WorldWideScience

Sample records for accurately measuring recombination

  1. Assignment of resonances in dissociative recombination of HD+ ions: high-resolution measurements compared with accurate computations

    CERN Document Server

    Tamo, F O Waffeu; Motapon, O; Altevogt, S; Andrianarijaona, V M; Grieser, M; Lammich, L; Lestinsky, M; Motsch, M; Nevo, I; Novotny, S; Orlov, D A; Pedersen, H B; Schwalm, D; Sprenger, F; Urbain, X; Weigel, U; Wolf, A; Schneider, I F

    2011-01-01

    The collision-energy resolved rate coefficient for dissociative recombination of HD+ ions in the vibrational ground state is measured using the photocathode electron target at the heavy-ion storage ring TSR. Rydberg resonances associated with ro-vibrational excitation of the HD+ core are scanned as a function of the electron collision energy with an instrumental broadening below 1 meV in the low-energy limit. The measurement is compared to calculations using multichannel quantum defect theory, accounting for rotational structure and interactions and considering the six lowest rotational energy levels as initial ionic states. Using thermal equilibrium level populations at 300 K to approximate the experimental conditions, close correspondence between calculated and measured structures is found up to the first vibrational excitation threshold of the cations near 0.24 eV. Detailed assignments, including naturally broadened and overlapping Rydberg resonances, are performed for all structures up to 0.024 eV. Resona...

  2. Accurate thickness measurement of graphene.

    Science.gov (United States)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  3. Accurate thickness measurement of graphene

    Science.gov (United States)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  4. 38 CFR 4.46 - Accurate measurement.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  5. Accurate measurement of unsteady state fluid temperature

    Science.gov (United States)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  6. Apparatus for accurately measuring high temperatures

    Science.gov (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  7. Fast and accurate exhaled breath ammonia measurement.

    Science.gov (United States)

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  8. More accurate recombination prediction in HIV-1 using a robust decoding algorithm for HMMs

    Directory of Open Access Journals (Sweden)

    Brown Daniel G

    2011-05-01

    Full Text Available Abstract Background Identifying recombinations in HIV is important for studying the epidemiology of the virus and aids in the design of potential vaccines and treatments. The previous widely-used tool for this task uses the Viterbi algorithm in a hidden Markov model to model recombinant sequences. Results We apply a new decoding algorithm for this HMM that improves prediction accuracy. Exactly locating breakpoints is usually impossible, since different subtypes are highly conserved in some sequence regions. Our algorithm identifies these sites up to a certain error tolerance. Our new algorithm is more accurate in predicting the location of recombination breakpoints. Our implementation of the algorithm is available at http://www.cs.uwaterloo.ca/~jmtruszk/jphmm_balls.tar.gz. Conclusions By explicitly accounting for uncertainty in breakpoint positions, our algorithm offers more reliable predictions of recombination breakpoints in HIV-1. We also document a new domain of use for our new decoding approach in HMMs.

  9. Genetic crossovers are predicted accurately by the computed human recombination map.

    Directory of Open Access Journals (Sweden)

    Pavel P Khil

    2010-01-01

    Full Text Available Hotspots of meiotic recombination can change rapidly over time. This instability and the reported high level of inter-individual variation in meiotic recombination puts in question the accuracy of the calculated hotspot map, which is based on the summation of past genetic crossovers. To estimate the accuracy of the computed recombination rate map, we have mapped genetic crossovers to a median resolution of 70 Kb in 10 CEPH pedigrees. We then compared the positions of crossovers with the hotspots computed from HapMap data and performed extensive computer simulations to compare the observed distributions of crossovers with the distributions expected from the calculated recombination rate maps. Here we show that a population-averaged hotspot map computed from linkage disequilibrium data predicts well present-day genetic crossovers. We find that computed hotspot maps accurately estimate both the strength and the position of meiotic hotspots. An in-depth examination of not-predicted crossovers shows that they are preferentially located in regions where hotspots are found in other populations. In summary, we find that by combining several computed population-specific maps we can capture the variation in individual hotspots to generate a hotspot map that can predict almost all present-day genetic crossovers.

  10. Fast and Accurate Exhaled Breath Ammonia Measurement

    OpenAIRE

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A.; Risby, Terence H.

    2014-01-01

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Toge...

  11. An accurate sequentially Markov conditional sampling distribution for the coalescent with recombination.

    Science.gov (United States)

    Paul, Joshua S; Steinrücken, Matthias; Song, Yun S

    2011-04-01

    The sequentially Markov coalescent is a simplified genealogical process that aims to capture the essential features of the full coalescent model with recombination, while being scalable in the number of loci. In this article, the sequentially Markov framework is applied to the conditional sampling distribution (CSD), which is at the core of many statistical tools for population genetic analyses. Briefly, the CSD describes the probability that an additionally sampled DNA sequence is of a certain type, given that a collection of sequences has already been observed. A hidden Markov model (HMM) formulation of the sequentially Markov CSD is developed here, yielding an algorithm with time complexity linear in both the number of loci and the number of haplotypes. This work provides a highly accurate, practical approximation to a recently introduced CSD derived from the diffusion process associated with the coalescent with recombination. It is empirically demonstrated that the improvement in accuracy of the new CSD over previously proposed HMM-based CSDs increases substantially with the number of loci. The framework presented here can be adopted in a wide range of applications in population genetics, including imputing missing sequence data, estimating recombination rates, and inferring human colonization history.

  12. Accurate particle position measurement from images

    CERN Document Server

    Feng, Yan; Liu, Bin; 10.1063/1.2735920

    2011-01-01

    The moment method is an image analysis technique for sub-pixel estimation of particle positions. The total error in the calculated particle position includes effects of pixel locking and random noise in each pixel. Pixel locking, also known as peak locking, is an artifact where calculated particle positions are concentrated at certain locations relative to pixel edges. We report simulations to gain an understanding of the sources of error and their dependence on parameters the experimenter can control. We suggest an algorithm, and we find optimal parameters an experimenter can use to minimize total error and pixel locking. Simulating a dusty plasma experiment, we find that a sub-pixel accuracy of 0.017 pixel or better can be attained. These results are also useful for improving particle position measurement and particle tracking velocimetry (PTV) using video microscopy, in fields including colloids, biology, and fluid mechanics.

  13. Accurate Fiber Length Measurement Using Time-of-Flight Technique

    Science.gov (United States)

    Terra, Osama; Hussein, Hatem

    2016-06-01

    Fiber artifacts of very well-measured length are required for the calibration of optical time domain reflectometers (OTDR). In this paper accurate length measurement of different fiber lengths using the time-of-flight technique is performed. A setup is proposed to measure accurately lengths from 1 to 40 km at 1,550 and 1,310 nm using high-speed electro-optic modulator and photodetector. This setup offers traceability to the SI unit of time, the second (and hence to meter by definition), by locking the time interval counter to the Global Positioning System (GPS)-disciplined quartz oscillator. Additionally, the length of a recirculating loop artifact is measured and compared with the measurement made for the same fiber by the National Physical Laboratory of United Kingdom (NPL). Finally, a method is proposed to relatively correct the fiber refractive index to allow accurate fiber length measurement.

  14. Accurate Insertion Loss Measurements of the Juno Patch Array Antennas

    Science.gov (United States)

    Chamberlain, Neil; Chen, Jacqueline; Hodges, Richard; Demas, John

    2010-01-01

    This paper describes two independent methods for estimating the insertion loss of patch array antennas that were developed for the Juno Microwave Radiometer instrument. One method is based principally on pattern measurements while the other method is based solely on network analyzer measurements. The methods are accurate to within 0.1 dB for the measured antennas and show good agreement (to within 0.1dB) of separate radiometric measurements.

  15. Highly Accurate Measurement of the Electron Orbital Magnetic Moment

    CERN Document Server

    Awobode, A M

    2015-01-01

    We propose to accurately determine the orbital magnetic moment of the electron by measuring, in a Magneto-Optical or Ion trap, the ratio of the Lande g-factors in two atomic states. From the measurement of (gJ1/gJ2), the quantity A, which depends on the corrections to the electron g-factors can be extracted, if the states are LS coupled. Given that highly accurate values of the correction to the spin g-factor are currently available, accurate values of the correction to the orbital g-factor may also be determined. At present, (-1.8 +/- 0.4) x 10-4 has been determined as a correction to the electron orbital g-factor, by using earlier measurements of the ratio gJ1/gJ2, made on the Indium 2P1/2 and 2P3/2 states.

  16. Accurate assessment of intragenic recombination frequency within the Duchenne muscular dystrophy gene.

    Science.gov (United States)

    Abbs, S; Roberts, R G; Mathew, C G; Bentley, D R; Bobrow, M

    1990-08-01

    Polymorphic loci that lie at the two extremities of the Duchenne/Becker muscular dystrophy (DMD/BMD) gene have been used to estimate intragenic recombination rates. Multipoint linkage analysis of the CEPH panel of families suggests a total intragenic recombination frequency of nearly 0.12 (confidence intervals 0.041-0.226) over the genomic length of approximately 2 Mb.

  17. A novel simple and accurate flatness measurement method

    CERN Document Server

    Thang, H L

    2011-01-01

    Flatness measurement of a surface plate is an intensive and old research topic. However ISO definition related and other measurement methods seem uneasy in measuring and/ or complicated in data analysis. Especially in reality, the mentioned methods don't take a clear and straightforward care on the inclining angle which is always included in any given flatness measurement. In this report a novel simple and accurate flatness measurement method was introduced to overcome this prevailing feature in the available methods. The mathematical modeling for this method was also presented making the underlying nature of the method transparent. The applying examples show consistent results.

  18. [Homologous recombination among bacterial genomes: the measurement and identification].

    Science.gov (United States)

    Xianwei, Yang; Ruifu, Yang; Yujun, Cui

    2016-02-01

    Homologous recombination is one of important sources in shaping the bacterial population diversity, which disrupts the clonal relationship among different lineages through horizontal transferring of DNA-segments. As consequence of blurring the vertical inheritance signals, the homologous recombination raises difficulties in phylogenetic analysis and reconstruction of population structure. Here we discuss the impacts of homologous recombination in inferring phylogenetic relationship among bacterial isolates, and summarize the tools and models separately used in recombination measurement and identification. We also highlight the merits and drawbacks of various approaches, aiming to assist in the practical application for the analysis of homologous recombination in bacterial evolution research.

  19. A Simple and Accurate Method for Measuring Enzyme Activity.

    Science.gov (United States)

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  20. Accurate measurement of streamwise vortices using dual-plane PIV

    Science.gov (United States)

    Waldman, Rye M.; Breuer, Kenneth S.

    2012-11-01

    Low Reynolds number aerodynamic experiments with flapping animals (such as bats and small birds) are of particular interest due to their application to micro air vehicles which operate in a similar parameter space. Previous PIV wake measurements described the structures left by bats and birds and provided insight into the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions based on said measurements. The highly three-dimensional and unsteady nature of the flows associated with flapping flight are major challenges for accurate measurements. The challenge of animal flight measurements is finding small flow features in a large field of view at high speed with limited laser energy and camera resolution. Cross-stream measurement is further complicated by the predominately out-of-plane flow that requires thick laser sheets and short inter-frame times, which increase noise and measurement uncertainty. Choosing appropriate experimental parameters requires compromise between the spatial and temporal resolution and the dynamic range of the measurement. To explore these challenges, we do a case study on the wake of a fixed wing. The fixed model simplifies the experiment and allows direct measurements of the aerodynamic forces via load cell. We present a detailed analysis of the wake measurements, discuss the criteria for making accurate measurements, and present a solution for making quantitative aerodynamic load measurements behind free-flyers.

  1. Accurate speed and slip measurement of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Ho, S.Y.S.; Langman, R. [Tasmania Univ., Hobart, TAS (Australia)

    1996-03-01

    Two alternative hardware circuits, for the accurate measurement of low slip in cage induction motors, are discussed. Both circuits compare the periods of the fundamental of the supply frequency and pulses from a shaft-connected toothed-wheel. The better of the two achieves accuracy to 0.5 percent of slip over the range 0.1 to 0.005, or better than 0.001 percent of speed over the range. This method is considered useful for slip measurement of motors supplied by either constant frequency mains of variable speed controllers with PMW waveforms. It is demonstrated that accurate slip measurement supports the conclusions of work previously done on the detection of broken rotor bars. (author). 1 tab., 6 figs., 13 refs.

  2. Accurate measurement of ultrasonic velocity by eliminating the diffraction effect

    Institute of Scientific and Technical Information of China (English)

    WEI Tingcun

    2003-01-01

    The accurate measurement method of ultrasonic velocity by the pulse interferencemethod with eliminating the diffraction effect has been investigated in VHF range experimen-tally. Two silicate glasses were taken as the specimens, their frequency dependences of longitu-dinal velocities were measured in the frequency range 50-350 MHz, and the phase advances ofultrasonic signals caused by diffraction effect were calculated using A. O. Williams' theoreticalexpression. For the frequency dependences of longitudinal velocities, the measurement resultswere in good agreement with the simulation ones in which the phase advances were included.It has been shown that the velocity error due to diffraction effect can be corrected very well bythis method.

  3. HyRec: A fast and highly accurate primordial hydrogen and helium recombination code

    CERN Document Server

    Ali-Haïmoud, Yacine

    2010-01-01

    We present a state-of-the-art primordial recombination code, HyRec, including all the physical effects that have been shown to significantly affect recombination. The computation of helium recombination includes simple analytic treatments of hydrogen continuum opacity in the He I 2 1P - 1 1S line, the He I] 2 3P - 1 1S line, and treats feedback between these lines within the on-the-spot approximation. Hydrogen recombination is computed using the effective multilevel atom method, virtually accounting for an infinite number of excited states. We account for two-photon transitions from 2s and higher levels as well as frequency diffusion in Lyman-alpha with a full radiative transfer calculation. We present a new method to evolve the radiation field simultaneously with the level populations and the free electron fraction. These computations are sped up by taking advantage of the particular sparseness pattern of the equations describing the radiative transfer. The computation time for a full recombination history i...

  4. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    Directory of Open Access Journals (Sweden)

    Mark Shortis

    2015-12-01

    Full Text Available Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  5. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    Science.gov (United States)

    Shortis, Mark

    2015-12-07

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems.

  6. Accurate measurement of the helical twisting power of chiral dopants

    Science.gov (United States)

    Kosa, Tamas; Bodnar, Volodymyr; Taheri, Bahman; Palffy-Muhoray, Peter

    2002-03-01

    We propose a method for the accurate determination of the helical twisting power (HTP) of chiral dopants. In the usual Cano-wedge method, the wedge angle is determined from the far-field separation of laser beams reflected from the windows of the test cell. Here we propose to use an optical fiber based spectrometer to accurately measure the cell thickness. Knowing the cell thickness at the positions of the disclination lines allows determination of the HTP. We show that this extension of the Cano-wedge method greatly increases the accuracy with which the HTP is determined. We show the usefulness of this method by determining the HTP of ZLI811 in a variety of hosts with negative dielectric anisotropy.

  7. Methods for Accurate Free Flight Measurement of Drag Coefficients

    CERN Document Server

    Courtney, Elya; Courtney, Michael

    2015-01-01

    This paper describes experimental methods for free flight measurement of drag coefficients to an accuracy of approximately 1%. There are two main methods of determining free flight drag coefficients, or equivalent ballistic coefficients: 1) measuring near and far velocities over a known distance and 2) measuring a near velocity and time of flight over a known distance. Atmospheric conditions must also be known and nearly constant over the flight path. A number of tradeoffs are important when designing experiments to accurately determine drag coefficients. The flight distance must be large enough so that the projectile's loss of velocity is significant compared with its initial velocity and much larger than the uncertainty in the near and/or far velocity measurements. On the other hand, since drag coefficients and ballistic coefficients both depend on velocity, the change in velocity over the flight path should be small enough that the average drag coefficient over the path (which is what is really determined)...

  8. Accurate skin dose measurements using radiochromic film in clinical applications.

    Science.gov (United States)

    Devic, S; Seuntjens, J; Abdel-Rahman, W; Evans, M; Olivares, M; Podgorsak, E B; Vuong, Té; Soares, Christopher G

    2006-04-01

    Megavoltage x-ray beams exhibit the well-known phenomena of dose buildup within the first few millimeters of the incident phantom surface, or the skin. Results of the surface dose measurements, however, depend vastly on the measurement technique employed. Our goal in this study was to determine a correction procedure in order to obtain an accurate skin dose estimate at the clinically relevant depth based on radiochromic film measurements. To illustrate this correction, we have used as a reference point a depth of 70 micron. We used the new GAFCHROMIC dosimetry films (HS, XR-T, and EBT) that have effective points of measurement at depths slightly larger than 70 micron. In addition to films, we also used an Attix parallel-plate chamber and a home-built extrapolation chamber to cover tissue-equivalent depths in the range from 4 micron to 1 mm of water-equivalent depth. Our measurements suggest that within the first millimeter of the skin region, the PDD for a 6 MV photon beam and field size of 10 x 10 cm2 increases from 14% to 43%. For the three GAFCHROMIC dosimetry film models, the 6 MV beam entrance skin dose measurement corrections due to their effective point of measurement are as follows: 15% for the EBT, 15% for the HS, and 16% for the XR-T model GAFCHROMIC films. The correction factors for the exit skin dose due to the build-down region are negligible. There is a small field size dependence for the entrance skin dose correction factor when using the EBT GAFCHROMIC film model. Finally, a procedure that uses EBT model GAFCHROMIC film for an accurate measurement of the skin dose in a parallel-opposed pair 6 MV photon beam arrangement is described.

  9. Accurate Runout Measurement for HDD Spinning Motors and Disks

    Science.gov (United States)

    Jiang, Quan; Bi, Chao; Lin, Song

    As hard disk drive (HDD) areal density increases, its track width becomes smaller and smaller and so is non-repeatable runout. HDD industry needs more accurate and better resolution runout measurements of spinning spindle motors and media platters in both axial and radial directions. This paper introduces a new system how to precisely measure the runout of HDD spinning disks and motors through synchronously acquiring the rotor position signal and the displacements in axial or radial directions. In order to minimize the synchronizing error between the rotor position and the displacement signal, a high resolution counter is adopted instead of the conventional phase-lock loop method. With Laser Doppler Vibrometer and proper signal processing, the proposed runout system can precisely measure the runout of the HDD spinning disks and motors with 1 nm resolution and 0.2% accuracy with a proper sampling rate. It can provide an effective and accurate means to measure the runout of high areal density HDDs, in particular the next generation HDDs, such as, pattern media HDDs and HAMR HDDs.

  10. An Analytic Method for Measuring Accurate Fundamental Frequency Components

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Soon Ryul; Park Jong Keun [Seoul National University, Seoul(Korea); Kang, Sang Hee [Myongji University, Seoul (Korea)

    2002-04-01

    This paper proposes an analytic method for measuring the accurate fundamental frequency component of a fault current signal distorted with a DC-offset, a characteristic frequency component, and harmonics. The proposed algorithm is composed of four stages: sine filer, linear filter, Prony's method, and measurement. The sine filter and the linear filter eliminate harmonics and the fundamental frequency component, respectively. Then Prony's method is used to estimate the parameters of the DC-offset and the characteristic frequency component. Finally, the fundamental frequency component is measured by compensating the sine-filtered signal with the estimated parameters. The performance evaluation of the proposed method is presented for a-phase to ground faults on a 345 kV 200 km overhead transmission line. The EMTP is used to generate fault current signals under different fault locations and fault inception angles. It is shown that the analytic method accurately measures the fundamental frequency component regardless of the characteristic frequency component as well as the DC-offset.(author). 19 refs., 4 figs., 4 tabs.

  11. Accurate measurement method for tube's endpoints based on machine vision

    Science.gov (United States)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2017-01-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  12. Accurate measurement method for tube's endpoints based on machine vision

    Science.gov (United States)

    Liu, Shaoli; Jin, Peng; Liu, Jianhua; Wang, Xiao; Sun, Peng

    2016-08-01

    Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, 11 tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 mm. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.

  13. Accurate mass measurements on neutron-deficient krypton isotopes

    CERN Document Server

    Rodríguez, D; Äystö, J; Beck, D

    2006-01-01

    The masses of $^{72–78,80,82,86}$Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for $^{72–75}$Kr being more precise than the previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  14. Accurate mass measurements on neutron-deficient krypton isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany)]. E-mail: rodriguez@lpccaen.in2p3.fr; Audi, G. [CSNSM-IN2P3-CNRS, 91405 Orsay-Campus(France); Aystoe, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, 40351 Jyvaeskylae (Finland); Beck, D. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Blaum, K. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Bollen, G. [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Herfurth, F. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Jokinen, A. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, 40351 Jyvaeskylae (Finland); Kellerbauer, A. [CERN, Division EP, 1211 Geneva 23 (Switzerland); Kluge, H.-J. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); University of Heidelberg, 69120 Heidelberg (Germany); Kolhinen, V.S. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, 40351 Jyvaeskylae (Finland); Oinonen, M. [Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki (Finland); Sauvan, E. [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Schwarz, S. [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2006-04-17

    The masses of {sup 72-78,80,82,86}Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for {sup 72-75}Kr outweighed previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  15. Technological Basis and Scientific Returns for Absolutely Accurate Measurements

    Science.gov (United States)

    Dykema, J. A.; Anderson, J.

    2011-12-01

    The 2006 NRC Decadal Survey fostered a new appreciation for societal objectives as a driving motivation for Earth science. Many high-priority societal objectives are dependent on predictions of weather and climate. These predictions are based on numerical models, which derive from approximate representations of well-founded physics and chemistry on space and timescales appropriate to global and regional prediction. These laws of chemistry and physics in turn have a well-defined quantitative relationship with physical measurement units, provided these measurement units are linked to international measurement standards that are the foundation of contemporary measurement science and standards for engineering and commerce. Without this linkage, measurements have an ambiguous relationship to scientific principles that introduces avoidable uncertainty in analyses, predictions, and improved understanding of the Earth system. Since the improvement of climate and weather prediction is fundamentally dependent on the improvement of the representation of physical processes, measurement systems that reduce the ambiguity between physical truth and observations represent an essential component of a national strategy for understanding and living with the Earth system. This paper examines the technological basis and potential science returns of sensors that make measurements that are quantitatively tied on-orbit to international measurement standards, and thus testable to systematic errors. This measurement strategy provides several distinct benefits. First, because of the quantitative relationship between these international measurement standards and fundamental physical constants, measurements of this type accurately capture the true physical and chemical behavior of the climate system and are not subject to adjustment due to excluded measurement physics or instrumental artifacts. In addition, such measurements can be reproduced by scientists anywhere in the world, at any time

  16. Accurate Sound Velocity Measurement in Ocean Near-Surface Layer

    Science.gov (United States)

    Lizarralde, D.; Xu, B. L.

    2015-12-01

    Accurate sound velocity measurement is essential in oceanography because sound is the only wave that can propagate in sea water. Due to its measuring difficulties, sound velocity is often not measured directly but instead calculated from water temperature, salinity, and depth, which are much easier to obtain. This research develops a new method to directly measure the sound velocity in the ocean's near-surface layer using multi-channel seismic (MCS) hydrophones. This system consists of a device to make a sound pulse and a long cable with hundreds of hydrophones to record the sound. The distance between the source and each receiver is the offset. The time it takes the pulse to arrive to each receiver is the travel time.The errors of measuring offset and travel time will affect the accuracy of sound velocity if we calculated with just one offset and one travel time. However, by analyzing the direct arrival signal from hundreds of receivers, the velocity can be determined as the slope of a straight line in the travel time-offset graph. The errors in distance and time measurement result in only an up or down shift of the line and do not affect the slope. This research uses MCS data of survey MGL1408 obtained from the Marine Geoscience Data System and processed with Seismic Unix. The sound velocity can be directly measured to an accuracy of less than 1m/s. The included graph shows the directly measured velocity verses the calculated velocity along 100km across the Mid-Atlantic continental margin. The directly measured velocity shows a good coherence to the velocity computed from temperature and salinity. In addition, the fine variations in the sound velocity can be observed, which is hardly seen from the calculated velocity. Using this methodology, both large area acquisition and fine resolution can be achieved. This directly measured sound velocity will be a new and powerful tool in oceanography.

  17. Accurate and precise zinc isotope ratio measurements in urban aerosols.

    Science.gov (United States)

    Gioia, Simone; Weiss, Dominik; Coles, Barry; Arnold, Tim; Babinski, Marly

    2008-12-15

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05 per thousand per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37 per thousand in coarse and between -1.04 and 0.02 per thousand in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta(66)Zn(Imperial) = 0.26 +/- 0.10 per thousand).

  18. Novel dispersion tolerant interferometry method for accurate measurements of displacement

    Science.gov (United States)

    Bradu, Adrian; Maria, Michael; Leick, Lasse; Podoleanu, Adrian G.

    2015-05-01

    We demonstrate that the recently proposed master-slave interferometry method is able to provide true dispersion free depth profiles in a spectrometer-based set-up that can be used for accurate displacement measurements in sensing and optical coherence tomography. The proposed technique is based on correlating the channelled spectra produced by the linear camera in the spectrometer with previously recorded masks. As such technique is not based on Fourier transformations (FT), it does not require any resampling of data and is immune to any amounts of dispersion left unbalanced in the system. In order to prove the tolerance of technique to dispersion, different lengths of optical fiber are used in the interferometer to introduce dispersion and it is demonstrated that neither the sensitivity profile versus optical path difference (OPD) nor the depth resolution are affected. In opposition, it is shown that the classical FT based methods using calibrated data provide less accurate optical path length measurements and exhibit a quicker decays of sensitivity with OPD.

  19. A spectroscopic transfer standard for accurate atmospheric CO measurements

    Science.gov (United States)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  20. Accurate measurement of streamwise vortices in low speed aerodynamic flows

    Science.gov (United States)

    Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.

    2010-11-01

    Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.

  1. Accurate measurement of RF exposure from emerging wireless communication systems

    Science.gov (United States)

    Letertre, Thierry; Monebhurrun, Vikass; Toffano, Zeno

    2013-04-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  2. Study of accurate volume measurement system for plutonium nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Hosoma, T. [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-12-01

    It is important for effective safeguarding of nuclear materials to establish a technique for accurate volume measurement of plutonium nitrate solution in accountancy tank. The volume of the solution can be estimated by two differential pressures between three dip-tubes, in which the air is purged by an compressor. One of the differential pressure corresponds to the density of the solution, and another corresponds to the surface level of the solution in the tank. The measurement of the differential pressure contains many uncertain errors, such as precision of pressure transducer, fluctuation of back-pressure, generation of bubbles at the front of the dip-tubes, non-uniformity of temperature and density of the solution, pressure drop in the dip-tube, and so on. The various excess pressures at the volume measurement are discussed and corrected by a reasonable method. High precision-differential pressure measurement system is developed with a quartz oscillation type transducer which converts a differential pressure to a digital signal. The developed system is used for inspection by the government and IAEA. (M. Suetake)

  3. Accurate estimation of third-order moments from turbulence measurements

    Directory of Open Access Journals (Sweden)

    J. J. Podesta

    2009-02-01

    Full Text Available Politano and Pouquet's law, a generalization of Kolmogorov's four-fifths law to incompressible MHD, makes it possible to measure the energy cascade rate in incompressible MHD turbulence by means of third-order moments. In hydrodynamics, accurate measurement of third-order moments requires large amounts of data because the probability distributions of velocity-differences are nearly symmetric and the third-order moments are relatively small. Measurements of the energy cascade rate in solar wind turbulence have recently been performed for the first time, but without careful consideration of the accuracy or statistical uncertainty of the required third-order moments. This paper investigates the statistical convergence of third-order moments as a function of the sample size N. It is shown that the accuracy of the third-moment <(δ v||3> depends on the number of correlation lengths spanned by the data set and a method of estimating the statistical uncertainty of the third-moment is developed. The technique is illustrated using both wind tunnel data and solar wind data.

  4. Accurate measurement of liquid transport through nanoscale conduits

    Science.gov (United States)

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  5. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    Science.gov (United States)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  6. Experimental approaches to the measurement of dielectronic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.

    1984-01-01

    In dielectronic recombination, the first step involves a continuum electron which excites a previously bound electron and, in so doing, loses just enough energy to be captured in a bound state (nl). This results in a doubly excited ion of a lower charge state which may either autoionize or emit a photon resulting in a stabilized recombination. The complete signature of the event is an ion of reduced charge and an emitted photon. Methods of measuring this event are discussed.

  7. Accurate multipixel phase measurement with classical-light interferometry

    Science.gov (United States)

    Singh, Mandeep; Khare, Kedar; Jha, Anand Kumar; Prabhakar, Shashi; Singh, R. P.

    2015-02-01

    We demonstrate accurate phase measurement from experimental low photon level interferograms using a constrained optimization method that takes into account the expected redundancy in the unknown phase function. This approach is shown to have significant noise advantage over traditional methods, such as balanced homodyning or phase shifting, that treat individual pixels in the interference data as independent of each other. Our interference experiments comparing the optimization method with the traditional phase-shifting method show that when the same photon resources are used, the optimization method provides phase recoveries with tighter error bars. In particular, rms phase error performance of the optimization method for low photon number data (10 photons per pixel) shows a >5 × noise gain over the phase-shifting method. In our experiments where a laser light source is used for illumination, the results imply phase measurement with an accuracy better than the conventional single-pixel-based shot-noise limit that assumes independent phases at individual pixels. The constrained optimization approach presented here is independent of the nature of the light source and may further enhance the accuracy of phase detection when a nonclassical-light source is used.

  8. Measurement of Fracture Geometry for Accurate Computation of Hydraulic Conductivity

    Science.gov (United States)

    Chae, B.; Ichikawa, Y.; Kim, Y.

    2003-12-01

    Fluid flow in rock mass is controlled by geometry of fractures which is mainly characterized by roughness, aperture and orientation. Fracture roughness and aperture was observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wavelength of laser is 488nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The system improves resolution in the light axis (namely z) direction because of the confocal optics. The sampling is managed in a spacing 2.5 μ m along x and y directions. The highest measurement resolution of z direction is 0.05 μ m, which is the more accurate than other methods. For the roughness measurements, core specimens of coarse and fine grained granites were provided. Measurements were performed along three scan lines on each fracture surface. The measured data were represented as 2-D and 3-D digital images showing detailed features of roughness. Spectral analyses by the fast Fourier transform (FFT) were performed to characterize on the roughness data quantitatively and to identify influential frequency of roughness. The FFT results showed that components of low frequencies were dominant in the fracture roughness. This study also verifies that spectral analysis is a good approach to understand complicate characteristics of fracture roughness. For the aperture measurements, digital images of the aperture were acquired under applying five stages of uniaxial normal stresses. This method can characterize the response of aperture directly using the same specimen. Results of measurements show that reduction values of aperture are different at each part due to rough geometry of fracture walls. Laboratory permeability tests were also conducted to evaluate changes of hydraulic conductivities related to aperture variation due to different stress levels. The results showed non-uniform reduction of hydraulic conductivity under increase of the normal stress and different values of

  9. Accurate MTF measurement in digital radiography using noise response

    Energy Technology Data Exchange (ETDEWEB)

    Kuhls-Gilcrist, Andrew; Jain, Amit; Bednarek, Daniel R.; Hoffmann, Kenneth R.; Rudin, Stephen [Toshiba Stroke Research Center, University at Buffalo, State University of New York, Biomedical Research Building, Room 445, 3435 Main Street, Buffalo, New York 14214 (United States)

    2010-02-15

    .4%. Above 0.5 f{sub N}, differences increased to an average of 20%. Deviations of the experimental results largely followed the trend seen in the simulation results, suggesting that differences between the two methods could be explained as resulting from the inherent inaccuracies of the edge-response measurement technique used in this study. Aliasing of the correlated noise component was shown to have a minimal effect on the measured MTF for the three detectors studied. Systems with significant aliasing of the correlated noise component (e.g., a-Se based detectors) would likely require a more sophisticated fitting scheme to provide accurate results. Conclusions: Results indicate that the noise-response method, a simple technique, can be used to accurately measure the MTF of digital x-ray detectors, while alleviating the problems and inaccuracies associated with use of precision test objects, such as a slit or an edge.

  10. Accurate absolute measurement of trapped Cs atoms in a MOT

    Energy Technology Data Exchange (ETDEWEB)

    Talavera O, M.; Lopez R, M.; Carlos L, E. de [Division de Tiempo y Frecuencia, Centro Nacional de Metrologia, CENAM, km 4.5 Carretera a los Cues, El Marques, 76241 Queretaro (Mexico); Jimenez S, S. [Centro de Investigacion y Estudios Avanzados del lPN, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro (Mexico)

    2007-07-01

    A Cs-133 Magneto-Optical Trap (MOT) has been developed at the Time and Frequency Division of the Centro Nacional de Metrologia, CENAM, in Mexico. This MOT is part of a primary frequency standard based on ultra-cold Cs atoms, called CsF-1 clock, under development at CENAM. In this Cs MOT, we use the standard configuration ({sigma}{sup +} - {sigma}{sup -}) 4-horizontal 2-vertical laser beams 1.9 cm in diameter, with 5 mW each. We use a 852 nm, 5 mW, DBR laser as a master laser which is stabilized by saturation spectroscopy. Emission linewidth of the master laser is l MHz. In order to amplify the light of the master laser, a 50 mW, 852 nm AlGaAs laser is used as slave laser. This slave laser is stabilized by light injection technique. A 12 MHz red shift of the light is performed by two double passes through two Acusto-Optic Modulators (AOMs). The optical part of the CENAMs MOT is very robust against mechanical vibration, acoustic noise and temperature changes in our laboratory, because none of our diode lasers use an extended cavity to reduce the linewidth. In this paper, we report results of our MOT characterization as a function of several operation parameters such as the intensity of laser beams, the laser beam diameter, the red shift of light, and the gradient of the magnetic field. We also report accurate absolute measurement of the number of Cs atoms trapped in our Cs MOT. We found up to 6 x 10{sup 7} Cs atoms trapped in our MOT measured with an uncertainty no greater than 6.4%. (Author)

  11. Automatic classification and accurate size measurement of blank mask defects

    Science.gov (United States)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  12. Recombination and Ionization Measurements at the Heidelberg Heavy Ion Storage Ring TSR

    Science.gov (United States)

    Hahn, M.; Lestinsky, M.; Novotný, O.; Savin, D. W.; Bernhardt, D.; Müller, A.; Schippers, S.; Krantz, C.; Grieser, M.; Repnow, R.; Wolf, A.

    2011-05-01

    Knowledge of the charge state distribution (CSD) of astrophysical plasmas is important for the interpretation of spectroscopic data. To accurately calculate CSDs, reliable rate coefficients are needed for dielectronic recombination (DR), which is the dominant electron-ion recombination mechanism for most ions, and for electron impact ionization (EII). We are carrying out DR and EII measurements of astrophysically important ions using the TSR storage ring at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Storage ring measurements are largely free of the metastable contamination found in other experimental geometries, resulting in more unambiguous DR and EII reaction rate measurements. The measured data can be used in plasma modelling as well as for benchmarking theoretical atomic calculations.

  13. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement

    CERN Document Server

    Dong, J W; Gao, C; Wang, L J

    2016-01-01

    An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The optimized system achieves a high accuracy of 0.3 ps with a 0.1 ps resolution, and a large dynamic range up to 50 km as well as no dead zone.

  14. Highly accurate fiber transfer delay measurement with large dynamic range

    CERN Document Server

    Dong, J W; Gao, C; Guo, Y C; Wang, L J

    2015-01-01

    A novel and efficient method for fiber transfer delay measurement is demonstrated. Fiber transfer delay measurement in time domain is converted into the frequency measurement of the modulation signal in frequency domain, accompany with a coarse and easy ambiguity resolving process. This method achieves a sub-picosecond resolution, with an accuracy of 1 picosecond, and a large dynamic range up to 50 km as well as no measurement dead zone.

  15. ACCURATE MEASUREMENT OF ROTA-RY MACHINE AXIS CENTER TRACE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Four methods aiming at measuring rotary machine axis center trace are discussed in detail.The comparative analysis is made on some aspects such as measurement accuracy, on-machine characteristics, feasibility, practical operation convenience and the integrity of measurement information.In order to simplify measurement, the axis profile error is ignored in traditional condition, while the measurement accuracy will be reduced.The 3-point method that the axis profile error is firstly separated has better real time character, at the same time, not only the axis motion error but also the axis profile error can be measured.All of those information can be used to diagnose the fault origin.The analysis result is proved to be correct by the experiment.

  16. Accurate micro Hall effect measurements on scribe line pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Petersen, Dirch Hjorth; Wang, Fei;

    2009-01-01

    Hall mobility and sheet carrier density are important parameters to monitor in advanced semiconductor production. If micro Hall effect measurements are done on small pads in scribe lines, these parameters may be measured without using valuable test wafers. We report how Hall mobility can...... be extracted from micro four-point measurements performed on a rectangular pad. The dimension of the investigated pad is 400 × 430 ¿m2, and the probe pitches range from 20 ¿m to 50 ¿m. The Monte Carlo method is used to find the optimal way to perform the Hall measurement and extract Hall mobility most...

  17. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...... status, and addresses future challenges for spherical near-field antenna measurements; in particular, from the viewpoint of the DTU-ESA Spherical Near-Field Antenna Test Facility....

  18. Measurement of the LMM dielectronic recombination resonances of neonlike gold

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Knapp, D.A.; Chen, M.H.; Scofield, J.H.; Beiersdorfer, P.; Bennett, C.L.; Henderson, J.R. (Lawrence Livermore National Laboratory, University of California, P.O. Box 5508, Livermore, California 94550 (United States)); Levine, M.A. (Lawrence Berkeley Laboratory, University of Calfornia, 1 Cyclotron Road, Berkeley, California 94720 (United States)); Marrs, R.E. (Lawrence Livermore National Laboratory, University of California, P.O. Box 5508, Livermore, California 94550 (United States))

    1992-02-01

    The {ital LMM} dielectronic recombination resonances of a neonlike ion (Au{sup 69+}) have been observed. The ions were produced and held in an electron-beam ion trap. The intensity of the {ital n}=3{r arrow}2 x rays resulting from dielectronic recombination was measured as a function of electron-beam energy with sufficient resolution to distinguish the structure of the {ital LMM} resonances. The measured resonance strengths for {ital LMM} resonances with a 2{ital p}{sub 3/2}{sup {minus}1} core are in good agreement with theoretical predictions, but there is some disagreement for the 2{ital p}{sub 1/2}{sup {minus}1} and 2{ital s}{sub 1/2}{sup {minus}1} core configurations.

  19. Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E

    2009-02-19

    A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

  20. A new method and instrument for accurately measuring interval between ultrashort pulses

    Institute of Scientific and Technical Information of China (English)

    Zhonggang Ji; Yuxin Leng; Yunpei Deng; Bin Tang; Haihe Lu; Ruxin Li; Zhizhan Xu

    2005-01-01

    @@ Using second-order autocorrelation conception, a novel method and instrument for accurately measuring interval between two linearly polarized ultrashort pulses with real time were presented. The experiment demonstrated that the measuring method and instrument were simple and accurate (the measurement error < 5 fs). During measuring, there was no moving element resulting in dynamic measurement error.

  1. Apparatus designed for very accurate measurement of the optical reflection.

    Science.gov (United States)

    Piombini, Hervé; Voarino, Philippe

    2007-12-20

    The described instrument is a new reflectometer designed to check the normal specular reflectance of 40,000 reflectors necessary for the Laser Megajoule (LMJ). This new reflectometer has a high accuracy over the 400-950 nm wavelength range and allows the delicate measurement of shaped parts. The measurements are relative and several reference mirrors, which are low loss dielectric mirrors [R(lambda)>99.9%], are used for the standardization. The apparatus gives an excellent repeatability (spectrophotometers, our facility and its components are described. The methodology of focusing and calibration are explained. The capabilities of our device are illustrated through some measurements realized on flat or shaped samples.

  2. High resolution resonant recombination measurements using evaporative cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Beilmann, C; Lopez-Urrutia, J R Crespo; Mokler, P H; Ullrich, J, E-mail: christian.beilmann@mpi-hd.mpg.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2010-09-15

    We report on a method significantly improving the energy resolution of dielectronic recombination (DR) measurements in electron beam ion traps (EBITs). The line width of DR resonances can be reduced to values distinctly smaller than the corresponding space charge width of the uncompensated electron beam. The experimental technique based on forced evaporative cooling is presented together with test measurements demonstrating its high efficiency. The principle for resolution improvement is elucidated and the limiting factors are discussed. This method opens access to high resolution DR measurements at high ion-electron collision energies required for innermost shell DR in highly charged ions (HCI).

  3. Accurate measurement of curvilinear shapes by Virtual Image Correlation

    OpenAIRE

    Semin, B; Auradou, H.; François, M.L.M.

    2011-01-01

    Abstract The proposed method allows the detection and the measurement, in the sense of metrology, of smooth elongated curvilinear shapes. Such measurements are required in many fields of physics, for example: mechanical engineering, biology or medicine (deflection of beams, fibers or filaments), fluid mechanics or chemistry (detection of fronts). Contrary to actual methods, the result is given in an analytical form of class C? (and not a finite set of locations or pixels) thus curv...

  4. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiat...... radiation. The paper describes how such measurements are carried out as well as a suitable experimental set-up. The main reflector of the European Space Agency's MIMR system is used to demonstrate the principle...

  5. Visual texture accurate material appearance measurement, representation and modeling

    CERN Document Server

    Haindl, Michal

    2013-01-01

    This book surveys the state of the art in multidimensional, physically-correct visual texture modeling. Features: reviews the entire process of texture synthesis, including material appearance representation, measurement, analysis, compression, modeling, editing, visualization, and perceptual evaluation; explains the derivation of the most common representations of visual texture, discussing their properties, advantages, and limitations; describes a range of techniques for the measurement of visual texture, including BRDF, SVBRDF, BTF and BSSRDF; investigates the visualization of textural info

  6. Highly Accurate Photogrammetric Measurements of the Planck Reflectors

    Science.gov (United States)

    Amiri Parian, J.; Gruen, Armin; Cozzani, Alessandro

    2006-06-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000000 and 1:400000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  7. Measuring Fisher information accurately in correlated neural populations.

    Science.gov (United States)

    Kanitscheider, Ingmar; Coen-Cagli, Ruben; Kohn, Adam; Pouget, Alexandre

    2015-06-01

    Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively.

  8. Convenient integrating sphere scanner for accurate luminous flux measurements

    Science.gov (United States)

    Winter, S.; Lindemann, M.; Jordan, W.; Binder, U.; Anokhin, M.

    2009-08-01

    Measurement results and applications of a recently developed device for the measurement of the spatial uniformity of integrating spheres are presented. Due to the complexity of their implementation, sphere scanners are mainly used by national metrology institutes to increase the accuracy of relative and absolute luminous flux measurements (Ohno et al 1997 J. IES 26 107-14, Ohno and Daubach 2001 J. IES 30 105-15, Ohno 1998 Metrologia 35 473-8, Hovila et al 2004 Metrologia 41 407-13). The major drawback of traditional scanners for integrating spheres is the necessity of a complex and time-consuming sphere modification, as the lamp holder has to be replaced by a new scanner holder with additional cables for power supply and for communication with the stepping motor control unit (Ohno et al 1997 J. IES 26 107-14). Therefore, with traditional scanners the relative spatial sphere responsivity already changes due to the installation of a special scanner holder. The new scanner simply substitutes the lamp under test: it can be screwed into an E27 lamp socket, as it needs only two electrical contacts. Two wires are simultaneously used for the power supply of the stepping motor control unit, the scanner light source (LED) and for the signal transmission of commands and results. The benefits of scanner-assisted measurements are shown for spotlight lamp calibrations.

  9. ACCUWIND - Accurate wind speed measurements in wind energy - Summary report

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Dahlberg, J.-Å.; Cuerva, A.;

    2006-01-01

    been used by meteorologists for turbulencemeasurements, but have also found a role on wind turbine nacelles for wind speed and yaw control purposes. The report on cup and sonic anemometry deals with establishment of robustness in assessment and classification by focus on methods and proceduresfor......The cup anemometer is at present the standard instrument used for mean wind speed measurement in wind energy. It is being applied in high numbers around the world for wind energy assessments. It is also applied exclusively for accredited power performancemeasurements for certification...... and CLASSCUP from which the proposed classification method for cup anemometers was developed for the IEC standard. While cup anemometers at present are the standardanemometer being used for average wind speed measurements, sonic anemometers have been developed significantly over the last years, and prices have...

  10. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    Science.gov (United States)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  11. On uplimit of accurate measurement of tau mass

    CERN Document Server

    Mo, X H

    2016-01-01

    Tau lepton as one of three elementary leptons in nature, the measurement of its mass has ever been performed since its discovery. The present relative accuracy is already at the level of better than 10 to minus 4 and more effects are still made in order to increase the accuracy further. However, the analysis of available techniques for and expectable luminosity from e+e- collider indicates that the precision uplimit of tau mass is almost reached, which means that brand new approaches should be looked for if the great improvement is yearned for.

  12. Accurate blood flow measurements: are artificial tracers necessary?

    Directory of Open Access Journals (Sweden)

    Christian Poelma

    Full Text Available Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case, as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements. These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  13. Accurate measurement of curvilinear shapes by Virtual Image Correlation

    Science.gov (United States)

    Semin, B.; Auradou, H.; François, M. L. M.

    2011-10-01

    The proposed method allows the detection and the measurement, in the sense of metrology, of smooth elongated curvilinear shapes. Such measurements are required in many fields of physics, for example: mechanical engineering, biology or medicine (deflection of beams, fibers or filaments), fluid mechanics or chemistry (detection of fronts). Contrary to actual methods, the result is given in an analytical form of class C∞ (and not a finite set of locations or pixels) thus curvatures and slopes, often of great interest in science, are given with good confidence. The proposed Virtual Image Correlation (VIC) method uses a virtual beam, an image which consists in a lateral expansion of the curve with a bell-shaped gray level. This figure is deformed until it fits the best the physical image with a method issued from the Digital Image Correlation method in use in solid mechanics. The precision of the identification is studied in a benchmark and successfully compared to two state-of-the-art methods. Three practical examples are given: a bar bending under its own weight, a thin fiber transported by a flow within a fracture and a thermal front. The first allows a comparison with theoretical solution, the second shows the ability of the method to deal with complex shapes and crossings and the third deals with ill-defined image.

  14. Accurate blood flow measurements: are artificial tracers necessary?

    Science.gov (United States)

    Poelma, Christian; Kloosterman, Astrid; Hierck, Beerend P; Westerweel, Jerry

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  15. Accurate measurement of intestinal transit in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.S.; Galligan, J.J.; Burks, T.F.

    1981-11-01

    A new method for quantifying intestinal transit was evaluated by comparison with two other popular techniques. The distribution of radiochromium (51Cr) throughout the small intestine of rats previously treated with saline (1.0 ml/kg s.c.), capsaicin (10 mg/kg s.c.), hexamethonium (20 mg/kg i.p.), D-ala2-met-enkephalinamide (1.0 microgram i.c.v.), or neostigmine (0.1 mg/kg i.p.) was quantified by (1) measuring the most distal intestinal segment reached by chromium, (2) calculating the slope produced by linear regression analysis on cumulative percent chromium that had passed through each segment, and (3) determining the geometric center of the distribution of chromium throughout the small intestine. It was concluded that the geometric center methods for quantifying intestinal transit provides the most sensitive and reliable measure of intestinal transit. Less sensitive techniques often fail to detect important effects of drugs on intestinal transit.

  16. Blood-Pressure Measuring System Gives Accurate Graphic Output

    Science.gov (United States)

    1965-01-01

    The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.

  17. Accurate on line measurements of low fluences of charged particles

    Science.gov (United States)

    Palla, L.; Czelusniak, C.; Taccetti, F.; Carraresi, L.; Castelli, L.; Fedi, M. E.; Giuntini, L.; Maurenzig, P. R.; Sottili, L.; Taccetti, N.

    2015-03-01

    Ion beams supplied by the 3MV Tandem accelerator of LABEC laboratory (INFN-Firenze), have been used to study the feasibility of irradiating materials with ion fluences reproducible to about 1%. Test measurements have been made with 7.5 MeV 7Li2+ beams of different intensities. The fluence control is based on counting ions contained in short bursts generated by chopping the continuous beam with an electrostatic deflector followed by a couple of adjustable slits. Ions are counted by means of a micro-channel plate (MCP) detecting the electrons emitted from a thin layer of Al inserted along the beam path in between the pulse defining slits and the target. Calibration of the MCP electron detector is obtained by comparison with the response of a Si detector.

  18. On accurate differential measurements with electrochemical impedance spectroscopy

    CERN Document Server

    Kernbach, S; Kernbach, O

    2016-01-01

    This paper describes the impedance spectroscopy adapted for analysis of small electrochemical changes in fluids. To increase accuracy of measurements the differential approach with temperature stabilization of fluid samples and electronics is used. The impedance analysis is performed by the single point DFT, signal correlation, calculation of RMS amplitudes and interference phase shift. For test purposes the samples of liquids and colloids are treated by fully shielded electromagnetic generators and passive cone-shaped structures. Fluidic samples collected from different geological locations are also analysed. In all tested cases we obtained different results for impacted and non-impacted samples, moreover, a degradation of electrochemical stability after treatment is observed. This method is used in laboratory analysis of weak emissions and ensures a high repeatability of results.

  19. Numerical assessment of accurate measurements of laminar flame speed

    Science.gov (United States)

    Goulier, Joules; Bizon, Katarzyna; Chaumeix, Nabiha; Meynet, Nicolas; Continillo, Gaetano

    2016-12-01

    In combustion, the laminar flame speed constitutes an important parameter that reflects the chemistry of oxidation for a given fuel, along with its transport and thermal properties. Laminar flame speeds are used (i) in turbulent models used in CFD codes, and (ii) to validate detailed or reduced mechanisms, often derived from studies using ideal reactors and in diluted conditions as in jet stirred reactors and in shock tubes. End-users of such mechanisms need to have an assessment of their capability to predict the correct heat released by combustion in realistic conditions. In this view, the laminar flame speed constitutes a very convenient parameter, and it is then very important to have a good knowledge of the experimental errors involved with its determination. Stationary configurations (Bunsen burners, counter-flow flames, heat flux burners) or moving flames (tubes, spherical vessel, soap bubble) can be used. The spherical expanding flame configuration has recently become popular, since it can be used at high pressures and temperatures. With this method, the flame speed is not measured directly, but derived through the recording of the flame radius. The method used to process the radius history will have an impact on the estimated flame speed. Aim of this work is to propose a way to derive the laminar flame speed from experimental recording of expanding flames, and to assess the error magnitude.

  20. Simultaneous measurement of the frequencies of intrachromosomal recombination and chromosome gain using the yeast DEL assay.

    Science.gov (United States)

    Howlett, N G; Schiestl, R H

    2000-11-06

    The yeast DEL assay measures the frequency of intrachromosomal recombination between two partially-deleted his3 alleles on chromosome XV. The his3Delta alleles share approximately 400bp of overlapping homology, and are separated by an intervening LEU2 sequence. Homologous recombination between the his3Delta alleles results in deletion of the intervening LEU2 sequence (DEL), and reversion to histidine prototrophy. In this study we have attempted to further extend the use of the yeast DEL assay to measure the frequency of chromosome XV gain events. Reversion to His(+)Leu(+) in the haploid yeast DEL tester strain RSY6 occurs upon non-disjunction of chromosome XV sister chromatids, coupled with a subsequent DEL event. Here we have tested the ability of the yeast DEL assay to accurately predict the aneugenic potential of the diversely-acting, known or suspected aneugens actinomycin D, benomyl, chloral hydrate, ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), and methotrexate. Actinomycin D and benomyl strongly induced aneuploidy. EMS and methotrexate modestly induced aneuploidy, while chloral hydrate and MMS failed to illicit any significant induction. In addition, by FACS-analysis of DNA content it was shown that the majority of both spontaneous- and chemically-induced His(+)Leu(+) revertants were heterodiploid. Thus, our results indicate endoreduplication of almost entire chromosome sets as a major mechanism of aneuploidy induction in haploid Saccharomyces cerevisiae.

  1. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  2. Defining Allowable Physical Property Variations for High Accurate Measurements on Polymer Parts

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Sonne, Mads Rostgaard; Madruga, Daniel González;

    2015-01-01

    cooling down after injection molding. In order to obtain accurate simulations, accurate inputs to the model are crucial. In reality however, the material and physical properties will have some variations. Although these variations may be small, they can act as a source of uncertainty for the measurement...... high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which...... is a challenge in today‘s production and metrology environments. The residual deformations in polymer products at room temperature after injection molding are important when micrometer accuracy needs to be achieved. Numerical modelling can give a valuable insight to what is happening in the polymer during...

  3. No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey

    CERN Document Server

    Suchyta, E; Aleksić, J; Melchior, P; Jouvel, S; MacCrann, N; Crocce, M; Gaztanaga, E; Honscheid, K; Leistedt, B; Peiris, H V; Ross, A J; Rykoff, E S; Sheldon, E; Abbott, T; Abdalla, F B; Allam, S; Banerji, M; Benoit-Lévy, A; Bertin, E; Brooks, D; Burke, D L; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Cunha, C E; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Eifler, T F; Estrada, J; Evrard, A E; Flaugher, B; Fosalba, P; Frieman, J; Gerdes, D W; Gruen, D; Gruendl, R A; James, D J; Jarvis, M; Kuehn, K; Kuropatkin, N; Lahav, O; Lima, M; Maia, M A G; March, M; Marshall, J L; Miller, C J; Miquel, R; Neilsen, E; Nichol, R C; Nord, B; Ogando, R; Percival, W J; Reil, K; Roodman, A; Sako, M; Sanchez, E; Scarpine, V; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Vikram, V; Walker, A R; Wechsler, R H; Zhang, Y

    2015-01-01

    Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases. We demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for th...

  4. Measurement of carrier transport and recombination parameter in heavily doped silicon

    Science.gov (United States)

    Swanson, Richard M.

    1986-01-01

    The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.

  5. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    Directory of Open Access Journals (Sweden)

    Hu Yongxiang

    2016-01-01

    On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL data that are collocated with in-water optical measurements.

  6. Accurate wavelength prediction of photonic crystal resonant reflection and applications in refractive index measurement

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron L. C.

    2014-01-01

    and superstrate materials. The importance of accounting for material dispersion in order to obtain accurate simulation results is highlighted, and a method for doing so using an iterative approach is demonstrated. Furthermore, an application for the model is demonstrated, in which the material dispersion...... of a liquid is extracted from measured resonance wavelengths....

  7. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study

    Science.gov (United States)

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical to establishing diet/health relationships. There are as many as 50,000 secondary metabolites which may influence human health. Their structural and chemical diversity present a challenge to analytic...

  8. Evaluation of Modified Pycnometric Method for Accurately Measuring the Density of Molten Nickel

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang; FU Yuechao; YANG Lingchuan

    2004-01-01

    A modified pycnometric method has been developed to obtain accurate densities of molten nickel.The new method allows continuous measurement of density over a wide temperature range from a single experiment.The measurement error of the method was analyzed, and the total uncertainty of the measurement was estimated to be within ±0.34%. The measured density of molten nickel decreases linearly with increasing temperature over a range from the melting point to 1873K. The density at the melting point and the thermal expansion coefficient of molten nickel are 7.90Mg·m-3 and 1.92×10-4 K-1,respectively.

  9. Techniques for determining propulsion system forces for accurate high speed vehicle drag measurements in flight

    Science.gov (United States)

    Arnaiz, H. H.

    1975-01-01

    As part of a NASA program to evaluate current methods of predicting the performance of large, supersonic airplanes, the drag of the XB-70 airplane was measured accurately in flight at Mach numbers from 0.75 to 2.5. This paper describes the techniques used to determine engine net thrust and the drag forces charged to the propulsion system that were required for the in-flight drag measurements. The accuracy of the measurements and the application of the measurement techniques to aircraft with different propulsion systems are discussed. Examples of results obtained for the XB-70 airplane are presented.

  10. Accurate mass replacement method for the sediment concentration measurement with a constant volume container

    Science.gov (United States)

    Ban, Yunyun; Chen, Tianqin; Yan, Jun; Lei, Tingwu

    2017-04-01

    The measurement of sediment concentration in water is of great importance in soil erosion research and soil and water loss monitoring systems. The traditional weighing method has long been the foundation of all the other measuring methods and instrument calibration. The development of a new method to replace the traditional oven-drying method is of interest in research and practice for the quick and efficient measurement of sediment concentration, especially field measurements. A new method is advanced in this study for accurately measuring the sediment concentration based on the accurate measurement of the mass of the sediment-water mixture in the confined constant volume container (CVC). A sediment-laden water sample is put into the CVC to determine its mass before the CVC is filled with water and weighed again for the total mass of the water and sediments in the container. The known volume of the CVC, the mass of sediment-laden water, and sediment particle density are used to calculate the mass of water, which is replaced by sediments, therefore sediment concentration of the sample is calculated. The influence of water temperature was corrected by measuring water density to determine the temperature of water before measurements were conducted. The CVC was used to eliminate the surface tension effect so as to obtain the accurate volume of water and sediment mixture. Experimental results showed that the method was capable of measuring the sediment concentration from 0.5 up to 1200 kg m‑3. A good liner relationship existed between the designed and measured sediment concentrations with all the coefficients of determination greater than 0.999 and the averaged relative error less than 0.2%. All of these seem to indicate that the new method is capable of measuring a full range of sediment concentration above 0.5 kg m‑3 to replace the traditional oven-drying method as a standard method for evaluating and calibrating other methods.

  11. Compact, accurate description of diagnostic neutral beam propagation and attenuation in a high temperature plasma for charge exchange recombination spectroscopy analysis.

    Science.gov (United States)

    Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S

    2008-10-01

    Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.

  12. Defining allowable physical property variations for high accurate measurements on polymer parts

    Science.gov (United States)

    Mohammadi, A.; Sonne, M. R.; Madruga, D. G.; De Chiffre, L.; Hattel, J. H.

    2016-06-01

    Measurement conditions and material properties have a significant impact on the dimensions of a part, especially for polymers parts. Temperature variation causes part deformations that increase the uncertainty of the measurement process. Current industrial tolerances of a few micrometres demand high accurate measurements in non-controlled ambient. Most of polymer parts are manufactured by injection moulding and their inspection is carried out after stabilization, around 200 hours. The overall goal of this work is to reach ±5μm in uncertainty measurements a polymer products which is a challenge in today`s production and metrology environments. The residual deformations in polymer products at room temperature after injection molding are important when micrometer accuracy needs to be achieved. Numerical modelling can give a valuable insight to what is happening in the polymer during cooling down after injection molding. In order to obtain accurate simulations, accurate inputs to the model are crucial. In reality however, the material and physical properties will have some variations. Although these variations may be small, they can act as a source of uncertainty for the measurement. In this paper, we investigated how big the variation in material and physical properties are allowed in order to reach the 5 μm target on the uncertainty.

  13. Practical do-it-yourself device for accurate volume measurement of breast.

    Science.gov (United States)

    Tezel, E; Numanoğlu, A

    2000-03-01

    A simple and accurate method of measuring differences in breast volume based on Archimedes' principle is described. In this method, a plastic container is placed on the breast of the patient who is lying in supine position. While the breast occupies part of the container, the remaining part is filled with water and the volume is measured. This method allows the measurement of the volume differences of asymmetric breasts and also helps the surgeon to estimate the size of the prosthesis to be used in augmentation mammaplasty.

  14. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  15. Precise and accurate measurements of strong-field photoionisation and a transferrable laser intensity calibration standard

    CERN Document Server

    Wallace, W C; Khurmi, C; U., Satya Sainadh; Calvert, J E; Laban, D E; Pullen, M G; Bartschat, K; Grum-Grzhimailo, A N; Wells, D; Quiney, H M; Tong, X M; Litvinyuk, I V; Sang, R T; Kielpinski, D

    2016-01-01

    Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here we present measurements of the ionization yield for argon, krypton, and xenon with percentlevel accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferrable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much-needed benchmark for testing models of ionisation in noble-gas atoms, such as the widely employed single-active electron approximation.

  16. Accurate Estimation of Low Fundamental Frequencies from Real-Valued Measurements

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2013-01-01

    In this paper, the difficult problem of estimating low fundamental frequencies from real-valued measurements is addressed. The methods commonly employed do not take the phenomena encountered in this scenario into account and thus fail to deliver accurate estimates. The reason for this is that the......In this paper, the difficult problem of estimating low fundamental frequencies from real-valued measurements is addressed. The methods commonly employed do not take the phenomena encountered in this scenario into account and thus fail to deliver accurate estimates. The reason...... for this is that they employ asymptotic approximations that are violated when the harmonics are not well-separated in frequency, something that happens when the observed signal is real-valued and the fundamental frequency is low. To mitigate this, we analyze the problem and present some exact fundamental frequency estimators...

  17. Accurate microfour-point probe sheet resistance measurements on small samples

    DEFF Research Database (Denmark)

    Thorsteinsson, Sune; Wang, Fei; Petersen, Dirch Hjorth

    2009-01-01

    We show that accurate sheet resistance measurements on small samples may be performed using microfour-point probes without applying correction factors. Using dual configuration measurements, the sheet resistance may be extracted with high accuracy when the microfour-point probes are in proximity...... with sufficient accuracy. As an example, the sheet resistance of a 40 µm (50 µm) square sample may be characterized with an accuracy of 0.3% (0.1%) using a 10 µm pitch microfour-point probe and assuming a probe alignment accuracy of ±2.5 µm. ©2009 American Institute of Physics...... of a mirror plane on small samples with dimensions of a few times the probe pitch. We calculate theoretically the size of the “sweet spot,” where sufficiently accurate sheet resistances result and show that even for very small samples it is feasible to do correction free extraction of the sheet resistance...

  18. Dilated Chi-Square : a novel interestingness measure to build accurate and compact decion list

    OpenAIRE

    Lan, Yu; Janssens, Davy; Chen, Guoqing; Wets, Geert

    2005-01-01

    Associative classification has aroused significant attention in recent years. This paper proposed a novel interestingness measure, named dilated chi-square, to statistically reveal the interdependence between the antecedents and the consequent of classificaton rules. Using dilated chi-square, instead of confidence, as the primary ranking criterion for rules under the framework of popular CBA algorithm, the adapted algorithm presented in this paper can empirically generate more accurate and mu...

  19. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Science.gov (United States)

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  20. A Novel Multimode Waveguide Coupler for Accurate Power Measurement of Traveling Wave Tube Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2014-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.

  1. Accurate measurement of spatial noise portraits of photosensors of digital cameras

    Science.gov (United States)

    Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Kulakov, M. N.; Starikov, R. S.

    2016-08-01

    Method of measurement of accurate portraits of light and dark spatial noise of photosensors is described. The method consists of four steps: creation of spatially homogeneous illumination; shooting light and dark frames; digital processing and filtering. Unlike standard technique, this method uses iterative creation of spatially homogeneous illumination by display, compensation of photosensor dark spatial noise portrait and improved procedure of elimination of dark temporal noise. Portraits of light and dark spatial noise of photosensors of a scientific digital camera were found. Characteristics of the measured portraits were compared with values of photo response and dark signal non-uniformities of camera's photosensor.

  2. Measurement of caudate nucleus area - a more accurate measurement for Huntington's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wardlaw, J.M.; Abernethy, L.J. (Royal Infirmary, London (United Kingdom). Dept. of Radiology); Sellar, R.J. (Western General Hospital, Edinburgh (United Kingdom). Dept. of Neuroradiology)

    1991-08-01

    Caudate nucleus atrophy occurs in Huntington's disease and methods of measuring this have been described using axial CT, but these are indirect and lack sensitivity. We measured caudate nucleus area (blind to the subjects' clinical state) in 30 subjects with or at risk of Huntington's disease, and in 100 normal age matched controls. Fifteen subjects with established symptomatic Huntington's disease, 3 with early symptoms, and 3 presymptomatic subjects (2 showing a high probability for the Huntington's disease gene on genetic testing, and one who has since developed symptoms) were correctly identified. Three normal (gene negative) family members were also correctly identified. Outcome is awaited in 6. CT caudate area measurement is simple and reproducible and we have found it to be a useful confirmatory test for Huntington's disease. (orig.).

  3. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    Science.gov (United States)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  4. The road towards accurate optical width measurements at the industrial level

    Science.gov (United States)

    Bodermann, Bernd; Köning, Rainer; Bergmann, Detlef; Buhr, Egbert; Hässler-Grohne, Wolfgang; Flügge, Jens; Bosse, Harald

    2013-04-01

    Optical vision systems require both unidirectional and bidirectional measurements for the calibrations and the verification of the tool performance to enable accurate measurements traceable to the SI unit Metre. However, for bidirectional measurements up to now the national metrology institutes are unable to provide internationally recognized calibrations of suitable standards. Furthermore often users are not aware of the specific difficulties of these measurements. In this paper the current status and limitations of bidirectional optical measurements at the industrial level are summarised and compared to state-of-the-art optical linewidth measurements performed at PTB on measurement objects of semiconductor industry. It turns out, that for optical widths measurements at an uncertainty level below 1 μm edge localisation schemes are required, which are based on tool and sample dependent threshold values, which usually need to be determined by a rigorous simulation of the microscopic image. Furthermore the calibration samples and structures must have a sufficient quality, e. g. high edge angle and low edge roughness and the structure materials and their material parameters have to be known. The experience obtained within the accreditation process of industrial labs for width calibrations shows that, in order to be able to achieve a desired measurement uncertainties of about 100 nm, the imaging system needs to have a monochromatic Koehler illumination, numerical aperture larger than 0.5, a magnification greater than 50x and the ability to control the deviation of the focus position to better than 100 nm.

  5. Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements.

    Science.gov (United States)

    Kudryavtsev, Volodymyr; Sikor, Martin; Kalinin, Stanislav; Mokranjac, Dejana; Seidel, Claus A M; Lamb, Don C

    2012-03-01

    Single-pair Förster resonance energy transfer (spFRET) experiments using single-molecule burst analysis on a confocal microscope are an ideal tool to measure inter- and intramolecular distances and dynamics on the nanoscale. Different techniques have been developed to maximize the amount of information available in spFRET burst analysis experiments. Multiparameter fluorescence detection (MFD) is used to monitor a variety of fluorescence parameters simultaneously and pulsed interleaved excitation (PIE) employs direct excitation of the acceptor to probe its presence and photoactivity. To calculate accurate FRET efficiencies from spFRET experiments with MFD or PIE, several calibration measurements are usually required. Herein, we demonstrate that by combining MFD with PIE information regarding all calibration factors as well as an accurate determination of spFRET histograms can be performed in a single measurement. In addition, the quality of overlap of the different detection volumes as well as the detection of acceptor photophysics can be investigated with MFD-PIE. Bursts containing acceptor photobleaching can be identified and excluded from further investigation while bursts that contain FRET dynamics are unaffected by this analysis. We have employed MFD-PIE to accurately analyze the effects of nucleotides and substrate on the interdomain separation in DnaK, the major bacterial heat shock protein 70 (Hsp70). The interdomain distance increases from 47 Å in the ATP-bound state to 84 Å in the ADP-bound state and slightly contracts to 77 Å when a substrate is bound. This is in contrast to what was observed for the mitochondrial member of the Hsp70s, Ssc1, supporting the notion of evolutionary specialization of Hsp70s for different cellular functions in different organisms and cell organelles.

  6. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    Directory of Open Access Journals (Sweden)

    Suzhi Xiao

    2016-04-01

    Full Text Available In order to acquire an accurate three-dimensional (3D measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.

  7. Designer cantilevers for even more accurate quantitative measurements of biological systems with multifrequency AFM

    Science.gov (United States)

    Contera, S.

    2016-04-01

    Multifrequency excitation/monitoring of cantilevers has made it possible both to achieve fast, relatively simple, nanometre-resolution quantitative mapping of mechanical of biological systems in solution using atomic force microscopy (AFM), and single molecule resolution detection by nanomechanical biosensors. A recent paper by Penedo et al [2015 Nanotechnology 26 485706] has made a significant contribution by developing simple methods to improve the signal to noise ratio in liquid environments, by selectively enhancing cantilever modes, which will lead to even more accurate quantitative measurements.

  8. High-resolution recombination patterns in a region of human chromosome 21 measured by sperm typing.

    Directory of Open Access Journals (Sweden)

    Irene Tiemann-Boege

    2006-05-01

    Full Text Available For decades, classical crossover studies and linkage disequilibrium (LD analysis of genomic regions suggested that human meiotic crossovers may not be randomly distributed along chromosomes but are focused instead in "hot spots." Recent sperm typing studies provided data at very high resolution and accuracy that defined the physical limits of a number of hot spots. The data were also used to test whether patterns of LD can predict hot spot locations. These sperm typing studies focused on several small regions of the genome already known or suspected of containing a hot spot based on the presence of LD breakdown or previous experimental evidence of hot spot activity. Comparable data on target regions not specifically chosen using these two criteria is lacking but is needed to make an unbiased test of whether LD data alone can accurately predict active hot spots. We used sperm typing to estimate recombination in 17 almost contiguous ~5 kb intervals spanning 103 kb of human Chromosome 21. We found two intervals that contained new hot spots. The comparison of our data with recombination rates predicted by statistical analyses of LD showed that, overall, the two datasets corresponded well, except for one predicted hot spot that showed little crossing over. This study doubles the experimental data on recombination in men at the highest resolution and accuracy and supports the emerging genome-wide picture that recombination is localized in small regions separated by cold areas. Detailed study of one of the new hot spots revealed a sperm donor with a decrease in recombination intensity at the canonical recombination site but an increase in crossover activity nearby. This unique finding suggests that the position and intensity of hot spots may evolve by means of a concerted mechanism that maintains the overall recombination intensity in the region.

  9. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    Science.gov (United States)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  10. Time-resolved measurements of Cooper-pair radiative recombination in InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mou, S. S.; Nakajima, H.; Kumano, H.; Suemune, I., E-mail: isuemune@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020 (Japan); Irie, H. [NTT Basic Research Laboratories, NTT Corporation, Atsugi 243-0198 (Japan); Asano, Y. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Akahane, K.; Sasaki, M. [National Institute of Information and Communication Technology, Koganei 184-8795 (Japan); Murayama, A. [Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814 (Japan)

    2015-08-21

    We studied InAs quantum dots (QDs) where electron Cooper pairs penetrate from an adjacent niobium (Nb) superconductor with the proximity effect. With time-resolved luminescence measurements at the wavelength around 1550 nm, we observed luminescence enhancement and reduction of luminescence decay time constants at temperature below the superconducting critical temperature (T{sub C}) of Nb. On the basis of these measurements, we propose a method to determine the contribution of Cooper-pair recombination in InAs QDs. We show that the luminescence enhancement measured below T{sub C} is well explained with our theory including Cooper-pair recombination.

  11. Accurate Measurement of the in vivo Ammonium Concentration in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hugo F. Cueto-Rojas

    2016-04-01

    Full Text Available Ammonium (NH4+ is the most common N-source for yeast fermentations, and N-limitation is frequently applied to reduce growth and increase product yields. While there is significant molecular knowledge on NH4+ transport and assimilation, there have been few attempts to measure the in vivo concentration of this metabolite. In this article, we present a sensitive and accurate analytical method to quantify the in vivo intracellular ammonium concentration in Saccharomyces cerevisiae based on standard rapid sampling and metabolomics techniques. The method validation experiments required the development of a proper sample processing protocol to minimize ammonium production/consumption during biomass extraction by assessing the impact of amino acid degradation—an element that is often overlooked. The resulting cold chloroform metabolite extraction method, together with quantification using ultra high performance liquid chromatography-isotope dilution mass spectrometry (UHPLC-IDMS, was not only more sensitive than most of the existing methods but also more accurate than methods that use electrodes, enzymatic reactions, or boiling water or boiling ethanol biomass extraction because it minimized ammonium consumption/production during sampling processing and interference from other metabolites in the quantification of intracellular ammonium. Finally, our validation experiments showed that other metabolites such as pyruvate or 2-oxoglutarate (αKG need to be extracted with cold chloroform to avoid measurements being biased by the degradation of other metabolites (e.g., amino acids.

  12. Accurate Measurement of the in vivo Ammonium Concentration in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cueto-Rojas, Hugo F; Maleki Seifar, Reza; Ten Pierick, Angela; Heijnen, Sef J; Wahl, Aljoscha

    2016-04-23

    Ammonium (NH₄⁺) is the most common N-source for yeast fermentations, and N-limitation is frequently applied to reduce growth and increase product yields. While there is significant molecular knowledge on NH₄⁺ transport and assimilation, there have been few attempts to measure the in vivo concentration of this metabolite. In this article, we present a sensitive and accurate analytical method to quantify the in vivo intracellular ammonium concentration in Saccharomyces cerevisiae based on standard rapid sampling and metabolomics techniques. The method validation experiments required the development of a proper sample processing protocol to minimize ammonium production/consumption during biomass extraction by assessing the impact of amino acid degradation-an element that is often overlooked. The resulting cold chloroform metabolite extraction method, together with quantification using ultra high performance liquid chromatography-isotope dilution mass spectrometry (UHPLC-IDMS), was not only more sensitive than most of the existing methods but also more accurate than methods that use electrodes, enzymatic reactions, or boiling water or boiling ethanol biomass extraction because it minimized ammonium consumption/production during sampling processing and interference from other metabolites in the quantification of intracellular ammonium. Finally, our validation experiments showed that other metabolites such as pyruvate or 2-oxoglutarate (αKG) need to be extracted with cold chloroform to avoid measurements being biased by the degradation of other metabolites (e.g., amino acids).

  13. Rapid and accurate biofuel moisture content gauging using magnetic resonance measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, T.

    2013-04-15

    Biomass is extensively utilised in energy production and as a raw material, such as for the production of liquid biofuels. All those processes will benefit if the moisture content of bio material is known in advance as accurately as possible under transient circumstances. Biofuel trade is increasingly based on the calorific value of fuels. In the first step, this also increases the need for rapid and accurate moisture content determination. During the last few years, large biofuel standardisation has been implemented, emphasising biofuel quality control at all stages of the utilisation chain. In principle, the moisture instrumental measurement can be utilised by many technologies and procedures. Typical techniques are infrared, radiofrequency, microwave, radiometric, electrical conductivity, capacitance, and impedance. Nuclear magnetic resonance (MR) and thermal neutron absorption are also applied. The MR measurement principle has been known and utilised already since the early 1950s. It has become the basic instrumental analysis tool in chemistry. It is also well-known as a very accurate method for analysing most compounds, especially substances containing hydrogen. The utilisation of MR metering is expanded extensively to medical diagnostics as a form of magnetic resonance imaging (MRI). Because of the precision of the MR principle, there have for a long time been efforts to apply it in new and different areas, and to make more user-friendly, smaller, and even portable devices. Such a device was designed by Vaisala a few years ago. VTT has utilised Vaisala's MR prototype for approximately one year for moisture content measurement of different biofuels. The first step in the use of an MR device for moisture determination was the definition of its measurement accuracy compared to the standard method (EN 14774). Those tests proved that the absolute precision seems to be comparable to the standard moisture content measurement method. It was also found out that

  14. Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study.

    Science.gov (United States)

    Harnly, James

    2016-03-01

    Accurate measurements of the secondary metabolites in natural products and plant foods are critical for establishing relations between diet and health. There are as many as 50,000 secondary metabolites that may influence human health. Their structural and chemical diversity presents a challenge to analytical chemistry. With respect to flavonoids, putative identification is accessible, but positive identification and quantification are limited by the lack of standards. Quantification has been tested with use of both nonspecific and specific methods. Nonspecific methods, which include antioxidant capacity methods, fail to provide information on the measured components, suffer from numerous interferences, are not equatable, and are unsuitable for health research. Specific methods, such as LC with diode array and mass spectrometric detection, require the use of internal standards and relative molar response factors. These methods are relatively expensive and require a high level of expertise and experimental verification; however, they represent the only suitable means of relating health outcomes to specific dietary components.

  15. Apparatus for accurate density measurements of fluids based on a magnetic suspension balance

    Science.gov (United States)

    Gong, Maoqiong; Li, Huiya; Guo, Hao; Dong, Xueqiang; Wu, J. F.

    2012-06-01

    A new apparatus for accurate pressure, density and temperature (p, ρ, T) measurements over wide ranges of (p, ρ, T) (90 K to 290 K; 0 MPa to 3 MPa; 0 kg/m3 to 2000 kg/m3) is described. This apparatus is based on a magnetic suspension balance which applies the Archimedes' buoyancy principle. In order to verify the new apparatus, comprehensive (p, ρ, T) measurements on pure nitrogen were carried out. The maximum relative standard uncertainty is 0.09% in density. The maximum standard uncertainty in temperature is 5 mK, and that in pressure is 250 Pa for 1.5 MPa and 390 Pa for 3MPa full scale range respectively. The experimental data were compared with selected literature data and good agreements were found.

  16. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    Science.gov (United States)

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  17. A solution for measuring accurate reaction time to visual stimuli realized with a programmable microcontroller.

    Science.gov (United States)

    Ohyanagi, Toshio; Sengoku, Yasuhito

    2010-02-01

    This article presents a new solution for measuring accurate reaction time (SMART) to visual stimuli. The SMART is a USB device realized with a Cypress Programmable System-on-Chip (PSoC) mixed-signal array programmable microcontroller. A brief overview of the hardware and firmware of the PSoC is provided, together with the results of three experiments. In Experiment 1, we investigated the timing accuracy of the SMART in measuring reaction time (RT) under different conditions of operating systems (OSs; Windows XP or Vista) and monitor displays (a CRT or an LCD). The results indicated that the timing error in measuring RT by the SMART was less than 2 msec, on average, under all combinations of OS and display and that the SMART was tolerant to jitter and noise. In Experiment 2, we tested the SMART with 8 participants. The results indicated that there was no significant difference among RTs obtained with the SMART under the different conditions of OS and display. In Experiment 3, we used Microsoft (MS) PowerPoint to present visual stimuli on the display. We found no significant difference in RTs obtained using MS DirectX technology versus using the PowerPoint file with the SMART. We are certain that the SMART is a simple and practical solution for measuring RTs accurately. Although there are some restrictions in using the SMART with RT paradigms, the SMART is capable of providing both researchers and health professionals working in clinical settings with new ways of using RT paradigms in their work.

  18. Smart density: a more accurate method of measuring rural residential density for health-related research

    Directory of Open Access Journals (Sweden)

    Gibson Lucinda

    2010-02-01

    Full Text Available Abstract Background Studies involving the built environment have typically relied on US Census data to measure residential density. However, census geographic units are often unsuited to health-related research, especially in rural areas where development is clustered and discontinuous. Objective We evaluated the accuracy of both standard census methods and alternative GIS-based methods to measure rural density. Methods We compared residential density (units/acre in 335 Vermont school neighborhoods using conventional census geographic units (tract, block group and block with two GIS buffer measures: a 1-kilometer (km circle around the school and a 1-km circle intersected with a 100-meter (m road-network buffer. The accuracy of each method was validated against the actual residential density for each neighborhood based on the Vermont e911 database, which provides an exact geo-location for all residential structures in the state. Results Standard census measures underestimate residential density in rural areas. In addition, the degree of error is inconsistent so even the relative rank of neighborhood densities varies across census measures. Census measures explain only 61% to 66% of the variation in actual residential density. In contrast, GIS buffer measures explain approximately 90% of the variation. Combining a 1-km circle with a road-network buffer provides the closest approximation of actual residential density. Conclusion Residential density based on census units can mask clusters of development in rural areas and distort associations between residential density and health-related behaviors and outcomes. GIS-defined buffers, including a 1-km circle and a road-network buffer, can be used in conjunction with census data to obtain a more accurate measure of residential density.

  19. Measuring nonlinear oscillations using a very accurate and low-cost linear optical position transducer

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2016-09-01

    An accurate linear optical displacement transducer of about 0.2 mm resolution over a range of ∼40 mm is presented. This device consists of a stack of thin cellulose acetate strips, each strip longitudinally slid ∼0.5 mm over the precedent one so that one end of the stack becomes a stepped wedge of constant step. A narrowed light beam from a white LED orthogonally incident crosses the wedge at a known point, the transmitted intensity being detected with a phototransistor whose emitter is connected to a diode. We present the interesting analytical proof that the voltage across the diode is linearly dependent upon the ordinate of the point where the light beam falls on the wedge, as well as the experimental validation of such a theoretical proof. Applications to nonlinear oscillations are then presented—including the interesting case of a body moving under dry friction, and the more advanced case of an oscillator in a quartic energy potential—whose time-varying positions were accurately measured with our transducer. Our sensing device can resolve the dynamics of an object attached to it with great accuracy and precision at a cost considerably less than that of a linear neutral density wedge. The technique used to assemble the wedge of acetate strips is described.

  20. Accurate Measurement of the Effects of All Amino-Acid Mutations on Influenza Hemagglutinin

    Directory of Open Access Journals (Sweden)

    Michael B. Doud

    2016-06-01

    Full Text Available Influenza genes evolve mostly via point mutations, and so knowing the effect of every amino-acid mutation provides information about evolutionary paths available to the virus. We and others have combined high-throughput mutagenesis with deep sequencing to estimate the effects of large numbers of mutations to influenza genes. However, these measurements have suffered from substantial experimental noise due to a variety of technical problems, the most prominent of which is bottlenecking during the generation of mutant viruses from plasmids. Here we describe advances that ameliorate these problems, enabling us to measure with greatly improved accuracy and reproducibility the effects of all amino-acid mutations to an H1 influenza hemagglutinin on viral replication in cell culture. The largest improvements come from using a helper virus to reduce bottlenecks when generating viruses from plasmids. Our measurements confirm at much higher resolution the results of previous studies suggesting that antigenic sites on the globular head of hemagglutinin are highly tolerant of mutations. We also show that other regions of hemagglutinin—including the stalk epitopes targeted by broadly neutralizing antibodies—have a much lower inherent capacity to tolerate point mutations. The ability to accurately measure the effects of all influenza mutations should enhance efforts to understand and predict viral evolution.

  1. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    Directory of Open Access Journals (Sweden)

    J. Viallon

    2014-08-01

    Full Text Available Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10−18 cm2 molecule−1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10−18, 10.44 × 10−18, and 11.07 × 10−18 cm2 molecule−1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  2. Accurate measurements of ozone absorption cross-sections in the Hartley band

    Science.gov (United States)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  3. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    Science.gov (United States)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2014-08-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 × 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.84 %. This is lower than the conventional value currently in use and measured by Hearn in 1961 with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross sections with reduced uncertainties, a system to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier Transform Infrared spectroscopy was setup. This resulted in new measurements of absolute values of ozone absorption cross sections of 9.48 × 10-18, 10.44 × 10-18, and 11.07 × 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.6%, for the wavelengths (in vacuum) of 244.062, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non UV photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  4. Comparisons of Vibrio fischeri, Photobacterium phosphoreum, and recombinant luminescent using Escherichia coli as BOD measurement.

    Science.gov (United States)

    Cheng, Chiu-Yu; Kuo, Jong-Tar; Lin, Yu-Cheng; Liao, Yi-Ru; Chung, Ying-Chien

    2010-01-01

    To shorten the time needed to measure biochemical oxygen demand (BOD) in water samples and to provide a rapid feedback of the real condition of water quality, we tested and evaluated the validity and reliability of luminescent bacteria Vibrio fischeri, Photobacterium phosphoreum, and recombinant Escherichia coli as potential indicators of BOD in the domestic wastewaters. The results indicate that the luminescence intensities of these strains are dependent on temperature, pH, and BOD concentration. In comparison to the standard BOD(5) method, the time needed for BOD measurement can be shortened by 90, 120, and 150 min when V. fischeri, P. phosphoreum, and recombinant E. coli, respectively, are used. Recombinant E. coli can be adapted to measure BOD in domestic wastewater containing a wide range of BOD concentrations, V. fischeri is not suitable for measuring diluted wastewater, and P. phosphoreum has only a limited application in measuring concentrated wastewater. To the best of our knowledge, this is the first report in which V. fischeri, P. phosphoreum, and recombinant luminescent E. coli are compared in terms of their potential in BOD measurement systems.

  5. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  6. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    Science.gov (United States)

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  7. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    Science.gov (United States)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  8. Measurement of recombination frequencies between two homologous DNA segments embedded in a YAC vector.

    Science.gov (United States)

    Yasui, H; Kurosawa, Y

    1993-07-15

    We measured the frequencies of recombination in a yeast host between two homologous segments of DNA that had been inserted with the same polarity in a yeast artificial chromosome (YAC) vector. Three kinds of YAC clones were constructed in which the gene encoding neomycin(Nm) resistance was sandwiched between two homologous segments of DNA, such as the IS3 elements of Escherichia coli or human Alu sequences. Frequencies of homologous recombination in yeast were measured in terms of loss of resistance to Nm. In the case of IS3 fragments, homologous recombination between them did occur at a relatively high frequency (5 x 10(-4). In contrast, recombination between two Alu sequences did not occur at a detectable level during a 30-day incubation. Thus, the frequency was less than 10(-5). These results indicate that the Alu sequences do not sufficiently promote the frequency of recombination between two homologous fragments in yeast as to induce rearrangements of DNA in a substantial fraction of YAC clones in libraries.

  9. Stationary-Afterglow measurements of dissociative recombination of H2D+ and HD2+ ions

    Science.gov (United States)

    Dohnal, Petr; Kalosi, Abel; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj

    2016-09-01

    Binary recombination rate coefficients of H2D+ and HD2+ ions have been measured at a temperature of 80 K in an afterglow plasma experiment in which the fractional abundances of H3+, H2D+, HD2+, and D3+ ions were varied by adjusting the [D2]/([D2] + [H2]) ratio of the neutral gas. The fractional abundances of the four ion species during the afterglow and their rotational states were determined in situ by continuous-wave cavity ring-down absorption spectroscopy (CRDS), using overtone transitions from the ground vibrational states of the ions. The experimentally determined recombination rate coefficients will be compared to results of advanced theoretical calculations and to the known H3+ and D3+ recombination rate coefficients. We conclude that the recombination coefficients depend only weakly on the isotopic composition. Astrophysical implications of the measured recombination rate coefficients will be also discussed. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.

  10. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    Science.gov (United States)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  11. Recombination in the 5' leader of murine leukemia virus is accurate and influenced by sequence identity with a strong bias toward the kissing-loop dimerization region

    DEFF Research Database (Denmark)

    Mikkelsen, J G; Lund, Anders Henrik; Duch, M;

    1998-01-01

    Retroviral recombination occurs frequently during reverse transcription of the dimeric RNA genome. By a forced recombination approach based on the transduction of Akv murine leukemia virus vectors harboring a primer binding site knockout mutation and the entire 5' untranslated region, we studied ...

  12. Accurate, in vivo NIR measurement of skeletal muscle oxygenation through fat

    Science.gov (United States)

    Jin, Chunguang; Zou, Fengmei; Ellerby, Gwenn E. C.; Scott, Peter; Peshlov, Boyan; Soller, Babs R.

    2010-02-01

    Noninvasive near infrared (NIR) spectroscopic measurement of muscle oxygenation requires the penetration of light through overlying skin and fat layers. We have previously demonstrated a dual-light source design and orthogonalization algorithm that corrects for inference from skin absorption and fat scattering. To achieve accurate muscle oxygen saturation (SmO2) measurement, one must select the appropriate source-detector distance (SD) to completely penetrate the fat layer. Methods: Six healthy subjects were supine for 15min to normalize tissue oxygenation across the body. NIR spectra were collected from the calf, shoulder, lower and upper thigh muscles with long SD distances of 30mm, 35mm, 40mm and 45mm. Spectral preprocessing with the short SD (3mm) spectrum preceded SmO2 calculation with a Taylor series expansion method. Three-way ANOVA was used to compare SmO2 values over varying fat thickness, subjects and SD distances. Results: Overlying fat layers varied in thickness from 4.9mm to 19.6mm across all subjects. SmO2 measured at the four locations were comparable for each subject (p=0.133), regardless of fat thickness and SD distance. SmO2 (mean+/-std dev) measured at calf, shoulder, low and high thigh were 62+/-3%, 59+/-8%, 61+/-2%, 61+/-4% respectively for SD distance of 30mm. In these subjects no significant influence of SD was observed (p=0.948). Conclusions: The results indicate that for our sensor design a 30mm SD is sufficient to penetrate through a 19mm fat layer and that orthogonalization with short SD effectively removed spectral interference from fat to result in a reproducible determination of SmO2.

  13. Accurate correction of magnetic field instabilities for high-resolution isochronous mass measurements in storage rings

    CERN Document Server

    Shuai, P; Zhang, Y H; Litvinov, Yu A; Wang, M; Tu, X L; Blaum, K; Zhou, X H; Yuan, Y J; Audi, G; Yan, X L; Chen, X C; Xu, X; Zhang, W; Sun, B H; Yamaguchi, T; Chen, R J; Fu, C Y; Ge, Z; Huang, W J; Liu, D W; Xing, Y M; Zeng, Q

    2014-01-01

    Isochronous mass spectrometry (IMS) in storage rings is a successful technique for accurate mass measurements of short-lived nuclides with relative precision of about $10^{-5}-10^{-7}$. Instabilities of the magnetic fields in storage rings are one of the major contributions limiting the achievable mass resolving power, which is directly related to the precision of the obtained mass values. A new data analysis method is proposed allowing one to minimise the effect of such instabilities. The masses of the previously measured at the CSRe $^{41}$Ti, $^{43}$V, $^{47}$Mn, $^{49}$Fe, $^{53}$Ni and $^{55}$Cu nuclides were re-determined with this method. An improvement of the mass precision by a factor of $\\sim 1.7$ has been achieved for $^{41}$Ti and $^{43}$V. The method can be applied to any isochronous mass experiment irrespective of the accelerator facility. Furthermore, the method can be used as an on-line tool for checking the isochronous conditions of the storage ring.

  14. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.

    Science.gov (United States)

    Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  15. Fast and accurate measurement of diffusion coefficient by Taylor's dispersion analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This investigation aimed at improving the performance of Taylor's dispersion analysis for the fast and accurate measurement of diffusion coefficient of a minute solute in various solvents. The investigation was carried out on a capillary electrophoresis instrument by monitoring the UV absorption peak of a solute pulse and calculating the diffusion coefficient by peak efficiency. With L-phenylalanine as a main testing solute, some key factors were afterward disclosed including especially the capillary size, carrier flow velocity, injection volume and capillary conditioning. Peak tailing, large volume of sample injection and slow migration were found to underestimate the diffusion coefficient while very fast migration and high sample concentration caused overestimation. At a moderate flow velocity of 0.1―1 cm/s with a capillary of 72.44 μm I.D.×60 cm (50 cm effective) maintained at 25℃, the diffusion coefficient of aqueous L-phenylalanine was determined, giving a value of 7.02×10-6 cm2/s with error<2% and relative standard deviation<0.2% (n=3). The method was shown to be applicable to the measurement of various samples such as aqueous phenylalanine, acetone, phenol, toluene and benzene, and nonaqueous benzene (in ethanol or 1-butanol).

  16. An accurate mass and radius measurement for an ultracool white dwarf

    CERN Document Server

    Parsons, S G; Marsh, T R; Bergeron, P; Copperwheat, C M; Dhillon, V S; Bento, J; Littlefair, S P; Schreiber, M R

    2012-01-01

    Studies of cool white dwarfs in the solar neighbourhood have placed a limit on the age of the Galactic disk of 8-9 billion years. However, determining their cooling ages requires the knowledge of their effective temperatures, masses, radii, and atmospheric composition. So far, these parameters could only be inferred for a small number of ultracool white dwarfs for which an accurate distance is known, by fitting their spectral energy distributions (SEDs) in conjunction with a theoretical mass-radius relation. However, the mass-radius relation remains largely untested, and the derived cooling ages are hence model-dependent. Here we report direct measurements of the mass and radius of an ultracool white dwarf in the double-lined eclipsing binary SDSS J013851.54-001621.6. We find M(WD)=0.529+/-0.010Msol and R(WD)=0.0131+/-0.0003Rsol. Our measurements are consistent with the mass-radius relation and we determine a robust cooling age of 9.5 billion years for the 3570K white dwarf. We find that the mass and radius o...

  17. Accurate measurement of interferometer group delay using field-compensated scanning white light interferometer.

    Science.gov (United States)

    Wan, Xiaoke; Wang, Ji; Ge, Jian

    2010-10-10

    Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interferometer calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region.

  18. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    Science.gov (United States)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  19. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering

    Science.gov (United States)

    Moskalensky, Alexander E.; Yurkin, Maxim A.; Konokhova, Anastasiya I.; Strokotov, Dmitry I.; Nekrasov, Vyacheslav M.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  20. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2016-12-01

    Full Text Available Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1 an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2 a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.

  1. Polarization measurement of dielectronic recombination transitions in highly charged krypton ions

    CERN Document Server

    Shah, Chintan; Bernitt, Sven; Dobrodey, Stepan; Steinbrügge, René; Beilmann, Christian; Amaro, Pedro; Hu, Zhimin; Weber, Sebastian; Fritzsche, Stephan; Surzhykov, Andrey; López-Urrutia, José R Crespo; Tashenov, Stanislav

    2016-01-01

    We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron beam ion trap with the electron beam energy adjusted to recombination resonances in order to produce $K\\alpha$ x rays. The x rays were detected with a newly developed Compton polarimeter using a beryllium scattering target and 12 silicon x-ray detector diodes sampling the azimuthal distribution of the scattered x rays. The extracted degrees of linear polarization of several dielectronic recombination transitions agree with results of relativistic distorted--wave calculations. We also demonstrate a high sensitivity of the polarization to the Breit interaction, which is remarkable for a medium-$Z$ element like krypton. The experimental results can be used for polarization diagnostics of hot astrophysical and laboratory fusion plasmas.

  2. A particle-tracking approach for accurate material derivative measurements with tomographic PIV

    Science.gov (United States)

    Novara, Matteo; Scarano, Fulvio

    2013-08-01

    The evaluation of the instantaneous 3D pressure field from tomographic PIV data relies on the accurate estimate of the fluid velocity material derivative, i.e., the velocity time rate of change following a given fluid element. To date, techniques that reconstruct the fluid parcel trajectory from a time sequence of 3D velocity fields obtained with Tomo-PIV have already been introduced. However, an accurate evaluation of the fluid element acceleration requires trajectory reconstruction over a relatively long observation time, which reduces random errors. On the other hand, simple integration and finite difference techniques suffer from increasing truncation errors when complex trajectories need to be reconstructed over a long time interval. In principle, particle-tracking velocimetry techniques (3D-PTV) enable the accurate reconstruction of single particle trajectories over a long observation time. Nevertheless, PTV can be reliably performed only at limited particle image number density due to errors caused by overlapping particles. The particle image density can be substantially increased by use of tomographic PIV. In the present study, a technique to combine the higher information density of tomographic PIV and the accurate trajectory reconstruction of PTV is proposed (Tomo-3D-PTV). The particle-tracking algorithm is applied to the tracers detected in the 3D domain obtained by tomographic reconstruction. The 3D particle information is highly sparse and intersection of trajectories is virtually impossible. As a result, ambiguities in the particle path identification over subsequent recordings are easily avoided. Polynomial fitting functions are introduced that describe the particle position in time with sequences based on several recordings, leading to the reduction in truncation errors for complex trajectories. Moreover, the polynomial regression approach provides a reduction in the random errors due to the particle position measurement. Finally, the acceleration

  3. Sitting and standing blood pressure measurements are not accurate for the diagnosis of orthostatic hypotension.

    LENUS (Irish Health Repository)

    Cooke, J

    2012-01-31

    INTRODUCTION: Orthostatic hypotension (OH) is associated with troublesome symptoms and increased mortality. It is treatable and deserving of accurate diagnosis. This can be time consuming. The current reference standard for its diagnosis is head-up tilt (HUT) testing with continuous beat-to-beat plethysmography. Our objective was to assess the accuracy of sit-stand testing with semi-automatic sphygmomanometry for the diagnosis of OH. DESIGN: Retrospective test of diagnostic accuracy. METHODS: This was a retrospective study performed using a database maintained by a busy syncope unit. HUT testing was performed using an automated tilt table with Finometer monitoring. A 3 min 70 degrees HUT was performed following 5 min supine. Sitting blood pressure (BP) was measured following 3 min rest. Standing BP was measured within 30 s of assuming the upright posture. The results of sit-stand testing were compared with HUT testing as a reference standard. Both tests happened within 5 min of each other and patients underwent no intervention between tests. RESULTS: From a total of 1452 consecutive HUTs, we identified 730 with pre-test measures of sitting and standing BP. The mean age of this group was 70.57 years (SD = 15.1), 62% were female. The sensitivity of sit-stand testing was calculated as 15.5%, specificity as 89.9%, positive predictive value as 61.7%, negative predictive value as 50.2% and the likelihood ratio as 1.6. The area under the Receiver Operator Curve was 0.564. CONCLUSION: We have demonstrated that sit-stand testing for OH has very low diagnostic accuracy. We recommend that the more time-consuming reference standard method of diagnosis be used if the condition is suspected.

  4. Accurate measurement of respiratory airway wall thickness in CT images using a signal restoration technique

    Science.gov (United States)

    Park, Sang Joon; Kim, Tae Jung; Kim, Kwang Gi; Lee, Sang Ho; Goo, Jin Mo; Kim, Jong Hyo

    2008-03-01

    Airway wall thickness (AWT) is an important bio-marker for evaluation of pulmonary diseases such as chronic bronchitis, bronchiectasis. While an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of AWT in Multidetector-Row Computed Tomography (MDCT) images involves various sources of error and uncertainty. So we have developed an accurate AWT measurement technique for small airways with three-dimensional (3-D) approach. To evaluate performance of these techniques, we used a set of acryl tube phantom was made to mimic small airways to have three different sizes of wall diameter (4.20, 1.79, 1.24 mm) and wall thickness (1.84, 1.22, 0.67 mm). The phantom was imaged with MDCT using standard reconstruction kernel (Sensation 16, Siemens, Erlangen). The pixel size was 0.488 mm × 0.488 mm × 0.75 mm in x, y, and z direction respectively. The images were magnified in 5 times using cubic B-spline interpolation, and line profiles were obtained for each tube. To recover faithful line profile from the blurred images, the line profiles were deconvolved with a point spread kernel of the MDCT which was estimated using the ideal tube profile and image line profile. The inner diameter, outer diameter, and wall thickness of each tube were obtained with full-width-half-maximum (FWHM) method for the line profiles before and after deconvolution processing. Results show that significant improvement was achieved over the conventional FWHM method in the measurement of AWT.

  5. Electron-ion Recombination of Fe XII forming Fe XI: Laboratory Measurements and Theoretical Calculations

    CERN Document Server

    Novotný, O; Bernhardt, D; Grieser, M; Hahn, M; Krantz, C; Lestinsky, M; Müller, A; Repnow, R; Schippers, S; Wolf, A; Savin, D W

    2012-01-01

    We have measured electron-ion recombination for Fe XII forming Fe XI using a merged beams configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. The measured merged beams recombination rate coefficient (MBRRC) for collision energies from 0 to 1500 eV is presented. This work uses a new method for determining the absolute MBRRC based on a comparison of the ion beam decay rate with and without the electron beam on. For energies below 75 eV, the spectrum is dominated by dielectronic recombination (DR) resonances associated with 3s-3p and 3p-3d core excitations. At higher energies we observe contributions from 3-N' and 2-N' core excitations DR. We compare our experimental results to state-of-the-art multi-configuration Breit-Pauli (MCBP) calculations and find significant differences, both in resonance energies and strengths. We have extracted the DR contributions from the measured MBRRC data and transformed them into a plasma recombination ra...

  6. Enabling high grayscale resolution displays and accurate response time measurements on conventional computers.

    Science.gov (United States)

    Li, Xiangrui; Lu, Zhong-Lin

    2012-02-29

    Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect

  7. Assessing smoking status in disadvantaged populations: is computer administered self report an accurate and acceptable measure?

    Directory of Open Access Journals (Sweden)

    Bryant Jamie

    2011-11-01

    Full Text Available Abstract Background Self report of smoking status is potentially unreliable in certain situations and in high-risk populations. This study aimed to determine the accuracy and acceptability of computer administered self-report of smoking status among a low socioeconomic (SES population. Methods Clients attending a community service organisation for welfare support were invited to complete a cross-sectional touch screen computer health survey. Following survey completion, participants were invited to provide a breath sample to measure exposure to tobacco smoke in expired air. Sensitivity, specificity, positive predictive value and negative predictive value were calculated. Results Three hundred and eighty three participants completed the health survey, and 330 (86% provided a breath sample. Of participants included in the validation analysis, 59% reported being a daily or occasional smoker. Sensitivity was 94.4% and specificity 92.8%. The positive and negative predictive values were 94.9% and 92.0% respectively. The majority of participants reported that the touch screen survey was both enjoyable (79% and easy (88% to complete. Conclusions Computer administered self report is both acceptable and accurate as a method of assessing smoking status among low SES smokers in a community setting. Routine collection of health information using touch-screen computer has the potential to identify smokers and increase provision of support and referral in the community setting.

  8. An easy way to measure accurately the direct magnetoelectric voltage coefficient of thin film devices

    Science.gov (United States)

    Poullain, Gilles; More-Chevalier, Joris; Cibert, Christophe; Bouregba, Rachid

    2017-01-01

    TbxDy1-xFe2/Pt/Pb(Zrx, Ti1-x)O3 thin films were grown on Pt/TiO2/SiO2/Si substrate by multi-target sputtering. The magnetoelectric voltage coefficient αΗΜΕ was determined at room temperature using a lock-in amplifier. By adding, in series in the circuit, a capacitor of the same value as that of the device under test, we were able to demonstrate that the magnetoelectric device behaves as a voltage source. Furthermore, a simple way to subtract the stray voltage arising from the flow of eddy currents in the measurement set-up, is proposed. This allows the easy and accurate determination of the true magnetoelectric voltage coefficient. A large αΗΜΕ of 8.3 V/cm. Oe was thus obtained for a Terfenol-D/Pt/PZT thin film device, without DC magnetic field nor mechanical resonance.

  9. MELIFT - A new device for accurate measurements in a snow rich environment

    Science.gov (United States)

    Dorninger, M.

    2012-04-01

    A deep snow pack, remote locations, no external power supply and very low temperatures are often the main ingredients when it comes to the deployment of meteorological stations in mountainous terrain. The accurate position of the sensor related to the snow surface is normally not known. A new device called METLIFT overcomes the problems. WMO recommends a height between 1.2 m and 2 m above ground level for the measurement of air temperature and humidity. The height above ground level is specified to take care of the possible strong vertical temperature and humidity gradients at the lowest layers in the atmosphere. Especially in snow rich and remote locations it may be hardly possible to follow this advice. Therefore most of the meteorological stations in mountainous terrain are situated at mountain tops where strong winds will blow off the snow or in valleys where a daily inspection of the sensors is possible. In other unpopulated mountainous areas, e.g. basins, plateaus, the distance of the sensor to the snow surface is not known or the sensor will be snow-covered. A new device was developed to guarantee the sensor height above surface within the WMO limits in harsh and remote environments. An ultrasonic snow height sensor measures the distance to the snow surface. If it exceeds certain limits due to snow accumulation or snow melt the lift adapts its height accordingly. The prototype of METLIFT has been installed in Lower Austria at an altitude of 1000m. The lift is 6 m high and can pull out for another 4 m. Sensor arms are mounted every meter to allow the connection of additional sensors or to measure a profile of a certain parameter of the lowest 5 m above surface. Sensors can be added easily since cable wiring is provided to each sensor arm. Horizontal winds are measured at 7 m height above surface. METLIFT is independent of external power supply. Three lead gel accumulators recharged by three solar panels provide the energy necessary for the sensors, the data

  10. Ionization and Recombination Measurements at the Heidelberg Heavy Ion Storage Ring TSR

    Science.gov (United States)

    Savin, D. W.; Hahn, M.; Lestinsky, M.; Novonty, O.; Bernhardt, D.; Mueller, A.; Schippers, S.; Krantz, C.; Wolf, A.

    2011-05-01

    Reliable ionization balance calculations are needed to analyze spectra from a wide range of cosmic sources including photoionized objects such as AGNs and X-ray binaries and electron ionized objects such as as stars, supernovae, galaxies, and clusters of galaxies. These theoretical charge state distributions (CSD) depend in turn upon the underlying atomic data. Of particular importance are reliable rate coefficients for dielectronic recombination (DR), which is the dominant electron-ion recombination recombination mechanism for most ions, and for electron impact ionization (EII). We are carrying out DR and EII measurements of astrophysically important ions using the heavy ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. The storage ring measurements are largely free of the metastable contamination found in other experimental geometries. Storage ring measurements therefore result in more precise DR and EII reaction rate measurements. The measured rate coefficients can be used in modeling cosmic and laboratory plasmas as well as in the benchmarking of theoretical atomic calculations. Here we report results for selected recent DR and EII measurements.

  11. A Novel IgM-capture enzyme-linked immunosorbent assay using recombinant Vag8 fusion protein for the accurate and early diagnosis of Bordetella pertussis infection.

    Science.gov (United States)

    Otsuka, Nao; Gotoh, Kensei; Nishimura, Naoko; Ozaki, Takao; Nakamura, Yukitsugu; Haga, Kiyohito; Yamazaki, Makoto; Gondaira, Fumio; Okada, Kenji; Miyaji, Yusuke; Toyoizumi-Ajisaka, Hiromi; Shibayama, Keigo; Arakawa, Yoshichika; Kamachi, Kazunari

    2016-05-01

    An ELISA that measures anti-PT IgG antibody has been used widely for the serodiagnosis of pertussis; however, the IgG-based ELISA is inadequate for patients during the acute phase of the disease because of the slow response of anti-PT IgG antibodies. To solve this problem, we developed a novel IgM-capture ELISA that measures serum anti-Bordetella pertussis Vag8 IgM levels for the accurate and early diagnosis of pertussis. First, we confirmed that Vag8 was highly expressed in all B. pertussis isolates tested (n = 30), but little or none in other Bordetella species, and that DTaP vaccines did not induce anti-Vag8 IgG antibodies in mice (i.e. the antibody level could be unaffected by the vaccination). To determine the immune response to Vag8 in B. pertussis infection, anti-Vag8 IgM levels were compared between 38 patients (acute phase of pertussis) and 29 healthy individuals using the anti-Vag8 IgM-capture ELISA. The results revealed that the anti-Vag8 IgM levels were significantly higher in the patients compared with the healthy individuals (P < 0.001). ROC analysis also showed that the anti-Vag8 IgM-capture ELISA has higher diagnostic accuracy (AUC, 0.92) than a commercial anti-PT IgG ELISA kit. Moreover, it was shown that anti-Vag8 IgM antibodies were induced earlier than anti-PT IgG antibodies on sequential patients' sera. These data indicate that our novel anti-Vag8 IgM-capture ELISA is a potentially useful tool for making the accurate and early diagnosis of B. pertussis infection.

  12. A new direct absorption measurement for high precision and accurate measurement of water vapor in the UT/LS

    Science.gov (United States)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Anderson, J.

    2011-12-01

    Highly accurate and precise water vapor measurements in the upper troposphere and lower stratosphere are critical to understanding the climate feedbacks of water vapor and clouds in that region. However, the continued disagreement among water vapor measurements (~1 - 2 ppmv) are too large to constrain the role of different hydration and dehydration mechanisms operating in the UT/LS, with model validation dependent upon which dataset is chosen. In response to these issues, we present a new instrument for measurement of water vapor in the UT/LS that was flown during the April 2011 MACPEX mission out of Houston, TX. The dual axis instrument combines the heritage and validated accuracy of the Harvard Lyman-alpha instrument with a newly designed direct IR absorption instrument, the Harvard Herriott Hygrometer (HHH). The Lyman-alpha detection axis has flown aboard NASA's WB-57 and ER2 aircraft since 1994, and provides a requisite link between the new HHH instrument and the long history of Harvard water vapor measurements. The instrument utilizes the highly sensitive Lyman-alpha photo-fragment fluorescence detection method; its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. The Harvard Herriott Hygrometer employs a fiber coupled near-IR laser with state-of-the-art electronics to measure water vapor via direct absorption in a spherical Herriott cell of 10 cm length. The instrument demonstrated in-flight precision of 0.1 ppmv (1-sec, 1-sigma) at mixing ratios as low as 5 ppmv with accuracies of 10% based on careful laboratory calibrations and in-flight performance. We present a description of the measurement technique along with our methodology for calibration and details of the measurement uncertainties. The simultaneous utilization of radically different measurement techniques in a single duct in the new Harvard Water Vapor (HWV) instrument allows for the constraint of systematic errors inherent in each technique

  13. Temperature- and Intensity-Dependent Photovoltaic Measurements to Identify Dominant Recombination Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Riley E.; Mangan, Niall M.; Li, Jian V.; Kurchin, Rachel C.; Milakovich, Timothy; Levcenco, Sergiu; Fitzgerald, Eugene A.; Unold, Thomas; Buonassisi, Tonio

    2016-11-21

    In novel photovoltaic absorbers, it is often difficult to assess the root causes of low open-circuit voltages, which may be due to bulk recombination or sub-optimal contacts. In the present work, we discuss the role of temperature- and illumination-dependent device electrical measurements in quantifying and distinguishing these performance losses - in particular, for determining bounds on interface recombination velocities, band alignment, and minority carrier lifetime. We assess the accuracy of this approach by direct comparison to photoelectron spectroscopy. Then, we demonstrate how more computationally intensive model parameter fitting approaches can draw more insights from this broad measurement space. We apply this measurement and modeling approach to high-performance III-V and thin-film chalcogenide devices.

  14. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique.

    Science.gov (United States)

    Huang, Y S; Huang, Y P; Huang, K N; Young, M S

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  15. Infrared Thermometer: an accurate tool for temperature measurement during renal surgery

    Directory of Open Access Journals (Sweden)

    Giovanni Scala Marchini

    2013-07-01

    Full Text Available Purpose To evaluate infrared thermometer (IRT accuracy compared to standard digital thermometer in measuring kidney temperature during arterial clamping with and without renal cooling. Materials and Methods 20 pigs weighting 20Kg underwent selective right renal arterial clamping, 10 with (Group 1 - Cold Ischemia with ice slush and 10 without renal cooling (Group 2 - Warm Ischemia. Arterial clamping was performed without venous clamping. Renal temperature was serially measured following clamping of the main renal artery with the IRT and a digital contact thermometer (DT: immediate after clamping (T0, after 2 (T2, 5 (T5 and 10 minutes (T10. Temperature values were expressed in mean, standard deviation and range for each thermometer. We used the T student test to compare means and considered p < 0.05 to be statistically significant. Results In Group 1, mean DT surface temperature decrease was 12.6 ± 4.1°C (5-19°C while deep DT temperature decrease was 15.8 ± 1.5°C (15-18°C. For the IRT, mean temperature decrease was 9.1 ± 3.8°C (3-14°C. There was no statistically significant difference between thermometers. In Group 2, surface temperature decrease for DT was 2.7 ± 1.8°C (0-4°C and mean deep temperature decrease was 0.5 ± 1.0°C (0-3°C. For IRT, mean temperature decrease was 3.1 ± 1.9°C (0-6°C. No statistically significant difference between thermometers was found at any time point. conclusions IRT proved to be an accurate non-invasive precise device for renal temperature monitoring during kidney surgery. External ice slush cooling confirmed to be fast and effective at cooling the pig model. IRT = Infrared thermometer DT = Digital contact thermometer D:S = Distance-to-spot ratio

  16. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  17. The use of geo radar in efficient and accurate snow measurements; Georadar for effektive og noeyaktige snoemaalinger

    Energy Technology Data Exchange (ETDEWEB)

    Sand, Knut [SINTEF, Trondheim (Norway); Faanes, Turid [Trondheim Energiverk, Trondheim (Norway)

    2001-07-01

    In the hydroelectric power industry, good measurements of snow masses at the end of the accumulation period are very important for establishing reliable prognoses for the inflow to the magazines. In a Norwegian pilot project, geo radar was used to measure snow masses and the results are interesting both with respect to accuracy and effectiveness. The water equivalent of the snow magazine is more accurately measured by means of geo radar than by more traditional means.

  18. EVALUATION OF OPPORTUNITIES OF SOLAR ENERGETICS ON THE BASIS OF ACCURATE GROUND-BASED MEASUREMENTS OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Aculinin A.

    2008-04-01

    Full Text Available Expected quantity of a solar energy received by solar panel is estimated on the basis of accurate measurements of solar radiation in Kishinev. Optimal orientation of solar panels and apparent volume of the electric power generated by solar panels are determined.

  19. A system for accurate on-line measurement of total gas consumption or production rates in microbioreactors

    NARCIS (Netherlands)

    Leeuwen, van Michiel; Heijnen, Joseph J.; Gardeniers, Han; Oudshoorn, Arthur; Noorman, Henk; Visser, Jan; Wielen, van der Luuk A.M.; Gulik, van Walter M.

    2009-01-01

    A system has been developed, based on pressure controlled gas pumping, for accurate measurement of total gas consumption or production rates in the nmol/min range, applicable for on-line monitoring of bioconversions in microbioreactors. The system was validated by carrying out a bioconversion with k

  20. Optical coherence tomography enables accurate measurement of equine cartilage thickness for determination of speed of sound.

    Science.gov (United States)

    Puhakka, Pia H; Te Moller, Nikae C R; Tanska, Petri; Saarakkala, Simo; Tiitu, Virpi; Korhonen, Rami K; Brommer, Harold; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Background and purpose - Arthroscopic estimation of articular cartilage thickness is important for scoring of lesion severity, and measurement of cartilage speed of sound (SOS)-a sensitive index of changes in cartilage composition. We investigated the accuracy of optical coherence tomography (OCT) in measurements of cartilage thickness and determined SOS by combining OCT thickness and ultrasound (US) time-of-flight (TOF) measurements. Material and methods - Cartilage thickness measurements from OCT and microscopy images of 94 equine osteochondral samples were compared. Then, SOS in cartilage was determined using simultaneous OCT thickness and US TOF measurements. SOS was then compared with the compositional, structural, and mechanical properties of cartilage. Results - Measurements of non-calcified cartilage thickness using OCT and microscopy were significantly correlated (ρ = 0.92; p measurement of articular cartilage thickness. Although SOS measurements lacked accuracy in thin equine cartilage, the concept of SOS measurement using OCT appears promising.

  1. Recombinant Technology and Probiotics

    OpenAIRE

    Icy D’Silva

    2011-01-01

    Recombinant technology has led the way to monumental advances in the development of useful molecules, including the development of safe probiotics. The development of novel approaches using recombinant technology and probiotics that allow accurate targeting of therapeutics to the mucosa is an interesting area of research. The creation and use of recombinant probiotics expressing recombinantovalbumin, recombinant ovalbumin mutants and yet-to-be-designed recombinant hypo/non-allergenic molecule...

  2. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells

    Science.gov (United States)

    Verlinden, Pierre; Van de Wiele, Fernand

    1985-03-01

    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  3. [Limb-length measurements using wooden boards: an accurate and experience-independent method

    NARCIS (Netherlands)

    Pakvis, D.F.M.; Jaarsma, R.L.; Kampen, A. van

    2003-01-01

    OBJECTIVE: To determine the precision and reliability of the indirect limb-length measurement, and the inter-observer variance between doctors differing in level of experience. DESIGN: Descriptive. METHOD: Indirect limb-length measurement by placing 0.5 cm-thick wooden boards under the foot of the s

  4. Archimedes Revisited: A Faster, Better, Cheaper Method of Accurately Measuring the Volume of Small Objects

    Science.gov (United States)

    Hughes, Stephen W.

    2005-01-01

    A little-known method of measuring the volume of small objects based on Archimedes' principle is described, which involves suspending an object in a water-filled container placed on electronic scales. The suspension technique is a variation on the hydrostatic weighing technique used for measuring volume. The suspension method was compared with two…

  5. Surface EMG measurements during fMRI at 3T : Accurate EMG recordings after artifact correction

    NARCIS (Netherlands)

    van Duinen, Hiske; Zijdewind, Inge; Hoogduin, H; Maurits, N

    2005-01-01

    In this experiment, we have measured surface EMG of the first dorsal interosseus during predefined submaximal isometric contractions (5, 15, 30, 50, and 70% of maximal force) of the index finger simultaneously with fMRI measurements. Since we have used sparse sampling fMRI (3-s scanning; 2-s non-sca

  6. Recombinant Technology and Probiotics

    Directory of Open Access Journals (Sweden)

    Icy D’Silva

    2011-09-01

    Full Text Available Recombinant technology has led the way to monumental advances in the development of useful molecules, including the development of safe probiotics. The development of novel approaches using recombinant technology and probiotics that allow accurate targeting of therapeutics to the mucosa is an interesting area of research. The creation and use of recombinant probiotics expressing recombinantovalbumin, recombinant ovalbumin mutants and yet-to-be-designed recombinant hypo/non-allergenic molecules offer the opportunity to further investigate their effects for food, nutrition, environment andhealth. This review highlights advances in native probiotics and recombinant probiotics expressing native and recombinant molecules for food, nutrition, environment and health.

  7. Activity assays and immunoassays for plasma Renin and prorenin: information provided and precautions necessary for accurate measurement

    DEFF Research Database (Denmark)

    Campbell, Duncan J; Nussberger, Juerg; Stowasser, Michael;

    2009-01-01

    BACKGROUND: Measurement of plasma renin is important for the clinical assessment of hypertensive patients. The most common methods for measuring plasma renin are the plasma renin activity (PRA) assay and the renin immunoassay. The clinical application of renin inhibitor therapy has thrown...... into focus the differences in information provided by activity assays and immunoassays for renin and prorenin measurement and has drawn attention to the need for precautions to ensure their accurate measurement. CONTENT: Renin activity assays and immunoassays provide related but different information....... Whereas activity assays measure only active renin, immunoassays measure both active and inhibited renin. Particular care must be taken in the collection and processing of blood samples and in the performance of these assays to avoid errors in renin measurement. Both activity assays and immunoassays...

  8. Measuring laser power as a force: a new paradigm to accurately monitor optical power during laser-based machining operations

    Science.gov (United States)

    Williams, Paul; Simonds, Brian; Sowards, Jeffrey; Hadler, Joshua

    2016-03-01

    In laser manufacturing operations, accurate measurement of laser power is important for product quality, operational repeatability, and process validation. Accurate real-time measurement of high-power lasers, however, is difficult. Typical thermal power meters must absorb all the laser power in order to measure it. This constrains power meters to be large, slow and exclusive (that is, the laser cannot be used for its intended purpose during the measurement). To address these limitations, we have developed a different paradigm in laser power measurement where the power is not measured according to its thermal equivalent but rather by measuring the laser beam's momentum (radiation pressure). Very simply, light reflecting from a mirror imparts a small force perpendicular to the mirror which is proportional to the optical power. By mounting a high-reflectivity mirror on a high-sensitivity force transducer (scale), we are able to measure laser power in the range of tens of watts up to ~ 100 kW. The critical parameters for such a device are mirror reflectivity, angle of incidence, and scale sensitivity and accuracy. We will describe our experimental characterization of a radiation-pressure-based optical power meter. We have tested it for modulated and CW laser powers up to 92 kW in the laboratory and up to 20 kW in an experimental laser welding booth. We will describe present accuracy, temporal response, sources of measurement uncertainty, and hurdles which must be overcome to have an accurate power meter capable of routine operation as a turning mirror within a laser delivery head.

  9. Fast and accurate measurement of on-axis gain and on-axis polarization at a finite distance

    DEFF Research Database (Denmark)

    Pivnenko, S.; Breinbjerg, O.

    2013-01-01

    In this paper, a technique for fast and accurate measurement of on-axis gain and on-axis polarization characteristics of antennas, such as Standard Gain Horns, compact range feed horns, and near-field probes, is described. The proposed gain determination procedure is a modification of the far-field...... orientations versus a polarization calibrated probe. A complete set of measurements for one AUT takes less than two hours. The measurement uncertainty for the gain is comparable to the one obtained with the near-field substitution technique and typically does not exceed 0.1 dB (1 sigma)....

  10. Novel methodology for accurate resolution of fluid signatures from multi-dimensional NMR well-logging measurements

    Science.gov (United States)

    Anand, Vivek

    2017-03-01

    A novel methodology for accurate fluid characterization from multi-dimensional nuclear magnetic resonance (NMR) well-logging measurements is introduced. This methodology overcomes a fundamental challenge of poor resolution of features in multi-dimensional NMR distributions due to low signal-to-noise ratio (SNR) of well-logging measurements. Based on an unsupervised machine-learning concept of blind source separation, the methodology resolves fluid responses from simultaneous analysis of large quantities of well-logging data. The multi-dimensional NMR distributions from a well log are arranged in a database matrix that is expressed as the product of two non-negative matrices. The first matrix contains the unique fluid signatures, and the second matrix contains the relative contributions of the signatures for each measurement sample. No a priori information or subjective assumptions about the underlying features in the data are required. Furthermore, the dimensionality of the data is reduced by several orders of magnitude, which greatly simplifies the visualization and interpretation of the fluid signatures. Compared to traditional methods of NMR fluid characterization which only use the information content of a single measurement, the new methodology uses the orders-of-magnitude higher information content of the entire well log. Simulations show that the methodology can resolve accurate fluid responses in challenging SNR conditions. The application of the methodology to well-logging data from a heavy oil reservoir shows that individual fluid signatures of heavy oil, water associated with clays and water in interstitial pores can be accurately obtained.

  11. Novel methodology for accurate resolution of fluid signatures from multi-dimensional NMR well-logging measurements.

    Science.gov (United States)

    Anand, Vivek

    2017-03-01

    A novel methodology for accurate fluid characterization from multi-dimensional nuclear magnetic resonance (NMR) well-logging measurements is introduced. This methodology overcomes a fundamental challenge of poor resolution of features in multi-dimensional NMR distributions due to low signal-to-noise ratio (SNR) of well-logging measurements. Based on an unsupervised machine-learning concept of blind source separation, the methodology resolves fluid responses from simultaneous analysis of large quantities of well-logging data. The multi-dimensional NMR distributions from a well log are arranged in a database matrix that is expressed as the product of two non-negative matrices. The first matrix contains the unique fluid signatures, and the second matrix contains the relative contributions of the signatures for each measurement sample. No a priori information or subjective assumptions about the underlying features in the data are required. Furthermore, the dimensionality of the data is reduced by several orders of magnitude, which greatly simplifies the visualization and interpretation of the fluid signatures. Compared to traditional methods of NMR fluid characterization which only use the information content of a single measurement, the new methodology uses the orders-of-magnitude higher information content of the entire well log. Simulations show that the methodology can resolve accurate fluid responses in challenging SNR conditions. The application of the methodology to well-logging data from a heavy oil reservoir shows that individual fluid signatures of heavy oil, water associated with clays and water in interstitial pores can be accurately obtained.

  12. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    Directory of Open Access Journals (Sweden)

    C. N. Warwick

    2015-09-01

    Full Text Available We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT and 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT. The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  13. Accurate measurement of the main refractive indices and thermo-optical coefficients of the calcite crystal

    Institute of Scientific and Technical Information of China (English)

    Shuang Zhao; Fuquan Wu; Haifeng Wang; Weigang Zhong; Xiuzhen Li; Hengjing Tang; Meng Shi; Hongyan Deng

    2007-01-01

    The main refractive indices of calcite crystal are measured by the means of auto-collimation, and the thermo-optical coefficients are calculated. The coefficient expression of Sellmeier equation is obtained by solving Sellmeier equation strictly and the refractive indices of different wavelengths are calculated, which accord with experimental esultsery well. The measured main refractive indices of calcite at 488-nm wavelength are identical with the values obtained by Sellmeier equation.

  14. Activities of wildtype and mutant p53 in suppression of homologous recombination as measured by a retroviral vector system

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiongbin; Lozano, Guillermina; Donehower, Lawrence A

    2003-01-28

    DNA repair of double strand breaks, interstrand DNA cross-links, and other types of DNA damage utilizes the processes of homologous recombination and non-homologous end joining to repair the damage. Aberrant homologous recombination is likely to be responsible for a significant fraction of chromosomal deletions, duplications, and translocations that are observed in cancer cells. To facilitate measurement of homologous recombination frequencies in normal cells, mutant cells, and cancer cells, we have developed a high titer retroviral vector containing tandem repeats of mutant versions of a GFP-Zeocin resistance fusion gene and an intact neomycin resistance marker. Recombination between the tandem repeats regenerates a functional GFP-Zeo{sup R} marker that can be easily scored. This retroviral vector was used to assess homologous recombination frequencies in human cancer cells and rodent fibroblasts with differing dosages of wild type or mutant p53. Absence of wild type p53 stimulated spontaneous and ionizing radiation-induced homologous recombination, confirming previous studies. Moreover, p53{sup +/-} mouse fibroblasts show elevated levels of homologous recombination compared to their p53{sup +/+} counterparts following retroviral vector infection, indicating that p53 is haploinsufficient for suppression of homologous recombination. Transfection of vector-containing p53 null Saos-2 cells with various human cancer-associated p53 mutants revealed that these altered p53 proteins retain some recombination suppression function despite being totally inactive for transcriptional transactivation. The retroviral vector utilized in these studies may be useful in performing recombination assays on a wide array of cell types, including those not readily transfected by normal vectors.

  15. Activities of wildtype and mutant p53 in suppression of homologous recombination as measured by a retroviral vector system.

    Science.gov (United States)

    Lu, Xiongbin; Lozano, Guillermina; Donehower, Lawrence A

    2003-01-28

    DNA repair of double strand breaks, interstrand DNA cross-links, and other types of DNA damage utilizes the processes of homologous recombination and non-homologous end joining to repair the damage. Aberrant homologous recombination is likely to be responsible for a significant fraction of chromosomal deletions, duplications, and translocations that are observed in cancer cells. To facilitate measurement of homologous recombination frequencies in normal cells, mutant cells, and cancer cells, we have developed a high titer retroviral vector containing tandem repeats of mutant versions of a GFP-Zeocin resistance fusion gene and an intact neomycin resistance marker. Recombination between the tandem repeats regenerates a functional GFP-Zeo(R) marker that can be easily scored. This retroviral vector was used to assess homologous recombination frequencies in human cancer cells and rodent fibroblasts with differing dosages of wild type or mutant p53. Absence of wild type p53 stimulated spontaneous and ionizing radiation-induced homologous recombination, confirming previous studies. Moreover, p53(+/-) mouse fibroblasts show elevated levels of homologous recombination compared to their p53(+/+) counterparts following retroviral vector infection, indicating that p53 is haploinsufficient for suppression of homologous recombination. Transfection of vector-containing p53 null Saos-2 cells with various human cancer-associated p53 mutants revealed that these altered p53 proteins retain some recombination suppression function despite being totally inactive for transcriptional transactivation. The retroviral vector utilized in these studies may be useful in performing recombination assays on a wide array of cell types, including those not readily transfected by normal vectors.

  16. Measurement of Beta Particles Induced Electron-Hole Pairs Recombination in Depletion Region of GaAs PN Junction

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-Yang; JIANG Lan; LI Da-Rang

    2011-01-01

    PN junctions and schottky diodes are widely employed as electron-hole pair collectors in electron beam induced current (EBIC) techniques and betavoltaic batteries, in which the recombination in depletion regions is ignored.We measured the beta particles induced electron-hole pairs recombination in the depletion region of a GaAs P+ PN+ junction, based on comparisons between measured short currents and ideal values. The results show that only 20% electron-hole pairs in the depletion can be collected, causing the short current. This indicates an electron-hole pair diffusion length of 0.2μm in the depletion region. Hence, it is necessary to evaluate the recombination in the EBIC techniques and betavoltaic design.%@@ PN junctions and schottky diodes are widely employed as electron-hole pair collectors in electron beam induced current(EBIC) techniques and betavoltaic batteries,in which the recombination in depletion regions is ignored.We measured the beta particles induced electron-hole pairs recombination in the depletion region of a GaAs P+ PN+ junction,based on comparisons between measured short currents and ideal values.The results show that only 20% electron-hole pairs in the depletion can be collected,causing the short current.This indicates an electron-hole pair diffusion length of 0.2μm in the depletion region.Hence,it is necessary to evaluate the recombination in the EBIC techniques and betavoltaic design.

  17. External urethral sphincter pressure measurement: an accurate method for the diagnosis of detrusor external sphincter dyssynergia?

    Directory of Open Access Journals (Sweden)

    Carlos H Suzuki Bellucci

    Full Text Available BACKGROUND: Combined pelvic floor electromyography (EMG and videocystourethrography (VCUG during urodynamic investigation are the most acceptable and widely agreed methods for diagnosing detrusor external sphincter dyssynergia (DESD. Theoretically, external urethral sphincter pressure (EUSP measurement would provide enough information for the diagnosis of DESD and could simplify the urodynamic investigation replacing combined pelvic floor EMG and VCUG. Thus, we evaluated the diagnostic accuracy of EUSP measurement for DESD. PATIENTS #ENTITYSTARTX00026; METHODS: A consecutive series of 72 patients (36 women, 36 men with neurogenic lower urinary tract dysfunction able to void spontaneously was prospectively evaluated at a single university spinal cord injury center. Diagnosis of DESD using EUSP measurement (index test versus combined pelvic floor EMG and VCUG (reference standard was assessed according to the recommendations of the Standards for Reporting of Diagnostic Accuracy Initiative. RESULTS: Using EUSP measurement (index test and combined pelvic floor EMG and VCUR (reference standard, DESD was diagnosed in 10 (14% and in 41 (57% patients, respectively. More than half of the patients presented discordant diagnosis between the index test and the reference standard. Among 41 patients with DESD diagnosed by combined pelvic floor EMG and VCUR, EUSP measurement identified only 6 patients. EUSP measurement had a sensitivity of 15% (95% CI 5%-25%, specificity of 87% (95% CI 76%-98%, positive predictive value of 60% (95% CI 30%-90%, and negative predictive value of 56% (95% CI 44%-68% for the diagnosis of DESD. CONCLUSIONS: For diagnosis of DESD, EUSP measurement is inaccurate and cannot replace combined pelvic floor EMG and VCUR.

  18. Measurement of colonic polyps by radiologists and endoscopists: Who is most accurate?

    Energy Technology Data Exchange (ETDEWEB)

    Punwani, S.; Halligan, S.; Greenhalgh, R.; Godbold, J.; Taylor, S.A. [University College Hospital, Department of Specialist Radiology, Podium Level 2, London (United Kingdom); Irving, P.; Bloom, S.; Bungay, A. [University College Hospital, Department of Gastroenterology, London (United Kingdom); Altman, D.G. [Wolfson College Annexe, Centre for Statistics in Medicine, Oxford (United Kingdom)

    2008-05-15

    The purpose was to determine the accuracy of polyp measurement by endoscopy and CT. A colonic phantom was constructed containing 12 simulated polyps of known diameter. Polyp diameter was estimated during endoscopy by two observers independently. The phantom was then scanned using a 64-detector-row machine and diameter estimated by a further two observers independently, using 2D and 3D visualisation methods. All measurements were obtained twice. Bland-Altman statistics were used to assess agreement between observers' estimates and the reference diameter. The mean difference between observers' measurements and the reference diameter was smallest for estimates made using 3D CT (-0.09 mm and -0.03 mm) and greatest for endoscopy (-1.10 mm and -1.19 mm), with 2D CT intermediate. However, 95% limits of agreement were largest for 3D CT estimates (-4.38 mm to 4.20 mm). Estimates by 2D CT consistently overestimated polyp diameter, whereas endoscopy consistently underestimated diameter. In contrast, measurements by 3D CT were a combination of over- and under-estimates, with a tendency for disagreement to increase with the size of the polyp. The effect of observer experience was small and repeatability was best for 2D CT. Measurement error was encountered with all three modalities tested. Estimates made by 2D CT were believed to offer the best compromise overall. (orig.)

  19. Accurate measurement of neodymium isotopic composition using Neptune MC-ICP-MS

    Institute of Scientific and Technical Information of China (English)

    Yueheng YANG; Hongfu ZHANG; Liewen XIE; Fuyuan WU

    2008-01-01

    This paper reports the measurement of the Neodymium isotopic composition by Neptune Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) over the last two years. Although there is concomitant Cerium in the chemical separation process, this has no significant influence on the Neodymium analysis. As for the sample containing small amounts of Samarium (Sm/Nd<0.04), direct calibration for isobaric interference and mass discrimina-tion by the exponential law can be obtained by assuming that Samarium mass discrimination is the same as that of Neodymium. Geological samples after traditional chemi-cal separation were measured by Neptune MC-ICP-MS and Thermal Ionization Mass Spectrometry (TIMS) respectively. The results show that Neptune MC-ICP-MS can measure Neodymium isotopic composition as precisely the TIMS does and is even more effective and less time-consuming than the TIMS Method.

  20. Inflation model building with an accurate measure of e-folding

    CERN Document Server

    Chongchitnan, Sirichai

    2016-01-01

    We revisit the problem of measuring the number of e-folding during inflation. It has become standard practice to take the logarithmic growth of the scale factor as a measure of the amount of inflation. However, this is only an approximation for the true amount of inflation required to solve the horizon and flatness problems. The aim of this work is to quantify the error in this approximation, and show how it can be avoided. We present an alternative framework for inflation model building using the inverse Hubble radius, aH, as the key parameter. We show that in this formalism, the correct number of e-folding arises naturally as a measure of inflation. As an application, we present an interesting model in which the entire inflationary dynamics can be solved analytically and exactly, and, in special cases, reduces to the familiar class of power-law models.

  1. Accurate DOSY measure of out-of-equilibrium systems by permutated DOSY (p-DOSY)

    CERN Document Server

    Oikonomou, Maria; Velders, Aldrik H; Delsuc, Marc-André

    2015-01-01

    NMR spectroscopy is a perfect tool for monitoring in-situ chemical reactions. In particular, DOSY measurement is well suited to characterize transient species by the determination of their sizes. However, here we bring to light a difficulty in the DOSY experiments performed on out-of-equilibrium systems. On such a system, the evolution of the concentration of species interferes with the measurement process, and creates a bias on the diffusion coefficient determination that may lead to erroneous interpretations. We show that a random permutation of the series of gradient strengths used during the DOSY experiment allows to average out this bias. This approach, that we name p-DOSY does not require changes in the the pulse sequences nor in the processing software, and restores completely the full accuracy of the measure. This technique is demonstrated on the monitoring of the anomerization reaction of $\\alpha$ to $\\beta$ glucose.

  2. ACCUWIND - Accurate wind speed measurements in wind energy - Summary report[Cup and sonic anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Dahlberg, J.Aa.; Cuerva, A.; Mouzakis, F.; Busche, P.; Eecen, P.; Sanz-Andres, A.; Franchini, S.; Markkilde Petersen, S.

    2006-07-15

    The cup anemometer is at present the standard instrument used for mean wind speed measurement in wind energy. It is being applied in high numbers around the world for wind energy assessments. It is also applied exclusively for accredited power performance measurements for certification and verification purposes, and for purposes of optimisation in research and development. The revised IEC standard on power performance measurements has now included requirements for classification of cup anemometers. The basis for setting up such requirements of cup anemometers is two EU projects SITEPARIDEN and CLASSCUP from which the proposed classification method for cup anemometers was developed for the IEC standard. While cup anemometers at present are the standard anemometer being used for average wind speed measurements, sonic anemometers have been developed significantly over the last years, and prices have come down. The application of sonic anemometers may increase in wind energy if they prove to have comparable or better operational characteristics compared to cup anemometers, and if similar requirements to sonic anemometers are established as for cup anemometers. Sonic anemometers have historically been used by meteorologists for turbulence measurements, but have also found a role on wind turbine nacelles for wind speed and yaw control purposes. The report on cup and sonic anemometry deals with establishment of robustness in assessment and classification by focus on methods and procedures for analysis of characteristics of cup and sonic anemometers. The methods and procedures provide a platform, hopefully for use in meeting the requirements of the IEC standard on power performance measurements, as well as for development of improved instruments. (au)

  3. Accurate measurement of the transition dipole moment of self-assembled quantum dots

    DEFF Research Database (Denmark)

    Stobbe, Søren; Johansen, Jeppe; Nikolaev, I.S.

    2007-01-01

    Here we present quantitative measurements of the dipole moment of an ensemble of self-assembled quantum dots employing a modified optical local density of states (LDOS). The LDOS is controlled by varying the distance from the QDs to a semiconductor/air interface.......Here we present quantitative measurements of the dipole moment of an ensemble of self-assembled quantum dots employing a modified optical local density of states (LDOS). The LDOS is controlled by varying the distance from the QDs to a semiconductor/air interface....

  4. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    Science.gov (United States)

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  5. An affordable and accurate conductivity probe for density measurements in stratified flows

    Science.gov (United States)

    Carminati, Marco; Luzzatto-Fegiz, Paolo

    2015-11-01

    In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.

  6. Treatment response classification of liver metastatic disease evaluated on imaging. Are RECIST unidimensional measurements accurate?

    Science.gov (United States)

    Mantatzis, Michael; Kakolyris, Stylianos; Amarantidis, Kyriakos; Karayiannakis, Anastasios; Prassopoulos, Panos

    2009-07-01

    The purpose of this study was to evaluate the accuracy of unidimensional measurements (response evaluation criteria in solid tumors, RECIST) compared with volumetric measurements in patients with liver metastases undergoing chemotherapy. Forty-four patients with newly diagnosed liver lesions underwent three MRI examinations at treatment initiation, during chemotherapy, and immediately post-treatment. Measurements based on RECIST guidelines and volume calculations were performed on the "target" lesions (TLs). The two methods were in agreement in 64/77 of patients and 253/301 of individual lesions classification in response categories ("good" agreement, Cohen kappa = 0.735 and 0.741, respectively). In 16.88% of the comparisons the two methods stratified patients to a different response category; 27.6% of TLs did not follow the response category of the patient in whom lesions were located. The actual volume of TLs differs from the calculated volume of a sphere with the same diameter. Our study supports the use of volumetric techniques that may overcome certain disadvantages of unidimensional measurements.

  7. Implications of progesterone metabolism in MA-10 cells for accurate measurement of the rate of steroidogenesis.

    NARCIS (Netherlands)

    Rommerts, F.F.; King, S.R.; Span, P.N.

    2001-01-01

    In virtually all studies with MA-10 cells, progesterone RIAs have been used to measure steroid synthesis. To test whether progesterone is a stable end product, we investigated the metabolism of added tritiated progesterone and pregnenolone in MA-10 cells over a period of 3 h. Steroids were then extr

  8. Real-time and accurate rail wear measurement method and experimental analysis.

    Science.gov (United States)

    Liu, Zhen; Li, Fengjiao; Huang, Bangkui; Zhang, Guangjun

    2014-08-01

    When a train is running on uneven or curved rails, it generates violent vibrations on the rails. As a result, the light plane of the single-line structured light vision sensor is not vertical, causing errors in rail wear measurements (referred to as vibration errors in this paper). To avoid vibration errors, a novel rail wear measurement method is introduced in this paper, which involves three main steps. First, a multi-line structured light vision sensor (which has at least two linear laser projectors) projects a stripe-shaped light onto the inside of the rail. Second, the central points of the light stripes in the image are extracted quickly, and the three-dimensional profile of the rail is obtained based on the mathematical model of the structured light vision sensor. Then, the obtained rail profile is transformed from the measurement coordinate frame (MCF) to the standard rail coordinate frame (RCF) by taking the three-dimensional profile of the measured rail waist as the datum. Finally, rail wear constraint points are adopted to simplify the location of the rail wear points, and the profile composed of the rail wear points are compared with the standard rail profile in RCF to determine the rail wear. Both real data experiments and simulation experiments show that the vibration errors can be eliminated when the proposed method is used.

  9. Development and calibration of an accurate 6-degree-of-freedom measurement system with total station

    Science.gov (United States)

    Gao, Yang; Lin, Jiarui; Yang, Linghui; Zhu, Jigui

    2016-12-01

    To meet the demand of high-accuracy, long-range and portable use in large-scale metrology for pose measurement, this paper develops a 6-degree-of-freedom (6-DOF) measurement system based on total station by utilizing its advantages of long range and relative high accuracy. The cooperative target sensor, which is mainly composed of a pinhole prism, an industrial lens, a camera and a biaxial inclinometer, is designed to be portable in use. Subsequently, a precise mathematical model is proposed from the input variables observed by total station, imaging system and inclinometer to the output six pose variables. The model must be calibrated in two levels: the intrinsic parameters of imaging system, and the rotation matrix between coordinate systems of the camera and the inclinometer. Then corresponding approaches are presented. For the first level, we introduce a precise two-axis rotary table as a calibration reference. And for the second level, we propose a calibration method by varying the pose of a rigid body with the target sensor and a reference prism on it. Finally, through simulations and various experiments, the feasibilities of the measurement model and calibration methods are validated, and the measurement accuracy of the system is evaluated.

  10. New insights for accurate chemically specific measurements of slow diffusing molecules

    Science.gov (United States)

    Hou, Jianbo; Madsen, Louis A.

    2013-02-01

    Investigating the myriad features of molecular transport in materials yields fundamental information for understanding processes such as ion conduction, chemical reactions, and phase transitions. Molecular transport especially impacts the performance of ion-containing liquids and polymeric materials when used as electrolytes and separation media, with applications encompassing battery electrolytes, reverse-osmosis membranes, mechanical transducers, and fuel cells. Nuclear magnetic resonance (NMR) provides a unique probe of molecular translations by allowing measurement of all mobile species via spectral selectivity, access to a broad range of transport coefficients, probing of any material direction, and investigation of variable lengthscales in a material, thus, tying morphology to transport. Here, we present new concepts to test for and guarantee robust diffusion measurements. We first employ a standard pulsed-field-gradient (PFG) calibration protocol using 2H2O and obtain expected results, but we observe crippling artifacts when measuring 1H-glycerol diffusion with the same experimental parameters. A mathematical analysis of 2H2O and glycerol signals in the presence of PFG transients show tight agreement with experimental observations. These analyses lead to our principal findings that (1) negligible artifacts observed with low gyromagnetic ratio (γ) nuclei may become dominant when observing high γ nuclei, and (2) reducing the sample dimension along the gradient direction predictably reduces non-ideal behaviors of NMR signals. We further provide a useful quantitative strategy for error minimization when measuring diffusing species slower than the one used for gradient calibration.

  11. Accurate measurement of the kinetic coefficient of friction between a surface and a granular mass

    NARCIS (Netherlands)

    Rademacher, F.J.C.

    1978-01-01

    A device has been developed for correct measurement of the kinematic coefficient of friction between a cohesionless granular material and a surface. Particle size may range from 0.5 up to about 9 mm, depending somewhat on the desired accuracy. Sliding velocity of the granules with respect to the sur

  12. Accurate phasor measurement for transmission line protection in the presence of shunt capacitor banks

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Soon-Ryul; Kang, Sang-Hee [Department of Electrical Engineering and Next-Generation Power Technology Center, Myongji University (Korea); Park, Jong-Keun [School of Electrical Engineering, Seoul National University (Korea)

    2007-10-15

    This paper proposes a phasor measurement algorithm for transmission systems compensated with shunt capacitor banks. Since the shunt capacitor banks tend to lower the resonant frequencies, the dominant component, which has the lowest resonant frequency, is insufficiently attenuated by a low-pass filter and has an adverse influence on the phasor measurement of the fundamental component in a fault current signal. This paper theoretically investigates the dominant frequency in the presence of shunt capacitor banks and presents a phasor measurement algorithm immune to the dominant component and DC-offset. The performance of the algorithm is evaluated for a-phase to ground (a-g) faults on a 154-kV transmission system compensated with shunt capacitor banks. The evaluation results indicate that the algorithm can measure the phasor reliably and satisfactorily, although the fault current signal is distorted with the dominant component and DC-offset. The paper concludes by describing the hardware implementation of the algorithm on a prototype unit based on a digital signal processor. (author)

  13. An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity

    Science.gov (United States)

    Allen, Kenneth W.; Scott, Mark M.; Reid, David R.; Bean, Jeffrey A.; Ellis, Jeremy D.; Morris, Andrew P.; Marsh, Jeramy M.

    2016-05-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10-3 for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. The method was validated by excellent agreement with a free-space focused-beam system measurement of a polypropylene sheet. This technique provides the material measurement community with the ability to accurately extract material properties of low-loss material specimen over the entire X-band range. This technique could easily be extended to other frequency bands.

  14. Simultaneous and accurate measurement of the dielectric constant at many frequencies spanning a wide range

    CERN Document Server

    Pérez-Aparicio, Roberto; Cottinet, Denis; Tanase, Marius; Metz, Pascal; Bellon, Ludovic; Naert, Antoine; Ciliberto, Sergio

    2015-01-01

    We present an innovative technique which allows the simultaneous measurement of the dielectric constant of a material at many frequencies, spanning a four orders of magnitude range chosen between 10 --2 Hz and 10 4 Hz. The sensitivity and accuracy are comparable to those obtained using standard single frequency techniques. The technique is based on three new and simple features: a) the precise real time correction of the amplication of a current amplier; b) the specic shape of the excitation signal and its frequency spectrum; and c) the precise synchronization between the generation of the excitation signal and the acquisition of the dielectric response signal. This technique is useful in the case of relatively fast dynamical measurements when the knowledge of the time evolution of the dielectric constant is needed.

  15. Digital Integrator for Fast Accurate Measurement of Magnetic Flux by Rotating Coils

    CERN Document Server

    Arpaia, P; Spiezia, G

    2007-01-01

    A fast digital integrator (FDI) with dynamic accuracy and a trigger frequency higher than those of a portable digital integrator (PDI), which is a state-of-the-art instrument for magnetic measurements based on rotating coils, was developed for analyzing superconducting magnets in particle accelerators. Results of static and dynamic metrological characterization show how the FDI prototype is already capable of overcoming the dynamic performance of PDI as well as covering operating regions that used to be inaccessible

  16. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    Science.gov (United States)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  17. Accurate measurements of ozone absorption cross-sections in the Hartley band

    OpenAIRE

    2015-01-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11...

  18. Accurate laser measurements of ozone absorption cross-sections in the Hartley band

    OpenAIRE

    2014-01-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and rep...

  19. Measuring Accurately Single-Phase Sinusoidal and Non-Sinusoidal Power.

    Science.gov (United States)

    1983-01-01

    dc source. - 1 T Figure 2.2 Power Measuring Test Set-up Source: Robert L. Boylestad , Introductory Circuit Analysis (Ohio: Charles E. Merrill, 1977) p...Power Waveforms for the General Case. Source: Robert L. Boylestad , Introductory CircuitAnalysis (Ohio: Charles E. Merrill, 1968) p. 309. Note that the...Inductive Circuit Source: Robert L. Boylestad , Introductory Circuit Analysis (Ohio: Charles E. Merrill, 1968) p. 43-. and c) In a1 purely capacitive

  20. Front-end electronics for accurate energy measurement of double beta decays

    Energy Technology Data Exchange (ETDEWEB)

    Gil, A., E-mail: alejandro.gil@ific.uv.es [Instituto de Fisica Corpuscular (CSIC-UV), 46071 Valencia (Spain); Diaz, J.; Gomez-Cadenas, J.J. [Instituto de Fisica Corpuscular (CSIC-UV), 46071 Valencia (Spain); Herrero, V. [Instituto de Instrumentacion para Imagen Molecular (I3M). Centro mixto CSIC, Universitat Politecnica de Valencia, CIEMAT, Valencia (Spain); Rodriguez, J.; Serra, L. [Instituto de Fisica Corpuscular (CSIC-UV), 46071 Valencia (Spain); Toledo, J.; Esteve, R.; Monzo, J.M. [Instituto de Instrumentacion para Imagen Molecular (I3M). Centro mixto CSIC, Universitat Politecnica de Valencia, CIEMAT, Valencia (Spain); Monrabal, F.; Yahlali, N. [Instituto de Fisica Corpuscular (CSIC-UV), 46071 Valencia (Spain)

    2012-12-11

    NEXT, a double beta decay experiment that will operate in Canfranc Underground Laboratory (Spain), aims at measuring the neutrinoless double-{beta} decay of the 136Xe isotope using a TPC filled with enriched Xenon gas at high pressure operated in electroluminescence mode. One technological challenge of the experiment is to achieve resolution better than 1% in the energy measurement using a plane of UV sensitive photomultipliers readout with appropriate custom-made front-end electronics. The front-end is designed to be sensitive to the single photo-electron to detect the weak primary scintillation light produced in the chamber, and also to be able to cope with the electroluminescence signal (several hundred times higher and with a duration of microseconds). For efficient primary scintillation detection and precise energy measurement of the electroluminescent signals the front-end electronics features low noise and adequate amplification. The signal shaping provided allows the digitization of the signals at a frequency as low as 40 MHz.

  1. Regular, Fast and Accurate Airborne In-Situ Methane Measurements Around the Tropopause

    Science.gov (United States)

    Dyroff, Christoph; Rauthe-Schöch, Armin; Schuck, Tanja J.; Zahn, Andreas

    2013-04-01

    We present a laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft. The instrument is based on a commercial fast methane analyzer (FMA, Los Gatos Res.), which was modified for fully unattended employment. A laboratory characterization was performed and the results with emphasis on the precision, cross sensitivity to H2O, and accuracy are presented. An in-flight calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. By statistical comparison of the in-situ measurements with the flask samples we derive a total uncetrainty estimate of ~ 3.85 ppbv (1?) around the tropopause, and ~ 12.4 ppbv (1?) during aircraft ascent and descent. Data from the first two years of airborne operation are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere, with occasional crossings of the tropics on flights to southern Africa. With its high spatial resolution and high accuracy this data set is unprecedented in the highly important atmospheric layer of the tropopause.

  2. Optimizing steam flood performance utilizing a new and highly accurate two phase steam measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Huff, B. D.; Warren, P. B. [CalResources LLC (Canada); Whorff, F. [ITT Barton (Canada)

    1995-11-01

    The development of a two phase steam measurement system was documented. The system consists of a `V` cone differential pressure device and a vortex meter velocity device in series through which the steam flows. Temperature and pressure sensors are electronically interfaced with a data logging system. The design was described as being very simple and rugged, consequently, well suited to monitoring in the field.. Steam quality measurements were made in the Kern River Field and the Coalinga Field thermal projects using a surface steam separator. In steam flood operations, steam cost is very high, hence appropriate distribution of the steam can result in significant cost reduction. This technology allows the measurement of steam flow and quality at any point in the steam distribution system. The metering system`s orifice meter was found to have a total average error of 45%, with 25% of that attributable to `cold leg` problem. Installation of the metering system was expected to result in a steam use reduction of 8%, without any impact on production. Steam re-distribution could result in a potential oil production increase of 10%. 12 refs., 8 tabs., 9 figs.

  3. A technique for fast and accurate measurement of hand volumes using Archimedes' principle.

    Science.gov (United States)

    Hughes, S; Lau, J

    2008-03-01

    A new technique for measuring hand volumes using Archimedes principle is described. The technique involves the immersion of a hand in a water container placed on an electronic balance. The volume is given by the change in weight divided by the density of water. This technique was compared with the more conventional technique of immersing an object in a container with an overflow spout and collecting and weighing the volume of overflow water. The hand volume of two subjects was measured. Hand volumes were 494 +/- 6 ml and 312 +/- 7 ml for the immersion method and 476 +/- 14 ml and 302 +/- 8 ml for the overflow method for the two subjects respectively. Using plastic test objects, the mean difference between the actual and measured volume was -0.3% and 2.0% for the immersion and overflow techniques respectively. This study shows that hand volumes can be obtained more quickly than the overflow method. The technique could find an application in clinics where frequent hand volumes are required.

  4. Accurate mass measurements of $^{26}$Ne, $^{26-30}$Na, $^{29-33}$Mg performed with the MISTRAL spectrometer

    CERN Document Server

    Gaulard, C; Bachelet, C; De Simon, M S; Lunney, M D; Thibault, C; Vieira, N

    2006-01-01

    The minuteness of the nuclear binding energy requires that mass measurements be highly precise and accurate. Here we report on new measurements $^{29-33}$Mg and $^{26}$Na performed with the Mistral mass spectrometer at CERN's Isolde facility. Since mass measurements are prone to systematic errors, considerable effort has been devoted to their evaluation and elimination in order to achieve accuracy and not only precision. We have therefore conducted a campaign of measurements for calibration and error evaluation. As a result, we now have a satisfactory description of the Mistral calibration laws and error budget. We have applied our new understanding to previous measurements of $^{26}$Ne, $^{26-30}$Na and $^{29,32}$Mg for which re-evaluated values are reported.

  5. Examining factors that may influence accurate measurement of testosterone in sea turtles.

    Science.gov (United States)

    Graham, Katherine M; Mylniczenko, Natalie D; Burns, Charlene M; Bettinger, Tammie L; Wheaton, Catharine J

    2016-01-01

    Differences in reported testosterone concentrations in male sea turtle blood samples are common in the veterinary literature, but may be accounted for by differences in sample handling and processing prior to assay. Therefore, our study was performed to determine best practices for testosterone analysis in male sea turtles (Caretta caretta and Chelonia mydas). Blood samples were collected into 5 collection tube types, and assay validation and measured testosterone concentrations were compared across different sample storage (fresh, refrigerated 1 week, or frozen), extraction (unextracted or ether-extracted), and processing treatment (untreated, homogenized, or dissociation reagent) conditions. Ether-extracted and dissociation reagent-treated samples validated in all conditions tested and are recommended for use, as unextracted samples validated only if assayed fresh. Dissociation reagent treatment was simpler to perform than ether extraction and resulted in total testosterone concentrations ~2.7-3.5 times greater than free testosterone measured in ether-extracted samples. Sample homogenization did not affect measured testosterone concentrations, and could be used to increase volume in gelled samples. An annual seasonal testosterone increase was observed in both species when ether extraction or dissociation reagent treatment was used. Annual deslorelin implant treatments in a Chelonia mydas male resulted in suppression of seasonal testosterone following the fourth treatment. Seasonal testosterone patterns resumed following discontinuation of deslorelin. Comparison of in-house and commercially available enzyme immunoassay kits revealed similar patterns of seasonal testosterone increases and deslorelin-induced suppression. Our study highlights the importance of methodological validation and provides laboratorians with best practices for testosterone enzyme immunoassay in sea turtles.

  6. Accurate mass measurements of short-lived isotopes with the MISTRAL rf spectrometer

    CERN Document Server

    Toader, C F; Borcea, C; Doubre, H; Duma, M; Jacotin, M; Henry, S; Képinski, J F; Lebée, G; Le Scornet, G; Lunney, M D; Monsanglant, C; De Saint-Simon, M; Thibault, C

    1999-01-01

    The MISTRAL experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  7. Rapid and accurate measurement of the frequency-frequency correlation function.

    Science.gov (United States)

    Osborne, Derek G; Kubarych, Kevin J

    2013-07-25

    Using an implementation of heterodyne-detected vibrational echo spectroscopy, we show that equilibrium spectral diffusion caused by solvation dynamics can be measured in a fraction of the time required using traditional two-dimensional infrared spectroscopy. Spectrally resolved, heterodyne-detected rephasing and nonrephasing signals, recorded at a single delay between the first two pulses in a photon echo sequence, can be used to measure the full waiting time dependent spectral dynamics that are typically extracted from a series of 2D-IR spectra. Hence, data acquisition is accelerated by more than 1 order of magnitude, while permitting extremely fine sampling of the spectral dynamics during the waiting time between the second and third pulses. Using cymantrene (cyclopentadienyl manganese tricarbonyl, CpMn(CO)3) in alcohol solutions, we compare this novel approach--denoted rapidly acquired spectral diffusion (RASD)--with a traditional method using full 2D-IR spectra, finding excellent agreement. Though this approach is largely limited to isolated vibrational bands, we also show how to remove interference from cross-peaks that can produce characteristic modulations of the spectral dynamics through vibrational quantum beats.

  8. Recent Advances in Highly Accurate Range Measurements with TerraSAR-X

    Science.gov (United States)

    Eineder, Michael; Balss, Ulrich; Gisinger, Christoph; Cong, Xiao Ying; Brcic, Ramon; Steigenberger, Peter

    2013-04-01

    Earth surface displacement measurement from space using Synthetic Aperture Radar (SAR) imagery is an interesting alternative to SAR interferometry (InSAR). The advantages are that 2D information can be retrieved (InSAR only 1D), absolute displacements can be retrieved (no reference point required) and it is very robust (phase unwrapping not required). On the other hand, the accuracy is limited by the pixel resolution, the object contrast, the orbit accuracy, by wave propagation distortion and by geodetic effects. Therefore the accuracy was more in the meter / decimeter level in the past, compared to millimeter accuracy of InSAR. During the recent years our team established a test and validation site at the geodetic observatory Wettzell, Germany and developed compensation methods to reduce the overall error of absolute range measurements from decimeters to only one centimeter. The methods include correction of dry and wet atmospheric delays, ionospheric corrections, solid earth tides, continental drift, atmospheric pressure loading and ocean tidal loading. For more one year a radar reflector was monitored and each image evaluated. Our presentation gives and overview of methods and achieved results. Futhermore, examples of real world applications and an outlook on more applications is given such as phase unwrapping augmentation.

  9. Accurate low-rank matrix recovery from a small number of linear measurements

    CERN Document Server

    Candes, Emmanuel J

    2009-01-01

    We consider the problem of recovering a lowrank matrix M from a small number of random linear measurements. A popular and useful example of this problem is matrix completion, in which the measurements reveal the values of a subset of the entries, and we wish to fill in the missing entries (this is the famous Netflix problem). When M is believed to have low rank, one would ideally try to recover M by finding the minimum-rank matrix that is consistent with the data; this is, however, problematic since this is a nonconvex problem that is, generally, intractable. Nuclear-norm minimization has been proposed as a tractable approach, and past papers have delved into the theoretical properties of nuclear-norm minimization algorithms, establishing conditions under which minimizing the nuclear norm yields the minimum rank solution. We review this spring of emerging literature and extend and refine previous theoretical results. Our focus is on providing error bounds when M is well approximated by a low-rank matrix, and ...

  10. Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands

    Directory of Open Access Journals (Sweden)

    Norman W.H. Mason

    2014-02-01

    Full Text Available Many studies have quantified uncertainty in forest carbon (C storage estimation, but there is little work examining the degree of uncertainty in shrubland C storage estimates. We used field data to simulate uncertainty in carbon storage estimates from three error sources: (1 allometric biomass equations; (2 measurement errors of shrubs harvested for the allometry; and (3 measurement errors of shrubs in survey plots. We also assessed uncertainty for all possible combinations of these error sources. Allometric uncertainty had the greatest independent effect on C storage estimates for individual plots. The largest error arose when all three error sources were included in simulations (where the 95% confidence interval spanned a range equivalent to 40% of mean C storage. Mean C sequestration (1.73 Mg C ha–1 year–1 exceeded the margin of error produced by the simulated sources of uncertainty. This demonstrates that, even when the major sources of uncertainty were accounted for, we were able to detect relatively modest gains in shrubland C storage.

  11. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...... in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent......Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved...

  12. Analysis of Partial Volume Effects on Accurate Measurement of the Hippocampus Volume

    Institute of Scientific and Technical Information of China (English)

    Maryam Hajiesmaeili; Jamshid Dehmeshki; Tim Ellis

    2014-01-01

    Hippocampal volume loss is an important biomarker in distinguishing subjects with Alzheimer’s disease (AD) and its measurement in magnetic resonance images (MRI) is influenced by partial volume effects (PVE). This paper describes a post-processing approach to quantify PVE for correction of the hippocampal volume by using a spatial fuzzyC-means (SFCM) method. The algorithm is evaluated on a dataset of 20 T1-weighted MRI scans sampled at two different resolutions. The corrected volumes for left and right hippocampus (HC) which are 23% and 18% for the low resolution and 6% and 5% for the high resolution datasets, respectively are lower than hippocampal volume results from manual segmentation. Results show the importance of applying this technique in AD detection with low resolution datasets.

  13. Accurate fault location algorithm on power transmission lines with use of two-end unsynchronized measurements

    Directory of Open Access Journals (Sweden)

    Mohamed Dine

    2012-01-01

    Full Text Available This paper presents a new approach to fault location on power transmission lines. This approach uses two-end unsynchronised measurements of the line and benefits from the advantages of digital technology and numerical relaying, which are available today and can easily be applied for off-line analysis. The approach is to modify the apparent impedance method using a very simple first-order formula. The new method is independent of fault resistance, source impedances and pre-fault currents. In addition, the data volume communicated between relays is sufficiently small enough to be transmitted easily using a digital protection channel. The proposed approach is tested via digital simulation using MATLand the applied test results corroborate the superior performance of the proposed approach.

  14. Accurate Simulation of 802.11 Indoor Links: A "Bursty" Channel Model Based on Real Measurements

    Directory of Open Access Journals (Sweden)

    Agüero Ramón

    2010-01-01

    Full Text Available We propose a novel channel model to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the "bursty" behavior which characterizes indoor wireless scenarios, having a great impact on the behavior of upper layer protocols. We compare this channel model, integrated within the Network Simulator (ns-2 platform, with other traditional approaches, showing that it is able to better reflect the real behavior which was empirically assessed.

  15. S3 HMBC hetero: Spin-State-Selective HMBC for accurate measurement of long-range heteronuclear coupling constants

    Science.gov (United States)

    Hoeck, Casper; Gotfredsen, Charlotte H.; Sørensen, Ole W.

    2017-02-01

    A novel method, Spin-State-Selective (S3) HMBC hetero, for accurate measurement of heteronuclear coupling constants is introduced. The method extends the S3 HMBC technique for measurement of homonuclear coupling constants by appending a pulse sequence element that interchanges the polarization in 13C-1H methine pairs. This amounts to converting the spin-state selectivity from 1H spin states to 13C spin states in the spectra of long-range coupled 1H spins, allowing convenient measurement of heteronuclear coupling constants similar to other S3 or E.COSY-type methods. As usual in this type of techniques, the accuracy of coupling constant measurement is independent of the size of the coupling constant of interest. The merits of the new method are demonstrated by application to vinyl acetate, the alkaloid strychnine, and the carbohydrate methyl β-maltoside.

  16. An X-Band Waveguide Measurement Technique for the Accurate Characterization of Materials with Low Dielectric Loss Permittivity

    CERN Document Server

    Allen, Kenneth W; Reid, David R; Bean, Jeffrey A; Ellis, Jeremy D; Morris, Andrew P; Marsh, Jeramy M

    2016-01-01

    In this work, we present a new X-band waveguide (WR90) measurement method that permits the broadband characterization of the complex permittivity for low dielectric loss tangent material specimens with improved accuracy. An electrically-long polypropylene specimen that partially fills the cross-section is inserted into the waveguide and the transmitted scattering parameter (S21) is measured. The extraction method relies on computational electromagnetic simulations, coupled with a genetic algorithm, to match the experimental S21 measurement. The sensitivity of the technique to sample length was explored by simulating specimen lengths from 2.54 to 15.24 cm, in 2.54 cm increments. Analysis of our simulated data predicts the technique will have the sensitivity to measure loss tangent values on the order of 10e-3 for materials such as polymers with relatively low real permittivity values. The ability to accurately characterize low-loss dielectric material specimens of polypropylene is demonstrated experimentally. ...

  17. Standardization of vitrinite reflectance measurements in shale petroleum systems: How accurate are my Ro data?

    Science.gov (United States)

    Hackley, Paul C.

    2014-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708-11: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (Ro 0.31-1.53%), from organic-rich to organic-lean (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability values (difference between repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility values (difference between results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping the other components. Discussion among

  18. Accurate measurement of the sticking time and sticking probability of Rb atoms on a polydimethylsiloxane coating

    Energy Technology Data Exchange (ETDEWEB)

    Atutov, S. N., E-mail: atutovsn@mail.ru; Plekhanov, A. I. [Russian Academy of Sciences, Institute of Automation and Electrometry, Siberian Branch (Russian Federation)

    2015-01-15

    We present the results of a systematic study of Knudsen’s flow of Rb atoms in cylindrical capillary cells coated with a polydimethylsiloxane (PDMS) compound. The purpose of the investigation is to determine the characterization of the coating in terms of the sticking probability and sticking time of Rb on the two types of coating of high and medium viscosities. We report the measurement of the sticking probability of a Rb atom to the coating equal to 4.3 × 10{sup −5}, which corresponds to the number of bounces 2.3 × 10{sup 4} at room temperature. These parameters are the same for the two kinds of PDMS used. We find that at room temperature, the respective sticking times for high-viscosity and medium-viscosity PDMS are 22 ± 3 μs and 49 ± 6 μs. These sticking times are about million times larger than the sticking time derived from the surface Rb atom adsorption energy and temperature of the coating. A tentative explanation of this surprising result is proposed based on the bulk diffusion of the atoms that collide with the surface and penetrate inside the coating. The results can be important in many resonance cell experiments, such as the efficient magnetooptical trapping of rare elements or radioactive isotopes and in experiments on the light-induced drift effect.

  19. Accurate electrical resistance measurement of the crystallization kinetics of amorphous alloys

    Institute of Scientific and Technical Information of China (English)

    WANG; Yaping

    2001-01-01

    [1]Kobayashi, H.?Yasukochi, K., Maximum and minimum heat flux and temperature fluctuation in film-boiling states in superfluid helium, Adv. Cryog. Eng., 1980, 25: 372.[2]Kobayashi, H.?Yasukochi, K., A sample configuration effect on the heat transfer from metal surfaces to pressurized He II, Proc. ICEC, 1980, 8: 217.[3]Schwerdtner, M. V., Stamm, G., Tosi, A. N. et al. The boiling-up process in He II. Optical measurements and visualization, Cryogenics, 1992, 32: 775.[4]Schwerdtner, M. V., Poppes, W., Schmidt, D. W., Distortion of temperature signals in He II due to probe geometry, and a new improved probe, Cryogenics, 1989, 29: 132.[5]Shimazaki, T., Murakami, M.?Iida, T., Second sound wave heat transfer, thermal boundary layer formation and boiling: highly transient heat transport phenomena in He II, Cryogenics, 1995, 35: 645.[6]Zhang, P., Study of physical mechanism of film boiling in He II, Doctoral dissertation, Shanghai Jiaotong University, China, 1998.[7]Arp, V., State equation of liquid helium-4 from 0.8 to 2.5K, J. Low Temp. Phys., 1990, 79: 93.[8]Zhang, P., Kimura, S., Murakami, M. et al., Non-planar and non-linear second sound wave in He II, Chinese Physics Letters, 2000, 17: 43.

  20. Accurate Measurements of Free Flight Drag Coefficients with Amateur Doppler Radar

    CERN Document Server

    Courtney, Elya; Courtney, Michael

    2016-01-01

    In earlier papers, techniques have been described using optical chronographs to determine free flight drag coefficients with an accuracy of 1-2%, accomplished by measuring near and far velocities of projectiles in flight over a known distance. Until recently, Doppler radar has been prohibitively expensive for many users. This paper reports results of exploring potential applications and accuracy using a recently available, inexpensive (< $600 US) amateur Doppler radar system to determine drag coefficients for projectiles of various sizes (4.4 mm to 9 mm diameter) and speeds (M0.3 to M3.0). In many cases, drag coefficients can be determined with an accuracy of 1% or better if signal-to-noise ratio is sufficient and projectiles vary little between trials. It is also straightforward to design experiments for determining drag over a wide range of velocities. Experimental approaches and limitations are described. Overall, the amateur radar system shows greater accuracy, ease of use, and simplicity compared with...

  1. An improved measurement of electron-ion recombination in high-pressure xenon gas

    CERN Document Server

    Serra, L; Álvarez, V; Borges, F I G; Camargo, M; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Esteve, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Labarga, L; Laing, A; Liubarsky, I; Lopez-March, N; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Miller, T; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; Nebot-Guinot, M; Nygren, D; Oliveira, C A B; Pérez, J; Aparicio, J L Pérez; Querol, M; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Shuman, D; Simón, A; Sofka, C; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R; White, J T; Yahlali, N

    2014-01-01

    We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electron-ion recombination in the gas, with correlation coeffcients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8 % FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be $0.561\\pm 0.045$, translating into an average energy to produce a primary s...

  2. Patient safety measures in burn care: do National reporting systems accurately reflect quality of burn care?

    Science.gov (United States)

    Mandell, Samuel P; Robinson, Ellen F; Cooper, Claudette L; Klein, Matthew B; Gibran, Nicole S

    2010-01-01

    UHC CDB provide a potential to benchmark quality of care. However, reporting quality data for trauma and burns requires stringent understanding of injury data collection. Although quality measures are important for improving patient safety and establishing benchmarks for complication and mortality rates, caution must be taken when applying them to specific product lines.

  3. A Two-Sinker Densimeter for Accurate Measurements of the Density of Natural Gases at Standard Conditions

    Science.gov (United States)

    Richter, Markus; Kleinrahm, Reiner; Glos, Stefan; Wagner, Wolfgang; Span, Roland; Schley, Peter; Uhrig, Martin

    2010-05-01

    A special reference densimeter has been developed for accurate measurements of densities of natural gases and multicomponent gas mixtures at standard conditions of temperature and pressure ( T s = 273.15 K and p s = 0.101325 MPa). The densimeter covers the range from 0.7 kg · m-3 to 1.3 kg · m-3; the total measurement uncertainty in density is 0.020 % (95 % level of confidence). The measurement principle used is the two-sinker method, which is based on the Archimedes buoyancy principle. The certified calibration laboratory of E.ON Ruhrgas AG, Germany, uses this densimeter to verify the standard densities of certified calibration gases (binary and multicomponent gas mixtures). Moreover, the densimeter is used to determine the compositions of commercially available binary gas mixtures with a small uncertainty of (0.01-0.03) mol%.

  4. Modification to poloidal charge exchange recombination spectroscopy measurement in JT-60U tokamak

    Institute of Scientific and Technical Information of China (English)

    Ding Bo-Jiang; Sakamoto Yoshiteru; Miura Yukitoshi

    2007-01-01

    With consideration of the effects of the atomic process and the sight line direction on the charge exchange recombination spectroscopy (CXRS), a code used to modify the poloidal CXRS measurement on Tokamak-60 Upgrade (JT-60U) in Japan Atomic Energy Research Institute is developed, offering an effective tool to modify the measurement and analyse experimental results further. The results show that the poloidal velocity of ion is overestimated but the ion temperature is underestimated by the poloidal CXRS measurement, and they also indicate that the effect of observation angle on rotation velocity is a dominant one in a core region (r/a< 0.65), whereas in an edge region where the sight line is nearly normal to the neutral beam, the observation angle effect is very small. The difference between the modified velocity and the neoclassical velocity is not larger than the error in measurement. The difference inside the internal transport barrier (ITB) region is 2-3 times larger than that outside the ITB region, and it increases when the effect of excited components in neutral beam is taken into account. The radial electric field profile is affected greatly by the poloidal rotation term, which possibly indicates the correlation between the poloidal rotation and the transport barrier formation.

  5. An accurate measurement of the anisotropies and mean level of the Cosmic Infrared Background at 100 and 160 um

    CERN Document Server

    Pénin, Aurélie; Noriega-Crepo, Alberto; Grain, Julien; Miville-Deschênes, Marc-Antoine; Ponthieu, Nicolas; Martin, Peter; Blagrave, Kevin; Lockman, Felix J

    2011-01-01

    The anisotropies of the cosmic infrared background (CIB) are a powerful tool to study the evolution of galaxies and large-scale structures. However one of the main limitations to an accurate measurement is the contamination by Galactic dust emission. Our goal is to show that we can remove the Galactic cirrus contamination using HI data, and thus measure accurately the clustering of starburst galaxies in the CIB. We use observations of the extragalactic N1 field at far-infrared (100 and 160 um) and radio (21 cm) wavelengths. We compute the correlation between dust emission, as traced by far-infrared observations, and HI gas, and derive dust emissivities which enable us to subtract the cirrus emission from the far-infrared maps. We then derive the power spectrum of the CIB anisotropies and its mean level. We compute dust emissivities for each of the HI-velocity components. Using IRIS/IRAS data at 100 um, we demonstrate that we can use the measured emissivities to determine and remove the cirrus contribution to ...

  6. Simultaneous measurement of bulk and surface recombination lifetimes on asymmetrical silicon samples

    Science.gov (United States)

    Sirleto, Luigi; Irace, Andrea; Vitale, Gianpaolo F.; Zeni, Luigi; Cutolo, Antonello

    2000-08-01

    In this paper, a contractless, all-optical and non-destructive method for separating the minority carrier recombination lifetime and surface recombination velocities on assymetrical silicon samples (that is with different surface recombination velocities on the front and back surface) at low injection level is presented. The technique can be described as a pump-probe method where the excess carrier density is probed by analyzing free carrier absorption transient following excitation pulses having several wavelengths. A novel theoretical approach to evaluate the recombinative parameters is extensively analyzed and numerical simulations, which validate the proposed methodology, are presented.

  7. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    H. Chen

    2012-09-01

    Full Text Available Accurate measurements of carbon monoxide (CO in humid air have been made using the cavity ring-down spectroscopy (CRDS technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near infrared region (∼1.57 μm after removing interferences from adjacent carbon dioxide (CO2 and water vapor (H2O absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360–390 ppm. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately −0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of −0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs new spectroscopic analysis (available since the beginning of 2012 indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  8. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    CERN Document Server

    Öz, E; Muggli, P

    2016-01-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE)~\\cite{bib:awake} project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook~\\cite{bib:Hook} method and has been described in great detail in the work by W. Tendell Hill et. al.~\\cite{bib:densitymeter}. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of $1\\%$ for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prot...

  9. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Öz, E.; Batsch, F.; Muggli, P.

    2016-09-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density–length product. A single-mode, fiber-based, Mach–Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.

  10. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    Science.gov (United States)

    Öz, E.; Batsch, F.; Muggli, P.

    2016-09-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.

  11. Measuring Physical Inactivity: Do Current Measures Provide an Accurate View of “Sedentary” Video Game Time?

    Directory of Open Access Journals (Sweden)

    Simon Fullerton

    2014-01-01

    Full Text Available Background. Measures of screen time are often used to assess sedentary behaviour. Participation in activity-based video games (exergames can contribute to estimates of screen time, as current practices of measuring it do not consider the growing evidence that playing exergames can provide light to moderate levels of physical activity. This study aimed to determine what proportion of time spent playing video games was actually spent playing exergames. Methods. Data were collected via a cross-sectional telephone survey in South Australia. Participants aged 18 years and above (n=2026 were asked about their video game habits, as well as demographic and socioeconomic factors. In cases where children were in the household, the video game habits of a randomly selected child were also questioned. Results. Overall, 31.3% of adults and 79.9% of children spend at least some time playing video games. Of these, 24.1% of adults and 42.1% of children play exergames, with these types of games accounting for a third of all time that adults spend playing video games and nearly 20% of children’s video game time. Conclusions. A substantial proportion of time that would usually be classified as “sedentary” may actually be spent participating in light to moderate physical activity.

  12. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).

    Science.gov (United States)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ∼10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  13. [Measurement of human thyroid peroxidase autoantibodies by enzyme immunoassay using recombinant human TPO].

    Science.gov (United States)

    Inoue, T; Ishiguro, R; Takenouchi, H; Umeki, K; Matsumoto, K; Yagihashi, S; Kato, H; Kotani, T; Ohtaki, S

    1994-03-01

    An EIA for measuring anti-TPO autoantibodies (rhTPO-EIA) was developed using recombinant human TPO expressed in CHO cells and was compared with MC-HA generally used in laboratory routine work. rhTPO-EIA showed a satisfactory reproducibility in the intra-assay test and did not have an accidental error of lots. Almost equal number of healthy females and males were measured for their IgG binding to TPO to define a normal range of anti-TPO autoantibodies. After setting 20 IU/ml as an upper limit of normal range, sera from patient with thyroid disorders were measured for their anti-TPO autoantibodies. Chronic thyroiditis and Graves' disease were highly positive, while adenoma, thyroid cancer, SLE, and RA were low in their positivity. The positive rate of anti-TPO autoantibodies was compatible to those of previous reports in each disorder. Seventy-two sera from patients with chronic thyroiditis or Graves' disease were measured for their autoantibodies by both rhTPO-EIA and MC-HA and the results were compared between both methods. A correlation coefficient was 0.486. Following absorption with thyroglobulin, sera were measured again and as the results, the correlation coefficient increased to 0.723. Therefore, MC-HA was thought to be influenced in the presence of anti-thyroglobulin autoantibodies. Since rhTPO-EIA is excellent in quality and not affected by anti-thyroglobulin antibodies, it is useful and applicable to clinical diagnosis and observation of thyroid disorders.

  14. Can endocranial volume be estimated accurately from external skull measurements in great-tailed grackles (Quiscalus mexicanus?

    Directory of Open Access Journals (Sweden)

    Corina J. Logan

    2015-06-01

    Full Text Available There is an increasing need to validate and collect data approximating brain size on individuals in the field to understand what evolutionary factors drive brain size variation within and across species. We investigated whether we could accurately estimate endocranial volume (a proxy for brain size, as measured by computerized tomography (CT scans, using external skull measurements and/or by filling skulls with beads and pouring them out into a graduated cylinder for male and female great-tailed grackles. We found that while females had higher correlations than males, estimations of endocranial volume from external skull measurements or beads did not tightly correlate with CT volumes. We found no accuracy in the ability of external skull measures to predict CT volumes because the prediction intervals for most data points overlapped extensively. We conclude that we are unable to detect individual differences in endocranial volume using external skull measurements. These results emphasize the importance of validating and explicitly quantifying the predictive accuracy of brain size proxies for each species and each sex.

  15. Accurate mass measurements of very short-lived nuclei. Prerequisites for high-accuracy investigations of superallowed {beta}-decays

    Energy Technology Data Exchange (ETDEWEB)

    Herfurth, F.; Kellerbauer, A.; Sauvan, E. [CERN, 1211 Geneva 23 (Switzerland); Ames, F.; Engels, O. [Sektion Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Audi, G.; Lunney, D. [CSNSM-IN2P3-CNRS, 91405 Orsay Campus (France); Beck, D.; Blaum, K.; Kluge, H.J.; Scheidenberger, C.; Sikler, G.; Weber, C. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Bollen, G.; Schwarz, S. [NSCL, Michigan State University, East Lansing MI 48824-1321 (United States); Moore, R.B. [Department of Physics, McGill University, Montreal (Quebec) H3A 2T8 (Canada); Oinonen, M. [Helsinki Institute of Physics, University of Helsinki, P.O. Box 9, 00014 Helsinki (Finland)

    2002-10-01

    Mass measurements of {sup 34}Ar, {sup 73-78}Kr, and {sup 74,76}Rb were performed with the Penning-trap mass spectrometer ISOLTRAP. Very accurate Q{sub EC}-values are needed for the investigations of the Ft-value of 0{sup +} {yields} 0{sup +} nuclear {beta}-decays used to test the standard model predictions for weak interactions. The necessary accuracy on the Q{sub EC}-value requires the mass of mother and daughter nuclei to be measured with {delta}m/m {<=} 3{sup .}10 {sup -8}. For most of the measured nuclides presented here this has been reached. The {sup 34}Ar mass has been measured with a relative accuracy of 1.1 .10{sup -8}. The Q {sub EC}-value of the {sup 34}Ar 0 {sup +} {yields} 0 {sup +} decay can now be determined with an uncertainty of about 0.01%. Furthermore, {sup 74}Rb is the shortest-lived nuclide ever investigated in a Penning trap. (orig.)

  16. Accurate Measurement of Pasting Temperature by the Rapid Visco-Analyser:a Case Study Using Rice Flour

    Institute of Scientific and Technical Information of China (English)

    BAO Jin-song

    2008-01-01

    Pasting properties are among the most important characteristics of starch,determining its applications in food processing and other industries.Pasting temperature derived from the Rapid Visco-analyser(RVA)(Newport Scientific),in most cases,is overestimated by the Thermocline for Windows software program.Here,two methods facilitating accurate where the pasting viscosity begins to increase,the other is to manually record the time(T1)when the pasting viscosity begins to increase and calculate the pasting temperature with the formula of(45/3.8)×(T1-1)+50 for rice flour.The latter method gave a manually determined pasting temperature which was significantly correlated with the gelatinization temperature measured by differential scanning calorimetry.

  17. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    Science.gov (United States)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  18. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    Science.gov (United States)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  19. Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements.

    Science.gov (United States)

    Kujda, Marta; Adamczyk, Zbigniew; Morga, Maria; Sofińska, Kamila

    2015-03-01

    Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests.

  20. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    H. Chen

    2013-04-01

    Full Text Available Accurate measurements of carbon monoxide (CO in humid air have been made using the cavity ring-down spectroscopy (CRDS technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm after removing interferences from adjacent carbon dioxide (CO2 and water vapor (H2O absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360–390 ppm and for reported H2O mole fractions between 0–4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately −0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of −0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012 indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  1. Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak

    Science.gov (United States)

    Wu, Jing; Yao, Lieming; Zhu, Jianhua; Han, Xiaoyu; Li, Wenzhu

    2012-11-01

    This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the HL-2A tokamak. By using CXRS, an accurate impurity ion temperature and toroidal plasma rotation velocity profile can be achieved under the condition of neutral beam injection (NBI) heating. Considering the edge effect of the line of CVI 529.06 nm (n = 8~7), which contains three lines (active exciting spectral line (ACX), passivity exciting spectral line (PCX) and electron exciting spectral line (ICE)), and using three Gaussian fitted curves, we obtain the following experimental results: the core ion temperature of HL-2A device is nearly thousands of eV, and the plasma rotation velocity reaches about 104 m · s-1. At the end of paper, some explanations are presented for the relationship between the curves and the inner physical mechanism.

  2. Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    吴静; 姚列明; 朱建华; 韩晓玉; 李文柱

    2012-01-01

    This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the HL-2A toknmak. By using CXRS, an accurate impurity ion temperature and toroidal plasma rotation velocity profile can be achieved under the condition of neutrM beam injection (NBI) heating. Considering the edge effect of the line of CVI 529.06 nm (n= 8-7), which contains three lines (active exciting spectral line (ACX), passivity exciting spectral line (PCX) and electron exciting spectral line (ICE)), and using three Gaussian fitted curves, we obtain the following experimental results: the core ion temperature of HL-2A device is nearly thousands of eV, and the plasma rotation velocity reaches about 104 m· s^-1. At the end of paper, some explanations are presented for the relationship between the curves and the inner physical mechanism.

  3. First measurement of the edge charge exchange recombination spectroscopy on EAST tokamak

    Science.gov (United States)

    Li, Y. Y.; Yin, X. H.; Fu, J.; Jiang, D.; Feng, S. Y.; Lyu, B.; Shi, Y. J.; Yi, Y.; Zhou, X. J.; Hu, C. D.; Ye, M. Y.; Wan, B. N.

    2016-11-01

    An edge toroidal charge exchange recombination spectroscopy (eCXRS) diagnostic, based on a heating neutral beam injection (NBI), has been deployed recently on the Experimental Advanced Superconducting Tokamak (EAST). The eCXRS, which aims to measure the plasma ion temperature and toroidal rotation velocity in the edge region simultaneously, is a complement to the exiting core CXRS (cCXRS). Two rows with 32 fiber channels each cover a radial range from ˜2.15 m to ˜2.32 m with a high spatial resolution of ˜5-7 mm. Charge exchange emission of Carbon VI CVI at 529.059 nm induced by the NBI is routinely observed, but can be tuned to any interested wavelength in the spectral range from 400 to 700 nm. Double-slit fiber bundles increase the number of channels, the fibers viewing the same radial position are binned on the CCD detector to improve the signal-to-noise ratio, enabling shorter exposure time down to 5 ms. One channel is connected to a neon lamp, which provides the real-time wavelength calibration on a shot-to-shot basis. In this paper, an overview of the eCXRS diagnostic on EAST is presented and the first results from the 2015 experimental campaign will be shown. Good agreements in ion temperature and toroidal rotation are obtained between the eCXRS and cCXRS systems.

  4. Electron-ion recombination measurements motivated by AGN X-ray absorption features: Fe XIV forming Fe XIII

    CERN Document Server

    Schmidt, E W; Müller, A; Lestinsky, M; Sprenger, F; Grieser, M; Repnow, R; Wolf, A; Brandau, C; Lukic, D; Schnell, M; Savin, D W

    2006-01-01

    Recent spectroscopic models of active galactic nuclei (AGN) have indicated that the recommended electron-ion recombination rate coefficients for iron ions with partially filled M-shells are incorrect in the temperature range where these ions form in photoionized plasmas. We have investigated this experimentally for Fe XIV forming Fe XIII. The recombination rate coefficient was measured employing the electron-ion merged beams method at the Heidelberg heavy-ion storage-ring TSR. The measured energy range of 0-260 eV encompassed all dielectronic recombination (DR) 1s2 2s2 2p6 3l 3l' 3l'' nl''' resonances associated with the 3p1/2 -> 3p3/2, 3s -> 3p, 3p -> 3d and 3s -> 3d core excitations within the M-shell of the Fe XIV 1s2 2s2 2p6 3s2 3p parent ion. This range also includes the 1s2 2s2 2p6 3l 3l' 4l'' nl''' resonances associated with 3s -> 4l'' and 3p -> 4l'' core excitations. We find that in the temperature range 2--14 eV, where Fe XIV is expected to form in a photoionized plasma, the Fe XIV recombination rate...

  5. Accurate measurements of {sup 129}I concentration by isotope dilution using MC-ICPMS for half-life determination

    Energy Technology Data Exchange (ETDEWEB)

    Isnard, Helene; Nonell, Anthony; Marie, Mylene [Commissariat a l' Energie Atomique et aux Energies alternatives (CEA), Gif Sur Yvette (France). DEN, DPC, SEARS, LANIE; Chartier, Frederic [Commissariat a l' Energie Atomique et aux Energies alternatives (CEA), Gif Sur Yvette (France). DEN, DPC

    2016-05-01

    Determining the {sup 129}I concentration, a long-lived radionuclide present in spent nuclear fuel, is a major issue for nuclear waste disposal purpose. {sup 129}I also has to be measured in numerous environmental, nuclear and biological samples. To be able to accurately determine the {sup 129}I concentration, an analytical method based on the use of a multicollector-inductively coupled plasma mass spectrometer (MC-ICPMS) combined with an isotope dilution technique using an {sup 127}I spike, was developed. First, the influence of different media (HNO{sub 3}, NaOH and TMAH) on natural {sup 127}I signal intensity and stability and on memory effects was studied. Then an analytical procedure was developed by taking into account the correction of blanks and interferences. Tellurium was chosen for instrumental mass bias correction, as no certified standards with suitable {sup 127}I/{sup 129}I ratio are available. Finally, the results, reproducibility and uncertainties obtained for the {sup 129}I concentration determined by isotope dilution with a {sup 127}I spike are presented and discussed. The final expanded relative uncertainty obtained for the iodine-129 concentration was lower than 0.7% (k = 1). This precise {sup 129}I determination in association with further activity measurements of this nuclide on the same sample will render it possible to determine a new value of the {sup 129}I half-life with a reduced uncertainty (0.76%, k = 1).

  6. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    CERN Document Server

    Papastergis, E; van der Hulst, J M

    2016-01-01

    We use a sample of 97 galaxies selected from the ALFALFA 21cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M* >~ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21cm emission line, without any need for inclination corrections. The resulting linewidth-based BTFR has a slope of alpha = 3.58 +- 0.11, a value that is in agreement with previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of +- 0.1 dex from the best fit line. The low observational error budget for our sample allows us to establish that, despite its tightness, the measured linewidth-based BTFR has some small ...

  7. Optimally accurate thermal-wave cavity photopyroelectric measurements of pressure-dependent thermophysical properties of air: theory and experiments.

    Science.gov (United States)

    Kwan, Chi-Hang; Matvienko, Anna; Mandelis, Andreas

    2007-10-01

    An experimental technique for the measurement of thermal properties of air at low pressures using a photopyroelectric (PPE) thermal-wave cavity (TWC) was developed. In addition, two theoretical approaches, a conventional one-dimensional thermal-wave model and a three-dimensional theory based on the Hankel integral, were applied to interpret the thermal-wave field in the thermal-wave cavity. The importance of radiation heat transfer mechanisms in a TWC was also investigated. Radiation components were added to the purely conductive model by linearizing the radiation heat transfer component at the cavity boundary. The experimental results indicate that the three-dimensional model is necessary to describe the PPE signal, especially at low frequencies where thermal diffusion length is large and sideways propagation of the thermal-wave field becomes significant. Radiation is found to be the dominant contributor of the PPE signal at high frequencies and large cavity lengths, where heat conduction across the TWC length is relatively weak. The three-dimensional theory and the Downhill Simplex algorithm were used to fit the experimental data and extract the thermal diffusivity of air and the heat transfer coefficient in a wide range of pressures from 760 to 2.6 Torr. It was shown that judicious adjustments of cavity length and computational best fits to frequency-scanned data using three-dimensional photopyroelectric theory lead to optimally accurate value measurements of thermal diffusivity and heat transfer coefficient at various pressures.

  8. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  9. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  10. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    Science.gov (United States)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-09-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21 cm emission line, without any need for inclination corrections. We measure a slope for the linewidth-based BTFR of α = 3.75 ± 0.11, a value that is somewhat steeper than (but in broad agreement with) previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of ± 0.1 dex from the best fit line. The low observational error budget for our sample enables us to establish that, despite its tightness, the measured linewidth-based BTFR has some small (i.e., non-zero) intrinsic scatter. We furthermore find a systematic difference in the BTFR of galaxies with "double-horned" 21 cm line profiles - suggestive of flat outer galactic rotation curves - and those with "peaked" profiles - suggestive of rising rotation curves. When we restrict our sample of galaxies to objects in the former category, we measure a slightly steeper slope of α = 4.13 ± 0.15. Overall, the high-accuracy measurement of the BTFR presented in this article is intended as a reliable observational benchmark against which to test theoretical expectations. Here we consider a representative set of semi-analytic models and hydrodynamic simulations in the lambda cold dark matter (ΛCDM) context, as well as modified Newtonian dynamics (MOND). In the near future, interferometric follow-up observations of several sample members will enable us to further refine the BTFR measurement, and

  11. High-precision topography measurement through accurate in-focus plane detection with hybrid digital holographic microscope and white light interferometer module.

    Science.gov (United States)

    Liżewski, Kamil; Tomczewski, Sławomir; Kozacki, Tomasz; Kostencka, Julianna

    2014-04-10

    High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

  12. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Juang, T [Medical Physics Graduate Program, Duke University Medical Center, Durham, NC (United States); Adamovics, J [Rider University, Skillman, NJ (United States); Oldham, M [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, high resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately

  13. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  14. Measurement of spatial proximity and accessibility of chromosomal loci in yeast using Cre/loxP site-specific recombination

    OpenAIRE

    Lui, Doris; Burgess, Sean M.

    2009-01-01

    Several methods have been developed to measure interactions between homologous chromosomes during meiosis in budding yeast. These include cytological analysis of fixed, spread nuclei using fluorescence in situ Hybridization (FISH) (1, 2), visualization of GFP-labeled chromosomal loci in living cells (3), and Chromosome-Conformation Capture (3C) (4). Here we describe a quantitative genetic assay that uses exogenous site-specific recombination to monitor the level of homolog associations betwee...

  15. Accurate monitoring of intravascular fluid volume: A novel application of intrathoracic impedance measures for the guidance of volume reduction therapy

    Directory of Open Access Journals (Sweden)

    Barbara A. Lara

    2015-09-01

    Conclusion: Impedance vectors derived from a multivector monitoring system reflect changes in intravascular plasma volume. Two of these vectors most closely track changes in plasma volume and may be used to more accurately guide and optimize volume reduction therapy.

  16. A Feasibility Study for Measuring Accurate Chest Compression Depth and Rate on Soft Surfaces Using Two Accelerometers and Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Sofía Ruiz de Gauna

    2016-01-01

    Full Text Available Background. Cardiopulmonary resuscitation (CPR feedback devices are being increasingly used. However, current accelerometer-based devices overestimate chest displacement when CPR is performed on soft surfaces, which may lead to insufficient compression depth. Aim. To assess the performance of a new algorithm for measuring compression depth and rate based on two accelerometers in a simulated resuscitation scenario. Materials and Methods. Compressions were provided to a manikin on two mattresses, foam and sprung, with and without a backboard. One accelerometer was placed on the chest and the second at the manikin’s back. Chest displacement and mattress displacement were calculated from the spectral analysis of the corresponding acceleration every 2 seconds and subtracted to compute the actual sternal-spinal displacement. Compression rate was obtained from the chest acceleration. Results. Median unsigned error in depth was 2.1 mm (4.4%. Error was 2.4 mm in the foam and 1.7 mm in the sprung mattress (p<0.001. Error was 3.1/2.0 mm and 1.8/1.6 mm with/without backboard for foam and sprung, respectively (p<0.001. Median error in rate was 0.9 cpm (1.0%, with no significant differences between test conditions. Conclusion. The system provided accurate feedback on chest compression depth and rate on soft surfaces. Our solution compensated mattress displacement, avoiding overestimation of compression depth when CPR is performed on soft surfaces.

  17. Accurate measurement of circulating mitochondrial DNA content from human blood samples using real-time quantitative PCR.

    Science.gov (United States)

    Ajaz, Saima; Czajka, Anna; Malik, Afshan

    2015-01-01

    We describe a protocol to accurately measure the amount of human mitochondrial DNA (MtDNA) in peripheral blood samples which can be modified to quantify MtDNA from other body fluids, human cells, and tissues. This protocol is based on the use of real-time quantitative PCR (qPCR) to quantify the amount of MtDNA relative to nuclear DNA (designated the Mt/N ratio). In the last decade, there have been increasing numbers of studies describing altered MtDNA or Mt/N in circulation in common nongenetic diseases where mitochondrial dysfunction may play a role (for review see Malik and Czajka, Mitochondrion 13:481-492, 2013). These studies are distinct from those looking at genetic mitochondrial disease and are attempting to identify acquired changes in circulating MtDNA content as an indicator of mitochondrial function. However, the methodology being used is not always specific and reproducible. As more than 95 % of the human mitochondrial genome is duplicated in the human nuclear genome, it is important to avoid co-amplification of nuclear pseudogenes. Furthermore, template preparation protocols can also affect the results because of the size and structural differences between the mitochondrial and nuclear genomes. Here we describe how to (1) prepare DNA from blood samples; (2) pretreat the DNA to prevent dilution bias; (3) prepare dilution standards for absolute quantification using the unique primers human mitochondrial genome forward primer (hMitoF3) and human mitochondrial genome reverse primer(hMitoR3) for the mitochondrial genome, and human nuclear genome forward primer (hB2MF1) and human nuclear genome reverse primer (hB2MR1) primers for the human nuclear genome; (4) carry out qPCR for either relative or absolute quantification from test samples; (5) analyze qPCR data; and (6) calculate the sample size to adequately power studies. The protocol presented here is suitable for high-throughput use.

  18. Measurement of the severity of disability in community-dwelling adults and older adults: interval-level measures for accurate comparisons in large survey data sets

    Science.gov (United States)

    Buz, José; Cortés-Rodríguez, María

    2016-01-01

    Objectives To (1) create a single metric of disability using Rasch modelling to be used for comparing disability severity levels across groups and countries, (2) test whether the interval-level measures were invariant across countries, sociodemographic and health variables and (3) examine the gains in precision using interval-level measures relative to ordinal scores when discriminating between groups known to differ in disability. Design Cross-sectional, population-based study. Setting/participants Data were drawn from the Survey of Health, Ageing and Retirement in Europe (SHARE), including comparable data across 16 countries and involving 58 489 community-dwelling adults aged 50+. Main outcome measures A single metric of disability composed of self-care and instrumental activities of daily living (IADLs) and functional limitations. We examined the construct validity through the fit to the Rasch model and the know-groups method. Reliability was examined using person separation reliability. Results The single metric fulfilled the requirements of a strong hierarchical scale; was able to separate persons with different levels of disability; demonstrated invariance of the item hierarchy across countries; and was unbiased by age, gender and different health conditions. However, we found a blurred hierarchy of ADL and IADL tasks. Rasch-based measures yielded gains in relative precision (11–116%) in discriminating between groups with different medical conditions. Conclusions Equal-interval measures, with person-invariance and item-invariance properties, provide epidemiologists and researchers with the opportunity to gain better insight into the hierarchical structure of functional disability, and yield more reliable and accurate estimates of disability across groups and countries. Interval-level measures of disability allow parametric statistical analysis to confidently examine the relationship between disability and continuous measures so frequent in health sciences

  19. Accurately measuring sea level change from space: an ESA Climate Change Initiative for MSL closure budget studies

    DEFF Research Database (Denmark)

    Legeais, Jean-Francois; Cazenave, Anny; Larnicol, Gille

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition...... in the Arctic Ocean and in coastal areas for which preliminary results suggest that significant improvements can be achieved....

  20. Dielectronic recombination measurements of highly-charged heliumlike and neonlike ions using an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Knapp, D.A.; Beiersdorfer, P.; Chen, M.H.; Scofield, J.H.; Bennett, C.L.; DeWitt, D.R.; Henderson, J.R.; Lee, P.; Marrs, R.E.; Schneider, D. (Lawrence Livermore National Lab., CA (United States)); Levine, M.A. (Lawrence Berkeley Lab., CA (United States))

    1991-01-01

    The electron beam ion trap (EBIT) at LLNL is a unique device designed to measure the interactions of electrons with highly-charged ions. We describe three methods used at EBIT to directly measure the dielectronic recombination (DR) process: the intensity of the stabilizing x-rays is measured as a function of electron beam energy; the ions remaining in a particular ionization state are counted after the electron beam has been held at a fixed electron energy for a fixed time; and high-resolution spectroscopy is used to resolve individual DR satellite lines. In our discussions, we concentrate on the KLL resonances of the heliumlike target ions (V{sup 21+} to Ba{sup 54+}), and the LMM resonances of the neonlike target ions (Xe{sup 44+} to Th{sup 80+}). 12 refs., 8 figs.

  1. Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-orbitrap mass spectrometer for further metabolomics database building.

    Science.gov (United States)

    Xu, Ying; Heilier, Jean-François; Madalinski, Geoffrey; Genin, Eric; Ezan, Eric; Tabet, Jean-Claude; Junot, Christophe

    2010-07-01

    Recently, high-resolution mass spectrometry has been largely employed for compound identification, thanks to accurate mass measurements. As additional information, relative isotope abundance (RIA) is often needed to reduce the number of candidates prior to tandem MS(n). Here, we report on the evaluation of the LTQ-Orbitrap, in terms of accurate mass and RIA measurements for building further metabolomics spectral databases. Accurate mass measurements were achieved in the ppm range, using external calibration within 24 h, and remained at evaluated in different data sets. First of all, 137 solutions of commercial compounds were analyzed by flow injection analysis in both the positive and negative ion modes. It was found that the ion abundance was the main factor impacting the accuracy of RIA measurements. It was possible to define some intensity thresholds above which errors were systematically transmission between the LTQ ion trap and the Orbitrap analyzer on RIA measurement errors was found, whereas the reliability of RIA measurements was dramatically improved by reducing the mass detection window. It was also observed that the signal integration method had a significant impact on RIA measurement errors, with the most-reliable results being obtained with peak height integrations. Finally, automatic integrations using the data preprocessing software XCMS and MZmine gave results similar to those obtained by manual integration, suggesting that it is relevant to use the RIA information in automatic elemental composition determination software from metabolomic peak tables.

  2. Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells

    KAUST Repository

    Burkhard, George F.

    2010-05-31

    Accurately measuring internal quantum efficiency requires knowledge of absorption in the active layer of a solar cell. The experimentally accessible total absorption includes significant contributions from the electrodes and other nonactive layers. We suggest a straightforward method for calculating the active layer contribution that minimizes error by subtracting optically-modeled electrode absorption from experimentally measured total absorption. (Figure Presented) © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper

    DEFF Research Database (Denmark)

    Jensen, Mette Munk; Jørgensen, Jesper Tranekjaer; Binderup, Tina;

    2008-01-01

    and reproducible measures of tumor size in mice compared with caliper measurements. Furthermore, we evaluated the accuracy of tumor volume determined from 18F-fluorodeoxyglucose (18F-FDG) PET. METHODS: Subcutaneously implanted human breast adenocarcinoma cells in NMRI nude mice served as tumor model. Tumor volume...... systematic bias compared to reference volume. Coefficients of variation for intra-observer variation were 7% and 14% for microCT and caliper measurements, respectively. Regression coefficients between observers were 0.97 for microCT and 0.91 for caliper measurements. CONCLUSION: MicroCT was more accurate...

  4. Application of measurement configuration optimization for accurate metrology of sub-wavelength dimensions in multilayer gratings using optical scatterometry.

    Science.gov (United States)

    Zhu, Jinlong; Shi, Yating; Goddard, Lynford L; Liu, Shiyuan

    2016-09-01

    Critical dimension measurement accuracy in optical scatterometry relies not only on the systematic noise level of instruments and the reliability of forward modeling algorithms, but also heavily on the measurement configuration. To construct a set of potentially high-accuracy configurations, we apply a general measurement configuration optimization method based on error propagation theory and singular value decomposition, by which the measurement accuracy is approximated as a function of a pseudo Jacobian with respect to the measurement configurations. Simulations and experiments for the optical metrology of a sub-wavelength deep-etched multilayer grating establish the feasibility of the proposed method.

  5. Technical Note: How accurate can stalagmite formation temperatures be determined using vapour bubble radius measurements in fluid inclusions?

    DEFF Research Database (Denmark)

    Spadin, F.; Marti, Dominik; Hidalgo-Staub, R.

    2015-01-01

    Stalagmites are natural archives containing detailed information on continental climate variability of the past. Microthermometric measurements of fluid inclusion homogenisation temperatures allow determination of stalagmite formation temperatures by measuring the radius of stable laser-induced v......Stalagmites are natural archives containing detailed information on continental climate variability of the past. Microthermometric measurements of fluid inclusion homogenisation temperatures allow determination of stalagmite formation temperatures by measuring the radius of stable laser......-induced vapour bubbles inside the inclusions. A reliable method for precisely measuring the radius of vapour bubbles is presented. The method is applied to stalagmite samples for which the formation temperature is known. An assessment of the bubble radius measurement accuracy and how this error influences...

  6. Determination of representative renal depth for accurate attenuation corred in measurement of glomerular filtration rate in transplanted kidney

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Soon Nam; Kim, Sung Hoon; Rha, Sung Eun; Chung, Yong An; Yoo, Ie Ryung; Sohn, Hyung Sun; Lee, Sung Young; Chung, Soo Kyo [The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2002-08-01

    To measure reliable glomerular filtration rate by using the representative values of transplanted renal depths, which are measured with ultrasonography. We included 54 patients (26 men, 28 women), with having both renal scintigraphy and ultrasonography after renal transplantation. We measured DFR with Gates' method using the renal depth measured by ultrasonography, and median and mean ones in each patient. We compared GFR derived from ultrasonography-measured renal depth with GFR derived from median and mean renal depths. The correlation coefficients were obtained among GFR derived from ultrasonography-measured renal depths, median and mean renal depth under linear regression analysis. We determined whether GFR derived from median or mean renal depth could substitute GFR derived from ultrasonography-measured renal depth with Bland-Altman method. We analyze the expected errors of the GFR using representative renal depth in terms of age, sex, weight, height, creatinine value, and body surface. The transplanted renal depths range from 3.20 cm to 5.96 cm. The mean value and standard deviation of renal depths measured by ultrasonography are 4.09{+-}0.65 cm in men, and 4.24{+-}0.78 cm in women. The median value of renal depths measured by ultrasonography is 4.36 cm in men and 4.14 cm in women. The GFR derived from median renal depth is more consistent with GFR derived from ultrasonography-measured renal depth than GFR derived from mean renal depth. Differences of GFR derived from median and ultrasonography-measured renal depth are not significantly different in the groups classified with creatinine value, age, sex, height, weight and body surface. When median value is adapted as a representative renal depth, we could obtain reliable GFR in transplanted kidney simply.

  7. MuLV packaging systems as models for estimating/measuring retrovirus recombination frequency.

    Science.gov (United States)

    Patience, C; Takeuch, Y; Cosset, F L; Weiss, R A

    2001-01-01

    Interaction of retrovirus vectors and endogenous retroviruses present in packaging cell lines and target cells may result in the formation of recombinant viruses. Using sensitive RT-PCR assays, we have investigated human and murine gene therapy packaging cell lines for the incorporation of endogenous retrovirus transcripts into murine leukaemia virus (MLV) vector particles and whether vector genomes are incorporated into human endogenous retrovirus (HERV) particles. VL30 endogenous retrovirus sequences were packaged in particles produced by the murine AM12 packaging system. For every seven MLV-derived -galactosidase beta-Gal vector genomes present in the particles, one copy of VL30 was also packaged. Although human FLY packaging cells expressed HERV transcripts (HERV-K, HuRT, type C, and RTVL-H), none was detectable in the MLV vector particles released from the cells. Non-specific packaging of the MLV gag-pol expression vector transcripts was detected in the FLY virions at a low level (one in 17,000 sequences). In other experiments, gag proteins produced by HERV-K particles present in human teratocarcinoma cells did not appear to package MLV-based vectors that expressed Gal transcripts. These findings indicate that retrovirus vectors interact with human packaging cells to produce retrovirus particles that are far less contaminated by endogenous viral sequences or other types of extraneous particles than murine packaging cells.

  8. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    NARCIS (Netherlands)

    Volten, H.; Bergwerff, J.B.; Haaima, M.; Lolkema, D.E.; Berkhout, A.J.C.; Hoff, G.R.; Potma, C.J.M.; Wichink Kruit, R.J.; Pul, van W.A.J.; Swart, D.P.J.

    2012-01-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM: the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference-free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet

  9. S3 HMBC hetero: Spin-State-Selective HMBC for accurate measurement of long-range heteronuclear coupling constants

    DEFF Research Database (Denmark)

    Hoeck, Casper; Gotfredsen, Charlotte Held; Sørensen, Ole W.

    2017-01-01

    A novel method, Spin-State-Selective (S3) HMBC hetero, for accurate measurement of heteronuclear coupling constants is introduced. The method extends the S3 HMBC technique for measurement of homonuclear coupling constants by appending a pulse sequence element that interchanges the polarization in...... of techniques, the accuracy of coupling constant measurement is independent of the size of the coupling constant of interest. The merits of the new method are demonstrated by application to vinyl acetate, the alkaloid strychnine, and the carbohydrate methyl β-maltoside....

  10. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Amor Chowdhury

    2016-09-01

    Full Text Available The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  11. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    Science.gov (United States)

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  12. Accurate measurement of the cutoff wavelength in a microstructured optical fiber by means of an azimutal filtering technique

    CERN Document Server

    Labonte, Laurent; Roy, Philippe; Balhoul, Faouzi; Zghal, Mourad; Melin, Gilles; Burov, Ekaterina; Renversez, Gilles

    2010-01-01

    A simple self-referenced non destructive method is proposed for measuring the cutoff wavelength of microstructured optical fibers (MOFs). It is based on the analysis of the time dependent optical power transmitted through a bow-tie slit rotating in the far-field pattern of the fiber under test. As a first demonstration, the cutoff wavelength of a 2m MOF sample is measured with a precision of 10nm, in good agreement with theoretical predictions.

  13. Accurate measurement of relative tilt and azimuth angles in electron tomography: A comparison of fiducial marker method with electron diffraction

    Science.gov (United States)

    Hayashida, Misa; Malac, Marek; Bergen, Michael; Egerton, Ray F.; Li, Peng

    2014-08-01

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  14. Accurate measurement of relative tilt and azimuth angles in electron tomography: A comparison of fiducial marker method with electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, Misa [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Malac, Marek; Egerton, Ray F. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton T6H 2E1 (Canada); Bergen, Michael; Li, Peng [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton T6G 2M9 (Canada)

    2014-08-15

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  15. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Santanu; Vasu, P [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India); Von Hellermann, M [FOM Institute for Plasma Physics, Rijnhuizen (Netherlands); Jaspers, R J E, E-mail: sbanerje@ipr.res.i [Applied Physics Department, Eindhoven University of Technology, Eindhoven (Netherlands)

    2010-12-15

    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55-60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of {approx}15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelengths.

  16. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    Science.gov (United States)

    Banerjee, Santanu; Vasu, P.; von Hellermann, M.; Jaspers, R. J. E.

    2010-12-01

    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55-60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of ~15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelengths.

  17. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    Science.gov (United States)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  18. Dose {sup 131}I radioactivity interfere with thyroglobulin measurement in patients undergoing radioactive iodine therapy with recombinant human TSH?

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Hyun; Bang, Ji In; Lee, Ho Young; Kim, Sang Eun [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Recombinant human thyroid-stimulating hormone (rhTSH) is widely used in radioactive iodine therapy (RIT) to avoid side effects caused by hypothyroidism during the therapy. Owing to RIT with rhTSH, serum thyroglobulin (Tg) is measured with high 131I concentrations. It is of concern that the relatively high energy of 131I could interfere with Tg measurement using the immunoradiometric assay (IRMA). We investigated the effect of 131I administration on Tg measurement with IRMA after RIT. A total of 67 patients with thyroid cancer were analysed retrospectively. All patients had undergone rhTSH stimulation for RIT. The patients’ sera were sampled 2 days after 131I administration and divided into two portions: for Tg measurements on days 2 and 32 after 131I administration. The count per minute (CPM) of whole serum (200 μl) was also measured at each time point. Student’s paired t-test and Pearson’s correlation analyses were performed for statistical analysis. Serum Tg levels were significantly concordant between days 2 and 32, irrespective of the serum CPM. Subgroup analysis was performed by classification based on the 131I dose. No difference was noted between the results of the two groups. IRMA using 125I did not show interference from 131I in the serum of patients stimulated by rhTSH.

  19. Accurate measurement of muscle belly length in the motion analysis laboratory: potential for the assessment of contracture.

    Science.gov (United States)

    Fry, N R; Childs, C R; Eve, L C; Gough, M; Robinson, R O; Shortland, A P

    2003-04-01

    Two-dimensional ultrasound imaging was combined with motion analysis technology to measure distances between remote anatomical landmarks. The length of the belly of the medial gastrocnemius muscle in five normal adults (nine limbs) was estimated using this technique. Our results in vivo were similar to the reported data for the lengths of muscles in cadavers, and were consistent with the expected relationship between muscle belly length and ankle joint angle. Experiments in vitro demonstrated that the accuracy of the device was better than 2 mm over 20 cm. Measurements on the same subject on different occasions showed that the results were repeatable in vivo. Rendering of the reconstructed volume of a foam phantom gave results comparable to photographic images. This validated technique could be used to measure muscle lengths in children with spastic cerebral palsy and indicate which muscles had fixed shortening, and to what extent.

  20. The readout of the LHC beam luminosity monitor: accurate shower energy measurements at a 40 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Manfredi, P.F. E-mail: pfmanfredi@lbl.gov; Ratti, L.; Speziali, V.; Traversi, G.; Manghisoni, M.; Re, V.; Denes, P.; Placidi, M.; Ratti, A.; Turner, W.C.; Datte, P.S.; Millaud, J.E

    2004-02-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  1. The readout of the LHC beam luminosity monitor Accurate shower energy measurements at a 40 MHz repetition rate

    CERN Document Server

    Manfredi, P F; Speziali, V; Traversi, G; Manghisoni, M; Re, V; Denes, P; Placidi, Massimo; Ratti, A; Turner, W C; Datte, P S; Millaud, J E

    2004-01-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  2. Accurate in vivo dielectric properties of liver from 500 MHz to 40 GHz and their correlation to ex vivo measurements.

    Science.gov (United States)

    Farrugia, L; Wismayer, P Schembri; Mangion, L Zammit; Sammut, C V

    2016-01-01

    In this article, we report on the characterization of the dielectric properties of in vivo rat liver at 36.4°C from 500 MHz up to 40 GHz with less than 5% uncertainty. The measured data were fitted to a Cole-Cole model and dielectric parameters are presented together with their respective 95% confidence interval. The root mean square error is 0.42. Moreover, ex vivo measurements were conducted in situ at 1, 2, 4 and 6 min after animal death and are compared to in vivo measurements. The results show that immediate changes in [Formula: see text]and [Formula: see text] are within experimental uncertainty, and therefore changes between in vivo and published ex vivo dielectric properties can be attributed to tissue hydration.

  3. Is a standalone inertial measurement unit accurate and precise enough for quantification of movement symmetry in the horse?

    DEFF Research Database (Denmark)

    Brighton, Charlotte; Olsen, Emil; Pfau, Thilo

    2015-01-01

    Standalone ‘low-cost’ inertial measurement units (IMUs) could facilitate large-scale studies into establishing minimal important differences (MID) for orthopaedic deficits (lameness) in horses. We investigated accuracy and limits of agreement (LoA) after correction of magnitude-dependent differen......Standalone ‘low-cost’ inertial measurement units (IMUs) could facilitate large-scale studies into establishing minimal important differences (MID) for orthopaedic deficits (lameness) in horses. We investigated accuracy and limits of agreement (LoA) after correction of magnitude......-dependent differences of a standalone 6 degree-of-freedom IMU compared with an established IMU-based gait analysis system (MTx) in six horses for two anatomical landmarks (sacrum and sternum). Established symmetry measures were calculated from vertical displacement: symmetry index (SI), difference between minima (Min......, whereas MinDiff and MaxDiff values are less favourable. Future studies should investigate specific calibration and processing algorithms further improving standalone IMU performance....

  4. Technical Note: How accurate can stalagmite formation temperatures be determined using vapour bubble radius measurements in fluid inclusions?

    Directory of Open Access Journals (Sweden)

    F. Spadin

    2015-06-01

    Full Text Available Stalagmites are natural archives containing detailed information on continental climate variability of the past. Microthermometric measurements of fluid inclusion homogenisation temperatures allow determination of stalagmite formation temperatures by measuring the radius of stable laser-induced vapour bubbles inside the inclusions. A reliable method for precisely measuring the radius of vapour bubbles is presented. The method is applied to stalagmite samples for which the formation temperature is known. An assessment of the bubble radius measurement accuracy and how this error influences the uncertainty in determining the formation temperature is provided. We demonstrate that the nominal homogenisation temperature of a single inclusion can be determined with an accuracy of ±0.25 °C, if the volume of the inclusion is larger than 105 μm3. With this method, we could measure in a proof-of-principle investigation that the formation temperature of 10–20 yr old inclusions in a stalagmite taken from the Milandre cave is 9.87 ± 0.80 °C, while the mean annual surface temperature, that in the case of the Milandre cave correlates well with the cave temperature, was 9.6 ± 0.15 °C, calculated from actual measurements at that time, showing a very good agreement. Formation temperatures of inclusions formed during the last 450 yr are found in a temperature range between 8.4 and 9.6 °C, which corresponds to the calculated average surface temperature. Paleotemperatures can thus be determined within ±1.0 °C.

  5. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  6. The use of electrolysis for accurate delta O-17 and delta O-18 isotope measurements in water

    NARCIS (Netherlands)

    Meijer, HAJ; Li, WJ

    1998-01-01

    We present a new system to measure the relative isotopic abundances of both rare isotopes of oxygen in water. Using electrolysis with CuSO4 as electrolyte, water is transformed into oxygen gas. This gas is subsequently analyzed with a standard Isotope Ratio Mass Spectrometer. We investigated the fea

  7. Accurate and Integrated Localization System for Indoor Environments Based on IEEE 802.11 Round-Trip Time Measurements

    Directory of Open Access Journals (Sweden)

    Lorenzo RubénMateo

    2010-01-01

    Full Text Available The presence of (Non line of Sight NLOS propagation paths has been considered the main drawback for localization schemes to estimate the position of a (Mobile User MU in an indoor environment. This paper presents a comprehensive wireless localization system based on (Round-Trip Time RTT measurements in an unmodified IEEE 802.11 wireless network. It overcomes the NLOS impairment by implementing the (Prior NLOS Measurements Correction PNMC technique. At first, the RTT measurements are performed with a novel electronic circuit avoiding the need for time synchronization between wireless nodes. At second, the distance between the MU and each reference device is estimated by using a simple linear regression function that best relates the RTT to the distance in (Line of Sight LOS. Assuming that LOS in an indoor environment is a simplification of reality hence, the PNMC technique is applied to correct the NLOS effect. At third, assuming known the position of the reference devices, a multilateration technique is implemented to obtain the MU position. Finally, the localization system coupled with measurements demonstrates that the system outperforms the conventional time-based indoor localization schemes without using any tracking technique such as Kalman filters or Bayesian methods.

  8. Accurately measuring sea level change from space: an ESA climate change initiative for MSL closure budget studies

    Science.gov (United States)

    Legeais, JeanFrancois; Benveniste, Jérôme

    2016-07-01

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition to understanding the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere. That is why Sea Level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing long-term monitoring of the sea level ECV with regular updates, as required for climate studies. The program is now in its second phase of 3 year (following phase I during 2011-2013). The objectives are firstly to involve the climate research community, to refine their needs and collect their feedbacks on product quality. And secondly to develop, test and select the best algorithms and standards to generate an updated climate time series and to produce and validate the Sea Level ECV product. This will better answer the climate user needs by improving the quality of the Sea Level products and maintain a sustain service for an up-to-date production. This has led to the production of a first version of the Sea Level ECV which has benefited from yearly extensions and now covers the period 1993-2014. Within phase II, new altimeter standards have been developed and tested in order to reprocess the dataset with the best standards for climate studies. The reprocessed ECV will be released in summer 2016. We will present the main achievements of the ESA CCI Sea Level Project. On the one hand, the major steps required to produce the 22 years climate time series are briefly described: collect and refine the user requirements, development of adapted algorithms for climate applications and specification of the production system. On the other hand, the product characteristics are described as well as the results from product

  9. Accurate simulation of 802.11 indoor links: a “bursty” channel model based on real measurements

    OpenAIRE

    Luis Muñoz; Ramón Agüero; Marta García-Arranz

    2010-01-01

    We propose a novel channel model to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the “bursty” behavior which characterizes indoor wireless scenarios, having a great impact...

  10. Accurate and precise plasma clearance measurement using four 99mTc-DTPA plasma samples over 4 h

    OpenAIRE

    Wanasundara, Surajith N.; Wesolowski, Michal J.; Barnfield, Mark C.; Waller, Michael L.; Murray, Anthony W.; Burniston, Maria T.; Babyn, Paul S.; Wesolowski, Carl A.

    2015-01-01

    Objectives Glomerular filtration rate can be measured as the plasma clearance (CL) of a glomerular filtration rate marker despite body fluid disturbances using numerous, prolonged time samples. We desire a simplified technique without compromised accuracy and precision. Materials and methods We compared CL values derived from two plasma concentration curve area methods – (a) biexponential fitting [CL (E2)] and (b) Tikhonov adaptively regularized gamma variate fitting [CL (Tk-GV)] – for 4 vers...

  11. How accurately can we measure the hydrogen 2S->1S transition rate from the cosmological data?

    CERN Document Server

    Mukhanov, Viatcheslav; Naselsky, Pavel; Trombetti, Tiziana; Burigana, Carlo

    2012-01-01

    Recent progress in observational cosmology, and especially the forthcoming PLANCK mission data, open new directions in so-called precision cosmology. In this paper we illustrate this statement considering the accuracy of cosmological determination of the two-quanta decay rate of 2s hydrogen atom state. We show that the PLANCK data will allow us to measure this decay rate significantly better than in the laboratory experiments.

  12. Ability of Functional Independence Measure to accurately predict functional outcome of stroke-specific population: Systematic review

    OpenAIRE

    Madeleine Spencer, DPT, PT; Karen Skop, DPT, PT; Kristina Shesko, DPT, PT; Kristen Nollinger, DPT, PT; Douglas Chumney, DPT, PT; Roberta A. Newton, PT, PhD

    2010-01-01

    Stroke is a leading cause of functional impairments. The ability to quantify the functional ability of poststroke patients engaged in a rehabilitation program may assist in prediction of their functional outcome. The Functional Independence Measure (FIM) is widely used and accepted as a functional-level assessment tool that evaluates the functional status of patients throughout the rehabilitation process. From February to March 2009, we searched MEDLINE, Ovid, CINAHL, and EBSCO for full-text ...

  13. Improving the sampling technique of arterialized capillary samples to obtain more accurate PaO2 measurements.

    Science.gov (United States)

    Wimpress, S; Vara, D D; Brightling, C E

    2005-01-01

    Arterialized earlobe capillary blood samples (ELCS) have been used as a measurement of blood gas status for over 20 years. There is general acceptance that there is a strong correlation and limits of agreement between arterial and arterialized blood samples with respect to pH and PaCO2. Although the correlation between the arterial and arterialized PaO2 is good, the limits of agreement poor. Our aim was to improve the accuracy of this technique in the measurement of PaO2 by simultaneously monitoring the oxygen saturation by pulse oximetry whilst taking an ELCS. We hypothesize that significant discrepancies between the SaO2 and SpO2 highlight either a poorly arterialized sample or an over aerated sample from air bubbles. We compared the SpO2 with the SaO2 of an arterial sample from 27 inpatients. We used the limits of agreement between these samples to define the degree of discordance we would accept between SaO2 and SpO2 before repeat ELCS. Subsequently, 252 consecutive patients attending our respiratory physiology unit over a six-month period had an ELCS and simultaneous SpO2. If there was a discrepancy between SaO2 and SpO2 of > 2% the ELCS was repeated. There was a good correlation and limits of agreement between the SpO2 and arterial SaO2 (r = 0.97, mean difference +/- 95% limits of agreement: 0.34 +/- 2.68). A difference of more than 2% between arterialized SaO2 and SpO2 was identified in 21 patients out of 252 (8.3%) with SaO2 higher in two and lower in 19 (r = 0.96, mean difference +/- 95% limits of agreement: 0.66 +/- 3.1). Repeat ELCS of these 21 samples reduced this discrepancy improving the concordance of the measurements (r = 0.98, mean difference +/- 95% limits of agreement: 0.47 +/- 1.0). In one case a difference of 3% remained between the saturations. We conclude that the addition of simultaneous pulse oximetry with ELCS will identify rogue measurements in about 8% of cases highlighting the need for repeat samples and thus increasing the accuracy of

  14. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10‑6 g m‑2 day‑1 range

    Science.gov (United States)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10‑6 g m‑2 day‑1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  15. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation.

    Science.gov (United States)

    Geerligs, Linda; Cam-Can; Henson, Richard N

    2016-07-15

    Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data.

  16. The Cambridge Face Tracker: Accurate, Low Cost Measurement of Head Posture Using Computer Vision and Face Recognition Software

    Science.gov (United States)

    Thomas, Peter B. M.; Baltrušaitis, Tadas; Robinson, Peter; Vivian, Anthony J.

    2016-01-01

    Purpose We validate a video-based method of head posture measurement. Methods The Cambridge Face Tracker uses neural networks (constrained local neural fields) to recognize facial features in video. The relative position of these facial features is used to calculate head posture. First, we assess the accuracy of this approach against videos in three research databases where each frame is tagged with a precisely measured head posture. Second, we compare our method to a commercially available mechanical device, the Cervical Range of Motion device: four subjects each adopted 43 distinct head postures that were measured using both methods. Results The Cambridge Face Tracker achieved confident facial recognition in 92% of the approximately 38,000 frames of video from the three databases. The respective mean error in absolute head posture was 3.34°, 3.86°, and 2.81°, with a median error of 1.97°, 2.16°, and 1.96°. The accuracy decreased with more extreme head posture. Comparing The Cambridge Face Tracker to the Cervical Range of Motion Device gave correlation coefficients of 0.99 (P < 0.0001), 0.96 (P < 0.0001), and 0.99 (P < 0.0001) for yaw, pitch, and roll, respectively. Conclusions The Cambridge Face Tracker performs well under real-world conditions and within the range of normally-encountered head posture. It allows useful quantification of head posture in real time or from precaptured video. Its performance is similar to that of a clinically validated mechanical device. It has significant advantages over other approaches in that subjects do not need to wear any apparatus, and it requires only low cost, easy-to-setup consumer electronics. Translational Relevance Noncontact assessment of head posture allows more complete clinical assessment of patients, and could benefit surgical planning in future. PMID:27730008

  17. Accurate lumen diameter measurement in curved vessels in carotid ultrasound: an iterative scale-space and spatial transformation approach.

    Science.gov (United States)

    Krishna Kumar, P; Araki, Tadashi; Rajan, Jeny; Saba, Luca; Lavra, Francesco; Ikeda, Nobutaka; Sharma, Aditya M; Shafique, Shoaib; Nicolaides, Andrew; Laird, John R; Gupta, Ajay; Suri, Jasjit S

    2016-12-10

    Monitoring of cerebrovascular diseases via carotid ultrasound has started to become a routine. The measurement of image-based lumen diameter (LD) or inter-adventitial diameter (IAD) is a promising approach for quantification of the degree of stenosis. The manual measurements of LD/IAD are not reliable, subjective and slow. The curvature associated with the vessels along with non-uniformity in the plaque growth poses further challenges. This study uses a novel and generalized approach for automated LD and IAD measurement based on a combination of spatial transformation and scale-space. In this iterative procedure, the scale-space is first used to get the lumen axis which is then used with spatial image transformation paradigm to get a transformed image. The scale-space is then reapplied to retrieve the lumen region and boundary in the transformed framework. Then, inverse transformation is applied to display the results in original image framework. Two hundred and two patients' left and right common carotid artery (404 carotid images) B-mode ultrasound images were retrospectively analyzed. The validation of our algorithm has done against the two manual expert tracings. The coefficient of correlation between the two manual tracings for LD was 0.98 (p < 0.0001) and 0.99 (p < 0.0001), respectively. The precision of merit between the manual expert tracings and the automated system was 97.7 and 98.7%, respectively. The experimental analysis demonstrated superior performance of the proposed method over conventional approaches. Several statistical tests demonstrated the stability and reliability of the automated system.

  18. Accurate tissue area measurements with considerably reduced radiation dose achieved by patient-specific CT scan parameters

    DEFF Research Database (Denmark)

    Brandberg, J.; Bergelin, E.; Sjostrom, L.;

    2008-01-01

    to cover a wide range of diameters (31-47 cm) for both abdomen and thighs - were examined using both techniques. Tissue areas were compared, as were CT numbers...... for muscle tissue. Image noise was quantified by standard deviation measurements. The area deviation was ... as compared with the integral dose by the standard diagnostic technique. The CT numbers of muscle tissue remained unchanged with reduced radiation dose. Image noise was on average 20.9 HU (Hounsfield units) for subjects with diameters of 31-35 cm and 11.2 HU for subjects with diameters in the range of 36...

  19. ‘Dose-to-Mother’ Deuterium Oxide Dilution Technique: An Accurate Strategy to Measure Vitamin A Intake in Breastfed Infants

    Directory of Open Access Journals (Sweden)

    Veronica Lopez-Teros

    2017-02-01

    Full Text Available In Mexico, infants (0–2 years old show the highest prevalence of vitamin A deficiency (VAD, measured by serum retinol concentrations. Thus, we consider that low vitamin A (VA intake through breast milk (BM combined with poor weaning practices are the main factors that contribute to VAD in this group. We combined the assessment of VA status in lactating women using BM retinol and a stable isotope ‘dose-to-mother’ technique to measure BM production in women from urban and agricultural areas. Infants’ mean BM intake was 758 ± 185 mL, and no difference was observed between both areas (p = 0.067. Mean BM retinol concentration was 1.09 μmol/L, which was significantly lower for the agricultural area (p = 0.028. Based on BM retinol concentration, 57% of women were VAD; although this prevalence fell to 16% when based on fat content. Regardless of the VA biomarker used here, infants from the urban and agricultural areas cover only 66% and 49% of their dietary adequate intake from BM, respectively (p = 0.054. Our data indicate that VAD is still a public health concern in Mexico. Adopting both methods to assess VA transfer from the mother to the breastfed child offers an innovative approach towards the nutritional assessment of vulnerable groups.

  20. How accurate are interpretations of curriculum-based measurement progress monitoring data? Visual analysis versus decision rules.

    Science.gov (United States)

    Van Norman, Ethan R; Christ, Theodore J

    2016-10-01

    Curriculum based measurement of oral reading (CBM-R) is used to monitor the effects of academic interventions for individual students. Decisions to continue, modify, or terminate these interventions are made by interpreting time series CBM-R data. Such interpretation is founded upon visual analysis or the application of decision rules. The purpose of this study was to compare the accuracy of visual analysis and decision rules. Visual analysts interpreted 108 CBM-R progress monitoring graphs one of three ways: (a) without graphic aids, (b) with a goal line, or (c) with a goal line and a trend line. Graphs differed along three dimensions, including trend magnitude, variability of observations, and duration of data collection. Automated trend line and data point decision rules were also applied to each graph. Inferential analyses permitted the estimation of the probability of a correct decision (i.e., the student is improving - continue the intervention, or the student is not improving - discontinue the intervention) for each evaluation method as a function of trend magnitude, variability of observations, and duration of data collection. All evaluation methods performed better when students made adequate progress. Visual analysis and decision rules performed similarly when observations were less variable. Results suggest that educators should collect data for more than six weeks, take steps to control measurement error, and visually analyze graphs when data are variable. Implications for practice and research are discussed.

  1. A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method

    Energy Technology Data Exchange (ETDEWEB)

    Peck, Jong Hyeon [Korea Institute of Industrial Technology (KITECH), Energy System Team, 35-3 Ipjang-myeon, Chonan 330-820 (Korea, Republic of); Kim, Jae-Jun [College of Architecture, Hanyang University, Seoul 133-791 (Korea, Republic of); Kang, Chaedong [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hong, Hiki [School of Mechanical and Industrial System Engineering, KyungHee University, Yongin 449-701 (Korea, Republic of)

    2006-11-15

    When the latent heat of a phase change material (PCM) with a lower melting point than ambient temperature was assessed according to the standard T-history method using a vertically oriented test tube, a temperature gradient occurred in the longitudinal direction of the tube due to natural convection. This led to a decrease in the accuracy of the latent heat of fusion measurement. In this study, the accuracy of the measurement with the original T-history method was improved without decreasing the test's simplicity and convenience by setting the test tube horizontally. The heat transfer to the vapor-layer of the tube under volume change during melting was assumed to be negligible and the results were calculated using the two inflection points of temperature as the start and end of latent heat period. Under these assumptions, the results agree closely with other reference data. And, the new method proposed in this study showed a remarkable reduction in data scattering. (author)

  2. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper

    Directory of Open Access Journals (Sweden)

    Jørgensen Jesper

    2008-10-01

    Full Text Available Abstract Background In animal studies tumor size is used to assess responses to anticancer therapy. Current standard for volumetric measurement of xenografted tumors is by external caliper, a method often affected by error. The aim of the present study was to evaluate if microCT gives more accurate and reproducible measures of tumor size in mice compared with caliper measurements. Furthermore, we evaluated the accuracy of tumor volume determined from 18F-fluorodeoxyglucose (18F-FDG PET. Methods Subcutaneously implanted human breast adenocarcinoma cells in NMRI nude mice served as tumor model. Tumor volume (n = 20 was determined in vivo by external caliper, microCT and 18F-FDG-PET and subsequently reference volume was determined ex vivo. Intra-observer reproducibility of the microCT and caliper methods were determined by acquiring 10 repeated volume measurements. Volumes of a group of tumors (n = 10 were determined independently by two observers to assess inter-observer variation. Results Tumor volume measured by microCT, PET and caliper all correlated with reference volume. No significant bias of microCT measurements compared with the reference was found, whereas both PET and caliper had systematic bias compared to reference volume. Coefficients of variation for intra-observer variation were 7% and 14% for microCT and caliper measurements, respectively. Regression coefficients between observers were 0.97 for microCT and 0.91 for caliper measurements. Conclusion MicroCT was more accurate than both caliper and 18F-FDG-PET for in vivo volumetric measurements of subcutaneous tumors in mice.18F-FDG-PET was considered unsuitable for determination of tumor size. External caliper were inaccurate and encumbered with a significant and size dependent bias. MicroCT was also the most reproducible of the methods.

  3. The ratio of glycated albumin to hemoglobin A1c measured in IFCC units accurately represents the glycation gap.

    Science.gov (United States)

    Akatsuka, Junya; Mochizuki, Mie; Musha, Ikuma; Ohtake, Akira; Kobayashi, Kisho; Kikuchi, Toru; Kikuchi, Nobuyuki; Kawamura, Tomoyuki; Urakami, Tatsuhiko; Sugihara, Shigetaka; Hoshino, Tadao; Amemiya, Shin

    2015-01-01

    The glycation gap (G-gap: difference between measured hemoglobin A1c [A1C] and the value predicted by its regression on the fructosamine level) is stable and associated with diabetic complications. Measuring A1C level in International Federation of Clinical Chemistry (IFCC) units (A1C-SI; mmol/mol) and National Glycohemoglobin Standardization Program units (A1C-NGSP; %) and using glycated albumin (GA) level instead of fructosamine level for calculating the G-gap, we investigated whether the G-gap is better represented by GA/A1C ratio if expressed in SI units (GA/A1C-SI ratio) rather than in NGSP units (GA/A1C-% ratio). We examined 749 Japanese children with type 1 diabetes using simultaneous GA and A1C measurements. Of these, 369 patients were examined more than five times to assess the consistency of the G-gap and the GA/A1C ratio within individuals. The relationship of GA/A1C-% ratio to the corresponding A1C-NGSP was stronger than that of GA/A1C-SI ratio to A1C-IFCC. At enrollment, the inverse relationship between the GA/A1C-SI ratio and G-gap was highly significant (R(2) = 0.95) compared with that between the GA/A1C-% ratio and G-gap (R(2) = 0.69). A highly significant inverse relationship was also observed between the mean GA/A1C-SI ratio and the mean G-gaps obtained individually over time (R(2) = 0.95) compared with that using the corresponding A1C-NGSP (R(2) = 0.67). We conclude that the G-gap is better represented by the GA/A1C-SI ratio. We propose the use of mean GA/A1C-SI ratios easily obtained individually over time as reference values in Japanese children with type 1 diabetes (6.75 ± 0.60 [means ± SD]).

  4. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R. M.; Theiler, C.; Lipschultz, B. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Dux, R.; Pütterich, T.; Viezzer, E. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Collaboration: Alcator C-Mod Team; ASDEX Upgrade Team

    2013-09-15

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique.

  5. Accurate kinematic measurement at interfaces between dissimilar materials using conforming finite-element-based digital image correlation

    KAUST Repository

    Tao, Ran

    2016-02-11

    Digital image correlation (DIC) is now an extensively applied full-field measurement technique with subpixel accuracy. A systematic drawback of this technique, however, is the smoothening of the kinematic field (e.g., displacement and strains) across interfaces between dissimilar materials, where the deformation gradient is known to be large. This can become an issue when a high level of accuracy is needed, for example, in the interfacial region of composites or joints. In this work, we described the application of global conforming finite-element-based DIC technique to obtain precise kinematic fields at interfaces between dissimilar materials. Speckle images from both numerical and actual experiments processed by the described global DIC technique better captured sharp strain gradient at the interface than local subset-based DIC. © 2016 Elsevier Ltd. All rights reserved.

  6. A 3D assessment tool for accurate volume measurement for monitoring the evolution of cutaneous leishmaniasis wounds.

    Science.gov (United States)

    Zvietcovich, Fernando; Castañeda, Benjamin; Valencia, Braulio; Llanos-Cuentas, Alejandro

    2012-01-01

    Clinical assessment and outcome metrics are serious weaknesses identified on the systematic reviews of cutaneous Leishmaniasis wounds. Methods with high accuracy and low-variability are required to standarize study outcomes in clinical trials. This work presents a precise, complete and noncontact 3D assessment tool for monitoring the evolution of cutaneous Leishmaniasis (CL) wounds based on a 3D laser scanner and computer vision algorithms. A 3D mesh of the wound is obtained by a commercial 3D laser scanner. Then, a semi-automatic segmentation using active contours is performed to separate the ulcer from the healthy skin. Finally, metrics of volume, area, perimeter and depth are obtained from the mesh. Traditional manual 3D and 3D measurements are obtained as a gold standard. Experiments applied to phantoms and real CL wounds suggest that the proposed 3D assessment tool provides higher accuracy (error 3D assessment tool provides high accuracy metrics which deserve more formal prospective study.

  7. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F., E-mail: ferenc.simon@univie.ac.at [Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), P.O. Box 91, H-1521 Budapest (Hungary); Murányi, F. [Foundation for Research on Information Technologies in Society (IT’IS), Zeughausstrasse 43, 8004 Zurich (Switzerland)

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  8. Development of an accurate pH measurement methodology for the pore fluids of low pH cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M. C.; Garcia Calvo, J. L. [The Spanish National Research Council (CSIC), Madrid (Spain); Walker, C. [Japan Atomic Energy Agency (JAEA), Ibaraki (Japan)] [and others

    2012-08-15

    The main objective of this project has been the development of an agreed set of protocols for the pH measurement of the pore fluid of a low pH cementitious material. Three protocols have been developed (Chapter 2), a reference method, based on pore fluid expression (PFE), and two routine methods with and without filtering, based on Ex Situ Leaching (ESL) procedures. Templates have been designed on which to record details of the pH measurement for the reference (PFE) method (Appendix C) and the routine (ESL) methods without and with filtering (Appendix D). Preliminary protocols were based on a broad review of the literature (Appendix A) and refined through a series of test experiments of the more critical parameters (Appendix B). After definition of the preliminary protocols, two phases of interlaboratory tests were performed. The first phase (Chapter 3) used the same low pH cement paste and enabled the nine participating laboratories to use, become familiar with and to identify any problems/uncertainties in the preliminary protocols. The reported pH values were subjected to a statistical analysis of the (within laboratory) repeatability and (between-laboratory) reproducibility and so provided a reliability test of the preliminary protocols. The second phase (Chapter 4) of interlaboratory tests used four different candidate low pH cementitious materials in the same nine laboratories, which allowed testing, validation and comparison of the reported pH values, which were obtained using the final protocols for the reference (PFE) and routine (ESL) methods by statistical analysis. The proposed final protocols (Chapter 2) have resulted in the reported pH values having low deviation and high reproducibility and repeatability. This will allow confidence in the pH value when selecting a candidate low pH cementitious material to be used in the engineered component of a high-level nuclear waste repository.

  9. Accurate Measurements of the Skin Surface Area of the Healthy Auricle and Skin Deficiency in Microtia Patients

    Science.gov (United States)

    van Doremalen, Rob F. M.; Melchels, Ferry P. W.; Kolodzynski, Michail N.; Pouran, Behdad; Malda, Jos; Kon, Moshe; Breugem, Corstiaan C.

    2016-01-01

    Background: The limited cranial skin covering auricular implants is an important yet underrated factor in auricular reconstruction for both reconstruction surgery and tissue engineering strategies. We report exact measurements on skin deficiency in microtia patients and propose an accessible preoperative method for these measurements. Methods: Plaster ear models (n = 11; male:female = 2:1) of lobular-type microtia patients admitted to the University Medical Center Utrecht in The Netherlands were scanned using a micro-computed tomographic scanner or a cone-beam computed tomographic scanner. The resulting images were converted into mesh models from which the surface area could be calculated. Results: The mean total skin area of an adult-size healthy ear was 47.3 cm2, with 49.0 cm2 in men and 44.3 cm2 in women. Microtia ears averaged 14.5 cm2, with 15.6 cm2 in men and 12.6 cm2 in women. The amount of skin deficiency was 25.4 cm2, with 26.7 cm2 in men and 23.1 cm2 in women. Conclusions: This study proposes a novel method to provide quantitative data on the skin surface area of the healthy adult auricle and the amount of skin deficiency in microtia patients. We demonstrate that the microtia ear has less than 50% of skin available compared with healthy ears. Limited skin availability in microtia patients can lead to healing problems after auricular reconstruction and poses a significant challenge in the development of tissue-engineered cartilage implants. The results of this study could be used to evaluate outcomes and investigate new techniques with regard to tissue-engineered auricular constructs. PMID:28293505

  10. How many measurements are needed to estimate accurate daily and annual soil respiration fluxes? Analysis using data from a temperate rainforest

    Science.gov (United States)

    Perez-Quezada, Jorge F.; Brito, Carla E.; Cabezas, Julián; Galleguillos, Mauricio; Fuentes, Juan P.; Bown, Horacio E.; Franck, Nicolás

    2016-12-01

    Making accurate estimations of daily and annual Rs fluxes is key for understanding the carbon cycle process and projecting effects of climate change. In this study we used high-frequency sampling (24 measurements per day) of Rs in a temperate rainforest during 1 year, with the objective of answering the questions of when and how often measurements should be made to obtain accurate estimations of daily and annual Rs. We randomly selected data to simulate samplings of 1, 2, 4 or 6 measurements per day (distributed either during the whole day or only during daytime), combined with 4, 6, 12, 26 or 52 measurements per year. Based on the comparison of partial-data series with the full-data series, we estimated the performance of different partial sampling strategies based on bias, precision and accuracy. In the case of annual Rs estimation, we compared the performance of interpolation vs. using non-linear modelling based on soil temperature. The results show that, under our study conditions, sampling twice a day was enough to accurately estimate daily Rs (RMSE < 10 % of average daily flux), even if both measurements were done during daytime. The highest reduction in RMSE for the estimation of annual Rs was achieved when increasing from four to six measurements per year, but reductions were still relevant when further increasing the frequency of sampling. We found that increasing the number of field campaigns was more effective than increasing the number of measurements per day, provided a minimum of two measurements per day was used. Including night-time measurements significantly reduced the bias and was relevant in reducing the number of field campaigns when a lower level of acceptable error (RMSE < 5 %) was established. Using non-linear modelling instead of linear interpolation did improve the estimation of annual Rs, but not as expected. In conclusion, given that most of the studies of Rs use manual sampling techniques and apply only one measurement per day, we

  11. Rapid jetting status inspection and accurate droplet volume measurement for a piezo drop-on-demand inkjet print head using a scanning mirror for display applications

    Science.gov (United States)

    Shin, Dong-Youn; Kim, Minsung

    2017-02-01

    Despite the inherent fabrication simplicity of piezo drop-on-demand inkjet printing, the non-uniform deposition of colourants or electroluminescent organic materials leads to faulty display products, and hence, the importance of rapid jetting status inspection and accurate droplet volume measurement increases from a process perspective. In this work, various jetting status inspections and droplet volume measurement methods are reviewed by discussing their advantages and disadvantages, and then, the opportunities for the developed prototype with a scanning mirror are explored. This work demonstrates that jetting status inspection of 384 fictitious droplets can be performed within 17 s with maximum and minimum measurement accuracies of 0.2 ± 0.5 μ m for the fictitious droplets of 50 μ m in diameter and -1.2 ± 0.3 μ m for the fictitious droplets of 30 μ m in diameter, respectively. In addition to the new design of an inkjet monitoring instrument with a scanning mirror, two novel methods to accurately measure the droplet volume by amplifying a minute droplet volume difference and then converting to other physical properties are suggested and the droplet volume difference of ±0.3% is demonstrated to be discernible using numerical simulations, even with the low measurement accuracy of 1 μ m . When the fact is considered that the conventional vision-based method with a CCD camera requires the optical measurement accuracy less than 25 nm to measure the volume of an in-flight droplet in the nominal diameter of 50 μ m at the same volume measurement accuracy, the suggested method with the developed prototype offers a whole new opportunity to inkjet printing for display applications.

  12. Does objective measurement of tracheal tube cuff pressures minimise adverse effects and maintain accurate cuff pressures? A systematic review and meta-analysis.

    Science.gov (United States)

    Hockey, C A; van Zundert, A A J; Paratz, J D

    2016-09-01

    Correct inflation pressures of the tracheal cuff are recommended to ensure adequate ventilation and prevent aspiration and adverse events. However there are conflicting views on which measurement to employ. The aim of this review was to examine whether adjustment of cuff pressure guided by objective measurement, compared with subjective measurement or observation of the pressure value alone, was able to prevent patient-related adverse effects and maintain accurate cuff pressures. A search of PubMed, Web of Science, Embase, CINAHL and ScienceDirect was conducted using keywords 'cuff pressure' and 'measure*' and related synonyms. Included studies were randomised or pseudo-randomised controlled trials investigating mechanically ventilated patients both in the intensive care unit and during surgery. Outcomes included adverse effects and the comparison of pressure measurements. Pooled analyses were performed to calculate risk ratios, effect sizes and 95% confidence intervals. Meta-analysis found preliminary evidence that adjustment of cuff pressure guided by objective measurement as compared with subjective measurement or observation of the pressure value alone, has benefit in preventing adverse effects. These included cough at two hours (odds ratio [OR] 0.42, confidence interval [CI] 0.23 to 0.79, P=0.007), hoarseness at 24 hours (OR 0.49, CI 0.31 to 0.76, P measurement to guide adjustment or observation of the pressure value alone may lead to patient-related adverse effects and inaccuracies. It is recommended that an objective form of measurement be used.

  13. Simple and accurate measurement of carbamazepine in surface water by use of porous membrane-protected micro-solid-phase extraction coupled with isotope dilution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Teo, Hui Ling [Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore 117528 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Wong, Lingkai [Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore 117528 (Singapore); Liu, Qinde, E-mail: liu_qinde@hsa.gov.sg [Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore 117528 (Singapore); Teo, Tang Lin; Lee, Tong Kooi [Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore 117528 (Singapore); Lee, Hian Kee, E-mail: chmleehk@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore)

    2016-03-17

    To achieve fast and accurate analysis of carbamazepine in surface water, we developed a novel porous membrane-protected micro-solid-phase extraction (μ-SPE) method, followed by liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS) analysis. The μ-SPE device (∼0.8 × 1 cm) was fabricated by heat-sealing edges of a polypropylene membrane sheet to devise a bag enclosing the sorbent. The analytes (both carbamazepine and isotope-labelled carbamazepine) were first extracted by μ-SPE device in the sample (10 mL) via agitation, then desorbed in an organic solvent (1 mL) via ultrasonication. Several parameters such as organic solvent for pre-conditioning of μ-SPE device, amount of sorbent, adsorption time, and desorption solvent and time were investigated to optimize the μ-SPE efficiency. The optimized method has limits of detection and quantitation estimated to be 0.5 ng L{sup −1} and 1.6 ng L{sup −1}, respectively. Surface water samples spiked with different amounts of carbamazepine (close to 20, 500, and 1600 ng L{sup −1}, respectively) were analysed for the validation of method precision and accuracy. Good precision was obtained as demonstrated by relative standard deviations of 0.7% for the samples with concentrations of 500 and 1600 ng kg{sup −1}, and 5.8% for the sample with concentration of 20 ng kg{sup −1}. Good accuracy was also demonstrated by the relative recoveries in the range of 96.7%–103.5% for all samples with uncertainties of 1.1%–5.4%. Owing to the same chemical properties of carbamazepine and isotope-labelled carbamazepine, the isotope ratio in the μ-SPE procedure was accurately controlled. The use of μ-SPE coupled with IDMS analysis significantly facilitated the fast and accurate measurement of carbamazepine in surface water. - Highlights: • μ-SPE coupled with IDMS for the measurement of carbamazepine. • The method is the first report of coupling μ-SPE with IDMS. • μ-SPE is fast, time

  14. Dielectronic recombination measurements of iron M-shell ions motivated by active galactic nuclei X-ray absorption features

    Science.gov (United States)

    Lukic, V. D.; Schnell, M.; Savin, D. W.; Brandau, C.; Schmidt, E. W.; Bohm, S.; Muller, A.; Schippers, S.; Lestinsky, M.; Sprenger, F.; Wolf, A.; Altun, Z.; Badnell, N. R.

    2008-07-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. At temperatures where these ions are predicted to form in photoionized gas, we find a significant discrepancy between our experimental results and previously recommended DR rate coefficients. Here we report our recent experimental results for DR of Mg-like Fe XV forming Al-like Fe XIV.

  15. Measurements of M-Shell Dielectronic Recombination for Active Galactic Nuclei

    Science.gov (United States)

    Lukic, D.; Schnell, M.; Savin, D. W.; Mueller, A.; Schippers, S.; Schmidt, E. W.; Brandau, C.; Lestinsky, M.; Sprenger, F.; Wolf, A.

    2005-05-01

    XMM-Newton and Chandra spectroscopy of active galactic nuclei (AGNs) shows a rich spectrum of X-ray absorption lines. These AGN observations have detected a broad unresolved transition array (UTA) between 15-17 A. This is attributed to inner shell photoexcitation of M-shell iron. Modeling these UTA features is currently limited by uncertainties in the low temperature DR data for M-shell iron. In order to resolve this issue and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Other commonly used laboratory methods for studying DR (e.g., electron beam ion traps [EBITs]) are unable to measure the relevant low energy DR resonances. Storage rings are currently the only laboratory method capable of studying low temperature DR. We are also providing our data to atomic theorist to benchmark their modern DR calculations. Our initial results indicate that state-of-the-art theory cannot reliably predict the needed low temperature M-shell DR rate coefficients. Here we will report our recent results for DR of Fe XIV and Fe XIII and plans for future work. This work is supported part by NASA, the German Federal Ministry for Education and Research, and the German Research Council.

  16. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J; Polenova, Tatyana

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear (1)H-X (X = (13)C, (15)N, (31)P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the (1)H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the (1)H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from (1)H chemical shift anisotropy, while keeping the (1)H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [(15)N]-N-acetyl-valine and [U-(13)C,(15)N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate (1)H-(15)N dipolar couplings in the context of 3D experiments is presented on U-(13)C,(15)N-enriched dynein light chain protein LC8.

  17. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guangjin, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu; Lu, Xingyu, E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Vega, Alexander J., E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Polenova, Tatyana, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.

  18. Atomic spectroscopy and highly accurate measurement: determination of fundamental constants; Spectroscopie atomique et mesures de grande precision: determination de constantes fonfamentales

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, C

    2006-12-15

    This document reviews the theoretical and experimental achievements of the author concerning highly accurate atomic spectroscopy applied for the determination of fundamental constants. A pure optical frequency measurement of the 2S-12D 2-photon transitions in atomic hydrogen and deuterium has been performed. The experimental setting-up is described as well as the data analysis. Optimized values for the Rydberg constant and Lamb shifts have been deduced (R = 109737.31568516 (84) cm{sup -1}). An experiment devoted to the determination of the fine structure constant with an aimed relative uncertainty of 10{sup -9} began in 1999. This experiment is based on the fact that Bloch oscillations in a frequency chirped optical lattice are a powerful tool to transfer coherently many photon momenta to the atoms. We have used this method to measure accurately the ratio h/m(Rb). The measured value of the fine structure constant is {alpha}{sub -1} = 137.03599884 (91) with a relative uncertainty of 6.7*10{sup -9}. The future and perspectives of this experiment are presented. This document presented before an academic board will allow his author to manage research work and particularly to tutor thesis students. (A.C.)

  19. Electromagnetic calorimeter and accurate measurement with the ATLAS detector of the LHC collider; Calorimetrie electromagnetique et mesures de precision avec le detecteur ATLAS aupres du collisionneur LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pralavorio, P

    2007-06-15

    The main purpose of the ATLAS experiment is the understanding of the underlying mechanisms that drive the breaking of the electro-weak symmetry through the discovery of Higgs bosons. An important element to achieve this aim was the design of an electromagnetic calorimeter able to investigate the decay channels: H {yields} {gamma}{gamma} and H {yields} 4e. The high performance of the calorimeter will allow us to get a better accuracy on the measuring values of W and top masses which is essential to indirectly constrain the mass of the Higgs. In the same way, accurate measurements of top and W properties during the decays of top and tWb vertex will be necessary to question the standard model and to see beyond. The author has been working for 9 years in the ATLAS project, he has been involved in the design, construction, qualification and testing phases of the electromagnetic calorimeter of ATLAS. This document is a detailed presentation of the calorimeter, of its qualification and of its expectations when LHC is operating. This document is organized into 4 chapters: 1) assets and weaknesses of the standard model, 2) the ATLAS experiment, 3) the electromagnetic calorimeter, and 4) accurate measurements with ATLAS. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students. (A.C.)

  20. Accurate measurements of fission-fragment yields in 234,235,236,238U(γ,f with the SOFIA set-up

    Directory of Open Access Journals (Sweden)

    Chatillon A.

    2016-01-01

    Full Text Available SOFIA (Studies On Fission with Aladin is a new experimental set-up dedicated to accurate measurement of fission-fragments isotopic yields. It is located at GSI, the only place to use inverse kinematics at relativistic energies in order to study the (γ,f electromagnetic-induced fission. The SOFIA set-up is a large-acceptance magnetic spectrometer, which allows to fully identify both fission fragments in coincidence on the whole fission-fragment range. This paper will report on fission yields obtained in 234,235,236,238U(γ,f reactions.

  1. Electron-ion Recombination of Fe X forming Fe IX and of Fe XI forming Fe X: Laboratory Measurements and Theoretical Calculations

    CERN Document Server

    Lestinsky, M; Bernhardt, D; Grieser, M; Hoffmann, J; Lukić, D; Müller, A; Orlov, D A; Repnow, R; Savin, D W; Schmidt, E W; Schnell, M; Schippers, S; Wolf, A; Yu, D

    2009-01-01

    We have measured electron-ion recombination for Fe$^{9+}$ forming Fe$^{8+}$ and for Fe$^{10+}$ forming Fe$^{9+}$ using merged beams at the TSR heavy-ion storage-ring in Heidelberg. The measured merged beams recombination rate coefficients (MBRRC) for relative energies from 0 to 75 eV are presented, covering all dielectronic recombination (DR) resonances associated with 3s->3p and 3p->3d core transitions in the spectroscopic species Fe X and Fe XI, respectively. We compare our experimental results to multi-configuration Breit-Pauli (MCBP) calculations and find significant differences. From the measured MBRRC we have extracted the DR contributions and transform them into plasma recombination rate coefficients (PRRC) for astrophysical plasmas with temperatures from 10^2 to 10^7 K. This spans across the regimes where each ion forms in photoionized or in collisionally ionized plasmas. For both temperature regimes the experimental uncertainties are 25% at a 90% confidence level. The formerly recommended DR data sev...

  2. Characterization of the key aroma compounds in an american bourbon whisky by quantitative measurements, aroma recombination, and omission studies.

    Science.gov (United States)

    Poisson, Luigi; Schieberle, Peter

    2008-07-23

    Thirty-one of the 45 odor-active compounds previously identified by us in an American Bourbon whisky were quantified by stable isotope dilution assays. Also for this purpose, new synthetic pathways were developed for the synthesis of the deuterium-labeled whisky lactone as well as for gamma-nona- and gamma-decalactone. To obtain the odor activity values (OAVs), the concentrations measured were divided by the odor thresholds of the odorants determined in water/ethanol (6:4 by vol.). Twenty-six aroma compounds showed OAVs >1, among which ethanol, ethyl (S)-2-methylbutanoate, 3-methylbutanal, 4-hydroxy-3-methoxybenzaldehyde, (E)-beta-damascenone, ethyl hexanoate, ethyl butanoate, ethyl octanoate, 2-methylpropanal, (3S,4S)- cis-whiskylactone, (E, E)-2,4-decadienal, 4-allyl-2-methoxyphenol, ethyl-3-methylbutanoate, and ethyl 2-methylpropanoate showed the highest values. The overall aroma of the Bourbon whisky could be mimicked by an aroma recombinate consisting of the 26 key odorants in their actual concentrations in whisky using water/ethanol (6:4 by vol.) as the matrix. Omission experiments corroborated the importance of, in particular, 4-hydroxy-3-methoxybenzaldehyde, (3S,4S)-cis-whiskylactone, ethanol, and the entire group of esters for the overall aroma of the Bourbon whisky.

  3. Comprehensive quality control utilizing the prehybridization third-dye image leads to accurate gene expression measurements by cDNA microarrays

    Directory of Open Access Journals (Sweden)

    Jiang Nan

    2006-08-01

    Full Text Available Abstract Background Gene expression profiling using microarrays has become an important genetic tool. Spotted arrays prepared in academic labs have the advantage of low cost and high design and content flexibility, but are often limited by their susceptibility to quality control (QC issues. Previously, we have reported a novel 3-color microarray technology that enabled array fabrication QC. In this report we further investigated its advantage in spot-level data QC. Results We found that inadequate amount of bound probes available for hybridization led to significant, gene-specific compression in ratio measurements, increased data variability, and printing pin dependent heterogeneities. The impact of such problems can be captured through the definition of quality scores, and efficiently controlled through quality-dependent filtering and normalization. We compared gene expression measurements derived using our data processing pipeline with the known input ratios of spiked in control clones, and with the measurements by quantitative real time RT-PCR. In each case, highly linear relationships (R2>0.94 were observed, with modest compression in the microarray measurements (correction factor Conclusion Our microarray analytical and technical advancements enabled a better dissection of the sources of data variability and hence a more efficient QC. With that highly accurate gene expression measurements can be achieved using the cDNA microarray technology.

  4. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion.

    Science.gov (United States)

    Otero-Millan, Jorge; Roberts, Dale C; Lasker, Adrian; Zee, David S; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines.

  5. Optimization and application of cooled avalanche photodiodes for spectroscopic fluctuation measurements with ultra-fast charge exchange recombination spectroscopy

    Science.gov (United States)

    Truong, D. D.; Fonck, R. J.; McKee, G. R.

    2016-11-01

    The Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic is a highly specialized spectroscopic instrument with 2 spatial channels consisting of 8 spectral channels each and a resolution of ˜0.25 nm deployed at DIII-D to measure turbulent ion temperature fluctuations. Charge exchange emissions are obtained between 528 and 530 nm with 1 μs time resolution to study plasma instabilities. A primary challenge of extracting fluctuation measurements from raw UF-CHERS signals is photon and electronic noise. In order to reduce dark current, the Avalanche Photodiode (APD) detectors are thermo-electrically cooled. State-of-the-art components are used for the signal amplifiers and conditioners to minimize electronic noise. Due to the low incident photon power (≤1 nW), APDs with a gain of up to 300 are used to optimize the signal to noise ratio. Maximizing the APDs' gain while minimizing the excess noise factor (ENF) is essential since the total noise of the diagnostic sets a floor for the minimum level of detectable broadband fluctuations. The APDs' gain should be high enough that photon noise dominates electronic noise, but not excessive so that the ENF overwhelms plasma fluctuations. A new generation of cooled APDs and optimized preamplifiers exhibits significantly enhanced signal-to-noise compared to a previous generation. Experiments at DIII-D have allowed for characterization and optimization of the ENF vs. gain. A gain of ˜100 at 1700 V is found to be near optimal for most plasma conditions. Ion temperature and toroidal velocity fluctuations due to the edge harmonic oscillation in quiescent H-mode plasmas are presented to demonstrate UF-CHERS' capabilities.

  6. Homologous recombination among bacterial genomes: the measurement and identification%细菌基因组同源重组:量化与鉴定

    Institute of Scientific and Technical Information of China (English)

    杨献伟; 杨瑞馥; 崔玉军

    2016-01-01

    同源重组(Homologous recombination)是塑造细菌群体多样性的重要原因之一.遗传物质通过同源重组在细菌不同种系间进行水平转移,打乱了克隆繁殖形成的竖向系统发育结构,从而为系统发育重建和种群结构判定带来困难.本文讨论了同源重组对系统发育分析和进化研究的影响,从实际应用的角度对量化重组程度和鉴定重组事件的常用软件及方法进行了综述,归纳了各软件工具和模型方法的优缺点,旨在对细菌重组分析和种群进化研究有所借鉴.%Homologous recombination is one of important sources in shaping the bacterial population diversity, which disrupts the clonal relationship among different lineages through horizontal transferring of DNA-segments. As consequence of blurring the vertical inheritance signals, the homologous recombination raises difficulties in phylogenetic analysis and reconstruction of population structure. Here we discuss the impacts of homologous recombination in inferring phylogenetic relationship among bacterial isolates, and summarize the tools and models separately used in recombination measurement and identification. We also highlight the merits and drawbacks of various approaches, aiming to assist in the practical ap-plication for the analysis of homologous recombination in bacterial evolution research.

  7. Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization.

    Directory of Open Access Journals (Sweden)

    Ross F Collery

    Full Text Available Refractive errors in vision can be caused by aberrant axial length of the eye, irregular corneal shape, or lens abnormalities. Causes of eye length overgrowth include multiple genetic loci, and visual parameters. We evaluate zebrafish as a potential animal model for studies of the genetic, cellular, and signaling basis of emmetropization and myopia. Axial length and other eye dimensions of zebrafish were measured using spectral domain-optical coherence tomography (SD-OCT. We used ocular lens and body metrics to normalize and compare eye size and relative refractive error (difference between observed retinal radial length and controls in wild-type and lrp2 zebrafish. Zebrafish were dark-reared to assess effects of visual deprivation on eye size. Two relative measurements, ocular axial length to body length and axial length to lens diameter, were found to accurately normalize comparisons of eye sizes between different sized fish (R2=0.9548, R2=0.9921. Ray-traced focal lengths of wild-type zebrafish lenses were equal to their retinal radii, while lrp2 eyes had longer retinal radii than focal lengths. Both genetic mutation (lrp2 and environmental manipulation (dark-rearing caused elongated eye axes. lrp2 mutants had relative refractive errors of -0.327 compared to wild-types, and dark-reared wild-type fish had relative refractive errors of -0.132 compared to light-reared siblings. Therefore, zebrafish eye anatomy (axial length, lens radius, retinal radius can be rapidly and accurately measured by SD-OCT, facilitating longitudinal studies of regulated eye growth and emmetropization. Specifically, genes homologous to human myopia candidates may be modified, inactivated or overexpressed in zebrafish, and myopia-sensitizing conditions used to probe gene-environment interactions. Our studies provide foundation for such investigations into genetic contributions that control eye size and impact refractive errors.

  8. A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection

    Science.gov (United States)

    Chen, Xi; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Wei, Wei; Liu, Yuanyuan; Qin, Zengguang

    2016-10-01

    A portable analog lock-in amplifier capable of accurate phase detection is proposed in this paper. The proposed lock-in amplifier, which uses the dual-channel orthometric signals as the references to build the xy coordinate system, can detect the relative phase between the input and x-axis based on trigonometric function. The sensitivity of the phase measurement reaches 0.014 degree, and a detection precision of 0.1 degree is achieved. At the same time, the performance of the lock-in amplifier is verified in the high precision optical oxygen concentration detection. Experimental results reveal that the portable analog lock-in amplifier is accurate for phase detection applications. In the oxygen sensing experiments, 0.058% oxygen concentration resulted in 0.1 degree phase shift detected by the lock-in amplifier precisely. In addition, the lock-in amplifier is small and economical compared with the commercial lock-in equipments, so it can be easily integrated in many portable devices for industrial applications.

  9. A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection

    Science.gov (United States)

    Chen, Xi; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Wei, Wei; Liu, Yuanyuan; Qin, Zengguang

    2017-03-01

    A portable analog lock-in amplifier capable of accurate phase detection is proposed in this paper. The proposed lock-in amplifier, which uses the dual-channel orthometric signals as the references to build the xy coordinate system, can detect the relative phase between the input and x-axis based on trigonometric function. The sensitivity of the phase measurement reaches 0.014 degree, and a detection precision of 0.1 degree is achieved. At the same time, the performance of the lock-in amplifier is verified in the high precision optical oxygen concentration detection. Experimental results reveal that the portable analog lock-in amplifier is accurate for phase detection applications. In the oxygen sensing experiments, 0.058% oxygen concentration resulted in 0.1 degree phase shift detected by the lock-in amplifier precisely. In addition, the lock-in amplifier is small and economical compared with the commercial lock-in equipments, so it can be easily integrated in many portable devices for industrial applications.

  10. Direct measurement of recombination frequency in interspecific hybrids between Hordeum vulgare and H. bulbosum using genomic in situ hybridization.

    Science.gov (United States)

    Zhang, L; Pickering, R; Murray, B

    1999-09-01

    Two different genotypes of diploid Hordeum vulgare x H. bulbosum hybrids, which differ in their pattern of meiotic metaphase pairing behaviour, were investigated at MI and AI by genomic in situ hybridization (GISH). One hybrid, 102C2, showed a high frequency of bivalents at metaphase I whereas the other, 103K5, showed a high frequency of univalents. The GISH analysis of both hybrids established that pairing occurred only between chromosomes of different parental genomes and revealed that pairing frequency greatly exceeded recombination. Hybrid 102C2 had a significantly higher recombination frequency than 103K5, but in both hybrids recombination involved only distal chromosome regions. However, an interesting finding is that the ratio of recombination to pairing frequency in 103K5 (1:8.9) is twice as high compared with 102C2 (1:17). The hybrids also differed in chromosome stability; little chromosome elimination occurred in 102C2 but 103K5 showed extensive chromosome loss. It appears that the high frequency of bound arms at MI favours retention of H. bulbosum chromosomes and maintains stability of chromosome numbers in PMCs. Various ideas are put forward to explain the discrepancy between meiotic pairing frequency and recombination in these hybrids.

  11. Recombination instability

    DEFF Research Database (Denmark)

    D'Angelo, N.

    1967-01-01

    A recombination instability is considered which may arise in a plasma if the temperature dependence of the volume recombination coefficient, alpha, is sufficiently strong. Two cases are analyzed: (a) a steady-state plasma produced in a neutral gas by X-rays or high energy electrons; and (b) an af...

  12. Charge exchange recombination in X-ray spectra of He-like argon measured at the tokamak TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Schlummer, Tobias

    2014-06-16

    Charge exchange recombination between ions and atomic hydrogen is an important atomic process in magnetically confined fusion plasmas. Besides radiative cooling of the plasma edge, charge exchange causes modifications of the ionization balance and the population densities of excited ion states. The central goal of this work is to investigate the influence of charge exchange on X-ray spectra measured at the tokamak TEXTOR. A new 2D X-ray spectrometer developed for future use at the stellarator W7-X was recently installed at TEXTOR. The spectrometer is optimized for measuring the K{sub α}-spectrum of He-like argon (1s2l - 1s{sup 2}) at wavelengths close to 4 Aa. K{sub α}-spectroscopy on He-like impurity ions is an established diagnostic for electron and ion temperature measurements in fusion plasmas. Still, up to now the observed intensity ratios of the K{sub α}-lines and their associated satellites are not fully understood. They show significant deviations from the predictions made by basic corona models. In the past charge exchange with the neutral particle background and radial impurity transport have been discussed as likely explanations. Yet a detailed description of the experimental spectra still has not been achieved. To reconstruct the 2D K{sub α}-spectra measured at TEXTOR the radial argon ion distribution is modeled using an impurity transport code. The model accounts for charge exchange and transport on basis of given radial profiles of the neutral particle density n{sub 0}(r) and the diffusion coefficient D {sub perpendicular} {sub to} (r). The theoretical spectrum is then constructed based on the processes relevant for line emission. Within an iterative procedure n{sub 0}(r) and D {sub perpendicular} {sub to} (r) are varied until consistency between the theoretical and the experimental spectra is achieved. It is shown that the 2D K{sub α}-spectra allow a clear distinction of charge exchange and transport effects, ensuring unique solutions for n

  13. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window

    Energy Technology Data Exchange (ETDEWEB)

    Ventrillard, I.; Romanini, D.; Mondelain, D.; Campargue, A., E-mail: Alain.Campargue@ujf-grenoble.fr [LIPhy, Université Grenoble Alpes, F-38000 Grenoble (France); LIPhy, CNRS, F-38000 Grenoble (France)

    2015-10-07

    In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the center of the 2.1 μm transparency window, at 4302 and 4723 cm{sup −1}, respectively. Self-continuum cross sections, C{sub S}, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the C{sub S} value at 4302 cm{sup −1} is found 40% higher than predicted by the MT-CKD V2.5 model, while at 4723 cm{sup −1}, our value is 5 times larger than the MT-CKD value. On the other hand, these OF-CEAS C{sub S} values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D{sub 0} ≈ 1100 cm{sup −1}.

  14. Simultaneous measurement in mass and mass/mass mode for accurate qualitative and quantitative screening analysis of pharmaceuticals in river water.

    Science.gov (United States)

    Martínez Bueno, M J; Ulaszewska, Maria M; Gomez, M J; Hernando, M D; Fernández-Alba, A R

    2012-09-21

    A new approach for the analysis of pharmaceuticals (target and non-target) in water by LC-QTOF-MS is described in this work. The study has been designed to assess the performance of the simultaneous quantitative screening of target compounds, and the qualitative analysis of non-target analytes, in just one run. The features of accurate mass full scan mass spectrometry together with high MS/MS spectral acquisition rates - by means of information dependent acquisition (IDA) - have demonstrated their potential application in this work. Applying this analytical strategy, an identification procedure is presented based on library searching for compounds which were not included a priori in the analytical method as target compounds, thus allowing their characterization by data processing of accurate mass measurements in MS and MS/MS mode. The non-target compounds identified in river water samples were ketorolac, trazodone, fluconazole, metformin and venlafaxine. Simultaneously, this strategy allowed for the identification of other compounds which were not included in the library by screening the highest intensity peaks detected in the samples and by analysis of the full scan TOF-MS, isotope pattern and MS/MS spectra - the example of loratadine (histaminergic) is described. The group of drugs of abuse selected as target compounds for evaluation included analgesics, opioids and psychostimulants. Satisfactory results regarding sensitivity and linearity of the developed method were obtained. Limits of detection for the selected target compounds were from 0.003 to 0.01 μg/L and 0.01 to 0.5 μg/L, in MS and MS/MS mode, respectively - by direct sample injection of 100 μL.

  15. CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation

    Science.gov (United States)

    Sandford, Stephen P.

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in

  16. Management of low-risk well-differentiated thyroid cancer based only on thyroglobulin measurement after recombinant human thyrotropin.

    Science.gov (United States)

    Wartofsky, Leonard

    2002-07-01

    A multicenter study was undertaken to ascertain prevalence and significance of recombinant human thyrotropin (rhTSH)-stimulated increases in thyroglobulin (Tg) levels in thyroid cancer patients classified to be at low risk for recurrence. Patients were eligible for enrollment if they had undergone near-total or total thyroidectomy and remnant ablation between 1-10 years prior to enrollment and had received thyroxine suppression therapy (THST) with a TSH level of < 0.5 mU/L and Tg level less than or equal to 5 ng/mL within the prior year. Patients with anti-Tg antibodies, distant metastases, or other evidence of residual disease were excluded. Four hundred eighty-six patients were entered into the study, and 300 were considered eligible and comprise the study population. TSH, Tg, and anti-Tg antibody levels were obtained at baseline, followed by intramuscular injection of 0.9 mg of rhTSH on days 1 and 2 and measurement of Tg on day 5. After rhTSH, 53 patients (18%) had elevations in Tg of at least 2 ng/mL, including 33 patients (11%) with increases from baseline of equal to or greater than 5 ng/mL. Patients with an initial advanced stage of disease were more likely to display elevations in Tg after rhTSH. One third of those with stage III disease displayed elevations in Tg of 2 ng/mL or more. Patients within 5 years of thyroidectomy were as likely to display elevations in rhTSH-stimulated Tg as those 5-10 years from surgery. In conclusion, these data suggest rhTSH-stimulated Tg testing without scan may be a useful tool in the follow-up of patients with low-risk thyroid cancer, and may serve to identify patients previously thought free of disease on the basis of undetectable Tg levels while undergoing THST. A strategy is presented for incorporation of this approach into the management of patients with low-risk well-differentiated thyroid cancer.

  17. In vitro estrogen receptor binding of PCBs: measured activity and detection of hydroxylated metabolites in a recombinant yeast assay.

    Science.gov (United States)

    Layton, Alice C; Sanseverino, John; Gregory, Betsy W; Easter, James P; Sayler, Gary S; Schultz, T Wayne

    2002-05-01

    The estrogenic activities of 17beta-estradiol, biphenyl, chlorinated biphenyls, and Aroclor mixtures 1221, 1242, and 1248 were measured with a modified recombinant yeast estrogen assay (i.e., a Saccharomyces cerevisiae-based lac-Z (beta-galactosidase) reporter assay). Modifications of the assay included the use of glass vials instead of plastic microtiter plates and the addition of the medium and yeast before the test substrate. 14C-labeled compounds were used to follow improvements in the assay procedures. 14C-17beta-estradiol recovery from plastic microtiter plates and glass vials using the standard or the modified procedure was approximately 89%. However, 14C-4-CB (4-chlorobiphenyl) recovery was considerably less, ranging from 3% in plastic microtiter plates using the standard procedure to 26% in vials using the modified procedure. These results suggest that the toxicity of strongly hydrophobic chemicals may be underestimated. Using the modified yeast estrogen assay, full agonist activity was observed for 4-CB, 2,4,6-CB, and 2,5-CB while each of the Aroclor mixtures were only partial agonists. The equivalent EC50 values in ppm were in environmentally relevant concentrations for biphenyl (19 ppm), 4-CB (4.5 ppm), 2,5-CB (21 ppm), 2,4,6-CB (0.8 ppm), Aroclor 1221 (2.9 ppm), Aroclor 1242 (0.65 ppm), and Aroclor 1248 (2.3 ppm). Estrogen receptor binding for the individual PCB congeners was 25- to 650-fold less than the reported estrogen binding for the corresponding hydroxylated PCB metabolite. Gas chromatographic/mass spectrometric analysis of yeast extracts indicated that S. cerevisiae hydroxylated the individual PCB congeners in the ppb range. With the exception of biphenyl, the concentration of hydroxylated metabolites obtained from incubation of S. cerevisiae with PCB congeners was consistent with the concentration necessary to elicit a positive estrogen receptor-binding response. This work provides evidence that S. cerevisiae are capable of metabolic

  18. Recombination monitor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-02-03

    This is a brief report on LEReC recombination monitor design considerations. The recombination produced Au78+ ion rate is reviewed. Based on this two designs are discussed. One is to use the large dispersion lattice. It is shown that even with the large separation of the Au78+ beam from the Au79+ beam, the continued monitoring of the recombination is not possible. Accumulation of Au78+ ions is needed, plus collimation of the Au79+ beam. In another design, it is shown that the recombination monitor can be built based on the proposed scheme with the nominal lattice. From machine operation point of view, this design is preferable. Finally, possible studies and the alternative strategies with the basic goal of the monitor are discussed.

  19. A fluorescent assay amenable to measuring production of beta-D-glucuronides produced from recombinant UDP-glycosyl transferase enzymes.

    Science.gov (United States)

    Trubetskoy, O V; Shaw, P M

    1999-05-01

    Beta-glucuronidase cleavage of 4-methylumbelliferyl beta-D-glucuronide generates the highly fluorescent compound, 4-methylumbelliferone. We show that other beta-D-glucuronide compounds act as competitors in this assay. The 4-methylumbelliferyl beta-D-glucuronide cleavage assay can easily be adapted to high throughput formats to detect the presence of beta-D glucuronides generated using recombinant glycosyl transferase preparations.

  20. Any condomless anal intercourse is no longer an accurate measure of HIV sexual risk behaviour in gay and other men who have sex with men

    Directory of Open Access Journals (Sweden)

    Fengyi eJin

    2015-02-01

    Full Text Available Background: Condomless anal intercourse (CLAI has long been recognised as the primary mode of sexual transmission of HIV in gay and other men who have sex with men (MSM. A variety of measures of CLAI have been commonly used in behavioural surveillance for HIV risk and to forecast trends in HIV infection. However, gay and other MSM’s sexual practices changed as the understanding of disease and treatment options advance. In the present paper, we argue that summary measures such as any CLAI do not accurately measure HIV sexual risk behaviour. Methods: Participants were 1,427 HIV-negative men from the Health in Men cohort study run from 2001 to 2007 in Sydney, Australia, with six-monthly interviews. At each interview, detailed quantitative data on the number of episodes of insertive and receptive CLAI in the last six months were collected, separated by partner type (regular vs. casual and partners’ HIV status (negative, positive, and HIV status unknown.Results: A total of 228,064 episodes of CLAI were reported during the study period with a mean of 44 episodes per year per participant (median: 14. The great majority of CLAI episodes were with a regular partner (92.6%, most of them with HIV-negative regular partners (84.8%. Participants were more likely to engage in insertive CLAI with casual than with regular partners (66.7% vs. 55.3% of all acts of CLAI with each partner type, p<0.001. Men were more likely to report CLAI in the receptive position with HIV-negative and HIV status unknown partners than with HIV-positive partners (p<0.001 for both regular and casual partners. Conclusion: Gay and other MSM engaging in CLAI demonstrate clear patterns of HIV risk reduction behaviour. As HIV prevention enters the era of antiretroviral-based biomedical approach, using all forms of CLAI indiscriminately as a measure of HIV behavioural risk is not helpful in understanding the current drivers of HIV transmission in the community.

  1. Recombination experiments at CRYRING

    Energy Technology Data Exchange (ETDEWEB)

    Spies, W.; Glans, P.; Zong, W.; Gao, H.; Andler, G.; Justiniano, E.; Saito, M.; Schuch, R

    1998-11-15

    Recent advances in studies of electron-ion recombination processes at low relative energies with the electron cooler of the heavy-ion storage ring CRYRING are shown. Through the use of an adiabatically expanded electron beam, collisions down to 10{sup -4}eV relative energies were measured with highly charged ions stored in the ring at around 15 MeV/amu energies. Examples of recombination measurements for bare ions of D{sup +}, He{sup 2+}, N{sup 7+}, Ne{sup 10+} and Si{sup 14+} are presented. Further on, results of an experiment measuring laser-induced recombination (LIR) into n=3 states of deuterium with polarized laser light are shown.

  2. NEW ACCURATE MEASUREMENT OF {sup 36}ArH{sup +} AND {sup 38}ArH{sup +} RO-VIBRATIONAL TRANSITIONS BY HIGH RESOLUTION IR ABSORPTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, M.; Herrero, V. J.; Tanarro, I.; Doménech, J. L. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Cernicharo, J. [Department of Astrophysics, CAB. INTA-CSIC. Crta Torrejón-Ajalvir Km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Barlow, M. J.; Swinyard, B. M., E-mail: jl.domenech@csic.es [Department of Physics and Astronomy, University College London. Gower Street, London WC1E 6BT (United Kingdom)

    2014-03-01

    The protonated argon ion, {sup 36}ArH{sup +}, was recently identified in the Crab Nebula from Herschel spectra. Given the atmospheric opacity at the frequency of its J = 1-0 and J = 2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of {sup 36}ArH{sup +} and {sup 38}ArH{sup +} rotation-vibration transitions in the v = 1-0 band in the range 4.1-3.7 μm (2450-2715 cm{sup –1}). The wavenumbers of the R(0) transitions of the v = 1-0 band are 2612.50135 ± 0.00033 and 2610.70177 ± 0.00042 cm{sup –1} (±3σ) for {sup 36}ArH{sup +} and {sup 38}ArH{sup +}, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and with a linewidth of 1 km s{sup –1} of the R(0) line is 1.6 × 10{sup –15} × N({sup 36}ArH{sup +}). For column densities of {sup 36}ArH{sup +} larger than 1 × 10{sup 13} cm{sup –2}, significant absorption by the R(0) line can be expected against bright mid-IR sources.

  3. Recombineering linear BACs.

    Science.gov (United States)

    Chen, Qingwen; Narayanan, Kumaran

    2015-01-01

    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.

  4. First measurement of the dissociative recombination of CaO+ with electrons brings closure to Ca ion recycling chemistry in the lower thermosphere

    Science.gov (United States)

    Bones, David; Plane, John

    2016-04-01

    Modelling the temporal and spatial extent of the metal layers in the mesosphere/lower thermosphere requires knowledge of the rate coefficients of dissociative recombination of metal oxide ions with electrons. Previously, these coefficients have been assumed to be 3 × 10-7 cm3 s-1 at 200 K. In this study the coefficient has been measured directly for the dissociative recombination of CaO+. Measurements are made in a flowing afterglow system with a Langmuir probe. Calcium oxide ions are introduced into an argon ion/electron plasma by pulsed laser ablation of a solid target. The relative concentration of CaO+ is measured by a quadrupole mass spectrometer as a function of flow rate (3 - 5 slm), which is inversely proportional to the reaction time of the CaO+ ions with the electrons in the plasma (2.1 to 3.5 ms). Charge transfer reactions between argon ions and neutral molecules complicate the analysis. A kinetic model describing gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data to extract the DR rate coefficient for CaO+. Unlike other metals present in the atmosphere, Ca+ ions are far more abundant than neutral Ca. The new DR rate coefficient is used to explore possible reasons for this anomaly in a model of meteor-ablated calcium in the mesosphere and lower thermosphere.

  5. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    Science.gov (United States)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  6. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    for assaying recombination using tetrad analysis in a higher eukaryotic system (6). This system enabled the measurement of the frequency and distribution of recombination events at a genome wide level in wild type Arabidopsis (7), construction of genetic linkage maps which include positions for each centromere (8), and modeling of the strength and pattern of interference (9). This proposal extends the use of tetrad analysis in Arabidopsis by using it as the basis for assessing the phenotypes of mutants in genes important for recombination and the regulation of crossover interference and performing a novel genetic screen. In addition to broadening our knowledge of a classic genetic problem - the regulation of recombination by crossover interference - this proposal also provides broader impact by: generating pedagogical tools for use in hands-on classroom experience with genetics, building interdisciplinary collegial partnerships, and creating a platform for participation by junior scientists from underrepresented groups. There are three specific aims: (1) Isolate mutants in Arabidopsis MUS81 homologs using T-DNA and TILLING (2) Characterize recombination levels and interference in mus81 mutants (3) Execute a novel genetic screen, based on tetrad analysis, for genes that regulate meiotic recombination

  7. Experimental recombination rates for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold Schuch [Dept. of Atomic Physics, Stockholm Univ., Frescativ., Stockholm (Sweden)

    2000-01-01

    Recent studies of recombination between free electrons and highly charged ions using electron coolers of heavy-ion storage rings have produced accurate rate coefficients of interest for plasma modeling and diagnostics. Some surprises were discovered which can lead to revisions of recombination models. With bare ions one finds at low energy a strong and puzzling deviation from radiative recombination theory. Dielectronic recombination with C3+, N4+ show that jj coupling gives essential contributions to the cross section also for light ions. (author)

  8. Homology requirements for recombination in Escherichia coli.

    OpenAIRE

    Watt, V M; Ingles, C J; Urdea, M S; Rutter, W J

    1985-01-01

    The DNA sequence homology required for recombination in Escherichia coli has been determined by measuring the recombination frequency between insulin DNA in a miniplasmid pi VX and a homologous sequence in a bacteriophage lambda vector. A minimum of approximately equal to 20 base pairs in a completely homologous segment is required for significant recombination. There is an exponential increase in the frequency of recombination when the length of homologous DNA is increased from 20 base pairs...

  9. Study of Active Carbon Measuring Method for Accurate Measurements of Radon Exhalation Rates for Building Materials%活性炭盒法准确测量建材222 Rn析出率的研究

    Institute of Scientific and Technical Information of China (English)

    吕丽丹; 邱小平; 邱寿康; 何正忠; 贺夔

    2014-01-01

    通过活性炭-γ能谱法测量表面经过预处理后的不同建材样品氡析出率,计算求得该建材氡固有析出率。实验结果表明,建材固有氡析出率能真实反映出建材氡析出率的情况且不受建材自身形状因素的影响,不失为一种准确可靠测量建材表面氡析出率值的方法。%Radon exhalation rate from different building materials after pretreatment were measured using the charcoal canister method for calculating radon inherent exhalation rate. The results showed that radon inherent exhalation rate can represent the true radon in building materials and not be affected by the shape factor of building materials. It is simple and reliable for the method to calculate radon inherent exhalation rate. It can be regarded as a method for accurate measurements of radon exhalation rates for building materials.

  10. Accurate mass measurements for the confirmation of Sudan azo-dyes in hot chilli products by capillary liquid chromatography-electrospray tandem quadrupole orthogonal-acceleration time of flight mass spectrometry.

    Science.gov (United States)

    Calbiani, F; Careri, M; Elviri, L; Mangia, A; Zagnoni, I

    2004-11-26

    The potential of capillary liquid chromatography (microLC)-quadrupole/time-of-flight mass spectrometry (Q-TOF MS) for the confirmation of Sudan I, II, III and IV azo-dyes as contaminants in hot-chilli food products was demonstrated. Using the microLC-electrospray ionization (ESI)-Q-TOF MS technique, accurate mass measurements of Sudan dyes were performed both on standard solutions and on matrices. Precision of exact mass measurements was calculated taking into account the ion statistics according to the number of ion sampled in the measurement. Accurate mass measurements by MS/MS experiments were performed to elucidate azo-dye fragmentation patterns. Selectivity of the microLC-Q-TOF MS method was assessed by evaluating matrix suppression effects by pre-column injection of blank hot chilli tomato sauce matrices. The results were compared with those obtained on a LC-triple quadrupole-MS system. Confirmation of Sudan I present in hot chill tomato sauce samples was obtained by accurate mass measurements. In real samples trueness of exact mass measurements was estimated to be 1.6 and 4.4 ppm when calculated for hot chilli tomato sauce and hot chilli tomato with cheese sauce samples, respectively; precision was calculated around 9.5 ppm.

  11. Constant time INEPT CT-HSQC (CTi-CT-HSQC) - A new NMR method to measure accurate one-bond J and RDCs with strong 1H-1H couplings in natural abundance.

    Science.gov (United States)

    Yu, Bingwu; van Ingen, Hugo; Freedberg, Darón I

    2013-03-01

    Strong (1)H-(1)H coupling can significantly reduce the accuracy of (1)J(CH) measured from frequency differences in coupled HSQC spectra. Although accurate (1)J(CH) values can be extracted from spectral simulation, it would be more convenient if the same accurate (1)J(CH) values can be obtained experimentally. Furthermore, simulations reach their limit for residual dipolar coupling (RDC) measurement, as many significant, but immeasurable RDCs are introduced into the spin system when a molecule is weakly aligned, thus it is impossible to have a model spin system that truly represents the real spin system. Here we report a new J modulated method, constant-time INEPT CT-HSQC (CTi-CT-HSQC), to accurately measure one-bond scalar coupling constant and RDCs without strong coupling interference. In this method, changing the spacing between the two 180° pulses during a constant time INEPT period selectively modulates heteronuclear coupling in quantitative J fashion. Since the INEPT delays for measuring one-bond carbon-proton spectra are short compared to (3)J(HH), evolution due to (strong) (1)H-(1)H coupling is marginal. The resulting curve shape is practically independent of (1)H-(1)H coupling and only correlated to the heteronuclear coupling evolution. Consequently, an accurate (1)J(CH) can be measured even in the presence of strong coupling. We tested this method on N-acetyl-glucosamine and mannose whose apparent isotropic (1)J(CH) values are significantly affected by strong coupling with other methods. Agreement to within 0.5Hz or better is found between (1)J(CH) measured by this method and previously published simulation data. We further examined the strong coupling effects on RDC measurements and observed an error up to 100% for one bond RDCs using coupled HSQC in carbohydrates. We demonstrate that RDCs can be obtained with higher accuracy by CTi-CT-HSQC, which compensates the limitation of simulation method.

  12. The Hall effect in the organic conductor TTF-TCNQ: choice of geometry for accurate measurements of a highly anisotropic system.

    Science.gov (United States)

    Tafra, E; Culo, M; Basletić, M; Korin-Hamzić, B; Hamzić, A; Jacobsen, C S

    2012-02-01

    We have measured the Hall effect on recently synthesized single crystals of the quasi-one-dimensional organic conductor TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane), a well known charge transfer complex that has two kinds of conductive stacks: the donor (TTF) and the acceptor (TCNQ) chains. The measurements were performed in the temperature interval 30 K Hall effect measurements. Our results show, contrary to past belief, that the Hall coefficient does not depend on the geometry of measurements and that the Hall coefficient value is approximately zero in the high temperature region (T > 150 K), implying that there is no dominance of either the TTF or the TCNQ chain. At lower temperatures our measurements clearly prove that all three phase transitions of TTF-TCNQ could be identified from Hall effect measurements.

  13. Radio Recombination Lines in Galactic HII Regions

    CERN Document Server

    Quireza, C; Bania, T M; Rood, R T; Balser, Dana S.; Quireza, Cintia; Rood, Robert T.

    2006-01-01

    We report radio recombination line (RRL) and continuum observations of a sample of 106 Galactic HII regions made with the NRAO 140 Foot radio telescope in Green Bank, WV. We believe this to be the most sensitive RRL survey ever made for a sample this large. Most of our source integration times range between 6 and 90 hours which yield typical r.m.s. noise levels of 1.0--3.5 milliKelvins. Our data result from two different experiments performed, calibrated, and analyzed in similar ways. A CII survey was made at 3.5 cm wavelength to obtain accurate measurements of carbon radio recombination lines. When combined with atomic (CI) and molecular (CO) data, these measurements will constrain the composition, structure, kinematics, and physical properties of the photodissociation regions that lie on the edges of HII regions. A second survey was made at 3.5 cm wavelength to determine the abundance of 3He in the interstellar medium of the Milky Way. Together with measurements of the 3He+ hyperfine line we get high precis...

  14. A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO

    NARCIS (Netherlands)

    van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J.; Simpson, W.R.

    2009-01-01

    We present an adapted gas chromatograph capable of measuring simultaneously and semi-continuously the atmospheric mixing ratios of the greenhouse gases CO2, CH4, N2O and SF6 and the trace gas CO with high precision and long-term stability. The novelty of our design is that all species are measured w

  15. The Hall effect in the organic conductor TTF–TCNQ: choice of geometry for accurate measurements of a highly anisotropic system

    DEFF Research Database (Denmark)

    Tafra, E; Čulo, M; Basletić, M;

    2012-01-01

    We have measured the Hall effect on recently synthesized single crystals of the quasi-one-dimensional organic conductor TTF–TCNQ (tetrathiafulvalene–tetracyanoquinodimethane), a well known charge transfer complex that has two kinds of conductive stacks: the donor (TTF) and the acceptor (TCNQ...... Hall effect measurements. Our results show, contrary to past belief, that the Hall coefficient does not depend on the geometry of measurements and that the Hall coefficient value is approximately zero in the high temperature region (T > 150 K), implying that there is no dominance of either the TTF...... or the TCNQ chain. At lower temperatures our measurements clearly prove that all three phase transitions of TTF–TCNQ could be identified from Hall effect measurements....

  16. Multiplying probe for accurate power measurements on an RF driven atmospheric pressure plasma jet applied to the COST reference microplasma jet

    Science.gov (United States)

    Beijer, P. A. C.; Sobota, A.; van Veldhuizen, E. M.; Kroesen, G. M. W.

    2016-03-01

    In this paper a new multiplying probe for measuring the power dissipated in a miniature capacitively coupled, RF driven, atmospheric pressure plasma jet (μAPPJ—COST Reference Microplasma Jet—COST RMJ) is presented. The approach aims for substantially higher accuracy than provided by traditionally applied methods using bi-directional power meters or commercially available voltage and current probes in conjunction with digitizing oscilloscopes. The probe is placed on a miniature PCB and designed to minimize losses, influence of unknown elements, crosstalk and variations in temperature. The probe is designed to measure powers of the order of magnitude of 0.1-10 W. It is estimated that it measures power with less than 2% deviation from the real value in the tested power range. The design was applied to measure power dissipated in COST-RMJ running in helium with a small addition of oxygen.

  17. Accurate assessment of breast volume: a study comparing the volumetric gold standard (direct water displacement measurement of mastectomy specimen) with a 3D laser scanning technique.

    Science.gov (United States)

    Yip, Jia Miin; Mouratova, Naila; Jeffery, Rebecca M; Veitch, Daisy E; Woodman, Richard J; Dean, Nicola R

    2012-02-01

    Preoperative assessment of breast volume could contribute significantly to the planning of breast-related procedures. The availability of 3D scanning technology provides us with an innovative method for doing this. We performed this study to compare measurements by this technology with breast volume measurement by water displacement. A total of 30 patients undergoing 39 mastectomies were recruited from our center. The volume of each patient's breast(s) was determined with a preoperative 3D laser scan. The volume of the mastectomy specimen was then measured in the operating theater by water displacement. There was a strong linear association between breast volumes measured using the 2 different methods when using a Pearson correlation (r = 0.95, P Scanner as a tool for assessment of breast volume.

  18. Defining the Most Accurate Measurable Dimension(s of the Liver in Predicting Liver Volume Based on CT Volumetery and Reconstruction

    Directory of Open Access Journals (Sweden)

    Reza Saadat Mostafavi

    2010-05-01

    Full Text Available Background/Objective: The presence of liver volume has a great effect on diagnosis and management of different diseases such as lymphoproliferative conditions. "nPatients and Methods: Abdominal CT scan of 100 patients without any findings for liver disease (in history and imaging was subjected to volumetry and reconstruction. Along with the liver volume, in axial series, the AP diameter of the left lobe (in midline and right lobe (mid-clavicular and lateral maximum diameter of the liver in the mid-axiliary line and maximum diameter to IVC were calculated. In the coronal mid-axillary and sagittal mid-clavicular plane, maximum superior-inferior dimensions were calculated with their various combinations (multiplying. Regression analysis between dimensions and volume were performed. "nResults: The most accurate combination was the superior inferior sagittal dimension multiplied by AP diameter of the right lobe (R squared 0.78, P-value<0.001 and the most solitary dimension was the lateral dimension to IVC in the axial plane (R squared 0.57, P-value<0.001 with an interval of 9-11cm for 68% of normal. "nConclusion: We recommend the lateral maximum diameter of liver from surface to IVC in the axial plane in ultrasound for liver volume prediction with an interval of 9-11cm for 68% of normal. Out of this range is regarded as abnormal.

  19. Accurate displacement-measuring interferometer with wide range using an I2 frequency-stabilized laser diode based on sinusoidal frequency modulation

    Science.gov (United States)

    Vu, Thanh-Tung; Higuchi, Masato; Aketagawa, Masato

    2016-10-01

    We propose the use of the sinusoidal frequency modulation technique to improve both the frequency stability of an external cavity laser diode (ECLD) and the measurement accuracy and range of a displacement-measuring interferometer. The frequency of the ECLD was modulated at 300 kHz by modulating the injection current, and it was locked to the b21 hyperfine component of the transition 6-3, P(33), 127I2 (633 nm) by the null method. A relative frequency stability of 6.5  ×  10-11 was achieved at 100 s sampling time. The stabilized ECLD was then utilized as a light source for an unbalanced Michelson interferometer. In the interferometer, the displacement and direction of the target mirror can be determined using a Lissajous diagram based on two consecutive and quadrant-phase harmonics of the interference signal. Generally, the measurement range of the interferometer by the proposed method is limited by the modulation index and the signal-to-noise ratio of the harmonics. To overcome this drawback, suitable consecutive harmonic pairs were selected for the specific measurement ranges to measure the displacement. The displacements determined in the specific ranges by the proposed method were compared with those observed by a commercial capacitive sensor. From the comparison, the proposed method has high precision to determine the displacement. The measurement range was also extended up to 10 m by selecting a suitable modulation index and suitable consecutive pairs of harmonics.

  20. Accurate Group Delay Measurement for Radial Velocity Instruments Using the Dispersed Fixed Delay Interferometer Method. II. Application of Heterodyne Combs Using an External Interferometer Filter

    Science.gov (United States)

    Wang, Ji; Ge, Jian; Wan, Xiaoke; De Lee, Nathan; Lee, Brian

    2012-11-01

    A fixed delay interferometer is the key component in a DFDI (dispersed fixed delay interferometer) instrument for an exoplanet search using the radial velocity (RV) technique. Although the group delay (GD) of the interferometer can be measured with white light combs (WLCs), the measurement precision is limited by the comb visibility, and the wavelength coverage is constrained by the comb sampling. For instance, this method can calibrate only half of the SDSS-III MARVELS spectra and reach a precision of 2.2 m s-1. This article introduces an innovative method using a sine source for precision delay calibration over very broad wavelengths. The sine source is made of a monolithic Michelson interferometer fed with white light. The interferometer modulated white light (in a sinusoidal form) is fed into a DFDI instrument for calibration. Due to an optimal GD of the sine source, Fourier components from the DFDI interferometer, the sine source, and their frequency beating can be clearly separated and effectively extracted with a chirped Fourier transform to allow precision measurements of the interferometer GD over the entire range of operation wavelengths. The measurements of the MARVELS interferometer with a sine source show that this new calibration method has improved the wavelength coverage by a factor of 2 and the precision by a factor of 3. The RV measurement error induced by GD measurement uncertainties is controlled to be less than 1 m s-1, which has met the requirements for MARVELS moderate-to-high Doppler precision (∼5–30 m s-1) for exoplanet search around V ∼ 8–12 solar-type stars. Heterodyne combs using an external interferometer source can be applied in other areas of optics measurement and calibration.

  1. OGLE 2008--BLG--290: An accurate measurement of the limb darkening of a Galactic Bulge K Giant spatially resolved by microlensing

    CERN Document Server

    Fouque, P; Dong, S; Gould, A; Udalski, A; Albrow, M D; Batista, V; Beaulieu, J -P; Bennett, D P; Bond, I A; Bramich, D M; Novati, S Calchi; Cassan, A; Coutures, C; Dieters, S; Dominik, M; Prester, D Dominis; Greenhill, J; Horne, K; Jorgensen, U G; Kozlowski, S; Kubas, D; Lee, C -H; Marquette, J -B; Mathiasen, M; Menzies, J; Monard, L A G; Nishiyama, S; Papadakis, I; Street, R; Sumi, T; Williams, A; Yee, J C; Brillant, S; Caldwell, J A R; Cole, A; Cook, K H; Donatowicz, J; Kains, N; Kane, S R; Martin, R; Pollard, K R; Sahu, K C; Tsapras, Y; Wambsganss, J; Zub, M; DePoy, D L; Gaudi, B S; Han, C; Lee, C -U; Park, B -G; Pogge, R W; Kubiak, M; Szymanski, M K; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Abe, F; Fukui, A; Furusawa, K; Gilmore, A C; Hearnshaw, J B; Itow, Y; ~Kamiya, K; Kilmartin, P M; Korpela, A V; Lin, W; Ling, C H; Masuda, K; Matsubara, Y; Miyake, N; Muraki, Y; Nagaya, M; Ohnishi, K; Okumura, T; Perrott, Y; Rattenbury, N J; Saito, To; Sako, T; Sato, S; Skuljan, L; Sullivan, D; Sweatman, W; Tristram, P J; Yock, P C M; Allan, A; Bode, M F; Burgdorf, M J; Clay, N; Fraser, S N; Hawkins, E; Kerins, E; Lister, T A; Mottram, C J; Saunders, E S; Snodgrass, C; Steele, I A; Wheatley, P J; Anguita, T; Bozza, V; Harpsoe, K; Hinse, T C; Hundertmark, M; Kjaergaard, P; Liebig, C; Mancini, L; Masi, G; Rahvar, S; Ricci, D; Scarpetta, G; Southworth, J; Surdej, J; Thone, C C; Riffeser, A; ~Seitz, S; Bender, R

    2015-01-01

    Gravitational microlensing is not only a successful tool for discovering distant exoplanets, but it also enables characterization of the lens and source stars involved in the lensing event. In high magnification events, the lens caustic may cross over the source disk, which allows a determination of the angular size of the source and additionally a measurement of its limb darkening. When such extended-source effects appear close to maximum magnification, the resulting light curve differs from the characteristic Paczynski point-source curve. The exact shape of the light curve close to the peak depends on the limb darkening of the source. Dense photometric coverage permits measurement of the respective limb-darkening coefficients. In the case of microlensing event OGLE 2008-BLG-290, the K giant source star reached a peak magnification of about 100. Thirteen different telescopes have covered this event in eight different photometric bands. Subsequent light-curve analysis yielded measurements of linear limb-darke...

  2. Accurate IMRT fluence verification for prostate cancer patients using 'in-vivo' measured EPID images and in-room acquired kilovoltage cone-beam CT scans

    NARCIS (Netherlands)

    A.S.A.M. Ali (Ali Sid Ahmed M.); M.L.P. Dirkx (Maarten); R.M. Cools (Ruud); B.J.M. Heijmen (Ben)

    2013-01-01

    textabstractBackground: To investigate for prostate cancer patients the comparison of 'in-vivo' measured portal dose images (PDIs) with predictions based on a kilovoltage cone-beam CT scan (CBCT), acquired during the same treatment fraction, as an alternative for pre-treatment verification. For eval

  3. Characterization of the Key Odorants in Chinese Zhima Aroma-Type Baijiu by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies.

    Science.gov (United States)

    Zheng, Yang; Sun, Baoguo; Zhao, Mouming; Zheng, Fuping; Huang, Mingquan; Sun, Jinyuan; Sun, Xiaotao; Li, Hehe

    2016-07-06

    Zhima aroma-type Baijiu with typical sesame aroma is particularly popular in northern China. To our knowledge, it is still uncertain which components are important to make contributions to its unique aroma, although a few pieces of research have reported many volatile compounds in this Baijiu. The aroma-active compounds from the Baijiu were researched in this paper. A total of 56 odorants were identified in Chinese Zhima aroma-type Baijiu by aroma extract dilution analysis (AEDA). Their odor activity values (OAVs) were determined by different quantitative measurements, and then 26 aroma compounds were further confirmed as important odorants due to their OAVs ≥ 1, and these had higher values, such as ethyl hexanoate (OAV 2691), 3-methylbutanal (2403), ethyl pentanoate (1019), and so on. The overall aroma of Zhima aroma-type Baijiu could be simulated by mixing of the 26 key odorants in their measured concentrations. The similarity of the overall aroma profiles between the recombination model and the commercial sample was judged to be 2.7 out of 3.0 points. Omission experiments further corroborated the importance of methional and ethyl hexanoate for the overall aroma of Chinese Zhima aroma-type Baijiu.

  4. Accurate surface potential determination in Schottky diodes by the use of a correlated current and capacitance voltage measurements.Application to n-InP

    Institute of Scientific and Technical Information of China (English)

    Ali Ahaitouf; Abdelaziz Ahaitouf; Jean Paul Salvestrini; Hussein Srour

    2011-01-01

    Based on current voltage (I-Vg) and capacitance voltage (C-Vg) measurements,a reliable procedure is proposed to determine the effective surface potential Vd (Vg) in Schottky diodes.In the framework of thermionic emission,our analysis includes both the effect of the series resistance and the ideality factor,even voltage dependent.This technique is applied to n-type indium phosphide (n-InP) Schottky diodes with and without an interfacial layer and allows us to provide an interpretation of the observed peak on the C-Vg measurements.The study clearly shows that the depletion width and the flat band barrier height deduced from C-Vg,which are important parameters directly related to the surface potential in the semiconductor,should be estimated within our approach to obtain more reliable information.

  5. Evaluation of a multiple-cycle, recombinant virus, growth competition assay that uses flow cytometry to measure replication efficiency of human immunodeficiency virus type 1 in cell culture.

    Science.gov (United States)

    Dykes, Carrie; Wang, Jiong; Jin, Xia; Planelles, Vicente; An, Dong Sung; Tallo, Amanda; Huang, Yangxin; Wu, Hulin; Demeter, Lisa M

    2006-06-01

    Human immunodeficiency virus type 1 (HIV-1) replication efficiency or fitness, as measured in cell culture, has been postulated to correlate with clinical outcome of HIV infection, although this is still controversial. One limitation is the lack of high-throughput assays that can measure replication efficiency over multiple rounds of replication. We have developed a multiple-cycle growth competition assay to measure HIV-1 replication efficiency that uses flow cytometry to determine the relative proportions of test and reference viruses, each of which expresses a different reporter gene in place of nef. The reporter genes are expressed on the surface of infected cells and are detected by commercially available fluorescence-labeled antibodies. This method is less labor-intensive than those that require isolation and amplification of nucleic acids. The two reporter gene products are detected with similar specificity and sensitivity, and the proportion of infected cells in culture correlates with the amount of viral p24 antigen produced in the culture supernatant. HIV replication efficiencies of six different drug-resistant site-directed mutants were reproducibly quantified and were similar to those obtained with a growth competition assay in which the relative proportion of each variant was measured by sequence analysis, indicating that recombination between the pol and reporter genes was negligible. This assay also reproducibly quantified the relative fitness conferred by protease and reverse transcriptase sequences containing multiple drug resistance mutations, amplified from patient plasma. This flow cytometry-based growth competition assay offers advantages over current assays for HIV replication efficiency and should prove useful for the evaluation of patient samples in clinical trials.

  6. Completely automated multiresolution edge snapper (CAMES): a new technique for an accurate carotid ultrasound IMT measurement and its validation on a multi-institutional database

    Science.gov (United States)

    Molinari, Filippo; Loizou, Christos; Zeng, Guang; Pattichis, Costantinos; Pantziaris, Marios; Liboni, William; Nicolaides, Andrew; Suri, Jasjit S.

    2011-03-01

    Since 2005, our research team has been developing automated techniques for carotid artery (CA) wall segmentation and intima-media thickness (IMT) measurement. We developed a snake-based technique (which we named CULEX1,2), a method based on an integrated approach of feature extraction, fitting, and classification (which we named CALEX3), and a watershed transform based algorithm4. Each of the previous methods substantially consisted in two distinct stages: Stage-I - Automatic carotid artery detection. In this step, intelligent procedures were adopted to automatically locate the CA in the image frame. Stage-II - CA wall segmentation and IMT measurement. In this second step, the CA distal (or far) wall is segmented in order to trace the lumen-intima (LI) and media-adventitia (MA) boundaries. The distance between the LI/MA borders is the IMT estimation. The aim of this paper is the description of a novel and completely automated technique for carotid artery segmentation and IMT measurement based on an innovative multi-resolution approach.

  7. Accurate measurement of {sup 3}J{sub HNHα} couplings in small or disordered proteins from WATERGATE-optimized TROSY spectra

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Julien; Ying, Jinfa; Bax, Ad, E-mail: bax@nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2016-01-15

    Provided that care is taken in adjusting the WATERGATE element of a {sup 1}H–{sup 15}N TROSY-HSQC experiment, such that neither the water magnetization nor the {sup 1}H{sup α} protons are inverted by its final 180° pulse, {sup 3}J{sub HNHα} couplings can be measured directly from splittings in the {sup 1}H dimension of the spectrum. With band-selective {sup 1}H decoupling, very high {sup 15}N resolution can be achieved. A complete set of {sup 3}J{sub HNHα} values, ranging from 3.4 to 10.1 Hz was measured for the 56-residue third domain of IgG-binding protein G (GB3). Using the H–N–C{sup α}–H{sup α} dihedral angles extracted from a RDC-refined structure of GB3, {sup 3}J{sub HNHα} values predicted by a previously parameterized Karplus equation agree to within a root-mean-square deviation (rmsd) of 0.37 Hz with the experimental data. Values measured for the Alzheimer’s implicated Aβ{sup 1−40} peptide fit to within an rmsd of 0.45 Hz to random coil {sup 3}J{sub HNHα} values.

  8. Speaking Fluently And Accurately

    Institute of Scientific and Technical Information of China (English)

    JosephDeVeto

    2004-01-01

    Even after many years of study,students make frequent mistakes in English. In addition, many students still need a long time to think of what they want to say. For some reason, in spite of all the studying, students are still not quite fluent.When I teach, I use one technique that helps students not only speak more accurately, but also more fluently. That technique is dictations.

  9. An Accurate and Efficient Algorithm for Detection of Radio Bursts with an Unknown Dispersion Measure, for Single-dish Telescopes and Interferometers

    Science.gov (United States)

    Zackay, Barak; Ofek, Eran O.

    2017-01-01

    Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of 2{N}f{N}t+{N}t{N}{{Δ }}{{log}}2({N}f), where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.

  10. Addition of posttraumatic stress and sensory hypersensitivity more accurately estimates disability and pain than fear avoidance measures alone after whiplash injury.

    Science.gov (United States)

    Pedler, Ashley; Kamper, Steven J; Sterling, Michele

    2016-08-01

    The fear avoidance model (FAM) has been proposed to explain the development of chronic disability in a variety of conditions including whiplash-associated disorders (WADs). The FAM does not account for symptoms of posttraumatic stress and sensory hypersensitivity, which are associated with poor recovery from whiplash injury. The aim of this study was to explore a model for the maintenance of pain and related disability in people with WAD including symptoms of PTSD, sensory hypersensitivity, and FAM components. The relationship between individual components in the model and disability and how these relationships changed over the first 12 weeks after injury were investigated. We performed a longitudinal study of 103 (74 female) patients with WAD. Measures of pain intensity, cold and mechanical pain thresholds, symptoms of posttraumatic stress, pain catastrophising, kinesiophobia, and fear of cervical spine movement were collected within 6 weeks of injury and at 12 weeks after injury. Mixed-model analysis using Neck Disability Index (NDI) scores and average 24-hour pain intensity as the dependent variables revealed that overall model fit was greatest when measures of fear of movement, posttraumatic stress, and sensory hypersensitivity were included. The interactive effects of time with catastrophising and time with fear of activity of the cervical spine were also included in the best model for disability. These results provide preliminary support for the addition of neurobiological and stress system components to the FAM to explain poor outcome in patients with WAD.

  11. An accurate and efficient algorithm for detection of radio bursts with an unknown dispersion measure, for single dish telescopes and interferometers

    CERN Document Server

    Zackay, Barak

    2014-01-01

    Astronomical radio bursts disperse while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the pulse dispersion, which is a computationally demanding task. We present the Fast Dispersion Measure Transform (FDMT) algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of 2N_f N_t+ N_t N_d log_2(N_f) where N_f, N_t and N_d are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms our algorithm conserves the sensitivity of brute force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer, and implemented in a high-level programming language, is already faster than the state of the art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm's computa...

  12. Accurate measurement of phase equilibria and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl for potential application in desalination

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongyoung; Lee, Yohan; Choi, Wonjung; Seo, Yongwon [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Seungmin [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-04-15

    Phase equilibria, structure identification, and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl are investigated for potential application in desalination. To verify the influence of NaCl on the thermodynamic hydrate stability of the HFC-134a hydrate, the three-phase (hydrate (H) - liquid water (L{sub W}) - vapor (V)) equilibria of the HFC-134a+NaCl (0, 3.5, and 8.0 wt%)+water systems are measured by both a conventional isochoric (pVT) method and a stepwise differential scanning calorimeter (DSC) method. Both pVT and DSC methods demonstrate reliable and consistent hydrate phase equilibrium points of the HFC-134a hydrates in the presence of NaCl. The HFC- 134a hydrate is identified as sII via powder X-ray diffraction. The dissociation enthalpies (ΔH{sub d}) of the HFC-134a hydrates in the presence of NaCl are also measured with a high pressure micro-differential scanning calorimeter. The salinity results in significant thermodynamic inhibition of the HFC-134a hydrates, whereas it has little effect on the dissociation enthalpy of the HFC-134a hydrates. The experimental results obtained in this study can be utilized as foundational data for the hydrate-based desalination process.

  13. Towards an Accurate Measurement of Thermal Contact Resistance at Chemical Vapor Deposition-Grown Graphene/SiO2 Interface Through Null Point Scanning Thermal Microscopy.

    Science.gov (United States)

    Chung, Jaehun; Hwang, Gwangseok; Kim, Hyeongkeun; Yang, Wooseok; Kwon, Ohmyoung

    2015-11-01

    In the development of graphene-based electronic devices, it is crucial to characterize the thermal contact resistance between the graphene and the substrate precisely. In this study, we demonstrate that the thermal contact resistance between CVD-grown graphene and SiO2 substrate can be obtained by measuring the temperature drop occurring at the graphene/SiO2 interface with null point scanning thermal microscopy (NP SThM), which profiles the temperature distribution quantitatively with nanoscale spatial resolution (-50 nm) without the shortcomings of the conventional SThM. The thermal contact resistance between the CVD-grown graphene and SiO2 substrate is measured as (1.7 ± 0.27) x 10(-6) M2K/W. This abnormally large thermal contact resistance seems to be caused by extrinsic factors such as ripples and metal-based contamination, which inevitably form in CVD-grown graphene during the production and transfer processes.

  14. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.

    Science.gov (United States)

    Abadlia, L; Gasser, F; Khalouk, K; Mayoufi, M; Gasser, J G

    2014-09-01

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  15. Technical note: Can the sulfur hexafluoride tracer gas technique be used to accurately measure enteric methane production from ruminally cannulated cattle?

    Science.gov (United States)

    Beauchemin, K A; Coates, T; Farr, B; McGinn, S M

    2012-08-01

    An experiment was conducted to determine whether using ruminally cannulated cattle affects the estimate of enteric methane (CH(4)) emissions when using the sulfur hexafluoride (SF(6)) tracer technique with samples taken from a head canister. Eleven beef cattle were surgically fitted with several types of ruminal cannula (2C, 3C, 3C+washer, 9C; Bar Diamond, Parma, ID). The 2C and 3C models (outer and inner flanges with opposite curvature) had medium to high leakage, whereas the 9C models (outer and inner flanges with the same curvature) provided minimum to moderate leakage of gas. A total of 48 cow-day measurements were conducted. For each animal, a permeation tube containing sulfur hexafluoride (SF(6)) was placed in the rumen, and a sample of air from around the nose and mouth was drawn through tubing into an evacuated canister (head canister). A second sample of air was collected from outside the rumen near the cannula into another canister (cannula canister). Background concentrations were also monitored. The methane (CH(4)) emission was estimated from the daily CH(4) and SF(6) concentrations in the head canister (uncorrected). The permeation SF(6) release rate was then partitioned based on the proportion of the SF(6) concentration measured in the head vs. the cannula canister. The CH(4) emissions at each site were calculated using the two release rates and the two CH(4):SF(6) concentration ratios. The head and cannula emissions were summed to obtain the total emission (corrected). The difference (corrected - uncorrected) in CH4 emission was attributed to the differences in CH(4):SF(6) ratio at the 2 exit locations. The proportions of CH(4) and SF(6) recovered at the head were greater (P 0.05; 2C, 6% and 4%; 3C, 17% and 15%; 3C+washer, 19% and 14%). Uncorrected CH(4) emissions were ± 10% of corrected emissions for 53% of the cow-day measurements. Only when more than 80% of the SF(6) escaped via the rumen did the difference between the uncorrected and corrected

  16. Accurate measurement of 5-methylcytosine and 5-hydroxymethylcytosine in human cerebellum DNA by oxidative bisulfite on an array (OxBS-array.

    Directory of Open Access Journals (Sweden)

    Sarah F Field

    Full Text Available The Infinium 450K Methylation array is an established tool for measuring methylation. However, the bisulfite (BS reaction commonly used with the 450K array cannot distinguish between 5-methylcytosine (5mC and 5-hydroxymethylcytosine (5hmC. The oxidative-bisulfite assay disambiguates 5mC and 5hmC. We describe the use of oxBS in conjunction with the 450K array (oxBS-array to analyse 5hmC/5mC in cerebellum DNA. The "methylation" level derived by the BS reaction is the combined level of 5mC and 5hmC at a given base, while the oxBS reaction gives the level of 5mC alone. The level of 5hmC is derived by subtracting the oxBS level from the BS level. Here we present an analysis method that distinguishes genuine positive levels of 5hmC at levels as low as 3%. We performed four replicates of the same sample of cerebellum and found a high level of reproducibility (average r for BS = 98.3, and average r for oxBS = 96.8. In total, 114,734 probes showed a significant positive measurement for 5hmC. The range at which we were able to distinguish 5hmC occupancy was between 3% and 42%. In order to investigate the effects of multiple replicates on 5hmC detection we also simulated fewer replicates and found that decreasing the number of replicates to two reduced the number of positive probes identified by > 50%. We validated our results using qPCR in conjunction with glucosylation of 5hmC sites followed by MspI digestion and we found good concordance with the array estimates (r = 0.94. This experiment provides a map of 5hmC in the cerebellum and a robust dataset for use as a standard in future 5hmC analyses. We also provide a novel method for validating the presence of 5hmC at low levels, and highlight some of the pitfalls associated with measuring 5hmC and 5mC.

  17. Automatic and accurate measurements of P-wave and S-wave polarisation properties with a weighted multi-station complex polarisation analysis

    Science.gov (United States)

    de Meersman, K.; van der Baan, M.; Kendall, J.-M.; Jones, R. H.

    2003-04-01

    We present a weighted multi-station complex polarisation analysis to determine P-wave and S-wave polarisation properties of three-component seismic array data. Complex polarisation analysis of particle motion on seismic data was first introduced by Vidale (1986). In its original form, the method is an interpretation of the eigenvalue decomposition of a 3 by 3, complex data-covariance matrix. We have extended the definition of the data-covariance matrix (C) to C=X^HW-1 X, where C now is a 3n by 3n symmetric complex covariance matrix, with n the number of included three-component (3C) stations. X is the data matrix, the columns of which are the analytic signals of the Northern, Eastern and vertical components of the subsequent 3C stations. X^H is the transpose of the complex conjugate of X and W is a diagonal weighting matrix containing the pre-arrival noise levels of all components and all stations. The signals used in the data-matrix are corrected for arrival time differences. The eigenvectors and eigenvalues of C now describe the polarisation properties within the selected analysis window for all included stations. The main advantages of this approach are a better separation of signal and noise in the covariance matrix and the measurement of signal polarisation properties that are not influenced by the presence of polarised white noise. The technique was incorporated in an automated routine to measure the P-wave and S-wave polarisation properties of a microseismic data-set. The data were recorded in the Valhall oilfield in 1998 with a six level 3C vertical linear array with geophones at 20 m intervals between depths of 2100 m and 2200 m. In total 303 microseismic events were analysed and the results compared with manual interpretations. This comparison showed the advantage and high accuracy of the method.

  18. Plasmid recombination in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.

    1982-01-01

    DNA recombination in exponential phase and competent Haemophilus influenzae was measured by an electron microscopic assay that relies on the conversion of plasmid RSF0885 monomers into multimeric forms. Dimer circles were present at a frequency of 2% in plasmid preparations from competent Rd (wild-type) cells; multimers were present at a frequency of 0.2% in preparations from exponential phase cells. Thus, plasmid recombination was stimulated in competent cells. Multimer formation occurred efficiently in cells of the transformation defective mutant rec2, implying that the rec2 gene product is not required for plasmid recombination. However, the absence of multimer plasmids in preparations from competent cells of the transformation defective mutant rec1 suggests that the rec1 gene product is required. Digestion of purified plasmids with restriction endonuclease PvuII, which makes a single cut in the monomer, revealed the presence of recombination intermediates composed of two linear plasmids joined to form two pairs of arms resembling the Greek letter chi. Length measurements of these arms taken from a population of recombination intermediates gave evidence that the plasmids were joined at sites of homology. The distributions of individual DNA strands, at the intersections of the four arms, could be resolved in some recombination intermediates and were of two types. The first type of junction appeared as a single-stranded arm appended to each corner. The second type of junction consisted of a single strand of DNA linking the two linear plasmids at a site of homology. The single-stranded linker was frequently situated at the edge of a short gap on one of the plasmids in the pair. The fine structures of the recombinational joints have been interpreted in terms of previously proposed models of recombination.

  19. The Clustering of Galaxies in the Completed SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from DR12 galaxy clustering -- towards an accurate model

    CERN Document Server

    Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Ross, Ashley J; Zhao, Gong-bo; Wang, Yuting; Cuesta, Antonio J; Rubiño-Martín, J A; Prada, Francisco; Alam, Shadab; Beutler, Florian; Eisenstein, Daniel J; Gil-Marín, Héctor; Grieb, Jan Niklas; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J; Rossi, Graziano; Salazar-Albornoz, Salvador; Samushia, Lado; Sánchez, Ariel G; Satpathy, Siddharth; Slosar, Anže; Tinker, Jeremy L; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A; Brownstein, Joel R; Nichol, Robert C; Olmstead, Matthew D

    2016-01-01

    We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate $H(z)$, the angular-diameter distance $D_A(z)$, the normalised growth rate $f(z)\\sigma_8(z)$, and the physical matter density $\\Omega_mh^2$. We adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe' galaxy clustering analysis. We also marginalise over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis. We obtain $\\{D_A(z)r_{s,fid}/r_s$Mpc, $H(z)r_s/r_{s,fid}$kms$^{-1}$Mpc$^{-1}$, $f(z)\\sigma_8(z)$, $\\Omega_m h^2\\}$ = $\\{956\\pm28$ , $75.0\\pm4.0$ , $0.397 \\pm 0.073$, $0.143\\pm0.017\\}$ at $z=0.32$ and $\\{1421\\pm23$, $96.7\\pm2.7$ , $0.497 ...

  20. Detecting and Analyzing Genetic Recombination Using RDP4.

    Science.gov (United States)

    Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev

    2017-01-01

    Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.

  1. Toward Robust Climate Baselining: Objective Assessment of Climate Change Using Widely Distributed Miniaturized Sensors for Accurate World-Wide Geophysical Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Teller, E; Leith, C; Canavan, G; Marion, J; Wood, L

    2001-11-13

    A gap-free, world-wide, ocean-, atmosphere-, and land surface-spanning geophysical data-set of three decades time-duration containing the full set of geophysical parameters characterizing global weather is the scientific perquisite for defining the climate; the generally-accepted definition in the meteorological community is that climate is the 30-year running-average of weather. Until such a tridecadal climate base line exists, climate change discussions inevitably will have a semi-speculative, vs. a purely scientific, character, as the baseline against which changes are referenced will be at least somewhat uncertain. The contemporary technology base provides ways-and-means for commencing the development of such a meteorological measurement-intensive climate baseline, moreover with a program budget far less than the {approx}$2.5 B/year which the US. currently spends on ''global change'' studies. In particular, the recent advent of satellite-based global telephony enables real-time control of, and data-return from, instrument packages of very modest scale, and Silicon Revolution-based sensor, data-processing and -storage advances permit 'intelligent' data-gathering payloads to be created with 10 gram-scale mass budgets. A geophysical measurement system implemented in such modern technology is a populous constellation 03 long-lived, highly-miniaturized robotic weather stations deployed throughout the weather-generating portions of the Earths atmosphere, throughout its oceans and across its land surfaces. Leveraging the technological advances of the OS, the filly-developed atmospheric weather station of this system has a projected weight of the order of 1 ounce, and contains a satellite telephone, a GPS receiver, a full set of atmospheric sensing instruments and a control computer - and has an operational life of the order of 1 year and a mass-production cost of the order of $20. Such stations are effectively &apos

  2. Validation of three early ejaculation diagnostic tools: a composite measure is accurate and more adequate for diagnosis by updated diagnostic criteria.

    Directory of Open Access Journals (Sweden)

    Patrick Jern

    Full Text Available PURPOSE: To validate three early ejaculation diagnostic tools, and propose a new tool for diagnosis in line with proposed changes to diagnostic criteria. Significant changes to diagnostic criteria are expected in the near future. Available screening tools do not necessarily reflect proposed changes. MATERIALS AND METHODS: Data from 148 diagnosed early ejaculation patients (M age = 42.8 and 892 controls (M age = 33.1 years from a population-based sample were used. Participants responded to three different questionnaires (Premature Ejaculation Profile; Premature Ejaculation Diagnostic Tool; Multiple Indicators of Premature Ejaculation. Stopwatch measured ejaculation latency times were collected from a subsample of early ejaculation patients. We used two types of responses to the questionnaires depending on the treatment status of the patients 1 responses regarding the situation before starting pharmacological treatment and 2 responses regarding current situation. Logistic regressions and Receiver Operating Characteristics were used to assess ability of both the instruments and individual items to differentiate between patients and controls. RESULTS: All instruments had very good precision (Areas under the Curve ranging from .93-.98. A new five-item instrument (named CHecklist for Early Ejaculation Symptoms - CHEES consisting of high-performance variables selected from the three instruments had validity (Nagelkerke R (2 range .51-.79 for backwards/forwards logistic regression equal to or slightly better than any individual instrument (i.e., had slightly higher validity statistics, but these differences did not achieve statistical significance. Importantly, however, this instrument was more in line with proposed changes to diagnostic criteria. CONCLUSIONS: All three screening tools had good validity. A new 5-item diagnostic tool (CHEES based on the three instruments had equal or somewhat more favorable validity statistics compared to the other three

  3. Measurement of the 1s2l3l’ Dielectronic Recombination Emission Line in Li-Like Ar and Its Contribution to the Faint X-Ray Feature Found in the Stacked Spectrum of Galaxy Clusters

    Science.gov (United States)

    Gall, Amy Christina; Silwal, Roshani; Dreiling, Joan; Borovik, Alexander; Ajello, Marco; Gillaspy, John; Kilgore, Ethan; Ralchenko, Yuri; Takacs, Endre

    2016-06-01

    Driven by the recent detection of an unidentified emission line previously reported at 3.55-3.57 keV in a stacked spectrum of galaxy clusters, we investigated the resonant DR process in Li-like Ar as a possible source of, or contributor to, the emission line. The Li-like transition 1s22l-1s2l3l’ was suggested to produce a 3.62 keV photon [1] near the unidentified line at 3.57 keV and was the primary focus of our investigation. Apart from the mentioned transitions, we have found other features that can be possible contributors to the emission in this region. The Electron Beam Ion Trap at NIST was used to produce and trap the highly-charged ions of argon. The energy of the quasi-monoenergetic electron beam was incremented in steps of 15 eV to scan over all of the Li-like Ar DR resonances. A Johann-type crystal spectrometer and a solid-state germanium detector were used to take x-ray measurements perpendicular to the electron beam. The DR cross sections were measured and normalized to the well-known photoionization cross sections using radiative recombination peaks in the measured spectra. Corrections for different instrument and method related effects such as charge state balance, electron beam space charge, and charge exchange have been considered. Our high-resolution crystal spectra allowed the experimental separation of features that are less than 2 eV apart. We have used a collisional radiative model NOMAD [2] aided by atomic data calculations by FAC [3] to interpret our observations and account for the corrections and uncertainties. Experimental results were compared to the AtomDB theoretical emission lines used to fit the galaxy cluster spectra containing the unidentified 3.57 keV line. These data points can be added benchmarks in the database and used to accurately interpret spectra from current x-ray satellites, including Hitomi, Chandra, and XMM-Newton x-ray observatories.[1] Bulbul E. et al., 2014, ApJ, 789, 13[2] Ralchenko Yu. et al., 2014, JQSRT, 71

  4. Recombination of W18+ ions with electrons: Absolute rate coefficients from a storage-ring experiment and from theoretical calculations

    CERN Document Server

    Spruck, K; Krantz, C; Novotný, O; Becker, A; Bernhardt, D; Grieser, M; Hahn, M; Repnow, R; Savin, D W; Wolf, A; Müller, A; Schippers, S

    2014-01-01

    We present new experimentally measured and theoretically calculated rate coefficients for the electron-ion recombination of W$^{18+}$([Kr] $4d^{10}$ $4f^{10}$) forming W$^{17+}$. At low electron-ion collision energies, the merged-beam rate coefficient is dominated by strong, mutually overlapping, recombination resonances. In the temperature range where the fractional abundance of W$^{18+}$ is expected to peak in a fusion plasma, the experimentally derived Maxwellian recombination rate coefficient is 5 to 10 times larger than that which is currently recommended for plasma modeling. The complexity of the atomic structure of the open-$4f$-system under study makes the theoretical calculations extremely demanding. Nevertheless, the results of new Breit-Wigner partitioned dielectronic recombination calculations agree reasonably well with the experimental findings. This also gives confidence in the ability of the theory to generate sufficiently accurate atomic data for the plasma modeling of other complex ions.

  5. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  6. Laboratory Building for Accurate Determination of Plutonium

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The accurate determination of plutonium is one of the most important assay techniques of nuclear fuel, also the key of the chemical measurement transfer and the base of the nuclear material balance. An

  7. Accurate Topological Measures for Rough Sets

    OpenAIRE

    2015-01-01

    Data granulation is considered a good tool of decision making in various types of real life applications. The basic ideas of data granulation have appeared in many fields, such as interval analysis, quantization, rough set theory, Dempster-Shafer theory of belief functions, divide and conquer, cluster analysis, machine learning, databases, information retrieval, and many others. Some new topological tools for data granulation using rough set approximations are initiated. Moreover, some topolo...

  8. Dielectronic recombination theory

    Energy Technology Data Exchange (ETDEWEB)

    LaGattuta, K.J.

    1991-12-31

    A theory now in wide use for the calculation of dielectronic recombination cross sections ({sigma}{sup DR}) and rate coefficients ({alpha}{sup DR}) was one introduced originally by Feshbach for nuclear physics applications, and then later adapted for atomic scattering problems by Hahn. In the following, we briefly review this theory in a very general form, which allows one to account for the effects of overlapping and interacting resonances, as well as continuum-continuum coupling. An extension of our notation will then also allow for the inclusion of the effects of direct radiative recombination, along with a treatment of the interference between radiative and dielectronic recombination. Other approaches to the calculation of {sigma}{sup DR} have been described by Fano and by Seaton. We will not consider those theories here. Calculations of {alpha}{sup DR} have progressed considerably over the last 25 years, since the early work of Burgess. Advances in the reliability of theoretical predictions have also been promoted recently b a variety of direct laboratory measurements of {sigma}{sup DR}. While the measurements of {sigma}{sup DR} for {delta}n {ne} 0 excitations have tended to agree very well with calculations, the case of {delta}n = 0 has been much problematic. However, by invoking a mechanism originally proposed by Jacobs, which takes into account the effect of stray electric fields on high Rydberg states (HRS) participating in the DR process, new calculations have improved the agreement between theory and experiment for these cases. Nevertheless, certain discrepancies still remain.

  9. The spatial regulation of meiotic recombination hotspots: are all DSB hotspots crossover hotspots?

    Science.gov (United States)

    Serrentino, Maria-Elisabetta; Borde, Valérie

    2012-07-15

    A key step for the success of meiosis is programmed homologous recombination, during which crossovers, or exchange of chromosome arms, take place. Crossovers increase genetic diversity but their main function is to ensure accurate chromosome segregation. Defects in crossover number and position produce aneuploidies that represent the main cause of miscarriages and chromosomal abnormalities such as Down's syndrome. Recombination is initiated by the formation of programmed double strand breaks (DSBs), which occur preferentially at places called DSB hotspots. Among all DSBs generated, only a small fraction is repaired by crossover, the other being repaired by other homologous recombination pathways. Crossover maps have been generated in a number of organisms, defining crossover hotspots. With the availability of genome-wide maps of DSBs as well as the ability to measure genetically the repair outcome at several hotspots, it is becoming more and more clear that not all DSB hotspots behave the same for crossover formation, suggesting that chromosomal features distinguish different types of hotspots.

  10. Atomic excitation and recombination in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination.

  11. Modeling the Free Carrier Recombination Kinetics in PTB7:PCBM Organic Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhout, Stefan D.; Ferguson, Andrew J.; Larson, Bryon W.; Olson, Dana C.; Kopidakis, Nikos

    2016-11-03

    Currently the exact recombination mechanism of free carriers in organic photovoltaic (OPV) devices is poorly understood. Often a reduced Langevin model is used to describe the decay behavior of electrons and holes. Here we propose a novel, simple kinetic model that accurately describes the decay behavior of free carriers in the PTB7:PCBM organic photovoltaic blend. This model needs to only take into account free and trapped holes in the polymer, and free electrons in the fullerene, to accurately describe the recombination behavior of free carriers as measured by time-resolved microwave conductivity (TRMC). The model is consistent for different PTB7:PCBM blend ratios and spans a light intensity range of over 3 orders of magnitude. The model demonstrates that dark carriers exist in the polymer and interact with photoinduced charge carriers, and that the trapping and detrapping rates of the holes are of high importance to the overall carrier lifetime.

  12. Accurate and Accidental Empathy.

    Science.gov (United States)

    Chandler, Michael

    The author offers two controversial criticisms of what are rapidly becoming standard assessment procedures for the measurement of empathic skill. First, he asserts that assessment procedures which attend exclusively to the accuracy with which subjects are able to characterize other people's feelings provide little or no useful information about…

  13. Comparison of device models for organic solar cells: Band-to-band vs. tail states recombination

    Energy Technology Data Exchange (ETDEWEB)

    Soldera, Marcos; Taretto, Kurt [Departamento de Electrotecnia, Universidad Nacional del Comahue, Buenos Aires, Neuquen (Argentina); Kirchartz, Thomas [Department of Physics, Imperial College London, South Kensington (United Kingdom)

    2012-01-15

    The efficiency-limiting recombination mechanism in bulk-heterojunction (BHJ) solar cells is a current topic of investigation and debate in organic photovoltaics. In this work, we simulate state-of-the-art BHJ solar cells using two different models. The first model takes into account band-to-band recombination and field dependent carrier generation. The second model assumes a Shockley-Read-Hall (SRH) recombination mechanism via tail states and field independent carrier generation. Additionally, we include in both cases optical modelling and, thus, position-dependent exciton generation and non-ideal exciton collection. We explore both recombination mechanisms by fitting light and dark current-voltage (JV) characteristics of BHJ cells of five materials: P3HT, MDMO-PPV, MEH-PPV, PCDTBT and PF10TBT, all blended with fullerene derivatives. We show that although main device parameters such as short circuit current, open circuit voltage, fill factor and ideality factor are accurately reproduced by both Langevin and tail recombination, only tail recombination reproduces also the ideality factor of dark characteristics accurately. Nevertheless, the model with SRH recombination via tail states needs the inclusion of external circuitry to account for the heavy shunt present in all the blends, except P3HT:PCBM, when illuminated. Finally, we propose a means to find analytical expressions for the short circuit current by assuming a linear relation between the recombination rate and the concentration of free minority carriers. The model reproduces experimental data of P3HT cells at various thickness values using realistic parameters for this material. Dark JV measurement (circles) of a PCDTBT:PC{sub 70}BM solar cell (Park et al., Nature Photon. 3, 297 (2009) [1]), the fit with the model including recombination via tail states (solid line) and the fit with the model reported by (Koster et al., Phys. Rev. B 72, 085205 (2005) [2]) that includes bimolecular band-to-band recombination

  14. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  15. How accurate are sphygmomanometers?

    Science.gov (United States)

    Mion, D; Pierin, A M

    1998-04-01

    The objective of this study was to assess the accuracy and reliability of mercury and aneroid sphygmomanometers. Measurement of accuracy of calibration and evaluation of physical conditions were carried out in 524 sphygmomanometers, 351 from a hospital setting, and 173 from private medical offices. Mercury sphygmomanometers were considered inaccurate if the meniscus was not '0' at rest. Aneroid sphygmomanometers were tested against a properly calibrated mercury manometer, and were considered calibrated when the error was 13 mm Hg in 7%. In summary, most of the mercury and aneroid sphygmomanometers showed inaccuracy (21% vs 58%) and unreliability (64% vs 70%).

  16. Accurate Modeling of Advanced Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min

    Analysis and optimization methods for the design of advanced printed re ectarrays have been investigated, and the study is focused on developing an accurate and efficient simulation tool. For the analysis, a good compromise between accuracy and efficiency can be obtained using the spectral domain...... to the POT. The GDOT can optimize for the size as well as the orientation and position of arbitrarily shaped array elements. Both co- and cross-polar radiation can be optimized for multiple frequencies, dual polarization, and several feed illuminations. Several contoured beam reflectarrays have been designed...... using the GDOT to demonstrate its capabilities. To verify the accuracy of the GDOT, two offset contoured beam reflectarrays that radiate a high-gain beam on a European coverage have been designed and manufactured, and subsequently measured at the DTU-ESA Spherical Near-Field Antenna Test Facility...

  17. 基于LabVIEW的高精度铂电阻测温系统设计%Design of High Accurate Platinum Resistance Temperature Measurement System Based on LabVIEW

    Institute of Scientific and Technical Information of China (English)

    石明江; 张禾; 何道清

    2012-01-01

    According to the platinum resistance temperature characteristics and virtual instruments, a high accurate temperature measurement system has designed. The system adopted four-wire temperature measurement, it used constant-current source to overcome the error caused by platinum resistance wire. This system used the Lab VIEW software to complete curve fitting. The temperature measurement system errors have been analyzed. The experimental results showed that the system has high accuracy, high reliability and flexibility, if the measured temperature range of between 8℃ to 100℃ , the absolute measurement error is less than ±0. L℃ , it can be widely applied to the high accuracy temperature measurement field.%针对铂电阻测温的特性结合虚拟仪器技术,设计了一种高精度温度测量系统;采用四线制恒流源温度测量电路克服由于铂电阻引线带来的误差,同时利用LabVIEW软件完成曲线拟合,最后对温度测量系统误差进行了分析;测试结果表明,系统具有测量精度高、可靠性高、使用灵活等特点,当被测温度范围在8℃~100℃之间,测量的绝对误差小于士0.1℃,可广泛使用于要求高精度温度测量的领域.

  18. SWISA’S Boiler Steam Drum Level Solution Realised Accurate Measurement%斯克维思液位测量方案在锅炉汽包水位的准确测量

    Institute of Scientific and Technical Information of China (English)

    杨旭艳

    2016-01-01

    锅炉汽包是工业生产过程中蒸汽动力的发生器,对锅炉汽包水位进行准确测量和控制,是锅炉汽包安全运行的重--求,也始终是过程液位测量的一个难点。本文通过对锅炉汽包水位测量重要性,中国电力行业对锅炉汽包水位测量在设计、安装及运行方面的要求,锅炉汽包水位测量的难点,以及当前我国锅炉汽包水位测量及测量仪表常见的问题和不足几方面进行了阐述。通过对比,解析了北京斯克维思仪表有限公司关于锅炉汽包水位测量方案在常规测量方案基础上的优化和创新,为锅炉汽包水位测量领域注入了新的活力。%Boiler steam-powered generators in the industrial production process, accurate measurement and control of boiler drum water level, are important requirements for safe operation of the boiler, always a difficult point liquid level measurement. Paper through on boiler steam package level measurement importance, China power industry on boiler steam package level measurement in design, and installation and the run aspects of requirements, boiler steam package level measurement of difficulties, and current China boiler steam package level measurement and the measurement instrument common of problem and insufficient several aspects for has described, through compared, analytical has Beijing Republika grams dimension thought instrument limited on boiler steam package level measurement programme in general measurement programme based Shang of optimization and innovation, for boiler steam package level measurement field injected has new of vitality.

  19. Identifying the important HIV-1 recombination breakpoints.

    Directory of Open Access Journals (Sweden)

    John Archer

    Full Text Available Recombinant HIV-1 genomes contribute significantly to the diversity of variants within the HIV/AIDS pandemic. It is assumed that some of these mosaic genomes may have novel properties that have led to their prevalence, particularly in the case of the circulating recombinant forms (CRFs. In regions of the HIV-1 genome where recombination has a tendency to convey a selective advantage to the virus, we predict that the distribution of breakpoints--the identifiable boundaries that delimit the mosaic structure--will deviate from the underlying null distribution. To test this hypothesis, we generate a probabilistic model of HIV-1 copy-choice recombination and compare the predicted breakpoint distribution to the distribution from the HIV/AIDS pandemic. Across much of the HIV-1 genome, we find that the observed frequencies of inter-subtype recombination are predicted accurately by our model. This observation strongly indicates that in these regions a probabilistic model, dependent on local sequence identity, is sufficient to explain breakpoint locations. In regions where there is a significant over- (either side of the env gene or under- (short regions within gag, pol, and most of env representation of breakpoints, we infer natural selection to be influencing the recombination pattern. The paucity of recombination breakpoints within most of the envelope gene indicates that recombinants generated in this region are less likely to be successful. The breakpoints at a higher frequency than predicted by our model are approximately at either side of env, indicating increased selection for these recombinants as a consequence of this region, or at least part of it, having a tendency to be recombined as an entire unit. Our findings thus provide the first clear indication of the existence of a specific portion of the genome that deviates from a probabilistic null model for recombination. This suggests that, despite the wide diversity of recombinant forms seen in

  20. Identifying the Important HIV-1 Recombination Breakpoints

    Science.gov (United States)

    Fan, Jun; Simon-Loriere, Etienne; Arts, Eric J.; Negroni, Matteo; Robertson, David L.

    2008-01-01

    Recombinant HIV-1 genomes contribute significantly to the diversity of variants within the HIV/AIDS pandemic. It is assumed that some of these mosaic genomes may have novel properties that have led to their prevalence, particularly in the case of the circulating recombinant forms (CRFs). In regions of the HIV-1 genome where recombination has a tendency to convey a selective advantage to the virus, we predict that the distribution of breakpoints—the identifiable boundaries that delimit the mosaic structure—will deviate from the underlying null distribution. To test this hypothesis, we generate a probabilistic model of HIV-1 copy-choice recombination and compare the predicted breakpoint distribution to the distribution from the HIV/AIDS pandemic. Across much of the HIV-1 genome, we find that the observed frequencies of inter-subtype recombination are predicted accurately by our model. This observation strongly indicates that in these regions a probabilistic model, dependent on local sequence identity, is sufficient to explain breakpoint locations. In regions where there is a significant over- (either side of the env gene) or under- (short regions within gag, pol, and most of env) representation of breakpoints, we infer natural selection to be influencing the recombination pattern. The paucity of recombination breakpoints within most of the envelope gene indicates that recombinants generated in this region are less likely to be successful. The breakpoints at a higher frequency than predicted by our model are approximately at either side of env, indicating increased selection for these recombinants as a consequence of this region, or at least part of it, having a tendency to be recombined as an entire unit. Our findings thus provide the first clear indication of the existence of a specific portion of the genome that deviates from a probabilistic null model for recombination. This suggests that, despite the wide diversity of recombinant forms seen in the viral

  1. Accurate Measurement of Air Conditioner Motor Winding in Electrical Safety Testing%电气安全测试中空调器电机绕组的正确测量

    Institute of Scientific and Technical Information of China (English)

    肖凯佳

    2014-01-01

    GB 4706.32-2012《家用和类似用途电器的安全--热泵、空调器和除湿机的特殊要求》对家用及类似用途的空调器在安全方面作了强制性规定,其中第11章的发热试验是考察空调产品质量安全非常重要的指标,尤其是涉及电机的温度测量和计算繁琐且复杂,因此如何能够准确地对空调器电机绕组进行测量显得尤为重要。本文通过结合空调器安全标准条款要求,针对空调器电机在实际测试中的绕组测量展开对比分析,并总结提出科学精确的测量方法,以达到对整个空调产品的安全合格性更全面更准确地评估。%GB 4706.32-2012“Household and similar electrical appliances-Safety-Particular requirements for electrical heat pumps, air-conditioners and dehumidifiers”is the mandatory criterion for air conditioners with house-hold and similar purposes in terms of security, which the heating test of 11th chapter is a very important indicator for evaluating the safety of air conditioning products, particularly the measurement and calculation of fan motor tempera-ture is very complicated, so how to measured the windings of fan motor accurately is very important. In this paper, according to the requirement of air conditioners safety standards, we made a comparison and analysis for the windings measurement of air conditioner motor in the actual test, and put forward the scientific and precise measurement method, to achieve more comprehensive for the safety of the air conditioning products eligibility assessment more accurately.

  2. Stationary afterglow measurements of the temperature dependence of the electron–ion recombination rate coefficients of {{\\rm{H}}}_{2}{{\\rm{D}}}^{+} and {{HD}}_{2}^{+} in He/Ar/H2/D2 gas mixtures at T = 80–145 K 

    Science.gov (United States)

    Plašil, Radek; Dohnal, Petr; Kálosi, Ábel; Roučka, Štěpán; Johnsen, Rainer; Glosík, Juraj

    2017-03-01

    We report measurements of the binary and ternary recombination rate coefficients of deuterated isotopologues of {{{H}}}3+. A cavity ring-down absorption spectrometer was used to monitor the fractional abundances of {{{H}}}3+, {{{H}}}2{{{D}}}+, {{HD}}2+ and {{{D}}}3+ during the decay of a plasma in He/Ar/{{{H}}}2/{{{D}}}2 mixtures. A dependence of the measured effective recombination rate coefficients on the helium buffer gas density was observed and hence both the binary and the ternary recombination rate coefficients for {{{H}}}2{{{D}}}+ and {{HD}}2+ were obtained in the temperature range 80–145 K.

  3. Relative rates of homologous and nonhomologous recombination in transfected DNA.

    OpenAIRE

    Roth, D B; Wilson, J H

    1985-01-01

    Both homologous and nonhomologous recombination events occur at high efficiency in DNA molecules transfected into mammalian cells. Both types of recombination occur with similar overall efficiencies, as measured by an endpoint assay, but their relative rates are unknown. In this communication, we measure the relative rates of homologous and nonhomologous recombination in DNA transfected into monkey cells. This measurement is made by using a linear simian virus 40 genome that contains a 131-ba...

  4. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    Science.gov (United States)

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins.

  5. Accurate determination of minority carrier mobility in silicon from quasi-steady-state photoluminescence

    Science.gov (United States)

    Giesecke, J. A.; Schindler, F.; Bühler, M.; Schubert, M. C.; Warta, W.

    2013-06-01

    Minority carrier mobility is a crucial transport property affecting the performance of semiconductor devices such as solar cells. Compensation of dopant species and novel multicrystalline materials call for accurate knowledge of minority carrier mobility for device simulation and characterization. Yet, measurement techniques of minority carrier mobility are scarce, and published data scatter significantly even on monocrystalline material. In this paper, the determination of minority carrier mobility from self-consistent quasi-steady-state photoluminescence measurements of effective carrier lifetime is presented. The measurement design is distinguished by a limitation of carrier recombination through minority carrier transport—with excess carrier generation and recombination confined to opposite interfaces, respectively. Minority carrier mobility is inferred from the minority carrier diffusion coefficient via the Einstein relation. An experimental proof of concept on monocrystalline p-type material is provided, showing good agreement with state-of-the-art data and models. Considerations for the applicability of the method to compensated and multicrystalline silicon materials are discussed.

  6. Relative rates of homologous and nonhomologous recombination in transfected DNA.

    Science.gov (United States)

    Roth, D B; Wilson, J H

    1985-05-01

    Both homologous and nonhomologous recombination events occur at high efficiency in DNA molecules transfected into mammalian cells. Both types of recombination occur with similar overall efficiencies, as measured by an endpoint assay, but their relative rates are unknown. In this communication, we measure the relative rates of homologous and nonhomologous recombination in DNA transfected into monkey cells. This measurement is made by using a linear simian virus 40 genome that contains a 131-base-pair duplication at its termini. Once inside the cell, this molecule must circularize to initiate lytic infection. Circularization can occur either by direct, nonhomologous end-joining or by homologous recombination within the duplicated region. Although the products of the two recombination pathways are different, they are equally infectious. Since homologous and nonhomologous recombination processes are competing for the same substrate, the relative amounts of the products of each pathway should reflect the relative rates of homologous and nonhomologous recombination. Analysis of individual recombinant genomes from 164 plaques indicates that the rate of circularization by nonhomologous recombination is 2- to 3-fold higher than the rate of homologous recombination. The assay system described here may prove to be useful for testing procedures designed to influence the relative rates of homologous and nonhomologous recombination.

  7. On accurate determination of contact angle

    Science.gov (United States)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  8. Hadron Correlations from Recombination and Fragmentation

    CERN Document Server

    Fries, R J

    2005-01-01

    We review the formalism of quark recombination applied to the hadronization of a quark gluon plasma. Evidence in favor of the quark recombination model is outlined. Recent work on parton correlations, leading to detectable correlations between hadrons, is discussed. Hot spots from completely quenched jets are a likely source of such correlations which appear to be jet-like. It will be discussed how such a picture compares with measurement of associated hadron yields at RHIC.

  9. Recombinant methods and materials

    Energy Technology Data Exchange (ETDEWEB)

    Roizman, B.; Post, L.E.

    1988-09-06

    This patent describes a method for stably effecting the insertion or deletion of a selected DNA sequence at a specific site in a viral genome. The method consists of: (1) isolating from the genome a linear DNA fragment comprising both (a) the specific site determined for insertion or deletion of selected DNA sequence and (b) flanking DNA sequences normally preceding and following the site; (2) preparing first and second altered genome fragments from the fragment isolated in step (1). (a) the first altered fragment comprising the fragment comprising a thymidine kinase gene in a position intermediate the ends of the fragment, and (b) the second altered fragment comprising the fragment having the selected DNA sequence inserted therein or deleted therefrom; (3) contacting the genome with the first altered fragment under conditions permitting recombination at sites of DNA sequence homology, selecting for a recombinant genome comprising the thymidine kinase gene, and isolating the recombinant genome; and (4) contacting the recombinant genome isolated in step (3) with the second altered fragment under conditions permitting recombination at sites of DNA sequence homology, selecting for a recombinant genome lacking the thymidine kinase gene, and isolating the recombinant genome product.

  10. Research on mathematical model of accurate value of track irregularity based on midpoint chord measurement method%基于中点弦测法的轨道不平顺精确值数学模型研究

    Institute of Scientific and Technical Information of China (English)

    王源; 徐金辉; 陈嵘; 肖杰灵; 王平

    2015-01-01

    弦测法是测量轨道不平顺的一种基本方法,原理简单,使用方便,高效迅捷。传统观点是直接将弦测值作为轨道不平顺的近似描述,这会不可避免地因基准线变动而产生较大误差。针对该问题建立了一个描述中点弦测法本质的数学模型,分析了轨道不平顺与其弦测值之间的关系,构造了一种计算轨道不平顺精确值的迭代算法与快速算法,并采用数值仿真对弦测过程进行模拟。结果显示:迭代算法总体误差较小,传递函数较好,但由于迭代次数等原因会产生端点误差;快速算法以牺牲计算内存为代价能达到较高精度,绝对误差在1μm以内,传递函数效果极好,从而证明了所建立的数学模型的正确性与计算结果的精确性。%Chord measuring method is a basic method for measuring track irregularity,its theory is easily understood and it is convenient,quick and effective. T raditional method is considering the chord measuring value as approximate track irregularity,which inevitably leads to the big error because of the base line changing. In order to solve this problem,a mathematical model describing the nature of midpoint chord measuring method was established,the relationship between track irregularity and the chord measuring value was discussed,an iterative algorithm and a fast algorithm for calculating accurate track irregularity value were designed,the chord measuring process was simulated by numerical simulation. T he results showed that the iterative algorithm has less overall error,the transfer function is good and the endpoint error occurs because of such reasons as number of iterations,while the fast algorithm achieves a high accuracy at the expense of computing memory,the absolute error of which is less than 1 μm,the effect of transfer function is excellent,which proves the correctness of the mathematical model and the accuracy of the calculation results.

  11. More Accurate Definition of Clinical Target Volume Based on the Measurement of Microscopic Extensions of the Primary Tumor Toward the Uterus Body in International Federation of Gynecology and Obstetrics Ib-IIa Squamous Cell Carcinoma of the Cervix

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wen-Jia [Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Wu, Xiao [Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Xue, Ren-Liang; Lin, Xiang-Ying [Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Kidd, Elizabeth A. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Yan, Shu-Mei [Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province (China); Zhang, Yao-Hong [Department of Radiation Oncology, Chaozhou Hospital of Chaozhou City, Guangdong Province (China); Zhai, Tian-Tian; Lu, Jia-Yang; Wu, Li-Li; Zhang, Hao [Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Huang, Hai-Hua [Department of Pathology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Chen, Zhi-Jian; Li, De-Rui [Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China); Xie, Liang-Xi, E-mail: xieliangxi1@qq.com [Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province (China)

    2015-01-01

    Purpose: To more accurately define clinical target volume for cervical cancer radiation treatment planning by evaluating tumor microscopic extension toward the uterus body (METU) in International Federation of Gynecology and Obstetrics stage Ib-IIa squamous cell carcinoma of the cervix (SCCC). Patients and Methods: In this multicenter study, surgical resection specimens from 318 cases of stage Ib-IIa SCCC that underwent radical hysterectomy were included. Patients who had undergone preoperative chemotherapy, radiation, or both were excluded from this study. Microscopic extension of primary tumor toward the uterus body was measured. The association between other pathologic factors and METU was analyzed. Results: Microscopic extension toward the uterus body was not common, with only 12.3% of patients (39 of 318) demonstrating METU. The mean (±SD) distance of METU was 0.32 ± 1.079 mm (range, 0-10 mm). Lymphovascular space invasion was associated with METU distance and occurrence rate. A margin of 5 mm added to gross tumor would adequately cover 99.4% and 99% of the METU in the whole group and in patients with lymphovascular space invasion, respectively. Conclusion: According to our analysis of 318 SCCC specimens for METU, using a 5-mm gross tumor volume to clinical target volume margin in the direction of the uterus should be adequate for International Federation of Gynecology and Obstetrics stage Ib-IIa SCCC. Considering the discrepancy between imaging and pathologic methods in determining gross tumor volume extent, we recommend a safer 10-mm margin in the uterine direction as the standard for clinical practice when using MRI for contouring tumor volume.

  12. Dissociative recombination in aeronomy

    Science.gov (United States)

    Fox, J. L.

    1989-01-01

    The importance of dissociative recombination in planetary aeronomy is summarized, and two examples are discussed. The first is the role of dissociative recombination of N2(+) in the escape of nitrogen from Mars. A previous model is updated to reflect new experimental data on the electronic states of N produced in this process. Second, the intensity of the atomic oxygen green line on the nightside of Venus is modeled. Use is made of theoretical rate coefficients for production of O (1S) in dissociative recombination from different vibrational levels of O2(+).

  13. Accurate cloud-based smart IMT measurement, its validation and stroke risk stratification in carotid ultrasound: A web-based point-of-care tool for multicenter clinical trial.

    Science.gov (United States)

    Saba, Luca; Banchhor, Sumit K; Suri, Harman S; Londhe, Narendra D; Araki, Tadashi; Ikeda, Nobutaka; Viskovic, Klaudija; Shafique, Shoaib; Laird, John R; Gupta, Ajay; Nicolaides, Andrew; Suri, Jasjit S

    2016-08-01

    This study presents AtheroCloud™ - a novel cloud-based smart carotid intima-media thickness (cIMT) measurement tool using B-mode ultrasound for stroke/cardiovascular risk assessment and its stratification. This is an anytime-anywhere clinical tool for routine screening and multi-center clinical trials. In this pilot study, the physician can upload ultrasound scans in one of the following formats (DICOM, JPEG, BMP, PNG, GIF or TIFF) directly into the proprietary cloud of AtheroPoint from the local server of the physician's office. They can then run the intelligent and automated AtheroCloud™ cIMT measurements in point-of-care settings in less than five seconds per image, while saving the vascular reports in the cloud. We statistically benchmark AtheroCloud™ cIMT readings against sonographer (a registered vascular technologist) readings and manual measurements derived from the tracings of the radiologist. One hundred patients (75 M/25 F, mean age: 68±11 years), IRB approved, Toho University, Japan, consisted of Left/Right common carotid artery (CCA) artery (200 ultrasound scans), (Toshiba, Tokyo, Japan) were collected using a 7.5MHz transducer. The measured cIMTs for L/R carotid were as follows (in mm): (i) AtheroCloud™ (0.87±0.20, 0.77±0.20); (ii) sonographer (0.97±0.26, 0.89±0.29) and (iii) manual (0.90±0.20, 0.79±0.20), respectively. The coefficient of correlation (CC) between sonographer and manual for L/R cIMT was 0.74 (P<0.0001) and 0.65 (P<0.0001), while, between AtheroCloud™ and manual was 0.96 (P<0.0001) and 0.97 (P<0.0001), respectively. We observed that 91.15% of the population in AtheroCloud™ had a mean cIMT error less than 0.11mm compared to sonographer's 68.31%. The area under curve for receiving operating characteristics was 0.99 for AtheroCloud™ against 0.81 for sonographer. Our Framingham Risk Score stratified the population into three bins as follows: 39% in low-risk, 70.66% in medium-risk and 10.66% in high-risk bins

  14. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin.

    Directory of Open Access Journals (Sweden)

    Wolfgang Nachbauer

    Full Text Available Friedreich ataxia (FRDA is caused by a GAA repeat expansion in the FXN gene leading to reduced expression of the mitochondrial protein frataxin. Recombinant human erythropoietin (rhuEPO is suggested to increase frataxin levels, alter mitochondrial function and improve clinical scores in FRDA patients. Aim of the present pilot study was to investigate mitochondrial metabolism of skeletal muscle tissue in FRDA patients and examine effects of rhuEPO administration by phosphorus 31 magnetic resonance spectroscopy (31P MRS. Seven genetically confirmed FRDA patients underwent 31P MRS of the calf muscles using a rest-exercise-recovery protocol before and after receiving 3000 IU of rhuEPO for eight weeks. FRDA patients showed more rapid phosphocreatine (PCr depletion and increased accumulation of inorganic phosphate (Pi during incremental exercise as compared to controls. After maximal exhaustive exercise prolonged regeneration of PCR and slowed decline in Pi can be seen in FRDA. PCr regeneration as hallmark of mitochondrial ATP production revealed correlation to activity of complex II/III of the respiratory chain and to demographic values. PCr and Pi kinetics were not influenced by rhuEPO administration. Our results confirm mitochondrial dysfunction and exercise intolerance due to impaired oxidative phosphorylation in skeletal muscle tissue of FRDA patients. MRS did not show improved mitochondrial bioenergetics after eight weeks of rhuEPO exposition in skeletal muscle tissue of FRDA patients.EU Clinical Trials Register2008-000040-13.

  15. Characterization of the Key Aroma Compounds in Chinese Vidal Icewine by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Tests.

    Science.gov (United States)

    Ma, Yue; Tang, Ke; Xu, Yan; Li, Ji-Ming

    2017-01-18

    The key aroma compounds of Chinese Vidal icewine were characterized by means of gas chromatography-olfactometry (GC-O) coupled with mass spectrometry (MS) on polar and nonpolar columns, and their flavor dilution (FD) factors were determined by aroma extract dilution analysis (AEDA). A total of 59 odor-active aroma compounds in three ranks of Vidal icewines were identified, and 28 odorants (FD ≥ 9) were further quantitated for aroma reconstitution and omission tests. β-Damascenone showed the highest FD value of 2187 in all icewines. Methional and furaneol were first observed as important odorants in Vidal icewine. Aroma recombination experiments revealed a good similarity containing the 28 important aromas. Omission tests corroborated the significant contribution of β-damascenone and the entire group of esters. Besides, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) and 3-(methylthio)-1-propanal (methional) also had significant effects on icewine character, especially on apricot, caramel, and tropical fruit characteristics.

  16. Monitoring homologous recombination in rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhuanying; Tang Li [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China); Li Meiru [South China Botanic Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Chen Lei; Xu Jie [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China); Wu Goujiang [South China Botanic Garden, Chinese Academy of Sciences, Guangzhou 510650 (China); Li Hongqing, E-mail: hqli@scnu.edu.cn [Guangdong Provincial Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631 (China)

    2010-09-10

    Here we describe a system to assay homologous recombination during the complete life cycle of rice (Oryza sativa L.). Rice plants were transformed with two copies of non-functional GUS reporter overlap fragments as recombination substrate. Recombination was observed in all plant organs examined, from the seed stage until the flowering stage of somatic plant development. Embryogenic cells exhibited the highest recombination ability with an average of 3 x 10{sup -5} recombination events per genome, which is about 10-fold of that observed in root cells, and two orders of that observed in leaf cells. Histological analysis revealed that recombination events occurred in diverse cell types, but preferentially in cells with small size. Examples of this included embryogenic cells in callus, phloem cells in the leaf vein, and cells located in the root apical meristem. Steady state RNA analysis revealed that the expression levels of rice Rad51 homologs are positively correlated with increased recombination rates in embryogenic calli, roots and anthers. Finally, radiation treatment of plantlets from distinct recombination lines increased the recombination frequency to different extents. These results showed that homologous recombination frequency can be effectively measured in rice using a transgene reporter assay. This system will facilitate the study of DNA damage signaling and homologous recombination in rice, a model monocot.

  17. Antagonistic experimental coevolution with a parasite increases host recombination frequency

    Directory of Open Access Journals (Sweden)

    Kerstes Niels AG

    2012-02-01

    Full Text Available Abstract Background One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. Results By measuring recombination directly in the individuals under selection, we found that recombination in the host population was increased after 11 generations of coevolution. Detailed insights into genotypic and phenotypic changes occurring during the coevolution experiment furthermore helped us to reconstruct the coevolutionary dynamics that were associated with this increase in recombination frequency. As coevolved lines maintained higher genetic diversity than control lines, and because there was no evidence for heterozygote advantage or for a plastic response of recombination to infection, the observed increase in recombination most likely represented an adaptive host response under Red Queen dynamics. Conclusions This study provides direct, experimental evidence for an increase in recombination frequency under host-parasite coevolution in an obligatory outcrossing species. Combined with earlier results, the Red Queen process is the most likely explanation for this observation.

  18. Somatic recombination, gene amplification and cancer.

    Science.gov (United States)

    Ramel, C; Cederberg, H; Magnusson, J; Vogel, E; Natarajan, A T; Mullender, L H; Nivard, J M; Parry, J M; Leyson, A; Comendador, M A; Sierra, L M; Ferreiro, J A; Consuegra, S

    1996-06-12

    The principle objective of this research programme, to analyse chemical induction of somatic recombination and related endpoints, i.e., mobilization of transposing elements and gene amplification, has been approached by means of several assay systems. These have included Drosophila, Saccharomyces and mammalian cell cultures. 6.1. Screening assays for mitotic recombination. A large number of chemicals have been investigated in the three Drosophila assay systems employed--the multiple wing hair/flare wing spot system developed by Graf et al., 1984, the white-ivory system developed by Green et al., 1986 and the white/white+ eye spot assay developed by Vogel (Vogel and Nivard, 1993). Particularly the screening of 181 chemicals, covering a wide array of chemical classes, by the last mentioned assay has shown that measurement of somatic recombination in Drosophila constitutes a sensitive and efficient short-term test which shows a remarkably good correlation with the agent score of 83 short-term tests analysed by ICPEMC (Mendelsohn et al., 1992; Table 2) as well as the assay performance in international collaborative programmes measuring carcinogen/non-carcinogens (de Serres and Ashby, 1981; Ashby et al., 1985, 1988). Also the wing spot assay has gained wide international recognition as a similarly sensitive test. These two assay systems in Drosophila measure both intrachromosomal events and interchromosomal recombination. The white-ivory system on the other hand is based on the loss of a tandem duplication in the white locus, the mechanism of which is less known, but probably involves intrachromosomal recombination. The difference in the mechanism between this assay and the former two was indicated by the lack of response to methotrexate in the white-ivory assay, while this compound was strongly recombinogenic in both the wing spot and white/white+ assays. The use of different strains of Drosophila with the white/white+ assay demonstrated the importance of the

  19. A Soil Sampling Method for Accurate Measurement of Mercury Concentration in Soil Air%一种准确测定土壤空气汞浓度的采样方法研究

    Institute of Scientific and Technical Information of China (English)

    吴晓云; 郑有飞; 林克思

    2016-01-01

    into Hg0 in soil air. The soil air in underlying soil layers is relatively stable and less changed,which further proves the method is reliable. This method has the following advantages:during the experiment,lithium batteries power the device,which is easy to operate in the field and capable of collecting soil air at different depths,and enables spatio-temporal synchronization of observation of mercury concentrations in the soil profile. But it should be noted that this experiment can only be carried out in paddy fields unsaturated with soil water and the use of rotameter may lead to errors in flow measurement. This experiment is characterized by simplicity of the devices,and easy operation in field and can be used to precisely and accurately measure gaseous mercury concentrations in soil air in unsaturated paddy fields.

  20. Universality: Accurate Checks in Dyson's Hierarchical Model

    Science.gov (United States)

    Godina, J. J.; Meurice, Y.; Oktay, M. B.

    2003-06-01

    In this talk we present high-accuracy calculations of the susceptibility near βc for Dyson's hierarchical model in D = 3. Using linear fitting, we estimate the leading (γ) and subleading (Δ) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized renormalization group transformation. We found γ = 1.29914073 ± 10 -8 and, Δ = 0.4259469 ± 10-7 independently of the choice of local integration measure (Ising or Landau-Ginzburg). After a suitable rescaling, the approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed by Koch and Wittwer.

  1. Recombination and assortment in the macronucleus of Tetrahymena thermophila: a theoretical study by computer simulation.

    Science.gov (United States)

    Doerder, F P; Diblasi, S L

    1984-12-01

    The compound nature of the macronucleus of Tetrahymena thermophila presents multiple opportunities for recombination between genes on the same macronuclear chromosome. Such recombinants should be detectable through their assortment at subsequent amitotic macronuclear divisions. Thus, a macronucleus that is initially AB/ab should produce recombinant assortees of the genotypes Ab/aB. Computer simulation shows that, when the recombination frequency is two or fewer times per cell cycle, recombinant assortees are produced at experimentally measurable frequencies of less than 40%. At higher recombination frequencies, linked genes appear to assort independently. The simulations also show that recombination during macronuclear development can be distinguished from recombination in subsequent cell cycles only if the first appearance of recombinant assortees is 100 or more fissions after conjugation. The use of macronuclear recombination and assortment as a means of mapping macronuclear genes is severely constrained by the large variances in assortment outcomes; with experimentally small sample sizes, such mapping is impossible.

  2. Recombinant Helicobacter pylori catalase

    Institute of Scientific and Technical Information of China (English)

    Yang Bai; Ya-Li Zhang; Jian-Feng Jin; Ji-De Wang; Zhao-Shan Zhang

    2003-01-01

    AIM: To construct a recombinant strain which highly expresses catalase of Helicobacter pylori(H.pylori) and assay the activity of H. pylori catalase.METHODS: The catalase DNA was amplified from H. pylori chromosomal DNA with PCR techniques and inserted into the prokaryotie expression vector pET-22b (+), and then was transformed into the BL21 (DE3) E. coli strain which expressed catalase recombinant protein. The activity of H.pylori catalase was assayed by the Beers & Sizers.RESULTS: DNA sequence analysis showed that the sequence of catalase DNA was the same as GenBank's research. The catalase recombinant protein amounted to 24.4 % of the total bacterial protein after induced with IPTG for 3 hours at 37 ℃ and the activity of H. pylori catalase was high in the BL21 (DE3) E. coli strain.CONCLUSION: A clone expressing high activity H. pylori catalase is obtained, laying a good foundation for further studies.

  3. Accurate colorimetric feedback for RGB LED clusters

    Science.gov (United States)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  4. Radiative transfer effects in primordial hydrogen recombination

    CERN Document Server

    Ali-Haïmoud, Yacine; Hirata, Christopher M

    2010-01-01

    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen ...

  5. Efficient and accurate fragmentation methods.

    Science.gov (United States)

    Pruitt, Spencer R; Bertoni, Colleen; Brorsen, Kurt R; Gordon, Mark S

    2014-09-16

    Conspectus Three novel fragmentation methods that are available in the electronic structure program GAMESS (general atomic and molecular electronic structure system) are discussed in this Account. The fragment molecular orbital (FMO) method can be combined with any electronic structure method to perform accurate calculations on large molecular species with no reliance on capping atoms or empirical parameters. The FMO method is highly scalable and can take advantage of massively parallel computer systems. For example, the method has been shown to scale nearly linearly on up to 131 000 processor cores for calculations on large water clusters. There have been many applications of the FMO method to large molecular clusters, to biomolecules (e.g., proteins), and to materials that are used as heterogeneous catalysts. The effective fragment potential (EFP) method is a model potential approach that is fully derived from first principles and has no empirically fitted parameters. Consequently, an EFP can be generated for any molecule by a simple preparatory GAMESS calculation. The EFP method provides accurate descriptions of all types of intermolecular interactions, including Coulombic interactions, polarization/induction, exchange repulsion, dispersion, and charge transfer. The EFP method has been applied successfully to the study of liquid water, π-stacking in substituted benzenes and in DNA base pairs, solvent effects on positive and negative ions, electronic spectra and dynamics, non-adiabatic phenomena in electronic excited states, and nonlinear excited state properties. The effective fragment molecular orbital (EFMO) method is a merger of the FMO and EFP methods, in which interfragment interactions are described by the EFP potential, rather than the less accurate electrostatic potential. The use of EFP in this manner facilitates the use of a smaller value for the distance cut-off (Rcut). Rcut determines the distance at which EFP interactions replace fully quantum

  6. Recombinant renewable polyclonal antibodies.

    Science.gov (United States)

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  7. Recombinant DNA for Teachers.

    Science.gov (United States)

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  8. Trap-assisted recombination in disordered organic semiconductors

    NARCIS (Netherlands)

    Kuik, M.; Koster, L.J.A.; Wetzelaer, G.A.H.; Blom, P.W.M.

    2011-01-01

    The trap-assisted recombination of electrons and holes in organic semiconductors is investigated. The extracted capture coefficients of the trap-assisted recombination process are thermally activated with an identical activation energy as measured for the hole mobility μp. We demonstrate that the ra

  9. Estimation of recombination frequency in bi-parental genetic populations.

    Science.gov (United States)

    Sun, Ziqi; Li, Huihui; Zhang, Luyan; Wang, Jiankang

    2012-06-01

    Summary Linkage analysis plays an important role in genetic studies. In linkage analysis, accurate estimation of recombination frequency is essential. Many bi-parental populations have been used, and determining an appropriate population is of great importance in precise recombination frequency. In this study, we investigated the estimation efficiency of recombination frequency in 12 bi-parental populations. The criteria that we used for comparison were LOD score in testing linkage relationship, deviation between estimated and real recombination frequency, standard error (SE) of estimates and the least theoretical population size (PS) required to observe at least one recombinant and to declare the statistically significant linkage relationship. Theoretical and simulation results indicated that larger PS and smaller recombination frequency resulted in higher LOD score and smaller deviation. Lower LOD score, higher deviation and higher SE for estimating the recombination frequency in the advanced backcrossing and selfing populations are larger than those in backcross and F2 populations, respectively. For advanced backcrossing and selfing populations, larger populations were needed in order to observe at least one recombinant and to declare significant linkage. In comparison, in F2 and F3 populations higher LOD score, lower deviation and SE were observed for co-dominant markers. A much larger population was needed to observe at least one recombinant and to detect loose linkage for dominant and recessive markers. Therefore, advanced backcrossing and selfing populations had lower precision in estimating the recombination frequency. F2 and F3 populations together with co-dominant markers represent the ideal situation for linkage analysis and linkage map construction.

  10. Highly oriented NdFeB nanocrystalline magnets from partially recombined compacts with ultrafine grain size by reactive deformation under low pressure

    Institute of Scientific and Technical Information of China (English)

    余云萍; 李军; 刘颖; 王仁全; 郑青; 连利仙

    2015-01-01

    The partially recombined compacts with ultrafine grain size were taken advantage of preparing anisotropic nanocrystalline magnets with full density and homogenous microstructure and texture by reactive deformation under low pressure. Because of the ul-trafine grain size of the precursors, the partially recombined phases could quickly achieve recombination. The results suggested that the newly recombined Nd2Fe14B grains with fine grain size could undergo deformation immediately during the desorp-tion-recombination reaction, and then an obvious anisotropy and uniform alignment would be obtained. The magnetic properties, (BH)max=214 kJ/m3,Br= 1.26 T,Hcj=463 kA/m, were obtained after being treated for 5 min at 820 ºC in high vacuum under low pres-sure less than 26 MPa. Microstructures of the magnets were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Magnetic measurements were carried out using a vibrating sample magnetometer (VSM) with the maximum field of 2.88 T. Accurate phase contents were measured by a Mossbauer spectrometer.

  11. Characterization of key odorants in Chinese chixiang aroma-type liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies.

    Science.gov (United States)

    Fan, Haiyan; Fan, Wenlai; Xu, Yan

    2015-04-15

    Chixiang aroma-type liquor is extensively welcomed by consumers owing to its typical fatty aroma, particularly in southern China. To our knowledge, no comprehensive characterization of aroma and flavor from chixiang aroma-type liquor has been published. It is still a confused question which components are the most important in characterizing its unique aroma. A total of 56 odorants were identified in chixiang aroma-type liquor by aroma extract dilution analysis (AEDA), and in different quantitative measurements, 34 aroma compounds were further demonstrated as important odorants according to odor activity values (OAVs). Furthermore, this research suggested that the aroma of chixiang aroma-type finished liquor could be successfully reconstituted by mixing 34 aroma compounds in the concentrations measured. Omission experiments further confirmed (E)-2-nonenal as the key odorant and revealed the significance of (E)-2-octenal and 2-phenylethanol for the overall aroma of chixiang aroma-type liquor. 3-(Methylthio)-1-propanol (methionol), diethyl 1,7-heptanedioate (diethyl pimelate), diethyl 1,8-octanedioate (diethyl suberate), and diethyl 1,9-nonanedioate (diethyl azelate), identified as the characteristic aromas of chixiang aroma-type liquor in 1995, had no effects on aroma based on omission/addition experiments.

  12. The Accurate Particle Tracer Code

    CERN Document Server

    Wang, Yulei; Qin, Hong; Yu, Zhi

    2016-01-01

    The Accurate Particle Tracer (APT) code is designed for large-scale particle simulations on dynamical systems. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and non-linear problems. Under the well-designed integrated and modularized framework, APT serves as a universal platform for researchers from different fields, such as plasma physics, accelerator physics, space science, fusion energy research, computational mathematics, software engineering, and high-performance computation. The APT code consists of seven main modules, including the I/O module, the initialization module, the particle pusher module, the parallelization module, the field configuration module, the external force-field module, and the extendible module. The I/O module, supported by Lua and Hdf5 projects, provides a user-friendly interface for both numerical simulation and data analysis. A series of new geometric numerical methods...

  13. Accurate ab initio spin densities

    CERN Document Server

    Boguslawski, Katharina; Legeza, Örs; Reiher, Markus

    2012-01-01

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CA...

  14. Genetic recombination in Escherichia coli : II. Calculation of incorporation frequency and relative map distance by recombinant analysis

    NARCIS (Netherlands)

    Haan, P.G. de; Verhoef, C.

    1966-01-01

    In this paper a mathematical analysis based on the physical exchange of genetic material is presented for a four-factor cross. The incorporation frequency of donor markers and the relative map distances may be accurately estimated from the frequencies of the eight recombinant classes. The results ob

  15. Analysis of the interaction of an electron beam with a solar cell. III - The effect of spacial variations of the number density of recombination centers on SEM measurements

    Science.gov (United States)

    Von Roos, O.

    1979-01-01

    By means of an exactly soluble model the short circuit current generated by a scanning electron microscope in a P-N junction has been determined in cases where the trap density is inhomogeneous. The diffusion length for minority carriers becomes then dependent on the spacial coordinates. It is shown that in this case the dependence of the Isc on characteristic parameters as cell thickness, distance of the beam excitation spot from ohmic contacts, etc., becomes very intricate. This fact precludes the determination of the local diffusion length in the usual manner. Although the model is somewhat simplified in order to make it amenable to exact solutions, it is nevertheless realistic enough to lead to the conclusion that SEM measurements of bulk transport parameters in inhomogeneous semiconductor material are impractical since they may lead to serious errors in the interpretation of the data by customary means.

  16. Molecular hydrogen in the cosmic recombination epoch

    CERN Document Server

    Alizadeh, Esfandiar

    2010-01-01

    The advent of precise measurements of the cosmic microwave background (CMB) anisotropies has motivated correspondingly precise calculations of the cosmic recombination history. Cosmic recombination proceeds far out of equilibrium because of a "bottleneck" at the $n=2$ level of hydrogen: atoms can only reach the ground state via slow processes: two-photon decay or Lyman-$\\alpha$ resonance escape. However, even a small primordial abundance of molecules could have a large effect on the interline opacity in the recombination epoch and lead to an additional route for hydrogen recombination. Therefore, this paper computes the abundance of the H$_2$ molecule during the cosmic recombination epoch. Hydrogen molecules in the ground electronic levels X$^1\\Sigma^+_g$ can either form from the excited H$_2$ electronic levels B$^1\\Sigma^+_u$ and C$^1\\Pi_u$ or through the charged particles H$_2^+$, HeH$^+$ and H$^-$. We follow the transitions among all of these species, resolving the rotational and vibrational sub-levels. Si...

  17. Recombination Processes and Nonlinear Markov Chains.

    Science.gov (United States)

    Pirogov, Sergey; Rybko, Alexander; Kalinina, Anastasia; Gelfand, Mikhail

    2016-09-01

    Bacteria are known to exchange genetic information by horizontal gene transfer. Since the frequency of homologous recombination depends on the similarity between the recombining segments, several studies examined whether this could lead to the emergence of subspecies. Most of them simulated fixed-size Wright-Fisher populations, in which the genetic drift should be taken into account. Here, we use nonlinear Markov processes to describe a bacterial population evolving under mutation and recombination. We consider a population structure as a probability measure on the space of genomes. This approach implies the infinite population size limit, and thus, the genetic drift is not assumed. We prove that under these conditions, the emergence of subspecies is impossible.

  18. Recombination accelerates adaptation on a large-scale empirical fitness landscape in HIV-1.

    Science.gov (United States)

    Moradigaravand, Danesh; Kouyos, Roger; Hinkley, Trevor; Haddad, Mojgan; Petropoulos, Christos J; Engelstädter, Jan; Bonhoeffer, Sebastian

    2014-06-01

    Recombination has the potential to facilitate adaptation. In spite of the substantial body of theory on the impact of recombination on the evolutionary dynamics of adapting populations, empirical evidence to test these theories is still scarce. We examined the effect of recombination on adaptation on a large-scale empirical fitness landscape in HIV-1 based on in vitro fitness measurements. Our results indicate that recombination substantially increases the rate of adaptation under a wide range of parameter values for population size, mutation rate and recombination rate. The accelerating effect of recombination is stronger for intermediate mutation rates but increases in a monotonic way with the recombination rates and population sizes that we examined. We also found that both fitness effects of individual mutations and epistatic fitness interactions cause recombination to accelerate adaptation. The estimated epistasis in the adapting populations is significantly negative. Our results highlight the importance of recombination in the evolution of HIV-I.

  19. SUMO Wrestles with Recombination

    Directory of Open Access Journals (Sweden)

    Lumír Krejčí

    2012-07-01

    Full Text Available DNA double-strand breaks (DSBs comprise one of the most toxic DNA lesions, as the failure to repair a single DSB has detrimental consequences on the cell. Homologous recombination (HR constitutes an error-free repair pathway for the repair of DSBs. On the other hand, when uncontrolled, HR can lead to genome rearrangements and needs to be tightly regulated. In recent years, several proteins involved in different steps of HR have been shown to undergo modification by small ubiquitin-like modifier (SUMO peptide and it has been suggested that deficient sumoylation impairs the progression of HR. This review addresses specific effects of sumoylation on the properties of various HR proteins and describes its importance for the homeostasis of DNA repetitive sequences. The article further illustrates the role of sumoylation in meiotic recombination and the interplay between SUMO and other post-translational modifications.

  20. Recombinant Human Enterovirus 71

    OpenAIRE

    2004-01-01

    Two human enterovirus 71 (HEV71) isolates were identified from hand, foot and mouth disease patients with genome sequences that had high similarity to HEV71 (>93%) at 5´ UTR, P1, and P2 and coxsackievirus A16 (CV-A16, >85%) at P3 and 3´UTR. Intertypic recombination is likely to have occurred between HEV71 and CV-A16 or an as-yet to be described CV-A16-like virus.

  1. Accurate pattern registration for integrated circuit tomography

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Zachary H.; Grantham, Steven; Neogi, Suneeta; Frigo, Sean P.; McNulty, Ian; Retsch, Cornelia C.; Wang, Yuxin; Lucatorto, Thomas B.

    2001-07-15

    As part of an effort to develop high resolution microtomography for engineered structures, a two-level copper integrated circuit interconnect was imaged using 1.83 keV x rays at 14 angles employing a full-field Fresnel zone plate microscope. A major requirement for high resolution microtomography is the accurate registration of the reference axes in each of the many views needed for a reconstruction. A reconstruction with 100 nm resolution would require registration accuracy of 30 nm or better. This work demonstrates that even images that have strong interference fringes can be used to obtain accurate fiducials through the use of Radon transforms. We show that we are able to locate the coordinates of the rectilinear circuit patterns to 28 nm. The procedure is validated by agreement between an x-ray parallax measurement of 1.41{+-}0.17 {mu}m and a measurement of 1.58{+-}0.08 {mu}m from a scanning electron microscope image of a cross section.

  2. Accurate determination of characteristic relative permeability curves

    Science.gov (United States)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  3. Accurate pose estimation for forensic identification

    Science.gov (United States)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  4. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER.

    Science.gov (United States)

    Jaspers, R J E; Scheffer, M; Kappatou, A; van der Valk, N C J; Durkut, M; Snijders, B; Marchuk, O; Biel, W; Pokol, G I; Erdei, G; Zoletnik, S; Dunai, D

    2012-10-01

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm(2)sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  5. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R. J. E.; Scheffer, M. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, Eindhoven (Netherlands); Kappatou, A. [FOM Institute DIFFER - Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Nieuwegein (Netherlands); Valk, N. C. J. van der; Durkut, M.; Snijders, B. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands); Marchuk, O.; Biel, W. [Institut fuer Energie und Klimaforschung-IEK-4 Forschungszentrum, Juelich GmbH, 52425 Juelich (Germany); Pokol, G. I. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary); Erdei, G. [Department of Atomic Physics, Budapest University of Technology and Economics, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary); Zoletnik, S.; Dunai, D. [WIGNER RCP, RMKI, EURATOM Association, P. O. Box 91, H-1521 Budapest (Hungary)

    2012-10-15

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm{sup 2}sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  6. A More Accurate Fourier Transform

    CERN Document Server

    Courtney, Elya

    2015-01-01

    Fourier transform methods are used to analyze functions and data sets to provide frequencies, amplitudes, and phases of underlying oscillatory components. Fast Fourier transform (FFT) methods offer speed advantages over evaluation of explicit integrals (EI) that define Fourier transforms. This paper compares frequency, amplitude, and phase accuracy of the two methods for well resolved peaks over a wide array of data sets including cosine series with and without random noise and a variety of physical data sets, including atmospheric $\\mathrm{CO_2}$ concentrations, tides, temperatures, sound waveforms, and atomic spectra. The FFT uses MIT's FFTW3 library. The EI method uses the rectangle method to compute the areas under the curve via complex math. Results support the hypothesis that EI methods are more accurate than FFT methods. Errors range from 5 to 10 times higher when determining peak frequency by FFT, 1.4 to 60 times higher for peak amplitude, and 6 to 10 times higher for phase under a peak. The ability t...

  7. High order recombination and an application to cubature on Wiener space

    CERN Document Server

    Litterer, Christian

    2010-01-01

    Particle methods are widely used because they can provide accurate descriptions of evolving measures. Recently it has become clear that by stepping outside the Monte-Carlo paradigm these methods can be of higher order with effective and transparent error bounds. A weakness of particle methods(particularly in the higher order case) is the tendency for the number of particles to explode if the process is iterated and accuracy preserved. In this paper we identify a new approach that allows dynamic recombination in such methods and retains the high order accuracy by simplifying the support of the intermediate measures used in the iteration. We describe an algorithm that can be used to simplify the support of a discrete measure and give an application to the cubature on Wiener space method developed by Lyons, Victoir [12].

  8. ACG: rapid inference of population history from recombining nucleotide sequences

    Directory of Open Access Journals (Sweden)

    O'Fallon Brendan D

    2013-02-01

    Full Text Available Abstract Background Reconstruction of population history from genetic data often requires Monte Carlo integration over the genealogy of the samples. Among tools that perform such computations, few are able to consider genetic histories including recombination events, precluding their use on most alignments of nuclear DNA. Explicit consideration of recombinations requires modeling the history of the sequences with an Ancestral Recombination Graph (ARG in place of a simple tree, which presents significant computational challenges. Results ACG is an extensible desktop application that uses a Bayesian Markov chain Monte Carlo procedure to estimate the posterior likelihood of an evolutionary model conditional on an alignment of genetic data. The ancestry of the sequences is represented by an ARG, which is estimated from the data with other model parameters. Importantly, ACG computes the full, Felsenstein likelihood of the ARG, not a pairwise or composite likelihood. Several strategies are used to speed computations, and ACG is roughly 100x faster than a similar, recombination-aware program. Conclusions Modeling the ancestry of the sequences with an ARG allows ACG to estimate the evolutionary history of recombining nucleotide sequences. ACG can accurately estimate the posterior distribution of population parameters such as the (scaled population size and recombination rate, as well as many aspects of the recombinant history, including the positions of recombination breakpoints, the distribution of time to most recent common ancestor along the sequence, and the non-recombining trees at individual sites. Multiple substitution models and population size models are provided. ACG also provides a richly informative graphical interface that allows users to view the evolution of model parameters and likelihoods in real time.

  9. Dielectronic recombination of tungsten ions

    Science.gov (United States)

    Li, Bowen; O'Sullivan, Gerry; Dong, Chenzhong; Chen, Ximeng

    2016-08-01

    Ab initio calculations of dielectronic recombination rate coefficients of Ne-, Pd- and Ag-like tungsten have been performed. Energy levels, radiative transition probabilities and autoionization rates were calculated using the Flexible Atomic Code. The contributions from different channels to the total rate coefficients are discussed. The present calculated rate coefficients are compared with other calculations where available. Excellent agreement has been found for Ne-like W while a large discrepancy was found for Pd-like W, which implies that more ab initio calculations and experimental measurements are badly needed. Further calculations demonstrated that the influence of configuration interaction is small while nonresonant radiative stabilizing (NRS) contribution to doubly excited non-autoionizing states are vital. The data obtained are expected to be useful for modeling plasmas for fusion applications, especially for the ITER community, which makes experimental verification even more essential.

  10. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.

    Science.gov (United States)

    Pines, Gur; Freed, Emily F; Winkler, James D; Gill, Ryan T

    2015-11-20

    The ability to specifically modify bacterial genomes in a precise and efficient manner is highly desired in various fields, ranging from molecular genetics to metabolic engineering and synthetic biology. Much has changed from the initial realization that phage-derived genes may be employed for such tasks to today, where recombineering enables complex genetic edits within a genome or a population. Here, we review the major developments leading to recombineering becoming the method of choice for in situ bacterial genome editing while highlighting the various applications of recombineering in pushing the boundaries of synthetic biology. We also present the current understanding of the mechanism of recombineering. Finally, we discuss in detail issues surrounding recombineering efficiency and future directions for recombineering-based genome editing.

  11. Oxygen Atom Recombination in Carbon Dioxide Atmospheres

    Science.gov (United States)

    Jamieson, Corey; Garcia, R. M.; Pejakovic, D. A.; Kalogerakis, K. S.

    2009-09-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in our understanding of the above processes, and often the relevant input from laboratory measurements is missing or outdated. We are conducting experiments to measure the rate coefficients for O + O + CO2 and O + O2 + CO2 recombination and investigate the O2 excited states produced following O-atom recombination. These laboratory measurements are key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An ArF excimer laser with 193-nm pulsed output radiation is employed to partially photodissociate carbon dioxide. In an ambient-pressure (760 Torr) background of CO2, the O atoms produced recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal we can extract the rate coefficients for recombination of O + O and O + O2 in the presence of CO2. We also use fluorescence and resonance-enhanced multi-photon ionization techniques to detect the products of the O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation's (NSF) Planetary Astronomy Program. Rosanne Garcia's participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  12. Speed-of-sound compensated photoacoustic tomography for accurate imaging

    CERN Document Server

    Jose, Jithin; Steenbergen, Wiendelt; Slump, Cornelis H; van Leeuwen, Ton G; Manohar, Srirang

    2012-01-01

    In most photoacoustic (PA) measurements, variations in speed-of-sound (SOS) of the subject are neglected under the assumption of acoustic homogeneity. Biological tissue with spatially heterogeneous SOS cannot be accurately reconstructed under this assumption. We present experimental and image reconstruction methods with which 2-D SOS distributions can be accurately acquired and reconstructed, and with which the SOS map can be used subsequently to reconstruct highly accurate PA tomograms. We begin with a 2-D iterative reconstruction approach in an ultrasound transmission tomography (UTT) setting, which uses ray refracted paths instead of straight ray paths to recover accurate SOS images of the subject. Subsequently, we use the SOS distribution in a new 2-D iterative approach, where refraction of rays originating from PA sources are accounted for in accurately retrieving the distribution of these sources. Both the SOS reconstruction and SOS-compensated PA reconstruction methods utilize the Eikonal equation to m...

  13. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  14. Accurate lineshape spectroscopy and the Boltzmann constant.

    Science.gov (United States)

    Truong, G-W; Anstie, J D; May, E F; Stace, T M; Luiten, A N

    2015-10-14

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m.

  15. Sex recombination, and reproductive fitness: an experimental study using Paramecium

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, D.

    1982-08-01

    The effect of sex and recombination on reproductive fitness are measured using five wild stocks of Paramecium primaurelia. Among the wild stocks there were highly significant differences in growth rates. No hybrid had as low a fitness as the least fit parental stock. Recombination produced genotypes of higher fitness than those of either parent only in the cross between the two stocks of lowest fitness. The increase in variance of fitness as a result of recombination was almost exclusively attributable to the generation lines with low fitness. The fitness consequences of sexuality and mate choice were stock specific; some individuals leaving the most descendants by inbreeding, others by outcrossing. For most crosses the short-term advantage of sex, if any, accrue from the fusion of different gametes (hybrid vigor) and not from recombination. Since the homozygous genotype with the highest fitnes left the most progeny by inbreeding (no recombination), the persistence of conjugation in P. primaurelia is paradoxical. (JMT)

  16. Accurate Sorption Measurements on Coal and Activated Carbon using Accurate Equations of State

    NARCIS (Netherlands)

    Battistutta, E.

    2011-01-01

    Since industrial revolution, due to the increasing demand of energy, anthropogenic emissions in the atmosphere are constantly growing. The International Energy Agency (IEA) predicted a 57% increase of energy demand from 2004 to 2030 (IEA, 2004) of which, 85% consists of fossil fuels. Actions need to

  17. Towards an accurate bioimpedance identification

    Science.gov (United States)

    Sanchez, B.; Louarroudi, E.; Bragos, R.; Pintelon, R.

    2013-04-01

    This paper describes the local polynomial method (LPM) for estimating the time-invariant bioimpedance frequency response function (FRF) considering both the output-error (OE) and the errors-in-variables (EIV) identification framework and compare it with the traditional cross— and autocorrelation spectral analysis techniques. The bioimpedance FRF is measured with the multisine electrical impedance spectroscopy (EIS) technique. To show the overwhelming accuracy of the LPM approach, both the LPM and the classical cross— and autocorrelation spectral analysis technique are evaluated through the same experimental data coming from a nonsteady-state measurement of time-varying in vivo myocardial tissue. The estimated error sources at the measurement frequencies due to noise, σnZ, and the stochastic nonlinear distortions, σZNL, have been converted to Ω and plotted over the bioimpedance spectrum for each framework. Ultimately, the impedance spectra have been fitted to a Cole impedance model using both an unweighted and a weighted complex nonlinear least square (CNLS) algorithm. A table is provided with the relative standard errors on the estimated parameters to reveal the importance of which system identification frameworks should be used.

  18. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules...... of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect...... as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics...

  19. Expression of recombinant antibodies.

    Science.gov (United States)

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  20. 微纳薄膜器件的电阻率精确测量方法%Method for Accurate Measurement of Micro-Nano Thin Film Device Resistivity

    Institute of Scientific and Technical Information of China (English)

    吴蕾; 居冰峰; 杨春晖; 林军

    2012-01-01

    微纳级别的铝薄膜因宽度和厚度尺寸缩小其试件尺寸接近电极的最小间距、电极间的位置误差等因素的影响,导致电阻率四电极法在测量过程中产生较大的误差.通过对微纳级的导电薄膜的四电极测量法进行数学建模分析,建立了新的四电极测量法数学计算模型,提供精确的电阻率修正系数,并利用基于原子力显微镜的四电极电阻率测量技术精确测量了厚度为400 nm、宽度为30 μm的铝薄膜的电阻率,且取不同的作用力重复实验.实验结果证明,基于修正后数学模型的微四电极技术对微纳级别薄膜的电阻率测量方面的准确性和稳定性.%Because of the width and thickness of the micro-nano thin film is very close to the minimum distance of the electrodes and the position error between electrodes, which led to errors during the measurement process using the four-point-probe. By analyzing the traditional four-point-probe method, a new four-point-probe method model for measurement of micron-nano aluminum thin film' s resistivity was created. The four-point-AFM-probe technique was applied for the purpose of quantitatively measuring resistivity of the aluminum film with 400 nm thickness and 30 祄 width. The repeatability of resistivity measurements indicates that this new four-point-probe model technique could be used for fast in situ cha racterization of electrical properties of micro-nano thin film.

  1. Correlations between recombination rate and intron distributions along chromosomes of C.elegans

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Guoqing Liu; Xuhua Xia

    2009-01-01

    Generally speaking,the intron size positively correlates with recombination rate in Caenorhabditis elegans genome.Here,we analyze the correlations between recombination rate and some measures of different intron lengths so as to know whether the recombination influences the introns of different lengths in the same way.Results show that the correlation between the recombination rate and the percentage of short introns(<100 bp)is negative,but the correlation between the recombination rate and the percentage of introns that are larger than 500 bp is positive.Average intron length correlates positively with the recombination rate for introns whose length is in the range of 100-1000 bp.We speculate that the recombination mainly exerts impact on introns whose length ranges from 100-1000 bp.We also show that the average intron number per gene correlates negatively with the recombination rate.

  2. Accurate stopping power measurements for (0.21–2.68) MeV/u {sup 1}H{sup +} and {sup 4}He{sup +} ions crossing thin Al foils; extraction of the (I, b) parameters

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, D., E-mail: djamelmoussa@gmail.com [Université des Sciences et Technologie H. Boumediene (USTHB), Laboratoire SNIRM, Faculté de Physique, B.P. 32, 16111 Bab-Ezzouar, Algiers (Algeria); Damache, S. [Division de Physique, CRNA, 02 Bd. Frantz Fanon, B.P. 399 Alger-gare, Algiers (Algeria); Ouichaoui, S., E-mail: souichaoui@gmail.com [Université des Sciences et Technologie H. Boumediene (USTHB), Laboratoire SNIRM, Faculté de Physique, B.P. 32, 16111 Bab-Ezzouar, Algiers (Algeria)

    2015-01-15

    The stopping powers of thin Al foils for H{sup +} and {sup 4}He{sup +} ions have been measured over the energy range E=(206.03–2680.05) keV/amu with an overall relative uncertainty better than 1% using the transmission method. The derived S(E) experimental data are compared to previous ones from the literature, to values derived by the SRIM-2008 code or compiled in the ICRU-49 report, and to the predictions of Sigmund–Schinner binary collision stopping theory. Besides, the S(E) data for H{sup +} ions together with those for He{sup 2+} ions reported by Andersen et al. (1977) have been analyzed over the energy interval E>1.0 MeV using the modified Bethe–Bloch stopping theory. The following sets of values have been inferred for the mean excitation potential, I, and the Barkas–Andersen parameter, b, for H{sup +} and He{sup +} projectiles, respectively: {(I=164±3)) eV, (b=1.40} and {(I=163±2.5)) eV, (b=1.38}. As expected, the I parameter is found to be independent of the projectile electronic structure presumably indicating that the contribution of charge exchange effects becomes negligible as the projectile velocity increases. Therefore, the I parameter must be determined from precise stopping power measurements performed at high projectile energies where the Bethe stopping theory is fully valid.

  3. Measurement of the (pressure, density, temperature) relation of two (methane + nitrogen) gas mixtures at temperatures between 240 and 400 K and pressures up to 20 MPa using an accurate single-sinker densimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro, C.R. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain)]. E-mail: cescha@eis.uva.es; Segovia, J.J. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Martin, M.C. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Villamanan, M.A. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Estela-Uribe, J.F. [Facultad de Ingenieria, Universidad Javeriana-Cali, Calle 18, 118-250 Cali (Colombia); Trusler, J.P.M. [Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2006-07-15

    Comprehensive (p, {rho}, T) measurements on two gas mixtures of (0.9CH{sub 4} + 0.1N{sub 2}) and (0.8CH{sub 4} + 0.2N{sub 2}) have been carried out at six temperatures between 240 and 400 K and at pressures up to 20 MPa. A total of 108 (p, {rho}, T) data for the first mixture and 134 for the second one are given. These measurements were performed using a compact single-sinker densimeter based on Archimedes' buoyancy principle. The overall uncertainty in density {rho} is estimated to be (1.5 . 10{sup -4} . {rho} + 2 . 10{sup -3} kg . m{sup -3}) (coverage factor k = 2), the uncertainty in temperature T is estimated to be 0.006 K (coverage factor k = 2), and the uncertainty in pressure p is estimated to be 1 . 10{sup -4}.p (coverage factor k = 2). The equipment has been previously checked with pure nitrogen over the whole temperature and pressure working ranges and experimental results (35 values) are given and a comparison with the reference equation of state for nitrogen is presented.

  4. Noninvasive hemoglobin monitoring: how accurate is enough?

    Science.gov (United States)

    Rice, Mark J; Gravenstein, Nikolaus; Morey, Timothy E

    2013-10-01

    Evaluating the accuracy of medical devices has traditionally been a blend of statistical analyses, at times without contextualizing the clinical application. There have been a number of recent publications on the accuracy of a continuous noninvasive hemoglobin measurement device, the Masimo Radical-7 Pulse Co-oximeter, focusing on the traditional statistical metrics of bias and precision. In this review, which contains material presented at the Innovations and Applications of Monitoring Perfusion, Oxygenation, and Ventilation (IAMPOV) Symposium at Yale University in 2012, we critically investigated these metrics as applied to the new technology, exploring what is required of a noninvasive hemoglobin monitor and whether the conventional statistics adequately answer our questions about clinical accuracy. We discuss the glucose error grid, well known in the glucose monitoring literature, and describe an analogous version for hemoglobin monitoring. This hemoglobin error grid can be used to evaluate the required clinical accuracy (±g/dL) of a hemoglobin measurement device to provide more conclusive evidence on whether to transfuse an individual patient. The important decision to transfuse a patient usually requires both an accurate hemoglobin measurement and a physiologic reason to elect transfusion. It is our opinion that the published accuracy data of the Masimo Radical-7 is not good enough to make the transfusion decision.

  5. Does a pneumotach accurately characterize voice function?

    Science.gov (United States)

    Walters, Gage; Krane, Michael

    2016-11-01

    A study is presented which addresses how a pneumotach might adversely affect clinical measurements of voice function. A pneumotach is a device, typically a mask, worn over the mouth, in order to measure time-varying glottal volume flow. By measuring the time-varying difference in pressure across a known aerodynamic resistance element in the mask, the glottal volume flow waveform is estimated. Because it adds aerodynamic resistance to the vocal system, there is some concern that using a pneumotach may not accurately portray the behavior of the voice. To test this hypothesis, experiments were performed in a simplified airway model with the principal dimensions of an adult human upper airway. A compliant constriction, fabricated from silicone rubber, modeled the vocal folds. Variations of transglottal pressure, time-averaged volume flow, model vocal fold vibration amplitude, and radiated sound with subglottal pressure were performed, with and without the pneumotach in place, and differences noted. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  6. Accurate upper body rehabilitation system using kinect.

    Science.gov (United States)

    Sinha, Sanjana; Bhowmick, Brojeshwar; Chakravarty, Kingshuk; Sinha, Aniruddha; Das, Abhijit

    2016-08-01

    The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.

  7. 层流翼型三维边界层横流驻波精确测量方法研究%On the Accurate Measurement Method of Standing Cross-flow for Three-dimensional Laminar Airfoil Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    马彪; 白存儒; 杨广珺; 李栋

    2011-01-01

    Laminar flow control (LFC) of swept-back wing is a complex but very significant topic for drag reduction. The study of standing cross-flow has a great significance for LFC. For this reason, the experimental method of standing cross-flow measurement was analyzed and studied by using hot wire anemometer and sublimation method in a low turbulence wind tunnel. Corresponding technical details about the setup of hot wire anemometer system and process of sublimation surface spray are elaborated in this paper. The velocity profile curve in boundary layer, the image of sublimation result, the distance between standing waves and the wedge transition line were obtained in experiment. Synthetical analysis of experimental results shows that there is a high agreement between hot wire anemometer and sublimation method. This indicates that flow state in a 3-D boundary layer can be measured conveniently by hot wire anemometer; that at a suitable angle, the hot wire anemometer support does not impact the measurement; that hot wire probe has less effect on flow in boundary layer. So the results measured by hot wire anemometer may be regarded as actual flow in boundary layer. Analysis of experimental data shows that the combination of hot wire anemometer and sublimation method is a very effective method.%后掠机翼的层流控制对于气动减阻有着重要的意义,同时也是非常复杂的研究课题.而对横流驻波的研究是实现层流翼型的一个关健.为此,本文分析并研究了在低湍流度风洞中,采用热线风速仪(CTA)与表面升华法相结合研究由横流不稳定性产生的驻波及其对转捩影响的实验技术,阐述了该实验中架设热线测量系统与升华法表面喷涂的相关技术与细节.实验得到了边界层内的速度剖面图、升华法图形、驻波间距和楔形转捩线.实验结果的综合分析表明热线和升华法一致性很高.说明通过热线风速仪可以方便地测得三维边界层内的流动

  8. Accurate measurement of the essential micronutrients methionine, homocysteine, vitamins B6, B12, B9 and their metabolites in plasma, brain and maternal milk of mice using LC/MS ion trap analysis.

    Science.gov (United States)

    Oosterink, J Efraim; Naninck, Eva F G; Korosi, Aniko; Lucassen, Paul J; van Goudoever, Johannes B; Schierbeek, Henk

    2015-08-15

    Methionine, homocysteine, vitamins B6, B12, B9, and their metabolites are crucial co-factors and substrates for many basic biological pathways including one-carbon metabolism, and they are particularly important for brain function and development and epigenetic mechanisms. These are essential nutrients that cannot be synthesized endogenously and thus need to be taken in via diet. A novel method was developed that enables simultaneous assessment of the exact concentrations of these essential micronutrients in various matrices, including maternal milk, plasma, and brain of neonatal mice. The protocol for analysis of these components in the various matrices consists of a cleanup step (i.e. lipid extraction followed by protein precipitation) combined with a liquid chromatography mass spectrometry (LC/MS) ion trap method with high sensitivity and selectivity (SRM mode). This novel method enables the measurement of these essential nutrients with good recoveries (69-117%), and high intra-day (milk, and brain of mice at low and high levels. In addition, lower limits of quantitation (LOQ) were determined for the various matrices in the range for methionine (700-2000nmol/L), homocysteine (280-460-nmol/L), vitamins B6 (5-230nmol/L), B12 (7-11nmol/L), B9 (20-30nmol/L). Degradation of vitamins and oxidation of homocysteine is limited to a minimum, and only small sample volumes (30μL plasma, 20mg brain and maternal milk) are needed for simultaneous measurement. This method can help to understand how these nutrients are transferred from mother to offspring via maternal milk, as well as how these nutrients are absorbed by the offspring and eventually taken up in various tissues amongst the brain in preclinical and clinical research settings. Therefore the method can help to explore critical periods in lactating mothers and developing offspring.

  9. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    Science.gov (United States)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  10. RECOMBINANT HORSERADISH PEROXIDASE FOR ANALYTICAL APPLICATIONS

    OpenAIRE

    2013-01-01

    The article deals with prospects of using recombinant horseradish peroxidase in analytical biochemistry and biotechnology. Problems of recombinant horseradish peroxidase cloning in different expression systems, possible approaches to their solution, advantages of recombinant recombinant horseradish peroxidase and recombinant horseradish peroxidase-fusion proteins for immunoassays are considered. Possibility for development of mediatorless bienzyme biosensor for peroxide and metabolites, yield...

  11. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  12. On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures.

    Science.gov (United States)

    Kamen, A A; Bédard, C; Tom, R; Perret, S; Jardin, B

    1996-04-05

    Respiration rates in Spodoptera frugiperda (Sf-9) cell bioreactor cultures were successfully measured on-line using two methods: The O(2) uptake rate (OUR) was determined using gas phase pO(2) values imposed by a dissolved oxygen controller and the CO(2) evolution rate (CER) was measured using an infrared detector. The measurement methods were accurate, reliable, and relatively inexpensive. The CER was routinely determined in bioreactor cultures used for the production of several recombinant proteins. Simple linear relationships between viable cell densities and both OUR and CER in exponentially growing cultures were used to predict viable cell density. Respiration measurements were also used to follow the progress of baculoviral infections in Sf-9 cultures. Infection led to increases in volumetric and per-cell respiration rates. The relationships between respiration and several other culture parameters, including viable cell density, cell protein, cell volume, glucose consumption, lactate production, viral titer, and recombinant beta-galactosidase accumulation, were examined. The extent of the increase in CER following infection and the time postinfection at which maximum CER was attained were negatively correlated with the multiplicity of infection (MOI) at multiplicities below the level required to infect all the cells in a culture. Delays in the respiration peak related to the MOI employed were correlated with delays in the peak in recombinant protein accumulation. DO levels in the range 5-100% did not exert any major effects on viable cell densities, CER, or product titer in cultures infected with a baculovirus expressing recombinant beta-galactosidase.

  13. Accurate Measurements of Dielectric and Optical Functions of Liquid Water and Liquid Benzene in the VUV Region (1-100 eV) Using Small-Angle Inelastic X-ray Scattering.

    Science.gov (United States)

    Hayashi, Hisashi; Hiraoka, Nozomu

    2015-04-30

    Using a third-generation synchrotron source (the BL12XU beamline at SPring-8), inelastic X-ray scattering (IXS) spectra of liquid water and liquid benzene were measured at energy losses of 1-100 eV with 0.24 eV resolution for small momentum transfers (q) of 0.23 and 0.32 au with ±0.06 au uncertainty for q. For both liquids, the IXS profiles at these values of q converged well after we corrected for multiple scattering, and these results confirmed the dipole approximation for q ≤ ∼0.3 au. Several dielectric and optical functions [including the optical oscillator strength distribution (OOS), the optical energy-loss function (OLF), the complex dielectric function, the complex index of refraction, and the reflectance] in the vacuum ultraviolet region were derived and tabulated from these small-angle (small q) IXS spectra. These new data were compared with previously obtained results, and this comparison demonstrated the strong reproducibility and accuracy of IXS spectroscopy. For both water and benzene, there was a notable similarity between the OOSs of the liquids and amorphous solids, and there was no evidence of plasmon excitation in the OLF. The static structure factor [S(q)] for q ≤ ∼0.3 au was also deduced and suggests that molecular models that include electron correlation effects can serve as a good approximation for the liquid S(q) values over the full range of q.

  14. Measurement of the heat production of bacteria in the bioreactor. Calorimetric regulation of bio-processes for the production of recombinant proteins; Messung der Waermeproduktion von Bakterien im Bioreaktor. Kalorimetrische Regelung von Bioprozessen zur Herstellung von rekombinanten Proteinen

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Richard [Hochschule Esslingen (Germany); Steinkaempfer, Anne; Horn, Thomas; Hofmann, Johannes

    2012-09-15

    Recombinant proteins such as insulin or interferons are the most important products of the modern biotechnology. Recombinant proteins are produced with genetically engineered organisms. Here, besides microorganisms (E. coli or yeast cells) also animal cell cultures are used. In order to increase the productivity and the reproducibility of the cultivation process, an automated process control is required. The authors of the contribution under consideration report on the regulation of the specific rate of growth of microorganisms during cultivation in a bioreactor using standard calorimetric methods. This automation strategy results in a significant increase in productivity and reproducibility of the process.

  15. Bimolecular recombination in organic photovoltaics.

    Science.gov (United States)

    Lakhwani, Girish; Rao, Akshay; Friend, Richard H

    2014-01-01

    The recombination of electrons and holes is a major loss mechanism in photovoltaic devices that controls their performance. We review scientific literature on bimolecular recombination (BR) in bulk heterojunction organic photovoltaic devices to bring forward existing ideas on the origin and nature of BR and highlight both experimental and theoretical work done to quantify its extent. For these systems, Langevin theory fails to explain BR, and recombination dynamics turns out to be dependent on mobility, temperature, electric field, charge carrier concentration, and trapped charges. Relationships among the photocurrent, open-circuit voltage, fill factor, and morphology are discussed. Finally, we highlight the recent emergence of a molecular-level picture of recombination, taking into account the spin and delocalization of charges. Together with the macroscopic picture of recombination, these new insights allow for a comprehensive understanding of BR and provide design principles for future materials and devices.

  16. Accurate Weather Forecasting for Radio Astronomy

    Science.gov (United States)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  17. Storage-ring ionization and recombination experiments with multiply charged ions relevant to astrophysical and fusion plasmas

    CERN Document Server

    Schippers, Stefan

    2011-01-01

    Past and ongoing research activities at the Heidelberg heavy-ion storage-ring TSR are reviewed which aim at providing accurate absolute rate coefficients and cross sections of atomic collision processes for applications in astrophysics and magnetically confined fusion. In particular, dielectronic recombination and electron impact ionization of iron ions are discussed as well as dielectronic recombination of tungsten ions.

  18. Comparison of immunoglobulin E measurements on IMMULITE and ImmunoCAP in samples consisting of allergen-specific mouse-human chimeric monoclonal antibodies towards allergen extracts and four recombinant allergens

    DEFF Research Database (Denmark)

    Szecsi, Pal B; Stender, Steen

    2013-01-01

    Specific immunoglobulin E (IgE) antibody in vitro tests are performed on enzyme immunoassay systems. Poor agreement among systems has been reported and comparisons have been made exclusively with allergen extracts - not with recombinant allergens. Here we compare the ImmunoCAP and the IMMULITE...

  19. Expression of Recombinant Baculovirus Carrying Schistosoma japonicum 26 ku GST in Mammalian Cells

    Institute of Scientific and Technical Information of China (English)

    YU Guangqing; SONG Jianhua; LIU Wenqi; LONG Xiaochun; MO Hongmei; LI Yonglong; CHEN Xinwen

    2006-01-01

    In order to construct recombinant baculovirus carrying Schistosoma japonicum 26 ku glutathione S-transferase gene (Sj26), and observe the expression of Sj26 in mammalian cells, the Sj26 gene was amplified with plasmid pGEX-3X as template by PCR, and then recombined into Tvector for sequencing. Sj26 gene was inserted into the downstream of CMV promoter of donor plasmid pFBDGC, and the recombinant donor plasmid pFBDGC-Sj26 transformed into DH10Bac,then the recombinant bacmid AcCMVSj26 was isolated and transfected into Sf9 cells. The recombinant baculovirus was harvested and final titer of vAcCMVSj26 was measured. BHK cells were transducted with recombinant baculovirus in vitro. By using Western blot, the expression of 26 ku glutathione S-transferase (GST) was detected. The results showed that after enzyme digestion and sequencing, the donor plasmid was successfully constructed. PCR confirmed that pFBDGC-Sj26 and Bacmid homologous recombination occurred in E. coli. After transfection of Sf9 cells with recombinant Bacmid, recombinant baculovirus was replicated in Sf9 cells and expressed green fluorescent protein. PCR further revealed recombinant baculovirus contained Sj26. The titer of the harvested baculovirus was 1.24 × 108. Western blot demonstrated that recombinant baculovirus could express 26 ku GST in BHK cells. It was concluded that Sj26 recombinant baculovirus was successfully constructed, and the 26 ku GST was expressed in mammalian cells.

  20. Single pulse shock tube study of allyl radical recombination.

    Science.gov (United States)

    Fridlyand, Aleksandr; Lynch, Patrick T; Tranter, Robert S; Brezinsky, Kenneth

    2013-06-13

    The recombination and disproportionation of allyl radicals has been studied in a single pulse shock tube with gas chromatographic measurements at 1-10 bar, 650-1300 K, and 1.4-2 ms reaction times. 1,5-Hexadiene and allyl iodide were used as precursors. Simulation of the results using derived rate expressions from a complementary diaphragmless shock tube/laser schlieren densitometry study provided excellent agreement with precursor consumption and formation of all major stable intermediates. No significant pressure dependence was observed at the present conditions. It was found that under the conditions of these experiments, reactions of allyl radicals in the cooling wave had to be accounted for to accurately simulate the experimental results, and this unusual situation is discussed. In the allyl iodide experiments, higher amounts of allene, propene, and benzene were found at lower temperatures than expected. Possible mechanisms are discussed and suggest that iodine containing species are responsible for the low temperature formation of allene, propene, and benzene.

  1. Analysis of interchromosomal mitotic recombination.

    Science.gov (United States)

    McGill, C B; Shafer, B K; Higgins, D R; Strathern, J N

    1990-07-01

    A novel synthetic locus is described that provides a simple assay system for characterizing mitotic recombinants. The locus consists of the TRP1 and HIS3 genes inserted into chromosome III of S. cerevisiae between the CRY1 and MAT loci. Defined trp1 and his3 alleles have been generated that allow the selection of interchromosomal recombinants in this interval. Trp+ or His+ recombinants can be divided into several classes based on coupling of the other alleles in the interval. The tight linkage of the CRY1 and MAT loci, combined with the drug resistance and cell type phenotypes that they respectively control, facilitates the classification of the recombinants without resorting to tetrad dissection. We present the distribution of spontaneous recombinants among the classes defined by this analysis. The data suggest that the recombination intermediate can have regions of symmetric strand exchange and that co-conversion tracts can extend over 1-3 kb. Continuous conversion tracts are favored over discontinuous tracts. The distribution among the classes defined by this analysis is altered in recombinants induced by UV irradiation.

  2. Immunoassays for the measurement of IGF-II, IGFBP-2 and -3, and ICTP as indirect biomarkers of recombinant human growth hormone misuse in sport. Values in selected population of athletes.

    Science.gov (United States)

    Abellan, Rosario; Ventura, Rosa; Palmi, Ilaria; di Carlo, Simonetta; Bacosi, Antonella; Bellver, Montse; Olive, Ramon; Pascual, Jose Antonio; Pacifici, Roberta; Segura, Jordi; Zuccaro, Piergiorgio; Pichini, Simona

    2008-11-04

    Insulin-like growth factor-II (IGF-II), insulin-like growth factor binding proteins (IGFBPs) -2 and -3 and C-terminal telopeptide of type I collagen (ICTP) have been proposed, among others, as indirect biomarkers of the recombinant human growth hormone misuse in sport. An extended intra- and inter-laboratory validation of commercially available immunoassays for biomarkers detection was performed. ELISA assays for total IGF-II, IGFBP-2 and IGFBP-3 (IGF-II/ELISA1: DSLabs, IGFBP-2/ELISA2: Biosource, and IGFBP-3/ELISA3: BioSource) and an EIA assay for ICTP (ICTP/EIA: Orion Diagnostica) were evaluated. The inter- and intra-laboratory precision values were acceptable for all evaluated assays (maximum imprecision of 30% and 66% were found only for the lowest quality control samples of IGF-II and IGFBP-3). Correct accuracy was obtained for all inter-laboratory immunoassays and for IGFBP-2 intra-laboratory immunoassay. The range of concentrations found in serum samples under investigation was always covered by the calibration curves of the studied immunoassays. However, 11% and 15% of the samples felt below the estimated LOQ for IGF-II and ICTP, respectively, in the zone where lower precision was obtained. Although the majority of evaluated assays showed an overall reliability not always suitable for antidoping control analysis, relatively high concordances between laboratory results were obtained for all assays. Evaluated immunoassays were used to measure serum concentrations of IGF-II, IGFBP-2 and -3 and ICTP in elite athletes of various sport disciplines at different moments of the training season; in recreational athletes at baseline conditions and finally in sedentary individuals. Serum IGF-II was statistically higher both in recreational and elite athletes compared to sedentary individuals. Elite athletes showed lower IGFBP-2 and higher IGFBP-3 concentration with respect to recreational athletes and sedentary people. Among elite athletes, serum IGFBP-3 (synchronized

  3. Testing for recombinant erythropoietin.

    Science.gov (United States)

    Delanghe, Joris R; Bollen, Mathieu; Beullens, Monique

    2008-03-01

    Erythropoietin (Epo) is a glycoprotein hormone that promotes the production of red blood cells. Recombinant human Epo (rhEpo) is illicitly used to improve performance in endurance sports. Doping in sports is discouraged by the screening of athletes for rhEpo. Both direct tests (indicating the presence of exogeneous Epo isoforms) and indirect tests (indicating hematological changes induced by exogenous Epo administration) can be used for Epo detection. At present, the test adopted by the World Anti Doping Agency is based on a combination of isoelectric focusing and double immunoblotting, and distinguishes between endogenous and rhEpo. However, the adopted monoclonal anti-Epo antibodies are not monospecific. Therefore, the test can occasionally lead to the false-positive detection of rhEpo (epoetin-beta) in post-exercise, protein-rich urine, or in case of contamination of the sample with microorganisms. An improved preanalytical care may counteract a lot of these problems. Adaptation of the criteria may be helpful to further refine direct Epo testing. Indirect tests have the disadvantage that they require blood instead of urine samples, but they can be applied to detect a broader range of performance improving techniques which are illicitly used in sports.

  4. Immunoglobulin class-switch recombination deficiencies.

    Science.gov (United States)

    Durandy, Anne; Kracker, Sven

    2012-07-30

    Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches.

  5. Low-Cost Sensors Deliver Nanometer-Accurate Measurements

    Science.gov (United States)

    2015-01-01

    As part of a unique partnership program, Kennedy Space Center collaborated with a nearby business school to allow MBA students to examine and analyze the market potential for a selection of NASA-patented technologies. Following the semester, a group of students decided to form Winter Park, Florida-based Juntura Group Inc. to license and sell a technology they had worked with: a sensor capable of detecting position changes as small as 10 nanometers-approximately the thickness of a cell wall.

  6. Accurate photopyroelectric measurements of thermal diffusivity of (semi)liquids

    NARCIS (Netherlands)

    Dadarlat, D.; Neamtu, C.; Surducan, E.; Sahraoui, A.H.; Longuemart, S.; Bicanic, D.

    2002-01-01

    The back photopyroelectric (PPE) configuration, with opaque sample and thermally thick sample and sensor, was applied in order to obtain room temperature values of the thermal diffusivity of some (semi)liquid materials. The methodology is based on a sample's thickness scan, and not on a frequency sc

  7. Establishment of recombinant major allergens Bet v 1 and Phl p 5a as Ph. Eur. reference standards and validation of ELISA methods for their measurement. Results from feasibility studies.

    Science.gov (United States)

    Vieths, S; Barber, D; Chapman, M; Costanzo, A; Daas, A; Fiebig, H; Hanschmann, K M; Hrabina, M; Kaul, S; Ledesma, A; Moingeon, P; Reese, G; Schörner, C; van Ree, R; Weber, B; Buchheit, K H

    2012-04-01

    The potency of allergen extracts is determined as total allergenic activity without consideration of their composition and the units differ from one manufacturer to another, making it very difficult to compare the different products. Recently, purified major allergens have been obtained by recombinant DNA technology and produced under Good Manufacturing Practice (GMP) conditions. In principle, such recombinant allergens could be established as reference standards and could help for the standardisation of the major allergen content of allergen extracts. Two recombinant major allergens, one from birch pollen, rBet v 1, and one from Timothy grass pollen, Phl p 5a, have been selected at the end of the CREATE programme as a potential starting point for the establishment as European Pharmacopoeia (Ph. Eur.) Reference Standards through a project run by the Biological Standardisation Programme (BSP) of the European Directorate for the Quality of Medicines & HealthCare (EDQM). To this end, bulk candidate recombinant materials, produced under GMP conditions, were procured from two European manufacturers and subsequently formulated and lyophilised. Four ELISA systems from three different manufacturers were included in the project, two for Bet v 1 and two for Phl p 5a with the aim of establishing reference methods for determination of the respective major antigens both in natural allergen extracts as well as in recombinant allergen products. The project was run in 3 phases: a preparatory and preliminary testing phase (feasibility phase or Phase 1), an extended feasibility phase carried out in 3 laboratories (Phase 2) to confirm the transferability of the methods and an international collaborative study with a large number of participating laboratories (Phase 3). This article describes the work done in Phase 1 and Phase 2, i.e. the physico-chemical and biological characterisation of the recombinant candidate reference standards, the assessment of their suitability for the

  8. Accurate fission data for nuclear safety

    CERN Document Server

    Solders, A; Jokinen, A; Kolhinen, V S; Lantz, M; Mattera, A; Penttila, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S

    2013-01-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons...

  9. Accurate thermoplasmonic simulation of metallic nanoparticles

    Science.gov (United States)

    Yu, Da-Miao; Liu, Yan-Nan; Tian, Fa-Lin; Pan, Xiao-Min; Sheng, Xin-Qing

    2017-01-01

    Thermoplasmonics leads to enhanced heat generation due to the localized surface plasmon resonances. The measurement of heat generation is fundamentally a complicated task, which necessitates the development of theoretical simulation techniques. In this paper, an efficient and accurate numerical scheme is proposed for applications with complex metallic nanostructures. Light absorption and temperature increase are, respectively, obtained by solving the volume integral equation (VIE) and the steady-state heat diffusion equation through the method of moments (MoM). Previously, methods based on surface integral equations (SIEs) were utilized to obtain light absorption. However, computing light absorption from the equivalent current is as expensive as O(NsNv), where Ns and Nv, respectively, denote the number of surface and volumetric unknowns. Our approach reduces the cost to O(Nv) by using VIE. The accuracy, efficiency and capability of the proposed scheme are validated by multiple simulations. The simulations show that our proposed method is more efficient than the approach based on SIEs under comparable accuracy, especially for the case where many incidents are of interest. The simulations also indicate that the temperature profile can be tuned by several factors, such as the geometry configuration of array, beam direction, and light wavelength.

  10. Cell encoding recombinant human erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A.K.; Withy, R.M.; Zabrecky, J.R.; Masiello, N.C.

    1990-09-04

    This patent describes a C127 cell transformed with a recombinant DNA vector. It comprises: a DNA sequence encoding human erythropoietin, the transformed cell being capable of producing N-linked and O-linked glycosylated human erythropoietin.

  11. Controlled release from recombinant polymers.

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-09-28

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.

  12. Perovskite photovoltaics: Slow recombination unveiled

    Science.gov (United States)

    Moser, Jacques-E.

    2017-01-01

    One of the most salient features of hybrid lead halide perovskites is the extended lifetime of their photogenerated charge carriers. This property has now been shown experimentally to originate from a slow, thermally activated recombination process.

  13. Influenza Vaccine, Inactivated or Recombinant

    Science.gov (United States)

    ... die from flu, and many more are hospitalized.Flu vaccine can:keep you from getting flu, make flu ... inactivated or recombinant influenza vaccine?A dose of flu vaccine is recommended every flu season. Children 6 months ...

  14. Three Decades of Recombinant DNA.

    Science.gov (United States)

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  15. Heterogeneity in recombinant protein production

    DEFF Research Database (Denmark)

    Schalén, Martin; Johanson, Ted; Lundin, Luisa;

    2012-01-01

    contribute to make a population in a fermenter heterogeneous, resulting in cell-to-cell variation in physiological parameters of the microbial culture. Our study aims at investigating how population heterogeneity and recombinant protein production is affected by environmental gradients in bioreactors...... are simulated in small bioreactors and the population heterogeneity can be visualised by analysing single cells with flow cytometry. This can give new insights to cell physiology and recombinant protein production at the industrial scale....

  16. Inhomogeneous recombinations during cosmic reionization

    OpenAIRE

    Sobacchi, Emanuele; Mesinger, Andrei

    2014-01-01

    By depleting the ionizing photon budget available to expand cosmic HII regions, recombining systems (or Lyman limit systems) can have a large impact during (and following) cosmic reionization. Unfortunately, directly resolving such structures in large-scale reionization simulations is computationally impractical. Instead, here we implement a sub-grid prescription for tracking inhomogeneous recombinations in the intergalactic medium. Building on previous work parameterizing photo-heating feedb...

  17. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE BIOAVAILABILITY OF LEAD TO QUAIL

    Science.gov (United States)

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contami...

  18. Recombinant protein expression in Nicotiana.

    Science.gov (United States)

    Matoba, Nobuyuki; Davis, Keith R; Palmer, Kenneth E

    2011-01-01

    Recombinant protein pharmaceuticals are now widely used in treatment of chronic diseases, and several recombinant protein subunit vaccines are approved for human and veterinary use. With growing demand for complex protein pharmaceuticals, such as monoclonal antibodies, manufacturing capacity is becoming limited. There is increasing need for safe, scalable, and economical alternatives to mammalian cell culture-based manufacturing systems, which require substantial capital investment for new manufacturing facilities. Since a seminal paper reporting immunoglobulin expression in transgenic plants was published in 1989, there have been many technological advances in plant expression systems to the present time where production of proteins in leaf tissues of nonfood crops such as Nicotiana species is considered a viable alternative. In particular, transient expression systems derived from recombinant plant viral vectors offer opportunities for rapid expression screening, construct optimization, and expression scale-up. Extraction of recombinant proteins from Nicotiana leaf tissues can be achieved by collection of secreted protein fractions, or from a total protein extract after grinding the leaves with buffer. After separation from solids, the major purification challenge is contamination with elements of the photosynthetic complex, which can be solved by application of a variety of facile and proven strategies. In conclusion, the technologies required for safe, efficient, scalable manufacture of recombinant proteins in Nicotiana leaf tissues have matured to the point where several products have already been tested in phase I clinical trials and will soon be followed by a rich pipeline of recombinant vaccines, microbicides, and therapeutic proteins.

  19. RECOMBINANT HORSERADISH PEROXIDASE FOR ANALYTICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    А.M. Egorov

    2012-08-01

    Full Text Available The article deals with prospects of using recombinant horseradish peroxidase in analytical biochemistry and biotechnology. Problems of recombinant horseradish peroxidase cloning in different expression systems, possible approaches to their solution, advantages of recombinant recombinant horseradish peroxidase and recombinant horseradish peroxidase-fusion proteins for immunoassays are considered. Possibility for development of mediatorless bienzyme biosensor for peroxide and metabolites, yielding hydrogen peroxide during their transformations, based on co-adsorption of recombinant horseradish peroxidase and the appropriate oxidase was demonstrated. The possibility to produce a fully active recombinant conjugate of recombinant horseradish peroxidase with human heart-type fatty acid binding protein, which may be used in competitive immunoassay for clinical diagnosis of acute myocardial infarction, and recombinant conjugates (N- and C-terminus of recombinant horseradish peroxidase with Fab-fragments of the antibody against atrazine, which may be applied for atrazine pesticides detection, are demonstra ted for the first time.

  20. Conservation of recombination hotspots in yeast

    OpenAIRE

    Tsai, Isheng J.; Burt, Austin; Koufopanou, Vassiliki

    2010-01-01

    Meiotic recombination does not occur randomly along a chromosome, but instead tends to be concentrated in small regions, known as “recombination hotspots.” Recombination hotspots are thought to be short-lived in evolutionary time due to their self-destructive nature, as gene conversion favors recombination-suppressing alleles over recombination-promoting alleles during double-strand repair. Consistent with this expectation, hotspots in humans are highly dynamic, with little correspondence in ...