Z; Zhao, J Y; Zhang, Q; Yang, J; Wang, J B; Wen, G Y; Yuan, X H; Qi, X W; Li, S J; Ye, X C

    2014-06-18

    After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.

  4. [Study on preparation of laser micropore porcine acellular dermal matrix combined with split-thickness autograft and its application in wound transplantation].

    Science.gov (United States)

    Liang, Li-Ming; Chai, Ji-Ke; Yang, Hong-Ming; Feng, Rui; Yin, Hui-Nan; Li, Feng-Yu; Sun, Qiang

    2007-04-01

    To prepare a porcine acellular dermal matrix (PADM), and to optimize the interpore distance between PADM and co-grafted split-thickness autologous skin. Porcine skin was treated with trypsin/Triton X-100 to prepare an acellular dermal matrix. Micropores were produced on the PADM with a laser punch. The distance between micropores varied as 0.8 mm, 1.0 mm, 1.2 mm and 1.5 mm. Full-thickness defect wounds were created on the back of 144 SD rats. The rats were randomly divided into 6 groups as follows, with 24 rats in each group. Micropore groups I -IV: the wounds were grafted with PADM with micropores in four different intervals respectively, and covered with split-thickness autologous skin graft. Mesh group: the wounds were grafted with meshed PADM and split-thickness autograft. with simple split-thickness autografting. The gross observation of wound healing and histological observation were performed at 2, 4, 6 weeks after surgery. The wound healing rate and contraction rate were calculated. Two and four weeks after surgery, the wound healing rate in micropore groups I and II was lower than that in control group (P micropore groups I , II and mesh group (P > 0.05) until 6 weeks after grafting( P micropore groups I and II ([(16.0 +/- 2.6)%, (15.1 +/- 2.4)%] was remarkably lower than that in control group 4 and 6 weeks after grafting (P micropore PADM (0.8 mm or 1.0 mm in distance) grafting in combination with split-thickness autografting can improve the quality of wound healing. PADM with laser micropores in 1.0 mm distance is the best choice among them.

  5. Approaches to improve angiogenesis in tissue-engineered skin.

    Science.gov (United States)

    Sahota, Parbinder S; Burn, J Lance; Brown, Nicola J; MacNeil, Sheila

    2004-01-01

    A problem with tissue-engineered skin is clinical failure due to delays in vascularization. The aim of this study was to explore a number of simple strategies to improve angiogenesis/vascularization using a tissue-engineered model of skin to which small vessel human dermal microvascular endothelial cells were added. For the majority of these studies, a modified Guirguis chamber was used, which allowed the investigation of several variables within the same experiment using the same human dermis; cell type, angiogenic growth factors, the influence of keratinocytes and fibroblasts, mechanical penetration of the human dermis, the site of endothelial cell addition, and the influence of hypoxia were all examined. A qualitative scoring system was used to assess the impact of these factors on the penetration of endothelial cells throughout the dermis. Similar results were achieved using freshly isolated small vessel human dermal microvascular endothelial cells or an endothelial cell line and a minimum cell seeding density was identified. Cell penetration was not influenced by the addition of angiogenic growth factors (vascular endothelial growth factor and basic fibroblast growth factor); similarly, including epidermal keratinocytes or dermal fibroblasts did not encourage endothelial cell entry, and neither did mechanical introduction of holes throughout the dermis. Two factors were identified that significantly enhanced endothelial cell penetration into the dermis: hypoxia and the site of endothelial cell addition. Endothelial cells added from the papillary surface entered into the dermis much more effectively than when cells were added to the reticular surface of the dermis. We conclude that this model is valuable in improving our understanding of how to enhance vascularization of tissue-engineered grafts.

  6. Safety and immunogenicity of a combined Tetanus, Diphtheria, recombinant acellular Pertussis vaccine (TdaP) in healthy Thai adults.

    Science.gov (United States)

    Sirivichayakul, Chukiat; Chanthavanich, Pornthep; Limkittikul, Kriengsak; Siegrist, Claire-Anne; Wijagkanalan, Wassana; Chinwangso, Pailinrut; Petre, Jean; Hong Thai, Pham; Chauhan, Mukesh; Viviani, Simonetta

    2017-01-02

    An acellular Pertussis (aP) vaccine containing recombinant genetically detoxified Pertussis Toxin (PTgen), Filamentous Hemagglutinin (FHA) and Pertactin (PRN) has been developed by BioNet-Asia (BioNet). We present here the results of the first clinical study of this recombinant aP vaccine formulated alone or in combination with tetanus and diphtheria toxoids (TdaP). A phase I/II, observer-blind, randomized controlled trial was conducted at Mahidol University in Bangkok, Thailand in healthy adult volunteers aged 18-35 y. The eligible volunteers were randomized to receive one dose of either BioNet's aP or Tetanus toxoid-reduced Diphtheria toxoid-acellular Pertussis (TdaP) vaccine, or the Tdap Adacel® vaccine in a 1:1:1 ratio. Safety follow-up was performed for one month. Immunogenicity was assessed at baseline, at 7 and 28 d after vaccination. Anti-PT, anti-FHA, anti-PRN, anti-tetanus and anti-diphtheria IgG antibodies were assessed by ELISA. Anti-PT neutralizing antibodies were assessed also by CHO cell assay. A total of 60 subjects (20 per each vaccine group) were enrolled and included in the safety analysis. Safety laboratory parameters, incidence of local and systemic post-immunization reactions during 7 d after vaccination and incidence of adverse events during one month after vaccination were similar in the 3 vaccine groups. One month after vaccination, seroresponse rates of anti-PT, anti-FHA and anti-PRN IgG antibodies exceeded 78% in all vaccine groups. The anti-PT IgG, anti-FHA IgG, and anti-PT neutralizing antibody geometric mean titers (GMTs) were significantly higher following immunization with BioNet's aP and BioNet's TdaP than Adacel® (Pdiphtheria GMTs at one month after immunization were comparable in all vaccine groups. All subjects had seroprotective titers of anti-tetanus and anti-diphtheria antibodies at baseline. In this first clinical study, PTgen-based BioNet's aP and TdaP vaccines showed a similar tolerability and safety profile to Adacel

  7. Daily Serum Collection after Acellular Dermal Matrix-Assisted Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Glenda Giorgia Caputo

    2015-05-01

    Full Text Available BackgroundThe acellular dermal matrix (ADM-assisted breast reconstruction technique is widely known, but discouraging results due to early postoperative complications have been reported. As the literature identifies seroma as the most common issue after breast surgery without identifying its pathogenesis, we aimed to report the trend of postoperative daily serum collection after ADM-assisted breast reconstruction and compare it with data in the literature in order to discover more about this little-known topic.MethodsA retrospective study on 28 consecutive patients who received ADM-assisted breast reconstruction between February 2013 and February 2014 was performed. In order to reduce the number of variables that could affect serum production, only one brand of ADM was used and all tissues were handled gently and precisely. The daily drainage volume was recorded per patient during the first four days of hospitalization. Likewise, postoperative complications were noted during routine follow-up.ResultsIn total, five (17.9% bilateral and 23 (82.1% unilateral ADM-assisted breast reconstructions (33 implants were performed. The mean age, body mass index, and length of hospital stay were 53.6 years, 21.3 kg/m2, and 4.5 days, respectively. One major complication led to implant loss (3.0%, and nine minor complications were successfully treated with ambulatory surgery (27.3%. Serum collection linearly decreased after 24 hours postoperatively.ConclusionsDaily drainage decreased following the theoretical decline of acute inflammation. In concordance with the literature, daily serum production may not be related to the use of ADM.

  8. Efficient Healing Takes Some Nerve: Electrical Stimulation Enhances Innervation in Cutaneous Human Wounds.

    Science.gov (United States)

    Emmerson, Elaine

    2017-03-01

    Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al. demonstrate that electrical stimulation promotes reinnervation and neural differentiation in human acute wounds, thus accelerating wound repair. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  9. Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal separation of 4 mm human skin biopsies

    DEFF Research Database (Denmark)

    Clemmensen, Anders; Thomassen, Mads; Clemmensen, Ole

    2009-01-01

    To obtain a separation of the epidermal and dermal compartments to examine compartment specific biological mechanisms in the skin, we incubated 4 mm human skin punch biopsies in ammonium thiocyanate. We wanted to test (i) the histological quality of the dermo-epidermal separation obtained...... by different incubation times; (ii) the amount and quality of extractable epidermal RNA and (iii) its impact on sample RNA expression profiles assessed by large-scale gene expression microarray analysis in both normal and inflamed skin. At 30-min incubation, the split between dermis and epidermis...... and almost completely separated from the dermis of 4 mm skin biopsies by 30 min incubation in 3.8% ammonium thiocyanate combined with curettage of the dermal surface, producing high-quality RNA suitable for transcriptional analysis. Our refined method of dermo-epidermal separation will undoubtedly prove...

  10. Immunogenicity and safety after booster vaccination of diphtheria, tetanus, and acellular pertussis in young adults: an open randomized controlled trial in Japan.

    Science.gov (United States)

    Hara, Megumi; Okada, Kenji; Yamaguchi, Yuko; Uno, Shingo; Otsuka, Yasuko; Shimanoe, Chisato; Nanri, Hinako; Horita, Mikako; Ozaki, Iwata; Nishida, Yuichiro; Tanaka, Keitaro

    2013-12-01

    The recent increase of pertussis in young adults in Japan is hypothesized to be due in part to waning protection from the acellular pertussis vaccine. While a booster immunization may prevent an epidemic of pertussis among these young adults, little is known about the safety and immunogenicity of such a booster with the diphtheria, tetanus, and acellular pertussis vaccine (DTaP), which is currently available in Japan. One hundred and eleven medical students with a mean age of 19.4 years were randomly divided into 2 groups of 55 and 56 subjects and received, respectively, 0.2 or 0.5 ml of DTaP. Immunogenicity was assessed by performing the immunoassay using serum, and the geometric mean concentration (GMC), GMC ratio (GMCR), seropositive rate, and booster response rate were calculated. Adverse reactions and adverse events were monitored for 7 days after vaccination. After booster vaccination in the two groups, significant increases were found in the antibodies against pertussis toxin, filamentous hemagglutinin, diphtheria toxoid, and tetanus toxoid, and the booster response rates for all subjects reached 100%. The GMCs and GMCRs against all antigens were significantly higher in the 0.5-ml group than in the 0.2-ml group. No serious adverse events were observed. Frequencies of local reactions were similar in the 2 groups, although the frequency of severe local swelling was significantly higher in the 0.5-ml group. These data support the acceptability of booster immunization using both 0.2 and 0.5 ml of DTaP for young adults for controlling pertussis. (This study was registered at UMIN-CTR under registration number UMIN000010672.).

  11. Human decellularized bone scaffolds from aged donors show improved osteoinductive capacity compared to young donor bone.

    Directory of Open Access Journals (Sweden)

    Christopher A Smith

    Full Text Available To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC. BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1 concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors.

  12. Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice

    International Nuclear Information System (INIS)

    Kim, Su Jin; Cho, Hyun Hwa; Kim, Yeon Jeong; Seo, Su Yeong; Kim, Han Na; Lee, Jae Bong; Kim, Jae Ho; Chung, Joo Seop; Jung, Jin Sup

    2005-01-01

    Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation

  13. Biologic changes due to long-wave ultraviolet irradiation on human skin: ultrastructural study

    International Nuclear Information System (INIS)

    Kumakiri, M.; Hashimoto, K.; Willis, I.

    1977-01-01

    Alteration of the skin induced by single and repeated long-wave ultraviolet (UVA) exposures was studied. Following a single exposure to relatively large doses of UVA, pronounced dermal damage was observed. In the papillary dermis, superficial dermal vessels showed widely open endothelial gaps and extravasation of blood cells. Marked changes of fibroblasts were also seen in the superficial dermis. In the reticular dermis, extravascular fibrin deposition was seen. After repeated exposures to UVA the formation of cross-banded filamentous aggregations (''Zebra bodies'') was observed in the superficial and reticular dermis. These were often found in amorphous masses surrounding the blood vessels. These striking dermal alterations were absent in skin irradiated by solar stimulating radiation and in control skin. Dyskeratotic ''sunburn cells'' were occasionally seen in the epidermis after single as well as repeated exposures to UVA. The number of these cells was less than that seen after a single exposure to solar simulating radiation

  14. Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia.

    Science.gov (United States)

    McKee, M D; Nakano, Y; Masica, D L; Gray, J J; Lemire, I; Heft, R; Whyte, M P; Crine, P; Millán, J L

    2011-04-01

    Hypophosphatasia (HPP) occurs from loss-of-function mutation in the tissue-non-specific alkaline phosphatase (TNALP) gene, resulting in extracellular pyrophosphate accumulation that inhibits skeletal and dental mineralization. TNALP-null mice (Akp2(-/-)) phenocopy human infantile hypophosphatasia; they develop rickets at 1 week of age, and die before being weaned, having severe skeletal and dental hypomineralization and episodes of apnea and vitamin B(6)-responsive seizures. Delay and defects in dentin mineralization, together with a deficiency in acellular cementum, are characteristic. We report the prevention of these dental abnormalities in Akp2(-/-) mice receiving treatment from birth with daily injections of a mineral-targeting, human TNALP (sALP-FcD(10)). sALP-FcD(10) prevented hypomineralization of alveolar bone, dentin, and cementum as assessed by micro-computed tomography and histology. Osteopontin--a marker of acellular cementum--was immuno-localized along root surfaces, confirming that acellular cementum, typically missing or reduced in Akp2(-/-) mice, formed normally. Our findings provide insight concerning how acellular cementum is formed on tooth surfaces to effect periodontal ligament attachment to retain teeth in their osseous alveolar sockets. Furthermore, they provide evidence that this enzyme-replacement therapy, applied early in post-natal life--where the majority of tooth root development occurs, including acellular cementum formation--could prevent the accelerated tooth loss seen in individuals with HPP.

  15. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    Science.gov (United States)

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  16. Anti-endotoxic and antibacterial effects of a dermal substitute coated with host defense peptides.

    Science.gov (United States)

    Kasetty, Gopinath; Kalle, Martina; Mörgelin, Matthias; Brune, Jan C; Schmidtchen, Artur

    2015-01-01

    Biomaterials used during surgery and wound treatment are of increasing importance in modern medical care. In the present study we set out to evaluate the addition of thrombin-derived host defense peptides to human acellular dermis (hAD, i.e. epiflex(®)). Antimicrobial activity of the functionalized hAD was demonstrated using radial diffusion and viable count assays against Gram-negative Escherichia coli, Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Electron microscopy analyses showed that peptide-mediated bacterial killing led to reduced hAD degradation. Furthermore, peptide-functionalized hAD displayed endotoxin-binding activity in vitro, as evidenced by inhibition of NF-κB activation in human monocytic cells (THP-1 cells) and a reduction of pro-inflammatory cytokine production in whole blood in response to lipopolysaccharide stimulation. The dermal substitute retained its anti-endotoxic activity after washing, compatible with results showing that the hAD bound a significant amount of peptide. Furthermore, bacteria-induced contact activation was inhibited by peptide addition to the hAD. E. coli infected hAD, alone, or after treatment with the antiseptic substance polyhexamethylenebiguanide (PHMB), yielded NF-κB activation in THP-1 cells. The activation was abrogated by peptide addition. Thus, thrombin-derived HDPs should be of interest in the further development of new biomaterials with combined antimicrobial and anti-endotoxic functions for use in surgery and wound treatment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Preparation and characterization of a novel skin substitute.

    Science.gov (United States)

    Castagnoli, Carlotta; Fumagalli, Mara; Alotto, Daniela; Cambieri, Irene; Casarin, Stefania; Ostorero, Alessia; Casimiri, Raffaella; Germano, Patrizia; Pezzuto, Carla; Stella, Maurizio

    2010-01-01

    Autologous epidermal cell cultures (CEA) represent a possibility to treat extensive burn lesions, since they allow a significative surface expansion which cannot be achieved with other surgical techniques based on autologous grafting. Moreover currently available CEA preparations are difficult to handle and their take rate is unpredictable. This study aimed at producing and evaluating a new cutaneous biosubstitute made up of alloplastic acellular glycerolized dermis (AAGD) and CEA to overcome these difficulties. A procedure that maintained an intact basement membrane was developed, so as to promote adhesion and growth of CEA on AAGD. Keratinocytes were seeded onto AAGD and cultured up to 21 days. Viability tests and immunohistochemical analysis with specific markers were carried out at 7, 14, and 21 days, to evaluate keratinocyte adhesion, growth, and maturation. Our results support the hypothesis that this newly formed skin substitute could allow its permanent engraftment in clinical application.

  18. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo.

    Science.gov (United States)

    Mohiti-Asli, M; Saha, S; Murphy, S V; Gracz, H; Pourdeyhimi, B; Atala, A; Loboa, E G

    2017-02-01

    This article presents successful incorporation of ibuprofen in polylactic acid (PLA) nanofibers to create scaffolds for the treatment of both acute and chronic wounds. Nanofibrous PLA scaffolds containing 10, 20, or 30 wt % ibuprofen were created and ibuprofen release profiles quantified. In vitro cytotoxicity to human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) of the three scaffolds with varying ibuprofen concentrations were evaluated and compared to pure PLA nanofibrous scaffolds. Thereafter, scaffolds loaded with ibuprofen at the concentration that promoted human skin cell viability and proliferation (20 wt %) were evaluated in vivo in nude mice using a full thickness skin incision model to determine the ability of these scaffolds to promote skin regeneration and/or assist with scarless healing. Both acellular and HEK and HDF cell-seeded 20 wt % ibuprofen loaded nanofibrous bandages reduced wound contraction compared with wounds treated with Tegaderm™ and sterile gauze. Newly regenerated skin on wounds treated with cell-seeded 20 wt % ibuprofen bandages exhibited significantly greater blood vessel formation relative to acellular ibuprofen bandages. We have found that degradable anti-inflammatory scaffolds containing 20 wt % ibuprofen promote human skin cell viability and proliferation in vitro, reduce wound contraction in vivo, and when seeded with skin cells, also enhance new blood vessel formation. The approaches and results reported here hold promise for multiple skin tissue engineering and wound healing applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 327-339, 2017. © 2015 Wiley Periodicals, Inc.

  19. An assay for the assessment of lipocortin 1 levels in human lung lavage fluid.

    Science.gov (United States)

    Smith, S F; Goulding, N J; Godolphin, J L; Tetley, T D; Roberts, C M; Guz, A; Flower, R J

    1990-07-20

    The physiological function of the lipocortins, proteins which are thought to be glucocorticoid-regulated, is unclear. An improved assay for lipocortins might help to elucidate their role. A rapid and specific sandwich enzyme-linked immunosorbent assay (ELISA) for lipocortin 1 with a working range of 1-2000 ng/ml and an interrun coefficient of variation of less than 10% is described and used in this pilot study to quantify human lipocortin 1 for the first time in acellular bronchoalveolar lavage fluid (BALF), and in media conditioned by BAL cells, from control patients and those with pulmonary sarcoidosis. Using this assay a statistically significant relationship, not previously observed in man, has been demonstrated between concentrations of lipocortin 1/ml of BALF and serum cortisol levels (n = 10, rs = 0.6939, P less than 0.05). Although lipocortin 1 levels in acellular BALF were the same in control and sarcoid patients, significantly more lipocortin 1 was released from sarcoid BAL cells in culture (median 21.6, range 8.1-45.4 ng lipocortin/10(6) cells/h in culture) than from control cells (2.5, 1.5-7.6 ng lipocortin/10(6) cells/h in culture). The possible clinical significance of these data is discussed, but remains to be established.

  20. Does Acellular Dermal Matrix Thickness Affect Complication Rate in Tissue Expander Based Breast Reconstruction?

    Directory of Open Access Journals (Sweden)

    Jessica F. Rose

    2016-01-01

    Full Text Available Background. While the benefits of using acellular dermal matrices (ADMs in breast reconstruction are well described, their use has been associated with additional complications. The purpose of this study was to determine if ADM thickness affects complications in breast reconstruction. Methods. A retrospective chart review was performed including all tissue expander based breast reconstructions with AlloDerm (LifeCell, Branchburg, NJ over 4 years. We evaluated preoperative characteristics and assessed postoperative complications including seroma, hematoma, infection, skin necrosis, and need for reintervention. We reviewed ADM thickness and time to Jackson-Pratt (JP drain removal. Results. Fifty-five patients underwent 77 ADM-associated tissue expander based breast reconstructions, with average age of 48.1 years and average BMI of 25.9. Average ADM thickness was 1.21 mm. We found higher complication rates in the thick ADM group. Significant associations were found between smokers and skin necrosis (p<0.0001 and seroma and prolonged JP drainage (p=0.0004; radiated reconstructed breasts were more likely to suffer infections (p=0.0085, and elevated BMI is a significant predictor for increased infection rate (p=0.0037. Conclusion. We found a trend toward increased complication rates with thicker ADMs. In the future, larger prospective studies evaluating thickness may provide more information.

  1. Evaluation of lymphangiogenesis in acellular dermal matrix

    Directory of Open Access Journals (Sweden)

    Mario Cherubino

    2014-01-01

    Full Text Available Introduction: Much attention has been directed towards understanding the phenomena of angiogenesis and lymphangiogenesis in wound healing. Thanks to the manifold dermal substitute available nowadays, wound treatment has improved greatly. Many studies have been published about angiogenesis and cell invasion in INTEGRA® . On the other hand, the development of the lymphatic network in acellular dermal matrix (ADM is a more obscure matter. In this article, we aim to characterize the different phases of host cell invasion in ADM. Special attention was given to lymphangiogenic aspects. Materials and Methods: Among 57 rats selected to analyse the role of ADM in lymphangiogenesis, we created four groups. We performed an excision procedure on both thighs of these rats: On the left one we did not perform any action except repairing the borders of the wound; while on the right one we used INTEGRA® implant. The excision biopsy was performed at four different times: First group after 7 days, second after 14 days, third after 21 days and fourth after 28 days. For our microscopic evaluation, we used the classical staining technique of haematoxylin and eosin and a semi-quantitative method in order to evaluate cellularity counts. To assess angiogenesis and lymphangiogenesis development we employed PROX-1 Ab and CD31/PECAM for immunohistochemical analysis. Results: We found remarkable wound contraction in defects that healed by secondary intention while minor wound contraction was observed in defects treated with ADM. At day 7, optical microscopy revealed a more plentiful cellularity in the granulation tissue compared with the dermal regeneration matrix. The immunohistochemical process highlighted vascular and lymphatic cells in both groups. After 14 days a high grade of fibrosis was noticeable in the non-treated group. At day 21, both lymphatic and vascular endothelial cells were better developed in the group with a dermal matrix application. At day 28

  2. Development and validation of a simple method for the extraction of human skin melanocytes.

    Science.gov (United States)

    Wang, Yinjuan; Tissot, Marion; Rolin, Gwenaël; Muret, Patrice; Robin, Sophie; Berthon, Jean-Yves; He, Li; Humbert, Philippe; Viennet, Céline

    2018-03-21

    Primary melanocytes in culture are useful models for studying epidermal pigmentation and efficacy of melanogenic compounds, or developing advanced therapy medicinal products. Cell extraction is an inevitable and critical step in the establishment of cell cultures. Many enzymatic methods for extracting and growing cells derived from human skin, such as melanocytes, are described in literature. They are usually based on two enzymatic steps, Trypsin in combination with Dispase, in order to separate dermis from epidermis and subsequently to provide a suspension of epidermal cells. The objective of this work was to develop and validate an extraction method of human skin melanocytes being simple, effective and applicable to smaller skin samples, and avoiding animal reagents. TrypLE™ product was tested on very limited size of human skin, equivalent of multiple 3-mm punch biopsies, and was compared to Trypsin/Dispase enzymes. Functionality of extracted cells was evaluated by analysis of viability, morphology and melanin production. In comparison with Trypsin/Dispase incubation method, the main advantages of TrypLE™ incubation method were the easier of separation between dermis and epidermis and the higher population of melanocytes after extraction. Both protocols preserved morphological and biological characteristics of melanocytes. The minimum size of skin sample that allowed the extraction of functional cells was 6 × 3-mm punch biopsies (e.g., 42 mm 2 ) whatever the method used. In conclusion, this new procedure based on TrypLE™ incubation would be suitable for establishment of optimal primary melanocytes cultures for clinical applications and research.

  3. Pig but not Human Interferon-γ Initiates Human Cell-Mediated Rejection of Pig Tissue in vivo

    Science.gov (United States)

    Sultan, Parvez; Murray, Allan G.; McNiff, Jennifer M.; Lorber, Marc I.; Askenase, Philip W.; Bothwell, Alfred L. M.; Pober, Jordan S.

    1997-08-01

    Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ ) induced human CD4+ and CD8+ T cells and macrophages to more extensively infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.

  4. Risk of febrile seizures and epilepsy after vaccination with diphtheria, tetanus, acellular pertussis, inactivated poliovirus, and Haemophilus influenzae type B.

    Science.gov (United States)

    Sun, Yuelian; Christensen, Jakob; Hviid, Anders; Li, Jiong; Vedsted, Peter; Olsen, Jørn; Vestergaard, Mogens

    2012-02-22

    Vaccination with whole-cell pertussis vaccine carries an increased risk of febrile seizures, but whether this risk applies to the acellular pertussis vaccine is not known. In Denmark, acellular pertussis vaccine has been included in the combined diphtheria-tetanus toxoids-acellular pertussis-inactivated poliovirus-Haemophilus influenzae type b (DTaP-IPV-Hib) vaccine since September 2002. To estimate the risk of febrile seizures and epilepsy after DTaP-IPV-Hib vaccination given at 3, 5, and 12 months. A population-based cohort study of 378,834 children who were born in Denmark between January 1, 2003, and December 31, 2008, and followed up through December 31, 2009; and a self-controlled case series (SCCS) study based on children with febrile seizures during follow-up of the cohort. Hazard ratio (HR) of febrile seizures within 0 to 7 days (0, 1-3, and 4-7 days) after each vaccination and HR of epilepsy after first vaccination in the cohort study. Relative incidence of febrile seizures within 0 to 7 days (0, 1-3, and 4-7 days) after each vaccination in the SCCS study. A total of 7811 children were diagnosed with febrile seizures before 18 months, of whom 17 were diagnosed within 0 to 7 days after the first (incidence rate, 0.8 per 100,000 person-days), 32 children after the second (1.3 per 100,000 person-days), and 201 children after the third (8.5 per 100,000 person-days) vaccinations. Overall, children did not have higher risks of febrile seizures during the 0 to 7 days after the 3 vaccinations vs a reference cohort of children who were not within 0 to 7 days of vaccination. However, a higher risk of febrile seizures was found on the day of the first (HR, 6.02; 95% CI, 2.86-12.65) and on the day of the second (HR, 3.94; 95% CI, 2.18-7.10), but not on the day of the third vaccination (HR, 1.07; 95% CI, 0.73-1.57) vs the reference cohort. On the day of vaccination, 9 children were diagnosed with febrile seizures after the first (5.5 per 100,000 person-days), 12

  5. Informed consent: cultural and religious issues associated with the use of allogeneic and xenogeneic mesh products.

    Science.gov (United States)

    Jenkins, Eric D; Yip, Michael; Melman, Lora; Frisella, Margaret M; Matthews, Brent D

    2010-04-01

    Our aim was to investigate the views of major religions and cultural groups regarding the use of allogeneic and xenogeneic mesh for soft tissue repair. We contacted representatives from Judaism, Islam, Buddhism, Hinduism, Scientology, and Christianity (Baptists, Methodists, Seventh-Day Adventists, Catholics, Lutherans, Church of Jesus Christ of Latter-Day Saints, Evangelical, and Jehovah's Witnesses). We also contacted American Vegan and People for the Ethical Treatment of Animals (PETA). Standardized questionnaires were distributed to the religious and cultural authorities. Questions solicited views on the consumption of beef and pork products and the acceptability of human-, bovine-, or porcine-derived acellular grafts. Dietary restrictions among Jews and Muslims do not translate to tissue implantation restriction. Approximately 50% of Seventh-day Adventists and 40% of Buddhists practice vegetarianism, which may translate into a refusal of the use of xenogeneic tissue. Some Hindus categorically prohibit the use of human tissue and animal products; others allow the donation and receipt of human organs and tissues. PETA is opposed to all uses of animals, but not to human acellular grafts or organ transplantation. Some vegans prefer allogeneic to xenogeneic tissue. Allogeneic and xenogeneic acellular grafts are acceptable among Scientologists, Baptists, Lutherans, Evangelicals, and Catholics. Methodists, Jehovah's Witnesses, and The Church of Jesus Christ of Latter-Day Saints leave the decision up to the individual. Knowledge of religious and cultural preferences regarding biologic mesh assists the surgeon in obtaining a culturally sensitive informed consent for procedures involving acellular allogeneic or xenogeneic grafts. Copyright (c) 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Comparison with ancestral diets suggests dense acellular carbohydrates promote an inflammatory microbiota, and may be the primary dietary cause of leptin resistance and obesity

    Directory of Open Access Journals (Sweden)

    Spreadbury I

    2012-07-01

    Full Text Available Ian SpreadburyGastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, CanadaAbstract: A novel hypothesis of obesity is suggested by consideration of diet-related inflammation and evolutionary medicine. The obese homeostatically guard their elevated weight. In rodent models of high-fat diet-induced obesity, leptin resistance is seen initially at vagal afferents, blunting the actions of satiety mediators, then centrally, with gastrointestinal bacterial-triggered SOCS3 signaling implicated. In humans, dietary fat and fructose elevate systemic lipopolysaccharide, while dietary glucose also strongly activates SOCS3 signaling. Crucially however, in humans, low-carbohydrate diets spontaneously decrease weight in a way that low-fat diets do not. Furthermore, nutrition transition patterns and the health of those still eating diverse ancestral diets with abundant food suggest that neither glycemic index, altered fat, nor carbohydrate intake can be intrinsic causes of obesity, and that human energy homeostasis functions well without Westernized foods containing flours, sugar, and refined fats. Due to being made up of cells, virtually all "ancestral foods" have markedly lower carbohydrate densities than flour- and sugar-containing foods, a property quite independent of glycemic index. Thus the "forgotten organ" of the gastrointestinal microbiota is a prime candidate to be influenced by evolutionarily unprecedented postprandial luminal carbohydrate concentrations. The present hypothesis suggests that in parallel with the bacterial effects of sugars on dental and periodontal health, acellular flours, sugars, and processed foods produce an inflammatory microbiota via the upper gastrointestinal tract, with fat able to effect a "double hit" by increasing systemic absorption of lipopolysaccharide. This model is consistent with a broad spectrum of reported dietary phenomena. A diet of grain-free whole foods with carbohydrate from cellular

  7. Experimental model of cultured keratinocytes Modelo experimental de cultura de queratinócitos

    Directory of Open Access Journals (Sweden)

    Alfredo Gragnani

    2003-01-01

    Full Text Available The bioengineering research is essential in the development of ideal combination of biomaterials and cultured cells to produce the permanent wound coverage. The experimental model of cultured keratinocytes presents all steps of the culture, since the isolation of the keratinocytes, preparation of the human acellular dermis, preparation of the composite skin graft and their elevation to the air-liquid interface. The research in cultured keratinocytes model advances in two main ways: 1. optimization of the methods in vitro to the skin cells culture and proliferation and 2. developing biomaterials that present similar skin properties.A pesquisa em bioengenharia é primordial no desenvolvimento da combinação ideal de biomateriais e células cultivadas para produzir a cobertura definitiva das lesões. O modelo experimental da cultura de queratinócitos apresenta toda as etapas do cultivo, desde o isolamento dos queratinócitos, preparação da derme acelular humana, do enxerto composto e da sua elevação à interface ar-líquido. A pesquisa em modelo de cultura de queratinócitos desenvolve-se em duas vias principais: 1. otimização dos métodos in vitro para cultivo e proliferação de células da pele e 2. desenvolvimento de biomateriais que mimetizem as propriedades da pele.

  8. Development of a wide-field fluorescence imaging system for evaluation of wound re-epithelialization

    Science.gov (United States)

    Franco, Walfre; Gutierrez-Herrera, Enoch; Purschke, Martin; Wang, Ying; Tam, Josh; Anderson, R. Rox; Doukas, Apostolos

    2013-03-01

    Normal skin barrier function depends on having a viable epidermis, an epithelial layer formed by keratinocytes. The transparent epidermis, which is less than a 100 mum thick, is nearly impossible to see. Thus, the clinical evaluation of re-epithelialization is difficult, which hinders selecting appropriate therapy for promoting wound healing. An imaging system was developed to evaluate epithelialization by detecting endogenous fluorescence emissions of cellular proliferation over a wide field of view. A custom-made 295 nm ultraviolet (UV) light source was used for excitation. Detection was done by integrating a near-UV camera with sensitivity down to 300 nm, a 12 mm quartz lens with iris and focus lock for the UV regime, and a fluorescence bandpass filter with 340 nm center wavelength. To demonstrate that changes in fluorescence are related to cellular processes, the epithelialization of a skin substitute was monitored in vitro. The skin substitute or construct was made by embedding microscopic live human skin tissue columns, 1 mm in diameter and spaced 1 mm apart, in acellular porcine dermis. Fluorescence emissions clearly delineate the extent of lateral surface migration of keratinocytes and the total surface covered by the new epithelium. The fluorescence image of new epidermis spatially correlates with the corresponding color image. A simple, user-friendly way of imaging the presence of skin epithelium would improve wound care in civilian burns, ulcers and surgeries.

  9. Hydrodynamic gene delivery in human skin using a hollow microneedle device.

    Science.gov (United States)

    Dul, M; Stefanidou, M; Porta, P; Serve, J; O'Mahony, C; Malissen, B; Henri, S; Levin, Y; Kochba, E; Wong, F S; Dayan, C; Coulman, S A; Birchall, J C

    2017-11-10

    Microneedle devices have been proposed as a minimally invasive delivery system for the intradermal administration of nucleic acids, both plasmid DNA (pDNA) and siRNA, to treat localised disease or provide vaccination. Different microneedle types and application methods have been investigated in the laboratory, but limited and irreproducible levels of gene expression have proven to be significant challenges to pre-clinical to clinical progression. This study is the first to explore the potential of a hollow microneedle device for the delivery and subsequent expression of pDNA in human skin. The regulatory approved MicronJet600® (MicronJet hereafter) device was used to deliver reporter plasmids (pCMVβ and pEGFP-N1) into viable excised human skin. Exogenous gene expression was subsequently detected at multiple locations that were distant from the injection site but within the confines of the bleb created by the intradermal bolus. The observed levels of gene expression in the tissue are at least comparable to that achieved by the most invasive microneedle application methods e.g. lateral application of a microneedle. Gene expression was predominantly located in the epidermis, although also evident in the papillary dermis. Optical coherence tomography permitted real time visualisation of the sub-surface skin architecture and, unlike a conventional intradermal injection, MicronJet administration of a 50μL bolus appears to create multiple superficial microdisruptions in the papillary dermis and epidermis. These were co-localised with expression of the pCMVβ reporter plasmid. We have therefore shown, for the first time, that a hollow microneedle device can facilitate efficient and reproducible gene expression of exogenous naked pDNA in human skin using volumes that are considered to be standard for intradermal administration, and postulate a hydrodynamic effect as the mechanism of gene delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Visceral leishmaniasis with cutaneous lesions in a patient infected with human immunodeficiency virus.

    Science.gov (United States)

    Ara, M; Maillo, C; Peón, G; Clavel, A; Cuesta, J; Grasa, M P; Carapeto, F J

    1998-07-01

    We report a case of visceral leishmaniasis (VL) with cutaneous lesions in a patient infected with human immunodeficiency virus (HIV). The cutaneous lesions consisted of erythematous papules on the legs. Biopsy of one lesion showed abundant Leishmania amastigotes within epithelial cells of an eccrine sweat gland in the dermis. Leishmania organisms were also found in a blood smear. Rapid and complete clearance of the cutaneous lesions was achieved after antimony therapy. Cutaneous lesions in VL are being reported increasingly frequently in patients with HIV infection and their significance remains in discussion.

  11. Current status of grafts and implants in rhinoplasty: Part II. Homologous grafts and allogenic implants.

    Science.gov (United States)

    Sajjadian, Ali; Naghshineh, Nima; Rubinstein, Roee

    2010-03-01

    After reading this article, the participant should be able to: 1. Understand the challenges in restoring volume and structural integrity in rhinoplasty. 2. Identify the appropriate uses of various homologous grafts and allogenic implants in reconstruction, including: (a) freeze-dried acellular allogenic cadaveric dermis grafts, (b) irradiated cartilage grafts, (c) hydroxyapatite mineral matrix, (d) silicone implants, (e) high-density polyethylene implants, (f) polytetrafluoroethylene implants, and (g) injectable filler materials. 3. Identify the advantages and disadvantages of each of these biomaterials. 4. Understand the specific techniques that may aid in the use these grafts or implants. This review specifically addresses the use of homologous grafts and allogenic implants in rhinoplasty. It is important to stress that autologous materials remain the preferred graft material for use in rhinoplasty, owing to their high biocompatibility and low risk of infection and extrusion. However, concerns of donor-site morbidity, graft availability, and graft resorption have motivated the development and use of homologous and allogenic implants.

  12. Influence of extracellular matrix proteins on human keratinocyte attachment, proliferation and transfer to a dermal wound model.

    Science.gov (United States)

    Dawson, R A; Goberdhan, N J; Freedlander, E; MacNeil, S

    1996-03-01

    The aim of this study was to investigate whether prior culture of cells on ECM proteins might positively influence the performance of keratinocytes when cells are transferred to a dermal in vitro wound bed model. Keratinocytes were cultured using a method for producing cultured epithelial autografts for severely burned patients (essentially using Green's medium, a mitogen-rich medium containing fetal calf serum, cholera toxin, EGF, insulin, transferrin and triiodothyronine). Cells were cultured either on irradiated 3T3 fibroblasts (as in the standard Rheinwald and Green technique) or, alternatively, on collagen I, collagen IV, matrigel, RGD, vitronectin or fibronectin. Under these conditions matrigel, collagen I and IV enhanced initial attachment, RGD, vitronectin, fibronectin and irradiated 3T3 fibroblasts did not. Proliferation of cells was positively influenced by matrigel, collagen I and IV and irradiated 3T3 fibroblasts; of these, however, only matrigel and 3T3 fibroblasts had sustained significant effects on keratinocyte proliferation over 4 days. Cells on fibronectin showed significantly reduced proliferation. An acellular non-viable dermis was then used to mimic the homograft allodermis onto which cultured epithelial autograft sheets are grafted clinically and cells cultured on the various ECM proteins for 96 h were transferred to this in vitro wound model. None of the substrates enhanced keratinocyte performance on this model. It was concluded that under these conditions some ECM proteins can significantly affect keratinocyte attachment and, to a lesser extent, proliferation but that the culture of keratinocytes on these ECM proteins does not appear to confer any lasting benefit to the attachment of these keratinocytes to an in vitro wound-bed model.

  13. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  14. Lymphadenopathic kaposi sarcoma in an immunocompetent young ...

    African Journals Online (AJOL)

    Kaposi's sarcoma (KS) is a vascular lesion that usually originates from several sites in the mid-dermis extending into the dermis. Infection from human herpes virus type 8 (HHV-8) is the mostly associated cause. Several articles reported cases of KS, first in Africa, then worldwide because of its close association with HIV ...

  15. The Research of Acellular pancreatic bioscaffoldas a natural 3D platform In Vitro

    Science.gov (United States)

    Wang, Xin; Li, Zhao

    2018-03-01

    AIM: To investigate the biochemical and functional properties of a rat acellular pancreatic bioscaffold (APB). METHODS: Fresh pancreata were soaked and perfused. The histological structure, the extracellular matrix (ECM) composition, and the DNA content of the APBs were evaluated. After biocompatibility studies, the proliferation, apoptosis and differentiation of AR42J pancreatic acinar cells cultured on APBs were assessed. RESULTS: The pancreatic tissues became translucent after decellularization. The native macroscopic 3D architecture and the ECM ultrastructure were preserved, with large ductal structures and vascular tissue branching from the greater pancreatic artery, but there were no visible vascular endothelial cells, cellular components or cracked cellular debris. The ECM components, including collagen I, collagen IV, fibronectin, laminin and sGAG, were not decreased after decellularization of the APB (P>0.05) however, the DNA content was decreased significantly (P<0.05). The subcutaneous implantation sites showed low immunological response and low cytotoxicity around the APB. The proliferation rate was higher and the apoptosis rate was lower when AR42J cells were cultured on APB than when they were cultured in media alone, on artificial scaffold or ECM (P<0.05). The gene expression of pancreatic duodenal homeodomain containing transcription factor (PDX-1) and pancreatic exocrine transcription factor (PTF-1) and the protein expression of α-Amy, cytokeratin 7 (CK7) and fetal liver kinase-1 (Flk-1) were higher for the APB group than for the other groups (P<0.001). CONCLUSION: Our findings support the biological utility of whole pancreas APBs as biomaterial scaffolds, which provides an improved approach for regenerative medicine.

  16. Effect of different forms of adenylate cyclase toxin of Bordetella pertussis on protection afforded by an acellular pertussis vaccine in a murine model.

    Science.gov (United States)

    Cheung, Gordon Y C; Xing, Dorothy; Prior, Sandra; Corbel, Michael J; Parton, Roger; Coote, John G

    2006-12-01

    Four recombinant forms of the cell-invasive adenylate cyclase toxin (CyaA) of Bordetella pertussis were compared for the ability to enhance protection against B. pertussis in mice when coadministered with an acellular pertussis vaccine (ACV). The four forms were as follows: fully functional CyaA, a CyaA form lacking adenylate cyclase enzymatic activity (CyaA*), and the nonacylated forms of these toxins, i.e., proCyaA and proCyaA*, respectively. None of these forms alone conferred significant (P > 0.05) protection against B. pertussis in a murine intranasal challenge model. Mice immunized with ACV alone showed significant (P protection was only significant (P protection provided by CyaA* was due to an augmentation of both Th1 and Th2 immune responses to B. pertussis antigens.

  17. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    Directory of Open Access Journals (Sweden)

    Di Liddo R

    2016-10-01

    Full Text Available Rosa Di Liddo,1,2 Paola Aguiari,3 Silvia Barbon,1,2 Thomas Bertalot,1 Amit Mandoli,1 Alessia Tasso,1 Sandra Schrenk,1 Laura Iop,3 Alessandro Gandaglia,3 Pier Paolo Parnigotto,2 Maria Teresa Conconi,1,2 Gino Gerosa31Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 2Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, 3Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy Abstract: Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC on acellular aortic (AVL and pulmonary (PVL valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary

  18. [EFFECTIVENESS OF VAGINOPLASTY WITH ACELLULAR DERMAL MATRIX AND MIXED PARTICLES GRAFT].

    Science.gov (United States)

    Zhou, Yu; Li, Qiang; Ll, Senkai; Zhou, Chuande; Li, Fengyong; Cao, Yujiao; Zhang, Siya; Wei, Shuyi; Zhao, Yang

    2015-06-01

    To evaluate the effectiveness or acellular dermal matrix (ADM) with autologous buccal micro mucosa and micro skin graft in vaginoplasty. A retrospective analysis was made on the clinical data of 67 patients with vaginal agenesis treated between July 2006 and June 2013. ADM and mixed particles were used in 20 cases (ADM group) and mixed particles graft in 47 cases (control group) in vaginoplasty. There was no significant difference in age between 2 groups (t=0.233, P=0.816). The depth, diameter, and volume of neovagina, epithelization time, stent needing time, and female sexual function index (FSFI) score were compared between 2 groups. There was no significant difference in operation time and amount of bleeding between 2 groups (t = -1.922, P = 0.059; t = 0.398, P = 0.692). The patients were followed up 11-38 months (mean, 16.08 months). Fifteen cases in ADM group and 29 cases in control group had sexual life after operation. Bleeding after operation occurred in 6 cases (2 in ADM group and 4 in control group). No stenosis was observed. Difference in epithelization time was not statistically significant (t = -1.938, P = 0.057). However, the stent needing time of ADM group was significantly shorter than that of control group (t = 7.020, P = 0.000). The neovagina was ideal in wetness degree, smoothness, flexibility, and hairlessness during follow-up. The depth, diameter, and volume of vagina had no significant difference between 2 groups (P > 0.05) at last follow-up, which were close to normal vagina. The other patients had normal sexual function except 1 patient whose FSFI score was less than 23; no statistically significant difference was found in FSFI score between 2 groups (P > 0.05). On the basis of mixed particles grafting, the ADM could improve trestle structure for resisting contracture. The effectiveness is better than merely mixed particles graft. The procedure has satisfactory anatomical and functional results.

  19. An ibuprofen-antagonized plasmin inhibitor released by human endothelial cells.

    Science.gov (United States)

    Rockwell, W B; Ehrlich, H P

    1991-02-01

    Serum-free culture medium harvested from endothelial cell monolayer cultures derived from human scars and dermis was examined for inhibition of fibrinolysis using a fibrin plate assay. Human cultured fibroblasts and smooth muscle cells did not produce any detectable inhibitory activity. The inhibitor is spontaneously released from the cultured endothelial cells over time. In the fibrin plate assay of plasmin-induced fibrinolysis, one nonsteroidal antiinflammatory (NSAI) drug, ibuprofen, was demonstrated to antagonize the inhibition of fibrinolysis. The antagonistic activity of ibuprofen appears unrelated to its NSAI drug activity because other NSAI drugs such as indomethacin and tolmetin have minimal antagonistic activity. Heating the cultured endothelial cells to 42 degrees C stimulates greater release of the inhibitor in a shorter period of time. This plasmin inhibitor, which is produced by endothelial cells, may contribute to postburn vascular occlusion, leading to secondary progressive necrosis in burn-traumatized patients.

  20. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo.

    Science.gov (United States)

    Shao, Y; He, T; Fisher, G J; Voorhees, J J; Quan, T

    2017-02-01

    Retinoic acid has been shown to improve the aged-appearing skin. However, less is known about the anti-ageing effects of retinol (ROL, vitamin A), a precursor of retinoic acid, in aged human skin in vivo. This study aimed to investigate the molecular basis of ROL anti-ageing properties in naturally aged human skin in vivo. Sun-protected buttock skin (76 ± 6 years old, n = 12) was topically treated with 0.4% ROL and its vehicle for 7 days. The effects of topical ROL on skin epidermis and dermis were evaluated by immunohistochemistry, in situ hybridization, Northern analysis, real-time RT-PCR and Western analysis. Collagen fibrils nanoscale structure and surface topology were analysed by atomic force microscopy. Topical ROL shows remarkable anti-ageing effects through three major types of skin cells: epidermal keratinocytes, dermal endothelial cells and fibroblasts. Topical ROL significantly increased epidermal thickness by stimulating keratinocytes proliferation and upregulation of c-Jun transcription factor. In addition to epidermal changes, topical ROL significantly improved dermal extracellular matrix (ECM) microenvironment; increasing dermal vascularity by stimulating endothelial cells proliferation and ECM production (type I collagen, fibronectin and elastin) by activating dermal fibroblasts. Topical ROL also stimulates TGF-β/CTGF pathway, the major regulator of ECM homeostasis, and thus enriched the deposition of ECM in aged human skin in vivo. 0.4% topical ROL achieved similar results as seen with topical retinoic acid, the biologically active form of ROL, without causing noticeable signs of retinoid side effects. 0.4% topical ROL shows remarkable anti-ageing effects through improvement of the homeostasis of epidermis and dermis by stimulating the proliferation of keratinocytes and endothelial cells, and activating dermal fibroblasts. These data provide evidence that 0.4% topical ROL is a promising and safe treatment to improve the naturally aged human skin

  1. Tetanus, diphtheria, and acellular pertussis vaccination among women of childbearing age-United States, 2013.

    Science.gov (United States)

    O'Halloran, Alissa C; Lu, Peng-Jun; Williams, Walter W; Ding, Helen; Meyer, Sarah A

    2016-07-01

    The incidence of pertussis in the United States has increased since the 1990s. Tetanus, diphtheria, and acellular pertussis (Tdap) vaccination of pregnant women provides passive protection to infants. Tdap vaccination is currently recommended for pregnant women during each pregnancy, but coverage among pregnant women and women of childbearing age has been suboptimal. Data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS) and 2013 National Health Interview Survey (NHIS) were used to determine national and state-specific Tdap vaccination coverage among women of childbearing age by self-reported pregnancy status at the time of the survey. Although this study could not assess coverage of Tdap vaccination received during pregnancy because questions on whether Tdap vaccination was received during pregnancy were not asked in BRFSS and NHIS, demographic and access-to-care factors associated with Tdap vaccination coverage in this population were assessed. Tdap vaccination coverage among all women 18-44 years old was 38.4% based on the BRFSS and 23.3% based on the NHIS. Overall, coverage did not differ by pregnancy status at the time of the survey. Coverage among all women 18-44 years old varied widely by state. Age, race and ethnicity, education, number of children in the household, and access-to-care characteristics were independently associated with Tdap vaccination in both surveys. We identified associations of demographic and access-to-care characteristics with Tdap vaccination that can guide strategies to improve vaccination rates in women during pregnancy. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.

  2. Tetanus, diphtheria, and acellular pertussis vaccination during pregnancy and reduced risk of infant acute respiratory infections.

    Science.gov (United States)

    Khodr, Zeina G; Bukowinski, Anna T; Gumbs, Gia R; Conlin, Ava Marie S

    2017-10-09

    To protect infants from pertussis infection, the Advisory Committee on Immunization Practices (ACIP) recommends women receive the tetanus toxoid, reduced diphtheria toxoid, acellular pertussis (Tdap) vaccine between 27 and 36weeks of pregnancy. Here, we assessed the association between timing of maternal Tdap vaccination during pregnancy and acute respiratory infection (ARI) in infants risks (RRs) and 95% confidence intervals (CIs) for the association between maternal Tdap vaccination during pregnancy and infant ARI at vaccination during pregnancy vs those who did not were 9% less likely to be diagnosed with an ARI at risk was 17% lower if vaccination was received between 27 and 36weeks of pregnancy (RR, 0.83; 95% CI, 0.74-0.93). Similar results were observed when comparing mothers who received Tdap vaccination prior to pregnancy in addition to Tdap vaccination between 27 and 36weeks of pregnancy versus mothers who only received vaccination prior to pregnancy (RR, 0.85; 95% CI, 0.74-0.98). Maternal Tdap vaccination between 27 and 36weeks of pregnancy was consistently protective against infant ARI in the first 2months of life vs no vaccination during pregnancy, regardless of Tdap vaccination prior to pregnancy. Our findings strongly support current ACIP guidelines recommending Tdap vaccination in late pregnancy for every pregnancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Neural-differentiated mesenchymal stem cells incorporated into muscle stuffed vein scaffold forms a stable living nerve conduit.

    Science.gov (United States)

    Hassan, Nur Hidayah; Sulong, Ahmad Fadzli; Ng, Min-Hwei; Htwe, Ohnmar; Idrus, Ruszymah B H; Roohi, Sharifah; Naicker, Amaramalar S; Abdullah, Shalimar

    2012-10-01

    Autologous nerve grafts to bridge nerve gaps have donor site morbidity and possible neuroma formation resulting in development of various methods of bridging nerve gaps without using autologous nerve grafts. We have fabricated an acellular muscle stuffed vein seeded with differentiated mesenchymal stem cells (MSCs) as a substitute for nerve autografts. Human vein and muscle were both decellularized by liquid nitrogen immersion with subsequent hydrolysis in hydrochloric acid. Human MSCs were subjected to a series of treatments with a reducing agent, retinoic acid, and a combination of trophic factors. The differentiated MSCs were seeded on the surface of acellular muscle tissue and then stuffed into the vein. Our study showed that 35-75% of the cells expressed neural markers such as S100b, glial fibrillary acidic protein (GFAP), p75 NGF receptor, and Nestin after differentiation. Histological and ultra structural analyses of muscle stuffed veins showed attachment of cells onto the surface of the acellular muscle and penetration of the cells into the hydrolyzed fraction of muscle fibers. We implanted these muscle stuffed veins into athymic mice and at 8 weeks post-implantation, the acellular muscle tissue had fully degraded and replaced with new matrix produced by the seeded cells. The vein was still intact and no inflammatory reactions were observed proving the biocompatibility and biodegradability of the conduit. In conclusion, we have successfully formed a stable living nerve conduit which may serve as a substitute for autologous nerves. Copyright © 2012 Orthopaedic Research Society.

  4. Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.

    Science.gov (United States)

    Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.

  5. Optimization of attenuation estimation in reflection for in vivo human dermis characterization at 20 MHz.

    Science.gov (United States)

    Fournier, Céline; Bridal, S Lori; Coron, Alain; Laugier, Pascal

    2003-04-01

    In vivo skin attenuation estimators must be applicable to backscattered radio frequency signals obtained in a pulse-echo configuration. This work compares three such estimators: short-time Fourier multinarrowband (MNB), short-time Fourier centroid shift (FC), and autoregressive centroid shift (ARC). All provide estimations of the attenuation slope (beta, dB x cm(-1) x MHz(-1)); MNB also provides an independent estimation of the mean attenuation level (IA, dB x cm(-1)). Practical approaches are proposed for data windowing, spectral variance characterization, and bandwidth selection. Then, based on simulated data, FC and ARC were selected as the best (compromise between bias and variance) attenuation slope estimators. The FC, ARC, and MNB were applied to in vivo human skin data acquired at 20 MHz to estimate betaFC, betaARC, and IA(MNB), respectively (without diffraction correction, between 11 and 27 MHz). Lateral heterogeneity had less effect and day-to-day reproducibility was smaller for IA than for beta. The IA and betaARC were dependent on pressure applied to skin during acquisition and IA on room and skin-surface temperatures. Negative values of IA imply that IA and beta may be influenced not only by skin's attenuation but also by structural heterogeneity across dermal depth. Even so, IA was correlated to subject age and IA, betaFC, and betaARC were dependent on subject gender. Thus, in vivo attenuation measurements reveal interesting variations with subject age and gender and thus appeared promising to detect skin structure modifications.

  6. Cutaneous in vivo metabolism of topical lidocaine formulation in human skin

    DEFF Research Database (Denmark)

    Rolsted, K; Benfeldt, E; Kissmeyer, A-M

    2009-01-01

    Little is known about the metabolising capacity of the human skin in relation to topically applied drugs and formulations. We chose lidocaine as a model compound since the metabolic pathways are well known from studies concerning hepatic metabolism following systemic drug administration. However......, the enzymes involved are also expressed in the skin. Hence, the aim of the current study was to investigate the extent of the cutaneous in vivo metabolism of topically applied lidocaine in human volunteers. A dose of 5 mg/cm(2) of Xylocaine(R) (5% lidocaine) ointment was applied onto the buttock skin...... of the volunteers. After 2 h, residual formulation was removed, and two 4-mm punch biopsies were taken from each volunteer. The quantity of lidocaine extracted from the skin samples (epidermis + dermis) was 109 +/- 43 ng/mm(2) skin. One metabolite (monoethylglycine xylidide, MEGX) was detected in skin from 7...

  7. Evaluation of Sidestream Darkfield Microscopy for Real-Time Imaging Acellular Dermal Matrix Revascularization.

    Science.gov (United States)

    DeGeorge, Brent R; Olenczak, J Bryce; Cottler, Patrick S; Drake, David B; Lin, Kant Y; Morgan, Raymond F; Campbell, Christopher A

    2016-06-01

    Acellular dermal matrices (ADMs) serve as a regenerative framework for host cell integration and collagen deposition to augment the soft tissue envelope in ADM-assisted breast reconstruction-a process dependent on vascular ingrowth. To date noninvasive intra-operative imaging techniques have been inadequate to evaluate the revascularization of ADM. We investigated the safety, feasibility, and efficacy of sidestream darkfield (SDF) microscopy to assess the status of ADM microvascular architecture in 8 patients at the time of tissue expander to permanent implant exchange during 2-stage ADM-assisted breast reconstruction. The SDF microscopy is a handheld device, which can be used intraoperatively for the real-time assessment of ADM blood flow, vessel density, vessel size, and branching pattern. The SDF microscopy was used to assess the microvascular architecture in the center and border zone of the ADM and to compare the native, non-ADM-associated capsule in each patient as a within-subject control. No incidences of periprosthetic infection, explantation, or adverse events were reported after SDF image acquisition. Native capsules demonstrate a complex, layered architecture with an average vessel area density of 14.9 mm/mm and total vessel length density of 12.3 mm/mm. In contrast to native periprosthetic capsules, ADM-associated capsules are not uniformly vascularized structures and demonstrate 2 zones of microvascular architecture. The ADM and native capsule border zone demonstrates palisading peripheral vascular arcades with continuous antegrade flow. The central zone of the ADM demonstrates punctate perforating vascular plexi with intermittent, sluggish flow, and intervening 2- to 3-cm watershed zones. Sidestream darkfield microscopy allows for real-time intraoperative assessment of ADM revascularization and serves as a potential methodology to compare revascularization parameters among commercially available ADMs. Thr SDF microscopy demonstrates that the

  8. Histopathological detection of entry and exit holes in human skin wounds caused by firearms.

    Science.gov (United States)

    Baptista, Marcus Vinícius; d'Ávila, Solange C G P; d'Ávila, Antônio Miguel M P

    2014-07-01

    The judiciary needs forensic medicine to determine the difference between an entry hole and an exit hole in human skin caused by firearms for civilian use. This important information would be most useful if a practical and accurate method could be done with low-cost and minimal technological resources. Both macroscopic and microscopic analyses were performed on skin lesions caused by firearm projectiles, to establish histological features of 14 entry holes and 14 exit holes. Microscopically, in the abrasion area macroscopically observed, there were signs of burns (sub-epidermal cracks and keratinocyte necrosis) in the entrance holes in all cases. These signs were not found in three exit holes which showed an abrasion collar, nor in other exit holes. Some other microscopic features not found in every case were limited either to entry holes, such as cotton fibres, grease deposits, or tattooing in the dermis, or to exit holes, such as adipose tissue, bone or muscle tissue in the dermis. Coagulative necrosis of keratinocytes and sub-epidermal cracks are characteristic of entry holes. Despite the small sample size, it can be safely inferred that this is an important microscopic finding, among others less consistently found, to define an entry hole in questionable cases. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  9. Animal study on transplantation of human umbilical vein endothelial cells for corneal endothelial decompensation

    Directory of Open Access Journals (Sweden)

    Li Cui

    2014-06-01

    Full Text Available AIM: To explore the feasibility of culturing human umbilical vein endothelial cells(HUVECon acellular corneal stroma and performing the posterior lamellar endothelial keratoplasty(PLEKtreating corneal endothelial decompensation.METHODS: Thirty New-Zealand rabbits were divided into three groups randomly, 10 rabbits for experimental group, 10 for stroma group and 10 for control group. Corneal endothelial cells were removed to establish animal model of corneal endothelial failure. PLEK was performed on the rabbits of experimental group and stroma group, and nothing was transplantated onto the rabbits of control group with the deep layer excised only. Postoperative observation was taken for 3mo. The degree of corneal edema and central corneal thickness were recorded for statistical analysis.RESULTS: Corneas in experimental group were relieved in edema obviously compared with that in stroma group and the control group, and showed increased transparency 7d after the operation. The average density of endothelial cells was 2 026.4±129.3cells/mm2, and average central corneal thickness was 505.2±25.4μm in experimental group, while 1 535.6±114.5μm in stroma group and 1 493.5±70.2μm in control group 3mo after operation.CONCLUSION:We achieved preliminary success in our study that culturing HUVEC on acellular corneal stroma and performing PLEK for corneal endothelial decompensation. HUVEC transplanted could survive in vivo, and have normal biological function of keeping cornea transparent. This study provides a new idea and a new way clinically for the treatment of corneal endothelial diseases.

  10. [Immunogenicity of sabin inactivated poliovirus vaccine induced by diphtheria-tetanus-acellular pertussis and Sabin inactivated poliovirus combined vaccine].

    Science.gov (United States)

    Ma, Yan; Qin, Min; Hu, Hui-Qiong; Ji, Guang; Feng, Ling; Gao, Na; Gu, Jie; Xie, Bing-Feng; He, Ji-Hong; Sun, Ming-Bo

    2011-06-01

    In order to search the preparation process and optimazing dosage ratio of adsorbed diphtheria-tetanus-acellular pertussis and sabin inactivated poliovirus combined vaccine (DTaP-sIPV), the neutralizing antibody titers of IPV induced by different concentration of DTaP-sIPV were investigated on rats. Two batches of DTaP-sLPV were produced using different concentration of sIPV and the quality control was carried. Together with sabin-IPV and DTaP-wIPV ( boostrix-polio, GSK, Belgium) as control group, the DTaP-sIPV were administrated on three-dose schedule at 0, 1, 2 month on rats. Serum sample were collected 30 days after each dose and neutralizing antibody titers against three types poliovirus were determined using micro-neutralization test. Two batches of prepared DTaP-sIPV and control sLPV were according to the requirement of Chinese Pharmacopoeia (Volume III, 2005 edition) and showed good stability. The seropositivity rates were 100% for sabin inactivated poliovirus antigen in all groups. The GMTs (Geometric mean titers) of neutralizing antibodies against three types poliovirus increased. The prepared DTaP-sIPV was safe, stable and effective and could induced high level neutralizing antibody against poliovirus on rats.

  11. The safety and reactogenicity of a reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) booster vaccine in healthy Vietnamese children.

    Science.gov (United States)

    Anh, Dang Duc; Jayadeva, Girish; Kuriyakose, Sherine; Han, Htay Htay

    2016-08-17

    Despite effective infant immunization against pertussis, the disease continues to circulate due to waning immunity. Booster vaccinations against pertussis beyond infancy are widely recommended. In Vietnam, however, no recommendations for pertussis boosters beyond the second year of life exist. This open-label, single-centre study was designed to assess the safety of a single booster dose of reduced-antigen-content-diphtheria-tetanus-acellular-pertussis vaccine (dTpa) in 300 healthy Vietnamese children (mean age 7.9years), who had completed primary vaccination against diphtheria, tetanus and pertussis. Solicited symptoms were recorded for 4days and unsolicited and serious adverse events (SAEs) for 31days post-vaccination. Pain and fatigue were the most common solicited local and general symptoms in 35.0% and 14.0% of children, respectively. Grade 3 swelling occurred in 3 children; no large injection site reactions or SAEs were reported. The dTpa booster vaccine was well tolerated and this study supports its administration in school age Vietnamese children. Copyright © 2016 GSK group of companies. Published by Elsevier Ltd.. All rights reserved.

  12. The Effect of Sterile Acellular Dermal Matrix Use on Complication Rates in Implant-Based Immediate Breast Reconstructions

    Directory of Open Access Journals (Sweden)

    Jun Ho Lee

    2016-11-01

    Full Text Available BackgroundThe use of acellular dermal matrix (ADM in implant-based immediate breast reconstruction has been increasing. The current ADMs available for breast reconstruction are offered as aseptic or sterile. No published studies have compared aseptic and sterile ADM in implant-based immediate breast reconstruction. The authors performed a retrospective study to evaluate the outcomes of aseptic versus sterile ADM in implant-based immediate breast reconstruction.MethodsImplant-based immediate breast reconstructions with ADM conducted between April 2013 and January 2016 were included. The patients were divided into 2 groups: the aseptic ADM (AlloDerm group and the sterile ADM (MegaDerm group. Archived records were reviewed for demographic data and postoperative complication types and frequencies. The complications included were infection, flap necrosis, capsular contracture, seroma, hematoma, and explantation for any cause.ResultsTwenty patients were reconstructed with aseptic ADM, and 68 patients with sterile ADM. Rates of infection (15.0% vs. 10.3%, flap necrosis (5.0% vs. 7.4%, capsular contracture (20.0% vs. 14.7%, seroma (10.0% vs. 14.7%, hematoma (0% vs. 1.5%, and explantation (10.0% vs. 8.8% were not significantly different in the 2 groups.ConclusionsSterile ADM did not provide better results regarding infectious complications than aseptic ADM in implant-based immediate breast reconstruction.

  13. Xenogenic (porcine) acellular dermal matrix promotes growth of granulation tissues in the wound healing of Fournier gangrene.

    Science.gov (United States)

    Zhang, Zhaoxin; Lv, Lei; Mamat, Masut; Chen, Zhao; Zhou, Zhitao; Liu, Lihua; Wang, Zhizhong

    2015-01-01

    This article investigates the application values of Xenogenic (porcine) acellular dermal matrix (XADM) in preparation of a Fournier gangrene wound bed. Thirty-six consecutive cases of patients with Fournier gangrene between 2002 and 2012 were enrolled in our department of our hospital. The patients were divided into two groups according to different methods of wound bed preparation after surgical débridement, including the experimental group (17 cases) and the control group (19 cases). The wounds in the experimental group were covered with XADM after surgical wound débridement, whereas the wounds were cleaned with hydrogen peroxide and sodium hypochlorite solution (one time/day) in the control group. The wound bed preparation time and hospital stay were then compared in the two groups. The wound preparation time was 13.64 ± 1.46 days and hospitalization period was 26.06 ± 0.83 days in the experimental XADM group. In the control group, the wound bed preparation time and hospitalization period were 22.37 ± 1.38 and 38.11 ± 5.60 days, respectively. The results showed statistical differences between these two groups. When used in wound débridement after Fournier gangrene, XADM protects interecological organizations, promotes the growth of granulation tissues, and maximally retains function and morphology of the perineum and penis.

  14. Prognostic role of acellular mucin pools in patients with rectal cancer after pathological complete response to preoperative chemoradiation: systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Bhatti, A.B.H.

    2017-01-01

    The prognostic implication of acellular mucin pools (AMP) in rectal cancer is controversial. There is no Level-I evidence regarding their prognostic impact. This systematic review was performed to determine the impact of AMP on survival in patients with rectal cancer, who demonstrate pathological complete response (PCR) to preoperative chemoradiation (CRT). A systematic literature review was performed by searching MEDLINE and EMBASE database. For overall survival, the overall random effect model favored mucin negative tumors (HR=2, 95% CI=0.8-4.8) with heterogeneity (I-squared=0, p=0.6). However, the pooled analysis was not significant due to small sample. For disease-free survival, four studies showed HR >1; however, the pooled random effect model indicated little difference in risk (HR=1.06, 95% CI=0.4-2.4) with heterogeneity (I-squared=49.5%, p=0.07). No definite prognostic role of AMP in rectal cancer patients with PCR was found. These results, however, should be interpreted with caution. (author)

  15. Outcomes of Acellular Dermal Matrix for Immediate Tissue Expander Reconstruction with Radiotherapy: A Retrospective Cohort Study.

    Science.gov (United States)

    Craig, Elizabeth S; Clemens, Mark W; Koshy, John C; Wren, James; Hong, Zhang; Butler, Charles; Garvey, Patrick; Selber, Jesse; Kronowitz, Steven

    2018-05-24

    Despite increasing literature support for the use of acellular dermal matrix (ADM) in expander-based breast reconstruction, the effect of ADM on clinical outcomes in the presence of post-mastectomy radiation therapy (PMRT) has not been well described. To analyze the impact ADM plays on clinical outcomes on immediate tissue expander (ITE) reconstruction undergoing PMRT. We retrospectively reviewed patients who underwent ITE breast reconstruction from 2004 to 2014 at MD Anderson Cancer Center. Patients were categorized into four cohorts: ADM, ADM with PMRT, non-ADM, and non-ADM with PMRT. Outcomes and complications were compared between cohorts. Over ten years, 957 patients underwent ITE reconstruction (683 non-ADM, 113 non-ADM with PMRT, 486 ADM, and 88 ADM with PMRT) with 1,370 reconstructions. Overall complication rates for the ADM and non-ADM cohorts were 39.0 and 16.7%, respectively (p <0.001). Within both cohorts, mastectomy skin flap necrosis (MSFN) was the most common complication, followed by infection. ADM use was associated with a significantly higher rate of infections and seromas in both radiated and non-radiated groups; however, when comparing radiated cohorts, the incidence of explantation was significantly lower with the use of ADM. The decision to use ADM for expander-based breast reconstruction should be performed with caution, given higher overall rates of complications, including infections and seromas. There may, however, be a role for ADM in cases requiring PMRT, as the overall incidence of implant failure is lower than non-ADM cases.

  16. Physician communication about adolescent vaccination: How is human papillomavirus vaccine different?

    Science.gov (United States)

    Gilkey, Melissa B; Moss, Jennifer L; Coyne-Beasley, Tamera; Hall, Megan E; Shah, Parth D; Brewer, Noel T

    2015-08-01

    Low human papillomavirus (HPV) vaccination coverage stands in stark contrast to our success in delivering other adolescent vaccines. To identify opportunities for improving physicians' recommendations for HPV vaccination, we sought to understand how the communication context surrounding adolescent vaccination varies by vaccine type. A national sample of 776 U.S. physicians (53% pediatricians, 47% family medicine physicians) completed our online survey in 2014. We assessed physicians' perceptions and communication practices related to recommending adolescent vaccines for 11- and 12-year-old patients. About three-quarters of physicians (73%) reported recommending HPV vaccine as highly important for patients, ages 11-12. More physicians recommended tetanus, diphtheria, and acellular pertussis (Tdap) (95%) and meningococcal vaccines (87%, both pCommunication strategies are needed to support physicians in recommending HPV vaccine with greater confidence and efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Human Skin 3D Bioprinting Using Scaffold-Free Approach.

    Science.gov (United States)

    Pourchet, Léa J; Thepot, Amélie; Albouy, Marion; Courtial, Edwin J; Boher, Aurélie; Blum, Loïc J; Marquette, Christophe A

    2017-02-01

    Organ in vitro synthesis is one of the last bottlenecks between tissue engineering and transplantation of synthetic organs. Bioprinting has proven its capacity to produce 3D objects composed of living cells but highly organized tissues such as full thickness skin (dermis + epidermis) are rarely attained. The focus of the present study is to demonstrate the capability of a newly developed ink formulation and the use of an open source printer, for the production of a really complete skin model. Proofs are given through immunostaining and electronic microscopy that the bioprinted skin presents all characteristics of human skin, both at the molecular and macromolecular level. Finally, the printability of large skin objects is demonstrated with the printing of an adult-size ear. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Visualization of the microcirculatory network in skin by high frequency optoacoustic mesoscopy

    Science.gov (United States)

    Schwarz, Mathias; Aguirre, Juan; Buehler, Andreas; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Optoacoustic (photoacoustic) imaging has a high potential for imaging melanin-rich structures in skin and the microvasculature of the dermis due to the natural chromophores (de)oxyhemoglobin, and melanin. The vascular network in human dermis comprises a large network of arterioles, capillaries, and venules, ranging from 5 μm to more than 100 μm in diameter. The frequency spectrum of the microcirculatory network in human skin is intrinsically broadband, due to the large variety in size of absorbers. In our group we have developed raster-scan optoacoustic mesoscopy (RSOM) that applies a 100 MHz transducer with ultra-wide bandwidth in raster-scan mode achieving lateral resolution of 18 μm. In this study, we applied high frequency RSOM to imaging human skin in a healthy volunteer. We analyzed the frequency spectrum of anatomical structures with respect to depth and show that frequencies >60 MHz contain valuable information of structures in the epidermis and the microvasculature of the papillary dermis. We illustrate that RSOM is capable of visualizing the fine vascular network at and beneath the epidermal-dermal junction, revealing the vascular fingerprint of glabrous skin, as well as the larger venules deeper inside the dermis. We evaluate the ability of the RSOM system in measuring epidermal thickness in both hairy and glabrous skin. Finally, we showcase the capability of RSOM in visualizing benign nevi that will potentially help in imaging the penetration depth of melanoma.

  19. Potential sites for the perception of gravity in the acellular slime mold Physarum polycephalum.

    Science.gov (United States)

    Block, I; Briegleb, W

    1989-01-01

    Recently a gravisensitivity of the acellular slime mold Physarum polycephalum, which possesses no specialized gravireceptor, could be established by conducting experiments under simulated and under real near weightlessness. In these experiments macroplasmodia showed a modulation of their contraction rhythm followed by regulation phenomena. Until now the perception mechanism for the gravistimulus is unknown, but several findings indicate the involvement of mitochondria: A) During the impediment of respiration the 0g-reaction is inhibited and the regulation is reduced. B) The response to a light stimulus and the following regulation phenomena strongly resemble the behavior during exposure to 0g, the only difference is that the two reactions are directed into opposite directions. In the blue-light reaction a flavin of the mitochondrial matrix seems to be involved in the light perception. C) The contraction rhythm as well as its modulations are coupled to rhythmic changes in the levels of ATP and calcium ions, involving the mitochondria as sites of energy production and of Ca(++)-storage. So the mitochondria could be the site of the regulation and they possibly are the receptor sites for the light and gravity stimuli. Also the observation of a morphologic polarity of the slime mold's plasmodial strands has to be considered: Cross-sections reveal that the ectoplasmic wall surrounding the streaming endoplasm is much thinner on the physically lower side than on the upper side of the strand--this applies to strands lying on or hanging on a horizontal surface. So, in addition to the mitochondria, also the morphologic polarity may be involved in the perception mechanism of the observed gravisensitivity and of the recently established geotaxis. The potential role of the nuclei and of the contractile elements in the perception of gravity is also discussed.

  20. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    Energy Technology Data Exchange (ETDEWEB)

    Darvin, M E; Richter, H; Zhu, Y J; Meinke, M C; Knorr, F; Lademann, J [Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin (Germany); Gonchukov, S A [National Research Nuclear University ' ' MEPhI' ' (Russian Federation); Koenig, K [JenLab GmbH, Schillerstr. 1, 07745 Jena (Germany)

    2014-07-31

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)

  1. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    Science.gov (United States)

    Darvin, M. E.; Richter, H.; Zhu, Y. J.; Meinke, M. C.; Knorr, F.; Gonchukov, S. A.; Koenig, K.; Lademann, J.

    2014-07-01

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted.

  2. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    International Nuclear Information System (INIS)

    Darvin, M E; Richter, H; Zhu, Y J; Meinke, M C; Knorr, F; Lademann, J; Gonchukov, S A; Koenig, K

    2014-01-01

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)

  3. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells.

    Science.gov (United States)

    Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E; Du, Jiang; Jin, Sungho; Grogan, Shawn P; D'Lima, Darryl D

    2016-03-01

    The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling "longitudinal tears" were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears.

  4. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    Science.gov (United States)

    Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403

  5. Immunogenicity, Safety, and Tolerability of Bivalent rLP2086 Meningococcal Group B Vaccine Administered Concomitantly With Diphtheria, Tetanus, and Acellular Pertussis and Inactivated Poliomyelitis Vaccines to Healthy Adolescents.

    Science.gov (United States)

    Vesikari, Timo; Wysocki, Jacek; Beeslaar, Johannes; Eiden, Joseph; Jiang, Qin; Jansen, Kathrin U; Jones, Thomas R; Harris, Shannon L; O'Neill, Robert E; York, Laura J; Perez, John L

    2016-06-01

    Concomitant administration of bivalent rLP2086 (Trumenba [Pfizer, Inc] and diphtheria, tetanus, and acellular pertussis and inactivated poliovirus vaccine (DTaP/IPV) was immunologically noninferior to DTaP/IPV and saline and was safe and well tolerated. Bivalent rLP2086 elicited robust and broad bactericidal antibody responses to diverse Neisseria meningitidis serogroup B strains expressing antigens heterologous to vaccine antigens after 2 and 3 vaccinations. Bivalent rLP2086, a Neisseria meningitidis serogroup B (MnB) vaccine (Trumenba [Pfizer, Inc]) recently approved in the United States to prevent invasive MnB disease in individuals aged 10-25 years, contains recombinant subfamily A and B factor H binding proteins (fHBPs). This study evaluated the coadministration of Repevax (diphtheria, tetanus, and acellular pertussis and inactivated poliovirus vaccine [DTaP/IPV]) (Sanofi Pasteur MSD, Ltd) and bivalent rLP2086. Healthy adolescents aged ≥11 to B proteins different from the vaccine antigens. Participants were randomly assigned to receive bivalent rLP2086 + DTaP/IPV (n = 373) or saline + DTaP/IPV (n = 376). Immune responses to DTaP/IPV in participants who received bivalent rLP2086 + DTaP/IPV were noninferior to those in participants who received saline + DTaP/IPV.The proportions of bivalent rLP2086 + DTaP/IPV recipients with prespecified seroprotective hSBA titers to the 4 MnB test strains were 55.5%-97.3% after vaccination 2 and 81.5%-100% after vaccination 3. The administration of bivalent rLP2086 was well tolerated and resulted in few serious adverse events. Immune responses to DTaP/IPV administered with bivalent rLP2086 to adolescents were noninferior to DTaP/IPV administered alone. Bivalent rLP2086 was well tolerated and elicited substantial and broad bactericidal responses to diverse MnB strains in a high proportion of recipients after 2 vaccinations, and these responses were further enhanced after 3 vaccinations.ClinicalTrials.gov identifier NCT01323270

  6. Safety of a tetanus-diphtheria-acellular pertussis vaccine when used off-label in an elderly population.

    Science.gov (United States)

    Tseng, Hung Fu; Sy, Lina S; Qian, Lei; Marcy, S Michael; Jackson, Lisa A; Glanz, Jason; Nordin, Jim; Baxter, Roger; Naleway, Allison; Donahue, James; Weintraub, Eric; Jacobsen, Steven J

    2013-02-01

    Published data on the safety of tetanus-diphtheria-acellular pertussis vaccine (Tdap) in persons aged ≥65 years are limited. This study aims to examine a large cohort of Tdap users ≥65 years for evidence of increased risk of adverse events following vaccination. A matched cohort study design and a self-controlled case series (SCCS) design were used. The study population was adults aged ≥65 years who received the Tdap or tetanus and diphtheria (Td) vaccine during 1 January 2006-31 December 2010 at 7 health maintenance organizations in the United States. Seven major groups of prespecified events were identified electronically by diagnostic codes. The study included 119 573 Tdap vaccinees and the same number of Td vaccinees. The results indicated that the risk of the prespecified events following Tdap was comparable to that following Td vaccination in this elderly population. There was a small increased rate of codes suggesting medically attended inflammatory or allergic events in 1-6 days following Tdap in the SCCS analysis (incidence rate ratio, 1.59 [95% confidence interval, 1.40-1.81]). Although there is a small increased risk of medically attended inflammatory or allergic events in 1-6 days following Tdap compared to other time periods, it is no more common than that following Td. This study provides empirical safety data suggesting that immunizing adults aged ≥65 years with Tdap to reduce the risk of pertussis in the elderly and their contacts should not have untoward safety consequences.

  7. Evaluating the Effectiveness of Cryopreserved Acellular Dermal Matrix in Immediate Expander-Based Breast Reconstruction: A Comparison Study

    Directory of Open Access Journals (Sweden)

    So-Young Kim

    2015-05-01

    Full Text Available BackgroundCGCryoDerm was first introduced in 2010 and offers a different matrix preservation processes for freezing without drying preparation. From a theoretical perspective, CGCryoDerm has a more preserved dermal structure and more abundant growth factors for angiogenesis and recellularization. In the current study, the authors performed a retrospective study to evaluate freezing- and freeze-drying-processed acellular dermal matrix (ADM to determine whether any differences were present in an early complication profile.MethodsPatients who underwent ADM-assisted tissue expander placement for two stage breast reconstruction between January of 2013 and March of 2014 were retrospectively reviewed and divided into two groups based on the types of ADM-assisted expander reconstruction (CGDerm vs. CGCryoDerm. Complications were divided into four main categories and recorded as follows: seroma, hematoma, infection, and mastectomy skin flap necrosis.ResultsIn a total of 82 consecutive patients, the CGCryoDerm group had lower rates of seroma when compared to the CGDerm group without statistical significance (3.0% vs. 10.2%, P=0.221, respectively. Other complications were similar in both groups. Reconstructions with CGCryoDerm were found to have a significantly longer period of drainage when compared to reconstructions with CGDerm (11.91 days vs. 10.41 days, P=0.043.ConclusionsPreliminary findings indicate no significant differences in early complications between implant/expander-based reconstructions using CGCryoderm and those using CGDerm.

  8. Dynamic multiphoton imaging of acellular dermal matrix scaffolds seeded with mesenchymal stem cells in diabetic wound healing.

    Science.gov (United States)

    Chu, Jing; Shi, Panpan; Deng, Xiaoyuan; Jin, Ying; Liu, Hao; Chen, Maosheng; Han, Xue; Liu, Hanping

    2018-03-25

    Significantly effective therapies need to be developed for chronic nonhealing diabetic wounds. In this work, the topical transplantation of mesenchymal stem cell (MSC) seeded on an acellular dermal matrix (ADM) scaffold is proposed as a novel therapeutic strategy for diabetic cutaneous wound healing. GFP-labeled MSCs were cocultured with an ADM scaffold that was decellularized from normal mouse skin. These cultures were subsequently transplanted as a whole into the full-thickness cutaneous wound site in streptozotocin-induced diabetic mice. Wounds treated with MSC-ADM demonstrated an increased percentage of wound closure. The treatment of MSC-ADM also greatly increased angiogenesis and rapidly completed the reepithelialization of newly formed skin on diabetic mice. More importantly, multiphoton microscopy was used for the intravital and dynamic monitoring of collagen type I (Col-I) fibers synthesis via second harmonic generation imaging. The synthesis of Col-I fibers during diabetic wound healing is of great significance for revealing wound repair mechanisms. In addition, the activity of GFP-labeled MSCs during wound healing was simultaneously traced via two-photon excitation fluorescence imaging. Our research offers a novel advanced nonlinear optical imaging method for monitoring the diabetic wound healing process while the ADM and MSCs interact in situ. Schematic of dynamic imaging of ADM scaffolds seeded with mesenchymal stem cells in diabetic wound healing using multiphoton microscopy. PMT, photo-multiplier tube. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  10. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  11. Ultrastructural changes in human skin after exposure to a pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, H.; Tan, O.T.; Parrish, J.A.

    1985-05-01

    Selective vascular injury following irradiation using a pulsed laser source at 577 nm was examined using ultrastructural methods in the skin of 3 fair-skinned healthy human volunteers. This vascular-specific damage was confined to the papillary dermis. Red blood cells were altered in several ways. As well as an increase in the electron density, configurational distortion modified the normal biconcave forms to ameboid structures. The most interesting finding was the appearance within these altered cells of well-defined circular/oval electron-lucent areas of 800 A diameter, possibly representing a heat-fixed record of steam formation within the red blood cell. In addition, considerable degenerative changes were evident in endothelial cells and pericytes, while mast cells, neutrophils, histiocytes, and fibroblasts as well as collagen bundles immediately surrounding most laser-damaged blood vessels appeared normal.

  12. Acellular dermal matrix loading with bFGF achieves similar acceleration of bone regeneration to BMP-2 via differential effects on recruitment, proliferation and sustained osteodifferentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Du, Mi; Zhu, Ting; Duan, Xiaoqi; Ge, Shaohua; Li, Ning; Sun, Qinfeng; Yang, Pishan

    2017-01-01

    New generation of barrier membranes has been developed, which not only act as barriers but also as delivery devices to release specific growth factors. This study observed biological behaviors of bone morrow mesenchymal stem cells (BMMSCs) pretreated by bFGF or BMP-2 in vitro and evaluated differential bone regeneration process induced by bFGF and BMP-2 loaded acellular dermal matrix (ADM) membrane using critical-size rat calvarial defect model in vivo. The results showed that the proliferation capability of BMMSCs pretreated by bFGF was stronger than that by BMP-2, while there was temporally differential effect of bFGF and BMP-2 pretreatment on MSC osteogenic differentiation potentials. During healing process of rat calvarial defects, 2-fold more CD34 −/CD90 + MSCs in group of bFGF-ADM was observed than in any other treatment group at 2 weeks. However, there were similar amount of new bone formation and expression of osteopotin in newly-formed bone tissue in groups of bFGF- and BMP-2-ADM at 8 weeks, which were more than those in ADM alone and blank control. Taken together, bFGF-ADM guided similar bone regeneration to BMP-2 through more efficient recruitment of MSCs, and moreover, BMMSCs pretreated by bFGF showed stronger proliferation at 1–5 days and osteogenic differentiation potentials at 14 days compared with BMP-2 pretreatment. - Highlights: • An improved barrier membrane used in the field of bone tissue engineering was proposed, which is acellular dermal matrix (ADM) loaded with growth factors. • It is generally agreed that BMP-2 and -7 provide the greatest bone regeneration potentials, however, we found that ADM loading with bFGF could guide similar bone regeneration to BMP-2. • Compared with BMP-2, bFGF could more effectively recruit MSCs and moreover, BMMSCs pretreated by bFGF showed out stronger proliferation at 1-5 days and osteogenic differentiation potentials at 14 days.

  13. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.

    Science.gov (United States)

    Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis

    2016-01-01

    Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. X-Ray Microanalysis of Human Cementum

    Science.gov (United States)

    Alvarez-Pérez, Marco Antonio; Alvarez-Fregoso, Octavio; Ortiz-López, Jaime; Arzate, Higinio

    2005-08-01

    An energy dispersive x-ray microanalysis study was performed throughout the total length of cementum on five impacted human teeth. Mineral content of calcium, phosphorous, and magnesium were determined with an electron probe from the cemento-enamel junction to the root apex on the external surface of the cementum. The concentration profiles for calcium, phosphorous, and magnesium were compared by using Ca/P and Mg/Ca atomic percent ratio. Our findings demonstrated that the Ca/P ratio at the cemento-enamel junction showed the highest values (1.8 2.2). However, the area corresponding to the acellular extrinsic fiber cementum (AEFC) usually located on the coronal one-third of the root surface showed a Ca/P media value of 1.65. Nevertheless, on the area representing the fulcrum of the root there is an abrupt change in the Ca/P ratio, which decreases to 1.3. Our results revealed that Mg2+ distribution throughout the length of human cementum reached its maximum Mg/Ca ratio value of 1.3 1.4 at.% around the fulcrum of the root and an average value of 0.03%. A remarkable finding was that the Mg/Ca ratio pattern distribution showed that in the region where the Ca/P ratio showed a decreasing tendency, the Mg/Ca ratio reached its maximum value, showing a negative correlation. In conclusion, this study has established that clear compositional differences exist between AEFC and cellular mixed stratified cementum varieties and adds new knowledge about Mg2+ distribution and suggests its provocative role regulating human cementum metabolism.

  15. Association of versican with dermal matrices and its potential role in hair follicle development and cycling

    DEFF Research Database (Denmark)

    du Cros, D L; LeBaron, R G; Couchman, J R

    1995-01-01

    Versican is a member of the group of aggregating proteoglycans involved in matrix assembly and structure and in cell adhesion. We examined changes in the distribution of versican in mammalian skin, with emphasis on hair follicle development and cycling. In adult human skin, immunostaining...... for versican appeared predominantly in the dermis, with intense staining of the reticular dermis. Weak staining was observed at the dermoepidermal junction and the connective tissue sheath of hair follicles. Versican expression was also noted in the reticular dermis of rat skin, within dermal papillae......, and possibly associated with follicle basement membranes. During mouse hair follicle development, versican was not expressed until the hair follicles were beginning to produce fibers. With follicle maturation, versican expression intensified in the dermal papillae, reaching a maximum at the height...

  16. Does acellular dermal matrix really improve aesthetic outcome in tissue expander/implant-based breast reconstruction?

    Science.gov (United States)

    Ibrahim, Ahmed M S; Koolen, Pieter G L; Ganor, Oren; Markarian, Mark K; Tobias, Adam M; Lee, Bernard T; Lin, Samuel J; Mureau, Marc A M

    2015-06-01

    The expectation for improved results by women undergoing postmastectomy reconstruction has steadily risen. A majority of these operations are tissue expander/implant-based breast reconstructions. Acellular dermal matrix (ADM) offers numerous advantages in these procedures. Thus far, the evidence to justify improved aesthetic outcome has solely been based on surgeon opinion. The purpose of this study was to assess aesthetic outcome following ADM use in tissue expander/implant-based breast reconstruction by a panel of blinded plastic surgeons. Mean aesthetic results of patients who underwent tissue expander/implant-based breast reconstruction with (n = 18) or without ADM (n = 20) were assessed with objective grading of preoperative and postoperative photographs by five independent blinded plastic surgeons. Absolute observed agreement as well as weighted Fleiss Kappa (κ) test statistics were calculated to assess inter-rater variability. When ADM was incorporated, the overall aesthetic score was improved by an average of 12.1 %. In addition, subscale analyses revealed improvements in breast contour (35.2 %), implant placement (20.7 %), lower pole projection (16.7 %), and inframammary fold definition (13.8 %). Contour (p = 0.039), implant placement (p = 0.021), and overall aesthetic score (p = 0.022) reached statistical significance. Inter-rater reliability showed mostly moderate agreement. Mean aesthetic scores were higher in the ADM-assisted breast reconstruction cohort including the total aesthetic score which was statistically significant. Aesthetic outcome alone may justify the added expense of incorporating biologic mesh. Moreover, ADM has other benefits which may render it cost-effective. Larger prospective studies are needed to provide plastic surgeons with more definitive guidelines for ADM use. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the

  17. Evaluation of components of X-ray irradiated 7-valent pneumococcal conjugate vaccine and pneumococcal vaccine polyvalent and X-ray and gamma-ray irradiated acellular pertussis component of DTaP vaccine products

    International Nuclear Information System (INIS)

    May, J.C.; Rey, L.; Lee, C.-J.; Arciniega, Juan

    2004-01-01

    Samples of pneumococcal vaccine polyvalent, 7-valent pneumococcal conjugate vaccine, and two different diphtheria and tetanus toxoids and acellular pertussis vaccines adsorbed were irradiated with X-rays and/or gamma-rays (Co-60). Mouse IgG and IgM antibody responses (ELISA) for types 9V, 14, 18C, and 19F pneumococcal polysaccharides and conjugates indicated that the polysaccharides were more tolerant of the radiation than the conjugates. The mouse antibody response for the detoxified pertussis toxin (PT) antigen, filamentous hemagglutinin antigen (FHA), pertactin (PRN), and fimbriae types 2 and 3 (FIM) antigens for the appropriate vaccine type indicated that the antibody response was not significantly changed in the 25 kGy X-ray irradiated vaccines frozen in liquid nitrogen compared to the control vaccine

  18. Evaluation of components of X-ray irradiated 7-valent pneumococcal conjugate vaccine and pneumococcal vaccine polyvalent and X-ray and gamma-ray irradiated acellular pertussis component of DTaP vaccine products

    Energy Technology Data Exchange (ETDEWEB)

    May, J.C. E-mail: may@cber.fda.gov; Rey, L. E-mail: louis.rey@bluewin.ch; Lee, C.-J.; Arciniega, Juan

    2004-10-01

    Samples of pneumococcal vaccine polyvalent, 7-valent pneumococcal conjugate vaccine, and two different diphtheria and tetanus toxoids and acellular pertussis vaccines adsorbed were irradiated with X-rays and/or gamma-rays (Co-60). Mouse IgG and IgM antibody responses (ELISA) for types 9V, 14, 18C, and 19F pneumococcal polysaccharides and conjugates indicated that the polysaccharides were more tolerant of the radiation than the conjugates. The mouse antibody response for the detoxified pertussis toxin (PT) antigen, filamentous hemagglutinin antigen (FHA), pertactin (PRN), and fimbriae types 2 and 3 (FIM) antigens for the appropriate vaccine type indicated that the antibody response was not significantly changed in the 25 kGy X-ray irradiated vaccines frozen in liquid nitrogen compared to the control vaccine.

  19. Humoral immunity 10 years after booster immunization with an adolescent and adult formulation combined tetanus, diphtheria, and 5-component acellular pertussis vaccine.

    Science.gov (United States)

    Tomovici, A; Barreto, L; Zickler, P; Meekison, W; Noya, F; Voloshen, T; Lavigne, P

    2012-03-30

    Persistence of antibodies after a single dose of Tdap vaccine (tetanus, diphtheria, and 5-component acellular pertussis vaccine) was evaluated in a follow-up study of adolescents (N=324) and adults (N=644) who had received Tdap in earlier clinical trials. Outcome measures were seroprotection (tetanus and diphtheria) or seropositivity (pertussis) and geometric mean concentrations. Humoral immune responses to all antigens were robust 1 month after initial immunization, decreased at subsequent measurements, but continued to exceed pre-immunization levels 1, 3, 5, and 10 years later. Protective levels of diphtheria and tetanus antitoxin persisted in 99.3% of adolescents 10 years after a booster dose of Tdap. Seropositivity to 1 or more pertussis antigens also persisted in most adolescents for 10 years. Although tetanus antitoxin responses were similar in adults to those observed in adolescents, diphtheria antitoxin titers were lower, reflecting the fact that a smaller proportion of adults had received diphtheria toxoid in the previous 10 years compared to adolescents. These data will contribute to the selection of the optimal interval for repeat doses of Tdap. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Reduction of Direct Health Costs Associated with Pertussis Vaccination with Acellular Vaccines in Children Aged 0-9 Years with Pertussis in Catalonia (Spain).

    Science.gov (United States)

    Plans-Rubió, Pedro; Navas, Encarna; Godoy, Pere; Carmona, Gloria; Domínguez, Angela; Jané, Mireia; Muñoz-Almagro, Carmen; Brotons, Pedro

    2018-05-14

    The aim of this study was to assess direct health costs in children with pertussis aged 0-9 years who were vaccinated, partially vaccinated, and unvaccinated during childhood, and to assess the association between pertussis costs and pertussis vaccination in Catalonia (Spain) in 2012-2013. Direct healthcare costs included pertussis treatment, pertussis detection, and preventive chemotherapy of contacts. Pertussis patients were considered vaccinated when they had received 4-5 doses, and unvaccinated or partially vaccinated when they had received 0-3 doses of vaccine. The Chi square test and the odds ratios were used to compare percentages and the t test was used to compare mean pertussis costs in different groups, considering a p case after taking into account the effect of other study variables, and €200 per case after taking into account pertussis severity. Direct healthcare costs were lower in children with pertussis aged 0-9 years vaccinated with 4-5 doses of acellular vaccines than in unvaccinated or partially vaccinated children with pertussis of the same age.

  1. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...... and unexposed skin was observed, despite a more permeable skin barrier at the alkaline pH of the cement suspensions, i.e., pH 12.5. Increased chromium levels in epidermis and dermis were seen when ordinary Portland cement was applied as a suspension with added sodium sulphate (20%) on the skin surface for 96 h...

  2. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    Science.gov (United States)

    Hamid, A. H. A.; Rozan, M. Z. A.; Deris, S.; Ibrahim, R.; Abdullah, W. S. W.; Rahman, A. A.; Yunus, M. N. M.

    2016-01-01

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder's tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the "sense making theory" and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation.

  3. Intensification of ultraviolet-induced dermal damage by infrared radiation

    International Nuclear Information System (INIS)

    Kligman, L.H.

    1982-01-01

    To assess the role of IR in actinic damage to the dermis, albino guinea pigs were irradiated for 45 weeks with UV-B and UV-A, with and without IR. Control animals received IR only or no irradiation at all. Unirradiated dermis contains small amounts of elastic fibers in the upper dermis with greater depositions around follicles and sebaceous glands. After irradiation with UV, the fibers became more numerous, thicker, and more twisted; IR alone producd many fine, feathery fibers. The addition of IR to UV resulted in dense matlike elastic fiber depositions that exceeded what was observed with either irradiation alone. In combination or alone UV and IR radiation produced a large increase in ground substance, a finding also seen in actinically damaged human skin. Infrared radiation, in the physiologic range, though pleasant is not innocuous. (orig./MG) [de

  4. Effects of a Diphtheria-Tetanus-Acellular Pertussis Vaccine on Immune Responses in Murine Local Lymph Node and Lung Allergy Models▿

    Science.gov (United States)

    Vandebriel, Rob J.; Gremmer, Eric R.; van Hartskamp, Michiel; Dormans, Jan A. M. A.; Mooi, Frits R.

    2007-01-01

    We have previously shown that in mice, diphtheria-tetanus-acellular pertussis (DTaP) vaccination before Bordetella pertussis infection resulted in, besides effective clearance, immediate hypersensitivity (lung eosinophilia, increased total serum immunoglobulin E [IgE], and increased ex vivo Th2 cytokine production by cells from the bronchial lymph nodes). To better appreciate the extent of these findings, we measured DTaP vaccination effects in the local lymph node assay (LLNA) and an ovalbumin (OVA) lung allergy model. In the LLNA, mice were vaccinated or adjuvant treated before being sensitized with trimellitic anhydride (TMA; inducing a Th2-directed response) and dinitrochlorobenzene (DNCB; inducing a Th1-directed response). Compared to the adjuvant-treated controls, the vaccinated mice showed a decreased response to TMA and (to a much lesser extent) an increased response to DNCB. The decreased response to TMA coincided with increased transforming growth factor β levels. With the exception of filamentous hemagglutinin, all vaccine constituents contributed to the decreased response to TMA. In the lung allergy model, sensitization induced OVA-specific IgE, lung pathology (peribronchiolitis, perivasculitis, and hypertrophy of the bronchiolar mucus cells) and increased the number of eosinophils, lymphocytes, and neutrophils in the bronchoalveolar lavage fluid. Vaccination failed to modulate these parameters. In conclusion, although DTaP vaccination may affect the LLNA response, we found no evidence of an effect on lung allergy. PMID:17202304

  5. Transferability study of CHO cell clustering assays for monitoring of pertussis toxin activity in acellular pertussis vaccines.

    Science.gov (United States)

    Isbrucker, R; Daas, A; Wagner, L; Costanzo, A

    2016-01-01

    Current regulations for acellular pertussis (aP) vaccines require that they are tested for the presence of residual or reversion-derived pertussis toxin (PTx) activity using the mouse histamine sensitisation test (HIST). Although a CHO cell clustering assay can be used by manufacturers to verify if sufficient inactivation of the substance has occurred in-process, this assay cannot be used at present for the final product due to the presence of aluminium adjuvants which interfere with mammalian cell cultures. Recently, 2 modified CHO cell clustering assays which accommodate for the adjuvant effects have been proposed as alternatives to the HIST. These modified assays eliminate the adjuvant-induced cytotoxicity either through dilution of the vaccine (called the Direct Method) or by introducing a porous barrier between the adjuvant and the cells (the Indirect Method). Transferability and suitability of these methods for testing of products present on the European market were investigated during a collaborative study organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM). Thirteen laboratories participated in this study which included 4 aP-containing vaccines spiked by addition of PTx. This study also assessed the transferability of a standardised CHO cell clustering assay protocol for use with non-adjuvanted PTx preparations. Results showed that the majority of laboratories were able to detect the PTx spike in all 4 vaccines at concentrations of 4 IU/mL or lower using the Indirect Method. This sensitivity is in the range of the theoretical sensitivity of the HIST. The Direct Method however did not show the expected results and would need additional development work.

  6. Evaluation of a xenogeneic acellular collagen matrix as a small-diameter vascular graft in dogs--preliminary observations.

    Science.gov (United States)

    Nemcova, S; Noel, A A; Jost, C J; Gloviczki, P; Miller, V M; Brockbank, K G

    2001-01-01

    Autogenous veins are the materials of choice for arterial reconstruction. In the absence of autogenous material, prosthetic materials are used. However, vascular prostheses of less than 0.4 cm in diameter have low long-term patency. This study was designed to determine if cells would infiltrate an engineered xenogeneic biomaterial used as a small diameter arterial graft in dogs and, if so, to determine the phenotype of the infiltrating cells. Nine acellular xenogeneic grafts (0.4 cm in diameter, 5 cm long), composed of porcine collagen derived from the submucosa of the small intestine and type I bovine collagen, were implanted as end to-end interposition grafts in femoral arteries of five male mongrel dogs (total of nine grafts). All dogs received daily aspirin (325 mg). Patency of implanted grafts was monitored weekly by Duplex ultrasonography. After 9 weeks, or earlier in case of blood flow reduction by at least 75%, grafts were explanted and prepared for light or electron microscopy to evaluate cellularization. Eight of nine grafts remained patent up to 9 weeks. At explant, diameters were 0.31 +/- 0.02 cm at the midgraft, and 0.14 +/- 0.01 and 0.19 +/- 0.01 cm at the proximal and distal anastomoses. At explant, cells of mesenchymal origin (endothelial cells, smooth muscle cells, myofibroblasts) were embedded in the extracellular matrix of the graft scaffold. Minimal evidence of cellular inflammatory reaction and no aneurysmal dilatation or thrombus formation was detected. Variable degrees of hyperplasia were present at proximal and distal anastomoses. This preliminary study demonstrates that a collagen-based xenogeneic biomaterial provides a scaffold for cellularization when used for arterial reconstruction in dogs.

  7. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera

    Science.gov (United States)

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2011-08-01

    In order to visualize human skin hemodynamics, we investigated a method that is specifically developed for the visualization of concentrations of oxygenated blood, deoxygenated blood, and melanin in skin tissue from digital RGB color images. Images of total blood concentration and oxygen saturation can also be reconstructed from the results of oxygenated and deoxygenated blood. Experiments using tissue-like agar gel phantoms demonstrated the ability of the developed method to quantitatively visualize the transition from an oxygenated blood to a deoxygenated blood in dermis. In vivo imaging of the chromophore concentrations and tissue oxygen saturation in the skin of the human hand are performed for 14 subjects during upper limb occlusion at 50 and 250 mm Hg. The response of the total blood concentration in the skin acquired by this method and forearm volume changes obtained from the conventional strain-gauge plethysmograph were comparable during the upper arm occlusion at pressures of both 50 and 250 mm Hg. The results presented in the present paper indicate the possibility of visualizing the hemodynamics of subsurface skin tissue.

  8. Elaboración de apósitos biológicos del colágeno de la dermis de tilapia y del quitosano del exoesqueleto de camarón y evaluación preliminar de su potencial terapéutico en afecciones epidérmicas.

    OpenAIRE

    Rojas, Miguel; Alvarenga-Venutolo, Silvana; Zamora, Vanesa; Madrigal, Sergio; Vega, José; Calvo, Laura; Centeno, Carolina; Sibaja-B., María del Rosario

    2011-01-01

    La Ingeniería de Tejidos comprende los métodos utilizados para obtener y crecer tejidos humanos o animales para restaurar, mejorar o sustituir órganos humanos dañados. Este proyecto constituyó un esfuerzo pionero de las universidades públicas en ingeniería de tejidos en el país. Se diseñaron y ensayaron biomateriales tridimensionales compuestos a partir de colágeno de la dermis de tilapia y de quitosano del exosqueleto de camarón, para la realización de pruebas preliminares con la finalidad d...

  9. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation.

    Science.gov (United States)

    Abualhassan, Nasser; Sapozhnikov, Lena; Pawlick, Rena L; Kahana, Meygal; Pepper, Andrew R; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A M James

    2016-01-01

    There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.

  10. Preclinical pilot study monitoring topical drug penetration and dermal bioavailability of a peptidase inhibitor from different galenic formulations into pig dermis, using cutaneous microdialysis.

    Science.gov (United States)

    Quist, S R; Heimburg, A; Bank, U; Mahnkopf, D; Koch, G; Gollnick, H; Täger, M; Ansorge, S

    2017-08-01

    Cutaneous microdialysis (CM) is an ex vivo technique that allows study of tissue chemistry, including bioavailability of actual tissue concentration of unbound drug in the interstitial fluid of the body. To test the penetration and dermal bioavailability of galenic formulations of the small-molecule IP10.C8, a dual-protease inhibitor of the dipeptidyl peptidase and aminopeptidase families. Using CM, we tested the penetration and dermal bioavailability of IP10.C8 into the dermis and subcutis of pigs, and determined the tissue concentration of IP10.C8 enzymatically, using an enzyme activity assay (substrate Gly-Pro-pNA) and high performance liquid chromatography. Dermal bioavailability was enhanced by using microemulsion or the addition of the penetration enhancer oleic acid to a hydroxyethylcellulose (HEC) gel formulation. Dermal bioavailability was also enhanced when galenic formulations were prepared with higher pH (7.5 vs. 6.5) or higher drug concentration (5% vs. 1%) in HEC gel. It seems possible, using CM for topical skin penetration testing in anaesthetized domestic pigs, to test the bioavailability of newly designed drugs. However, the experimental time is limited due to the anaesthesia, and is dependent on drug recovery. Validation of this technique for routine use is challenging, and more experiments are needed to validate this preclinical set-up. © 2017 British Association of Dermatologists.

  11. Confocal Raman study of aging process in diabetes mellitus human voluntaries

    Science.gov (United States)

    Pereira, Liliane; Téllez Soto, Claudio Alberto; dos Santos, Laurita; Ali, Syed Mohammed; Fávero, Priscila Pereira; Martin, Airton A.

    2015-06-01

    Accumulation of AGEs [Advanced Glycation End - products] occurs slowly during the human aging process. However, its formation is accelerated in the presence of diabetes mellitus. In this paper, we perform a noninvasive analysis of glycation effect on human skin by in vivo confocal Raman spectroscopy. This technique uses a laser of 785 nm as excitation source and, by the inelastic scattering of light, it is possible to obtain information about the biochemical composition of the skin. Our aim in this work was to characterize the aging process resulting from the glycation process in a group of 10 Health Elderly Women (HEW) and 10 Diabetic Elderly Women (DEW). The Raman data were collected from the dermis at a depth of 70-130 microns. Through the theory of functional density (DFT) the bands positions of hydroxyproline, proline and AGEs (pentosidine and glucosepane) were calculated by using Gaussian 0.9 software. A molecular interpretation of changes in type I collagen was performed by the changes in the vibrational modes of the proline (P) and hydroxyproline (HP). The data analysis shows that the aging effects caused by glycation of proteins degrades type I collagen differently and leads to accelerated aging process.

  12. Preparation of laser micropore porcine acellular dermal matrix for skin graft: an experimental study.

    Science.gov (United States)

    Chai, Jia-Ke; Liang, Li-Ming; Yang, Hong-Ming; Feng, Rui; Yin, Hui-Nan; Li, Feng-Yu; Sheng, Zhi-Yong

    2007-09-01

    In our previous study, we used composite grafts consisting of meshed porcine acellular dermal matrix (PADM) and thin split-thickness autologous epidermis to cover full thickness burn wounds in clinical practice. However, a certain degree of contraction might occur because the distribution of dermal matrix was not uniform in burn wound. In this study, we prepare a composite skin graft consisting of PADM with the aid of laser to improve the quality of healing of burn wound. PADM was prepared by the trypsin/Triton X-100 method. Micropores were produced on the PADM with a laser punch. The distance between micropores varied from 0.8, 1.0, 1.2 to 1.5mm. Full thickness defect wounds were created on the back of 144 SD rats. The rats were randomly divided into six groups: micropore groups I-IV in which the wound were grafted with PADM with micropores, in four different distances, respectively and split-thickness autograft; mesh group rats received meshed PADM graft and split-thickness autograft; control group received simple split-thickness autografting. The status of wound healing was histologically observed at regular time points after surgery. The wound healing rate and contraction rate were calculated. The wound healing rate in micropore groups I and II was not statistically different from that in control group, but was significantly higher than that in mesh group 6 weeks after grafting. The wound healing rate in micropore groups III and IV was lower than that in mesh and control groups 4 and 6 weeks after grafting. The wound contraction rate in micropore groups I and II was remarkably lower than that in control group 4 and 6 weeks after surgery and it was significantly much lower than that in mesh group 6 weeks after surgery. Histological examination revealed good epithelization, regularly arranged collagenous fibers and integral structure of basement membrane. Laser micropore PADM (0.8 or 1.0mm in distance) grafting in combination with split-thickness autografting can

  13. Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin.

    Science.gov (United States)

    Suh, Dong Hye; Choi, Jeong Hwee; Lee, Sang Jun; Jeong, Ki-Heon; Song, Kye Yong; Shin, Min Kyung

    2015-01-01

    High-intensity focused ultrasound (HIFU) and radiofrequency (RF) are used for non-invasive skin tightening. Neocollagenesis and neoelastogenesis have been reported to have a mechanism of controlled thermal injury. To compare neocollagenesis and neoelastogenesis in each layer of the dermis after each session of HIFU and monopolar RF. We analyzed the area fraction of collagen and elastic fibers using the Masson's Trichrome and Victoria blue special stains, respectively, before and after 2 months of treatments. Histometric analyses were performed in each layer of the dermis, including the papillary dermis, and upper, mid, and deep reticular dermis. Monopolar RF led to neocollagenesis in the papillary dermis, and upper, mid, and deep reticular dermis, and neoelastogenesis in the papillary dermis, and upper and mid reticular dermis. HIFU led to neocollagenesis in the mid and deep reticular dermis and neoelastogenesis in the deep reticular dermis. Among these treatment methods, HIFU showed the highest level of neocollagenesis and neoelastogenesis in the deep reticular dermis. HIFU affects deep tissues and impacts focal regions. Monopolar RF also affects deep tissues, but impacts diffuse regions. We believe these data provide further insight into effective skin tightening.

  14. Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine in adults aged 65 years and older - Advisory Committee on Immunization Practices (ACIP), 2012.

    Science.gov (United States)

    2012-06-29

    Since 2005, the Advisory Committee on Immunization Practices (ACIP) has recommended a tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine booster dose for all adolescents aged 11 through 18 years (preferred at 11 through 12 years) and for those adults aged 19 through 64 years who have not yet received a dose. In October 2010, despite the lack of an approved Tdap vaccine for adults aged 65 years and older, ACIP recommended that unvaccinated adults aged 65 years and older be vaccinated with Tdap if in close contact with an infant, and that other adults aged 65 years and older may receive Tdap. In July 2011, the Food and Drug Administration (FDA) approved expanding the age indication for Boostrix (GlaxoSmithKline Biologicals, Rixensart, Belgium) to aged 65 years and older. In February 2012, ACIP recommended Tdap for all adults aged 65 years and older. This recommendation supersedes previous Tdap recommendations regarding adults aged 65 years and older.

  15. Safety and immunogenicity of tetanus-diphtheria-acellular pertussis vaccine administered to children 10 or 11 years of age.

    Science.gov (United States)

    Marshall, Gary S; Pool, Vitali; Greenberg, David P; Johnson, David R; Sheng, Xiaohua; Decker, Michael D

    2014-11-01

    Boosting immunity to tetanus, diphtheria, and pertussis through the use of Tdap vaccines is routinely recommended at 11 to 12 years of age; some states, however, require Tdap for entry into middle school, which may begin at 10 years of age. This study was conducted to determine whether Tdap5 (Adacel), which is licensed for use in children beginning at 11 years of age, is as safe and immunogenic in 10-year-olds as it is in 11-year-olds. Children who had received 5 previous doses of any diphtheria-tetanus-acellular pertussis (DTaP) vaccine were enrolled in a phase IV clinical trial; 646 10-year-olds and 645 11-year-olds completed the study, which involved a single intramuscular dose of Tdap5 along with pre- and postvaccination serologies. Postvaccination geometric mean concentrations (GMCs) of antibody to pertussis antigens (pertussis toxoid, filamentous hemagglutinin, pertactin, and fimbria types 2 and 3) of 10-year-olds were noninferior to those of 11-year-olds, as were booster response rates for all pertussis antibodies, except for those to fimbrial antigens (94% and 97%, respectively). Seroprotection rates among 10-year-olds for tetanus and diphtheria were noninferior to those in 11-year-olds. Rates of injection site reactions, solicited systemic reactions, and unsolicited adverse events, adverse reactions, and serious adverse events were similar in the two groups. These data support the conclusion that Tdap5 is safe and immunogenic in 10-year-olds. (This study has been registered at ClinicalTrials.gov under registration no. NCT01311557.). Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    International Nuclear Information System (INIS)

    Hamid, A. H. A.; Rozan, M. Z. A.; Ibrahim, R.; Deris, S.; Abdullah, W. S. W.; Yunus, M. N. M.; Rahman, A. A.

    2016-01-01

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder’s tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the “sense making theory” and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation

  17. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, A. H. A., E-mail: amyhamijah@gmail.com, E-mail: amyhamijah@nm.gov.my [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, 16100 Kota Bharu, Kelantan (Malaysia); Rozan, M. Z. A., E-mail: drmohdzaidi@gmail.com; Ibrahim, R. [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Deris, S. [Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, 16100 Kota Bharu, Kelantan (Malaysia); Abdullah, W. S. W.; Yunus, M. N. M. [Malaysian Nuclear Agency (NM), Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, A. A. [Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor (Malaysia)

    2016-01-22

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder’s tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the “sense making theory” and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation.

  18. Licensed pertussis vaccines in the United States. History and current state.

    Science.gov (United States)

    Klein, Nicola P

    2014-01-01

    The United States switched from whole cell to acellular pertussis vaccines in the 1990s following global concerns with the safety of the whole cell vaccines. Despite high levels of acellular pertussis vaccine coverage, the United States and other countries are experiencing large pertussis outbreaks. The aim of this article is to describe the historical context which led to acellular pertussis vaccine development, focusing on vaccines currently licensed in the US, and to review evidence that waning protection following licensed acellular pertussis vaccines have been significant factors in the widespread reappearance of pertussis.

  19. Augmentation with a reinforced acellular fascia lata strip graft limits cyclic gapping of supraspinatus repairs in a human cadaveric model.

    Science.gov (United States)

    Milks, Ryan A; Kolmodin, Joel D; Ricchetti, Eric T; Iannotti, Joseph P; Derwin, Kathleen A

    2018-06-01

    A reinforced biologic strip graft was designed to mechanically augment the repair of rotator cuff tears that are fully reparable by arthroscopic techniques yet have a likelihood of failure. This study assessed the extent to which augmentation of human supraspinatus repairs with a reinforced fascia strip can reduce gap formation during in vitro cyclic loading. The supraspinatus tendon was sharply released from the proximal humerus and repaired back to its insertion with anchors in 9 matched pairs of human cadaveric shoulders. One repair from each pair was also augmented with a reinforced fascia strip. All repairs were subjected to cyclic mechanical loading of 5 to 180 N for 1000 cycles. All augmented and nonaugmented repair constructs completed 1000 cycles of loading. Augmentation with a reinforced fascia strip graft significantly decreased the amount of gap formation compared with nonaugmented repairs. The average gap formation of augmented repairs was 1.5 ± 0.7 mm after the first cycle vs. 3.0 ± 1.2 mm for nonaugmented repairs (P = .003) and 5.0 ± 1.5 mm after 1000 cycles of loading, which averaged 24% ± 21% less than the gap formation of nonaugmented repairs (7.0 ± 2.8 mm, P = .014). Cadaveric human supraspinatus repairs augmented with a reinforced fascia strip have significantly less initial stroke elongation and gap formation than repairs without augmentation. Augmentation limited gap formation to the greatest extent early in the testing protocol. Human studies are necessary to confirm the appropriate indications and effectiveness of augmentation scaffolds for rotator cuff repair healing in the clinical setting. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. Augmentation of Distal Biceps Repair With an Acellular Dermal Graft Restores Native Biomechanical Properties in a Tendon-Deficient Model.

    Science.gov (United States)

    Conroy, Christine; Sethi, Paul; Macken, Craig; Wei, David; Kowalsky, Marc; Mirzayan, Raffy; Pauzenberger, Leo; Dyrna, Felix; Obopilwe, Elifho; Mazzocca, Augustus D

    2017-07-01

    The majority of distal biceps tendon injuries can be repaired in a single procedure. In contrast, complete chronic tears with severe tendon substance deficiency and retraction often require tendon graft augmentation. In cases with extensive partial tears of the distal biceps, a human dermal allograft may be used as an alternative to restore tendon thickness and biomechanical integrity. Dermal graft augmentation will improve load to failure compared with nonaugmented repair in a tendon-deficient model. Controlled laboratory study. Thirty-six matched specimens were organized into 1 of 4 groups: native tendon, native tendon with dermal graft augmentation, tendon with an attritional defect, and tendon with an attritional defect repaired with a graft. To mimic a chronic attritional biceps lesion, a defect was created by a complete tear, leaving 30% of the tendon's width intact. The repair technique in all groups consisted of cortical button and interference screw fixation. All specimens underwent cyclical loading for 3000 cycles and were then tested to failure; gap formation and peak load at failure were documented. The mean (±SD) load to failure (320.9 ± 49.1 N vs 348.8 ± 77.6 N, respectively; P = .38) and gap formation (displacement) (1.8 ± 1.4 mm vs 1.6 ± 1.1 mm, respectively; P = .38) did not differ between the native tendon groups with and without graft augmentation. In the tendon-deficient model, the mean load to failure was significantly improved with graft augmentation compared with no graft augmentation (282.1 ± 83.8 N vs 199.7 ± 45.5 N, respectively; P = .04), while the mean gap formation was significantly reduced (1.2 ± 1.0 mm vs 2.7 ± 1.4 mm, respectively; P = .04). The mean load to failure of the deficient tendon with graft augmentation (282.1 N) compared with the native tendon (348.8 N) was not significantly different ( P = .12). This indicates that the native tendon did not perform differently from the grafted deficient tendon. In a tendon

  1. [SAFETY AND IMMUNOGENICITY OF A NATIONAL COMBINED VACCINE AGAINST PERTUSSIS, DIPHTHERIA, TETANUS, HEPATITIS B AND Hib-INFECTION, CONTAINING ACELLULAR PERTUSSIS COMPONENT, DURING IMMUNIZATION OF ADULTS].

    Science.gov (United States)

    Feldblyum, I V; Nikolaeva, A M; Pavroz, K A; Danilina, T V; Sosnina, O Yu; Vyaznikova, T V; Ershov, A E; Trofimov, D M; Polushkina, A V

    2016-01-01

    Study safety, reactogenicity and immunologic effectiveness of a national combined vaccine against diphtheria, pertussis (acellular component), tetanus, hepatitis B and Hib-infection during immunization of volunteers aged 18-60 years. The study was carried out in accordance with ethical standards and requirements, regulated by Helsinki declaration and Good clinical practice (ICHGCP). In a simple non-randomized clinical trial 20 adult volunteers took part, the mean age of those was 46.9 years. Registered: post-vaccination reactions (both local and systemic) were mild and of moderate degree of severity, stopped independently after 2-3 days without administration of drug treatment. Postvaccinal complications were not noted. Parameters of general and biochemical analysis of blood, urine, IgE content in dynamics of immunization were within normal limits. A single administration of aAPDT--HepB+Hib to individuals aged 18-60 years resulted in development of antibodies against all the components of the preparation. Seroconversion factor fluctuated from 6.9 to 53.5: The results obtained allow to recommend the vaccine for evaluation of its safety, reactogenicity, immunologic and prophylaxis effectiveness in randomized clinical observation trials in children.

  2. A Case of “en bloc” Excision of a Chest Wall Leiomyosarcoma and Closure of the Defect with Non-Cross-Linked Collagen Matrix (Egis®

    Directory of Open Access Journals (Sweden)

    Marco Rastrelli

    2016-10-01

    Full Text Available Sarcomas arising from the chest wall account for less than 20% of all soft tissue sarcomas, and at this site, primitive tumors are the most frequent to occur. Leiomyosarcoma is a malignant smooth muscle tumor and the best outcomes are achieved with wide surgical excision. Although advancements have been made in treatment protocols, leiomyosarcoma remains one of the more difficult soft tissue sarcoma to treat. Currently, general local control is obtained with surgical treatment with wide negative margins. We describe the case of a 50-year-old man who underwent a chest wall resection involving a wide portion of the pectoralis major and minor muscle, the serratus and part of the second, third and fourth ribs of the left side. The full-thickness chest wall defect of 10 × 8 cm was closed using a non-cross-linked acellular dermal matrix (Egis® placed in two layers, beneath the rib plane and over it. A successful repair was achieved with no incisional herniation and with complete tissue regeneration, allowing natural respiratory movements. No complications were observed in the postoperative course. Biological non-cross-linked matrix, derived from porcine dermis, behaves like a scaffold supporting tissue regeneration; it can be successfully used as an alternative to synthetic mesh for chest wall reconstruction.

  3. A Case of “en bloc” Excision of a Chest Wall Leiomyosarcoma and Closure of the Defect with Non-Cross-Linked Collagen Matrix (Egis®)

    Science.gov (United States)

    Rastrelli, Marco; Tropea, Saveria; Spina, Romina; Costa, Alessandra; Stramare, Roberto; Mocellin, Simone; Bonavina, Maria Giuseppina; Rossi, Carlo Riccardo

    2016-01-01

    Sarcomas arising from the chest wall account for less than 20% of all soft tissue sarcomas, and at this site, primitive tumors are the most frequent to occur. Leiomyosarcoma is a malignant smooth muscle tumor and the best outcomes are achieved with wide surgical excision. Although advancements have been made in treatment protocols, leiomyosarcoma remains one of the more difficult soft tissue sarcoma to treat. Currently, general local control is obtained with surgical treatment with wide negative margins. We describe the case of a 50-year-old man who underwent a chest wall resection involving a wide portion of the pectoralis major and minor muscle, the serratus and part of the second, third and fourth ribs of the left side. The full-thickness chest wall defect of 10 × 8 cm was closed using a non-cross-linked acellular dermal matrix (Egis®) placed in two layers, beneath the rib plane and over it. A successful repair was achieved with no incisional herniation and with complete tissue regeneration, allowing natural respiratory movements. No complications were observed in the postoperative course. Biological non-cross-linked matrix, derived from porcine dermis, behaves like a scaffold supporting tissue regeneration; it can be successfully used as an alternative to synthetic mesh for chest wall reconstruction. PMID:27920698

  4. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Science.gov (United States)

    Chung, Yeun Goo; Tu, Duong; Franck, Debra; Gil, Eun Seok; Algarrahi, Khalid; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2014-01-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4) (Width × Length, 1 × 2 cm(2)) in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS) implants (Group 2, N = 4) or urethrotomy alone (Group 3, N = 3). Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome), immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α) and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results of this study

  5. Cost-effectiveness analysis of universal maternal immunization with tetanus-diphtheria-acellular pertussis (Tdap) vaccine in Brazil.

    Science.gov (United States)

    Sartori, Ana Marli Christovam; de Soárez, Patrícia Coelho; Fernandes, Eder Gatti; Gryninger, Ligia Castellon Figueiredo; Viscondi, Juliana Yukari Kodaira; Novaes, Hillegonda Maria Dutilh

    2016-03-18

    Pertussis incidence has increased significantly in Brazil since 2011, despite high coverage of whole-cell pertussis containing vaccines in childhood. Infants cost-effectiveness of introducing universal maternal vaccination with tetanus-diphtheria-acellular pertussis vaccine (Tdap) into the National Immunization Program in Brazil. Economic evaluation using a decision tree model comparing two strategies: (1) universal vaccination with one dose of Tdap in the third trimester of pregnancy and (2) current practice (no pertussis maternal vaccination), from the perspective of the health system and society. An annual cohort of newborns representing the number of vaccinated pregnant women were followed for one year. Vaccine efficacy were based on literature review. Epidemiological, healthcare resource utilization and cost estimates were based on local data retrieved from Brazilian Health Information Systems. Costs of epidemiological investigation and treatment of contacts of cases were included in the analysis. No discount rate was applied to costs and benefits, as the temporal horizon was one year. Primary outcome was cost per life year saved (LYS). Univariate and best- and worst-case scenarios sensitivity analysis were performed. Maternal vaccination of one annual cohort, with vaccine effectiveness of 78%, and vaccine cost of USD$12.39 per dose, would avoid 661 cases and 24 infant deaths of pertussis, save 1800 years of life and cost USD$28,942,808 and USD$29,002,947, respectively, from the health system and societal perspective. The universal immunization would result in ICERs of USD$15,608 and USD$15,590 per LYS, from the health system and societal perspective, respectively. In sensitivity analysis, the ICER was most sensitive to discounting of life years saved, variation in case-fatality, disease incidence, vaccine cost, and vaccine effectiveness. The results indicate that universal maternal immunization with Tdap is a cost-effective intervention for preventing

  6. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty.

    Directory of Open Access Journals (Sweden)

    Yeun Goo Chung

    Full Text Available Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a rabbit model of urethra repair. A bi-layer silk fibroin matrix was fabricated by a solvent-casting/salt leaching process in combination with silk fibroin film casting to generate porous foams buttressed by homogeneous silk fibroin films. Ventral onlay urethroplasty was performed with silk fibroin grafts (Group 1, N = 4 (Width × Length, 1 × 2 cm(2 in adult male rabbits for 3 m of implantation. Parallel control groups consisted of animals receiving small intestinal submucosa (SIS implants (Group 2, N = 4 or urethrotomy alone (Group 3, N = 3. Animals in all groups exhibited 100% survival prior to scheduled euthanasia and achieved voluntary voiding following 7 d of initial catheterization. Retrograde urethrography of each implant group at 3 m post-op revealed wide urethral calibers and preservation of organ continuity similar to pre-operative and urethrotomy controls with no evidence of contrast extravasation, strictures, fistulas, or stone formation. Histological (hematoxylin and eosin and Masson's trichrome, immunohistochemical, and histomorphometric analyses demonstrated that both silk fibroin and SIS scaffolds promoted similar extents of smooth muscle and epithelial tissue regeneration throughout the original defect sites with prominent contractile protein (α-smooth muscle actin and SM22α and cytokeratin expression, respectively. De novo innervation and vascularization were also evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Following 3 m post-op, minimal acute inflammatory reactions were elicited by silk fibroin scaffolds characterized by the presence of eosinophil granulocytes while SIS matrices promoted chronic inflammatory responses indicated by mobilization of mononuclear cell infiltrates. The results

  7. Expression of intercellular adhesion molecule-1 in UVA-irradiated human skin cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Treina, G.; Scaletta, C.; Frenk, E.; Applegate, L.A.; Fourtanier, A.; Seite, S.

    1996-01-01

    Ultraviolet A (UVA) radiation represents an important oxidative stress to human skin and certain forms of oxidative stress have been shown to modulate intercellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 has been shown to play an important part in many immune reactions and the perturbations of this molecule by ultraviolet radiation could have implications in many inflammatory responses. An enhancement immunohistochemical method with avidin/biotin was used for analysing the early effects of UVA radiation on human cell cultures and human skin (340-400 nm). Both in vitro and in vivo data show that ICAM-1 staining in epidermal keratinocytes, which was expressed constitutively, decreased in a UVA dose-dependent manner. The decrease was most noted at 3-6 h following UVA radiation with some ICAM-1 staining returning by 48 h post-UVA. ICAM-1 positive staining in the dermis was specific for vascular structures and was increased 24 h after UVA radiation. Cultured dermal fibroblasts exhibited ICAM-1 staining which increased slightly within 6-48 h post-UVA radiation. As epidermal ICAM-1 expression is depleted following UVA radiation and dermal expression increases due to an increase in the vascular structures, ICAM-1 provides a valuable marker following UVA radiation in human skin that can be readily measured in situ. (author)

  8. Current status of tissue engineering applied to bladder reconstruction in humans.

    Science.gov (United States)

    Gasanz, C; Raventós, C; Morote, J

    2018-01-11

    Bladder reconstruction is performed to replace or expand the bladder. The intestine is used in standard clinical practice for tissue in this procedure. The complications of bladder reconstruction range from those of intestinal resection to those resulting from the continuous contact of urine with tissue not prepared for this contact. In this article, we describe and classify the various biomaterials and cell cultures used in bladder tissue engineering and reviews the studies performed with humans. We conducted a review of literature published in the PubMed database between 1950 and 2017, following the principles of the PRISM declaration. Numerous in vitro and animal model studies have been conducted, but only 18 experiments have been performed with humans, with a total of 169 patients. The current evidence suggests that an acellular matrix, a synthetic polymer with urothelial and autologous smooth muscle cells attached in vitro or stem cells would be the most practical approach for experimental bladder reconstruction. Bladder replacement or expansion without using intestinal tissue is still a challenge, despite progress in the manufacture of biomaterials and the development of cell therapy. Well-designed studies with large numbers of patients and long follow-up times are needed to establish an effective clinical translation and standardisation of the check-up functional tests. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Evaluation of a novel breast reconstruction technique using the Braxon® acellular dermal matrix: a new muscle-sparing breast reconstruction.

    Science.gov (United States)

    Berna, Giorgio; Cawthorn, Simon J; Papaccio, Guido; Balestrieri, Nicola

    2017-06-01

    Implant-based breast reconstruction is becoming increasingly popular because of the widespread adoption of acellular dermal matrix (ADM), which allows surgeons to obtain good aesthetic results with fewer operations. To develop more conservative surgical techniques, a retrospective, three-centre, proof-of-concept study was performed to study the effectiveness of a new, immediate, muscle-sparing breast reconstruction technique using the patented Braxon ® ADM, which enables subcutaneous positioning of the breast implant without detaching the pectoralis major. Ethics committee of the study coordinating centre approved medical record review on 19 women who underwent muscle-sparing breast reconstruction between November 2012 and January 2014. The first 10 implants were performed using 0.9-mm-thick porcine ADM, with preservatives. In the subsequent 15 implants, the product was changed to 0.6-mm-thick porcine dry ADM, without preservatives. Nineteen patients (25 implants) received six bilateral and 13 unilateral muscle-sparing breast reconstructions. For the first type of ADM used (0.9-mm-thick with preservatives), the rate of implant loss was 12% (n = 3) because of seroma (8%, n = 2) and infection (4%, n = 1). Minor complications, such as seroma (8%, n = 2), occurred when using the 0.6-mm-thick Braxon ® ADM and were treated by aspiration. Symmetrical and natural breasts with good shape, ptosis and softness to the touch were obtained. None of the patients reported experiencing pain. The preliminary results are encouraging from aesthetic and clinical viewpoints. Further studies are planned to evaluate long-term results. © 2014 Royal Australasian College of Surgeons.

  10. [Decellularized fish skin: characteristics that support tissue repair].

    Science.gov (United States)

    Magnússon, Skúli; Baldursson, Baldur Tumi; Kjartansson, Hilmar; Thorlacius, Guðný Ella; Axelsson, Ívar; Rolfsson, Óttar; Petersen, Pétur Henry; Sigurjónsson, Guðmundur Fertram

    2015-12-01

    Acellular fish skin of the Atlantic cod (Gadus morhua) is being used to treat chronic wounds. The prevalence of diabetes and the comorbidity of chronic wounds is increasing globally. The aim of the study was to assess the biocompatibility and biological characteristics of acellular fish skin, important for tissue repair. The structure of the acellular fish skin was examined with microscopy. Biocompatibility of the graft was conducted by a specialized certified laboratory. Protein extracts from the material were analyzed using gel electrophoresis. Cytokine levels were measured with an enzyme linked immunosorbent assay (ELISA). Angiogenic properties were assessed with a chick chorioallantoic membrane (chick CAM) assay. The structure of acellular fish skin is porous and the material is biocompatible. Electrophoresis revealed proteins around the size 115-130 kDa, indicative of collagens. The material did not have significant effect on IL-10, IL-12p40, IL-6 or TNF-α secretion from monocytes or macrophages. Acellular fish skin has significant effect on angiogenesis in the chick CAM assay. The acellular fish skin is not toxic and is not likely to promote inflammatory responses. The graft contains collagen I, promotes angiogenesis and supports cellular ingrowth. Compared to similar products made from mammalian sources, acellular fish skin does not confer a disease risk and contains more bioactive compounds, due to less severe processing.

  11. Control selection and confounding factors: A lesson from a Japanese case-control study to examine acellular pertussis vaccine effectiveness.

    Science.gov (United States)

    Ohfuji, Satoko; Okada, Kenji; Nakano, Takashi; Ito, Hiroaki; Hara, Megumi; Kuroki, Haruo; Hirota, Yoshio

    2017-08-24

    When using a case-control study design to examine vaccine effectiveness, both the selection of control subjects and the consideration of potential confounders must be the important issues to ensure accurate results. In this report, we described our experience from a case-control study conducted to evaluate the effectiveness of acellular pertussis vaccine combined with diphtheria-tetanus toxoids (DTaP vaccine). Newly diagnosed pertussis cases and age- and sex-matched friend-controls were enrolled, and the history of DTaP vaccination was compared between groups. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) of vaccination for development of pertussis. After adjustment for potential confounders, four doses of DTaP vaccination showed a lower OR for pediatrician-diagnosed pertussis (OR=0.11, 95% CI, 0.01-0.99). In addition, the decreasing OR of four doses vaccination was more pronounced for laboratory-confirmed pertussis (OR=0.07, 95%CI, 0.01-0.82). Besides, positive association with pertussis was observed in subjects with a history of steroid treatment (OR=5.67) and those with a recent contact with a lasting cough (OR=4.12). When using a case-control study to evaluate the effectiveness of vaccines, particularly those for uncommon infectious diseases such as pertussis, the use of friend-controls may be optimal due to the fact that they shared a similar experience for exposure to the pathogen as the cases. In addition, to assess vaccine effectiveness as accurately as possible, the effects of confounding should be adequately controlled with a matching or analysis technique. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Ex vivo study of the home-use TriPollar RF device using an experimental human skin model.

    Science.gov (United States)

    Boisnic, Sylvie; Branchet, Marie Christine

    2010-09-01

    A wide variety of professional radio frequency (RF) aesthetic treatments for anti-aging are available aiming at skin tightening. A new home-use RF device for facial treatments has recently been developed based on TriPollar technology. To evaluate the mechanism of the new home-use device, in the process of collagen remodeling, using an ex vivo skin model. Human skin samples were collected in order to evaluate the anti-aging effect of a home-use device for facial treatments on an ex vivo human skin model. Skin tightening was evaluated by dermal histology, quantitative analysis of collagen fibers and dosage of collagen synthesis. Significant collagen remodeling following RF treatment with the device was found in the superficial and mid-deep dermis. Biochemical measurement of newly synthesized collagen showed an increase of 41% in the treated samples as compared to UV-aged control samples. The new home-use device has been demonstrated to affect significant collagen remodeling, in terms of the structural and biochemical improvement of dermal collagen on treated skin samples.

  13. Exposure to acellular blood products and risk of HIV infection in hemophiliacs from Belo Horizonte, Brazil Exposição de produtos do sangue, acelulares e o risco da infecção pelo VIH, em hemofílicos de Belo Horizonte, Brasil

    Directory of Open Access Journals (Sweden)

    Fernando A. Proietti

    1992-06-01

    Full Text Available Results of a HIV prevalence study conducted in hemophiliacs from Belo Horizonte, Brazil are presented. History of exposure to acellular blood components was determined for the five year period prior to entry in the study, which occurred during 1986 and 1987. Patients with coagulations disorders (hemophilia A = 132, hemophilia B = 16 and coagulation disorders other than hemophilia = 16 were transfused with liquid cryoprecipitate, locally produced, lyophilized cryoprecipitate, imported from São Paulo (Brazil and factor VIII and IX, imported from Rio de Janeiro (Brazil, Europe, and United States. Thirty six (22% tested HIV seropositive. The univariate and multivariate analysis (logistic model demonstrated that the risk of HIV infection during the study period was associated with the total units of acellular blood components transfused. In addition, the proportional contribution of the individual components to the total acellular units transfused, namely a increase in factor VIII/IX and lyophilized cryoprecipitate proportions, were found to be associated with HIV seropositivity. This analysis suggest that not only the total amount of units was an important determinant of HIV infection, but that the risk was also associated with the specific component of blood transfusedResultados de um estudo da prevalência de infecção pelo VIH, realizado em hemofílicos em Belo Horizonte são apresentados. História prévia de exposição a componentes acelulares do sangue foi determinada para o período de 5 anos anteriores à entrada no estudo, que transcorreu durante 1986 e 1987. Pacientes com distúrbios da coagulação (hemofilia A n = 132, hemofilia B n = 16 e outros distúrbios da coagulação que não hemofilia n = 16, foram transfundidos com crio-precipitado líquido, localmente produzido, crio-precipitado liofilizado, importado de São Paulo, e Fator VIII e IX, importado do Rio de Janeiro, Europa e Estados Unidos. Trinta e seis (22% resultaram

  14. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway.

    Science.gov (United States)

    Tandon, Nina; Cimetta, Elisa; Villasante, Aranzazu; Kupferstein, Nicolette; Southall, Michael D; Fassih, Ali; Xie, Junxia; Sun, Ying; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing. © 2013 Elsevier Inc. All rights reserved.

  15. Direct Genesis of Functional Rodent and Human Schwann Cells from Skin Mesenchymal Precursors

    Directory of Open Access Journals (Sweden)

    Matthew P. Krause

    2014-07-01

    Full Text Available Recent reports of directed reprogramming have raised questions about the stability of cell lineages. Here, we have addressed this issue, focusing upon skin-derived precursors (SKPs, a dermally derived precursor cell. We show by lineage tracing that murine SKPs from dorsal skin originate from mesenchymal and not neural crest-derived cells. These mesenchymally derived SKPs can, without genetic manipulation, generate functional Schwann cells, a neural crest cell type, and are highly similar at the transcriptional level to Schwann cells isolated from the peripheral nerve. This is not a mouse-specific phenomenon, since human SKPs that are highly similar at the transcriptome level can be made from neural crest-derived facial and mesodermally derived foreskin dermis and the foreskin SKPs can make myelinating Schwann cells. Thus, nonneural crest-derived mesenchymal precursors can differentiate into bona fide peripheral glia in the absence of genetic manipulation, suggesting that developmentally defined lineage boundaries are more flexible than widely thought.

  16. 75 FR 7281 - Pediatric Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-02-18

    ... and Tetanus Toxoids and Acellular Pertussis Adsorbed and Inactivated Poliovirus Vaccine), Pentacel [Diphtheria and Tetanus Toxoids and Acellular Pertussis Adsorbed, Inactivated Poliovirus and Haemophilus b...

  17. Acellular therapeutic approach for heart failure: in vitro production of extracellular vesicles from human cardiovascular progenitors.

    Science.gov (United States)

    El Harane, Nadia; Kervadec, Anaïs; Bellamy, Valérie; Pidial, Laetitia; Neametalla, Hany J; Perier, Marie-Cécile; Lima Correa, Bruna; Thiébault, Léa; Cagnard, Nicolas; Duché, Angéline; Brunaud, Camille; Lemitre, Mathilde; Gauthier, Jeanne; Bourdillon, Alexandra T; Renault, Marc P; Hovhannisyan, Yeranuhi; Paiva, Solenne; Colas, Alexandre R; Agbulut, Onnik; Hagège, Albert; Silvestre, Jean-Sébastien; Menasché, Philippe; Renault, Nisa K E

    2018-05-21

    We have shown that extracellular vesicles (EVs) secreted by embryonic stem cell-derived cardiovascular progenitor cells (Pg) recapitulate the therapeutic effects of their parent cells in a mouse model of chronic heart failure (CHF). Our objectives are to investigate whether EV released by more readily available cell sources are therapeutic, whether their effectiveness is influenced by the differentiation state of the secreting cell, and through which mechanisms they act. The total EV secreted by human induced pluripotent stem cell-derived cardiovascular progenitors (iPSC-Pg) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) were isolated by ultracentrifugation and characterized by Nanoparticle Tracking Analysis, western blot, and cryo-electron microscopy. In vitro bioactivity assays were used to evaluate their cellular effects. Cell and EV microRNA (miRNA) content were assessed by miRNA array. Myocardial infarction was induced in 199 nude mice. Three weeks later, mice with left ventricular ejection fraction (LVEF) ≤ 45% received transcutaneous echo-guided injections of iPSC-CM (1.4 × 106, n = 19), iPSC-Pg (1.4 × 106, n = 17), total EV secreted by 1.4 × 106 iPSC-Pg (n = 19), or phosphate-buffered saline (control, n = 17) into the peri-infarct myocardium. Seven weeks later, hearts were evaluated by echocardiography, histology, and gene expression profiling, blinded to treatment group. In vitro, EV were internalized by target cells, increased cell survival, cell proliferation, and endothelial cell migration in a dose-dependent manner and stimulated tube formation. Extracellular vesicles were rich in miRNAs and most of the 16 highly abundant, evolutionarily conserved miRNAs are associated with tissue-repair pathways. In vivo, EV outperformed cell injections, significantly improving cardiac function through decreased left ventricular volumes (left ventricular end systolic volume: -11%, P < 0.001; left

  18. Human herpesvirus 8-associated lymphoma mimicking cutaneous anaplastic large T-cell lymphoma in a patient with human immunodeficiency virus infection.

    Science.gov (United States)

    Li, Meng-Fang; Hsiao, Cheng-Hsiang; Chen, Yi-Lin; Huang, Wen-Ya; Lee, Yi-Hsuan; Huang, Hsien-Neng; Lien, Huang-Chun

    2012-02-01

    Primary effusion lymphoma, a human herpesvirus 8 (HHV8)-associated lymphoma, is uncommon, and it is usually seen in human immunodeficiency virus (HIV)-infected patients. It presents as a body cavity-based lymphomatous effusion, but several cases of the so-called solid primary effusion lymphoma presenting as solid tumors without associated lymphomatous effusion have been reported. They have similar clinical, histopathological and immunophenotypical features. Most of them have a B-cell genotype. This suggests the solid variant may represent a clinicopathological spectrum of primary effusion lymphoma. We report a case of HHV8-associated lymphoma histopathologically and immunophenotypically mimicking cutaneous anaplastic large cell lymphoma. The patient was a 31-year-old HIV-seropositive man presenting with skin nodules over his right thigh. Biopsy of the nodules showed anaplastic large cells infiltrating the dermis. These malignant cells strongly expressed CD3, CD30 and CD43. Cutaneous anaplastic large T-cell lymphoma was initially diagnosed, but further tests, including immunoreactivity for HHV8 protein and clonal rearrangements of immunoglobulin genes, confirmed the diagnosis of HHV8-associated B-cell lymphoma with aberrant T-cell marker expression. This case provides an example of solid primary effusion lymphoma mimicking cutaneous anaplastic large T-cell lymphoma and highlights the importance of HHV8 immunohistochemistry and molecular tests in the diagnosis of HHV8-associated lymphoma with a cutaneous presentation. Copyright © 2011 John Wiley & Sons A/S.

  19. Decellularized human amniotic membrane: more is needed for an efficient dressing for protection of burns against antibiotic-resistant bacteria isolated from burn patients.

    Science.gov (United States)

    Gholipourmalekabadi, M; Bandehpour, M; Mozafari, M; Hashemi, A; Ghanbarian, H; Sameni, M; Salimi, M; Gholami, M; Samadikuchaksaraei, A

    2015-11-01

    Human amniotic membranes (HAMs) have attracted the attention of burn surgeons for decades due to favorable properties such as their antibacterial activity and promising support of cell proliferation. On the other hand, as a major implication in the health of burn patients, the prevalence of bacteria resistant to multiple antibiotics is increasing due to overuse of antibiotics. The aim of this study was to investigate whether HAMs (both fresh and acellular) are an effective antibacterial agent against antibiotic-resistant bacteria isolated from burn patients. Therefore, a HAM was decellularized and tested for its antibacterial activity. Decellularization of the tissue was confirmed by hematoxylin and eosin (H&E) and 4,6-diamidino-2-phenylindole (DAPI) staining. In addition, the cyto-biocompatibility of the acellular HAM was proven by the cell viability test (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, MTT) and scanning electron microscopy (SEM). The resistant bacteria were isolated from burns, identified, and tested for their susceptibility to antibiotics using both the antibiogram and polymerase chain reaction (PCR) techniques. Among the isolated bacteria, three blaIMP gene-positive Pseudomonas aeruginosa strains were chosen for their high resistance to the tested antibiotics. The antibacterial activity of the HAM was also tested for Klebsiella pneumoniae (American Type Culture Collection (ATCC) 700603) as a resistant ATCC bacterium; Staphylococcus aureus (mecA positive); and three standard strains of ATCC bacteria including Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27833), and S. aureus (ATCC 25923). Antibacterial assay revealed that only the latter three bacteria were susceptible to the HAM. All the data obtained from this study suggest that an alternative strategy is required to complement HAM grafting in order to fully protect burns from nosocomial infections. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  20. Tetanus, Diphtheria, Pertussis (Tdap) Vaccine

    Science.gov (United States)

    Adacel® (as a combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis Vaccine) ... Boostrix® (as a combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis Vaccine)

  1. Diphtheria, Tetanus, and Pertussis (DTaP) Vaccine

    Science.gov (United States)

    Certiva® (as a combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis Vaccine) ... Daptacel® (as a combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis Vaccine)

  2. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D.; Wondrak, Georg T.

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  3. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  4. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Directory of Open Access Journals (Sweden)

    Shasha Tao

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2, a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I, dihydrotanshinone (DHT, tanshinone IIA (T-II-A and cryptotanshinone (CT] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1 with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA. The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities was significantly attenuated in DHT

  5. A Comparative 6-Month Clinical Study of Acellular Dermal Matrix Allograft and Subepithelial Connective Tissue Graft for Root Coverage

    Directory of Open Access Journals (Sweden)

    S. Sadat Mansouri

    2010-09-01

    Full Text Available Objective: Different surgical procedures have been proposed for the treatment of gingival recessions. The goal of this study was to compare the clinical results of gingival recession treatment using Subepithelial Connective Tissue Graft and an Acellular Dermal MatrixAllograft.Materials and Methods: The present study was performed on 5 patients with 9 bilateral Miller`s class I or II gingival recessions. This included 15 premolars and 3 canines. In each patient the teeth were randomly divided in two groups of test (ADMA and control (SCTG.Clinical parameters including recession height (RH, recession width (RW, keratinized gingiva (KG, clinical attachment level (CAL and probing depth (PD were measured at baseline, 2, 4 and 6 months after surgery and data analysis was performed using the Wilcoxon signed rank test.Results: The mean changes (mm from baseline to 6 months in SCTG and ADMA were 2.22±0.83 and 1.77±0.66 decrease in RH, 2.55±0.88 and 2.33±0.86 decrease in RW,1.44±0.88 and 2.0±1.11 increase in KG, 2.33±1.22 and 2.11±0.6 decrease in CAL and finally 0.22±0.66 and 0.33±0.7 decrease in PD, respectively. The differences in meanchanges were not significant between the two groups in any of the parameters. The percentage of root coverage was 85.7% and 71.1% for the control and test group,respectively. The changes from baseline to the 6 month visit were significant for both groups in all parameters but PD.Conclusion: Alloderm may be suggested as an acceptable substitute for connective tissue graft considering the root coverage effect and KG width increase.

  6. Light absorption in blood during low-intensity laser irradiation of skin

    International Nuclear Information System (INIS)

    Barun, V V; Ivanov, A P

    2010-01-01

    An analytical procedure is proposed for describing optical fields in biological tissues inhomogeneous in the depth direction, such as human skin, with allowance for multiple scattering. The procedure is used to investigate the depth distribution of the optical power density in homogeneous and multilayer dermis when the skin is exposed to a laser beam. We calculate the absorbed laser power spectra for oxy- and deoxyhaemoglobin at different depths in relation to the absorption selectivity of these haemoglobin derivatives and the spectral dependence of the optical power density and demonstrate that the spectra vary considerably with depth. A simple exponential approximation is proposed for the depth distribution of the power density in the epidermis and dermis. (laser methods in medicine)

  7. Coronally positioned flap with or without acellular dermal matrix graft in the treatment of class II gingival recession defects: A randomized controlled clinical study

    Directory of Open Access Journals (Sweden)

    Sunitha Jagannathachary

    2010-01-01

    Full Text Available The aim of the randomized controlled single blind study is to evaluate the treatment of Miller′s class II gingival recessions by coronally positioned flap (CPF with or without acellular dermal matrix allograft (ADMA. Ten patients with 20 sites with maxillary bilateral Miller′s class II facial recession defects were selected randomly into two groups of test (ADMA+CPF and control (CPF alone group with each group having 10 recession defects to be treated. The clinical parameters included plaque index (PI, gingival index (GI, probing pocket depth (PPD, clinical attachment level (CAL, recession height (RH, recession width (RW, height of the keratinized tissue (HKT, and thickness of the keratinized tissue (TKT. These measurements were recorded at baseline and after 6 months post-surgery. Statistical analysis was made by the paired "t" test for intragroup and intergroup comparison was done by the unpaired "t" test. The percentage of root coverage for both the experimental and control groups were 82.2% and 50%, respectively. The changes from baseline to 6 months were significant in both the groups for PD, CAL, and RH; however, for parameters such as RW, HKT, and TKT significance was seen only in the experimental group. On comparison between two groups, only TKT showed statistically significance. It can be concluded that the amount of root coverage obtained with ADMA + CPF was superior compared to CPF alone.

  8. Phase II and III Clinical Studies of Diphtheria-Tetanus-Acellular Pertussis Vaccine Containing Inactivated Polio Vaccine Derived from Sabin Strains (DTaP-sIPV).

    Science.gov (United States)

    Okada, Kenji; Miyazaki, Chiaki; Kino, Yoichiro; Ozaki, Takao; Hirose, Mizuo; Ueda, Kohji

    2013-07-15

    Phase II and III clinical studies were conducted to evaluate immunogenicity and safety of a novel DTaP-IPV vaccine consisting of Sabin inactivated poliovirus vaccine (sIPV) and diphtheria-tetanus-acellular pertussis vaccine (DTaP). A Phase II study was conducted in 104 healthy infants using Formulation H of the DTaP-sIPV vaccine containing high-dose sIPV (3, 100, and 100 D-antigen units for types 1, 2, and 3, respectively), and Formulations M and L, containing half and one-fourth of the sIPV in Formulation H, respectively. Each formulation was administered 3 times for primary immunization and once for booster immunization. A Phase III study was conducted in 342 healthy infants who received either Formulation M + oral polio vaccine (OPV) placebo or DTaP + OPV. The OPV or OPV placebo was orally administered twice between primary and booster immunizations. Formulation M was selected as the optimum dose. In the Phase III study, the seropositive rate was 100% for all Sabin strains after primary immunization, and the neutralizing antibody titer after booster immunization was higher than in the control group (DTaP + OPV). All adverse reactions were clinically acceptable. DTaP-sIPV was shown to be a safe and immunogenic vaccine. JapicCTI-121902 for Phase II study, JapicCTI-101075 for Phase III study (http://www.clinicaltrials.jp/user/cte_main.jsp).

  9. Pathophysiology and prevention of photoaging : the role of melanin, reactive oxygen species and infiltrating neutrophils

    NARCIS (Netherlands)

    Rijken, F.

    2011-01-01

    Photoaging of human skin involves epidermal and dermal changes. The hallmark of photoaged skin is an accumulation of elastotic material in the mid and upper dermis, so-called solar elastosis. This elastotic material is mostly derived from degraded elastic fibers and consists mainly of insoluble

  10. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation.

    Science.gov (United States)

    Chu, Chung-Ching; Ali, Niwa; Karagiannis, Panagiotis; Di Meglio, Paola; Skowera, Ania; Napolitano, Luca; Barinaga, Guillermo; Grys, Katarzyna; Sharif-Paghaleh, Ehsan; Karagiannis, Sophia N; Peakman, Mark; Lombardi, Giovanna; Nestle, Frank O

    2012-05-07

    Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141(+) DDCs). CD141(+) DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D(3) (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141(+) DDCs from human blood DCs. These CD141(+) DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141(+) DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141(+) DDC-like cells have potential clinical use for their capacity to induce immune tolerance.

  11. Cellular and Immunological Aspects of Basel Cell Carcinoma

    NARCIS (Netherlands)

    J.W. Kooy (Angela)

    1998-01-01

    textabstractThe skin, which is the largest organ of the human body, has several important functions such as protection against infections and chemical and physical influences, regulation of temperature and water balance, vitamin D synthesis, etc. The skin consists of two layers, the dermis and the

  12. Licensed pertussis vaccines in the United States: History and current state

    OpenAIRE

    Klein, Nicola P

    2014-01-01

    The United States switched from whole cell to acellular pertussis vaccines in the 1990s following global concerns with the safety of the whole cell vaccines. Despite high levels of acellular pertussis vaccine coverage, the United States and other countries are experiencing large pertussis outbreaks. The aim of this article is to describe the historical context which led to acellular pertussis vaccine development, focusing on vaccines currently licensed in the US, and to review evidence that w...

  13. Anatomy of the Skin and the Pathogenesis of Nonmelanoma Skin Cancer.

    Science.gov (United States)

    Losquadro, William D

    2017-08-01

    Skin is composed of the epidermis, dermis, and adnexal structures. The epidermis is composed of 4 layers-the stratums basale, spinosum, granulosum, and corneum. The dermis is divided into a superficial papillary dermis and deeper reticular dermis. Collagen and elastin within the reticular dermis are responsible for skin tensile strength and elasticity, respectively. The 2 most common kinds of nonmelanoma skin cancers are basal cell and squamous cell carcinoma. Both are caused by a host of environmental and genetic factors, although UV light exposure is the single greatest predisposing factor. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cost analysis of postmastectomy reconstruction: A comparison of two staged implant reconstruction using tissue expander and acellular dermal matrix with abdominal-based perforator free flaps.

    Science.gov (United States)

    Tran, Bao Ngoc N; Fadayomi, Ayotunde; Lin, Samuel J; Singhal, Dhruv; Lee, Bernard T

    2017-09-01

    Two staged tissue expander-implant with acellular dermal matrix (TE/I + ADM) and deep inferior epigastric perforator (DIEP) flap are the most common implant and autologous methods of reconstruction in the U.S. Implant-based techniques are disproportionally more popular, partially due to its presumed cost effectiveness. We performed a comprehensive cost analysis to compare TE/I + ADM and DIEP flap. A comparative cost analysis of TE/I + ADM and DIEP flap was performed. Medicare reimbursement costs for each procedure and their associated complications were calculated. Pooled probabilities of complications including cellulitis, seroma, skin necrosis, implant removal, flap loss, partial flap loss, and fat necrosis, were calculated using published studies from 2010 to 2016. Average actual cost for successful TE/I + ADM and DIEP flap were $13 304.55 and $10 237.13, respectively. Incorporating pooled complication data from published literature resulted in an increase in cost to $13 963.46 for TE/I + ADM and $12 624.29 for DIEP flap. The expected costs for successful TE/I + ADM and DIEP flap were $9700.35 and $8644.23, which are lower than the actual costs. DIEP flap breast reconstruction incurs lower costs compared to TE/I + ADM. These costs are lower at baseline and when additional costs from pooled complications are incorporated. © 2017 Wiley Periodicals, Inc.

  15. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers.

    Science.gov (United States)

    Ranjbar-Mohammadi, Marziyeh; Rabbani, Shahram; Bahrami, S Hajir; Joghataei, M T; Moayer, F

    2016-12-01

    In this study we describe the potential of electrospun curcumin-loaded poly(ε-caprolactone) (PCL)/gum tragacanth (GT) (PCL/GT/Cur) nanofibers for wound healing in diabetic rats. These scaffolds with antibacterial property against methicillin resistant Staphylococcus aureus as gram positive bacteria and extended spectrum β lactamase as gram negative bacteria were applied in two forms of acellular and cell-seeded for assessing their capability in healing full thickness wound on the dorsum of rats. After 15days, pathological study showed that the application of GT/PCL/Cur nanofibers caused markedly fast wound closure with well-formed granulation tissue dominated by fibroblast proliferation, collagen deposition, complete early regenerated epithelial layer and formation of sweat glands and hair follicles. No such appendage formation was observed in the untreated controls during this duration. Masson's trichrome staining confirmed the increased presence of collagen in the dermis of the nanofiber treated wounds on day 5 and 15, while the control wounds were largely devoid of collagen on day 5 and exhibited less collagen amount on day 15. Quantification analysis of scaffolds on day 5 confirmed that, tissue engineered scaffolds with increased amount of angiogenesis number, granulation tissue area (μ(2)), fibroblast number, and decreased epithelial gap (μ) can be more effective compared to GT/PCL/Cur nanofibers. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A blanching technique for intradermal injection of the hyaluronic acid Belotero.

    Science.gov (United States)

    Micheels, Patrick; Sarazin, Didier; Besse, Stéphanie; Sundaram, Hema; Flynn, Timothy C

    2013-10-01

    With the proliferation of dermal fillers in the aesthetic workplace have come instructions from various manufacturers regarding dermal placement. Determination of injection needle location in the dermis has in large part been based on physician expertise, product and needle familiarity, and patient-specific skin characteristics. An understanding of the precise depth of dermal structures may help practitioners improve injection specificity. Unlike other dermal fillers that suggest intradermal and deep dermal injection planes, a new hyaluronic acid with a cohesive polydensified matrix may be more appropriate for the superficial dermis because of its structure and its high degree of integration into the dermis. To that end, the authors designed a small study to quantify the depth of the superficial dermis by means of ultrasound and histology. Using ultrasound resources, the authors determined the depths of the epidermis, the dermis, and the reticular dermis in the buttocks of six patients; the authors then extrapolated the depth of the superficial reticular dermis. Histologic studies of two of the patients showed full integration of the product in the reticular dermis. Following determination of injection depths and filler integration, the authors describe a technique ("blanching") for injection of the cohesive polydensified matrix hyaluronic acid into the superficial dermis. At this time, blanching is appropriate only for injection of the cohesive polydensified matrix hyaluronic acid known as Belotero Balance in the United States, although it may have applications for other hyaluronic acid products outside of the United States.

  17. Impact of extracorporeal shock waves on the human skin with cellulite: A case study of an unique instance

    Science.gov (United States)

    Kuhn, Christoph; Angehrn, Fiorenzo; Sonnabend, Ortrud; Voss, Axel

    2008-01-01

    In this case study of an unique instance, effects of medium-energy, high-focused extracorporeal generated shock waves (ESW) onto the skin and the underlying fat tissue of a cellulite afflicted, 50-year-old woman were investigated. The treatment consisted of four ESW applications within 21 days. Diagnostic high-resolution ultrasound (Collagenoson) was performed before and after treatment. Directly after the last ESW application, skin samples were taken for histopathological analysis from the treated and from the contra-lateral untreated area of skin with cellulite. No damage to the treated skin tissue, in particular no mechanical destruction to the subcutaneous fat, could be demonstrated by histopathological analysis. However an astounding induction of neocollageno- and neoelastino-genesis within the scaffolding fabric of the dermis and subcutis was observed. The dermis increased in thickness as well as the scaffolding within the subcutaneous fat-tissue. Optimization of critical application parameters may turn ESW into a noninvasive cellulite therapy. PMID:18488890

  18. Randomized trial on the safety, tolerability, and immunogenicity of MenACWY-CRM, an investigational quadrivalent meningococcal glycoconjugate vaccine, administered concomitantly with a combined tetanus, reduced diphtheria, and acellular pertussis vaccine in adolescents and young adults.

    Science.gov (United States)

    Gasparini, Roberto; Conversano, Michele; Bona, Gianni; Gabutti, Giovanni; Anemona, Alessandra; Dull, Peter M; Ceddia, Francesca

    2010-04-01

    This study evaluated the safety, tolerability, and immunogenicity of an investigational quadrivalent meningococcal conjugate vaccine, MenACWY-CRM, when administered concomitantly with a combined tetanus, reduced diphtheria, and acellular pertussis (Tdap) vaccine, in subjects aged 11 to 25 years. Subjects received either MenACWY-CRM and Tdap, MenACWY-CRM and saline placebo, or Tdap and saline placebo. No significant increase in reactogenicity and no clinically significant vaccine-related adverse events (AEs) occurred when MenACWY-CRM and Tdap were administered concomitantly. Similar immunogenic responses to diphtheria, tetanus, and meningococcal (serogroups A, C, W-135, and Y) antigens were observed, regardless of concomitant vaccine administration. Antipertussis antibody responses were comparable between vaccine groups for filamentous hemagglutinin and were slightly lower, although not clinically significantly, for pertussis toxoid and pertactin when the two vaccines were administered concomitantly. These results indicate that the investigational MenACWY-CRM vaccine is well tolerated and immunogenic and that it can be coadministered with Tdap to adolescents and young adults.

  19. Use of Drawing Lithography-Fabricated Polyglycolic Acid Microneedles for Transdermal Delivery of Itraconazole to a Human Basal Cell Carcinoma Model Regenerated on Mice

    Science.gov (United States)

    Zhang, Jennifer; Wang, Yan; Jin, Jane Y.; Degan, Simone; Hall, Russell P.; Boehm, Ryan D.; Jaipan, Panupong; Narayan, Roger J.

    2016-04-01

    Itraconazole is a triazole agent that is routinely used for treatment of nail infections and other fungal infections. Recent studies indicate that itraconazole can also inhibit the growth of basal cell carcinoma (BCC) through suppression of the Sonic Hedgehog (SHH) signaling pathway. In this study, polyglycolic acid microneedle arrays and stainless steel microneedle arrays were used for transdermal delivery of itraconazole to a human BCC model which was regenerated on mice. One-by-four arrays of 642- μm-long polyglycolic acid microneedles with sharp tips were prepared using injection molding and drawing lithography. Arrays of 85 stainless steel 800- μm-tall microneedles attached to syringes were obtained for comparison purposes. Skin grafts containing devitalized split-thickness human dermis that had been seeded with human keratinocytes transduced to express human SHH protein were sutured to the skin of immunodeficient mice. Mice with this human BCC model were treated daily for 2 weeks with itraconazole dissolved in 60% dimethylsulfoxane and 40% polyethylene glycol-400 solution; transdermal administration of the itraconazole solution was facilitated by either four 1 × 4 polyglycolic acid microneedle arrays or stainless steel microneedle arrays. The epidermal tissues treated with polyglycolic acid microneedles or stainless steel microneedles were markedly thinner than that of the control (untreated) graft tissue. These preliminary results indicate that microneedles may be used to facilitate transdermal delivery of itraconazole for localized treatment of BCC.

  20. Keratinocytes express fibrillin and assemble microfibrils: implications for dermal matrix organization.

    Science.gov (United States)

    Haynes, S L; Shuttleworth, C A; Kielty, C M

    1997-07-01

    Fibrillin-containing microfibrils are key architectural structures of the upper dermis and integral components of the dermal elastic fibre network. Microfibril bundles intercalate into the dermal-epithelial junction and provide an elastic connection between the dermal elastic fibre network and the epidermis. Immunohistochemical studies have suggested that they are laid down both at the dermal-epithelial junction and in the deep dermis. While dermal fibroblasts are responsible for deposition of the elastin and microfibrillar components that comprise the elastic fibres of the deep dermis, the cellular origin of the microfibril bundles that extrude from the dermal-epithelial junction is not well defined. We have used fresh tissues, freshly isolated epidermis and primary human and porcine keratinocyte cultures to investigate the possibility that keratinocytes are responsible for deposition of these microfibrils. We have shown that keratinocytes in vivo and in vitro synthesize both fibrillin-1 and fibrillin-2, and assemble beaded microfibrils concurrently with expression of basement membrane collagen. These observations suggest that keratinocytes co-ordinate the secretion, deposition and assembly of these distinct structural elements of the dermal matrix, and have important implications for skin remodelling.

  1. In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser

    Science.gov (United States)

    Yasui, Takeshi; Yonetsu, Makoto; Tanaka, Ryosuke; Tanaka, Yuji; Fukushima, Shu-ichiro; Yamashita, Toyonobu; Ogura, Yuki; Hirao, Tetsuji; Murota, Hiroyuki; Araki, Tsutomu

    2013-03-01

    In vivo visualization of human skin aging is demonstrated using a Cr:Forsterite (Cr:F) laser-based, collagen-sensitive second harmonic generation (SHG) microscope. The deep penetration into human skin, as well as the specific sensitivity to collagen molecules, achieved by this microscope enables us to clearly visualize age-related structural changes of collagen fiber in the reticular dermis. Here we investigated intrinsic aging and/or photoaging in the male facial skin. Young subjects show dense distributions of thin collagen fibers, whereas elderly subjects show coarse distributions of thick collagen fibers. Furthermore, a comparison of SHG images between young and elderly subjects with and without a recent life history of excessive sun exposure show that a combination of photoaging with intrinsic aging significantly accelerates skin aging. We also perform image analysis based on two-dimensional Fourier transformation of the SHG images and extracted an aging parameter for human skin. The in vivo collagen-sensitive SHG microscope will be a powerful tool in fields such as cosmeceutical sciences and anti-aging dermatology.

  2. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    Directory of Open Access Journals (Sweden)

    Zou Y

    2017-10-01

    Full Text Available Ying Zou,1,2,* Anna Celli,2,3,* Hanjiang Zhu,2,* Akram Elmahdy,2 Yachao Cao,2 Xiaoying Hui,2 Howard Maibach2 1Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, People’s Republic of China; 2Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA; 3San Francisco Veterans Medical Center, San Francisco, CA, USA *These authors contributed equally to this work Objective: With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration.Methods: Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy.Results: NPs were localized in the stratum corneum (SC and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not.Conclusion: Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. Keywords: nanoparticles, skin penetration, stratum corneum, confocal laser scanning microscopy, tape stripping

  3. Preliminary observations on differences in the Raman spectra of cancerous and noncancerous cells and connective tissue of human skin

    Science.gov (United States)

    Short, Michael A.; Lui, Harvey; McLean, David I.; Zeng, Haishan; Alajlan, Abdulmajeed; Chen, Michael X.

    2005-04-01

    A less invasive method of reliably detecting skin cancers is required. Raman spectroscopy is just one of several spectroscopic methods that look promising, but are not yet sufficiently reliable. More information is needed on how and why the Raman spectra of cancerous skin tissue is different from its normal counterpart. We have used confocal micro-Raman spectroscopy with a spatial resolution of about a micron to obtain spectra of unstained thin sections of human skin. We found that there were clear differences in the Raman spectra between cancerous and non-cancerous tissue both in cells and in the connective tissue. The DNA contribution to the spectra was generally stronger in malignant cells than normal ones. In regions of the dermis far away from the tumor one obtains the usual collagen spectra of normal skin, but adjacent to the tumor the spectra no longer appeared to be those of native collagen.

  4. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin

    DEFF Research Database (Denmark)

    Cheuk, Stanley; Schlums, Heinrich; Sérézal, Irène Gallais

    2017-01-01

    with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a– Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation...

  5. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    Directory of Open Access Journals (Sweden)

    David Fecher

    Full Text Available Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future.

  6. Softenin, a novel protein that softens the connective tissue of sea cucumbers through inhibiting interaction between collagen fibrils.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takehana

    Full Text Available The dermis in the holothurian body wall is a typical catch connective tissue or mutable collagenous tissue that shows rapid changes in stiffness. Some chemical factors that change the stiffness of the tissue were found in previous studies, but the molecular mechanisms of the changes are not yet fully understood. Detection of factors that change the stiffness by working directly on the extracellular matrix was vital to clarify the mechanisms of the change. We isolated from the body wall of the sea cucumber Stichopus chloronotus a novel protein, softenin, that softened the body-wall dermis. The apparent molecular mass was 20 kDa. The N-terminal sequence of 17 amino acids had low homology to that of known proteins. We performed sequential chemical and physical dissections of the dermis and tested the effects of softenin on each dissection stage by dynamic mechanical tests. Softenin softened Triton-treated dermis whose cells had been disrupted by detergent. The Triton-treated dermis was subjected to repetitive freeze-and-thawing to make Triton-Freeze-Thaw (TFT dermis that was softer than the Triton-treated dermis, implying that some force-bearing structure had been disrupted by this treatment. TFT dermis was stiffened by tensilin, a stiffening protein of sea cucumbers. Softenin softened the tensilin-stiffened TFT dermis while it had no effect on the TFT dermis without tensilin treatment. We isolated collagen from the dermis. When tensilin was applied to the suspending solution of collagen fibrils, they made a large compact aggregate that was dissolved by the application of softenin or by repetitive freeze-and-thawing. These results strongly suggested that softenin decreased dermal stiffness through inhibiting cross-bridge formation between collagen fibrils; the formation was augmented by tensilin and the bridges were broken by the freeze-thaw treatment. Softenin is thus the first softener of catch connective tissue shown to work on the cross

  7. Response of Human Skin Equivalents to Sarcoptes scabiei

    Science.gov (United States)

    MORGAN, MARJORIE S.; ARLIAN, LARRY G.

    2010-01-01

    Studies have shown that molecules in an extract made from bodies of the ectoparasitic mite, Sarcoptes scabiei De Geer, modulate cytokine secretion from cultured human keratinocytes and fibroblasts. In vivo, in the parasitized skin, these cells interact with each other by contact and cytokine mediators and with the matrix in which they reside. Therefore, these cell types may function differently together than they do separately. In this study, we used a human skin equivalent (HSE) model to investigate the influence of cellular interactions between keratinocytes and fibroblasts when the cells were exposed to active/burrowing scabies mites, mite products, and mite extracts. The HSE consisted of an epidermis of stratified stratum corneum, living keratinocytes, and basal cells above a dermis of fibroblasts in a collagen matrix. HSEs were inoculated on the surface or in the culture medium, and their cytokine secretions on the skin surface and into the culture medium were determined by enzyme-linked immunosorbent assay. Active mites on the surface of the HSE induced secretion of cutaneous T cell-attracting chemokine, thymic stromal lymphopoietin, interleukin (IL)-1α, IL-1β, IL-1 receptor antagonist (IL-1ra), IL-6, IL-8, monocyte chemoattractant protein-1, granulocyte/macrophage colony-stimulating factor, and macrophage colony-stimulating factor. The main difference between HSEs and monocultured cells was that the HSEs produced the proinflammatory cytokines IL-1α and IL-1β and their competitive inhibitor IL-1ra, whereas very little of these mediators was previously found for cultured keratinocytes and fibroblasts. It is not clear how the balance between these cytokines influences the overall host response. However, IL-1ra may contribute to the depression of an early cutaneous inflammatory response to scabies in humans. These contrasting results illustrate that cell interactions are important in the host’s response to burrowing scabies mites. PMID:20939384

  8. Pertussis circulation has increased T-cell immunity during childhood more than a second acellular booster vaccination in Dutch children 9 years of age.

    Directory of Open Access Journals (Sweden)

    Rose-Minke Schure

    Full Text Available UNLABELLED: Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA- were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN64117538.

  9. Tissue engineering for lateral ridge augmentation with recombinant human bone morphogenetic protein 2 combination therapy: a case report.

    Science.gov (United States)

    Mandelaris, George A; Spagnoli, Daniel B; Rosenfeld, Alan L; McKee, James; Lu, Mei

    2015-01-01

    This case report describes a tissue-engineered reconstruction with recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ ACS) + cancellous allograft and space maintenance via Medpor Contain mesh in the treatment of a patient requiring maxillary and mandibular horizontal ridge augmentation to enable implant placement. The patient underwent a previously unsuccessful corticocancellous bone graft at these sites. Multiple and contiguous sites in the maxilla and in the mandibular anterior, demonstrating advanced lateral ridge deficiencies, were managed using a tissue engineering approach as an alternative to autogenous bone harvesting. Four maxillary and three mandibular implants were placed 9 and 10 months, respectively, after tissue engineering reconstruction, and all were functioning successfully after 24 months of follow-up. Histomorphometric analysis of a bone core obtained at the time of the maxillary implant placement demonstrated a mean of 76.1% new vital bone formation, 22.2% marrow/cells, and 1.7% residual graft tissue. Tissue engineering for lateral ridge augmentation with combination therapy requires further research to determine predictability and limitations.

  10. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    Science.gov (United States)

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  11. Treatment with vacuum-assisted closure and cryo-preserved homologous de-epidermalised dermis of complex traumas to the lower limbs with loss of substance, and bones and tendons exposure.

    Science.gov (United States)

    Brandi, C; Grimaldi, L; Nisi, G; Silvestri, A; Brafa, A; Calabrò, M; D'Aniello, C

    2008-12-01

    Lower-limb injuries with loss of tissue and exposure of bones and tendons are an increasing problem. The condition of the wound locally and the patient in general does not always allow immediate and adequate coverage of the structures exposed by the trauma. Therefore, new therapeutic solutions are needed. A reduction in the time that bones and tendons are exposed is essential to achieve complete healing of bone fractures, with reduced risks of infection and less disabling outcomes. The effectiveness of vacuum-assisted closure (VAC) therapy in supporting wound healing and of cryopreserved homologous de-epidermalised dermis (DED) in providing an effective template for re-epithelialisation has been previously reported. We carried out a study to evaluate the effectiveness of the synergistic and combined use of the two methodologies. Eighteen patients with traumatic loss of tissue in the lower limbs, involving exposure of bone and tendon structures, were enrolled in the study. All participants had local, general contraindications to first-instance reconstructions, or both. All patients received a combination of VAC therapy and DED implants. Granulation tissue was obtained in all wounds, with complete coverage of exposed structures. No infections were detected in the cohort, and all patients were prepared for further necessary reconstructive treatments. In our experience, the combination of VAC therapy and DED could, in selected cases, constitute an effective treatment for complex lower limb traumatic injuries with bone and tendon exposure.

  12. Effect of sample preparation techniques on the concentrations and distributions of elements in biological tissues using µSRXRF: a comparative study

    International Nuclear Information System (INIS)

    Al-Ebraheem, A; Dao, E; Desouza, E; McNeill, F E; Farquharson, M J; Li, C; Wainman, B C

    2015-01-01

    Routine tissue sample preparation using chemical fixatives is known to preserve the morphology of the tissue being studied. A competitive method, cryofixation followed by freeze drying, involves no chemical agents and maintains the biological function of the tissue. The possible effects of both sample preparation techniques in terms of the distribution of bio-metals (calcium (Ca), copper (Cu) zinc (Zn), and iron (Fe) specifically) in human skin tissue samples was investigated. Micro synchrotron radiation x-ray fluorescence (μSRXRF) was used to map bio-metal distribution in epidermal and dermal layers of human skin samples from various locations of the body that have been prepared using both techniques. For Ca, Cu and Zn, there were statistically significant differences between the epidermis and dermis using the freeze drying technique (p = 0.02, p < 0.01, and p < 0.01, respectively). Also using the formalin fixed, paraffin embedded technique the levels of Ca, Cu and Zn, were significantly different between the epidermis and dermis layers (p = 0.03, p < 0.01, and p < 0.01, respectively). However, the difference in levels of Fe between the epidermis and dermis was unclear and further analysis was required. The epidermis was further divided into two sub-layers, one mainly composed of the stratum corneum and the other deeper layer, the stratum basale. It was found that the difference between the distribution of Fe in the two epidermal layers using the freeze drying technique resulted in a statistically significant difference (p = 0.012). This same region also showed a difference in Fe using the formalin fixed, paraffin embedded technique (p < 0.01). The formalin fixed, paraffin embedded technique also showed a difference between the deeper epidermal layer and the dermis (p < 0.01). It can be concluded that studies involving Ca, Cu and Zn might show similar results using both sample preparation techniques, however studies involving Fe would need more

  13. 3D imaging of cleared human skin biopsies using light-sheet microscopy: A new way to visualize in-depth skin structure.

    Science.gov (United States)

    Abadie, S; Jardet, C; Colombelli, J; Chaput, B; David, A; Grolleau, J-L; Bedos, P; Lobjois, V; Descargues, P; Rouquette, J

    2018-05-01

    Human skin is composed of the superimposition of tissue layers of various thicknesses and components. Histological staining of skin sections is the benchmark approach to analyse the organization and integrity of human skin biopsies; however, this approach does not allow 3D tissue visualization. Alternatively, confocal or two-photon microscopy is an effective approach to perform fluorescent-based 3D imaging. However, owing to light scattering, these methods display limited light penetration in depth. The objectives of this study were therefore to combine optical clearing and light-sheet fluorescence microscopy (LSFM) to perform in-depth optical sectioning of 5 mm-thick human skin biopsies and generate 3D images of entire human skin biopsies. A benzyl alcohol and benzyl benzoate solution was used to successfully optically clear entire formalin fixed human skin biopsies, making them transparent. In-depth optical sectioning was performed with LSFM on the basis of tissue-autofluorescence observations. 3D image analysis of optical sections generated with LSFM was performed by using the Amira ® software. This new approach allowed us to observe in situ the different layers and compartments of human skin, such as the stratum corneum, the dermis and epidermal appendages. With this approach, we easily performed 3D reconstruction to visualise an entire human skin biopsy. Finally, we demonstrated that this method is useful to visualise and quantify histological anomalies, such as epidermal hyperplasia. The combination of optical clearing and LSFM has new applications in dermatology and dermatological research by allowing 3D visualization and analysis of whole human skin biopsies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Transcriptional effect of an Aframomum angustifolium seed extract on human cutaneous cells using low-density DNA chips.

    Science.gov (United States)

    Bonnet-Duquennoy, Mathilde; Dumas, Marc; Debacker, Adeline; Lazou, Kristell; Talbourdet, Sylvie; Franchi, Jocelyne; Heusèle, Catherine; André, Patrice; Schnebert, Sylvianne; Bonté, Frédéric; Kurfürst, Robin

    2007-06-01

    Studying photoexposed and photoprotected skin biopsies from young and aged women, it has been found that a specific zone, composed of the basal layers of the epidermis, the dermal epidermal junction, and the superficial dermis, is major target of aging and reactive oxygen species. We showed that this zone is characterized by significant variations at a transcriptional and/or protein levels. Using low-density DNA chip technology, we evaluated the effect of a natural mixture of Aframomum angustifolium seed extract containing labdane diterpenoids on these aging markers. Expression profiles of normal human fibroblasts (NHF) were studied using a customized cDNA macroarray system containing genes covering dermal structure, inflammatory responses, and oxidative stress defense mechanisms. For normal human keratinocyte (NHK) investigations, we chose OLISA technique, a sensitive and quantitative method developed by BioMérieux specifically designed to investigate cell death, proliferation, epidermal structure, differentiation, and oxidative stress defense response. We observed that this extract strongly modified gene expression profiles of treated NHK, but weakly for NHF. This extract regulated antioxidant defenses, dermal-epidermal junction components, and epidermal renewal-related genes. Using low-density DNA chip technology, we identified new potential actions of A. angustifolium seed extract on skin aging.

  15. Early Surgical Site Infection Following Tissue Expander Breast Reconstruction with or without Acellular Dermal Matrix: National Benchmarking Using National Surgical Quality Improvement Program

    Directory of Open Access Journals (Sweden)

    Sebastian Winocour

    2015-03-01

    Full Text Available BackgroundSurgical site infections (SSIs result in significant patient morbidity following immediate tissue expander breast reconstruction (ITEBR. This study determined a single institution's 30-day SSI rate and benchmarked it against that among national institutions participating in the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP.MethodsWomen who underwent ITEBR with/without acellular dermal matrix (ADM were identified using the ACS-NSQIP database between 2005 and 2011. Patient characteristics associated with the 30-day SSI rate were determined, and differences in rates between our institution and the national database were assessed.Results12,163 patients underwent ITEBR, including 263 at our institution. SSIs occurred in 416 (3.4% patients nationwide excluding our institution, with lower rates observed at our institution (1.9%. Nationwide, SSIs were significantly more common in ITEBR patients with ADM (4.5% compared to non-ADM patients (3.2%, P=0.005, and this trend was observed at our institution (2.1% vs. 1.6%, P=1.00. A multivariable analysis of all institutions identified age ≥50 years (odds ratio [OR], 1.4; confidence interval [CI], 1.1-1.7, body mass index ≥30 kg/m2 vs. 4.25 hours (OR, 1.9; CI, 1.5-2.4 as risk factors for SSIs. Our institutional SSI rate was lower than the nationwide rate (OR, 0.4; CI, 0.2-1.1, although this difference was not statistically significant (P=0.07.ConclusionsThe 30-day SSI rate at our institution in patients who underwent ITEBR was lower than the nation. SSIs occurred more frequently in procedures involving ADM both nationally and at our institution.

  16. Cellular versus acellular matrix devices in treatment of diabetic foot ulcers: study protocol for a comparative efficacy randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Lev-Tov Hadar

    2013-01-01

    Full Text Available Abstract Background Diabetic foot ulcers (DFUs represent a significant source of morbidity and an enormous financial burden. Standard care for DFUs involves systemic glucose control, ensuring adequate perfusion, debridement of nonviable tissue, off-loading, control of infection, local wound care and patient education, all administered by a multidisciplinary team. Unfortunately, even with the best standard of care (SOC available, only 24% or 30% of DFUs will heal at weeks 12 or 20, respectively. The extracellular matrix (ECM in DFUs is abnormal and its impairment has been proposed as a key target for new therapeutic devices. These devices intend to replace the aberrant ECM by implanting a matrix, either devoid of cells or enhanced with fibroblasts, keratinocytes or both as well as various growth factors. These new bioengineered skin substitutes are proposed to encourage angiogenesis and in-growth of new tissue, and to utilize living cells to generate cytokines needed for wound repair. To date, the efficacy of bioengineered ECM containing live cellular elements for improving healing above that of a SOC control group has not been compared with the efficacy of an ECM devoid of cells relative to the same SOC. Our hypothesis is that there is no difference in the improved healing effected by either of these two product types relative to SOC. Methods/Design To test this hypothesis we propose a randomized, single-blind, clinical trial with three arms: SOC, SOC plus Dermagraft® (bioengineered ECM containing living fibroblasts and SOC plus Oasis® (ECM devoid of living cells in patients with nonhealing DFUs. The primary outcome is the percentage of subjects that achieved complete wound closure by week 12. Discussion If our hypothesis is correct, then immense cost savings could be realized by using the orders-of-magnitude less expensive acellular ECM device without compromising patient health outcomes. The article describes the protocol proposed to test

  17. Substantial gaps in knowledge of Bordetella pertussis antibody and T cell epitopes relevant for natural immunity and vaccine efficacy

    Science.gov (United States)

    Vaughan, Kerrie; Seymour, Emily; Peters, Bjoern; Sette, Alessandro

    2016-01-01

    The recent increase in whooping cough in vaccinated populations has been attributed to waning immunity associated with the acellular vaccine. The Immune Epitope Database (IEDB) is a repository of immune epitope data from the published literature and includes T cell and antibody epitopes for human pathogens. The IEDB conducted a review of the epitope literature, which revealed 300 Bordetella pertussis-related epitopes from 39 references. Epitope data are currently available for six virulence factors of B. pertussis: pertussis toxin, pertactin, fimbrial 2, fimbrial 3, adenylate cyclase and filamentous hemagglutinin. The majority of epitopes were defined for antibody reactivity; fewer T cell determinants were reported. Analysis of available protective correlates data revealed a number of candidate epitopes; however few are defined in humans and few have been shown to be protective. Moreover, there are a limited number of studies defining epitopes from natural infection versus whole cell or acellular/subunit vaccines. The relationship between epitope location and structural features, as well as antigenic drift (SNP analysis) was also investigated. We conclude that the cumulative data is yet insufficient to address many fundamental questions related to vaccine failure and this underscores the need for further investigation of B. pertussis immunity at the molecular level. PMID:24530743

  18. In vivo spatial frequency domain spectroscopy of two layer media

    Science.gov (United States)

    Yudovsky, Dmitry; Nguyen, John Quan M.; Durkin, Anthony J.

    2012-10-01

    Monitoring of tissue blood volume and local oxygen saturation can inform the assessment of tissue health, healing, and dysfunction. These quantities can be estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in skin can be confounded by the strong absorption of melanin in the epidermis and epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. Therefore, a method is desired that decouples the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. A previously developed inverse method based on a neural network forward model was applied to simulated spatial frequency domain reflectance of skin for multiple wavelengths in the near infrared. It is demonstrated that the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis can be determined independently and with minimal coupling. Then, the same inverse method was applied to reflectance measurements from a tissue simulating phantom and in vivo human skin. Oxygen saturation and total hemoglobin concentrations were estimated from the volar forearms of weakly and strongly pigmented subjects using a standard homogeneous model and the present two layer model.

  19. Clinical presentation of infants hospitalised with pertussis

    African Journals Online (AJOL)

    [7] In SA, whole-cell pertussis vaccine (administered as a trivalent vaccine to include tetanus and diphtheria) was replaced by acellular pertussis vaccine in 2009. The pentavalent vaccine (diphtheria, tetanus, acellular pertussis, inactivated polio vaccine and haemophilus influenza type b (DTaP-. IPV/Hib) was also introduced ...

  20. Comparative analysis of use of porous orbital implant with mucus membrane graft and dermis fat graft as a primary procedure in reconstruction of severely contracted socket

    Directory of Open Access Journals (Sweden)

    Kasturi Bhattacharjee

    2014-01-01

    Full Text Available Purpose: The purpose of our study is to present a surgical technique of primary porous orbital ball implantation with overlying mucus membrane graft (MMG for reconstruction of severely contracted socket and to evaluate prosthesis retention and motility in comparison to dermis fat graft (DFG. Study Design: Prospective comparative study. Materials and Methods: A total of 24 patients of severe socket contracture (Grade 2-4 Krishna′s classification were subdivided into two groups, 12 patients in each group. In Group I, DFG have been used for reconstruction. In Group II, porous polyethylene implant with MMG has been used as a primary procedure for socket reconstruction. In Group I DFG was carried out in usual procedure. In case of Group II, vascularized scar tissues were separated 360° and were fashioned into four strips. A scleral capped porous polyethylene implant was placed in the intraconal space and four strips of scar tissue were secured to the scleral cap and extended part overlapped the implant to make a twofold barrier between the implant and MMG. Patients were followed-up as per prefixed proforma. Prosthesis motility and retention between the two groups were measured. Results: In Group I, four patients had recurrence of contracture with fall out of prosthesis. In Group II stable reconstruction was achieved in all the patients. In terms of prosthesis motility, maximum in Group I was 39.2% and Group II, was 59.3%. The difference in prosthesis retention (P = 0.001 and motility (P = 0.004 between the two groups was significant. Conclusion: Primary socket reconstruction with porous orbital implant and MMG for severe socket contracture is an effective method in terms of prosthesis motility and prosthesis retention.

  1. The expression and proangiogenic effect of nucleolin during the recovery of heat-denatured HUVECs.

    Science.gov (United States)

    Liang, Pengfei; Jiang, Bimei; Lv, Chunliu; Huang, Xu; Sun, Li; Zhang, Pihong; Huang, Xiaoyuan

    2013-10-01

    The present study aims to examine the expression patterns and roles of nucleolin during the recovery of heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burn model in Sprague-Dawley rats and the heat denatured cell model (52°C, 35s) were used. The expression of nucleolin was measured using Western blot analysis and real-time PCR. Angiogenesis was assessed using in vitro parameters including endothelial cell proliferation, transwell migration assay, and scratched wound healing. Gene transfection and RNA interference approaches were employed to investigate the roles of nucleolin. Nucleolin mRNA and protein expression showed a time-dependent increase during the recovery of heat-denatured dermis and HUVECs. Heat-denaturation time-dependently promoted cell growth, adhesion, migration, scratched wound healing and formation of tube-like structures in HUVECs. These effects of heat denaturation on endothelial wound healing and formation of tube-like structures were prevented by knockdown of nucleolin, whereas over-expression of nucleolin increased cell growth, migration, and formation of tube-like structures in cultured HUVEC endothelial cells. In addition, we found that the expression of vascular endothelial growth factor (VEGF) increased during the recovery of heat-denatured dermis and HUVECs, and nucleolin up-regulated VEGF in HUVECs. The present study reveals that the expression of nucleolin is up-regulated, and plays a pro-angiogenic role during the recovery of heat-denatured dermis and its mechanism is probably dependent on production of VEGF. We find a novel and important pro-angiogenic role of nucleolin during the recovery of heat-denatured dermis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The human sunburn reaction: histologic and biochemical studies

    International Nuclear Information System (INIS)

    Gilchrest, B.A.; Soter, N.A.; Stoff, J.S.; Mihm, M.C. Jr.

    1981-01-01

    The ultraviolet-induced erythema reaction was investigated histologically and biochemically in four subjects, utilizing suction blister aspirates, analyzed for histamine and prostaglandin E2 (PGE2), and Epon-embedded 1-mu skin biopsy sections from control skin and from irradiated skin at intervals for 72 hours after exposure to a Hanovia lamp. Major histologic alterations in the epidermis included dyskeratotic and vacuolated keratinocytes (sunburn cells), and disappearance of Langerhans cells. In the dermis the major changes were vascular, involving both the superficial and deep venular plexuses. Endothelial cell enlargement was first apparent within 30 minutes of irradiation, peaked at 24 hours, and persisted throughout the 72-hour study period. Mast cell degranulation and associated perivenular edema were first apparent at 1 hour and striking at the onset of erythema, 3 to 4 hours postirradiation; edema was absent and mast cells were again normal in number and granule content at 24 hours. Histamine levels rose approximately fourfold above control values immediately after the onset of erythema and returned to baseline within 24 hours. PGE2 levels were statistically elevated even before the onset of erythema and reached approximately 150% of the control value at 24 hours. These data provide the first evidence that histamine may mediate the early phase of the human sunburn reaction and increase our understanding of its complex histologic and biochemical sequelae

  3. Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model.

    Science.gov (United States)

    Kendall, Alexandra C; Kiezel-Tsugunova, Magdalena; Brownbridge, Luke C; Harwood, John L; Nicolaou, Anna

    2017-09-01

    Ceramides are important for skin health, with a multitude of species found in both dermis and epidermis. The epidermis contains linoleic acid-Ester-linked Omega-hydroxylated ceramides of 6-Hydroxy-sphingosine, Sphingosine and Phytosphingosine bases (CER[EOH], CER[EOS] and CER[EOP], respectively), that are crucial for the formation of the epidermal barrier, conferring protection from environmental factors and preventing trans-epidermal water loss. Furthermore, a large number of ceramides, derivatives of the same sphingoid bases and various fatty acids, are produced by dermal and epidermal cells and perform signalling roles in cell functions ranging from differentiation to apoptosis. Supplementation with the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise as therapeutic agents in a number of inflammatory skin conditions, altering the lipid profile of the skin and production of bioactive lipids such as the eicosanoids, docosanoids and endocannabinoids. In this study we wished to investigate whether EPA and DHA could also affect the ceramide profile in epidermis and dermis, and, in this way, contribute to formation of a robust lipid barrier and ceramide-mediated regulation of skin functions. Ex vivo skin explants were cultured for 6days, and supplemented with EPA or DHA (50μM). Liquid chromatography coupled to tandem mass spectrometry with electrospray ionisation was used to assess the prevalence of 321 individual ceramide species, and a number of sphingoid bases, phosphorylated sphingoid bases, and phosphorylated ceramides, within the dermis and epidermis. EPA augmented dermal production of members of the ceramide families containing Non-hydroxy fatty acids and Sphingosine or Dihydrosphingosine bases (CER[NS] and CER[NDS], respectively), while epidermal CER[EOH], CER[EOS] and CER[EOP] ceramides were not affected. DHA did not significantly affect ceramide production. Ceramide-1-phosphate levels in

  4. The relationship between mucosal immunity, nasopharyngeal carriage, asymptomatic transmission and the resurgence of Bordetella pertussis

    Science.gov (United States)

    Gill, Christopher; Rohani, Pejman; Thea, Donald M

    2017-01-01

    The incidence of whooping cough in the US has been rising slowly since the 1970s, but the pace of this has accelerated sharply since acellular pertussis vaccines replaced the earlier whole cell vaccines in the late 1990s. A similar trend occurred in many other countries, including the UK, Canada, Australia, Ireland, and Spain, following the switch to acellular vaccines. The key question is why. Two leading theories (short duration of protective immunologic persistence and evolutionary shifts in the pathogen to evade the vaccine) explain some but not all of these shifts, suggesting that other factors may also be important. In this synthesis, we argue that sterilizing mucosal immunity that blocks or abbreviates the duration of nasopharyngeal carriage of Bordetella pertussis and impedes person-to-person transmission (including between asymptomatically infected individuals) is a critical factor in this dynamic. Moreover, we argue that the ability to induce such mucosal immunity is fundamentally what distinguishes whole cell and acellular pertussis vaccines and may be pivotal to understanding much of the resurgence of this disease in many countries that adopted acellular vaccines. Additionally, we offer the hypothesis that observed herd effects generated by acellular vaccines may reflect a modification of disease presentation leading to reduced potential for transmission by those already infected, as opposed to inducing resistance to infection among those who have been exposed. PMID:28928960

  5. Stability of double-row rotator cuff repair is not adversely affected by scaffold interposition between tendon and bone.

    Science.gov (United States)

    Beitzel, Knut; Chowaniec, David M; McCarthy, Mary Beth; Cote, Mark P; Russell, Ryan P; Obopilwe, Elifho; Imhoff, Andreas B; Arciero, Robert A; Mazzocca, Augustus D

    2012-05-01

    Rotator cuff reconstructions may be improved by adding growth factors, cells, or other biologic factors into the repair zone. This usually requires a biological carrier (scaffold) to be integrated into the construct and placed in the area of tendon-to-bone healing. This needs to be done without affecting the constructs mechanics. Hypothesis/ The hypothesis was that scaffold placement, as an interposition, has no adverse effects on biomechanical properties of double-row rotator cuff repair. The purpose of this study was to examine the effect of scaffold interposition on the initial strength of rotator cuff repairs. Controlled laboratory study. Twenty-five fresh-frozen shoulders (mean age: 65.5 ± 8.9 years) were randomly assigned to 5 groups. Groups were chosen to represent a broad spectrum of commonly used scaffold types: (1) double-row repair without augmentation, (2) double-row repair with interposition of a fibrin clot (Viscogel), (3) double-row repair with interposition of a collagen scaffold (Mucograft) between tendon and bone, (4) double-row repair with interposition of human dermis patch (ArthroFlex) between tendon and bone, and (5) double-row repair with human dermis patch (ArthroFlex) placed on top of the repair. Cyclic loading to measure displacement was performed to 3000 cycles at 1 Hz with an applied 10- to 100-N load. The ultimate load to failure was determined at a rate of 31 mm/min. There were no significant differences in mean displacement under cyclic loading, slope, or energy absorbed to failure between all groups (P = .128, P = .981, P = .105). Ultimate load to failure of repairs that used the collagen patch as an interposition (573.3 ± 75.6 N) and a dermis patch on top of the reconstruction (575.8 ± 22.6 N) was higher compared with the repair without a scaffold (348.9 ± 98.8 N; P = .018 and P = .025). No significant differences were found for repairs with the fibrin clot as an interposition (426.9 ± 103.6 N) and the decellularized dermis

  6. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells

    Science.gov (United States)

    Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Campbell, Laura; Teague, Jessica E.; Schlapbach, Christoph; Elco, Christopher; Huang, Victor; Matos, Tiago R.; Kupper, Thomas S.; Clark, Rachael A.

    2015-01-01

    The skin of an adult human contains approximately 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All non-recirculating resident memory T cells (TRM) expressed CD69, but the majority were CD4+, CD103− and located in the dermis, in contrast to studies in mice. Both CD4+ and CD8+ CD103+ TRM were enriched in the epidermis, had potent effector functions and had a limited proliferative capacity compared to CD103− TRM. TRM of both types had more potent effector functions than recirculating T cells. Induction of CD103 on human T cells was enhanced by keratinocyte contact, depended on TGFβ and was independent of T cell keratinocyte adhesive interactions. We observed two distinct populations of recirculating T cells, CCR7+/L-selectin+ central memory T cells (TCM) and CCR7+/L-selectin− T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions and TMM were depleted more slowly from skin after alemtuzumab, suggesting TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities. PMID:25787765

  7. Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Christoph Schaudinn

    Full Text Available Current research on wound infections is primarily conducted on animal models, which limits direct transferability of these studies to humans. Some of these limitations can be overcome by using-otherwise discarded-skin from cosmetic surgeries. Superficial wounds are induced in fresh ex vivo skin, followed by intradermal injection of Pseudomonas aeruginosa under the wound. Subsequently, the infected skin is incubated for 20 hours at 37°C and the CFU/wound are determined. Within 20 hours, the bacteria count increased from 107 to 109 bacteria per wound, while microscopy revealed a dense bacterial community in the collagen network of the upper wound layers as well as numerous bacteria scattered in the dermis. At the same time, IL-1alpha and IL-1beta amounts increased in all infected wounds, while-due to bacteria-induced cell lysis-the IL-6 and IL-8 concentrations rose only in the uninfected samples. High-dosage ciprofloxacin treatment resulted in a decisive decrease in bacteria, but consistently failed to eradicate all bacteria. The main benefits of the ex vivo wound model are the use of healthy human skin, a quantifiable bacterial infection, a measureable donor-dependent immune response and a good repeatability of the results. These properties turn the ex vivo wound model into a valuable tool to examine the mechanisms of host-pathogen interactions and to test antimicrobial agents.

  8. Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH

    Science.gov (United States)

    Pal, Anoop K.; Hsieh, Shu-Feng; Khatri, Madhu; Isaacs, Jacqueline A.; Demokritou, Philip; Gaines, Peter; Schmidt, Daniel F.; Rogers, Eugene J.; Bello, Dhimiter

    2014-02-01

    Several acellular assays are routinely used to measure oxidative stress elicited by engineered nanomaterials (ENMs), yet little comparative evaluations of such methods exist. This study compares for the first time the performance of the dichlorofluorescein (DCFH) assay which measures reactive oxygen species (ROS) generation, to that of the ferric-reducing ability of serum (FRAS) assay, which measures biological oxidant damage in serum. A diverse set of 28 commercially important and extensively characterized ENMs were tested on both the assays. Intracellular oxidative stress was also assessed on a representative subset of seven ENMs in THP-1 (phorbol 12-myristate 13-acetate matured human monocytes) cells. Associations between assay responses and ENM physicochemical properties were assessed via correlation and regression analysis. DCFH correlated strongly with FRAS after dose normalization for mass ( R 2 = 0.78) and surface area ( R 2 = 0.68). Only 10/28 ENMs were positive in DCFH versus 21/28 in FRAS. Both assays were strongly associated with specific surface area and transition metal content. Qualitatively, a similar response ranking was observed for acellular FRAS and intracellular reduced:oxidized glutathione ratio (GSH:GSSG) in cells. Quantitatively, weak correlation was found between intracellular GSSG and FRAS or DCFH ( R 2 < 0.25) even after calculating effective dose to cells. The FRAS assay was more sensitive than DCFH, especially for ENMs with low to moderate oxidative damage potential, and may serve as a more biologically relevant substitute for acellular ROS measurements of ENMs. Further in vitro and in vivo validations of FRAS against other toxicological endpoints with larger datasets are recommended.

  9. Effect of Use of Platelet-Rich Plasma (PRP) in Skin with Intrinsic Aging Process.

    Science.gov (United States)

    Charles-de-Sá, Luiz; Gontijo-de-Amorim, Natale Ferreira; Takiya, Christina Maeda; Borojevic, Radovan; Benati, Donatella; Bernardi, Paolo; Sbarbati, Andrea; Rigotti, Gino

    2018-02-15

    In previous papers, we demonstrated that the treatment of human photoaged skin with stromal-vascular fraction-enriched fat or expanded adipose-derived stem cells showed a decrease of elastosis and the appearance of new oxytalan elastic fibers in dermis and an increase in the vascular network. The utilization of fat plus platelet-rich plasma (PRP) led to an increase in the vascular permeability and reactivity of the nervous component. The purpose of this study was to analyze the histologic and ultrastructural changes of human skin after the injection of only PRP in the retroauricular area that was not exposed to sun and did not present the photoaging process, in comparison with our previous results. This study was performed in 13 patients who were candidates for facelift and whose ages ranged between 45 and 65 years. The PRP injection was performed in the mastoidea area. Fragments of skin were removed before and 3 months after treatment and analyzed by optical and electron microscopy. After the injection of PRP, we observed an increase of reticular dermis thickness because of the deposition of elastic fibers and collagen, with a fibrotic aspect. A modified pattern of adipose tissue was also found at the dermohypodermal junction. Significative regenerative aspects were not found at histologic and ultrastructural analysis. The presence of foci of moderate inflammation and microangiopathy were observed. Treatment with PRP increased reticular dermis thickness with a fibrotic aspect. In the long term, the presence of inflammation and microangiopathy caused by PRP injection could lead to trophic alteration of the skin and the precocious aging process. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  10. Near infrared laser penetration and absorption in human skin

    Science.gov (United States)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-02-01

    For understanding the mechanisms of low level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. In this paper, we present a three dimensional, multi-layer Monte Carlo simulation tool for studying light penetration and absorption in human skin. The skin is modeled as a three-layer participating medium, namely epidermis, dermis, and subcutaneous, where its geometrical and optical properties are obtained from the literature. Both refraction and reflection are taken into account at the boundaries according to Snell's law and Fresnel relations. A forward Monte Carlo method was implemented and validated for accurately simulating light penetration and absorption in absorbing and anisotropically scattering media. Local profiles of light penetration and volumetric absorption densities were simulated for uniform as well as Gaussian profile beams with different spreads at 155 mW average power over the spectral range from 1000 nm to 1900 nm. The results show the effects of beam profiles and wavelength on the local fluence within each skin layer. Particularly, the results identify different wavelength bands for targeted deposition of power in different skin layers. Finally, we show that light penetration scales well with the transport optical thickness of skin. We expect that this tool along with the results presented will aid researchers resolve issues related to dose and targeted delivery of energy in tissues for LLLT.

  11. Molecular imaging of melanin distribution in vivo and quantitative differential diagnosis of human pigmented lesions using label-free harmonic generation biopsy (Conference Presentation)

    Science.gov (United States)

    Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua

    2017-02-01

    Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.

  12. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application

    DEFF Research Database (Denmark)

    Holmgaard, R; Benfeldt, E; Bangsgaard, N

    2012-01-01

    -2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid...... chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial...... significantly different from each other (p value paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis and the amount of drug sampled following topical penetration ex vivo. The result is of relevance to the in vivo situation, and it can...

  13. A systematic review of acelluar dermal matrices in head and neck reconstruction.

    Science.gov (United States)

    Shridharani, Sachin M; Tufaro, Anthony P

    2012-11-01

    The use of acellular dermal matrices has been well described in the scientific literature since the early 1990 s and has been utilized for multiple applications in the head and neck for both aesthetic and reconstructive efforts. After systematically searching the PubMed database and following further refinement (based on the authors' inclusion and exclusion criteria), the authors identified 30 studies that provided information about patients who had undergone head and neck reconstruction with the use of acellular dermal matrix. Studies had to report quantifiable objective results in patients who were older than 1 year and younger than 90 years. The authors excluded single case reports, studies with fewer than 10 patients, and studies not published in English. The optimal material used as an implant for reconstruction possesses the following properties: facilitation of vascular ingrowth, decreased propensity to incite inflammation, biologic inertness, resistance to infection, and ease of handling. Acellular dermal matrix possesses many of these properties and is utilized in reconstructing nasal soft tissue and skeletal support, tympanic membrane, periorbital soft tissue, extraoral and intraoral defects, oropharyngeal defects, dura mater, and soft-tissue deficits from parotidectomy. Furthermore, it is used to assist in preventing Frey syndrome following parotidectomy and surgical treatment of facial paralysis. Use of acellular dermal matrix for head and neck reconstruction has expanded exponentially and is validated in many studies. Further prospective randomized control trials are warranted to further investigate the efficacy of acellular dermal matrix in head and neck reconstruction.

  14. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    Science.gov (United States)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  15. Elucidating the contribution of Rayleigh scattering to the bluish appearance of veins

    Science.gov (United States)

    Van Leeuwen, Spencer R.; Baranoski, Gladimir V. G.

    2018-02-01

    The bluish appearance of veins located immediately beneath the skin has long been a topic of interest for biomedical optics researchers. Despite this interest, a thorough identification of the specific optical processes responsible for this phenomenon remains to be achieved. We employ controlled in silico experiments to address this enduring open problem. Our experiments, which are supported by measured data available in the scientific literature, are performed using first-principles models of light interaction with human skin and blood. Using this investigation approach, we quantitatively demonstrate that Rayleigh scattering caused by collagen fibrils present in the papillary dermis, a sublayer of the skin, can play a pivotal role in the bluish appearance of veins as suggested by previous works in this area. Moreover, also taking color perception aspects into account, we systematically assess the effects of variations in fibril radius and papillary dermis thickness on the coloration of veins under different illuminants. Notably, this assessment indicates that Rayleigh scattering elicited by reticulin fibrils, another type of fibril found in the papillary dermis, is unlikely to significantly contribute to the bluish appearance of veins. By strengthening the current understanding of light attenuation mechanisms affecting the appearance of skin and blood, our investigation contributes to the development of more effective technologies aimed at the noninvasive measurement of the physiological properties of these tissues.

  16. Retention of a reconstructed nipple using a C-V flap with different layer thicknesses in the C-flap.

    Science.gov (United States)

    Sowa, Yoshihiro; Itsukage, Sizu; Sakaguchi, Kouichi; Taguchi, Tetsuya; Numajiri, Toshiaki

    2018-04-01

    The C-V flap for nipple reconstruction is now one of standard surgical techniques. But decreased projection is still a problem. In recent years, it has been suggested that projection can be more easily maintained when raising of the C-flap is performed with a split thickness dermis. In this study, we examined whether decrease of projection can be prevented by raising of a C-flap with a split dermis rather than with full dermis. A total of 49 consecutive patients who underwent reconstruction of a nipple using the C-V flap technique were enrolled. The patients included 22 who underwent surgery using a C-flap with a full thickness dermis (Group F), and 27 who underwent surgery with raising of a flap with a split thickness dermis (Group S). The size of the reconstructed nipple was measured at 2 weeks, 6 months and 1 year postoperatively for comparison between Groups F and S. Partial necrosis of the C-flap end occurred in 4 subjects in only Group S. The decrease in projection after 1 year postoperatively in Group S was significantly lower than that in Group F. In contrast, the teat base size in Group F tended to be greater than that in Group S, suggesting a tendency for an expanded base using a flap with a full dermis. Our results indicated that it is recommended to use a C-flap with a split dermis for cases with high projection of the nipple on the contralateral side.

  17. Two-dimensional finite difference model to study temperature distribution in SST regions of human limbs immediately after physical exercise in cold climate

    Science.gov (United States)

    Kumari, Babita; Adlakha, Neeru

    2015-02-01

    Thermoregulation is a complex mechanism regulating heat production within the body (chemical thermoregulation) and heat exchange between the body and the environment (physical thermoregulation) in such a way that the heat exchange is balanced and deep body temperatures are relatively stable. The external heat transfer mechanisms are radiation, conduction, convection and evaporation. The physical activity causes thermal stress and poses challenges for this thermoregulation. In this paper, a model has been developed to study temperature distribution in SST regions of human limbs immediately after physical exercise under cold climate. It is assumed that the subject is doing exercise initially and comes to rest at time t = 0. The human limb is assumed to be of cylindrical shape. The peripheral region of limb is divided into three natural components namely epidermis, dermis and subdermal tissues (SST). Appropriate boundary conditions have been framed based on the physical conditions of the problem. Finite difference has been employed for time, radial and angular variables. The numerical results have been used to obtain temperature profiles in the SST region immediately after continuous exercise for a two-dimensional unsteady state case. The results have been used to analyze the thermal stress in relation to light, moderate and vigorous intensity exercise.

  18. Large-scale expansion of human skin-derived precursor cells (hSKPs) in stirred suspension bioreactors.

    Science.gov (United States)

    Surrao, Denver C; Boon, Kathryn; Borys, Breanna; Sinha, Sarthak; Kumar, Ranjan; Biernaskie, Jeff; Kallos, Michael S

    2016-12-01

    Human skin-derived precursor cells (hSKPs) are multipotent adult stem cells found in the dermis of human skin. Incorporation of hSKPs into split-thickness skin grafts (STSGs), the current gold standard to treat severe burns or tissue resections, has been proposed as a treatment option to enhance skin wound healing and tissue function. For this approach to be clinically viable substantial quantities of hSKPs are required, which is the rate-limiting step, as only a few thousand hSKPs can be isolated from an autologous skin biopsy without causing donor site morbidity. In order to produce sufficient quantities of clinically viable cells, we have developed a bioprocess capable of expanding hSKPs as aggregates in stirred suspension bioreactors (SSBs). In this study, we found hSKPs from adult donors to expand significantly more (P skin biopsy without causing donor site morbidity. At 60 rpm, aggregates were markedly smaller and did not experience oxygen diffusional limitations, as seen in hSKPs cultured at 40 rpm. While hSKPs also grew at 80 rpm (0.74 Pa) and 100 rpm (1 Pa), they produced smaller aggregates due to high shear stress. The pH of the media in all the SSBs was closer to biological conditions and significantly different (P skin wounds. Biotechnol. Bioeng. 2016;113: 2725-2738. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Alternatives to eye bank native tissue for corneal stromal replacement.

    Science.gov (United States)

    Brunette, Isabelle; Roberts, Cynthia J; Vidal, François; Harissi-Dagher, Mona; Lachaine, Jean; Sheardown, Heather; Durr, Georges M; Proulx, Stéphanie; Griffith, May

    2017-07-01

    Corneal blindness is a major cause of blindness in the world and corneal transplantation is the only widely accepted treatment to restore sight in these eyes. However, it is becoming increasingly difficult for eye banks to meet the increasing demand for transplantable tissue, which is in part due to population aging. Donor tissue shortage is therefore a growing concern globally and there is a need for alternatives to human donor corneas. Biosynthetic corneal substitutes offer several significant advantages over native corneas: Large-scale production offers a powerful potential solution to the severe shortage of human donor corneas worldwide; Good manufacturing practices ensure sterility and quality control; Acellular corneal substitutes circumvent immune rejection induced by allogeneic cells; Optical and biomechanical properties of the implants can be adapted to the clinical need; and finally these corneal substitutes could benefit from new advances in biomaterials science, such as surface coating, functionalization and nanoparticles. This review highlights critical contributions from laboratories working on corneal stromal substitutes. It focuses on synthetic inert prostheses (keratoprostheses), acellular scaffolds with and without enhancement of endogenous regeneration, and cell-based replacements. Accent is put on the physical properties and biocompatibility of these biomaterials, on the functional and clinical outcome once transplanted in vivo in animal or human eyes, as well as on the main challenges of corneal stromal replacement. Regulatory and economic aspects are also discussed. All of these perspectives combined highlight the founding principles of the clinical application of corneal stromal replacement, a concept that has now become reality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Collagen XII and XIV, New Partners of Cartilage Oligomeric Matrix Protein in the Skin Extracellular Matrix Suprastructure*

    Science.gov (United States)

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R.; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-01-01

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone. PMID:22573329

  1. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure.

    Science.gov (United States)

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-06-29

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.

  2. Clinical studies of pigmented lesions in human skin by using a multiphoton tomograph

    Science.gov (United States)

    Balu, Mihaela; Kelly, Kristen M.; Zachary, Christopher B.; Harris, Ronald M.; Krasieva, Tatiana B.; König, Karsten; Tromberg, Bruce J.

    2013-02-01

    In vivo imaging of pigmented lesions in human skin was performed with a clinical multiphoton microscopy (MPM)-based tomograph (MPTflex, JenLab, Germany). Two-photon excited fluorescence was used for visualizing endogenous fluorophores such as NADH/FAD, keratin, melanin in the epidermal cells and elastin fibers in the dermis. Collagen fibers were imaged by second harmonic generation. Our study involved in vivo imaging of benign melanocytic nevi, atypical nevi and melanoma. The goal of this preliminary study was to identify in vivo the characteristic features and their frequency in pigmented lesions at different stages (benign, atypical and malignant) and to evaluate the ability of in vivo MPM to distinguish atypical nevi from melanoma. Comparison with histopathology was performed for the biopsied lesions. Benign melanocytic nevi were characterized by the presence of nevus cell nests at the epidermal-dermal junction. In atypical nevi, features such as lentiginous hyperplasia, acanthosis and architectural disorder were imaged. Cytological atypia was present in all the melanoma lesions imaged, showing the strongest correlation with malignancy. The MPM images demonstrated very good correlation with corresponding histological images, suggesting that MPM could be a promising tool for in vivo non-invasive pigmented lesion diagnosis, particularly distinguishing atypical nevi from melanoma.

  3. Lymphadenopathic kaposi's sarcoma in an immunocompetent adult

    International Nuclear Information System (INIS)

    David, O.S.; Sani, I.M.

    2012-01-01

    Kaposi's sarcomas (KS) are vascular lesions which usually originate from multiple sites in the mid-dermis extending to the dermis. The aetiology is unknown, but infection from human herpes virus type 8 has been suggested. Several reports of KS had come from Africa initially and from worldwide later due to the close association with HIV/AIDS. Prior to this however, KS was very frequent in Eastern Europe, Italy and the United States where it existed in an indolent form in the elderly men of Jewish ancestry. KS may also be due to iatrogenic immune suppression from chronic use of steroids, elevated degree of expression of numerous cytokines and angiogenic growth factors including TNF alpha, IL-6, bFGF, HIV-tat protein and oncostatin M. Lymphadenopathic KS involves the lymph-nodes, viscera and the gastrointestinal tract and may run a disseminated and aggressive course. We are reporting one such case in an immunocompetent male. (author)

  4. Experience with monocomponent acellular pertussis combination vaccines for infants, children, adolescents and adults--a review of safety, immunogenicity, efficacy and effectiveness studies and 15 years of field experience.

    Science.gov (United States)

    Thierry-Carstensen, Birgit; Dalby, Tine; Stevner, Michael A; Robbins, John B; Schneerson, Rachel; Trollfors, Birger

    2013-10-25

    Combination vaccines containing a monocomponent acellular pertussis (aP) vaccine, manufactured at Statens Serum Institut (SSI), Denmark, have successfully controlled Bordetella pertussis infections in Denmark since 1997. The efficacy of this aP vaccine was 71% in a double-blind, randomised and controlled clinical trial. Its safety and immunogenicity have been demonstrated in infants, children, adolescents and adults. In approximately 500,000 children it was effective against pertussis requiring hospitalisation (VE: 93% after 3 doses) and against pertussis not requiring hospitalisation (VE: 78% after 3 doses). IgG antibodies against pertussis toxin (IgG anti-PT) response rates after booster vaccination of adults with tetanus, diphtheria and aP combination vaccine (TdaP) were considerably higher for this monocomponent aP vaccine containing 20μg pertussis toxoid, inactivated by hydrogen peroxide (92.0%), than for two multicomponent aP vaccines inactivated by formaldehyde and/or glutaraldehyde: 3-component aP with 8μg pertussis toxoid (77.2%) and 5-component aP with 2.5μg pertussis toxoid (47.1%), without compromising the safety profile. In Denmark where this monocomponent aP vaccine has been the only pertussis vaccine in use for 15 years, there has been no pertussis epidemic since 2002 (population incidence 36 per 100,000), in contrast to neighbouring countries, where epidemics have occurred. This monocomponent aP vaccine can be used in combination vaccines for primary and booster vaccination against pertussis in all age groups and is an important tool for successful pertussis control. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Decennial administration in young adults of a reduced-antigen content diphtheria, tetanus, acellular pertussis vaccine containing two different concentrations of aluminium.

    Science.gov (United States)

    Vandermeulen, Corinne; Theeten, Heidi; Rathi, Niraj; Kuriyakose, Sherine; Han, Htay Htay; Sokal, Etienne; Hoppenbrouwers, Karel; Van Damme, Pierre

    2015-06-12

    Regular booster vaccination might be necessary throughout life to protect against pertussis infection. Nevertheless the duration of protection after booster vaccination remains unclear. In this study, antibody persistence up to 10 years after previous vaccination of adolescents (N=478) with combined reduced-antigen-content diphtheria-tetanus-acellular pertussis vaccine (dTpa, Boostrix™, GlaxoSmithKline Belgium) containing 0.5mg, 0.3mg or 0.133mg of aluminium was assessed. The immunogenicity, reactogenicity and safety of a decennial booster dTpa dose were also investigated. Young adults vaccinated as adolescents in the initial booster study were invited to participate in an assessment of antibody persistence at years 8.5 and 10, and to receive a dTpa booster dose at year 10 with immunogenicity assessment one month later. Those who originally received the 0.5mg or 0.3mg formulations received the same vaccine at year 10. Those in the 0.133mg group received the 0.5mg formulation. Reactogenicity and safety endpoints were captured until 30 days after booster vaccination. Prior to the decennial booster at year 8.5 and year 10, all participants had seroprotective antibodies for diphtheria (ELISA or neutralisation assay) and tetanus. At least 77.8% were seropositive for anti-pertussis toxin (PT) antibodies at year 8.5 and 82.8% at year 10. All participants were seropositive for antibodies for filamentous haemagglutinin and pertactin at both time points. The decennial booster dose induced robust increases in antibody GMCs to all antigens. The post-booster anti-PT geometric mean concentration was 82.5EL.U/ml (95%CI 67.0-101.6) and 124.0 (103.5-148.5) in the 0.3mg and 0.5mg groups, respectively. The reactogenicity and safety profile of the decennial booster dose was consistent with the known safety profile of dTpa. No serious adverse events were reported. Decennial booster vaccination with either of the two licensed formulations of dTpa was highly immunogenic and well

  6. Medline Plus

    Full Text Available ... dermis. It contains the cells that give skin strength, support, and flexibility. As a person ages, the cells in the dermis lose their strength and flexibility, causing the skin to lose its ...

  7. Predictors of Low Uptake of Prenatal Tetanus Toxoid, Reduced Diphtheria Toxoid, and Acellular Pertussis Immunization in Privately Insured Women in the United States.

    Science.gov (United States)

    Butler, Anne M; Layton, J Bradley; Li, Dongmei; Hudgens, Michael G; Boggess, Kim A; McGrath, Leah J; Weber, David J; Becker-Dreps, Sylvia

    2017-04-01

    To examine the uptake of prenatal tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) immunization among pregnant women in the United States. Using MarketScan data, we conducted a historical cohort study among pregnant women with employer-based commercial insurance in the United States who delivered between January 1, 2010, and December 31, 2014. We examined temporal trends of uptake, predictors of uptake, and timing of Tdap immunization. Among 1,222,384 eligible pregnancies in 1,147,711 women, receipt of prenatal Tdap immunization increased from 0.0% of women who delivered in January 2010 to 9.8% who delivered in October 2012 (the date of the recommendation by the Advisory Committee on Immunization Practices for Tdap during every pregnancy) to 44.4% who delivered in December 2014. Among women who received Tdap during pregnancy, the majority were immunized between 27 weeks and 36 6/7 weeks of gestation per the Advisory Committee on Immunization Practices recommendation. In multivariable analyses among women who delivered between November 2012 and December 2014, rates of prenatal Tdap immunization were lower for women younger than 25 years of age (eg, 20-24 compared with 30-34 years rate ratio [RR] 0.83, 95% confidence interval [CI] 0.85-0.88), with other children (eg, three compared with zero children: RR 0.86, 95% CI 0.84-0.88), residing in the South compared with the Midwest (RR 0.81, 95% CI 0.80-0.82), or with emergency department visits in early pregnancy (RR 0.93, 95% CI 0.92-0.95). The proportion of pregnant women who received prenatal Tdap increased with increasing gestational age at birth. By the end of 2014, fewer than half of pregnant women in the United States were receiving prenatal Tdap immunization. Implementation and dissemination strategies are needed to increase Tdap coverage among pregnant women, especially those who are young, have other children, or reside in the South.

  8. Failure of root development of human permanent teeth following irradiation

    International Nuclear Information System (INIS)

    Takeda, Yasunori; Kuroda, Masafumi; Amari, Eiichi; Yanagisawa, Toru

    1987-01-01

    Complete absence of root formation of the upper incisors, canine and first premolar was reported in a 27-year-old female who had received radiation therapy for a retinal glioma of the right eye at age of 3 years 1 month. Ground and decalcified sections showed no remarkable changes in enamel and dentin of the crowns, but the pulp floor was closed by irregular dentin deposit despite the absence of root formation. The outer surface of the irregular dentin was covered by acellular cementum, and the periodontal membrane was undeveloped. A slight degree of fibrosis was seen in the pulp, but the coronal part of the dentin was lined by odontoblasts. The theory that tooth eruption is caused by the growth of the root is not substantiated by the observation in this case. (author)

  9. Medline Plus

    Full Text Available ... 17/2013) Pelvic Support Problems Anterior Repair with Processed Dermis (Carolina Urology Partners, Charlotte, NC, 7/01/ ... 17/2013) Pelvic Support Problems Anterior Repair with Processed Dermis (Carolina Urology Partners, Charlotte, NC, 7/01/ ...

  10. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.

    Science.gov (United States)

    Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa

    2018-04-01

    Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.

  11. A millimeter-wave reflectometer for whole-body hydration sensing

    Science.gov (United States)

    Zhang, W.-D.; Brown, E. R.

    2016-05-01

    This paper demonstrates a non-invasive method to determine the hydration level of human skin by measuring the reflectance of W-band (75-110 GHz) and Ka-band (26-40 GHz) radiation. Ka-band provides higher hydration accuracy ( 1 mm), thereby allowing access to the important dermis layer of skin. W-band provides less depth of penetration but finer spatial resolution (~2 mm). Both the hydration sensing concept and experimental results are presented here. The goal is to make a human hydration sensor that is 1% accurate or better, operable by mechanically scanning, and fast enough to measure large areas of the human body in seconds.

  12. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  13. The expression of miR-125b regulates angiogenesis during the recovery of heat-denatured HUVECs.

    Science.gov (United States)

    Zhou, Situo; Zhang, Pihong; Liang, Pengfei; Huang, Xiaoyuan

    2015-06-01

    In previous studies we found that miR-125b was down-regulated in denatured dermis of deep partial thickness burn patients. Moreover, miR-125b inhibited tumor-angiogenesis associated with the decrease of ERBB2 and VEGF expression in ovarian cancer cells and breast cancer cells, etc. In this study, we investigated the expression patterns and roles of miR-125b during the recovery of denatured dermis and heat-denatured human umbilical vein endothelial cells (HUVECs). Deep partial thickness burns in Sprague-Dawley rats and the heat-denatured cells (52°C, 35 s) were used for analysis. Western blot analysis and real-time PCR were applied to evaluate the expression of miR-125b and ERBB2 and VEGF. The ability of angiogenesis in heat-denatured HUVECs was analyzed by scratch wound healing and tube formation assay after pri-miR-125b or anti-miR-125b transfection. miR-125b expression was time-dependent during the recovery of heat-denatured dermis and HUVECs. Moreover, miR-125b regulated ERBB2 mRNA and Protein Expression and regulated angiogenesis association with regulating the expression of VEGF in heat-denatured HUVECs. Taken together our results show that the expression of miR-125b is time-dependent and miR-125b plays a regulatory role of angiogenesis during wound healing after burns. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  14. Technical parameters of vertical in vivo multiphoton microscopy: a critical evaluation of the flyscanning method

    International Nuclear Information System (INIS)

    Czekalla, C; Röwert-Huber, J; Darvin, M E; Lademann, J; Meinke, M C; Schönborn, K H; Markworth, S; Ulrich, M; Göppner, D; Gollnick, H

    2015-01-01

    The optical biopsy could be a quick and painless support or alternative to a punch biopsy. In this letter the first in vivo vertical wide field two photon microscopy (2PM) images of healthy volunteers are shown. The 2PM images are fused images of two photon excited auto fluorescence (AF) and second harmonic generation (SHG) signals given as false-color images of 200 μm  ×  7 mm in size. By using these two nonlinear effects, the epidermis can be easily distinguished from the dermis at a glance. The auto fluorescence provides cellular resolution of the epidermal cells, and elastin fibers are partly visible in the dermis. Collagen, visible by SHG signal, is the dominant structure in the dermis. As contact agent water was evaluated to increase the AF signal, especially in the deeper layers of epidermis and dermis. For further improvement any terminal hairs should be removed by shaving and by taking tape strips of the first five layers of the stratum corneum. The first images illustrated that young skin compared to aged skin shows remarkably different dermal elastin and collagen signals in the dermis. (letter)

  15. Age-associated decrease in GDNF and its cognate receptor GFRα-1 protein expression in human skin.

    Science.gov (United States)

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk Abdelwahed

    2016-06-01

    Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are expressed in normal human skin. They are involved in murine hair follicle morphogenesis and cycling control. We hypothesize that 'GDNF and GFRα-1 protein expression in human skin undergoes age-associated alterations. To test our hypothesis, the expression of these proteins was examined in human skin specimens obtained from 30 healthy individuals representing three age groups: children (5-18 years), adults (19-60 years) and the elderly (61-81 years). Immunofluorescent and light microscopic immunohistologic analyses were performed using tyramide signal amplification and avidin-biotin complex staining methods respectively. GDNF mRNA expression was examined by RT-PCR analysis. GDNF mRNA and protein as well as GFRα-1 protein expressions were detected in normal human skin. We found significantly reduced epidermal expression of these proteins with ageing. In the epidermis, the expression was strong in the skin of children and declined gradually with ageing, being moderate in adults and weak in the elderly. In children and adults, the expression of both GDNF and GFRα-1 proteins was strongest in the stratum basale and decreased gradually towards the surface layers where it was completely absent in the stratum corneum. In the elderly, GDNF and GFRα-1 protein expression was confined to the stratum basale. In the dermis, both GDNF and GFRα-1 proteins had strong expressions in the fibroblasts, sweat glands, sebaceous glands, hair follicles and blood vessels regardless of the age. Thus there is a decrease in epidermal GDNF and GFRα-1 protein expression in normal human skin with ageing. Our findings suggest that the consequences of this is that GFRα-1-mediated signalling is altered during the ageing process. The clinical and therapeutic ramifications of these observations mandate further investigations. © 2016 The Authors. International Journal of Experimental Pathology © 2016

  16. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90.

    Science.gov (United States)

    Nazari, Banafsheh; Rice, Lisa M; Stifano, Giuseppina; Barron, Alexander M S; Wang, Yu Mei; Korndorf, Tess; Lee, Jungeun; Bhawan, Jag; Lafyatis, Robert; Browning, Jeffrey L

    2016-10-01

    Tissue injury triggers the activation and differentiation of multiple cell types to minimize damage and initiate repair processes. In systemic sclerosis, these repair processes appear to run unchecked, leading to aberrant remodeling and fibrosis of the skin and multiple internal organs, yet the fundamental pathological defect remains unknown. We describe herein a transition wherein the abundant CD34(+) dermal fibroblasts present in healthy human skin disappear in the skin of systemic sclerosis patients, and CD34(-), podoplanin(+), and CD90(+) fibroblasts appear. This transition is limited to the upper dermis in several inflammatory skin diseases, yet in systemic sclerosis, it can occur in all regions of the dermis. In vitro, primary dermal fibroblasts readily express podoplanin in response to the inflammatory stimuli tumor necrosis factor and IL-1β. Furthermore, we show that on acute skin injury in both human and murine settings, this transition occurs quickly, consistent with a response to inflammatory signaling. Transitioned fibroblasts partially resemble the cells that form the reticular networks in organized lymphoid tissues, potentially linking two areas of fibroblast research. These results allow for the visualization and quantification of a basic stage of fibroblast differentiation in inflammatory and fibrotic diseases in the skin. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Upregulation of cathepsin S in psoriatic keratinocytes.

    Science.gov (United States)

    Schönefuss, Alexander; Wendt, Wiebke; Schattling, Benjamin; Schulten, Roxane; Hoffmann, Klaus; Stuecker, Markus; Tigges, Christian; Lübbert, Hermann; Stichel, Christine

    2010-08-01

    Cathepsin S (CATS) is a cysteine protease, well known for its role in MHC class II-mediated antigen presentation and extracellular matrix degradation. Disturbance of the expression or metabolism of this protease is a concomitant feature of several diseases. Given this importance we studied the localization and regulation of CATS expression in normal and pathological human/mouse skin. In normal human skin CATS-immunostaining is mainly present in the dermis and is localized in macrophages, Langerhans, T- and endothelial cells, but absent in keratinocytes. In all analyzed pathological skin biopsies, i.e. atopic dermatitis, actinic keratosis and psoriasis, CATS staining is strongly increased in the dermis. But only in psoriasis, CATS-immunostaining is also detectable in keratinocytes. We show that cocultivation with T-cells as well as treatment with cytokines can trigger expression and secretion of CATS, which is involved in MHC II processing in keratinocytes. Our data provide first evidence that CATS expression (i) is selectively induced in psoriatic keratinocytes, (ii) is triggered by T-cells and (iii) might be involved in keratinocytic MHC class II expression, the processing of the MHC class II-associated invariant chain and remodeling of the extracellular matrix. This paper expands our knowledge on the important role of keratinocytes in dermatological disease.

  18. Plasma Rich in Growth Factors Inhibits Ultraviolet B Induced Photoageing of the Skin in Human Dermal Fibroblast Culture.

    Science.gov (United States)

    Anitua, Eduardo; Pino, Ander; Orive, Gorka

    Ultraviolet irradiation is able to deeply penetrate into the dermis and alter fibroblast structure and function, leading to a degradation of the dermal extracellular matrix. The regenerative effect of plasma rich in growth factors (PRGF) on skin ageing was investigated using UVB photo-stressed human dermal fibroblasts as an in vitro culture model. PRGF was assessed over the main indicative features of ultraviolet B irradiation, including ROS formation, cell viability and death detection, apoptosis/ necrosis analysis and biosynthetic activity measurement. Four different UV irradiation protocols were tested in order to analyze the beneficial effects of PRGF. Ultraviolet irradiation exhibited a dose dependent cytotoxicity and dose of 400mJ/cm2 was selected for subsequent experiments. PRGF increased the cell viability and decreased the cell death comparing to the non-treated group. The apoptosis and necrosis were significantly lower in PRGF treated fibroblasts. ROS production after UV irradiation was significantly reduced in the presence of PRGF. Procollagen type I, hyaluronic acid and TIMP-1 levels were higher in the when treated with PRGF. This preliminary in vitro study suggests that PRGF is able to prevent UVB derived photooxidative stress and to diminish the cell damage caused by ultraviolet irradiation.

  19. Concomitant administration of diphtheria, tetanus, acellular pertussis and inactivated poliovirus vaccine derived from Sabin strains (DTaP-sIPV) with pentavalent rotavirus vaccine in Japanese infants.

    Science.gov (United States)

    Tanaka, Yoshiyuki; Yokokawa, Ruriko; Rong, Han Shi; Kishino, Hiroyuki; Stek, Jon E; Nelson, Margaret; Lawrence, Jody

    2017-06-03

    Rotavirus is the leading cause of severe acute gastroenteritis in infants and young children. Most children are infected with rotavirus, and the health and economic burdens of rotavirus gastroenteritis on healthcare systems and families are considerable. In 2012 pentavalent rotavirus vaccine (RV5) and diphtheria, tetanus, acellular pertussis and inactivated poliovirus vaccine derived from Sabin strains (DTaP-sIPV) were licensed in Japan. We examined the immunogenicity and safety of DTaP-sIPV when administrated concomitantly with RV5 in Japanese infants. A total of 192 infants 6 to 11 weeks of age randomized to Group 1 (N = 96) received DTaP-sIPV and RV5 concomitantly, and Group 2 (N = 96) received DTaP-sIPV and RV5 separately. Antibody titer to diphtheria toxin, pertussis antigens (PT and FHA), tetanus toxin, and poliovirus type 1, 2, and 3 were measured at 4 to 6 weeks following 3-doses of DTaP-sIPV. Seroprotection rates for all components of DTaP-sIPV were 100% in both groups, and the geometric mean titers for DTaP-sIPV in Group 1 were comparable to Group 2. Incidence of systemic AEs (including diarrhea, vomiting, fever, and nasopharyngitis) were lower in Group 1 than in Group 2. All vaccine-related AEs were mild or moderate in intensity. There were no vaccine-related serious AEs, no deaths, and no cases of intussusception during the study. Concomitant administration of DTaP-sIPV and RV5 induced satisfactory immune responses to DTaP-sIPV and acceptable safety profile. The administration of DTaP-sIPV given concomitantly with RV5 is expected to facilitate compliance with the vaccination schedule and improve vaccine coverage in Japanese infants.

  20. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging.

    Science.gov (United States)

    Kim, Eun Ju; Jin, Xing-Ji; Kim, Yeon Kyung; Oh, In Kyung; Kim, Ji Eun; Park, Chi-Hyun; Chung, Jin Ho

    2010-01-01

    Although fatty acids are known to be important in various skin functions, their roles on photoaging in human skin are poorly understood. We investigated the alteration of lipid metabolism in the epidermis by photoaging and acute UV irradiation in human skin. UV irradiated young volunteers (21-33 years, n=6) and elderly volunteers (70-75 years, n=7) skin samples were obtained by punch biopsy. Then the epidermis was separated from dermis and lipid metabolism was investigated. We observed that the amounts of free fatty acids (FFA) and triglycerides (TG) in the epidermis of photoaged or acutely UV irradiated human skin were significantly decreased. The expressions of genes related to lipid synthesis, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), sterol regulatory element binding proteins (SREBPs), and peroxisome proliferator-activated receptors (PPARgamma) were also markedly decreased. To elucidate the significance of these changes of epidermal lipids in human skin, we investigated the effects of TG or various inhibitors for the enzymes involved in TG synthesis on the expression of matrix metalloproteinase-1 (MMP-1) in cultured human epidermal keratinocytes. We demonstrated that triolein (TG) reduced basal and UV-induced MMP-1 mRNA expression. In addition, each inhibitor for various lipid synthesis enzymes, such as TOFA (ACC inhibitor), cerulenin (FAS inhibitor) and trans-10, cis-12-CLA (SCD inhibitor), increased the MMP-1 expression significantly in a dose-dependent manner. We also demonstrated that triolein could inhibit cerulenin-induced MMP-1 expression. Furthermore, topical application of triolein (10%) significantly prevented UV-induced MMP-13, COX-2, and IL-1beta expression in hairless mice. Our results suggest that TG and FFA may play important roles in photoaging of human skin. Copyright 2009 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin.

    Science.gov (United States)

    Andega, S; Kanikkannan, N; Singh, M

    2001-11-09

    Melatonin (MT) is a hormone secreted by the pineal gland that plays an important role in the regulation of the circadian sleep-wake cycle. It would be advantageous to administer MT using a transdermal delivery system for the treatment of sleep disorders such as delayed sleep syndrome, jet lag in travelers, cosmonauts and shift workers. The porcine skin has been found to have similar morphological and functional characteristics as human skin. The elastic fibres in the dermis, enzyme pattern of the epidermis, epidermal tissue turnover time, keratinous proteins and thickness of epidermis of porcine skin are similar to human skin. However, the fat deposition and vascularisation of the cutaneous glands of porcine skin are different from human skin. In addition, porcine skin has been found to have a close permeability character to human skin. However, the comparative effect of chemical penetration enhancers on the permeation of drugs between porcine and human skin has not been reported. The purpose of this study was to compare the effect of fatty alcohols on the permeability of porcine and human skin using MT as a model compound. The effect of saturated fatty alcohols (octanol, nonanol, decanol, undecanol, lauryl alcohol, tridecanol, myristyl alcohol) and unsaturated fatty alcohols (oleyl alcohol, linoleyl alcohol, linolenyl alcohol) at 5% concentration was tested across dermatomed porcine and human skin. Our studies showed a parabolic relationship between the carbon chain length of saturated fatty alcohols and permeation enhancement of MT with both porcine and human skin. Maximum permeation of MT was observed when fatty alcohol carbon chain length was 10. In general, as the level of unsaturation increased from one to two double bonds, there was an increase in the permeation of MT both in porcine and human skin. However, a decrease in the permeation was observed with three double bonds. Regression analysis using the steady state flux data showed a significant positive

  2. Effectiveness of Acellular Dermal Matrix on Autologous Split-Thickness Skin Graft in Treatment of Deep Tissue Defect: Esthetic Subjective and Objective Evaluation.

    Science.gov (United States)

    Lee, Yoo Jung; Park, Myong Chul; Park, Dong Ha; Hahn, Hyung Min; Kim, Sue Min; Lee, Il Jae

    2017-10-01

    A split-thickness skin graft (STSG) is performed to cover a large full-thickness skin defect. Esthetic and functional deficits can result, and many studies have sought to overcome them. This study compared the effectiveness of the acellular dermal matrix (ADM) graft and STSG concerning esthetic and functional effectiveness of ADM on scar quality. Of the patients who underwent anterolateral thigh free flap from 2011 to 2015, patients who received skin graft only (n = 10) or skin graft with ADM (n = 20) for coverage of the donor site were enrolled. In all cases, autologous STSG was performed with 1:1.5 meshed 0.008-0.010-inch-thick skin. In the skin graft with ADM group, 0.008-0.013-inch-thick meshed ADM (CGderm ® ; CGBio, Inc., Seungnam, Korea) was co-grafted. Negative-pressure wound therapy (CuraVAC ® ; CGBio, Inc., Seungnam, Korea) was applied to both groups in continuous mode at -120 mmHg. We investigate early outcomes (skin loss rate, duration of negative-pressure wound therapy, days to removal of stitches, days to achieve complete healing, and complications) and late outcomes in terms of scar quality (vascularity, pigmentation, pliability and height) and graft-related symptoms (itching sensation and pain). Assessments used the Vancouver Scar Scale and the Patient and Observer Scar Assessment Scale. Skin fold was measured to evaluate the elasticity of scar tissue. In the Vancouver Scar Scale, vascularity subscore (p = 0.003) and total score (p = 0.016) were significantly lower in the skin graft with ADM group. In Patient and Observer Scar Assessment Scale, the pain (p = 0.037) and stiffness subscores (p = 0.002), and total score (p = 0.017) were significantly lower in the skin graft with ADM group. Skin graft with ADM results in better scar quality in objective and subjective aspects. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to

  3. The injury and cumulative effects on human skin by UV exposure from artificial fluorescence emission.

    Science.gov (United States)

    Tian, Yan; Liu, Wei; Niu, TianHui; Dai, CaiHong; Li, Xiaoxin; Cui, Caijuan; Zhao, Xinyan; E, Yaping; Lu, Hui

    2014-01-01

    The injury and cumulative effects of UV emission from fluorescence lamp were studied. UV intensity from fluorescence lamp was measured, and human skin samples (hips, 10 volunteers) were exposed to low-dose UV irradiation (three times per week for 13 consecutive weeks). Three groups were examined: control group without UV radiation; low-dose group with a cumulative dose of 50 J cm(-2) which was equivalent to irradiation of the face during indoor work for 1.5 years; and high-dose group with 1000 J cm(-2) cumulative dose equivalent to irradiation of the face during outdoor activities for 1 year. Specific indicators were measured before and after UVA irradiation. The findings showed that extending the low-dose UVA exposure decreased the skin moisture content and increased the transepidermal water loss as well as induced skin color changes (decreased L* value, increased M index). Furthermore, irradiated skin showed an increased thickness of cuticle and epidermis, skin edema, light color and unclear staining collagen fibers in the dermis, and elastic fiber fragmentation. In addition, MMP-1, p53 and SIRT1 expression was also increased. Long-term exposure of low-dose UVA radiation enhanced skin photoaging. The safety of the fluorescent lamp needs our attention. © 2014 The American Society of Photobiology.

  4. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential......Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems...... investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...

  5. Yersinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague.

    Science.gov (United States)

    Shannon, Jeffrey G; Hasenkrug, Aaron M; Dorward, David W; Nair, Vinod; Carmody, Aaron B; Hinnebusch, B Joseph

    2013-08-27

    The majority of human Yersinia pestis infections result from introduction of bacteria into the skin by the bite of an infected flea. Once in the dermis, Y. pestis can evade the host's innate immune response and subsequently disseminate to the draining lymph node (dLN). There, the pathogen replicates to large numbers, causing the pathognomonic bubo of bubonic plague. In this study, several cytometric and microscopic techniques were used to characterize the early host response to intradermal (i.d.) Y. pestis infection. Mice were infected i.d. with fully virulent or attenuated strains of dsRed-expressing Y. pestis, and tissues were analyzed by flow cytometry. By 4 h postinfection, there were large numbers of neutrophils in the infected dermis and the majority of cell-associated bacteria were associated with neutrophils. We observed a significant effect of the virulence plasmid (pCD1) on bacterial survival and neutrophil activation in the dermis. Intravital microscopy of i.d. Y. pestis infection revealed dynamic interactions between recruited neutrophils and bacteria. In contrast, very few bacteria interacted with dendritic cells (DCs), indicating that this cell type may not play a major role early in Y. pestis infection. Experiments using neutrophil depletion and a CCR7 knockout mouse suggest that dissemination of Y. pestis from the dermis to the dLN is not dependent on neutrophils or DCs. Taken together, the results of this study show a very rapid, robust neutrophil response to Y. pestis in the dermis and that the virulence plasmid pCD1 is important for the evasion of this response. Yersinia pestis remains a public health concern today because of sporadic plague outbreaks that occur throughout the world and the potential for its illegitimate use as a bioterrorism weapon. Since bubonic plague pathogenesis is initiated by the introduction of Y. pestis into the skin, we sought to characterize the response of the host's innate immune cells to bacteria early after

  6. Lipid functions in skin: differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model

    OpenAIRE

    Kendall, Alexandra; Kiezel-Tsugunova, Magdalena; Brownbridge, Luke; Harwood, John L.; Nicolaou, Anna

    2017-01-01

    Ceramides are important for skin health, with a multitude of species found in both dermis and epidermis. The epidermis contains linoleic acid-Ester-linked Omega-hydroxylated ceramides of 6-Hydroxy-sphingosine, Sphingosine and Phytosphingosine bases (CER[EOH], CER[EOS] and CER[EOP], respectively), that are crucial for the formation of the epidermal barrier, conferring protection from environmental factors and preventing trans-epidermal water loss. Furthermore, a large number of ceramides, deri...

  7. Histological and Immunological Description of the Leishmanin Skin Test in Ibizan Hounds.

    Science.gov (United States)

    Ordeix, L; Silva, J E Dos S; Llull, J; Quirola, P; Montserrat-Sangrà, S; Martínez-Orellana, P; Solano-Gallego, L

    2018-01-01

    The leishmanin skin test (LST), a delayed-type hypersensitivity (DTH) reaction to Leishmania infantum, can specifically identify dogs that have made a cell-mediated immune response to L. infantum infection. The Ibizan hound appears to be more resistant to L. infantum infection than other breeds of dog. The aim of this study was to describe the histological and immunohistochemical changes induced by the LST in Ibizan hounds living in an area highly endemic for leishmaniosis. The majority of dogs were apparently healthy, lacked serum antibody to L. infantum and blood parasitaemia, but had marked specific interferon gamma production after in-vitro blood stimulation with L. infantum. Leishmanin (3 × 10 8 killed promastigotes of L. infantum/ml) was injected intradermally and biopsy samples were obtained from a positive reaction at 72 h from nine Ibizan hounds. A moderate to intense, perivascular to interstitial dermatitis and panniculitis characterized the inflammatory response at the injection site. In addition, three samples had diffuse inflammation in the deep dermis and panniculus. Oedema and necrosis were present in the deep dermis and panniculus. Congestion and haemorrhage were observed in five biopsies. T lymphocytes (CD3 + ) and large mononuclear cells (lysozyme - ) were the most prevalent cells. CD3 + cells were significantly more numerous than CD20 + B cells and lysozyme + cells. B cells were sparsely distributed, especially in the deep dermis and panniculus. Rare neutrophils and macrophages (lysozyme + ) were observed with few eosinophils. Toll-like receptor (TLR)-2 protein was expressed in large mononuclear cells mainly located in the superficial dermis. Leishmania immunohistochemistry was negative and quantitative polymerase chain reaction was positive in all cases. The intradermal injection of killed L. infantum promastigotes in Ibizan hounds causes similar histological and immunohistochemical findings to those described for human subjects and are

  8. A Prospective, Postmarket, Compassionate Clinical Evaluation of a Novel Acellular Fish-skin Graft Which Contains Omega-3 Fatty Acids for the Closure of Hard-to-heal Lower Extremity Chronic Ulcers.

    Science.gov (United States)

    Yang, Chun K; Polanco, Thais O; Lantis, John C

    2016-04-01

    A novel piscine acellular fish-skin graft product has 510k clearance on the US market. This product (Omega3, Kerecis, Isafjordur, Iceland) is to be used similarly to extracellular matrices (ECMs) on the market (eg, bovine and porcine) except that it contains fats, including omega-3 polyunsaturated fatty acids that have been associated with anti-inflammatory properties in many studies. While many current ECMs are effective on open wounds, studies have largely excluded application to hard-to-heal ulcers. To test this product in a real-world environment, the authors chose to look specifically at hard-to-heal ulcers based on previously defined wound and patient factors. The primary objective was to assess the percentage of wound closure area from baseline after 5 weekly fish-skin graft applications in 18 patients with at least 1 "hard-to-heal" criteria. Patients underwent application of the fish skin for 5 sequential weeks, followed by 3 weeks of standard of care. Wound area, skin assessments, and pain were assessed weekly. A 40% decrease in wound surface area (P skin graft and secondary dressing (P < 0.05). Complete closure was seen in 3 of 18 patients by the end of the study phase. This fish-skin product appears to provide promise as an effective wound closing adjunctive ECM. This is true when used in this compassionate setting, where many other products fail. This study lacks a control arm and an aggressive application schedule, but the investigators believe it represents real-world practice.

  9. The retinoic acid-induced up-regulation of insulin-like growth factor 1 and 2 is associated with prolidase-dependent collagen synthesis in UVA-irradiated human dermal equivalents.

    Science.gov (United States)

    Shim, Joong Hyun; Shin, Dong Wook; Lee, Tae Ryong; Kang, Hak Hee; Jin, Sun Hee; Noh, Minsoo

    2012-04-01

    Ultraviolet (UV) A irradiation causes the degeneration of extracellular matrix in the skin dermis, mainly due to disrupted collagen homeostasis, resulting in the photo-aging of human skin. All-trans retinoic acid (ATRA) improves photo-aged human skin in vivo. Although the effects of ATRA on collagen synthesis and MMP regulation are well known, the effects of ATRA on other collagen homeostasis-associated genes have not been elucidated. This study was aimed to study the factors that are pharmacologically associated with the effect of ATRA on collagen homeostasis. The gene transcription profile of collagen homeostasis-associated genes was systematically evaluated in three-dimensional human dermal equivalents (HDEs) following UVA-irradiation and/or ATRA treatment. In addition to the expected changes in MMPs and collagen synthesis in HDEs in response to ATRA, prolidase, an important enzyme in the recycling of proline and hydroxyproline from degraded collagen molecules, was significantly decreased by UVA irradiation, and its down-regulation was antagonized by ATRA. Transfection with a prolidase-specific siRNA led to a significant decrease in procollagen synthesis in human fibroblasts. ATRA inhibited the UVA irradiation-induced decrease in prolidase activity through an insulin-like growth factor (IGF) receptor signaling pathway in HDEs. ARTA increased IGF1 and IGF2 production in HDEs, and neutralizing IGFs with anti-IGF antibodies abolished the effect of ATRA on proliase activity. These data demonstrate that ATRA regulates prolidase activity in HDEs via IGF receptor signaling, suggesting one of the pharmacological mechanisms by which improves photo-aged human skin. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Efficacy of intradermal mesotherapy in cellulite reduction - Conventional and high-frequency ultrasound monitoring results.

    Science.gov (United States)

    Sylwia, Malinowska; Krzysztof, Mlosek Robert

    2017-10-01

    Cellulite affects the majority of women and is an unacceptable cosmetic defect. Therefore, effective methods for cellulite reduction are being sought. Intradermal mesotherapy is one of such methods. The aim of the study was to assess the efficacy of intradermal mesotherapy in cellulite reduction, using conventional and high-frequency ultrasound. Twenty-one women with cellulite underwent a series of intradermal mesotherapy procedures. The following parameters were assessed: thickness of epidermis, dermis and hypodermis, echogenicity of dermis and the surface area of serrated hypodermis-dermis junction. Furthermore, the thigh circumference was measured; body mass index and cellulite severity were assessed based on photographs using Nürnberger-Müller's scale. Intradermal mesotherapy reduced severity of cellulite. The surface area of serrated hypodermis-dermis junction and hypodermis thickness decreased significantly as compared to baseline. Cellulite reduction was also confirmed by palpation, decreased thigh circumference and the Nürnberger-Müller's grade. There were no statistically significant changes in epidermis or dermis thickness, body weight and the BMI. Intradermal mesotherapy offers effective cellulite reduction. It is a simple and safe treatment, which makes it popular. Further research in mesotherapy is essential due to a limited number of published studies. Ultrasound is a useful method to monitor intradermal mesotherapy and assess its efficacy.

  11. Radiation fibrosis of guinea pig skin after β irradiation and an attempt at its suppression with proline analogs

    International Nuclear Information System (INIS)

    Ohuchi, K.; Chang, L.F.; Tabachnick, J.

    1979-01-01

    The skins of adult, male albino guinea pigs were irradiated with a dose of 3500-rad β rays from a 90 Sr- 90 Y sealed source on 25 x 25-mm flank areas. Abnormal collagen deposition (fibrosis) occurred between the first and fourth months as evidenced by the replacement of the normal thick random whorls of collagen fibers by embryonic-like thin fibers parallel to the hyperplastic epidermis. These histologic changes were confined primarily to about 0.4 mm of upper dermis. By the fourth month and up to 2.5 years postirradiation, there was a decreased content of acid-soluble and -insoluble collagen in the irradiated upper dermis concomitant with an increase in noncollageneous protein. With the exception of occluded arterioles in the lower dermis, there were no obvious chemical or histological changes in collagen of remaining dermis. Injection for 4 months or longer of the proline analogs, DL-3,4-dehydroproline, L-azetidine-2-carboxylic acid, or cis-4-hydroxy-L-proline significantly decreased the small amount of metabolically active soluble collagen but had no effect on the content of insoluble fibrous collagen nor the abnormal deposition of collagen fibers in the upper dermis. The data indicate that the proline analogs are of little or no value in suppressing radiation fibrosis in skin

  12. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria

    2005-01-01

    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.

  13. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  14. Investigation of the effect of hydration on dermal collagen in ex vivo human skin tissue using second harmonic generation microscopy

    Science.gov (United States)

    Samatham, Ravikant; Wang, Nicholas K.; Jacques, Steven L.

    2016-02-01

    Effect of hydration on the dermal collagen structure in human skin was investigated using second harmonic generation microscopy. Dog ears from the Mohs micrographic surgery department were procured for the study. Skin samples with subject aged between 58-90 years old were used in the study. Three dimensional Multiphoton (Two-photon and backward SHG) control data was acquired from the skin samples. After the control measurement, the skin tissue was either soaked in deionized water for 2 hours (Hydration) or kept at room temperature for 2 hours (Desiccation), and SHG data was acquired. The data was normalized for changes in laser power and detector gain. The collagen signal per unit volume from the dermis was calculated. The desiccated skin tissue gave higher backward SHG compared to respective control tissue, while hydration sample gave a lower backward SHG. The collagen signal decreased with increase in hydration of the dermal collagen. Hydration affected the packing of the collagen fibrils causing a change in the backward SHG signal. In this study, the use of multiphoton microscopy to study the effect of hydration on dermal structure was demonstrated in ex vivo tissue.

  15. Development and validation of a high-performance liquid chromatographic method for the determination of cyproterone acetate in human skin.

    Science.gov (United States)

    Henry de Hassonville, Sandrine; Chiap, Patrice; Liégeois, Jean-François; Evrard, Brigitte; Delattre, Luc; Crommen, Jacques; Piel, Géraldine; Hubert, Philippe

    2004-09-21

    In the framework of a preliminary study on the transdermal penetration of cyproterone acetate (CPA), a simple and rapid procedure involving an extraction step coupled to a HPLC-UV determination has been developed for the separation and quantification of CPA in the two main skin layers-epidermis and dermis-after local application. The separation of epidermis and dermis layers was carefully carried out by means of a sharp spatula after skin immersion in heated water at 65 degrees C. The two skin layers were then treated separately according to the same process: (1) sample homogenization by vibration after freezing with liquid nitrogen in a Mikro-Dismembrator; (2) CPA extraction with methanol after addition of the internal standard (betamethasone dipropionate); (3) centrifugation; (4) evaporation of a supernatant aliquot; (5) dissolution of the dry residue in methanol and addition of water; (6) centrifugation; (7) injection of a supernatant aliquot into the HPLC system. The separation was achieved on octadecylsilica stationary phase using a mobile phase consisting in a mixture of acetonitrile and water (40:60 (v/v)). The method was then validated using a new approach based on accuracy profiles over a CPA concentration range from 33 to 667 ng/ml for each skin layer. Finally, the method was successfully applied to the determination of CPA to several skin samples after topical application of different gel formulations containing CPA.

  16. Regional parasite density in the skin of dogs with symptomatic canine leishmaniosis.

    Science.gov (United States)

    Saridomichelakis, Manolis N; Koutinas, Alexander F; Olivry, Thierry; Dunston, Stan M; Farmaki, Rania; Koutinas, Christos K; Petanides, Theodoros

    2007-08-01

    In canine leishmaniosis, the parasitic density of the skin may be important for the infection of sandflies, and increased accumulation of inflammatory cells infected with Leishmania is believed to occur in dermal areas subjected to mechanical trauma. Parasite density and inflammatory responses in the upper and lower dermis of three body sites: flank (control site), dorsal muzzle (sandfly feeding site), and footpads (mechanical stress sites) were thus investigated in 15 dogs with symptomatic leishmaniosis. Parasite density did not differ between the control and tested sites or between the upper and lower dermis, apart from the footpads where it was higher in the upper dermis, and there was no correlation with severity of the macroscopic lesions or inflammatory infiltrate, except for the lower footpad dermis. No selective accumulation of the parasite in the muzzle that would favour its transmission to sandflies occurred, and the mechanical stress imposed on the footpads was not associated with increased parasitic density, or with inflammatory infiltrate.

  17. Impact of chemical peeling combined with negative pressure on human skin.

    Science.gov (United States)

    Kim, S J; Kang, I J; Shin, M K; Jeong, K H; Baek, J H; Koh, J S; Lee, S J

    2016-10-01

    In vivo changes in skin barrier function after chemical peeling with alpha hydroxyacids (AHAs) have been previously reported. However, the additional effects of physical treatment with chemical agents on skin barrier function have not been adequately studied. This study measured the degree of acute skin damage and the time required for skin barrier repair using non-invasive bioengineering methods in vivo with human skin to investigate the additional effect of a 4% AHA chemical jet accelerated at supersonic velocities. Thirteen female subjects (average age: 29.54 ± 4.86 years) participated in this study. The faces of the subjects were divided into half according to the block randomization design and were then assigned to receive AHA peeling alone or AHA peeling combined with pneumatic pressure on each side of the face. Transepidermal water loss (TEWL), skin colour and skin blood flow were evaluated at baseline and at 30 min, 2, 5 and 7 days after treatment. The TEWL and skin blood flow were significantly increased after 30 min in chemodermabrasion compared with chemical peeling alone (P peeling alone (P < 0.05). Chemodermabrasion can temporarily impair skin barriers, but it is estimated that it can enhance the skin barrier function after 7 days compared to the use of a chemical agent alone. In addition, chemodermabrasion has a more effective impact in the dermis and relatively preserves the skin barrier. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Enhanced surveillance of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccines in pregnancy in the Vaccine Adverse Event Reporting System (VAERS), 2011-2015.

    Science.gov (United States)

    Moro, Pedro L; Cragan, Janet; Tepper, Naomi; Zheteyeva, Yenlik; Museru, Oidda; Lewis, Paige; Broder, Karen

    2016-04-29

    In October 2011, the Advisory Committee on Immunization Practices (ACIP) issued updated recommendations that all pregnant women routinely receive a dose of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine. We characterized reports to the Vaccine Adverse Event Reporting System (VAERS) in pregnant women who received Tdap after this updated recommendation (2011-2015) and compared the pattern of adverse events (AEs) with the period before the updated recommendation (2005-2010). We searched the VAERS database for reports of AEs in pregnant women who received Tdap vaccine after the routine recommendation (11/01/2011-6/30/2015) and compared it to published data before the routine Tdap recommendation (01/01/2005-06/30/2010). We conducted clinical review of reports and available medical records. The clinical pattern of reports in the post-recommendation period was compared with the pattern before the routine Tdap recommendation. We found 392 reports of Tdap vaccination after the routine recommendation. One neonatal death but no maternal deaths were reported. No maternal or neonatal deaths were reported before the recommendation. We observed an increase in proportion of reports for stillbirths (1.5-2.8%) and injection site reactions/arm pain (4.5-11.9%) after the recommendation compared to the period before the routine recommendation for Tdap during pregnancy. We noted a decrease in reports of spontaneous abortion (16.7-1%). After the 2011 Tdap recommendation, in most reports, vaccination (79%) occurred during the third trimester compared to 4% before the 2011 Tdap recommendation. Twenty-six reports of repeat Tdap were received in VAERS; 13 did not report an AE. One medical facility accounted for 27% of all submitted reports. No new or unexpected vaccine AEs were noted among pregnant women who received Tdap after routine recommendations for maternal Tdap vaccination. Changes in reporting patterns would be expected, given the broader use of

  19. Relative Contribution of Th1 and Th17 Cells in Adaptive Immunity to Bordetella pertussis: Towards the Rational Design of an Improved Acellular Pertussis Vaccine

    Science.gov (United States)

    Ross, Pádraig J.; Allen, Aideen C.; Walsh, Kevin; Misiak, Alicja; Lavelle, Ed C.; McLoughlin, Rachel M.; Mills, Kingston H. G.

    2013-01-01

    Whooping cough caused by Bordetella pertussis is a re-emerging infectious disease despite the introduction of safer acellular pertussis vaccines (Pa). One explanation for this is that Pa are less protective than the more reactogenic whole cell pertussis vaccines (Pw) that they replaced. Although Pa induce potent antibody responses, and protection has been found to be associated with high concentrations of circulating IgG against vaccine antigens, it has not been firmly established that host protection induced with this vaccine is mediated solely by humoral immunity. The aim of this study was to examine the relative contribution of Th1 and Th17 cells in host immunity to infection with B. pertussis and in immunity induced by immunization with Pw and Pa and to use this information to help rationally design a more effective Pa. Our findings demonstrate that Th1 and Th17 both function in protective immunity induced by infection with B. pertussis or immunization with Pw. In contrast, a current licensed Pa, administered with alum as the adjuvant, induced Th2 and Th17 cells, but weak Th1 responses. We found that IL-1 signalling played a central role in protective immunity induced with alum-adsorbed Pa and this was associated with the induction of Th17 cells. Pa generated strong antibody and Th2 responses, but was fully protective in IL-4-defective mice, suggesting that Th2 cells were dispensable. In contrast, Pa failed to confer protective immunity in IL-17A-defective mice. Bacterial clearance mediated by Pa-induced Th17 cells was associated with cell recruitment to the lungs after challenge. Finally, protective immunity induced by an experimental Pa could be enhanced by substituting alum with a TLR agonist that induces Th1 cells. Our findings demonstrate that alum promotes protective immunity through IL-1β-induced IL-17A production, but also reveal that optimum protection against B. pertussis requires induction of Th1, but not Th2 cells. PMID:23592988

  20. Automated Detection of Connective Tissue by Tissue Counter Analysis and Classification and Regression Trees

    Directory of Open Access Journals (Sweden)

    Josef Smolle

    2001-01-01

    Full Text Available Objective: To evaluate the feasibility of the CART (Classification and Regression Tree procedure for the recognition of microscopic structures in tissue counter analysis. Methods: Digital microscopic images of H&E stained slides of normal human skin and of primary malignant melanoma were overlayed with regularly distributed square measuring masks (elements and grey value, texture and colour features within each mask were recorded. In the learning set, elements were interactively labeled as representing either connective tissue of the reticular dermis, other tissue components or background. Subsequently, CART models were based on these data sets. Results: Implementation of the CART classification rules into the image analysis program showed that in an independent test set 94.1% of elements classified as connective tissue of the reticular dermis were correctly labeled. Automated measurements of the total amount of tissue and of the amount of connective tissue within a slide showed high reproducibility (r=0.97 and r=0.94, respectively; p < 0.001. Conclusions: CART procedure in tissue counter analysis yields simple and reproducible classification rules for tissue elements.

  1. Central Role for Dermal Fibroblasts in Skin Model Protection against Candida albicans.

    Science.gov (United States)

    Kühbacher, Andreas; Henkel, Helena; Stevens, Philip; Grumaz, Christian; Finkelmeier, Doris; Burger-Kentischer, Anke; Sohn, Kai; Rupp, Steffen

    2017-06-01

    The fungal pathogen Candida albicans colonizes basically all human epithelial surfaces, including the skin. Under certain conditions, such as immunosuppression, invasion of the epithelia occurs. Not much is known about defense mechanisms against C. albicans in subepithelial layers such as the dermis. Using immune cell-supplemented 3D skin models we defined a new role for fibroblasts in the dermis and identified a minimal set of cell types for skin protection against C. albicans invasion. Dual RNA sequencing of individual host cell populations and C. albicans revealed that dermal invasion is directly impeded by dermal fibroblasts. They are able to integrate signals from the pathogen and CD4+ T cells and shift toward an antimicrobial phenotype with broad specificity that is dependent on Toll-like receptor 2 and interleukin 1β. These results highlight a central function of dermal fibroblasts for skin protection, opening new possibilities for treatment of infectious diseases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Wound healing from dermal grafts containing CD34+ cells is comparable to split-thickness skin micrografts

    DEFF Research Database (Denmark)

    Nuutila, Kristo; Singh, Mansher; Kruse, Carla

    2017-01-01

    BACKGROUND:: Epidermal stem cells present in the skin appendages of the dermis might be crucial in wound healing. In this study we located these cells in the dermis and evaluated their contribution to full-thickness wound healing in a porcine model. METHODS:: Four sequentially deeper 0.35mm thick...

  3. Black rice (Oryza sativa L.) extract modulates ultraviolet-induced expression of matrix metalloproteinases and procollagen in a skin cell model.

    Science.gov (United States)

    Han, Mira; Bae, Jung-Soo; Ban, Jae-Jun; Shin, Hee Soon; Lee, Dong Hun; Chung, Jin Ho

    2018-05-01

    Exposure of the skin to ultraviolet (UV) radiation causes extracellular matrix (ECM) collapse in the dermis, owing to an increase in matrix metalloproteinase (MMP) production in both the epidermis and dermis, and a decrease in type I collagen expression in the dermis. Recently, black rice (Oryza sativa L.) was reported to have a wide range of pharmacological effects in various settings. However, the effects of black rice extract (BRE) on UV‑irradiated skin cells have not yet been characterized. BRE treatment did not affect cell morphology and viability of HaCaT and human dermal fibroblasts (HDF). We demonstrated that BRE downregulated basal and UV‑induced MMP‑1 expression in HaCaT cells. Furthermore, BRE significantly increased type I procollagen expression, and decreased MMP‑1 and MMP‑3 expression in UV‑irradiated HDF. The underlying mechanisms of these results involve a decrease in p38 and c‑Jun N‑terminal kinase activity, and suppression of UV‑induced activation of activator protein‑1 (AP‑1). BRE reduced UV‑induced reactive oxygen species production in HaCaT cells in a dose‑dependent manner. Indeed, mass spectrometry revealed that BRE contained antioxidative flavonoid components such as cyanidin‑3‑O‑β‑D‑glycoside and taxifolin‑7‑O‑glucoside. These findings suggest that BRE attenuates UV‑induced ECM damage by modulating mitogen‑activated protein kinase and AP‑1 signaling, and could be used as an active ingredient for preventing photoaging of the skin.

  4. Mesenchymal stem cell therapy for cutaneous radiation syndrome.

    Science.gov (United States)

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-06-01

    Systemic and local radiation injuries caused by nuclear power reactor accidents, therapeutic irradiation, or nuclear terrorism should be prevented or properly treated in order to improve wound management and save lives. Currently, regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with a local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells and adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and were tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who were suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. In the experiments, the hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. In vivo, 4 Gy rat whole body irradiation demonstrated that sustained marrow stromal (mesenchymal stem) cells survived in the bone marrow. Immediate artificial dermis application impregnated with cells and the cytokine over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angiogenesis, architected dermal reconstitution, and less inflammatory epidermal recovery. Detailed understanding of underlying diseases and rational reconstructive procedures brings about good outcomes for difficult irradiated wound healing. Adipose-derived stem cells are also implicated in the limited local injuries for short cell harvesting and processing time in the same subject.

  5. Construction of Anterior Hemi-Corneal Equivalents Using Nontransfected Human Corneal Cells and Transplantation in Dog Models.

    Science.gov (United States)

    Xu, Bin; Song, Zhan; Fan, Tingjun

    2017-11-01

    Tissue-engineered human anterior hemi-cornea (TE-aHC) is a promising equivalent for treating anterior lamellar keratopathy to surmount the severe shortage of donated corneas. This study was intended to construct a functional TE-aHC with nontransfected human corneal stromal (ntHCS) and epithelial (ntHCEP) cells using acellular porcine corneal stromata (aPCS) as a carrier scaffold, and evaluate its biological functions in a dog model. To construct a TE-aHC, ntHCS cells were injected into an aPCS scaffold and cultured for 3 days; then, ntHCEP cells were inoculated onto the Bowman's membrane of the scaffold and cultured for 5 days under air-liquid interface condition. After its morphology and histological structure were characterized, the constructed TE-aHC was transplanted into dog eyes via lamellar keratoplasty. The corneal transparency, thickness, intraocular pressure, epithelial integrity, and corneal regeneration were monitored in vivo, and the histological structure and histochemical property were examined ex vivo 360 days after surgery, respectively. The results showed that the constructed TE-aHC was highly transparent and composed of a corneal epithelium of 7-8 layer ntHCEP cells and a corneal stroma of regularly aligned collagen fibers and well-preserved glycosaminoglycans with sparsely distributed ntHCS cells, mimicking a normal anterior hemi-cornea (aHC). Moreover, both ntHCEP and ntHCS cells maintained positive expression of their marker and functional proteins. After transplantation into dog eyes, the constructed TE-aHC acted naturally in terms of morphology, structure and inherent property, and functioned well in maintaining corneal clarity, thickness, normal histological structure, and composition in dog models by reconstructing a normal aHC, which could be used as a promising aHC equivalent in corneal regenerative medicine and aHC disorder therapy. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Immunogenicity and safety of an inactivated hepatitis A vaccine when coadministered with Diphtheria-tetanus-acellular pertussis and haemophilus influenzae type B vaccines in children 15 months of age.

    Science.gov (United States)

    Trofa, Andrew F; Klein, Nicola P; Paul, Ian M; Michaels, Marian G; Goessler, Mary; Chandrasekaran, Vijayalakshmi; Blatter, Mark

    2011-09-01

    This study (NCT00197236) evaluated the safety and immunogenicity of a hepatitis A virus (HAV) vaccine when coadministered with diphtheria-tetanus-acellular pertussis (DTaP) and Haemophilus influenzae type b (Hib) vaccines in children 15 months of age. This was an open-labeled, multicenter study with healthy subjects enrolled and randomized (1:1:1) into 3 treatment groups. A total of 394 subjects received the first study vaccinations at 15 months of age. Group HAV (N = 135) received 2 doses of HAV vaccine 6 to 9 months apart. Group HAV+DTaP+Hib (N = 127) received HAV vaccine coadministered with DTaP and Hib vaccines and the second dose of HAV vaccine, 6 to 9 months later. Group DTaP+Hib→HAV (N = 132) received the DTaP and Hib vaccines at 15 months of age, followed by HAV vaccine 30 days later and the second dose of HAV vaccine 7 to 10 months after the DTaP+Hib vaccines. Immune responses were evaluated before the first study vaccination and 30 days after each vaccine dose. Solicited, unsolicited, and serious adverse events were collected. After 2 doses of the HAV vaccine, all subjects in the 3 groups were seropositive. The geometric mean concentration of anti-HAV antibodies ranged between 1625.1 and 1904.4 mIU/mL. Coadministration of the 3 vaccines did not impact immunogenicity of the HAV, DTaP, or Hib vaccines. Vaccines were well tolerated in all groups. A 2-dose schedule of HAV vaccine was well tolerated and immunogenic when administered to children starting at 15 months of age. Immune responses to the DTaP or Hib vaccines were similar whether they were administered alone or were coadministered with the HAV vaccine.

  7. Acellular porcine small intestinal submucosa graft for cervicovaginal reconstruction in eight patients with malformation of the uterine cervix.

    Science.gov (United States)

    Ding, Jing-Xin; Chen, Xiao-Jun; Zhang, Xu-Yin; Zhang, Ying; Hua, Ke-Qin

    2014-04-01

    Can surgical reconstruction of the cervix and vagina in patients be achieved using an acellular porcine small intestinal submucosa (SIS) graft? Our experiences of combined laparoscopic and vaginal cervicovaginal reconstruction using an SIS graft in eight patients were positive, with successful reconstruction and no complications, cervical stenosis or vaginal stenosis. In patients with agenesis and dysgenesis of the uterine cervix and vagina, surgical reconstruction of the internal genitalia is a challenging problem for gynecologists. Hysterectomy with the creation of an artificial vagina was the treatment of choice in the 1990s. Recently, conservative management has been gradually adopted to avoid extirpation of the uterus, including the canalization techniques, the uterovaginal anastomosis and the reconstruction of cervical and vaginal agenesis with some autologous tissues. This prospective observational study from January 2012 to March 2013 included 8 patients aged 10-18 years with malformation of the cervix (1 with cervical agenesis, 1 with a cervical body consisting of a fibrous band and 6 with obstruction of the cervical os) and vagina (4 with complete vaginal aplasia and 4 with a 1-3 cm long vaginal pouch) diagnosed by physical examination and magnetic resonance imaging. Eight patients underwent combined laparoscopic and vaginal cervicovaginal reconstruction using an SIS graft during the end of menstruation. A T-shaped intrauterine device connected with a 14-French Foley catheter was inserted into the uterine cavity to keep the newly created cervix patent, and then a permanent lower uterine cerclage was placed. Patients were assessed post-operatively at 1, 2, 4, 6, 12 and 15 months, and data on menstruation and the morphology of the neovagina and cervix were recorded. The mean ± SD age of the patients was 14.5 ± 2.8 (10-18) years. All patients had a history of cyclic abdominal pain, and the average delay in diagnosis was 4.5 ± 4.0 (0-12) months. One

  8. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.

    Science.gov (United States)

    Sorkio, Anni; Koch, Lothar; Koivusalo, Laura; Deiwick, Andrea; Miettinen, Susanna; Chichkov, Boris; Skottman, Heli

    2018-07-01

    There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted

  9. Radiation fibrosis of guinea pig skin after. beta. irradiation and an attempt at its suppression with proline analogs

    Energy Technology Data Exchange (ETDEWEB)

    Ohuchi, K.; Chang, L.F.; Tabachnick, J.

    1979-08-01

    The skins of adult, male albino guinea pigs were irradiated with a dose of 3500-rad ..beta.. rays from a /sup 90/Sr-/sup 90/Y sealed source on 25 x 25-mm flank areas. Abnormal collagen deposition (fibrosis) occurred between the first and fourth months as evidenced by the replacement of the normal thick random whorls of collagen fibers by embryonic-like thin fibers parallel to the hyperplastic epidermis. These histologic changes were confined primarily to about 0.4 mm of upper dermis. By the fourth month and up to 2.5 years postirradiation, there was a decreased content of acid-soluble and -insoluble collagen in the irradiated upper dermis concomitant with an increase in noncollageneous protein. With the exception of occluded arterioles in the lower dermis, there were no obvious chemical or histological changes in collagen of remaining dermis. Injection for 4 months or longer of the proline analogs, DL-3,4-dehydroproline, L-azetidine-2-carboxylic acid, or cis-4-hydroxy-L-proline significantly decreased the small amount of metabolically active soluble collagen but had no effect on the content of insoluble fibrous collagen nor the abnormal deposition of collagen fibers in the upper dermis. The data indicate that the proline analogs are of little or no value in suppressing radiation fibrosis in skin.

  10. Symptomatic unilateral vocal fold paralysis following cardiothoracic surgery.

    Science.gov (United States)

    Puccinelli, Cassandra; Modzeski, Mara C; Orbelo, Diana; Ekbom, Dale C

    Unilateral vocal fold paralysis (UVFP) is a complication associated with cardiothoracic procedures that presents clinically as dysphonia and/or dysphagia with or without aspiration. The literature lacks both data on recovery of mobility and consensus on best management. Herein, our goals are to 1) Identify cardiothoracic procedures associated with symptomatic UVFP at our institution; 2) Review timing and nature of laryngology diagnosis and management; 3) Report spontaneous recovery rate of vocal fold mobility. Retrospective case series at single tertiary referral center between 2002 and 2015. 141 patients were included who underwent laryngology interventions (micronized acellular dermis injection laryngoplasty and/or type 1 thyroplasty) to treat symptomatic UVFP diagnosed subsequent to cardiothoracic surgery. Pulmonary procedures were most often associated with UVFP (n=50/141; 35.5%). 87.2% had left-sided paralysis (n=123/141). Median time to diagnosis was 42days (x¯=114±348). Over time, UVFP was diagnosed progressively earlier after cardiothoracic surgery. 63.4% of patients (n=95/141) underwent injection laryngoplasty as their initial intervention with median time from diagnosis to injection of 11days (x¯=29.6±54). 41.1% (n=58/141) ultimately underwent type 1 thyroplasty at a median of 232.5days (x¯=367±510.2) after cardiothoracic surgery. 10.2% (n=9/88) of those with adequate follow-up recovered full vocal fold mobility. Many cardiothoracic procedures are associated with symptomatic UVFP, predominantly left-sided. Our data showed poor recovery of vocal fold mobility relative to other studies. Early diagnosis and potential surgical medialization is important in the care of these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Use of versican variant V3 and versican antisense expression to engineer cultured human skin containing increased content of insoluble elastin.

    Science.gov (United States)

    Merrilees, Mervyn J; Falk, Ben A; Zuo, Ning; Dickinson, Michelle E; May, Barnaby C H; Wight, Thomas N

    2017-01-01

    Skin substitutes for repair of dermal wounds are deficient in functional elastic fibres. We report that the content of insoluble elastin in the dermis of cultured human skin can be increased though the use of two approaches that enhance elastogenesis by dermal fibroblasts, forced expression of versican variant V3, which lacks glycosaminoglycan (GAG) chains, and forced expression of versican antisense to decrease levels of versican variant V1 with GAG chains. Human dermal fibroblasts transduced with V3 or anti-versican were cultured under standard conditions over a period of 4 weeks to produce dermal sheets, with growth enhanced though multiple seedings for the first 3 weeks. Human keratinocytes, cultured in supplemented media, were added to the 4-week dermal sheets and the skin layer cultured for a further week. At 5 weeks, keratinocytes were multilayered and differentiated, with desmosome junctions thoughout and keratin deposits in the upper squamous layers. The dermal layer was composed of layered fibroblasts surrounded by extracellular matrix of collagen bundles and, in control cultures, small scattered elastin deposits. Forced expression of V3 and versican antisense slowed growth, decreased versican V1 expression, increased tropoelastin expression and/or the deposition of large aggregates of insoluble elastin in the dermal layer, and increased tissue stiffness, as measured by nano-indentation. Skin sheets were also cultured on Endoform Dermal Template™, the biodegradable wound dressing made from the lamina propria of sheep foregut. Skin structure and the enhanced deposition of elastin by forced expression of V3 and anti-versican were preserved on this supportive substrate. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Modeling the color perception of port wine stains and its relation to the depth of laser coagulated blood vessels

    NARCIS (Netherlands)

    Lakmaker, O.; Pickering, J. W.; van Gemert, M. J.

    1993-01-01

    To find the maximal depth of an ecstatic vessel in the dermis that contributes to the abnormal color of a port wine stain (PWS), "normal" and "laser treated PWS skin" are modeled, respectively, as a two-layer plane parallel geometry consisting of an epidermis and a dermis, and as a three-layer

  13. Towards Development of a Dermal Pain Model: In Vitro Activation of Rat and Human Transient Receptor Potential Ankyrin Repeat 1 and Safe Dermal Injection of o-Chlorobenzylidene Malononitrile to Rat.

    Science.gov (United States)

    Annas, Anita; Berg, Anna-Lena; Nyman, Eva; Meijer, Thomas; Lundgren, Viveka; Franzén, Bo; Ståhle, Lars

    2015-12-01

    During clinical development of analgesics, it is important to have access to pharmacologically specific human pain models. o-Chlorobenzylidene malononitrile (CS) is a selective and potent agonist of the transient receptor potential ankyrin repeat 1 (TRPA1), which is a transducer molecule in nociceptors sensing reactive chemical species. While CS has been subject to extensive toxicological investigations in animals and human beings, its effects on intradermal or subcutaneous injection have not previously been reported. We have investigated the potential of CS to be used as an agonist on TRPA1 in human experimental pain studies. A calcium influx assay was used to confirm the capacity of CS to activate TRPA1 with >100,000 times the selectivity over the transient receptor potential vanilloid receptor 1. CS dose-dependently (EC50 0.9 μM) released calcitonin gene-related peptide in rat dorsal root ganglion cultures, supporting involvement in pain signalling. In a local tolerance study, injection of a single intradermal dose of 20 mM CS to rats resulted in superficial, circular crusts at the injection sites after approximately 4 days. The histopathology evaluation revealed a mild, acute inflammatory reaction in the epidermis and dermis at the intradermal CS injection site 1 day after administration. After 14 days, the epidermal epithelium was fully restored. The symptoms were not considered to be adverse, and it is suggested that doses up to 20 μL of 20 mM CS can be safely administered to human beings. In conclusion, our data support development of a CS human dermal pain model. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  14. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.

    Science.gov (United States)

    Dupont, Kenneth M; Boerckel, Joel D; Stevens, Hazel Y; Diab, Tamim; Kolambkar, Yash M; Takahata, Masahiko; Schwarz, Edward M; Guldberg, Robert E

    2012-03-01

    Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.

  15. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    OpenAIRE

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-01-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generate...

  16. The preventive effect of recombinant human growth factor (rhEGF) on the recurrence of radiodermatitis

    International Nuclear Information System (INIS)

    Ryu, Seung-Hee; Kim, Yeun-Hwa; Lee, Sang-Wook; Hong, Joon-Pio

    2010-01-01

    The effects of topical application of recombinant human epidermal growth factor (rhEGF) on wound healing and the recurrence of radiodermatitis were assessed in the irradiated skin of BALB/c Nu/Nu mice. Mice irradiated with 45 Gy of radiation were divided into 5 groups and treated with 10, 50, and 100 μg/g rhEGF ointment, vehicle alone, or no treatment (control) for 6 months. Wounds were observed initially in all groups and complete healing time (HT 100 ) for initial wound repair did not differ significantly among groups. However, the rate of recurrence over 6 months was significantly lower in the EGF-treated groups than in the control group (p<0.05). Histological examination showed that treatment with the optimum dose of EGF (50 μg/g) accelerated normal wound healing when compared with the higher dose of EGF (100 μg/g), vehicle alone, or no treatment, with the latter group showing irregular epidermal thickness, poor definition of epidermis and dermis, and unstable dermal structure. Collagen distribution was also significantly increased in mice treated with 50 μg/g rhEGF (p<0.05) compared with the control or vehicle-treated group. Taken together, these results indicate that treatment with exogenous EGF (50 μg/g dose) can enhance radiation-induced wound repair while preserving structural tissue stability and preventing the recurrence of radiodermatitis. (author)

  17. Functional characteristics of mesenchymal stem cells derived from the adipose tissue of a patient with achondroplasia.

    Science.gov (United States)

    Park, Jeong-Ran; Lee, Hanbyeol; Kim, Chung-Hyo; Hong, Seok-Ho; Ha, Kwon-Soo; Yang, Se-Ran

    2016-05-01

    Mesenchymal stem cells (MSCs) can be isolated from various tissues including bone marrow, adipose tissue, skin dermis, and umbilical Wharton's jelly as well as injured tissues. MSCs possess the capacity for self-renewal and the potential for differentiation into adipogenic, osteogenic, and chondrogenic lineages. However, the characteristics of MSCs in injured tissues, such as achondroplasia (ACH), are not well known. In this study, we isolated MSCs from human subcutaneous adipose (ACH-SAMSCs) tissue and circumjacent human adipose tissue of the cartilage (ACH-CAMSCs) from a patient with ACH. We then analyzed the characterization of ACH-SAMSCs and ACH-CAMSCs, compared with normal human dermis-derived MSCs (hDMSCs). In flow cytometry analysis, the isolated ACH-MSCs expressed low levels of CD73, CD90, and CD105, compared with hDMSCs. Moreover, both ACH- SAMSCs and ACH-CAMSCs had constitutionally overactive fibroblast growth factor receptor 3 (FGFR3) and exhibited significantly reduced osteogenic differentiation, compared to enhanced adipogenic differentiation. The activity of extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) was increased in ACH-MSCs. In addition, the efficacy of osteogenic differentiation was slightly restored in osteogenic differentiation medium with MAPKs inhibitors. These results suggest that they play essential roles in MSC differentiation toward adipogenesis in ACH pathology. In conclusion, the identification of the characteristics of ACH-MSCs and the favoring of adipogenic differentiation via the FGFR3/MAPK axis might help to elucidate the pathogenic mechanisms relevant to other skeletal diseases and could provide targets for therapeutic interventions.

  18. Untitled

    Indian Academy of Sciences (India)

    A major portion of the epidermis is occupied by numerous long saccular mucous cells with crescentic nuclei. Taste-buds are profusely present near thc apex of the lip, each being borne on an elevation of the dermis. The dermis consists of a rather loose connective-tissue in its outer part and a compact one inside and bears ...

  19. Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full-thickness and split-thickness pig and human skin.

    Science.gov (United States)

    Seto, Jennifer E; Polat, Baris E; Lopez, Renata F V; Blankschtein, Daniel; Langer, Robert

    2010-07-01

    The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700microm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules. 2010 Elsevier B.V. All rights reserved.

  20. Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dai Tianhong [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Pikkula, Brian M [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Wang, Lihong V [Department of Biomedical Engineering, Texas A and M University, College Station, TX 77843 (United States); Anvari, Bahman [Department of Bioengineering, Rice University, Houston, TX 77251 (United States)

    2004-11-07

    Near-infrared wavelengths are absorbed less by epidermal melanin, and penetrate deeper into human skin dermis and blood than visible wavelengths. Therefore, laser irradiation using near-infrared wavelengths may improve the therapeutic outcome of cutaneous hyper-vascular malformations in moderately to heavily pigmented skin patients and those with large-sized blood vessels or blood vessels extending deeply into the skin. A mathematical model composed of a Monte Carlo algorithm to estimate the distribution of absorbed light, numerical solution of a bio-heat diffusion equation to calculate the transient temperature distribution, and a damage integral based on an empirical Arrhenius relationship to quantify the tissue damage was utilized to investigate the opto-thermal response of human skin to near-infrared and visible laser irradiations in conjunction with cryogen spray cooling. In addition, the thermal effects of a single continuous laser pulse and micropulse-composed laser pulse profiles were compared. Simulation results indicated that a 940 nm wavelength induces improved therapeutic outcome compared with a 585 and 595 nm wavelengths for the treatment of patients with large-sized blood vessels and moderately to heavily pigmented skin. On the other hand, a 585 nm wavelength shows the best efficacy in treating small-sized blood vessels, as characterized by the largest laser-induced blood vessel damage depth compared with 595 and 940 nm wavelengths. Dermal blood content has a considerable effect on the threshold incident dosage for epidermal damage, while the effect of blood vessel size is minimal. For the same macropulse duration and incident dosage, a micropulse-composed pulse profile results in higher peak temperature at the basal layer of skin epidermis than an ideal single continuous pulse profile.

  1. [Advances in the research of function of Merkel cells in tactile formation of skin].

    Science.gov (United States)

    You, X; Wei, Z R

    2018-01-20

    Skin is the largest sense organ of human, with many mechanoreceptor cells under epidermis or dermis of skin and Merkel cell is one of them. It has been confirmed that Merkel cells play an important role in the process of mechanical transmission of mammalian soft tactile stimulation. Researches showed that Merkel cells had close relation to tactile formation and functioned by Merkel cell-neurite complexes and ion channels Piezo2. This article reviews Merkel cells and the function, problem and prospect of Merkel cells in tactile formation.

  2. Dynamic profiles of neutralizing antibody responses elicited in rhesus monkeys immunized with a combined tetravalent DTaP-Sabin IPV candidate vaccine.

    Science.gov (United States)

    Sun, Mingbo; Ma, Yan; Xu, Yinhua; Yang, Huijuan; Shi, Li; Che, Yanchun; Liao, Guoyang; Jiang, Shude; Zhang, Shumin; Li, Qihan

    2014-02-19

    The World Health Organization has recommended that a Sabin inactivated polio vaccine (IPV) should gradually and synchronously replace oral polio vaccines for routine immunizations because its benefits in eliminating vaccine-associated paralytic poliomyelitis have been reported in different phases of clinical trials. It is also considered important to explore new tetravalent diphtheria, tetanus, and acellular pertussis-Sabin IPV (DTaP-sIPV) candidate vaccines for possible use in developing countries. In this study, the immunogenicity of a combined tetravalent DTaP-sIPV candidate vaccine was investigated in primates by evaluating the neutralizing antibody responses it induced. The dynamic profiles of the antibody responses to each of the separate antigenic components and serotypes of Sabin IPV were determined and their corresponding geometric mean titers were similar to those generated by the tetravalent diphtheria, tetanus, and acellular pertussis-conventional IPV (DTaP-cIPV), the tetravalent diphtheria, tetanus, and acellular pertussis (DTaP), and Sabin IPV vaccines in the control groups. This implies that protective immunogenic effects are conferred by this combined tetravalent formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Epidemiology of whooping cough & typing of Bordetella pertussis.

    Science.gov (United States)

    Hegerle, Nicolas; Guiso, Nicole

    2013-11-01

    Bordetella pertussis is a Gram-negative human-restricted bacterium that evolved from the broad-range mammalian pathogen, Bordetella bronchiseptica. It causes whooping cough or pertussis in humans, which is the most prevalent vaccine-preventable disease worldwide. The introduction of the pertussis whole-cell vaccination for young children, followed by the introduction of the pertussis acellular vaccination (along with booster vaccination) for older age groups, has affected the bacterial population and epidemiology of the disease. B. pertussis is relatively monomorphic worldwide, but nevertheless, different countries are facing different epidemiological evolutions of the disease. Although it is tempting to link vaccine-driven phenotypic and genotypic evolution of the bacterium to epidemiology, many other factors should be considered and surveillance needs to continue, in addition to studies investigating the impact of current clinical isolates on vaccine efficacy.

  4. The lethal effect of longwave ultraviolet light and PUVA. An analysis based upon human mesenchymal cells in vitro

    International Nuclear Information System (INIS)

    Jongh, G. de; Bergers, M.; Boezeman, J.B.M.; Verhagen, A.R.; Mier, P.D.

    1984-01-01

    The lethal effect of UVA and PUVA radiation was studied in cultures of fresh and mature monocytes. UVA radiation alone was shown to possess a lethal effect at doses which are attained in the dermis in vivo. The synergistic action of 8-methoxypsoralen and UVA radiation predominated in PUVA radiation, but again a residual effect of UVA alone was demonstrated mathematically. Mature cells were less sensitive than fresh monocytes. The results indicate that a monolayer culture of non-dividing, mesenchymal cells offers considerable advantages over in vivo systems as a model for the study of phototoxicity. (author)

  5. Real-time visualization of melanin granules in normal human skin using combined multiphoton and reflectance confocal microscopy.

    Science.gov (United States)

    Majdzadeh, Ali; Lee, Anthony M D; Wang, Hequn; Lui, Harvey; McLean, David I; Crawford, Richard I; Zloty, David; Zeng, Haishan

    2015-05-01

    Recent advances in biomedical optics have enabled dermal and epidermal components to be visualized at subcellular resolution and assessed noninvasively. Multiphoton microscopy (MPM) and reflectance confocal microscopy (RCM) are noninvasive imaging modalities that have demonstrated promising results in imaging skin micromorphology, and which provide complementary information regarding skin components. This study assesses whether combined MPM/RCM can visualize intracellular and extracellular melanin granules in the epidermis and dermis of normal human skin. We perform MPM and RCM imaging of in vivo and ex vivo skin in the infrared domain. The inherent three-dimensional optical sectioning capability of MPM/RCM is used to image high-contrast granular features across skin depths ranging from 50 to 90 μm. The optical images thus obtained were correlated with conventional histologic examination including melanin-specific staining of ex vivo specimens. MPM revealed highly fluorescent granular structures below the dermal-epidermal junction (DEJ) region. Histochemical staining also demonstrated melanin-containing granules that correlate well in size and location with the granular fluorescent structures observed in MPM. Furthermore, the MPM fluorescence excitation wavelength and RCM reflectance of cell culture-derived melanin were equivalent to those of the granules. This study suggests that MPM can noninvasively visualize and quantify subepidermal melanin in situ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Evaluation of Permacol as a cultured skin equivalent.

    Science.gov (United States)

    MacLeod, T M; Cambrey, A; Williams, G; Sanders, R; Green, C J

    2008-12-01

    Skin loss following severe burn requires prompt wound closure to avoid such complications as fluid and electrolyte imbalance, infection, immune suppression, and pain. In clinical situations in which insufficient donor skin is available, the development of cultured skin equivalents (dermal matrices seeded with keratinocytes and fibroblasts) may provide a useful alternative. The aim of this study was to assess the suitability of a porcine-derived dermal collagen matrix (Permacol) to function as a cultured skin equivalent in supporting the growth of keratinocytes in vitro and providing cover to full thickness wounds in the BALB C/nude mouse model. A histological comparison was against Glycerol treated-Ethylene Oxide Sterilised Porcine Dermis (Gly-EO Dermis) which has successfully been used as a cultured skin equivalent in previous studies. Both Gly-EO Dermis and to a lesser extent Permacol were able to support the growth of cultured keratinocytes following a 16-day period of cell culture, however, this study was only able to demonstrate the presence of an epidermal layer on Gly-EO dermis 2 weeks after grafting onto full-thickness wounds in the BALB C/nude mouse model.

  7. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.

    Science.gov (United States)

    Larouche, Danielle; Cuffley, Kristine; Paquet, Claudie; Germain, Lucie

    2011-03-01

    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.

  8. The effectiveness of anticellulite treatment using tripolar radiofrequency monitored by classic and high-frequency ultrasound.

    Science.gov (United States)

    Mlosek, R K; Woźniak, W; Malinowska, S; Lewandowski, M; Nowicki, A

    2012-06-01

      Cellulite affects nearly 85% of the female population. Given the size of the phenomenon, we are continuously looking for effective ways to reduce cellulite. Reliable monitoring of anticellulite treatment remains a problem.   The main aim of the study was to evaluate the effectiveness of anticellulite treatment carried out using radiofrequency (RF), which was monitored by classical and high-frequency ultrasound.   Twenty-eight women underwent anticellulite treatment using RF, 17 women were in the placebo group. The therapy was monitored by classical and high-frequency ultrasound. The examinations evaluated the thickness of the epidermal echo, dermis thickness, dermis echogenicity, the length of the subcutaneous tissue bands growing into the dermis, the presence or absence of oedema, the thickness of subcutaneous tissue as well as thigh circumference and the stage of cellulite (according to the Nürnberger-Müller scale).   Cellulite was reduced in 89.286% of the women who underwent RF treatment. After the therapy, the following observations were made: a decrease in the thickness of the dermis and subcutaneous tissue, an increase in echogenicity reflecting on the increase in the number of collagen fibres, decreased subcutaneous tissue growing into bands in the dermis, and the reduction of oedema. In the placebo group, no statistically significant changes of the above parameters were observed.   Radiofrequency enables cellulite reduction. A crucial aspect is proper monitoring of the progress of such therapy, which ultrasound allows. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  9. Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration

    Science.gov (United States)

    Wei, David Wei; Deegan, Anthony J.; Wang, Ruikang K.

    2017-06-01

    When using optical coherence tomography angiography (OCTA), the development of artifacts due to involuntary movements can severely compromise the visualization and subsequent quantitation of tissue microvasculatures. To correct such an occurrence, we propose a motion compensation method to eliminate artifacts from human skin OCTA by means of step-by-step rigid affine registration, rigid subpixel registration, and nonrigid B-spline registration. To accommodate this remedial process, OCTA is conducted using two matching all-depth volume scans. Affine transformation is first performed on the large vessels of the deep reticular dermis, and then the resulting affine parameters are applied to all-depth vasculatures with a further subpixel registration to refine the alignment between superficial smaller vessels. Finally, the coregistration of both volumes is carried out to result in the final artifact-free composite image via an algorithm based upon cubic B-spline free-form deformation. We demonstrate that the proposed method can provide a considerable improvement to the final en face OCTA images with substantial artifact removal. In addition, the correlation coefficients and peak signal-to-noise ratios of the corrected images are evaluated and compared with those of the original images, further validating the effectiveness of the proposed method. We expect that the proposed method can be useful in improving qualitative and quantitative assessment of the OCTA images of scanned tissue beds.

  10. Vosotros, hijos de Dios. Hacia la infundamentación de la Ley

    Directory of Open Access Journals (Sweden)

    Camilo Alfonso Salazar Flores

    2018-01-01

    Full Text Available What happens when what one has been seeking is found to have always been in the same place? Is there a possibility of a new world if the horror of God happens in our time? The article attempts to situate an image, a bust that shows the empty field that sustains it, a Father that presents himself in the dermis of a  fellow human that is always on the verge of destruction. To this effect, it is necessary for the things that come into play to be grounded in nothingness.

  11. A novel, comprehensive, and reproducible porcine model for determining the timing of bruises in forensic pathology

    DEFF Research Database (Denmark)

    Barington, Kristiane; Jensen, Henrik Elvang

    2016-01-01

    Purpose Calculating the timing of bruises is crucial in forensic pathology but is a challenging discipline in both human and veterinary medicine. A mechanical device for inflicting bruises in pigs was developed and validated, and the pathological reactions in the bruises were studied over time......-dependent response. Combining these parameters, bruises could be grouped as being either less than 4 h old or between 4 and 10 h of age. Gross lesions and changes in the epidermis and dermis were inconclusive with respect to time determination. Conclusions The model was reproducible and resembled forensic cases...

  12. Raman spectroscopic analysis of human skin tissue sections ex-vivo: evaluation of the effects of tissue processing and dewaxing

    Science.gov (United States)

    Ali, Syed M.; Bonnier, Franck; Tfayli, Ali; Lambkin, Helen; Flynn, Kathleen; McDonagh, Vincent; Healy, Claragh; Clive Lee, T.; Lyng, Fiona M.; Byrne, Hugh J.

    2013-06-01

    Raman spectroscopy coupled with K-means clustering analysis (KMCA) is employed to elucidate the biochemical structure of human skin tissue sections and the effects of tissue processing. Both hand and thigh sections of human cadavers were analyzed in their unprocessed and formalin-fixed, paraffin-processed (FFPP), and subsequently dewaxed forms. In unprocessed sections, KMCA reveals clear differentiation of the stratum corneum (SC), intermediate underlying epithelium, and dermal layers for sections from both anatomical sites. The SC is seen to be relatively rich in lipidic content; the spectrum of the subjacent layers is strongly influenced by the presence of melanin, while that of the dermis is dominated by the characteristics of collagen. For a given anatomical site, little difference in layer structure and biochemistry is observed between samples from different cadavers. However, the hand and thigh sections are consistently differentiated for all cadavers, largely based on lipidic profiles. In dewaxed FFPP samples, while the SC, intermediate, and dermal layers are clearly differentiated by KMCA of Raman maps of tissue sections, the lipidic contributions to the spectra are significantly reduced, with the result that respective skin layers from different anatomical sites become indistinguishable. While efficient at removing the fixing wax, the tissue processing also efficiently removes the structurally similar lipidic components of the skin layers. In studies of dermatological processes in which lipids play an important role, such as wound healing, dewaxed samples are therefore not appropriate. Removal of the lipids does however accentuate the spectral features of the cellular and protein components, which may be more appropriate for retrospective analysis of disease progression and biochemical analysis using tissue banks.

  13. Efficacy of Primate Humoral Passive Transfer in a Murine Model of Pneumonic Plague Is Mouse Strain-Dependent

    Directory of Open Access Journals (Sweden)

    V. A. Graham

    2014-01-01

    Full Text Available New vaccines against biodefense-related and emerging pathogens are being prepared for licensure using the US Federal Drug Administration’s “Animal Rule.” This allows licensure of drugs and vaccines using protection data generated in animal models. A new acellular plague vaccine composed of two separate recombinant proteins (rF1 and rV has been developed and assessed for immunogenicity in humans. Using serum obtained from human volunteers immunised with various doses of this vaccine and from immunised cynomolgus macaques, we assessed the pharmacokinetic properties of human and cynomolgus macaque IgG in BALB/c and the NIH Swiss derived Hsd:NIHS mice, respectively. Using human and cynomolgus macaque serum with known ELISA antibody titres against both vaccine components, we have shown that passive immunisation of human and nonhuman primate serum provides a reproducible delay in median time to death in mice exposed to a lethal aerosol of plague. In addition, we have shown that Hsd:NIHS mice are a better model for humoral passive transfer studies than BALB/c mice.

  14. Hybrid Carbon-Based Scaffolds for Applications in Soft Tissue Reconstruction

    Science.gov (United States)

    Lafdi, Khalid; Joseph, Robert M.; Tsonis, Panagiotis A.

    2012-01-01

    Current biomedical scaffolds utilized in surgery to repair soft tissues commonly fail to meet the optimal combination of biomechanical and tissue regenerative properties. Carbon is a scaffold alternative that potentially optimizes the balance between mechanical strength, durability, and function as a cell and biologics delivery vehicle that is necessary to restore tissue function while promoting tissue repair. The goals of this study were to investigate the feasibility of fabricating hybrid fibrous carbon scaffolds modified with biopolymer, polycaprolactone and to analyze their mechanical properties and ability to support cell growth and proliferation. Environmental scanning electron microscopy, micro-computed tomography, and cell adhesion and cell proliferation studies were utilized to test scaffold suitability as a cell delivery vehicle. Mechanical properties were tested to examine load failure and elastic modulus. Results were compared to an acellular dermal matrix scaffold control (GraftJacket® [GJ] Matrix), selected for its common use in surgery for the repair of soft tissues. Results indicated that carbon scaffolds exhibited similar mechanical maximums and capacity to support fibroblast adhesion and proliferation in comparison with GJ. Fibroblast adhesion and proliferation was collinear with carbon fiber orientation in regions of sparsely distributed fibers and occurred in clusters in regions of higher fiber density and low porosity. Overall, fibroblast adhesion and proliferation was greatest in lower porosity carbon scaffolds with highly aligned fibers. Stepwise multivariate regression showed that the variability in maximum load of carbon scaffolds and controls were dependent on unique and separate sets of parameters. These finding suggested that there were significant differences in the functional implications of scaffold design and material properties between carbon and dermis derived scaffolds that affect scaffold utility as a tissue replacement

  15. Burn Injuries in Children and the Use of Biological Dressings

    Science.gov (United States)

    2013-08-01

    in, any commercial or- ganizations pertaining to this educational activity. The opinions or assertions contained herein are the private views of the...and mechanical integrity of the skin.6 Blood vessels run within the dermis and extend into the dermal papillae, providing nutrition . Beneath the dermis...confined places where oxygen is replaced by dangerous gases. Carbon monoxide binds the hemoglobin molecule in red blood cells more strongly than does

  16. 8-methoxypsoralen and ultraviolet A radiation activate the human elastin promoter in transgenic mice: in vivo and in vitro evidence for gene induction

    International Nuclear Information System (INIS)

    Bernstein, E.F.; Brown, D.B.; Takeuchi, Tsunemichi; Kong, S.K.; Uitto, Jouni; Gasparro, F.P.

    1996-01-01

    Treatment of skin diseases with the combination of 8-methoxypsoralen and ultraviolet A radiation (PUVA) results in clinical alterations in treated skin that resemble those observed in chronically photodamaged skin. The PUVA-treated patients develop nonmelanoma skin cancers, pigmentary alterations and wrinkling characteristic of sun-induced changes. The major alteration in the dermis of sun-damaged skin is the deposition of abnormal elastic fibers, termed solar elastosis. Up-regulation of elastin promoter activity in dermal fibroblasts explains the excess elastic tissue but not the reason for the aberrant morphology of the elastotic material. In order to study photoaging in an experimental system we utilized a transgenic mouse line that expresses the human elastin promoter/chloramphenicol acetyltransferase construct in a tissue-specific and developmentally regulated manner. Although UVB radiation has been demonstrated to increase promoter activity in vitro, UVA fails to demonstrate a similar effect at the doses utilized. In this study, we demonstrate the ability of PUVA treatment to up regulate elastin promoter activity both in vitro and in vivo. These data help to explain the development of photoaging in sun-protected PUVA-treated skin. We attribute the up-regulation of elastin promoter activity in response to PUVA to the formation of DNA photoadducts, which do not occur in response to UVA radiation alone. (UK)

  17. The use of digital image speckle correlation to measure the mechanical properties of skin and facial muscular activity

    Science.gov (United States)

    Staloff, Isabelle Afriat

    Skin mechanical properties have been extensively studied and have led to an understanding of the structure and role of the collagen and elastin fibers network in the dermis and their changes due to aging. All these techniques have either isolated the skin from its natural environment (in vitro), or, when studied in vivo, attempted to minimize the effect of the underlying tissues and muscles. The human facial region is unique compared to the other parts of the body in that the underlying musculature runs through the subcutaneous tissue and is directly connected to the dermis with collagen based fibrous tissues. These fibrous tissues comprise the superficial musculoaponeurotic system, commonly referred to as the SMAS layer. Retaining ligaments anchor the skin to the periosteum, and hold the dermis to the SMAS. In addition, traditional techniques generally collect an average response of the skin. Data gathered in this manner is incomplete as the skin is anisotropic and under constant tension. We therefore introduce the Digital Image Speckle Correlation (DISC) method that maps in two dimensions the skin deformation under the complex set of forces involved during muscular activity. DISC, a non-contact in vivo technique, generates spatial resolved information. By observing the detailed motion of the facial skin we can infer the manner in which the complex ensemble of forces induced by movement of the muscles distribute and dissipate on the skin. By analyzing the effect of aging on the distribution of these complex forces we can measure its impact on skin elasticity and quantify the efficacy of skin care products. In addition, we speculate on the mechanism of wrinkle formation. Furthermore, we investigate the use of DISC to map the mechanism of film formation on skin of various polymers. Finally, we show that DISC can detect the involuntary facial muscular activity induced by various fragrances.

  18. Stem cell, cytokine and plastic surgical management for radiation injuries

    Energy Technology Data Exchange (ETDEWEB)

    Akita, Sadanori; Hirano, Akiyoshi [Dept. of Plastic and Reconstructive Surgery, Nagasaki (Japan); Akino, Kozo [Nagasaki Univ. (Japan). Graduate School of Biomedical Sciences, Dept. of Neuroanatomy; Ohtsuru, Akira [Nagasaki Univ. Hospital (Japan). Takashi Nagai Memorial, International Hibakusha Medical Center; Yamashita, Shunichi [Nagasaki Univ. School of Medicine (Japan). Atomic Bomb Disease Institute; World Health Organization (WHO), Nagasaki (Japan)

    2008-07-01

    Increasing concern on systemic and local radiation injuries caused by nuclear power plant accident, therapeutic irradiation or nuclear terrorism should be treated and prevented properly for life-saving and improved wound management. We therefore reviewed our therapeutic regimens and for local radiation injuries and propose surgical methods reflecting the importance of the systemic and general conditions. For local radiation injuries, after careful and complete debridement, sequential surgeries with local flap, arterialized or perforator flap and to free flap are used when the patients' general conditions allow. Occasionally, undetermined wound margins in acute emergency radiation injuries and the regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with angiogenic factor such as basic fibroblast growth factor (bFGF) and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells (hMSCs) and adipose-derived stem cells (ADSCs), together with angiogenic and mitogenic factor of basic fibroblast growth factor (bFGF) and an artificial dermis were applied over the excised irradiated skin defect are tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who are suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. The hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. Immediate artificial dermis application impregnated with hMSCs and bFGF over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angio genesis, architected dermal reconstitution and less inflammatory epidermal recovery. Even though emergent cases are more often experienced, detailed understanding of underlying diseases and rational

  19. Stem cell, cytokine and plastic surgical management for radiation injuries

    International Nuclear Information System (INIS)

    Akita, Sadanori; Hirano, Akiyoshi; Akino, Kozo

    2008-01-01

    Increasing concern on systemic and local radiation injuries caused by nuclear power plant accident, therapeutic irradiation or nuclear terrorism should be treated and prevented properly for life-saving and improved wound management. We therefore reviewed our therapeutic regimens and for local radiation injuries and propose surgical methods reflecting the importance of the systemic and general conditions. For local radiation injuries, after careful and complete debridement, sequential surgeries with local flap, arterialized or perforator flap and to free flap are used when the patients' general conditions allow. Occasionally, undetermined wound margins in acute emergency radiation injuries and the regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with angiogenic factor such as basic fibroblast growth factor (bFGF) and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells (hMSCs) and adipose-derived stem cells (ADSCs), together with angiogenic and mitogenic factor of basic fibroblast growth factor (bFGF) and an artificial dermis were applied over the excised irradiated skin defect are tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who are suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. The hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. Immediate artificial dermis application impregnated with hMSCs and bFGF over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angio genesis, architected dermal reconstitution and less inflammatory epidermal recovery. Even though emergent cases are more often experienced, detailed understanding of underlying diseases and rational

  20. Penetration, distribution and kinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin in human skin in vitro

    International Nuclear Information System (INIS)

    Weber, L.W.D.; Rozman, K.

    1991-01-01

    The in vitro penetration of 3 H-labeled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) into human cadaver skin was studied at concentrations of 65 and 6.5 ng TCDD per cm 2 of skin surface. Vehicles used were acetone to simulate exposure to TCDD as a dry material, and mineral oil to simulate exposure to TCDD in an oily medium. Penetration was performed for 30, 100, 300, and 1000 min in improved Franz cells. Skin was used either intact, or with stripped horny layer. Skin was sectioned along its natural layers and radioactivity determined in epidermis and dermis. TCDD did not readily penetrate into human skin in vitro. The vehicle of exposure to TCDD played an important role in dermal penetration. The rapidly evaporating acetone allowed TCDD to penetrate deeply into the loose surface lamellae of the horny layer, but then appeared to be poorly available for further penetration. Mineral oil as the vehicle showed its penetration even more. The stratum corneum acted as a protective barrier, as its removal increased the amount of TCDD absorbed into layers of the skin. Hourly rates of adsorption of TCDD per unit area of skin were calculated in two ways: a worst case scenario where TCDD absorbed into any layer of skin including the stratum corneum and a physiological approach where only that amount of TCDD was considered absorbed which had penetrated beyond the epidermis. Under worst case scenario conditions the stratum corneum appeared to mediate dermal absorption of TCDD. This was, however, not the case with the physiological approach. There was a consistent relationship between concentration of TCDD applied and concentration of TCDD found in skin. Also, a clear-cut correlation was found between the amount of TCDD that penetrated and the time of exposure. (orig./MG)

  1. Skin structure in the snout of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).

    Science.gov (United States)

    Kemp, A

    2014-10-01

    Many fossil lungfish have a system of mineralised tubules in the dermis of the snout, branching extensively and radiating towards the epidermis. The tubules anastomose in the superficial layer of the dermis, forming a plexus consisting of two layers of vessels, with branches that expand into pore canals and flask organs, flanked by cosmine nodules where these are present. Traces of this system are found in the Australian lungfish, Neoceratodus forsteri, consisting of branching tubules in the dermis, a double plexus below the epidermis and dermal papillae entering the epidermis without reaching the surface. In N. forsteri, the tubules, the plexus and the dermal papillae consist of thick, unmineralised connective tissue, enclosing fine blood vessels packed with lymphocytes. Tissues in the epidermis and the dermis of N. forsteri are not associated with deposits of calcium, which is below detectable limits in the skin of the snout at all stages of the life cycle. Canals of the sensory line system, with mechanoreceptors, are separate from the tubules, the plexus and the dermal papillae, as are the electroreceptors in the epidermis. The system of tubules, plexus, dermal papillae and lymphatic capillaries may function to protect the tissues of the snout from infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Mineralization of elastic fibers and alterations of extracellular matrix in pseudoxanthoma elasticum. Ultrastructure, immunocytochemistry, and X-ray analysis

    International Nuclear Information System (INIS)

    Walker, E.R.; Frederickson, R.G.; Mayes, M.D.

    1989-01-01

    Histologic paraffin sections of pseudoxanthoma elasticum (PXE)-involved skin of forearm and axilla were used for histochemistry and immunohistochemical and analytical electron microscopy to study the progressive mineralization in the dermis of patients with PXE. The von Kossa technique identified mineral deposits throughout the reticular PXE dermis. X-ray analysis revealed patterns of calcium and phosphorus deposition in the von Kossa-positive areas, and the immunohistochemical staining using monoclonal antibodies identified increased chondroitin-6-sulfate in these areas when compared with normal skin. Scanning transmission electron microscopy observation combined with X-ray dot mapping show calcium and phosphorus to be codistributed within the mineralized area. This study confirms by new methods the increase in chondroitin-6-sulfate, alterations in elastin and collagen, and a high calcium and phosphorus elemental distribution matching the mineralized area in the PXE dermis

  3. Hepatitis B Vaccine

    Science.gov (United States)

    ... a combination product containing Haemophilus influenzae type b, Hepatitis B Vaccine) ... combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis, Hepatitis B, Polio Vaccine)

  4. Changes in dermal interstitial ATP levels during local heating of human skin.

    Science.gov (United States)

    Gifford, Jayson R; Heal, Cory; Bridges, Jarom; Goldthorpe, Scott; Mack, Gary W

    2012-12-15

    Heating skin is believed to activate vanilloid type III and IV transient receptor potential ion channels (TRPV3, TRPV4, respectively), resulting in the release of ATP into the interstitial fluid. We examined the hypothesis that local skin heating would result in an accumulation of ATP in the interstitial fluid that would be related with a rise in skin blood flow (SkBF) and temperature sensation. Two microdialysis probes were inserted into the dermis on the dorsal aspect of the forearm in 15 young, healthy subjects. The probed skin was maintained at 31°C, 35°C, 39°C and 43°C for 8 min periods, during which SkBF was monitored as cutaneous vascular conductance (CVC). Dialysate was collected and analysed for ATP ([ATP](d)) using a luciferase-based assay, and ratings of perceived warmth were taken at each temperature. At a skin temperature of 31°C, [ATP](d) averaged 18.93 ± 4.06 nm and CVC averaged 12.57 ± 1.59% peak. Heating skin to 35°C resulted in an increase in CVC (17.63 ± 1.27% peak; P ATP](d). Heating skin to 39°C and 43°C resulted in a decreased [ATP](d) (5.88 ± 1.68 nm and 8.75 ± 3.44 nm, respectively; P ATP does not occur during local heating, and therefore does not have a role in temperature sensation or the dilator response in human skin. Nevertheless, the low threshold of dilatation (35°C) indicates a possible role for the TRPV3, TRPV4 channels or the sensitization of other ion channels in mediating the dilator response.

  5. A Method for Quantification of Penetration of Nanoparticles through Skin Layers Using Near-Infrared Optical Imaging

    Directory of Open Access Journals (Sweden)

    Melinda Stees

    2015-07-01

    Full Text Available Our study presents a new method for tracking nanoparticle penetration through different layers of the skin using near-infrared dye-loaded nanoparticles (hydrodynamic diameter = 156 nm and optical imaging. The dye-loaded nanoparticles were mixed in a topical skin cream, applied to human cadaver skin and incubated either for three or 24 h post-application, skin tissue was clipped between glass slides prior to imaging for signal intensity across the skin thickness using an optical imaging system. The data show that nanoparticles penetrate through all the layers of the skin but there is almost an exponential decay in the signal intensity from epidermis to dermis. Depending upon the incubation time, about 55%–59% of the total signal was seen in the epidermis and the remaining through dermis and hypodermis. The advantage of the method is that it allows quantitative analysis of the extent of penetration of nanoparticles through different layers of the skin without interference of any background signal from skin tissue, and without requiring extensive tissue processing. Our method could potentially be used to study the effect of nanoparticle properties and/or the use of different formulation additives on penetration of nanoparticles through different skin layers.

  6. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays.

    Science.gov (United States)

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D; Chorro, Laurent; Carlin, Leo M; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S

    2013-02-19

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.

  7. The integumentary system: anatomy, physiology and function of skin.

    Science.gov (United States)

    McLafferty, Ella; Hendry, Charles; Alistair, Farley

    This article, which forms part of the life sciences series, examines the anatomy and physiology of skin, also termed the integumentary system. Skin is composed of two main layers, the epidermis and dermis. The structure of the epidermis and dermis are described and their functions are discussed. Accessory structures, such as nails and hair are also considered. Although many diseases of the skin exist, two common conditions--psoriasis and decubitus ulcers--are described in this article.

  8. Skin tightening.

    Science.gov (United States)

    Woolery-Lloyd, Heather; Kammer, Jenna N

    2011-01-01

    Skin tightening describes the treatment of skin laxity via radiofrequency (RF), ultrasound, or light-based devices. Skin laxity on the face is manifested by progressive loss of skin elasticity, loosening of the connective tissue framework, and deepening of skin folds. This results in prominence of submandibular and submental tissues. Genetic factors (chronological aging) and extrinsic factors (ultraviolet radiation) both contribute to skin laxity. There are many RF, ultrasound, and light-based devices directed at treating skin laxity. All of these devices target and heat the dermis to induce collagen contraction. Heating of the dermis causes collagen denaturation and immediate collagen contraction in addition to long-term collagen remodeling. Via RF, light, or ultrasound, these skin tightening devices deliver heat to the dermis to create new collagen and induce skin tightening. This chapter will provide an overview of the various skin tightening devices. Copyright © 2011 S. Karger AG, Basel.

  9. Accuracy of qPCR for quantifying Leishmania kDNA in different skin layers of patients with American tegumentary leishmaniasis.

    Science.gov (United States)

    Sevilha-Santos, L; Dos Santos Júnior, A C M; Medeiros-Silva, V; Bergmann, J O; da Silva, E F; Segato, L F; Arabi, A Y M; de Paula, N A; Sampaio, R N R; Lima, B D; Gomes, C M

    2018-05-03

    Superficial swab sampling of American tegumentary leishmaniasis (ATL) lesions shows higher amounts of Leishmania than those from biopsy. Subcutaneous involvement is also important in ATL, but parasite quantification according to lesion depth has not been evaluated. We aim to present the best depth at which sampling should be performed for molecular exams of ATL. Patients with a clinical presentation compatible with ATL were allocated to ATL and control groups. Qualitative and quantitative qPCR assays were performed using SYBR Green and primers amplifying the kDNA minicircle of Leishmania spp. in different skin layers, including the epidermis, the superior dermis, the inferior dermis, and the hypodermis. Fifty-nine patients were included in this study, including 40 who had been diagnosed with ATL and 19 controls. The number of parasites was greater in samples of the epidermis and superior dermis (159.1 × 10 6 , range 4.0-781.7, and 75.4 × 10 6 , range 8.0-244.5, mean Leishmania parasite equivalents per μg of tissue DNA, respectively) than those in samples of the inferior dermis and hypodermis (54.6, range 8.0-256.6, and 16.8 × 10 6 , range 8.0-24.1, mean Leishmania parasite equivalents per μg of tissue DNA, respectively). The best diagnostic accuracy was achieved in the superior dermis (77.9%) and was significantly greater than that in the hypodermis (63.3%; p 0.039). We conclude that superficial sampling can retrieve a greater quantity of parasites. Future studies of the role of transepidermal elimination as a mechanism of host defence in ATL must be performed as there is a considerable quantity of Leishmania kDNA in the epidermis. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Contactless diagnostics of biophysical parameters of skin and blood on the basis of approximating functions for radiation fluxes scattered by skin

    Energy Technology Data Exchange (ETDEWEB)

    Lisenko, S A; Kugeiko, M M [Belarusian State University, Minsk (Belarus)

    2014-03-28

    Approximating expressions are derived to calculate spectral and spatial characteristics of diffuse reflection of light from a two-layer medium mimicking human skin. The effectiveness of the use of these expressions in the optical diagnosis of skin biophysical parameters (tissue scattering parameters, concentration of melanin in the epidermis, concentration of total haemoglobin and bilirubin in the tissues of the dermis) and content of haemoglobin derivatives in blood (oxy-, deoxy-, met-, carboxy- and sulfhaemoglobin) is analysed numerically. The methods are proposed to determine in realtime these parameters without contact of the measuring instrument with the patient's body. (biophotonics)

  11. Contactless diagnostics of biophysical parameters of skin and blood on the basis of approximating functions for radiation fluxes scattered by skin

    Science.gov (United States)

    Lisenko, S. A.; Kugeiko, M. M.

    2014-03-01

    Approximating expressions are derived to calculate spectral and spatial characteristics of diffuse reflection of light from a two-layer medium mimicking human skin. The effectiveness of the use of these expressions in the optical diagnosis of skin biophysical parameters (tissue scattering parameters, concentration of melanin in the epidermis, concentration of total haemoglobin and bilirubin in the tissues of the dermis) and content of haemoglobin derivatives in blood (oxy-, deoxy-, met-, carboxy- and sulfhaemoglobin) is analysed numerically. The methods are proposed to determine in realtime these parameters without contact of the measuring instrument with the patient's body.

  12. Eritema anular eosinofílico en un adulto Eosinophilic anular erythema in an adult.

    Science.gov (United States)

    Lobo, Marta Aguado; Gonzalo, Elena Sierra; Jiménez-Reyes, José

    2017-10-15

    Eosinophilic annular erythema (EAE) is an uncommon eosinophilic dermatosis. Clinically it is characterized by recurrent episodes of annular or figurative plaques. The histopathological study shows a perivascular inflammatory infiltrate in the superficial and deep dermis, composed of lymphocytes and eosinophils. It was originally described in children. We report an adult woman who presented with recurrent erythematous annular plaques on the trunk and extremities. A biopsy showed a mainly perivascular lymphocytic infiltrate with numerous eosinophils in the dermis. Laboratory examinations revealed subclinical hypothyroidism. The lesions resolved with topical corticosteroid spontaneously after 3 months.El eritema anular eosinofílico (EAE) es una dermatosis eosinofílica poco frecuente. Clínicamente se caracteriza por episodios recurrentes de placas anulares o figuradas.El estudio histopatológico muestra un infiltrado inflamatorio en dermis superficial y profunda, de localización perivascular y compuesto por linfocitos y eosinófilos. Se describió originariamente en niños. Presentamos una mujer adulta con episodios recurrentes de placas anulares o figuradas en el tronco y extremidades. La biopsia mostró un infiltrado linfocítico perivascular con numerosos eosinófilos en la dermis. La analítica reveló la presencia de hipotiroidismo subclínico. Las lesiones se resolvieron después de tres meses de tratamiento con una crema de corticoesteriodes.

  13. The combined effect of diabetes and ionising radiation on the retinal vasculature of the rat

    International Nuclear Information System (INIS)

    Gardiner, T.A.; Amoaku, W.M.K.; Archer, D.B.

    1993-01-01

    The clinical impression that pre-existing diabetes exacerbates radiation injury to the retinal vasculature was studied in STZ diabetic rats. Half of 2 groups of streptozotocin (STZ)-induced diabetic rats and 1 group of normal animals had their right eyes irradiated with 1000 cGy of 90 KVP x-rays. The prevalence of acellular capillaries in trypsin digests of the retinal vasculature was quantified for each of the 6 groups of animals at 6.5 months post-irradiation. The prevalence of acellular capillaries in both non-irradiated diabetic groups was significantly higher than in controls while the irradiated animals in each of the three main categories showed a statistically significant increase compared to their non-irradiated equivalents. (author)

  14. Detection of COL III in Parchment by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Vestergaard Poulsen Sommer, Dorte; Larsen, René

    2016-01-01

    Cultural heritage parchments made from the reticular dermis of animals have been subject to studies of deterioration and conservation by amino acid analysis. The reticular dermis contains a varying mixture of collagen I and III (COL I and III). When dealing with the results of the amino acid...... analyses, till now the COL III content has not been taken into account. Based on the available amino acid sequences we present a method for determining the amount of COL III in the reticular dermis of new and historical parchments calculated from the ratio of Ile/Val. We find COL III contents between 7...... and 32 % in new parchments and between 0.2 and 40 % in the historical parchments. This is consistent with results in the literature. The varying content of COL III has a significant influence on the uncertainty of the amino acid analysis. Although we have not found a simple correlation between the COL...

  15. Monte Carlo study of skin optical clearing to enhance light penetration in the tissue: implications for photodynamic therapy of acne vulgaris

    Science.gov (United States)

    Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.; Altshuler, Gregory B.; Yaroslavsky, Ilya V.

    2008-06-01

    Result of Monte Carlo simulations of skin optical clearing is presented. The model calculations were carried out with the aim of studying of spectral response of skin under immersion liquids action and calculation of enhancement of light penetration depth. In summary, we have shown that: 1) application of glucose, propylene glycol and glycerol produced significant decrease of light scattering in different skin layers; 2) maximal clearing effect will be obtained in case of optical clearing of skin dermis, however, absorbed light fraction in skin dermis changed insignificantly, independently on clearing agent and place it administration; 3) in contrast to it, the light absorbed fraction in skin adipose layer increased significantly in case of optical clearing of skin dermis. It is very important because it can be used for development of optical methods of obesity treatment; 4) optical clearing of superficial skin layers can be used for decreasing of power of light radiation used for treatment of acne vulgaris.

  16. Preconditioning With Low-Level Laser Irradiation Enhances the Therapeutic Potential of Human Adipose-derived Stem Cells in a Mouse Model of Photoaged Skin.

    Science.gov (United States)

    Liao, Xuan; Li, Sheng-Hong; Xie, Guang-Hui; Xie, Shan; Xiao, Li-Ling; Song, Jian-Xing; Liu, Hong-Wei

    2018-02-19

    This study was conducted to explore the therapeutic potential of human adipose-derived stem cells (ADSCs) irradiated with a low-level laser (LLL). Cultured ADSCs were treated with 650-nm GaAlAs laser irradiation at 2, 4 and 8 J cm -2 . Cell proliferation was quantified by MTT assays, cytokine secretion was determined by enzyme-linked immunosorbent assays, and adipogenic differentiation was examined by oil red O staining. Additionally, the expression profiles of putative ADSC surface markers were analyzed by quantitative real-time PCR. In addition, a mouse photoaged skin model was established by UVB irradiation. Effects of GaAlAs laser-treated ADSCs on the thicknesses of the epidermis and dermis were analyzed by hematoxylin and eosin staining. The results showed that GaAlAs laser treatment of cells at a radiant exposure of 4 J cm -2 enhanced ADSC proliferation and adipogenic differentiation and increased secretion of growth factors. Furthermore, GaAlAs laser irradiation upregulated the expression of putative ADSC surface markers. In the mouse model of photoaged skin, ADSCs treated with GaAlAs laser irradiation had markedly decreased the epidermal thickness and increased the dermal thickness of photoaged mouse skin. Our data indicate that LLL irradiation is an effective biostimulator of ADSCs and might enhance the therapeutic potential of ADSCs for clinical use. © 2018 The American Society of Photobiology.

  17. The role of near infrared radiation in photoaging of the skin.

    Science.gov (United States)

    Schroeder, Peter; Haendeler, Judith; Krutmann, Jean

    2008-07-01

    Infrared (IR) radiation is non-ionizing, electromagnetic radiation with wavelengths between 760 nm and 1 mm, which is further divided into IRA, IRB and IRC. IR accounts for more than half of the solar energy that reaches the human skin. While IRB and IRC do not penetrate deeply into the skin, more than 65% of IRA reaches the dermis. Human skin is increasingly exposed to IRA-radiation; most relevant sources are (i) natural solar radiation consisting of over 30% IRA, (ii) artificial IRA sources used for therapeutic or wellness purposes and (iii) artificial UV sources contaminated with IRA. As part of natural sunlight, IRA significantly contributes to extrinsic skin aging. This article reviews the cutaneous effects of IRA-radiation, the underlying molecular mechanisms and the available protective strategies.

  18. Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine.

    Science.gov (United States)

    Balestrini, Jenna L; Gard, Ashley L; Gerhold, Kristin A; Wilcox, Elise C; Liu, Angela; Schwan, Jonas; Le, Andrew V; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J; Mecham, Robert P; Schwartz, Martin A; Niklason, Laura E; White, Eric S

    2016-09-01

    Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Abnormal phenotype of cultured fibroblasts in human skin with chronic radiotherapy damage

    International Nuclear Information System (INIS)

    Delanian, S.; Martin, M.; Lefaix, J.-L.; Bravard, A.; Luccioni, C.

    1998-01-01

    Purpose: The pathophysiological aspects of radiation-induced fibrosis (RIF) have not been well characterized. We therefore cultured human fibroblasts from samples of skin with RIF to investigate the long-term effects of therapeutic irradiation. Materials and methods: Biopsies of normal and RIF skin were obtained from patients previously irradiated for cancer, without recurrence. Cells were extracted from dermis samples by the outgrowth technique, seeded as monolayers and cultured at confluence. Enzyme activities and proteins were assayed, RNA was isolated and Northern blot analysis was performed on surviving cells between passages 2 and 5. Results: RIF cell cultures displayed heterogeneous fibroblasts populations. The initial outgrowth consisted of one-third small cells that floated rapidly, one-third spindle-shaped cells migrating far from the explant to form islets and one-third large pleiomorphic cells. In subsequent subcultures, surviving cells exhibited either myofibroblastic characteristics with a normal proliferative capacity or senescent morphology with a reduced proliferative capacity. These RIF cells had a brief finite lifespan, with dramatically reduced growth rate during their initial outgrowth and the following passages. Study of the antioxidant metabolism showed that Mn superoxide dismutase and catalase activities were significantly weaker in surviving RIF cells than healthy fibroblasts. These exhausted RIF cells exhibited no overexpression of transforming growth factor β or tissue inhibitor of metalloproteinase. Conclusion: Irradiation may lead to apparently contradictory effects such as fibrosis and necrosis in clinical practice. In cell culture, we observed two main cellular phenotypes which may be related to both processes, i.e. myofibroblast-like cells and fibrocyte-like cells. These two phenotypes may represent two steps in the differentiation induced as a long-term effect of therapeutic irradiation of the skin. Cell culture probably

  20. Efficacy and Safety of the Collagenase of the Bacterium Clostridium Histolyticum for the Treatment of Capsular Contracture after Silicone Implants: Ex-Vivo Study on Human Tissue.

    Directory of Open Access Journals (Sweden)

    Sebastian Fischer

    Full Text Available The fibrotic capsule that surrounds silicone implants consists mainly of collagen. The FDA-approved collagenase of the bacterium clostridium histolyticum provides a reasonable treatment option. Safety and efficacy at the female breast site must be evaluated before clinical utilization.We incubated 20 samples of fibrotic capsule as well as 12 full thickness skin grafts harvested from the female breast site for 24 hours with different doses of collagenase. Outcome measures involved histological assessment of thickness and density of the capsule tissue as well as the skin grafts. Furthermore, we performed a collagen assay and immunohistochemistry staining for collagen subtypes.Collagenase treatment was able to degrade human capsule contracture tissue ex-vivo. The remaining collagen subtype after degradation was type 4 only. 0.3 mg/ml of collagenase was most effective in reducing capsule thickness when compared with higher concentrations. Of note, effectiveness was inversely related to capsule density, such that there was less reduction in thickness with higher capsule densities and vice versa. Furthermore, the application of 0.3mg/ml collagenase did not lead to thinning or perforation of full thickness skin grafts.Adjustment of collagenase dose will depend on thickness and density of the contracted capsule. A concentration of 0.3mg/ml seems to be safe and effective in an ex-vivo setting. The remaining collagen subtype 4 is suitable to serve as a neo-capsule/acellular tissue matrix. Collagenase treatment for capsular contracture may soon become a clinical reality.

  1. Histología y morfometría de piel del pez Eremophilus mutisii (Trychomecteridae, Siluriformes

    Directory of Open Access Journals (Sweden)

    Rocío Johanna Bonilla Lizarazo

    2008-06-01

    Full Text Available Se estudió la piel del pez dulceacuícola endémico de Colombia Eremophylus mutissi. Se tomaron muestras de piel (0.5x0.5 cm² de 11 especimenes en seis partes del cuerpo (mandíbulas, cabeza dorsal, tronco dorsal, tronco caudal, tronco medial y abdominal. Se fijaron en formaldehído al 4%, con deshidratación en etanol al 95 % e isopropanol al 99%, inclusión en parafina y cortes a 5 µm. La piel está constituida por dos capas cutáneas (epidermis y dermis y una capa subcutánea (hipodermis: la epidermis tiene tres capas con células secretoras, células epiteliales y pocas células gustativas; la dermis está separada de la epidermis por una membrana basal. Observamos fibroblastos, dos capas de melanóforos y algunos vasos sanguíneos; la hipodermis tiene un tejido adiposo vascularizado. La dermis es más delgada que la epidermis; la piel tiene más células tipo clava que células mucosas. El tronco medio tiene muchas células clava y células mucosas. La piel de E. mutissi parece tener una función principalmente protectora.Skin histology and morphometry of the fish Eremophilus mutisii (Trychomecteridae, Siluriformes. The tropical freshwater fish Eremophylus mutisii is endemic to the Cundinamarca highland in Colombia. Skin samples (0.5x0.5 cm² were taken from 11 specimens at six body parts (mandible, dorsal head, dorsal trunk, caudal trunk, medial trunk and abdominal area, fixed in 4% formaldehyde, dehydrated in 95% ethanol and 99% isopropanol, embedded in paraffin and sectioned at 5 µm. The skin is made of two mayor cutaneous layers (epidermis and dermis and a subcutaneous layer (hypodermis. The epidermis presents three layers with secretory cells, epithelial cells and a few taste buds; the dermis is separated from the epidermis by a basal membrane. We observed fibroblasts, two layers of melanophors and some blood vessels; the hypodermis has vascularized adipose tissue. Skin thickness changes with body area; the dermis is thicker than

  2. Repair of Postoperative Abdominal Hernia in a Child with Congenital Omphalocele Using Porcine Dermal Matrix

    Directory of Open Access Journals (Sweden)

    V. Lambropoulos

    2016-01-01

    Full Text Available Introduction. Incisional hernias are a common complication appearing after abdominal wall defects reconstruction, with omphalocele and gastroschisis being the most common etiologies in children. Abdominal closure of these defects represents a real challenge for pediatric surgeons with many surgical techniques and various prosthetic materials being used for this purpose. Case Report. We present a case of repair of a postoperative ventral hernia occurring after congenital omphalocele reconstruction in a three-and-a-half-year-old child using an acellular, sterile, porcine dermal mesh. Conclusion. Non-cross-linked acellular porcine dermal matrix is an appropriate mesh used for the reconstruction of abdominal wall defects and their postoperative complications like large ventral hernias with success and preventing their recurrence.

  3. Bordetella pertussis evolution in the (functional) genomics era

    Science.gov (United States)

    Belcher, Thomas; Preston, Andrew

    2015-01-01

    The incidence of whooping cough caused by Bordetella pertussis in many developed countries has risen dramatically in recent years. This has been linked to the use of an acellular pertussis vaccine. In addition, it is thought that B. pertussis is adapting under acellular vaccine mediated immune selection pressure, towards vaccine escape. Genomics-based approaches have revolutionized the ability to resolve the fine structure of the global B. pertussis population and its evolution during the era of vaccination. Here, we discuss the current picture of B. pertussis evolution and diversity in the light of the current resurgence, highlight import questions raised by recent studies in this area and discuss the role that functional genomics can play in addressing current knowledge gaps. PMID:26297914

  4. Quantitative characterization of chitosan in the skin by Fourier-transform infrared spectroscopic imaging and ninhydrin assay: application in transdermal sciences.

    Science.gov (United States)

    Nawaz, A; Wong, T W

    2016-07-01

    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. How the turtle forms its shell: a paracrine hypothesis of carapace formation.

    Science.gov (United States)

    Cebra-Thomas, Judith; Tan, Fraser; Sistla, Seeta; Estes, Eileen; Bender, Gunes; Kim, Christine; Riccio, Paul; Gilbert, Scott F

    2005-11-15

    We propose a two-step model for the evolutionary origin of the turtle shell. We show here that the carapacial ridge (CR) is critical for the entry of the ribs into the dorsal dermis. Moreover, we demonstrate that the maintenance of the CR and its ability to attract the migrating rib precursor cells depend upon fibroblast growth factor (FGF) signaling. Inhibitors of FGF allow the CR to degenerate, with the consequent migration of ribs along the ventral body wall. Beads containing FGF10 can rearrange rib migration in the chick, suggesting that the CR FGF10 plays an important role in attracting the rib rudiments. The co-ordinated growth of the carapacial plate and the ribs may be a positive feedback loop (similar to that of the limbs) caused by the induction of Fgf8 in the distal tips of the ribs by the FGF10-secreting mesenchyme of the CR. Once in the dermis, the ribs undergo endochrondral ossification. We provide evidence that the ribs act as signaling centers for the dermal ossification and that this ossification is due to bone morphogenetic proteins secreted by the rib. Thus, once the ribs are within the dermis, the ossification of the dermis is not difficult to achieve. This relatively rapid means of carapace formation would allow for the appearance of turtles in the fossil record without obvious intermediates. Copyright 2005 Wiley-Liss, Inc.

  6. Fractional CO2 laser resurfacing of photoaged facial and non-facial skin: histologic and clinical results and side effects.

    Science.gov (United States)

    Sasaki, Gordon H; Travis, Heather M; Tucker, Barbara

    2009-12-01

    CO(2) fractional ablation offers the potential for facial and non-facial skin resurfacing with minimal downtime and rapid recovery. The purpose of this study was (i) to document the average depths and density of adnexal structures in non-lasered facial and non-facial body skin; (ii) to determine injury in ex vivo human thigh skin with varying fractional laser modes; and (iii) to evaluate the clinical safety and efficacy of treatments. Histologies were obtained from non-lasered facial and non-facial skin from 121 patients and from 14 samples of excised lasered thigh skin. Seventy-one patients were evaluated after varying energy (mJ) and density settings by superficial ablation, deeper penetration, and combined treatment. Skin thickness and adnexal density in non-lasered skin exhibited variable ranges: epidermis (47-105 mum); papillary dermis (61-105 mum); reticular dermis (983-1986 mum); hair follicles (2-14/ HPF); sebaceous glands (2-23/HPF); sweat glands (2-7/HPF). Histological studies of samples from human thigh skin demonstrated that increased fluencies in the superficial, deep and combined mode resulted in predictable deeper levels of ablations and thermal injury. An increase in density settings results in total ablation of the epidermis. Clinical improvement of rhytids and pigmentations in facial and non-facial skin was proportional to increasing energy and density settings. Patient assessments and clinical gradings by the Wilcoxon's test of outcomes correlated with more aggressive settings. Prior knowledge of normal skin depths and adnexal densities, as well as ex vivo skin laser-injury profiles at varying fluencies and densities, improve the safety and efficiency of fractional CO(2) for photorejuvenation of facial and non-facial skin.

  7. Diabetes: foot ulcers and amputations.

    Science.gov (United States)

    Hunt, Dereck L

    2011-08-26

    Diabetic foot ulceration is full-thickness penetration of the dermis of the foot in a person with diabetes. Severity is classified using the Wagner system, which grades it from 1 to 5. The annual incidence of ulcers among people with diabetes is 2.5% to 10.7% in resource-rich countries, and the annual incidence of amputation for any reason is 0.25% to 1.8%. We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of interventions to prevent foot ulcers and amputations in people with diabetes? What are the effects of treatments in people with diabetes with foot ulceration? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 50 systematic reviews and RCTs that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review, we present information relating to the effectiveness and safety of the following interventions: debridement, human cultured dermis, human skin equivalent, patient education, pressure off-loading with felted foam or pressure-relief half-shoe, pressure off-loading with total-contact or non-removable casts, screening and referral to foot-care clinics, systemic hyperbaric oxygen for non-infected ulcers, systemic hyperbaric oxygen in infected ulcers, therapeutic footwear, topical growth factors, and wound dressings.

  8. Concomitant use of an oral live pentavalent human-bovine reassortant rotavirus vaccine with licensed parenteral pediatric vaccines in the United States.

    Science.gov (United States)

    Rodriguez, Zoe M; Goveia, Michelle G; Stek, Jon E; Dallas, Michael J; Boslego, John W; DiNubile, Mark J; Heaton, Penny M

    2007-03-01

    A live pentavalent rotavirus vaccine (PRV) containing 5 human-bovine (WC3) reassortants expressing human serotypes G1, G2, G3, G4 and P1A[8] was evaluated in a blinded, placebo-controlled study. Possible interactions between PRV and concomitantly administered licensed pediatric vaccines were investigated in a United States-based nested substudy (Concomitant Use Study) of the Rotavirus Efficacy and Safety Trial. From 2002 to 2003, healthy infants approximately 6 to 12 weeks of age at entry were randomized to receive either 3 oral doses of PRV or placebo at 4- to 10-week intervals. Subjects were also to receive combined Haemophilus influenzae type b and hepatitis B vaccine (2 doses), diphtheria and tetanus toxoids and acellular pertussis vaccine (3 doses), inactivated poliovirus vaccine (2 doses) and pneumococcal conjugate vaccine (3 doses) on the same day; oral poliovirus vaccine was not administered. Immunogenicity was assessed by measuring antibody responses to PRV and antigens contained in the licensed vaccines. Cases of rotavirus gastroenteritis were defined by forceful vomiting and/or -3 watery or looser-than-normal stools within a 24-hour period, and detection of rotavirus antigen in the stool. Safety was assessed by reporting of adverse events using diary cards. The Concomitant Use Study enrolled 662 subjects in the PRV group and 696 subjects in the placebo group. For the 17 antigens in the concomitantly administered vaccines, antibody responses were similar in PRV and placebo recipients, except for moderately diminished antibody responses to the pertactin component of pertussis vaccine. Efficacy of PRV against rotavirus gastroenteritis of any severity was 89.5% (95% CI = 26.5-99.8%). PRV was generally well tolerated when given concomitantly with the prespecified vaccines. In this study, antibody responses to the concomitantly administered vaccines were generally similar in PRV and placebo recipients. PRV was efficacious and well tolerated when given

  9. Morphology of brood pouch formation in the pot-bellied seahorse Hippocampus abdominalis.

    Science.gov (United States)

    Kawaguchi, Mari; Okubo, Ryohei; Harada, Akari; Miyasaka, Kazuki; Takada, Kensuke; Hiroi, Junya; Yasumasu, Shigeki

    2017-01-01

    The reproductive strategies of vertebrates are diverse. Seahorses (Pisces: Syngnathidae) possess the unique characteristic of male pregnancy; i.e., males, not females, incubate embryos in a specialized structure called a 'brood pouch'. The brood pouch is formed along the ventral midline of the tail. The lumen of the brood pouch is surrounded by loose connective tissue, called pseudoplacenta, and dermis. We visualized and evaluated the morphology of brood pouch formation in Hippocampus abdominalis to gain generalizable insights into this process in seahorses. First, we employed several staining methods to characterize the pseudoplacenta and dermis of the brood pouch of mature male seahorses. The pseudoplacenta is composed mainly of reticular fibers, while the dermis is composed mainly of collagenous fibers. Further observations showed that pouch formation is initiated by linear projections of epithelia on both ventrolateral sides of the body. These projections elongated toward the ventral midline, eventually fused together, and then formed a baggy structure composed of a single dermis layer with neither smooth muscle nor pseudoplacenta. Finally, the pseudoplacenta was formed, together with two layers of dermis and smooth muscle. Thus, a fully developed brood pouch was established. The morphology of the luminal epithelium also changed during pouch formation. We analyzed the localization of C-type lectins as markers; haCTL II was localized in both the outer and luminal epithelia of the brood pouch throughout development in the male seahorse, whereas haCTL IV, which was not detected in the early stage of seahorse development, became localized only in the luminal epithelium as development proceeded. We categorized the processes of brood pouch formation during male seahorse development into three stages: (1) the early stage, characterized by formation of a baggy structure from the primordium; (2) the middle stage, characterized by the differentiation and establishment of

  10. Contribution of pertussis toxin to the pathogenesis of pertussis disease

    Science.gov (United States)

    Carbonetti, Nicholas H.

    2015-01-01

    Pertussis toxin (PT) is a multisubunit protein toxin secreted by Bordetella pertussis, the bacterial agent of the disease pertussis or whooping cough. PT in detoxified form is a component of all licensed acellular pertussis vaccines, since it is considered to be an important virulence factor for this pathogen. PT inhibits G protein-coupled receptor signaling through Gi proteins in mammalian cells, an activity that has led to its widespread use as a cell biology tool. But how does this activity of PT contribute to pertussis, including the severe respiratory symptoms of this disease? In this minireview, the contribution of PT to the pathogenesis of pertussis disease will be considered based on evidence from both human infections and animal model studies. Although definitive proof of the role of PT in humans is lacking, substantial evidence supports the idea that PT is a major contributor to pertussis pathology, including the severe respiratory symptoms associated with this disease. PMID:26394801

  11. The effect of hydroxychloroquine on lupus erythematosus-like skin lesions in MRL/lpr mice.

    Science.gov (United States)

    Shimomatsu, Tatsuya; Kanazawa, Nobuo; Mikita, Naoya; Nakatani, Yumi; Li, Hong-Jin; Inaba, Yutaka; Ikeda, Takaharu; Kondo, Toshikazu; Furukawa, Fukumi

    2016-09-01

    To evaluate the effect and safety of hydroxychloroquine (HCQ) on lupus erythematosus (LE)-like skin lesions in the MRL/lpr mouse, a model for systemic LE (SLE). We divided the MRL/lpr mice into three groups that were given: (1) drinking water, (2) HCQ at a dose of 4 mg/kg/d, or (3) HCQ at a dose of 40 mg/kg/d. The HCQ was administered to examine the effect and safety of HCQ on skin lesions and the number of infiltrating cells including mast cells in the dermis. Six of 13 mice in the group given drinking water, 3 of 11 mice in the group administered low-dose HCQ (4 mg/kg/d), and 1 of 10 mice in the group administered high-dose HCQ (40 mg/kg/d) presented the skin lesions. The average number of mast cells was 81, 50, and 12 (magnification, ×100), the mortality rate was 24%, 8%, and 9% and the mean body weight gain was 4.6 g, 8.0 g and 5.1 g, respectively. HCQ was demonstrated to decrease the appearance of LE-like lesions and the number of mast cells in the dermis. Furthermore, there were no obvious systemic adverse effects. This study provides evidence that suggests benefits in human patients.

  12. Exocellular extract of Fusarium oxysporum, fungus free, is able to permeate and act selectively in skin.

    Science.gov (United States)

    Sibin Melo, Katia C; Correia, Marcelo H; Svidzinski, Terezinha I E; Hernandes, Luzmarina

    2018-05-01

    The skin is an important gateway for Fusarium infection in humans. Our hypothesis is that metabolites produced by Fusarium oxysporum should change the barrier structure to permeate the skin. Male Wistar rats received a topical application of a solution (0.05 mg/mL) of Fusarium metabolites. The animals were euthanized 3, 6, 12, 24 h after and the skin was processed for immunostaining by laminin and E-cadherin to investigate whether the Fusarium metabolites can break the barrier of healthy skin. Other techniques were employed: H&E to study the morphology; metalloproteinase-9 (MMP-9), TUNEL, and PCNA immunostaining to evaluate the inflammation, cell death, and proliferation, respectively. There was an inflammatory response mainly centered in the dermis. Qualitatively, the skin of the experimental group showed reduced E-cadherin and laminin immunostaining at 3, 12, and 24 h. Higher intensity staining by TUNEL at 3 h, and PCNA at 6, 12, and 24 h. There was intense MMP-9 activity at 6, 12, and 24 h. None of analyses revealed any changes in the epidermis. It was concluded that the fraction was able to permeate the skin and act selectively in dermis, inducing inflammatory response, increasing MMP-9 immunostaining, inducing apoptosis, and reducing E-cadherin and laminin immunostaining. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  13. Ingestion of BioCell Collagen(®), a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs.

    Science.gov (United States)

    Schwartz, Stephen R; Park, Joosang

    2012-01-01

    Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen(®) (BCC), which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weight hyaluronic acid and chondroitin sulfate, in 26 healthy females who displayed visible signs of natural and photoaging in the face. Daily supplementation with 1 g of BCC for 12 weeks led to a significant reduction of skin dryness/scaling (76%, P = 0.002) and global lines/wrinkles (13.2%, P = 0.028) as measured by visual/tactile score. Additionally, a significant increase in the content of hemoglobin (17.7%, P = 0.018) and collagen (6.3%, P = 0.002) in the skin dermis was observed after 6 weeks of supplementation. At the end of the study, the increase in hemoglobin remained significant (15%, P = 0.008), while the increase in collagen content was maintained, but the difference from baseline was not significant (3.5%, P = 0.134). This study provides preliminary data suggesting that dietary supplementation with BCC elicits several physiological events which can be harnessed to counteract natural photoaging processes to reduce visible aging signs in the human face. A controlled study is necessary to verify these observations.

  14. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs

    Science.gov (United States)

    Schwartz, Stephen R; Park, Joosang

    2012-01-01

    Skin aging and its clinical manifestation is associated with altered molecular metabolism in the extracellular matrix of the dermis. In a pilot open-label study, we investigated the effect of a dietary supplement, BioCell Collagen® (BCC), which contains a naturally occurring matrix of hydrolyzed collagen type II and low-molecular-weight hyaluronic acid and chondroitin sulfate, in 26 healthy females who displayed visible signs of natural and photoaging in the face. Daily supplementation with 1 g of BCC for 12 weeks led to a significant reduction of skin dryness/scaling (76%, P = 0.002) and global lines/wrinkles (13.2%, P = 0.028) as measured by visual/tactile score. Additionally, a significant increase in the content of hemoglobin (17.7%, P = 0.018) and collagen (6.3%, P = 0.002) in the skin dermis was observed after 6 weeks of supplementation. At the end of the study, the increase in hemoglobin remained significant (15%, P = 0.008), while the increase in collagen content was maintained, but the difference from baseline was not significant (3.5%, P = 0.134). This study provides preliminary data suggesting that dietary supplementation with BCC elicits several physiological events which can be harnessed to counteract natural photoaging processes to reduce visible aging signs in the human face. A controlled study is necessary to verify these observations. PMID:22956862

  15. Immunohistochemical expression of perforin in lichen planus lesions.

    Science.gov (United States)

    Gaber, Mohamed Abdelwahed; Maraee, Alaa Hassan; Alsheraky, Dalia Rifaat; Azeem, Marwa Hussain Abdel

    2014-12-01

    Lichen planus (LP) is a chronic inflammatory papulosquamous skin disease characterized by epidermal basal cell damage and a particular band-like infiltrate predominantly of T cells in the upper dermis. It is characterized by the formation of colloid bodies representing apoptotic keratinocytes. The apoptotic process mediated by CD8+ cytotoxic T lymphocytes and natural killer cells mainly involves two distinct pathways: the perforin/granzyme pathway and the Fas/FasL pathway. So far, little is known regarding the role of perforin-mediated apoptosis in LP. Is to study the expression and distribution of perforin in the epidermis and dermis of lesional LP skin. Skin biopsy specimens from lesional skin of 31 patients with LP and 10 healthy persons were analyzed by immunohistochemistry. Significant accumulation of perforin + cells was found in both epidermis and dermis of LP lesions compared with healthy skin. Perforin expression was significantly upregulated in the epidermis of LP lesions. Accumulation of perforin + cells in the epidermis of LP lesions suggest a potential role of perforin in the apoptosis of basal keratinocytes.

  16. Penetration of ASM 981 in canine skin: a comparative study.

    Science.gov (United States)

    Gutzwiller, Meret E Ricklin; Reist, Martin; Persohn, Elke; Peel, John E; Roosje, Petra J

    2006-01-01

    ASM 981 has been developed for topical treatment of inflammatory skin diseases. It specifically inhibits the production and release of pro-inflammatory cytokines. We measured the skin penetration of ASM 981 in canine skin and compared penetration in living and frozen skin. To make penetration of ASM 981 visible in dog skin, tritium labelled ASM 981 was applied to a living dog and to defrosted skin of the same dog. Using qualitative autoradiography the radioactive molecules were detected in the lumen of the hair follicles until the infundibulum, around the superficial parts of the hair follicles and into a depth of the dermis of 200 to 500 microm. Activity could not be found in deeper parts of the hair follicles, the dermis or in the sebaceous glands. Penetration of ASM 981 is low in canine skin and is only equally spread in the upper third of the dermis 24 hours after application. Penetration in frozen skin takes even longer than in living canine skin but shows the same distribution.

  17. Factores dermicos que condicionan la infeccion de Lutzomyia townsendi (Ortiz, 1959 por Leishmania spp. de Venezuela Dermal factors which condition infection of Lutzomyia townsendi (Ortiz, 1959 by Leishmania spp. of Venezuela

    Directory of Open Access Journals (Sweden)

    Maritza Carnevali

    1982-12-01

    Full Text Available Se estudia la susceptibilidad de Lutzomyia townsendi a la infección con Leishmania spp. sobre lesiones experimentales de hamsteres. Se estudia la frecuencia y distribución de los amastigotos en la dermis, relacionándola con la profundidad que alcanza el estilete bucal del insecto. Una correlación positiva, con significante coeficiente de correlación, se establece entre la frecuencia de los parásitos a una profundidad de 100-150 nm en la dermis y el éxito de la infección de los flebótomos.The susceptibility of Lutzomyia townsendi to infection with amastigotes of Leishmania spp. from experimental lesions in hamsters is studied. A good correlation is found when the number of infected sandflies are compared with the distribution and density of parasites in the dermis, taking into account the size of the fascicle, particularly the length of labrun and dental depth in maxillae. Considerations are made on the susceptibilities of some anthropophilic sandflies from America that are considered as good vectors.

  18. Quantitative and qualitative evaluation of dermal elastin of draught horses with chronic progressive lymphoedema.

    Science.gov (United States)

    De Cock, H E V; Van Brantegem, L; Affolter, V K; Oosterlinck, M; Ferraro, G L; Ducatelle, R

    2009-01-01

    Chronic progressive lymphoedema (CPL) in horses, a disease of certain draught breeds, is associated with altered elastin metabolism. The characteristic lesions are seen in the skin of the lower (distal) limbs. This study was based on horses of susceptible breeds, with and without CPL, and on horses of a non-susceptible breed. Skin samples were obtained for examination from the neck (considered a non-affected region) and from the distal limb. The skin lesions were characterized histologically and the dermal elastic fibres were evaluated morphologically and quantitatively. In all horses the mean elastin concentrations were highest in the superficial dermis, gradually decreasing in the mid-dermis and deep dermis. As compared with horses of a non-susceptible breed, affected horses had increased amounts of dermal elastin in both the distal limb and neck, while non-affected horses of a susceptible breed had decreased amounts. The findings support an earlier hypothesis that CPL of horses is a generalized disease. Reduced efficiency of the elastic network in supporting the dermal lymphatics may explain the development of CPL.

  19. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury

    Directory of Open Access Journals (Sweden)

    Burra Patrizia

    2012-07-01

    Full Text Available Abstract Background Hepatocytes and stem cells transplantation may be an alternative to liver transplantation in acute or chronic liver disease. We aimed to evaluate the therapeutic potential of mesenchymal stem cells from human umbilical cord (UCMSCs, a readily available source of mesenchymal stem cells, in the CCl4-induced acute liver injury model. Methods Mesenchymal stem cells profile was analyzed by flow cytometry. In order to evaluate the capability of our UCMSCs to differentiate in hepatocytes, cells were seeded on three different supports, untreated plastic support, MatrigelTM and human liver acellular matrix. Cells were analyzed by immunocitochemistry for alpha-fetoprotein and albumin expression, qPCR for hepatocyte markers gene expression, Periodic Acid-Schiff staining for glycogen storage, ELISA for albumin detection and colorimetric assay for urea secretion. To assess the effects of undifferentiated UCMSCs in hepatic regeneration after an acute liver injury, we transplanted them via tail vein in mice injected intraperitoneally with a single dose of CCl4. Livers were analyzed by histological evaluation for damage quantification, immunostaining for Kupffer and stellate cells/liver myofibroblasts activation and for UCMSCs homing. Pro- and anti-inflammatory cytokines gene expression was evaluated by qPCR analysis and antioxidant enzyme activity was measured by catalase quantification. Data were analyzed by Mann–Whitney U-test, Kruskal-Wallis test and Cuzick’s test followed by Bonferroni correction for multiple comparisons. Results We have standardized the isolation procedure to obtain a cell population with hepatogenic properties prior to in vivo transplantation. When subjected to hepatogenic differentiation on untreated plastic support, UCMSCs differentiated in hepatocyte-like cells as demonstrated by their morphology, progressive up-regulation of mature hepatocyte markers, glycogen storage, albumin and urea secretion. However

  20. Production of decellularized porcine lung scaffolds for use in tissue engineering†

    Science.gov (United States)

    Balestrini, Jenna L.; Gard, Ashley L.; Liu, Angela; Leiby, Katherine L.; Schwan, Jonas; Kunkemoeller, Britta; Calle, Elizabeth A.; Sivarapatna, Amogh; Lin, Tylee; Dimitrievska, Sashka; Cambpella, Stuart G.; Niklason, Laura E.

    2015-01-01

    There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual PMID:26426090

  1. Effectiveness and acceptance of a health care-based mandatory vaccination program.

    Science.gov (United States)

    Leibu, Rachel; Maslow, Joel

    2015-01-01

    To decrease the risk of transmission of hospital-associated transmission of influenza and pertussis through mandatory vaccination of staff. A mandatory influenza and toxoid-diphtheria toxoid-acellular pertussis program was implemented systemwide. A structured vaccine exemption program was implemented for those requesting a medical and/or religious/moral/ethical exemption. Systemwide influenza vaccination rates increased from 67% historically, 76.2% in the 2012 to 2013 influenza season, to 94.7% in 2013 to 2014 with an overall compliance rate of 97.8%. Toxoid-diphtheria toxoid-acellular pertussis vaccination rates systemwide reached 94.9%, with an overall compliance rate of 98%. Higher rates were experienced at individual hospital facilities compared with the corporate location. Successful vaccination campaign outcomes can be achieved through diligent enforcement of mandatory vaccination, masking, and other infection prevention procedures.

  2. Characterization of oily mature skin by biophysical and skin imaging techniques.

    Science.gov (United States)

    de Melo, M O; Maia Campos, P M B G

    2018-02-13

    The skin is a complex biological system and may suffer change according to the environmental factors, as higher temperatures can increase sebum excretion, presenting oiliness and acne. These alterations can persist during the aging and provoke more changes in aged skin. In this study we evaluated the mature oily skin characteristics using biophysical and skin imaging techniques. Sixty healthy female subjects, aged between 39 and 55 years old were recruited and separated into 2 groups according to their skin type: normal/dry and oily skin. The skin was evaluated in terms of stratum corneum water content, transepidermal water loss (TEWL) sebum content, dermis thickness and echogenicity, skin microrelief, and pores content. The mature oily skin presented no significant differences when compared to the normal/dry skin on the stratum corneum water content and TEWL parameters. The sebum content was significantly higher on the oily skin group. The microrelief analysis showed an increase of skin roughness values in the oily skin and increase of scaliness in the normal/dry skin. The oily skin showed lower dermis echogenicity mainly in the frontal region and higher dermis thickness when compared to normal/dry skin. The mature oily skin showed different characteristics from normal/dry skin in terms of sebum content, microrelief parameters, and dermis thickness. This way, the characterization of mature oily skin in an objective way is very important to development of dermocosmetic products for more effective treatments focused specially on this type of skin. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Microbotox of the Lower Face and Neck: Evolution of a Personal Technique and Its Clinical Effects.

    Science.gov (United States)

    Wu, Woffles T L

    2015-11-01

    Microbotox is the injection of multiple microdroplets of diluted onabotulinumtoxinA into the dermis or the interface between the dermis and the superficial layer of facial muscles. The intention is to decrease sweat and sebaceous gland activity to improve skin texture and sheen and to target the superficial layer of muscles that find attachment to the undersurface of the dermis causing visible rhytides. For treatment of the lower face and neck, hundreds of microdroplets of diluted Botox are injected into the dermis or immediate subdermal plane to improve skin texture, smoothen horizontal creases, and decrease vertical banding of the neck, as well as to achieve better apposition of the platysma to the jawline and neck, improving contouring of the cervicomental angle. The Microbotox solution is mixed in the syringe by adding a small volume of lidocaine to the calculated dose of onabotulinumtoxinA drawn from a standard bottle of Botox prepared with 2.5 mL saline. Each 1 mL syringe of Microbotox solution contains 20-28 units of onabotulinumtoxinA per mL of solution and is used to deliver 100-120 injections. The lower face and neck will usually require 1 mL per side. The injections are delivered intradermally using a 30- or 32-G needle raising a tiny blanched weal at each point. The author has over 1867 documented cases of Microbotox in various parts of the face (forehead, glabellar, crow's-feet, infraorbital, and cheeks) and neck, the majority of these patients being treated in forehead or the lower face and neck as described in this article.

  4. Ultraviolet B radiation increases hairless mouse mast cells in a dose-dependent manner and alters distribution of UV-induced mast cell growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Kligman, L.H.; Murphy, G.F. [Pennsylvania Univ., Philadelphia, PA (United States). School of Medicine

    1996-01-01

    In studies of the effects of chronic UVB irradiation on dermal connective tissue in the hairless mouse, we observed that the number and size of mast cells was increased. Because mast cells are known to be associated with connective tissue remodeling, we examined and quantified the effect of increasing UVB (290-320 nm)doses on this cell. Groups of mice were exposed to filtered FS-40 Westinghouse lamps (290-400 nm: peak irradiance 313 nm) for 1-5 minimal erythema doses (MED) thrice weekly for 10 weeks. Appropriate controls were included. Biopsies, processed for light microscopy, were stained with toluidine blue. Mast cells were counted in 15 high-magnification fields per specimen with upper and lower dermis scored separately. Significant increases in large densely granular mast cells occurred at 2 MED in the lower dermic in association with the UVB-exacerbated granulomatous reaction. In the upper dermis, mast cells were significantly increased with 3 MED. These findings suggest that mast cells may play a dual role in UV-irradiated skin with those in the lower dermis related to inflammation processes and those in the upper dermis involved in connective tissue modeling. To gain understanding of the mechanism of mast cell recruitment and maturation, we examined the effect of UVB on mast cell growth factor expression. This was enhanced in the epidermis by UVB, with a shift from cytoplasmic staining to membrane-associated or intercellular staining at 2 MED and higher. Dermal dendritic and mononuclear cells also showed increased reactivity. (Author).

  5. Diagnostic challenges with acellular bacterial meningitis

    African Journals Online (AJOL)

    tests performed included a non-reactive HIV ELISA and syphilis serology. ... Despite our patient's reduced CSF glucose and raised protein, the inconsistent .... Suzuki W, et al. Cerebrospinal fluid/blood glucose ratio as an indicator for bacterial ...

  6. Examination of wound healing after curettage by multiphoton tomography of human skin in vivo.

    Science.gov (United States)

    Springer, S; Zieger, M; Böttcher, A; Lademann, J; Kaatz, M

    2017-11-01

    The multiphoton tomography (MPT) has evolved into a useful tool for the non-invasive investigation of morphological and biophysical characteristics of human skin in vivo. Until now, changes of the skin have been evaluated mainly by using clinical and histological techniques. In this study, the progress of wound healing was investigated by MPT over 3 weeks with a final examination after 24 months. Especially, the collagen degradation, reepithelization and tissue formation were examined. As specific parameter for wound healing and its course the second-harmonic generation-to-autofluorescence aging index of dermis (SAAID) was used. About 10 volunteers aged between 25 and 58 years were examined. Acute wounds were scanned with three Z-stacks taken per visit. The stacks were taken up to a depth of 225 μm at increments of 5 μm and a scan time for 3 seconds per scan. Subsequently, the SAAID was evaluated as an indicator for wound healing. Furthermore, single scans were taken for morphological investigations. The evaluation revealed a distinct difference in the SAAID behavior between the Z-stacks taken at each visit. Furthermore, the degradation of collagen and cells and their reappearance could be shown in the course of the visits. Clear differences in the curve behavior of the SAAID at every visit were shown in this study. The SAAID curves and morphological images could be correlated with findings of the clinical examination of different wound healing phases. Therefore, SAAID curves and morphological MPT imaging could provide a non-invasive tool for the determination of wound healing phases in patients in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Morphea-like localized involutional lipoatrophy—a case report associated with family history

    Directory of Open Access Journals (Sweden)

    Cheng-Huang Chang

    2010-09-01

    Full Text Available Localized involutional lipoatrophy is a rare, sporadic disease with female tendency and characterized by focal loss of adipose tissue. We report two sisters, aged 8 years and 6 years, who developed asymptomatic depressive areas on the upper left arm and upper right arm, respectively. Cutaneous sonography showed slight thickening of the dermis and remarkably decreased thickness of the cutaneous fat tissue. Histopathology of a biopsy specimen from the elder sister revealed an increase in homogenized collagen bundles and entrapment of eccrine glands high in the dermis, as well as small to medium-sized lipocytes with a scarcity of inflammatory cells.

  8. Morphea simulating paucibacillary leprosy clinically and histopathologically

    Directory of Open Access Journals (Sweden)

    José Saulo Torres Delgado

    2013-01-01

    Full Text Available Clinically and histopathologically paucibacillary leprosy shows similar features with initial morphea. In this case we report a 24 yr-old male patient who presented to our dermatology department with diagnosed paucibacillary leprosy by his local dermatologist, and confirmed by perineurovascular lymphocytic infiltrate in the histopathological exam. On physical examination we found new plaque lesions that were suggestive of morphea with alteration of sensitivity. A new biopsy was performed showing sclerotic superficial dermis with thickening of the collagen bundles in deep dermis and linear arrays lymphocytic infiltrate between the collagen bundles that confirm the diagnosis of morphea.

  9. Migration ability and Toll-like receptor expression of human mesenchymal stem cells improves significantly after three-dimensional culture.

    Science.gov (United States)

    Zhou, Panpan; Liu, Zilin; Li, Xue; Zhang, Bing; Wang, Xiaoyuan; Lan, Jing; Shi, Qing; Li, Dong; Ju, Xiuli

    2017-09-16

    While the conventional two-dimensional (2D) culture protocol is well accepted for the culture of mesenchymal stem cells (MSCs), this method fails to recapitulate the in vivo native three-dimensional (3D) cellular microenvironment, and may result in phenotypic changes, and homing and migration capacity impairments. MSC preparation in 3D culture systems has been considered an attractive preparatory and delivery method recently. We seeded human umbilical cord-derived MSCs (hUCMSCs) in a 3D culture system with porcine acellular dermal matrix (PADM), and investigated the phenotypic changes, the expression changes of some important receptors, including Toll-like receptors (TLRs) and C-X-C chemokine receptor type 4 (CXCR4) when hUCMSCs were transferred from 2D to 3D systems, as well as the alterations in in vivo homing and migration potential. It was found that the percentage of CD105-positive cells decreased significantly, whereas that of CD34- and CD271-positive cells increased significantly in 3D culture, compared to that in 2D culture. The mRNA and protein expression levels of TLR2, TLR3, TLR4, TLR6, and CXCR4 in hUCMSCs were increased significantly upon culturing with PADM for 3 days, compared to the levels in 2D culture. The numbers of migratory 3D hUCMSCs in the heart, liver, spleen, and bone marrow were significantly greater than the numbers of 2D hUCMSCs, and the worst migration occurred in 3D + AMD3100 (CXCR4 antagonist) hUCMSCs. These results suggested that 3D culture of hUCMSCs with PADM could alter the phenotypic characteristics of hUCMSCs, increase their TLR and CXCR4 expression levels, and promote their migratory and homing capacity in which CXCR4 plays an important role. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Y. [Advanced Materials Group, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lekakou, C., E-mail: C.Lekakou@surrey.ac.uk [Advanced Materials Group, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Labeed, F. [Centre of Biomedical Engineering, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Tomlins, P. [National Physical Laboratory (NPL), Teddington, Middlesex TW11 0LW (United Kingdom)

    2016-04-01

    It is increasingly recognised that biomimetic, natural polymers mimicking the extracellular matrix (ECM) have low thrombogenicity and functional motifs that regulate cell–matrix interactions, with these factors being critical for tissue engineered vascular grafts especially grafts of small diameter. Gelatin constitutes a low cost substitute of soluble collagen but gelatin scaffolds so far have shown generally low strength and suture retention strength. In this study, we have devised the fabrication of novel, electrospun, multilayer, gelatin fibre scaffolds, with controlled fibre layer orientation, and optimised gelatin crosslinking to achieve not only compliance equivalent to that of coronary artery but also for the first time strength of the wet tubular acellular scaffold (swollen with absorbed water) same as that of the tunica media of coronary artery in both circumferential and axial directions. Most importantly, for the first time for natural scaffolds and in particular gelatin, high suture retention strength was achieved in the range of 1.8–1.94 N for wet acellular scaffolds, same or better than that for fresh saphenous vein. The study presents the investigations to relate the electrospinning process parameters to the microstructural parameters of the scaffold, which are further related to the mechanical performance data of wet, crosslinked, electrospun scaffolds in both circumferential and axial tubular directions. The scaffolds exhibited excellent performance in human smooth muscle cell (SMC) proliferation, with SMCs seeded on the top surface adhering, elongating and aligning along the local fibres, migrating through the scaffold thickness and populating a transverse distance of 186 μm and 240 μm 9 days post-seeding for scaffolds of initial dry porosity of 74 and 83%, respectively. - Highlights: • Novel crosslinked electrospun gelatin scaffolds of specific fibre layer orientation • These scaffolds have compliance equivalent to that of coronary

  11. HLA-DPDQDR is expressed in all lesional skin from patients with autoimmune skin diseases

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2014-04-01

    Full Text Available Introduction: Human genes responsible for human antigen presentation and transplant rejection functions are located on the short arm of Chromosome 6 and are called the Major Histocompatibility Complex (MHC. Moreover, the primary physiologic function of MHC molecules is to present peptides to T lymphocytes. MHC molecules are integral components of the ligands that most T cells recognize, since the T cell receptor (TCR has specificity for complexes of foreign antigenic peptides, as well as self-MHC molecules. Aim: Our investigation attempts to investigate the presence of HLA-DPDQDR within lesional skin biopsies from patients affected by autoimmune skin blistering diseases (ABDs. Materials and Methods: We utilized immunohistochemistry (IHC to evaluate the presence of HLA-DPDQDR in lesional skin biopsies of patients affected by ABDs. We tested 30 patients with endemic pemphigus foliaceus (EPF, 15 controls from the EPF endemic area, and 15 biopsies from healthy controls from the USA. We also tested archival biopsies from patients with selected ABDs, including 30 patients with bullous pemphigoid (BP, 20 with pemphigus vulgaris (PV, 8 with pemphigus foliaceus (PF, 14 with dermatitis herpetiformis (DH and 2 with epidermolysis bullosa acquisita (EBA. Results: Most ABD biopsies stained positive for HLA-DPDQDR in the lesional blisters and/or inflamed neurovascular plexus in the superficial dermis, and also at mesenchymal-endothelial like-cell junctions in the dermis. In BP, EBA and EPF, the HLA-DPDQDR staining was also seen in the dermal eccrine sweat gland coils and and ducts. Conclusion: Here, we document that HLA-DPDQDR is expressed in several anatomic areas of lesional skin in patients with ABDs. Notably, HLA-DPDQDR positivity was also consistently present in areas of the classic immune response in pemphigus epidermal keratinocytic intercellular junctions, and at basement membrane sites in bullous pemphigoid and other subepidermal blistering diseases.

  12. Comparison of open-flow microperfusion and microdialysis methodologies when sampling topically applied fentanyl and benzoic acid in human dermis ex vivo

    DEFF Research Database (Denmark)

    Holmgaard, R; Benfeldt, E; Nielsen, J B

    2012-01-01

    . The second purpose was to provide guidance to researchers in choosing the most efficient method for a given penetrant and give suggestions concerning critical choices for successful dermal sampling. METHODS: The dOFM and dMD techniques are compared in equal set-ups using three probe-types (one dOFM probe...... experimental conditions. The methods each had advantages and limitations in technical, practical and hands-on comparisons. CONCLUSION: When planning a study of cutaneous penetration the advantages and limitations of each probe-type have to be considered in relation to the scientific question posed, the physico...

  13. Amelogenin and Enamel Biomimetics

    Science.gov (United States)

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel. PMID:26251723

  14. Fulltext PDF

    Indian Academy of Sciences (India)

    Administrator

    Composites without bone ash did not show acellular bioactivity which was confirmed by ... synthetic and natural, ceramics, bioactive glasses and .... and 70 s coating time. Surface ... 6 nm sputter-coated with carbon by means of a MED 020.

  15. Pediatric aortoiliac injury following blunt abdominal trauma: A case report

    Directory of Open Access Journals (Sweden)

    Edward Daniele

    2017-01-01

    Conclusion: Bovine pericardium is a strong and stable acellular collagenous material with the potential to accelerate endothelialization and tissue regeneration. This remains an interesting field of research as stenosis and pseudo-coarction data have yet to be determined.

  16. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs: An Achievement of Significant Morphological, Numerical and Functional Recovery.

    Directory of Open Access Journals (Sweden)

    Tetsuro Tamaki

    Full Text Available Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34 and CD34-/45-/29+ (Sk-DN/29+ cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm bridging an acellular conduit. After 8-12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells were also observed. A significant tetanic tension recovery (over 90% of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon and functional (80% vs. 60% in tetanus recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks of recovery was observed in both groups with the expression of key factors (mRNA and protein levels, suggesting the paracrine effects to angiogenesis. These results suggested that the

  17. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.

    Science.gov (United States)

    Tamaki, Tetsuro; Hirata, Maki; Nakajima, Nobuyuki; Saito, Kosuke; Hashimoto, Hiroyuki; Soeda, Shuichi; Uchiyama, Yoshiyasu; Watanabe, Masahiko

    2016-01-01

    Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs) to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN/29+) cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm) bridging an acellular conduit. After 8-12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells) were also observed. A significant tetanic tension recovery (over 90%) of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap) was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon) and functional (80% vs. 60% in tetanus) recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks) of recovery was observed in both groups with the expression of key factors (mRNA and protein levels), suggesting the paracrine effects to angiogenesis. These results suggested that the human Sk

  18. Production of decellularized porcine lung scaffolds for use in tissue engineering.

    Science.gov (United States)

    Balestrini, Jenna L; Gard, Ashley L; Liu, Angela; Leiby, Katherine L; Schwan, Jonas; Kunkemoeller, Britta; Calle, Elizabeth A; Sivarapatna, Amogh; Lin, Tylee; Dimitrievska, Sashka; Cambpell, Stuart G; Niklason, Laura E

    2015-12-01

    There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual DNA, biochemical composition, mechanical characteristics, tissue architecture, and recellularization capacity.

  19. Tattoo removal with ingenol mebutate.

    Science.gov (United States)

    Cozzi, Sarah-Jane; Le, Thuy T; Ogbourne, Steven M; James, Cini; Suhrbier, Andreas

    2017-01-01

    An increasing number of people are getting tattoos; however, many regret the decision and seek their removal. Lasers are currently the most commonly used method for tattoo removal; however, treatment can be lengthy, costly, and sometimes ineffective, especially for certain colors. Ingenol mebutate is a licensed topical treatment for actinic keratoses. Here, we demonstrate that two applications of 0.1% ingenol mebutate can efficiently and consistently remove 2-week-old tattoos from SKH/hr hairless mice. Treatment was associated with relocation of tattoo microspheres from the dermis into the posttreatment eschar. The skin lesion resolved about 20 days after treatment initiation, with some cicatrix formation evident. The implications for using ingenol mebutate for tattoo removal in humans are discussed.

  20. Correlação clínica e ultra-sonográfica na esclerodermia localizada cutânea Clinical and ultrasonographic correlation in localized cutaneous scleroderma

    Directory of Open Access Journals (Sweden)

    Marcio Bouer

    2008-04-01

    -treatment follow-up. RESULTS: All the affected regions presented loss of the normal ultrasonographic pattern of the dermis. Cases with clinically atrophic lesions (52.2%; 12/23 corresponded to reduction in the thickness and increase in the echogenicity of the dermis, and clinically inflammatory lesions (47.8%; 11/23 corresponded to decrease in echogenicity and increase in the thickness of the dermis. Post-treatment follow-up demonstrated alterations in the dermis thickness. CONCLUSION: The ultrasonographic findings allow the correlation between increase in the thickness/decrease in echogenicity of the dermis with the inflammatory phase of the disease, and decrease of the thickness/increase in echogenicity of the dermis with the atrophic phase. Also, it could be observed that it is possible to quantify the thickness of the dermis, utilizing this information associated with the clinical evaluation in the post-treatment follow-up.