An accurate two-phase approximate solution to the acute viral infection model
Energy Technology Data Exchange (ETDEWEB)
Perelson, Alan S [Los Alamos National Laboratory
2009-01-01
During an acute viral infection, virus levels rise, reach a peak and then decline. Data and numerical solutions suggest the growth and decay phases are linear on a log scale. While viral dynamic models are typically nonlinear with analytical solutions difficult to obtain, the exponential nature of the solutions suggests approximations can be found. We derive a two-phase approximate solution to the target cell limited influenza model and illustrate the accuracy using data and previously established parameter values of six patients infected with influenza A. For one patient, the subsequent fall in virus concentration was not consistent with our predictions during the decay phase and an alternate approximation is derived. We find expressions for the rate and length of initial viral growth in terms of the parameters, the extent each parameter is involved in viral peaks, and the single parameter responsible for virus decay. We discuss applications of this analysis in antiviral treatments and investigating host and virus heterogeneities.
On the Stable Numerical Approximation of Two-Phase Flow with Insoluble Surfactant
Barrett, John W; Nürnberg, Robert
2013-01-01
We present a parametric finite element approximation of two-phase flow with insoluble surfactant. This free boundary problem is given by the Navier--Stokes equations for the two-phase flow in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface that separates the two phases. We combine the evolving surface finite element method with an approach previously introduced by the authors for two-phase Navier--Stokes flow, which maintains good mesh properties. The derived finite element approximation of two-phase flow with insoluble surfactant can be shown to be stable. Several numerical simulations demonstrate the practicality of our numerical method.
Directory of Open Access Journals (Sweden)
Xiao-Ying Qin
2014-01-01
Full Text Available An Adomian decomposition method (ADM is applied to solve a two-phase Stefan problem that describes the pure metal solidification process. In contrast to traditional analytical methods, ADM avoids complex mathematical derivations and does not require coordinate transformation for elimination of the unknown moving boundary. Based on polynomial approximations for some known and unknown boundary functions, approximate analytic solutions for the model with undetermined coefficients are obtained using ADM. Substitution of these expressions into other equations and boundary conditions of the model generates some function identities with the undetermined coefficients. By determining these coefficients, approximate analytic solutions for the model are obtained. A concrete example of the solution shows that this method can easily be implemented in MATLAB and has a fast convergence rate. This is an efficient method for finding approximate analytic solutions for the Stefan and the inverse Stefan problems.
Approximate Riemann solvers and flux vector splitting schemes for two-phase flow
International Nuclear Information System (INIS)
These course notes, presented at the 30. Von Karman Institute Lecture Series in Computational Fluid Dynamics, give a detailed and through review of upwind differencing methods for two-phase flow models. After recalling some fundamental aspects of two-phase flow modelling, from mixture model to two-fluid models, the mathematical properties of the general 6-equation model are analysed by examining the Eigen-structure of the system, and deriving conditions under which the model can be made hyperbolic. The following chapters are devoted to extensions of state-of-the-art upwind differencing schemes such as Roe's Approximate Riemann Solver or the Characteristic Flux Splitting method to two-phase flow. Non-trivial steps in the construction of such solvers include the linearization, the treatment of non-conservative terms and the construction of a Roe-type matrix on which the numerical dissipation of the schemes is based. Extension of the 1-D models to multi-dimensions in an unstructured finite volume formulation is also described; Finally, numerical results for a variety of test-cases are shown to illustrate the accuracy and robustness of the methods. (authors)
Discontinuous approximation of viscous two-phase flow in heterogeneous porous media
Bürger, Raimund; Kumar, Sarvesh; Sudarshan Kumar, Kenettinkara; Ruiz-Baier, Ricardo
2016-09-01
Runge-Kutta Discontinuous Galerkin (RKDG) and Discontinuous Finite Volume Element (DFVE) methods are applied to a coupled flow-transport problem describing the immiscible displacement of a viscous incompressible fluid in a non-homogeneous porous medium. The model problem consists of nonlinear pressure-velocity equations (assuming Brinkman flow) coupled to a nonlinear hyperbolic equation governing the mass balance (saturation equation). The mass conservation properties inherent to finite volume-based methods motivate a DFVE scheme for the approximation of the Brinkman flow in combination with a RKDG method for the spatio-temporal discretization of the saturation equation. The stability of the uncoupled schemes for the flow and for the saturation equations is analyzed, and several numerical experiments illustrate the robustness of the numerical method.
International Nuclear Information System (INIS)
Equation systems describing one-dimensional, transient, two-phase flow with separate continuity, momentum, and energy equations for each phase are classified by use of the method of characteristics. Little attempt is made to justify the physics of these equations. Many of the equation systems possess complex-valued characteristics and hence, according to well-known mathematical theorems, are not well-posed as initial-value problems (IVPs). Real-valued characteristics are necessary but not sufficient to insure well-posedness. In the absence of lower order source or sink terms (potential type flows), which can affect the well-posedness of IVPs, the complex characteristics associated with these two-phase flow equations imply unbounded exponential growth for disturbances of all wavelengths. Analytical and numerical examples show that the ill-posedness of IVPs for the two-phase flow partial differential equations which possess complex characteristics produce unstable numerical schemes. These unstable numerical schemes can produce apparently stable and even accurate results if the growth rate resulting from the complex characteristics remains small throughout the time span of the numerical experiment or if sufficient numerical damping is present for the increment size used. Other examples show that clearly nonphysical numerical instabilities resulting from the complex characteristics can be produced. These latter types of numerical instabilities are shown to be removed by the addition of physically motivated differential terms which eliminate the complex characteristics. (auth)
Accurate Period Approximation for Any Simple Pendulum Amplitude
Institute of Scientific and Technical Information of China (English)
XUE De-Sheng; ZHOU Zhao; GAO Mei-Zhen
2012-01-01
Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed.Based on an approximation of the elliptic integral,two new logarithmic formulae for large amplitude close to 180° are obtained.Considering the trigonometric function modulation results from the dependence of relative error on the amplitude,we realize accurate approximation period expressions for any amplitude between 0 and 180°.A relative error less than 0.02％ is achieved for any amplitude.This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.%Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed. Based on an approximation of the elliptic integral, two new logarithmic formulae for large amplitude close to 180° are obtained. Considering the trigonometric function modulation results from the dependence of relative error on the amplitude, we realize accurate approximation period expressions for any amplitude between 0 and 180°. A relative error less than 0.02% is achieved for any amplitude. This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.
Directory of Open Access Journals (Sweden)
Xuemiao Xu
2016-04-01
Full Text Available Exterior orientation parameters’ (EOP estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang’E-1, compared to the existing space resection model.
Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen
2016-01-01
Exterior orientation parameters' (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang'E-1, compared to the existing space resection model. PMID:27077855
Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube
International Nuclear Information System (INIS)
The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered
Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube
Energy Technology Data Exchange (ETDEWEB)
Nigmatulin, R.I.
1995-09-01
The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.
Büsing, Henrik
2013-04-01
Two-phase flow in porous media occurs in various settings, such as the sequestration of CO2 in the subsurface, radioactive waste management, the flow of oil or gas in hydrocarbon reservoirs, or groundwater remediation. To model the sequestration of CO2, we consider a fully coupled formulation of the system of nonlinear, partial differential equations. For the solution of this system, we employ the Box method after Huber & Helmig (2000) for the space discretization and the fully implicit Euler method for the time discretization. After linearization with Newton's method, it remains to solve a linear system in every Newton step. We compare different iterative methods (BiCGStab, GMRES, AGMG, c.f., [Notay (2012)]) combined with different preconditioners (ILU0, ASM, Jacobi, and AMG as preconditioner) for the solution of these systems. The required Jacobians can be obtained elegantly with automatic differentiation (AD) [Griewank & Walther (2008)], a source code transformation providing exact derivatives. We compare the performance of the different iterative methods with their respective preconditioners for these linear systems. Furthermore, we analyze linear systems obtained by approximating the Jacobian with finite differences in terms of Newton steps per time step, steps of the iterative solvers and the overall solution time. Finally, we study the influence of heterogeneities in permeability and porosity on the performance of the iterative solvers and their robustness in this respect. References [Griewank & Walther(2008)] Griewank, A. & Walther, A., 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia, PA, 2nd edn. [Huber & Helmig(2000)] Huber, R. & Helmig, R., 2000. Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media, Computational Geosciences, 4, 141-164. [Notay(2012)] Notay, Y., 2012. Aggregation-based algebraic multigrid for convection
Directory of Open Access Journals (Sweden)
Xin Chen
2015-01-01
Full Text Available Adaptive Dynamic Programming (ADP with critic-actor architecture is an effective way to perform online learning control. To avoid the subjectivity in the design of a neural network that serves as a critic network, kernel-based adaptive critic design (ACD was developed recently. There are two essential issues for a static kernel-based model: how to determine proper hyperparameters in advance and how to select right samples to describe the value function. They all rely on the assessment of sample values. Based on the theoretical analysis, this paper presents a two-phase simultaneous learning method for a Gaussian-kernel-based critic network. It is able to estimate the values of samples without infinitively revisiting them. And the hyperparameters of the kernel model are optimized simultaneously. Based on the estimated sample values, the sample set can be refined by adding alternatives or deleting redundances. Combining this critic design with actor network, we present a Gaussian-kernel-based Adaptive Dynamic Programming (GK-ADP approach. Simulations are used to verify its feasibility, particularly the necessity of two-phase learning, the convergence characteristics, and the improvement of the system performance by using a varying sample set.
Energy Technology Data Exchange (ETDEWEB)
Toumi, I.; Kumbaro, A.; Paillere, H
1999-07-01
These course notes, presented at the 30. Von Karman Institute Lecture Series in Computational Fluid Dynamics, give a detailed and through review of upwind differencing methods for two-phase flow models. After recalling some fundamental aspects of two-phase flow modelling, from mixture model to two-fluid models, the mathematical properties of the general 6-equation model are analysed by examining the Eigen-structure of the system, and deriving conditions under which the model can be made hyperbolic. The following chapters are devoted to extensions of state-of-the-art upwind differencing schemes such as Roe's Approximate Riemann Solver or the Characteristic Flux Splitting method to two-phase flow. Non-trivial steps in the construction of such solvers include the linearization, the treatment of non-conservative terms and the construction of a Roe-type matrix on which the numerical dissipation of the schemes is based. Extension of the 1-D models to multi-dimensions in an unstructured finite volume formulation is also described; Finally, numerical results for a variety of test-cases are shown to illustrate the accuracy and robustness of the methods. (authors)
International Nuclear Information System (INIS)
An analytical model was developed to estimate the viscous and squeeze-film damping ratios of heat exchanger tubes subjected to a two-phase cross-flow. Damping information is required to analyze the flow-induced vibration problem for heat exchange tubes. In heat exchange tubes, the most important energy dissipation mechanisms are related to the dynamic interaction between structures such as the tube and support and the liquid. The present model was formulated considering the added mass coefficient, based on an approximate model by Sim (1997). An approximate analytical method was developed to estimate the hydrodynamic forces acting on an oscillating inner cylinder with a concentric annulus. The forces, including the damping force, were calculated using two models developed for relatively high and low oscillatory Reynolds numbers, respectively. The equivalent diameters for the tube bundles and tube support, and the penetration depth, are important parameters to calculate the viscous damping force acting on tube bundles and the squeeze-film damping forces on the tube support, respectively. To calculate the void fraction of a two-phase flow, a homogeneous model was used. To verify the present model, the analytical results were compared to the results given by existing theories. It was found that the present model was applicable to estimate the viscous damping ratio and squeeze-film damping ratio
Ahmed, Mahmoud; Eslamian, Morteza
2015-12-01
Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.
Efficient and Accurate Log-Levy Approximations of Levy-Driven LIBOR Models
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Schoenmakers, John; Skovmand, David
2012-01-01
-driven LIBOR model and aim to develop accurate and efficient log-Lévy approximations for the dynamics of the rates. The approximations are based on the truncation of the drift term and on Picard approximation of suitable processes. Numerical experiments for forward-rate agreements, caps, swaptions and sticky...
Weber, J. W.; Bol, A. A.; M. C. M. van de Sanden,
2014-01-01
This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant
Accurate atomic quantum defects from particle-particle random phase approximation
Yang, Yang; Yang, Weitao
2015-01-01
The accuracy of calculations of atomic Rydberg excitations cannot be judged by the usual measures, such as mean unsigned errors of many transitions. We show how to use quantum defect theory to (a) separate errors due to approximate ionization potentials, (b) extract smooth quantum defects to compare with experiment, and (c) quantify those defects with a few characteristic parameters. The particle-particle random phase approximation (pp-RPA) produces excellent Rydberg transitions that are an order of magnitude more accurate than those of time-dependent density functional theory with standard approximations. We even extract reasonably accurate defects from the lithium Rydberg series, despite the reference being open-shell. Our methodology can be applied to any Rydberg series of excitations with 4 transitions or more to extract the underlying threshold energy and characteristic quantum defect parameters. Our pp-RPA results set a demanding challenge for other excitation methods to match.
Symplectic Approximation Of Hamiltonian Flows And Accurate Simulation Of Fringe Field Effects
Erdélyi, B
2001-01-01
In the field of accelerator physics, the motion of particles in the electromagnetic fields of periodic accelerators is usually approximated by the iteration of a symplectic map, which represents the system over short time, such as one turn around the accelerator. Unfortunately, due to the complexity of the systems, in practice only some approximation of the one-turn map can be computed, as, for example, the truncated Taylor series. To this end, simulation of the nonlinear dynamics consists, in general, of the following three steps: (1) Computation of the truncated Taylor approximation of the one-turn map, (2) Symplectification of the Taylor map, and (3) Iteration of the resulting exactly symplectic map. This dissertation addresses all three components of the process, with the emphasis being on developing new methods that allow long-term tracking as accurately and efficiently as possible. Specifically, the contributions to the first step concern the fringe field effects. The truncate...
Precise and accurate train run data: Approximation of actual arrival and departure times
DEFF Research Database (Denmark)
Richter, Troels; Landex, Alex; Andersen, Jonas Lohmann Elkjær
possible with the present systems. GPS data from a major Danish Railway Undertaking is used as an alternate data source with more accurate arrival and departure times. The offset is based on the median of the time difference between these two sources. Factors taken into consideration when constructing...... the correction function, are location, message type, platform used and train type. The approximated correction values are then analysed to ensure that interquartile range is within the defined criteria. The practical implementation is an additional column in the train run history database tables...
Montoya-Castillo, Andrés
2016-01-01
The ability to efficiently and accurately calculate equilibrium time correlation functions of many-body condensed phase quantum systems is one of the outstanding problems in theoretical chemistry. The Nakajima-Zwanzig-Mori formalism coupled to the self-consistent solution of the memory kernel has recently proven to be highly successful for the computation of nonequilibrium dynamical averages. Here, we extend this formalism to treat symmetrized equilibrium time correlation functions for the spin-boson model. Following the first paper in this series [A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. $\\bf{144}$, 184104 (2016)], we use a Dyson-type expansion of the projected propagator to obtain a self-consistent solution for the memory kernel that requires only the calculation of normally evolved auxiliary kernels. We employ the approximate mean-field Ehrenfest method to demonstrate the feasibility of this approach. Via comparison with numerically exact results for the correlation function $\\mathcal{C}_{zz}...
Energy Technology Data Exchange (ETDEWEB)
Belendez, A; Gimeno, E; Mendez, D I; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es
2008-06-15
A modified generalized, rational harmonic balance method is used to construct approximate frequency-amplitude relations for a conservative nonlinear singular oscillator in which the restoring force is inversely proportional to the dependent variable. The procedure is used to solve the nonlinear differential equation approximately. The approximate frequency obtained using this procedure is more accurate than those obtained using other approximate methods and the discrepancy between the approximate frequency and the exact one is lower than 0.40%.
Development of highly accurate approximate scheme for computing the charge transfer integral.
Pershin, Anton; Szalay, Péter G
2015-08-21
The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature. PMID:26298117
Development of highly accurate approximate scheme for computing the charge transfer integral
Energy Technology Data Exchange (ETDEWEB)
Pershin, Anton; Szalay, Péter G. [Laboratory for Theoretical Chemistry, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest (Hungary)
2015-08-21
The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.
Accurate and Approximate Calculations of Raman Scattering in the Atmosphere of Neptune
Sromovsky, Lawrence
2015-01-01
Raman scattering by H$_2$ in Neptune's atmosphere has significant effects on its reflectivity for $\\lambda <$ 0.5 $\\mu$m, producing baseline decreases of $\\sim$ 20% in a clear atmosphere and $\\sim$ 10% in a hazy atmosphere. Here we present the first radiation transfer algorithm that includes both polarization and Raman scattering and facilitates computation of spatially resolved spectra. New calculations show that Cochran and Trafton's (1978, Astrophys. J. 219, 756-762) suggestion that light reflected in the deep CH$_4$ bands is mainly Raman scattered is not valid for current estimates of the CH$_4$vertical distribution, which implies only a 4% Raman contribution. Comparisons with IUE, HST, and groundbased observations confirm that high altitude haze absorption is reducing Neptune's geometric albedo by $\\sim$6% in the 0.22-0.26 $\\mu$m range and by $\\sim$13% in the 0.35-0.45 $\\mu$m range. We used accurate calculations to evaluate several approximations of Raman scattering. The Karkoschka (1994, Icarus 111, ...
Higher accurate approximate solutions for the simple pendulum in terms of elementary functions
Energy Technology Data Exchange (ETDEWEB)
Belendez, Augusto; Frances, Jorge; Ortuno, Manuel; Gallego, Sergi; Guillermo Bernabeu, Jose, E-mail: a.belendez@ua.e [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)
2010-05-15
A closed-form approximate expression for the solution of a simple pendulum in terms of elementary functions is obtained. To do this, the exact expression for the maximum tension of the string of the pendulum is first considered and a trial approximate solution depending on some parameters is used, which is substituted in the tension equation. We obtain the parameters for the approximate by means of a term-by-term comparison of the power series expansion for the approximate maximum tension with the corresponding series for the exact one. We believe that this letter may be a suitable and fruitful exercise for teaching and better understanding nonlinear oscillations of a simple pendulum in undergraduate courses on classical mechanics. (letters and comments)
International Nuclear Information System (INIS)
We describe a method for computing linear observer statistics for maximum a posteriori (MAP) reconstructions of PET images. The method is based on a theoretical approximation for the mean and covariance of MAP reconstructions. In particular, we derive here a closed form for the channelized Hotelling observer (CHO) statistic applied to 2D MAP images. We show reasonably good correspondence between these theoretical results and Monte Carlo studies. The accuracy and low computational cost of the approximation allow us to analyze the observer performance over a wide range of operating conditions and parameter settings for the MAP reconstruction algorithm
A method for the accurate and smooth approximation of standard thermodynamic functions
Coufal, O.
2013-01-01
A method is proposed for the calculation of approximations of standard thermodynamic functions. The method is consistent with the physical properties of standard thermodynamic functions. This means that the approximation functions are, in contrast to the hitherto used approximations, continuous and smooth in every temperature interval in which no phase transformations take place. The calculation algorithm was implemented by the SmoothSTF program in the C++ language which is part of this paper. Program summaryProgram title:SmoothSTF Catalogue identifier: AENH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3807 No. of bytes in distributed program, including test data, etc.: 131965 Distribution format: tar.gz Programming language: C++. Computer: Any computer with gcc version 4.3.2 compiler. Operating system: Debian GNU Linux 6.0. The program can be run in operating systems in which the gcc compiler can be installed, see http://gcc.gnu.org/install/specific.html. RAM: 256 MB are sufficient for the table of standard thermodynamic functions with 500 lines Classification: 4.9. Nature of problem: Standard thermodynamic functions (STF) of individual substances are given by thermal capacity at constant pressure, entropy and enthalpy. STF are continuous and smooth in every temperature interval in which no phase transformations take place. The temperature dependence of STF as expressed by the table of its values is for further application approximated by temperature functions. In the paper, a method is proposed for calculating approximation functions which, in contrast to the hitherto used approximations, are continuous and smooth in every temperature interval. Solution method: The approximation functions are
Two-phase viscoelastic jetting
Energy Technology Data Exchange (ETDEWEB)
Yu, J-D; Sakai, S.; Sethian, J.A.
2008-12-10
A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.
Performance tests of a two phase ejector
Energy Technology Data Exchange (ETDEWEB)
Harrell, G.S.; Kornhauser, A.A. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering
1995-12-31
The ejector expansion refrigeration cycle is a modified vapor compression cycle in which a two phase ejector is used to recover a portion of the work otherwise lost in the expansion valve. The ejector improves cycle performance by increasing compressor inlet pressure and by lowering the quality of liquid entering the evaporator. Theoretically, a cooling COP improvement of approximately 23% is achievable for a typical refrigerating cycle and an ideal ejector. If the ejector performed as well as typical single phase ejectors an improvement of 12% could be achieved. Previous tests have demonstrated a smaller 3.7% improvement; the difference is in the poor performance of the two phase ejector. The purpose of this research is to understand the operating characteristics of the two phase ejector and to devise design improvements. A two phase ejector test rig has been constructed and tested. Preliminary data show performance superior to previously tested two phase ejectors, but still inferior to single phase ejectors. Ejector performance corresponds to refrigeration cycle COP improvements ranging from 3.9% to 7.6%.
Zhang, Du; Yang, Weitao
2016-10-01
An efficient method for calculating excitation energies based on the particle-particle random phase approximation (ppRPA) is presented. Neglecting the contributions from the high-lying virtual states and the low-lying core states leads to the significantly smaller active-space ppRPA matrix while keeping the error to within 0.05 eV from the corresponding full ppRPA excitation energies. The resulting computational cost is significantly reduced and becomes less than the construction of the non-local Fock exchange potential matrix in the self-consistent-field (SCF) procedure. With only a modest number of active orbitals, the original ppRPA singlet-triplet (ST) gaps as well as the low-lying single and double excitation energies can be accurately reproduced at much reduced computational costs, up to 100 times faster than the iterative Davidson diagonalization of the original full ppRPA matrix. For high-lying Rydberg excitations where the Davidson algorithm fails, the computational savings of active-space ppRPA with respect to the direct diagonalization is even more dramatic. The virtues of the underlying full ppRPA combined with the significantly lower computational cost of the active-space approach will significantly expand the applicability of the ppRPA method to calculate excitation energies at a cost of O(K4), with a prefactor much smaller than a single SCF Hartree-Fock (HF)/hybrid functional calculation, thus opening up new possibilities for the quantum mechanical study of excited state electronic structure of large systems.
Numerical method for two-phase flow discontinuity propagation calculation
International Nuclear Information System (INIS)
In this paper, we present a class of numerical shock-capturing schemes for hyperbolic systems of conservation laws modelling two-phase flow. First, we solve the Riemann problem for a two-phase flow with unequal velocities. Then, we construct two approximate Riemann solvers: an one intermediate-state Riemann solver and a generalized Roe's approximate Riemann solver. We give some numerical results for one-dimensional shock-tube problems and for a standard two-phase flow heat addition problem involving two-phase flow instabilities
Hadzi-Velkov, Zoran; Karagiannidis, George K; 10.1109/ICC.2009.5198714
2009-01-01
We present a novel and accurate approximation for the distribution of the sum of equally correlated Nakagami-m variates. Ascertaining on this result we study the performance of Equal Gain Combining (EGC) receivers, operating over equally correlating fading channels. Numerical results and simulations show the accuracy of the proposed approximation and the validity of the mathematical analysis.
Directory of Open Access Journals (Sweden)
Thomas Philipp
2012-05-01
Full Text Available Abstract Background It is well known that the deterministic dynamics of biochemical reaction networks can be more easily studied if timescale separation conditions are invoked (the quasi-steady-state assumption. In this case the deterministic dynamics of a large network of elementary reactions are well described by the dynamics of a smaller network of effective reactions. Each of the latter represents a group of elementary reactions in the large network and has associated with it an effective macroscopic rate law. A popular method to achieve model reduction in the presence of intrinsic noise consists of using the effective macroscopic rate laws to heuristically deduce effective probabilities for the effective reactions which then enables simulation via the stochastic simulation algorithm (SSA. The validity of this heuristic SSA method is a priori doubtful because the reaction probabilities for the SSA have only been rigorously derived from microscopic physics arguments for elementary reactions. Results We here obtain, by rigorous means and in closed-form, a reduced linear Langevin equation description of the stochastic dynamics of monostable biochemical networks in conditions characterized by small intrinsic noise and timescale separation. The slow-scale linear noise approximation (ssLNA, as the new method is called, is used to calculate the intrinsic noise statistics of enzyme and gene networks. The results agree very well with SSA simulations of the non-reduced network of elementary reactions. In contrast the conventional heuristic SSA is shown to overestimate the size of noise for Michaelis-Menten kinetics, considerably under-estimate the size of noise for Hill-type kinetics and in some cases even miss the prediction of noise-induced oscillations. Conclusions A new general method, the ssLNA, is derived and shown to correctly describe the statistics of intrinsic noise about the macroscopic concentrations under timescale separation conditions
Froese, Brittany D
2012-01-01
The theory of viscosity solutions has been effective for representing and approximating weak solutions to fully nonlinear Partial Differential Equations (PDEs) such as the elliptic Monge-Amp\\`ere equation. The approximation theory of Barles-Souganidis [Barles and Souganidis, Asymptotic Anal., 4 (1999) 271-283] requires that numerical schemes be monotone (or elliptic in the sense of [Oberman, SIAM J. Numer. Anal, 44 (2006) 879-895]. But such schemes have limited accuracy. In this article, we establish a convergence result for nearly monotone schemes. This allows us to construct finite difference discretizations of arbitrarily high-order. We demonstrate that the higher accuracy is achieved when solutions are sufficiently smooth. In addition, the filtered scheme provides a natural detection principle for singularities. We employ this framework to construct a formally second-order scheme for the Monge-Amp\\`ere equation and present computational results on smooth and singular solutions.
Directory of Open Access Journals (Sweden)
Patricio Orio
Full Text Available BACKGROUND: The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA methods use Stochastic Differential Equations (SDE to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. MAIN CONTRIBUTIONS: We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable--allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods
A Godunov-type method for the seven-equation model of compressible two-phase flow
Ambroso, Annalisa; Chalons, Christophe; Raviart, Pierre-Arnaud
2010-01-01
We are interested in the numerical approximation of the solutions of the compressible seven-equation two-phase flow model. We propose a numerical srategy based on the derivation of a simple, accurate and explicit approximate Riemann solver. The source terms associated with the external forces and the drag force are included in the definition of the Riemann problem, and thus receive an upwind treatment. The objective is to try to preserve, at the numerical level, the asymptotic property of the...
Wallis, Graham B.
1989-01-01
Some features of two recent approaches of two-phase potential flow are presented. The first approach is based on a set of progressive examples that can be analyzed using common techniques, such as conservation laws, and taken together appear to lead in the direction of a general theory. The second approach is based on variational methods, a classical approach to conservative mechanical systems that has a respectable history of application to single phase flows. This latter approach, exemplified by several recent papers by Geurst, appears generally to be consistent with the former approach, at least in those cases for which it is possible to obtain comparable results. Each approach has a justifiable theoretical base and is self-consistent. Moreover, both approaches appear to give the right prediction for several well-defined situations.
Adaptive moving grid methods for two-phase flow in porous media
Dong, Hao
2014-08-01
In this paper, we present an application of the moving mesh method for approximating numerical solutions of the two-phase flow model in porous media. The numerical schemes combine a mixed finite element method and a finite volume method, which can handle the nonlinearities of the governing equations in an efficient way. The adaptive moving grid method is then used to distribute more grid points near the sharp interfaces, which enables us to obtain accurate numerical solutions with fewer computational resources. The numerical experiments indicate that the proposed moving mesh strategy could be an effective way to approximate two-phase flows in porous media. © 2013 Elsevier B.V. All rights reserved.
Liu, Jie; Herbert, John M.
2015-07-01
A novel formulation of time-dependent density functional theory (TDDFT) is derived, based on non-orthogonal, absolutely-localized molecular orbitals (ALMOs). We call this approach TDDFT(MI), in reference to ALMO-based methods for describing molecular interactions (MI) that have been developed for ground-state applications. TDDFT(MI) is intended for efficient excited-state calculations in systems composed of multiple, weakly interacting chromophores. The efficiency is based upon (1) a local excitation approximation; (2) monomer-based, singly-excited basis states; (3) an efficient localization procedure; and (4) a one-step Davidson method to solve the TDDFT(MI) working equation. We apply this methodology to study molecular dimers, water clusters, solvated chromophores, and aggregates of naphthalene diimide that form the building blocks of self-assembling organic nanotubes. Absolute errors of 0.1-0.3 eV with respect to supersystem methods are achievable for these systems, especially for cases involving an excited chromophore that is weakly coupled to several explicit solvent molecules. Excited-state calculations in an aggregate of nine naphthalene diimide monomers are ˜40 times faster than traditional TDDFT calculations.
Energy Technology Data Exchange (ETDEWEB)
Cabrera-Trujillo, R., E-mail: trujillo@fis.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Ap. Postal 48-3, Cuernavaca, Morelos 62251 (Mexico); Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Ap. Postal 55-534, 09340 México, D.F. (Mexico); Cruz, S.A., E-mail: cruz@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Ap. Postal 55-534, 09340 México, D.F. (Mexico)
2014-02-01
Atomic hydrogen is used as a fundamental reference target system to explore pressure effects on the electronic stopping cross section, S{sub e}, of swift bare ions such as protons and α-particles. This is achieved by considering the hydrogen atom under pressure as a padded spherically-confined quantum system. Within this scheme, S{sub e} is calculated rigorously in the first Born approximation taking into account the full target excitation spectrum and momentum transfer distribution for different confinement conditions (pressures) and fixed projectile charge states. Pressure effects on the target mean excitation energy, I, are also formally calculated and compared with corresponding accurate calculations based on the Local Plasma Approximation (LPA). Even though atomic hydrogen is the simplest target system, its accurate treatment to account for the role of pressure in the stopping dynamics is found to provide useful means to understand the behavior of more complex systems under similar conditions. It is found that: (i) the region of projectile velocities for which the Bethe approximation remains valid is shifted towards higher values as pressure increases; (ii) shell corrections are enhanced relative to the free-atom case as pressure increases, and (iii) the LPA seems to underestimate I as pressure is increased. The results of this work for atomic hydrogen may serve as accurate benchmark reference values for studies of pressure effects on S{sub e} and I using different methodologies.
Transient two-phase performance of LOFT reactor coolant pumps
International Nuclear Information System (INIS)
Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed
Simulation of Two-Phase Flow in Sloshing Tanks
Luppes, Roel; Veldman, Arthur; Wemmenhove, Rik; Kuzmin, A
2011-01-01
The CFD simulation tool ComFLOW is applied to study the effect of tank motions on two-phase flow phenomena inside a sloshing tank. An improved VOF method is used to assure an accurate description of the fluid displacement. With a novel “gravity-consistent” density averaging method, spurious velociti
Palmer, T S
2003-01-01
In this NEER project, researchers from Oregon State University have investigated the limitations of the treatment of two-phase coolants as a homogeneous mixture in neutron transport calculations. Improved methods of calculating the neutron distribution in binary stochastic mixtures have been developed over the past 10-15 years and are readily available in the transport literature. These methods are computationally more expensive than the homogeneous (or atomic mix) models, but can give much more accurate estimates of ensemble average fluxes and reaction rates provided statistical descriptions of the distributions of the two materials are know. A thorough review of the two-phase flow literature has been completed and the relevant mixture distributions have been identified. Using these distributions, we have performed Monte Carlo criticality calculations of fuel assemblies to assess the accuracy of the atomic mix approximation when compared to a resolved treatment of the two-phase coolant. To understand the ben...
Contribution to the theory of the two phase blowdown phenomenon
International Nuclear Information System (INIS)
In order to accurately model the two phase portion of a pressure vessel blowdown, it becomes necessary to understand the bubble growth mechanism within the vessel during the early period of the decompression, the two phase flow behavior within the vessel, and the applicability of the available two phase critical flow models to the blowdown transient. To aid in providing answers to such questions, a small scale, separate effects, isothermal blowdown experiment has been conducted in a small pressure vessel. The tests simulated a full open, double ended, guillotine break in a large diameter, short exhaust duct from the vessel. The vaporization process at the initiation of the decompression is apparently that of thermally dominated bubble growth originating from the surface cavities inside the system. Thermodynamic equilibrium of the remaining fluid within the vessel existed in the latter portion of the decompression. A nonuniform distribution of fluid quality within the vessel was also detected in this experiment. By comparison of the experimental results from this and other similar transient, two phase critical flow studies with steady state, small duct, two phase critical flow data, it is shown that transient, two phase critical flow in large ducts appears to be similar to steady state, two phase critical flow in small ducts. Analytical models have been developed to predict the blowdown characteristics of a system during subcooled decompression, the bubble growth regime of blowdown, and also in the nearly dispersed period of depressurization. This analysis indicates that the system pressure history early in the blowdown is dependent on the internal vessel surface area, the internal vessel volume, and also on the exhaust flow area from the system. This analysis also illustrates that the later period of decompression can be predicted based on thermodynamic equilibrium
Two-phase flow in refrigeration systems
Gu, Junjie; Gan, Zhongxue
2013-01-01
Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b
Directory of Open Access Journals (Sweden)
B Zeinali-Rafsanjani
2015-01-01
Full Text Available To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL, percentage depth doses (PDDs and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam.
Advanced numerical methods for three dimensional two-phase flow calculations
Energy Technology Data Exchange (ETDEWEB)
Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.
Numerical modeling of two-phase binary fluid mixing using mixed finite elements
Sun, Shuyu
2012-07-27
Diffusion coefficients of dense gases in liquids can be measured by considering two-phase binary nonequilibrium fluid mixing in a closed cell with a fixed volume. This process is based on convection and diffusion in each phase. Numerical simulation of the mixing often requires accurate algorithms. In this paper, we design two efficient numerical methods for simulating the mixing of two-phase binary fluids in one-dimensional, highly permeable media. Mathematical model for isothermal compositional two-phase flow in porous media is established based on Darcy\\'s law, material balance, local thermodynamic equilibrium for the phases, and diffusion across the phases. The time-lag and operator-splitting techniques are used to decompose each convection-diffusion equation into two steps: diffusion step and convection step. The Mixed finite element (MFE) method is used for diffusion equation because it can achieve a high-order and stable approximation of both the scalar variable and the diffusive fluxes across grid-cell interfaces. We employ the characteristic finite element method with moving mesh to track the liquid-gas interface. Based on the above schemes, we propose two methods: single-domain and two-domain methods. The main difference between two methods is that the two-domain method utilizes the assumption of sharp interface between two fluid phases, while the single-domain method allows fractional saturation level. Two-domain method treats the gas domain and the liquid domain separately. Because liquid-gas interface moves with time, the two-domain method needs work with a moving mesh. On the other hand, the single-domain method allows the use of a fixed mesh. We derive the formulas to compute the diffusive flux for MFE in both methods. The single-domain method is extended to multiple dimensions. Numerical results indicate that both methods can accurately describe the evolution of the pressure and liquid level. © 2012 Springer Science+Business Media B.V.
DEFF Research Database (Denmark)
Lundegaard, Claus; Lund, Ole; Nielsen, Morten
2008-01-01
Several accurate prediction systems have been developed for prediction of class I major histocompatibility complex (MHC):peptide binding. Most of these are trained on binding affinity data of primarily 9mer peptides. Here, we show how prediction methods trained on 9mer data can be used for accurate...
Two-fluid model for two-phase flow
Ishii, M.
1987-06-01
The two-fluid model formulation is discussed in detail. The emphasis of the paper is on the three-dimensional formulation and the closure issues. The origin of the interfacial and turbulent transfer terms in the averaged formulation is explained and their original mathematical forms are examined. The interfacial transfer of mass, momentum, and energy is proportional to the interfacial area and driving force. This is not a postulate but a result of the careful examination of the mathematical form of the exact interfacial terms. These two effects are considered separately. Since all the interfacial transfer terms involve the interfacial area concentration, the accurate modeling of the local interfacial area concentration is the first step to be taken for a development of a reliable two-fluid model closure relations. The interfacial momentum interaction has been studied in terms of the standard-drag, lift, virtual mass, and Basset forces. Available analytical and semi-empirical correlations and closure relations are reviewed and existing shortcomings are pointed out. The other major area of importance is the modeling of turbulent transfer in two-phase flow. The two-phase flow turbulence problem is coupled with the phase separation problem even in a steady-state fully developed flow. Thus the two-phase turbulence cannot be understood without understanding the interfacial drag and lift forces accurately. There are some indications that the mixing length type model may not be sufficient to describe the three-dimensional turbulent and flow structures. Although it is a very difficult challenge, the two-phase flow turbulence should be investigated both experimentally and analytically with long time-scale research.
Hybrid flux splitting schemes for numerical resolution of two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Flaatten, Tore
2003-07-01
This thesis deals with the construction of numerical schemes for approximating. solutions to a hyperbolic two-phase flow model. Numerical schemes for hyperbolic models are commonly divided in two main classes: Flux Vector Splitting (FVS) schemes which are based on scalar computations and Flux Difference Splitting (FDS) schemes which are based on matrix computations. FVS schemes are more efficient than FDS schemes, but FDS schemes are more accurate. The canonical FDS schemes are the approximate Riemann solvers which are based on a local decomposition of the system into its full wave structure. In this thesis the mathematical structure of the model is exploited to construct a class of hybrid FVS/FDS schemes, denoted as Mixture Flux (MF) schemes. This approach is based on a splitting of the system in two components associated with the pressure and volume fraction variables respectively, and builds upon hybrid FVS/FDS schemes previously developed for one-phase flow models. Through analysis and numerical experiments it is demonstrated that the MF approach provides several desirable features, including (1) Improved efficiency compared to standard approximate Riemann solvers, (2) Robustness under stiff conditions, (3) Accuracy on linear and nonlinear phenomena. In particular it is demonstrated that the framework allows for an efficient weakly implicit implementation, focusing on an accurate resolution of slow transients relevant for the petroleum industry. (author)
An introduction to two-phase flows
International Nuclear Information System (INIS)
This course aims at proposing the necessary background for a rational approach to two-phase flows which are notably present in numerous industrial devices and equipment designed to perform energy transfer or mass transfer. The first part proposes a phenomenological approach to main two-phase flow structures and presents their governing variables. The second part presents some proven measurement techniques. The third part focuses on modelling. It recalls the equation elaboration techniques which are based on basic principles of mechanics and thermodynamics and on the application of different averaging operators to these principles. Some useful models are then presented such as models of pressure loss in a duct. The last chapter addresses some fundamental elements of heat transfers in ebullition and condensation
Two-Phase Cavitating Flow in Turbomachines
Directory of Open Access Journals (Sweden)
Sandor I. Bernad
2012-11-01
Full Text Available Cavitating flows are notoriously complex because they are highly turbulent and unsteady flows involving two species (liquid/vapor with a large density difference. These features pose a unique challenge to numerical modeling works. The study briefly reviews the methodology curently employed for industrial cavitating flow simulations using the two-phase mixture model. The two-phase mixture model is evaluated and validated using benchmark problem where experimental data are available. A 3D cavitating flow computation is performed for the GAMM Francis runner. The model is able to qualitatively predict the location and extent of the 3D cavity on the blade, but further investigation are needed to quatitatively assess the accuracy for real turbomachinery cavitating flows.
Pumped two-phase heat transfer loop
Edelstein, Fred
1988-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Chi, Changqing
2016-01-01
Ferrofluids currently are the only type of magnetic liquid materials with wide practical use. The theory on ferrofluids is an example of success to apply statistics to science. Ferrofluids are two-phase liquids consisting of dispersed nanoscale ferromagnetic particles suspended in a carrier fluid. Due to their tiny size, individual ferromagnetic particles clearly exhibit Brownian motions. Only when a large number of randomly-moving particles are subject to an external magnetic field, can they...
Two phase picture in driven polymer translocation
Saito, Takuya; Sakaue, Takahiro
2012-01-01
Two phase picture is a simple and effective methodology to capture the nonequilibrium dynamics of polymer associated with tension propagation. When applying it to the driven translocation process, there is a point to be noted, as briefly discussed in our recent article [Phys. Rev. E 85, 061803 (2012)]. In this article, we address this issue in detail and modify our previous prediction [Euro. Phys. J. E 34, 135 (2011)] by adopting an alternative steady-state ansatz. The modified scaling predic...
Review of two-phase instabilities
Energy Technology Data Exchange (ETDEWEB)
Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong
1997-06-01
KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.
2014-06-03
This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.
Two-phase flow dynamics in ECC
International Nuclear Information System (INIS)
The present report summarizes the achievements within the project ''Two-phase Systems and ECC''. The results during 1978 - 1980 are accounted for in brief as they have been documented in earlier reports. The results during the first half of 1981 are accounted for in greater detail. They contain a new model for the Basset force and test runs with this model using the test code RISQUE. Furthermore, test runs have been performed with TRAC-PD2 MOD 1. This code was implemented on Edwards Pipe Blowdown experiment (a standard test case) and UC-Berkeley Reflooding experiment (a non-standard test case.) (Auth.)
Two-Phase Flow in Heterogeneous Media
Ghaffari, Hamed O
2009-01-01
In this study, we investigate the appeared complexity of two-phase flow (air-water) in a heterogeneous soil where the supposed porous media is non-deformable media which is under the time-dependent gas pressure. After obtaining of governing equations and considering the capillary pressure-saturation and permeability functions, the evolution of the models unknown parameters were obtained. In this way, using COMSOL (FEMLAB) and fluid flow-script Module, the role of heterogeneity in intrinsic permeability was analysed. Also, the evolution of relative permeability of wetting and non-wetting fluid, capillary pressure and other parameters were elicited.
Dynamic failure in two-phase materials
Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.
2015-12-01
Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as void nucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parent materials. In this work, we present results on three different polycrystalline materials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces on void nucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the "weaker" material that dictates the dynamic spall strength of the overall two-phase material.
Two Phase Flow Simulation Using Cellular Automata
International Nuclear Information System (INIS)
The classical mathematical treatment of two-phase flows is based on the average of the conservation equations for each phase.In this work, a complementary approach to the modeling of these systems based on statistical population balances of aut omata sets is presented.Automata are entities defined by mathematical states that change following iterative rules representing interactions with the neighborhood.A model of automata for two-phase flow simulation is presented.This model consists of fie lds of virtual spheres that change their volumes and move around a certain environment.The model is more general than the classical cellular automata in two respects: the grid of cellular automata is dismissed in favor of a trajectory generator, and the rules of interaction involve parameters representing the actual physical interactions between phases.Automata simulation was used to study unsolved two-phase flow problems involving high heat flux rates. One system described in this work consists of a vertical channel with saturated water at normal pressure heated from the lower surface.The heater causes water to boil and starts the bubble production.We used cellular automata to describe two-phase flows and the interaction with the heater.General rule s for such cellular automata representing bubbles moving in stagnant liquid were used, with special attention to correct modeling of different mechanisms of heat transfer.The results of the model were compared to previous experiments and correlations finding good agreement.One of the most important findings is the confirmation of Kutateladze's idea about a close relation between the start of critical heat flux and a change in the flow's topology.This was analyzed using a control volume located in the upper surface of the heater.A strong decrease in the interfacial surface just before the CHF start was encountered.The automata describe quite well some characteristic parameters such as the shape of the local void fraction in the
International Nuclear Information System (INIS)
Graphical abstract: This review summarizes the studies of the exact solutions of the Schrödinger and Dirac equations of H2+ in non-relativistic, relativistic, non-Born-Oppenheimer, and under magnetic field conditions, by the free-complement (FC) method. Highlights: ► The studies of the exact solutions of the Schrödinger and Dirac equations of H2+ are reviewed. ► The Schrödinger and Dirac equations are solved by the free-complement (FC) method. ► Non-Born–Oppenheimer and magnetic field cases are also solved. - Abstract: We here give a review of our studies of hydrogen molecular ion (H2+) based on the accurate solutions of the Schrödinger equation (SE) and Dirac equations (DE) obtained by the free-complement (FC) methodology developed in our laboratory. We summarize the results of non-relativistic and relativistic studies of H2+ and its isotopomers HD+, and HT+, under the Born–Oppenheimer (BO) and non-BO treatments and with and without external magnetic field. H2+ is a simple one-electron molecule, and so has basic importance in quantum chemistry. Further, it is stable and of rich history of studies, particularly in interstellar science. For the non-relativistic SE, the convergence speed to the exact solution of the FC method is faster than that of the “exact” expansion, exhibiting high efficiency of the FC method. For the relativistic DE, not only accurate energy upper bounds but also lower bounds are calculated. The potential energy curves are also calculated at the non-relativistic and relativistic levels for all isotopomers, and chemically interesting information such as spectroscopic constants and transition frequencies are provided. The non-BO problem is also successfully solved for all isotopomers, and extremely accurate 11S and 13P energies, expectation values of interparticle distances are calculated for the ground and excited vibrational states. In the magnetic field calculation, our method is accurate in any strengths and any directions
Boyd, John P.
2011-02-01
Radial basis function (RBF) interpolants have become popular in computer graphics, neural networks and for solving partial differential equations in many fields of science and engineering. In this article, we compare five different species of RBFs: Gaussians, hyperbolic secant (sech's), inverse quadratics, multiquadrics and inverse multiquadrics. We show that the corresponding cardinal functions for a uniform, unbounded grid are all approximated by the same function: C(X) ∼ (1/(ρ)) sin (πX)/sinh (πX/ρ) for some constant ρ(α) which depends on the inverse width parameter (“shape parameter”) α of the RBF and also on the RBF species. The error in this approximation is exponentially small in 1/α for sech's and inverse quadratics and exponentially small in 1/α2 for Gaussians; the error is proportional to α4 for multiquadrics and inverse multiquadrics. The error in all cases is small even for α ∼ O(1). These results generalize to higher dimensions. The Gaussian RBF cardinal functions in any number of dimensions d are, without approximation, the tensor product of one dimensional Gaussian cardinal functions: Cd(x1,x2…,xd)=∏j=1dC(xj). For other RBF species, we show that the two-dimensional cardinal functions are well approximated by the products of one-dimensional cardinal functions; again the error goes to zero as α → 0. The near-identity of the cardinal functions implies that all five species of RBF interpolants are (almost) the same, despite the great differences in the RBF ϕ's themselves.
Directory of Open Access Journals (Sweden)
Wei-Yang Xie
2015-01-01
Full Text Available After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, and orthogonal transformation. According to the model’s solution, the bilogarithmic type curves of the two-phase model are illustrated, and the production decline performance under the effects of hydraulic fractures and shale gas reservoir properties are discussed. The result obtained in this paper has important significance to understand pressure response characteristics and production decline law of two-phase flow in shale gas reservoirs. Moreover, it provides the theoretical basis for exploiting this reservoir efficiently.
Modeling of two-phase slug flow
International Nuclear Information System (INIS)
When gas and liquid flow in a pipe, over a range of flow rates, a flow pattern results in which sequences of long bubbles, almost filling the pipe cross section, are successively followed by liquid slugs that may contain small bubbles. This flow pattern, usually called slug flow, is encountered in numerous practical situations, such as in the production of hydrocarbons in wells and their transportation in pipelines; the production of steam and water in geothermal power plants; the boiling and condensation in liquid-vapor systems of thermal power plants; emergency core cooling of nuclear reactors; heat and mass transfer between gas and liquid in chemical reactors. This paper provides a review of two phase slug flow modeling
Two phase decision algorithm of replica allocation
Institute of Scientific and Technical Information of China (English)
Zuo Chaoshu; Liu Xinsong; Wang Zheng; Li Yi
2006-01-01
In distributed parallel server system, location and redundancy of replicas have great influence on availability and efficiency of the system. In order to improve availahility and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O( n ), resource optimizing scale increases with the increase of READ count.
Two-phase ozonation of chlorinated organics
International Nuclear Information System (INIS)
In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O3), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O3) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures
Tracer Partitioning in Two-Phase Flow
Sathaye, K.; Hesse, M. A.
2012-12-01
The concentration distributions of geochemical tracers in a subsurface reservoir can be used as an indication of the reservoir flow paths and constituent fluid origin. In this case, we are motivated by the origin of marked geochemical gradients in the Bravo Dome natural CO2 reservoir in northeastern New Mexico. This reservoir contains 99% CO2 with various trace noble gas components and overlies the formation brine in a sloping aquifer. It is thought that magmatic CO2 entered the reservoir, and displaced the brine. This displacement created gradients in the concentrations of the noble gases. Two models to explain noble gas partitioning in two-phase flow are presented here. The first model assumes that the noble gases act as tracers and uses a first order non-linear partial differential equation to compute the volume fraction of each phase along the displament path. A one-way coupled partial differential equation determines the tracer concentration, which has no effect on the overall flow or phase saturations. The second model treats each noble gas as a regular component resulting in a three-component, two-phase system. As the noble gas injection concentration goes to zero, we see the three-component system behave like the one-way coupled system of the first model. Both the analytical and numerical solutions are presented for these models. For the process of a gas displacing a liquid, we see that a noble gas tracer with greater preference for the gas phase, such as Helium, will move more quickly along the flowpath than a heavier tracer that will more easily enter the liquid phase, such as Argon. When we include partial miscibility of both the major and trace components, these differences in speed are shown in a bank of the tracer at the saturation front. In the three component model, the noble gas bank has finite width and concentration. In the limit where the noble gas is treated as a tracer, the width of the bank is zero and the concentration increases linearly
A Godunov-type method for the seven-equation model of compressible two-phase flow
International Nuclear Information System (INIS)
We are interested in the numerical approximation of the solutions of the compressible seven-equation two-phase flow model. We propose a numerical strategy based on the derivation of a simple, accurate and explicit approximate Riemann solver. The source terms associated with the external forces and the drag force are included in the definition of the Riemann problem, and thus receive an upwind treatment. The objective is to try to preserve, at the numerical level, the asymptotic property of the solutions of the model to behave like the solutions of a drift-flux model with an algebraic closure law when the source terms are stiff. Numerical simulations and comparisons with other strategies are proposed. (authors)
Advances in two-phase flow instrumentation
International Nuclear Information System (INIS)
Multiphase flow measurements have become increasingly in a number of process and power systems. However, the need to predict system behavior under transient and accident conditions in nuclear reactors has given impetus to research in this area. Since moving internal interfaces make theoretical predictions difficult, much information for design and supporting analyses is based on experimental observation. The simplest models involving parameters representing mixture density and mixture mass flux, assume thermal equillibrium of the two phases, and are applicable only to a limited number of situations. Most of the parameters, such as interface area and local mixture density, needed for more sophisticated models, are particularly difficult to measure. At present, there are no truly direct methods for measuring local void fraction or mass flux. Local measurements can be taken for a cross-section using, for example, a system of simultaneously quick-closing valves. These valves obtained for the cross section can be integrated, and the result compared with direct measurements for an entire pipeline. Consistent results tend to support the response-model used
Condensation in a two-phase pool
International Nuclear Information System (INIS)
We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases
Phase appearance or disappearance in two-phase flows
Cordier, Floraine; Kumbaro, Anela
2011-01-01
This paper is devoted to the treatment of specific numerical problems which appear when phase appearance or disappearance occurs in models of two-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety studies. In this paper, two outstanding problems are identified: first, the loss of hyperbolicity of the system when a phase appears or disappears and second, the lack of positivity of standard shock capturing schemes such as the Roe scheme. After an asymptotic study of the model, this paper proposes accurate and robust numerical methods adapted to the simulation of phase appearance or disappearance. Polynomial solvers are developed to avoid the use of eigenvectors which are needed in usual shock capturing schemes, and a method based on an adaptive numerical diffusion is designed to treat the positivity problems. An alternate method, based on the use of the hyperbolic tangent function instead of a polynomial, is also considered. Numerical results are presente...
Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method
Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.
1982-01-01
A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.
Ostwald ripening in two-phase mixtures
International Nuclear Information System (INIS)
Experimental measurements of the temperature of a rapidly solidified solid-liquid mixture have been made over a range of volume fractions solid 0.23 to 0.95. These experiments demonstrate the viability of measuring the change in interfacial curvature with time via precision thermometry. The experimental measurements also indicate that there is no radical change in interface morphology over a wide range of volume fractions solid. A solution to the multi-particle diffusion problem (MDP) has been constructed through the use of potential theory. The solution to the MDP was used to describe the diffusion field within a coarsening two-phase mixture consisting of dispersed spherical second-phase particles. Since this theory is based upon the MDP, interparticle diffusional interactions are specifically included in the treatment. As a result, the theory yields, for the first time, insights into the influence of the local distribution of curvature on a particle's coarsening rate. The effect of interparticle interactions on the collective behavior of an ensemble of coarsening particles was also investigated. It was found that any arbitrary distribution of particle radii will tend to a specific time independent distribution when the particle radii are scaled by the average particle radius. Furthermore, it was determined that with increasing volume fraction of coarsening phase, these time independent distributions become broader and more symmetric. It was also found that the ripening kinetics, as measured by the growth rate of the average particle size, increases by a factor of five upon increasing the volume fraction of coarsening phase from zero to 0.5
Pressure Loss across Tube Bundles in Two-phase Flow
Energy Technology Data Exchange (ETDEWEB)
Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)
2016-03-15
An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.
Unsteady interfacial coupling of two-phase flow models
International Nuclear Information System (INIS)
The primary coolant circuit in a nuclear power plant contains several distinct components (vessel, core, pipes,...). For all components, specific codes based on the discretization of partial differential equations have already been developed. In order to obtain simulations for the whole circuit, the interfacial coupling of these codes is required. The approach examined within this work consists in coupling codes by providing unsteady information through the coupling interface. The numerical technique relies on the use of an interface model, which is combined with the basic strategy that was introduced by Greenberg and Leroux in order to compute approximations of steady solutions of non-homogeneous hyperbolic systems. Three different coupling cases have been examined: (i) the coupling of a one-dimensional Euler system with a two-dimensional Euler system; (ii) the coupling of two distinct homogeneous two-phase flow models; (iii) the coupling of a four-equation homogeneous model with the standard two-fluid model. (author)
A TWO-PHASE APPROACH TO FUZZY SYSTEM IDENTIFICATION
Institute of Scientific and Technical Information of China (English)
Ta-Wei HUNG; Shu-Cherng FANG; Henry L.W.NUTTLE
2003-01-01
A two-phase approach to fuzzy system identification is proposed. The first phase produces a baseline design to identify a prototype fuzzy system for a target system from a coIlection of input-output data pairs. It uses two easily implemented clustering techniques: the subtractive clustering method and the fuzzy c-means (FCM) clustering algorithm. The second phase (fine tuning)is executed to adjust the parameters identified in the baseline design. This phase uses the steepest descent and recursive least-squares estimation methods. The proposed approach is validated by applying it to both a function approximation type of problem and a classification type of problem. An analysis of the learning behavior of the proposed approach for the two test problems is conducted for further confirmation.
Vapor Compressor Driven Hybrid Two-Phase Loop Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...
Reynolds transport theorem for a two-phase flow
Collado, Francisco J.
2007-01-01
Transport equations for one-dimensional (1d), steady, two-phase flow have been proposed based on the fact that if the phases have different velocities, they cannot cover the same distance (the control volume length) in the same time. Thus, working in the same control volume for the two phases, the time scales of the phases have to be different. From this approach, transport balances for 1D, steady, two-phase flow have been already derived, supplying acceptable correlations for two-phase flow. Here, based on the strict application of the Reynolds transport theorem, general transport balances for two-phase flow are suggested.
Objective characterization of interfacial structures in two-phase flow
International Nuclear Information System (INIS)
In view of establishing a detailed and reliable measurement technique for characterizing the interfacial structures and identifying flow regimes in two-phase flow, two objective approaches are presented. First, the state-of-the-art four-sensor conductivity probe technique is presented to obtain the detailed local information. The newly designed four-sensor conductivity probe accommodates the double-sensor probe capability. Hence, it can be applied in a wide range of two-phase flow regimes spanning from bubbly to churn-turbulent flows with a measurement error of approximately ± 10%. The signal processing scheme is developed such that it accounts for the missing bubbles and defective signals. Furthermore, it categorizes the acquired parameters into two groups based on bubble cord length information. Local information on the void fraction, interfacial area concentration, Sauter mean diameter, interface velocity for each group of bubbles was obtained successfully. Second, a global measurement technique using the non-intrusive impedance voidmeter and neural networks is presented. In this method, an advanced non-intrusive impedance voidmeter provides global interfacial structure information to neural networks which are used to identify the flow regimes. Both supervised and self-organizing neural network learning paradigms performed flow regime identification successfully. In the application of this global method, two approaches are presented, namely: One based on the Probability Density Function (PDF input method), and another based on the ordered set of void fraction measurements which were acquired in a very short time period (instantaneous direct signal input method). The direct signal input method minimizes the time required for identifying the flow regime
New concept of analytical method for two-phase flow
International Nuclear Information System (INIS)
The authors are developing a new analytical method for vertical upward two-phase flow based on a concept that two-phase flow with minimum pressure energy consumption rate is the most stable and easily flowable two-phase flow for the given boundary conditions and, thus, such two-phase flow should be realized actually. Although this concept is applied basically one-dimensionally in the analytical method, gravity convection effect due to density difference between liquid film on the channel wall and two-phase flow core in the central region of the channel is taken into account through a two-dimensional turbulent flow analysis. An air-water two-phase flow experiment was performed to verify the proposed analytical method. In the present paper, results of the experimental analysis with the proposed method are reported. (author)
A bi-directional two-phase/two-phase heat exchanger
Ku, Jentung; Ottenstein, Laura
1993-01-01
This paper describes the design and test of a heat exchanger that transfers heat from one two-phase thermal loop to another with very small drops in temperature and pressure. The heat exchanger condenses the vapor in one loop while evaporating the liquid in the other without mixing of the condensing and evaporating fluids. The heat exchanger is bidirectional in that it can transfer heat in reverse, condensing on the normally evaporating side and vice versa. It is fully compatible with capillary pumped loops and mechanically pumped loops. Test results verified that performance of the heat exchanger met the design requirements. It demonstrated a heat transfer rate of 6800 watts in the normal mode of operation and 1000 watts in the reverse mode with temperature drops of less than 5 C between two thermal loops.
DNS and LES of two-phase flows with cavitation
Hickel, Stefan
2014-01-01
We report on recent progress in the physical and numerical modeling of compressible two-phase flows that involve phase transition between the liquid and gaseous state of the fluid. The high-speed dynamics of cavitation bubbles is studied in well-resolved simulations (DNS) with a sharp-interface numerical model on a micro scale. The underlying assumption of the employed evaporation/condensation model is that phase change occurs in thermal non-equilibrium and that the associated timescale is larger than that of the wave dynamics. Results for the collapse of a spherical vapor bubble close to a solid wall are discussed for three different bubble-wall configurations. The major challenge for such numerical investigations is to accurately reproduce the dynamics of the interface between liquid and vapor during the entire collapse process, including the high-speed dynamics of the late stages, where compressibility of both phases plays a decisive role. Direct interface resolving simulations are intractable for real wor...
Next steps in two-phase flow: executive summary
Energy Technology Data Exchange (ETDEWEB)
DiPippo, R.
1980-09-01
The executive summary includes the following topics of discussion: the state of affairs; the fundamental governing equations; the one-dimensional mixture model; the drift-flux model; the Denver Research Institute two-phase geothermal flow program; two-phase flow pattern transition criteria; a two-fluid model under development; the mixture model as applied to geothermal well flow; DRI downwell instrumentation; two-phase flow instrumentation; the Sperry Research Corporation downhole pump and gravity-head heat exchanger systems; and the Brown University two-phase flow experimental program. (MHR)
Two Phases of Coherent Structure Motions in Turbulent Boundary Layer
Institute of Scientific and Technical Information of China (English)
LIU Jian-Hua; JIANG Nan
2007-01-01
Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.
Stochastic Discrete Equation Method (sDEM) for two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Abgrall, R., E-mail: remi.abgrall@inria.fr [Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Congedo, P.M., E-mail: pietro.congedo@inria.fr [INRIA Bordeaux-Sud-Ouest, Equipe Cardamom, 200 Avenue de la Vieille Tour, 33405 Talence (France); Geraci, G., E-mail: ggeraci@stanford.edu [Flow Physics and Computational Engineering, Stanford University, 488 Escondido Mall, Building 500, Stanford, CA 94305-3035 (United States); Rodio, M.G., E-mail: maria-giovanna.rodio@inria.fr [INRIA Bordeaux-Sud-Ouest, Equipe Cardamom, 200 Avenue de la Vieille Tour, 33405 Talence (France)
2015-10-15
A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.
Experimental Studies on the Measurement of Oil-water Two-phase Flow
Ma, Longbo; Zhang, Hongjian; Hua, Yuefang; Zhou, Hongliang
2007-06-01
Oil-water two-phase flow measurement was investigated with a Venturi meter and double-U Coriolis meter in this work. Based on the Venturi differential pressure and the quality of two-phase flow, a model for measuring oil-water mass flow rate was developed, in which fluid asymmetry of oil-water two-phase flow was considered. However, measuring the quality of two-phase flow on-line is rather difficult at present. Though double-U Coriolis meter can provide accurate measurement of two-phase flow, it can not provide desired respective mass flow rate. Therefore, a double-parameter measurement method with Venturi meter and double-U Coriolis meter is proposed. According to the flow rate requirement of Venturi, a new flow regime identification method based on Support Vector Machine (SVM) has been developed for the separated flow and the dispersed flow. With the Venturi model developed in this paper and mass flow rate of oil-water mixture measured with double-U Coriolis meter, mixture mass flow rate, oil mass flow rate and water mass flow rate could be obtained by the correlation. Experiments of flow rate measurement of oil-water two-phase flow were carried out in the horizontal tube with 25mm inner diameter. The water fraction range is from 5% to 95%. Experimental results showed that the flow regime could be identified well with SVM, and the relative error of the total mass flow rate and respective mass flow rate of oil-water two-phase flow was less than ±1.5% and ±10%, respectively.
Multi-needle capacitance probe for non-conductive two-phase flows
Monrós-Andreu, G.; Martinez-Cuenca, R.; Torró, S.; Escrig, J.; Hewakandamby, B.; Chiva, S.
2016-07-01
Despite its variable degree of application, intrusive instrumentation is the most accurate way to obtain local information in a two-phase flow system, especially local interfacial velocity and local interfacial area parameters. In this way, multi-needle probes, based on conductivity or optical principles, have been extensively used in the past few decades by many researchers in two-phase flow investigations. Moreover, the signal processing methods used to obtain the time-averaged two-phase flow parameters in this type of sensor have been thoroughly discussed and validated by many experiments. The objective of the present study is to develop a miniaturized multi-needle probe, based on capacitance measurements applicable to a wide range of non-conductive two-phase flows and, thus, to extend the applicability of multi-needle sensor whilst also maintaining a signal processing methodology provided in the literature for conductivity probes. Results from the experiments performed assess the applicability of the proposed sensor measurement principle and signal processing method for the bubbly flow regime. These results also provide an insight into the sensor application for more complex two-phase flow regimes.
Effects of two-phase flow in a model for nitramine deflagration
International Nuclear Information System (INIS)
Methods of asymptotic analysis are employed to extend an earlier model for the deflagration of nitramines to account for the presence of bubbles and droplets in a two-phase layer at the propellant surface during combustion. Two zones are identified in the two-phase region: one, at higher liquid volume fractions, maintains evaporative equilibrium, whereas the other, at lower liquid volume fractions, exhibits nonequilibrium vaporization. By introducing the most reasonable estimates for two-phase behavior of nitramines, the steady burning rates are found to be close to those obtained for models with a sharp liquid-gas interface. Good agreement with measured burning rates and pressure and temperature sensitivities are achieved through reasonable approximations concerning overall chemical-kinetic parameters
Modeling two-phase flow in PEM fuel cell channels
Wang, Yun; Basu, Suman; Wang, Chao-Yang
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.
Modeling two-phase flow in PEM fuel cell channels
Energy Technology Data Exchange (ETDEWEB)
Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)
Research on one-dimensional two-phase flow
International Nuclear Information System (INIS)
In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, CD, for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)
Dynamic Modeling of Phase Crossings in Two-Phase Flow
DEFF Research Database (Denmark)
Madsen, Søren; Veje, Christian; Willatzen, Morten
2012-01-01
Two-phase flow and heat transfer, such as boiling and condensing flows, are complicated physical phenomena that generally prohibit an exact solution and even pose severe challenges for numerical approaches. If numerical solution time is also an issue the challenge increases even further. We present...... of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...
Critical transport velocity in two-phase, horizontal pipe flow
Energy Technology Data Exchange (ETDEWEB)
Sommerville, D. (U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Grounds, MD (US))
1991-02-01
This paper reports on the suspension of solid particles or entrainment of liquid droplets in two- phase flow. Theoretical and empirical relationships have been derived for both instances without any consideration to the similarities between the two. However, a general relation for two-phase flow is desirable since there are systems that cannot be readily defined due to the dual (solid/liquid) nature of the transported material, such as colloids, pulp, slurries, and sludge. Using turbulence theory, one general equation can be derived to predict critical transport velocities for two-phase horizontal flow.
Tunable two-phase coexistence in half-doped manganites
Indian Academy of Sciences (India)
P Chaddah; A Banerjee
2008-02-01
We discuss our very interesting experimental observation that the low-temperature two-phase coexistence in half-doped manganites is multi-valued (at any field) in that we can tune the coexisting antiferromagnetic-insulating (AF-I) and the ferromagnetic-metallic (FM-M) phase fractions by following different paths in (; ) space. We have shown experimentally that the phase fraction, in this two-phase coexistence, can take continuous infinity of values. All but one of these are metastable, and two-phase coexistence is not an equilibrium state.
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
What types of investors generate the two-phase phenomenon?
Ryu, Doojin
2013-12-01
We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.
Particle modulations to turbulence in two-phase round jets
Institute of Scientific and Technical Information of China (English)
Bing Wang; Huiqiang Zhang; Yi Liu; Xiaofen Yan; Xilin Wang
2009-01-01
The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the far-fields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop-erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.
Two-phase repository construction concept: Engineering feasibility study
International Nuclear Information System (INIS)
As part of the Conceptual Design of a High Level Nuclear Waste Repository in Salt, and Engineering Feasibility Study was performed to evaluate the validity of the proposed two-phase repository construction concept as described in the Mission Plan. As a result of this study, the two-phase repository construction concept can be considered valid. The uncertainty associated with the site-related permitting and licensing process remains the major element of risk to the program schedule. With the application of the two-phase approach, surface and subsurface construction activities can be removed from the critical path. For this study, the Davis Canyon, Utah site was used. The study includes preliminary designs of the two-phase repository, surface and subsurface layouts, an overall integrated schedule, and cost estimates and evaluations regarding schedule and technical issues. 4 refs., 19 figs., 21 tabs
Refrigeration. Two-Phase Flow. Flow Regimes and Pressure Drop
DEFF Research Database (Denmark)
Knudsen, Hans-Jørgen Høgaard
2002-01-01
The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature....
Gravity Independence of Microchannel Two-Phase Flow Project
National Aeronautics and Space Administration — Most of the amassed two-phase flow and heat transfer knowledge comes from experiments conducted in Earth’s gravity. Space missions span varying gravity...
Scaling of Two-Phase Systems Across Gravity Levels Project
National Aeronautics and Space Administration — There is a defined need for long term earth based testing for the development and deployment of two-phase flow systems in reduced-gravity, including lunar gravity,...
Vapor Compressor Driven Hybrid Two-Phase Loop Project
National Aeronautics and Space Administration — The Phase I project successfully demonstrated the feasibility of the vapor compression hybrid two-phase loop (VCHTPL). The test results showed the high...
Energy Technology Data Exchange (ETDEWEB)
Yousaf, Masood [Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Physics Department, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Dalhatu, S.A. [Physics Department, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Murtaza, G. [Department of Physics, Islamia College, Peshawar, KPK (Pakistan); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, 29000 Mascara (Algeria); Sajjad, M. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Musa, A. [Physics Department, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Rahnamaye Aliabad, H.A. [Department of Physics, Hakim Sabzevari University (Iran, Islamic Republic of); Saeed, M.A., E-mail: saeed@utm.my [Physics Department, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)
2015-03-15
Highlights: • Highly accurate all-electron FP-LAPW+lo method is used. • New physical parameters are reported, important for the fabrication of optoelectronic devices. • A comparative study that involves FP-LAPW+lo method and modified approximations. • Computed band gap values have good agreement with the experimental values. • Optoelectronic results of fundamental importance can be utilized for the fabrication of devices. - Abstract: We report the structural, electronic and optical properties of the thiospinels XIn{sub 2}S{sub 4} (X = Cd, Mg), using highly accurate all-electron full potential linearized augmented plane wave plus local orbital method. In order to calculate the exchange and correlation energies, the method is coupled with modified techniques such as GGA+U and mBJ-GGA, which yield improved results as compared to the previous studies. GGA+SOC approximation is also used for the first time on these compounds to examine the spin orbit coupling effect on the band structure. From the analysis of the structural parameters, robust character is predicted for both materials. Energy band structures profiles are fairly the same for GGA, GGA+SOC, GGA+U and mBJ-GGA, confirming the indirect and direct band gap nature of CdIn{sub 2}S{sub 4} and MgIn{sub 2}S{sub 4} materials, respectively. We report the trend of band gap results as: (mBJ-GGA) > (GGA+U) > (GGA) > (GGA+SOC). Localized regions appearing in the valence bands for CdIn{sub 2}S{sub 4} tend to split up nearly by ≈1 eV in the case of GGA+SOC. Many new physical parameters are reported that can be important for the fabrication of optoelectronic devices. Optical spectra namely, dielectric function (DF), refractive index n(ω), extinction coefficient k(ω), reflectivity R(ω), optical conductivity σ(ω), absorption coefficient α(ω) and electron loss function are discussed. Optical’s absorption edge is noted to be 1.401 and 1.782 for CdIn{sub 2}S{sub 4} and MgIn{sub 2}S{sub 4}, respectively. The
Two-Phase Ammonia-Water Absorption in Mini-Channel Annulus
van de Bor, Dennis Marijn; Vasilescu, Catalina; Infante Ferreira, Carlos
2012-01-01
In order to reduce investment costs and refrigerant charge for heat pump equipment, the design of the required heat exchangers should be optimized. Mini-channels heat exchangers are proposed since they can dissipate a higher heat flux and they can be more compact. An accurate prediction of the two-phase heat transfer coefficient in mini-channels is necessary for the heat exchangers design. Several correlations have been proposed in the literature but they cannot cover the wide ranges of worki...
Numerical experiments of two-phase flow in pipelines with a two-fluid compressible model
Loilier, P.; Omgba-Essama, C.; Thompson, Chris
2005-01-01
Getting an accurate understanding of the dynamics of multiphase transport for the design of efficient pipelines is an important issue in the oil and gas industry. This paper presents simulations of one-dimensional two-phase flow in pipelines. The compressible model used is derived from the two-fluid model where pressure relaxation terms are added. The governing system consists of five time- dependent partial differential equations solved explicitly by a finite volume approac...
Aspects of two-phase gas--liquid flow
International Nuclear Information System (INIS)
A wide range of topics related to current research on liquid-gas flow is reviewed, and the relevance of these topics to the design of heat exchangers is discussed. Information is included on flow patterns; system variables; mathematical models for parallel flow and non-parallel flow; critical two-phase flow; unsteady flow; and types of two-phase flow equipment used in industry. (U.S.)
Stochastic modelling of two-phase flows including phase change
International Nuclear Information System (INIS)
Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)
Two-phase cooling fluids; Les fluides frigoporteurs diphasiques
Energy Technology Data Exchange (ETDEWEB)
Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)
1997-12-31
In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry
Review on two-phase flow instabilities in narrow spaces
International Nuclear Information System (INIS)
Instabilities in two-phase flow have been studied since the 1950s. These phenomena may appear in power generation and heat transfer systems where two-phase flow is involved. Because of thermal management in small size systems, micro-fluidics plays an important role. Typical processes must be considered when the channel hydraulic diameter becomes very small. In this paper, a brief review of two-phase flow instabilities encountered in channels having hydraulic diameters greater than 10 mm are presented. The main instability types are discussed according to the existing experimental results and models. The second part of the paper examines two-phase flow instabilities in narrow spaces. Pool and flow boiling cases are considered. Experiments as well as theoretical models existing in the literature are examined. It was found that several experimental works evidenced these instabilities meanwhile only limited theoretical developments exist in the literature. In the last part of the paper an interpretation of the two-phase flow instabilities linked to narrow spaces are presented. This approach is based on characteristic time scales of the two-phase flow and bubble growth in the capillaries
Dynamic modeling strategy for flow regime transition in gas-liquid two-phase flows
International Nuclear Information System (INIS)
In modeling gas-liquid two-phase flows, the concept of flow regime has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which were developed for steady-state, fully-developed flows and have been widely applied in nuclear reactor system safety analysis codes. As two-phase flows are dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically to be able to predict two-phase flows more accurately. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations. (author)
Institute of Scientific and Technical Information of China (English)
袁益让
1999-01-01
For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as piecewise biquadratic interpolation, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L~2 norm are derived to determine the error in the approximate solution.
Numerical method for nonlinear two-phase displacement problem and its application
Institute of Scientific and Technical Information of China (English)
YUAN Yi-rang; LIANG Dong; RUI Hong-xing; DU Ning; WANG Wen-qia
2008-01-01
For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schemes were put forward. Some techniques, such as calculus of variations, induction hypothesis, decomposition of high order difference operators, the theory of prior estimates and techniques were used. Optimal order estimates were derived for the error in the approximation solution. These methods have been successfully used to predict the consequences of seawater intrusion and protection projects.
Study of two-phase flows in reduced gravity
Roy, Tirthankar
Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.
2016-03-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.
A new correlation of two-phase frictional pressure drop for condensing flow in pipes
International Nuclear Information System (INIS)
Highlights: • Survey of two-phase frictional pressure drop (THFPD) experimental data of condensing flow is conducted. • Applicability of the existing THFPD correlations to condensing flow is assessed. • A new THFPD correlation for condensing flow in pipes is proposed. -- Abstract: The calculation of two-phase frictional pressure drop for condensing flow in pipes is essential in many areas. Although numerous studies concerning this issue have been conducted, an accurate correlation is still required. In this paper, an overall survey of correlations and experimental investigations of two-phase frictional pressure drop is carried out. There 525 experimental data points of 9 refrigerants are gathered from literature, with hydraulic diameter from 0.1 to 10.07 mm, mass flux from 20 to 800 kg/m2 s, and heat flux from 2 to 55.3 kW/m2. The 29 existing correlations are evaluated against the experimental database, among which the best one has a mean absolute relative deviation (MARD) of 25.2%. Based on all the experimental data, a new correlation which has an MARD of 19.4% is proposed, improving significantly the prediction of two-phase frictional pressure drop for pipe condensing flow
Definition of two-phase flow behaviors for spacecraft design
Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.
1991-01-01
Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.
Mathematical modeling of disperse two-phase flows
Morel, Christophe
2015-01-01
This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...
Velocity and energy relaxation in two-phase flows
Meyapin, Yannick; Gisclon, Marguerite
2009-01-01
In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible li...
A mechanical erosion model for two-phase mass flows
Pudasaini, Shiva P
2016-01-01
Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, process-based, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transport. The model is based on the jump in the momentum flux including changes of material and flow properties along the flow-bed interface and enhances an existing general two-phase mass flow model (Pudasaini, 2012). A two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process including momentum and rheological changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum productions or losses in conservative model formulation is essential for the physically correct and mathematically consistent descript...
Pumped, Two-Phase Heat-Transfer Loop
Edelstein, F.
1986-01-01
Two-phase heat-transfer system delivers coolant to equipment as liquid and removes it as vapor. Alternatively, system heats equipment by delivering vapor and removing condensed liquid. Two-phase scheme effective for heat transfer over long distances. Heat-transfer plates remove heat from or supply heat to equipment. If temperature of plate is high, valve opens liquid-supply line to plate, and cooling results. If plate temperature is low, valve opens liquid-suction line to plate, and heating ensues.
Shock wave of vapor-liquid two-phase flow
Institute of Scientific and Technical Information of China (English)
Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN
2008-01-01
The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.
Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid
Energy Technology Data Exchange (ETDEWEB)
Tatkowski, G. [Fermilab; Cheban, S. [Fermilab; Dhanaraj, N. [Fermilab; Evbota, D. [Fermilab; Lopes, M. [Fermilab; Nicol, T. [Fermilab; Sanders, R. [Fermilab; Schmitt, R. [Fermilab; Voirin, E. [Fermilab
2015-01-01
The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids
Pressure Buildup Analysis for Two-Phase Geothermal Wells: Application to the Baca Geothermal Field
Riney, T. D.; Garg, S. K.
1985-03-01
The recently published pressure transient analysis methods for two-phase geothermal wells are employed to analyze the pressure buildup data for several wells located in the Redondo Creek area of the Baca geothermal field in New Mexico. The downhole drilling information and pressure/temperature surveys are first interpreted to locate zones at which fluid enters the well bore from the formation and to estimate the initial reservoir temperature and pressure in these zones. All of the Baca wells considered here induced flashing in the formation upon production. Interpretation of the buildup data for each well considers well bore effects (e.g., phase change in the well bore fluid and location of the pressure sensor with respect to the permeable horizon) and the carbon dioxide content of the fluid and its effects on the phase behavior of the reservoir fluids and differentiates between the single- and two-phase portions of the pressure buildup data. Different straight-line approximations to the two portions (i.e., single- and two-phase) of the data on the Homer plot are used to obtain corresponding estimates for the single- and two-phase mobilities. Estimates for the formation permeability-thickness (kH) product are also given.
Approximation Behooves Calibration
DEFF Research Database (Denmark)
da Silva Ribeiro, André Manuel; Poulsen, Rolf
2013-01-01
Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....
Controlling two-phase flow in microfluidic systems using electrowetting
Gu, Hao
2011-01-01
Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two technologie
Two-phase alkali-metal experiments in reduced gravity
Energy Technology Data Exchange (ETDEWEB)
Antoniak, Z.I.
1986-06-01
Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.
Thermalhydraulic instability analysis of a two phase natural circulation loop
International Nuclear Information System (INIS)
This work presents an analysis of a loop operating in natural circulation regime. Experiments were done in a rectangular closed circuit in one and two-phase flows. Numerical analysis were performed initially with the CIRNAT code and afterwards with RELAP5/MOD2. The limitations of CIRNAT were studied and new developments for this code are proposed. (author)
TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS
Directory of Open Access Journals (Sweden)
Sit B.M.
2010-12-01
Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.
Numerical simulation of two-phase flow in offshore environments
Wemmenhove, Rik
2008-01-01
Numerical Simulation of Two-Phase Flow in Offshore Environments Rik Wemmenhove Weather conditions on full sea are often violent, leading to breaking waves and lots of spray and air bubbles. As high and steep waves may lead to severe damage on ships and offshore structures, there is a great need for
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
The report presents globally the works done by the author in the thermohydraulic applied to nuclear reactors flows. It presents the studies done to the numerical simulation of the two phase flows in the steam generators and a finite element method to compute these flows. (author)
Heat treatment method for two-phase stainless steel
International Nuclear Information System (INIS)
A two-phase stainless steel the toughness of which is reduced by exposure to a high temperature is kept at from 900degC to 1040degC to be solidified and then quenched. With such procedures, a δ-phase deposited in a ferrite phase can be eliminated to restore the toughness. In the solidification step, the two-phase stainless steel having a plate thickness of 1cm or less is kept for 15mins or more, and is kept for additional 5min on every increase of the thickness of 1cm, and then it is compulsorily cooled with water or air. In the heat treatment comprising such steps, a Cr-depleted layer of the welded portion of the two-phase stainless steel of reduced toughness is eliminated to restore an initial state thereby enabling to maintain the integrity of the welded portion. Since the δ-phase deposited in the ferrite phase can be eliminated by solid-solubilizing the two phase stainless steel of reduced toughness by induction heating, reduced toughness can be restored thereby enabling to keep the integrity. (T.M.)
Orientation relationship representation in two-phase material
A. Góral; Jura, J.
2008-01-01
Purpose: Orientation characteristics determination, especially orientation relationship, in two-phase materialsis important in predicting the material properties. The possible orientation relationship representations werepresented and discussed in the paper.Design/methodology/approach: Mathematical formalisms of the quantitative texture and microtextureanalysis were applied.Findings: Various orientation characteristics, especially orientation relationship representation may be used inthe quan...
Modelling of two-phase flow based on separation of the flow according to velocity
Energy Technology Data Exchange (ETDEWEB)
Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy
1997-12-31
The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.
Thermally induced flow oscillation in vertical two-phase natural circulation loop
International Nuclear Information System (INIS)
In order to study the two-phase natural circulation during a small break loss of coolant accident in LWR, simulation experiments have been performed using Freon-113 boiling and condensation loop. In quasi-steady state, the flow became relatively stabilized and certain regular patterns of flow oscillations were detected with ranges of periods in 8-/approximately/35 seconds and 2.5-/approximately/4 minutes. In order to find out the nature of these oscillations, one-dimensional field equations for the single-phase (liquid) and two-phase region were set up, and these field equations were integrated along the loop. The homogeneous flow model was used for the two-phase region. Then the characteristic equation was derived using perturbation method. Thermal non-equilibrium and compressibility of each phase were not considered in the present analysis. The characteristic equation derived can be used to obtain the stability criteria. A simplified approach showed that the short-period oscillation were the manometer oscillation. The longer period oscillations were the density wave oscillation which had the period of oscillations close to the residence time of a fluid around the loop
GEOTHER: a two-phase fluid-flow and heat-transport code
International Nuclear Information System (INIS)
GEOTHER is a three-dimensional geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. These equations, describing three-dimensional effects, are approximated using finite-difference techniques and are solved using an iterative technique. The nonlinear coefficients are calculated using Newton-Raphson iteration, and an option is provided for using either upstream or midpoint weighting on the mobility terms. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. It can simulate heat transport and the flow of compressed water, two-phase mixtures, and super-heated steam in porous media over a temperature range of 10 to 3000C. In addition, it can treat the conversion from single- to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report
MHD Generators Operating with Two-Phase Liquid Metal Flows
International Nuclear Information System (INIS)
A simplified one- component liquid metal MHD cycle which utilizes two-phase mixtures passing directly through the generator has been proposed and is being studied. Analysis indicates that a nuclear dual-cycle power system utilizing the proposed liquid metal conversion scheme as a topping cycle has overall efficiencies that are comparable to a plasma dual-cycle system at much lower,temperatures. The key to the potential of this cycle is the performance of the MHD generator operating with two-phase mixtures. A large NaK-N2 loop capable of accommodating both d.c. conduction or a.c. induction generators operating with either single-phase or two-phase flows has been built and recently put into operation. Recirculating NaK flow rates up to 200 gal/min and gas flows of 750 ft3/min can be obtained. The efficiency of a generator operating with two-phase flow will depend upon the nature of the flow and the degree to which the total entering liquid flow.interacts with the magnetic field. Because the flow pattern of a two-phase mixture changes from a dispersion of gas in liquid to a dispersion of liquid in gas as the mixture quality is increased, two different types of generators are proposed and are being studied. In the first generator, referred to as a film generator, the two-phase mixture enters at a slight angle to the lower surface of the generator. The liquid is separated by impingement. The high-velocity free surface liquid film that is formed interacts with a transverse magnetic film. The efficiency of this type of generator is a function of the separation ratio, skin friction and momentum losses. A 2 kW version of the generator has been built and is currently being run. Initial tests up to 250 W have been made, which have shown that the generator concept is feasible and that the flow is stable. This generator has run with inlet qualities to 0.05 and magnetic fields up to 12 kG. Measured voltages and amperages have ranged to 0.60 V and 60 A. It is planned to continue
Some issues in the simulation of two-phase flows: The relative velocity
Gräbel, J.; Hensel, S.; Ueberholz, P.; Zeidan, D.; Farber, P.
2016-06-01
In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associated with the Riemann problem.
Two-phase velocity measurements around cylinders using particle image velocimetry
International Nuclear Information System (INIS)
The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm3/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm3/s and the air flow rate was approximately 30 cm3/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data
Critical equilibrium two-phase flow with quasi-constant slip
International Nuclear Information System (INIS)
On the basis of the mass-, momentum- and energy-conservation equations, assuming a quasi-constant slip, a mathematical model of the critical non-homogeneous equilibrium two-phase flow is developed. The slip is varied to find the maximum of the critical mass flow rate for low qualities. For qualities greater than 0.1 it is found that the critical mass flow rate has no extreme values and approaches a constant value when the slip increases. Following the concept of Henry and Fauske the model is extended to describe non-homogeneous non-equilibrium two-phase flows, too. The comparison with published experimental data demonstrates that the theory can approximate well different experimental results on determination of the local critical mass flow rate. (orig.)
Kou, Jisheng
2013-01-01
A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.
Two-phase velocity measurements around cylinders using particle image velocimetry
Energy Technology Data Exchange (ETDEWEB)
Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others
1995-09-01
The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.
Investigations of two-phase flame propagation under microgravity conditions
Gokalp, Iskender
2016-07-01
Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets
Water transport in two-phase fuel cell microchannels
Lee, Eon Soo
Many fuel cells contain small rectangular channels in which three of the channel walls are smooth, impermeable metal and the fourth wall is a porous gas-diffusion layer. The main function of the channels is to supply reactant gases through the porous layer to the reaction surface, but also to remove water formed by the electro-chemical reactions. Analysis of the two-phase flow through these channels is complicated by the fact that both gas and liquid can move through either the channel or the porous layer. This study presents the flow regime maps for the two-phase flow and a 1-D two-phase flow model for the frictional characteristics of the porous wall bounded channel flow. Experiments were performed on a straight 200 by 500 micron by 150 mm long rectangular channel. Three walls of the channel were machined into a solid piece of acrylic. One of the 500 micron wide walls was a commercial Toray carbon paper gas-diffusion layer (GDL) material held in place by a flat sheet of acrylic. Water was forced through the GDL layer from four evenly spaced holes in the flat acrylic piece. Two-phase flow regime maps were constructed from flow visualization in terms of a superficial gas velocity, JG and the superficial liquid velocity, JL at the channel exit between 0 velocities increased. The transition from plug flow generally occurs at a constant superficial gas velocity and a two-phase Weber number is proposed as an appropriate dimensionless parameter to characterize this transition. A one-dimensional, two-phase flow model was developed which included the effect of air and water flows in both the channel and GDL. The analysis from experimental measurements showed that the product of the friction factor and the gas flow Reynolds number was very nearly a constant, indicating that the model captures the critical physical features of the flow and is useful for the prediction of gas flow rate or pressure drop in a fuel cell microchannel.
Two-phase treatment of inflamatory candidiasis of vulva
Directory of Open Access Journals (Sweden)
K. Drljević
2006-02-01
Full Text Available The purpose of this prospective study was to examine successfulnes of applaying two-phase treatment of vulvar inflamatory candidiasis. At the initial phase antimycotic izokonazol 1% nitrate in combination with corticosteriod diflucorton valerate (Travocort, Schering AG, Germany was localy applied, and then pure antimycotic izoconasol nitrate (Travogen, Schering AG, Germany. Parametars that have been analyzed in the first phase of treatment were regression of inflamatory changes of vulva, and in the second phase healing of fungal disease. Two-phase treatment of vulvar inflamatory candidiasis showed full therapy benefit at cured patients. The initial short-term local application of combination corticosteroid and antimycotic showed almost a hundred percent regression of inflamatory changes and simptoms of vulvar inflamatory candidiasis, without any side-effects noted.
Energy efficient two-phase cooling for concentrated photovoltaic arrays
Reeser, Alexander Douglas
Concentrated sunlight focused on the aperture of a photovoltaic solar cell, coupled with high efficiency, triple junction cells can produce much greater power densities than traditional 1 sun photovoltaic cells. However, the large concentration ratios will lead to very high cell temperatures if not efficiently cooled by a thermal management system. Two phase, flow boiling is an attractive cooling option for such CPV arrays. In this work, two phase flow boiling in mini/microchannels and micro pin fin arrays will be explored as a possible CPV cooling technique. The most energy efficient microchannel design is chosen based on a least-material, least-energy analysis. Heat transfer and pressure drop obtained in micro pin fins will be compared to data in the recent literature and new correlations for heat transfer coefficient and pressure drop will be presented. The work concludes with an energy efficiency comparison of micro pin fins with geometrically similar microchannel geometry.
Gelfand-type problem for two-phase porous media.
Gordon, Peter V; Moroz, Vitaly
2014-03-01
We consider a generalization of the Gelfand problem arising in Frank-Kamenetskii theory of thermal explosion. This generalization is a natural extension of the Gelfand problem to two-phase materials, where, in contrast to the classical Gelfand problem which uses a single temperature approach, the state of the system is described by two different temperatures. We show that similar to the classical Gelfand problem the thermal explosion occurs exclusively owing to the absence of stationary temperature distribution. We also show that the presence of interphase heat exchange delays a thermal explosion. Moreover, we prove that in the limit of infinite heat exchange between phases the problem of thermal explosion in two-phase porous media reduces to the classical Gelfand problem with renormalized constants.
Weighted likelihood estimation under two-phase sampling
Saegusa, Takumi
2011-01-01
We develop asymptotic theory for weighted likelihood estimators (WLE) under two-phase stratified sampling without replacement. Although this sampling scheme induces dependence among observations, independent Bernoulli sampling is often assumed for convenience. Because our result shows that the asymptotic variance is smaller than under Bernoulli sampling, correctly accounting for a sampling scheme is particularly important. In this paper, we establish a Glivenko-Cantelli theorem, a theorem for rates of convergence of Z-estimators, and a Donsker theorem for the inverse probability weighted empirical processes under two-phase sampling. With these general results, we derive asymptotic distributions of the WLE of a finite dimensional parameter in a general semiparametric model where an estimator of a nuisance parameter is estimable either at regular or non-regular rates. We illustrate these results and methods in the Cox model with right censoring and interval censoring. Along the way we incorporate results for im...
Mathematical modeling and the two-phase constitutive equations
International Nuclear Information System (INIS)
The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations
Controlling two-phase flow in microfluidic systems using electrowetting
Gu, Hao
2011-01-01
Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two technologies into one allows to combine the advantages of both worlds: (i) high throughput (from TPF) and (ii) precise control over each individual drop (from EW). Thus the aim of this thesis was to investiga...
Recent advances in two-phase flow numerics
Energy Technology Data Exchange (ETDEWEB)
Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Design Of A Turgo Two-Phase Turbine Runner
Aaraj, Youssef; Mortada, Sorina; Clodic, Denis; Nemer, Maroun
2014-01-01
A two-phase impulse turbine used to replace the classic expansion valve in a refrigeration system needs a nozzle/expander to transform the flow stored enthalpy into kinetic energy, and a runner that comes afterwards to transform the flow kinetic energy into torque. That process transforms the isenthalpic expansion of the refrigerant into, ideally, an isentropic one. Replacing a classic isenthalpic expansion with a nearly isentropic one increases the cycle cooling capacity by 8% up to 20 % for...
Recent advances in two-phase flow numerics
International Nuclear Information System (INIS)
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques
Two-phase computer codes for zero-gravity applications
Energy Technology Data Exchange (ETDEWEB)
Krotiuk, W.J.
1986-10-01
This paper discusses the problems existing in the development of computer codes which can analyze the thermal-hydraulic behavior of two-phase fluids especially in low gravity nuclear reactors. The important phenomenon affecting fluid flow and heat transfer in reduced gravity is discussed. The applicability of using existing computer codes for space applications is assessed. Recommendations regarding the use of existing earth based fluid flow and heat transfer correlations are made and deficiencies in these correlations are identified.
Simulation of two-phase flow with varying surface tension.
Lervåg, Karl Yngve
2008-01-01
This thesis is a study on the effects of varying surface tension along an interface separating two fluids. Varying surface tension leads to tangential forces along the interface. This is often called the Marangoni effect. These forces are discussed in detail, and two test cases are considered to analyse the Marangoni effect, and to verify the present implementation. The first test studies steady-state two-phase flow where the fluids are separated with plane interfaces and the flow is driv...
Two-phase algorithms for the parametric shortest path problem
Fischer, Eldar; Lachish, Oded; Yuster, Raphael
2010-01-01
A {\\em parametric weighted graph} is a graph whose edges are labeled with continuous real functions of a single common variable. For any instantiation of the variable, one obtains a standard edge-weighted graph. Parametric weighted graph problems are generalizations of weighted graph problems, and arise in various natural scenarios. Parametric weighted graph algorithms consist of two phases. A {\\em preprocessing phase} whose input is a parametric weighted graph, and whose output is a data str...
Two-Phase Slug Flow Experiments with Viscous Liquids
Diaz, Mariana J.C.
2016-01-01
The challenges behind the multiphase transport of oil and gas mixtures are increasing as the oil and gas industry is moving towards production from non-conventional reservoirs and in remote locations. Transport of high viscosity fluids in long multiphase pipelines is a particular challenge. Previous experiments have shown that gas-liquid slug flow is a frequent two-phase flow pattern at high liquid viscosities. The slug flow regime is an unstable flow, which may lead to operati...
Phase appearance or disappearance in two-phase flows
Cordier, Floraine; Degond, Pierre; Kumbaro, Anela
2011-01-01
This paper is devoted to the treatment of specific numerical problems which appear when phase appearance or disappearance occurs in models of two-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety studies. In this paper, two outstanding problems are identified: first, the loss of hyperbolicity of the system when a phase appears or disappears and second, the lack of positivity of standard shock capturing schemes such as the Roe scheme. ...
Eutectic Growth in Two-Phase Multicomponent Alloys
Senninger, Oriane; Voorhees, Peter W.
2016-01-01
A theory of two-phase eutectic growth for a multicomponent alloy is presented. This theory employs the thermodynamic equilibrium at the solid/liquid interface and thus makes it possible to use standard CALPHAD databases to determine the effects of multicomponent phase equilibrium on eutectic growth. Using the same hypotheses as the Jackson Hunt theory, we find that the growth law determined for binary alloys in the Jackson Hunt theory can be generalized to systems with N elements. In particul...
Two-phase Flow Distribution in Heat Exchanger Manifolds
Vist, Sivert
2004-01-01
The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.
A diffuse interface model for two-phase ferrofluid flows
Nochetto, Ricardo H.; Salgado, Abner J.; Tomas, Ignacio
2016-01-01
We develop a model describing the behavior of two-phase ferrofluid flows using phase field-techniques and present an energy-stable numerical scheme for it. For a simplified, yet physically realistic, version of this model and the corresponding numerical scheme we prove, in addition to stability, convergence and as by-product existence of solutions. With a series of numerical experiments we illustrate the potential of these simple models and their ability to capture basic phenomenological feat...
Two-phase mixtures explosion study: hydrogen and dusts
International Nuclear Information System (INIS)
The context of the study is the safety of the ITER installation. Indeed, studies have shown that it exists a risk for two-phase mixtures of hydrogen and dust can explode and create a safety risk for the ITER installation. This aims to obtain the fundamental data which characterize the explosion of these mixtures and to evaluate the pressure loads they can generate. To do so, experiments in spherical bomb have been carried out for hydrogen - oxygen - nitrogen mixtures at two initial temperatures (303 and 343 K) and pressures (50 and 100 kPa) for different hydrogen concentrations and different N2/O2 ratios. Explosion parameters like maximum combustion pressures (PMAX), deflagration indexes (KG or KST), combustion times (tC), fundamental flame speeds (SL0) and Markstein lengths have been determined. A kinetic modelling of the flame speed, using the COSILAB software was performed based on three detailed kinetic models available in the literature and allowed the calculation of the global activation energy on the basis of the kinetic model which showed the best agreement with the experimental data. Moreover equilibrium calculations were achieved to compare PMAX to the theoretical values. For two-phase mixtures, a new introduction device was tested and set up and experiments characterizing the explosions parameters of the two-phase mixtures have been performed in the spherical bomb. They were able to stress out the fact that, under some circumstances, dust explosion can be concomitant to a hydrogen explosion. (author)
Designing piping systems for two-phase flow
International Nuclear Information System (INIS)
A wide range of industrial systems, such as thermosiphon reboilers and chemical reactors, involve two-phase gas-liquid flow in conduits. Design of these systems requires information about the flow regime, pressure drop, slug velocity and length, and heat transfer coefficient. An understanding of two-phase flow is critical for the reliable and cost-effective design of such systems. The successful design of a pipeline in two-phase flow, for example, is a two-step process. The first step is the determination of the flow regime. If an undesirable flow regime, such as slug flow, is not anticipated and adequately designed for, the resulting flow pattern can upset a tower control system or cause mechanical failures of piping components. The second step is the calculation of flow parameters such as pressure drop and density to size lines and equipment. Since the mechanism of fluid flow (and heat transfer) depends on the flow pattern, separate flow models are required for different flow patterns
Flow pattern maps in two phase flow: present panorama
International Nuclear Information System (INIS)
In this work is presented a general panorama on the condition that watch over the related understanding to the pattern maps of flux regimes in the two-phase flow. The revision that has been done no exhaustive treat of flux patterns observed in vertical and horizontal ducts. As resulting of this investigation, it has been to make evident the necessity of lighting up with precision the use of flux pattern maps that they are not framed respect to really two-phase flow, but that they correspond really to the simultaneous flux of a gas and a liquid un miscible flowing in adiabatic conditions. The case more common of late these is the relative to the air-water mixture. The observed necessity has generated in the Thermo fluids Department of National Institute of Nuclear Research the restlessness of realizing experimental studies in this area. This in spite of being motive of research over 40 years and also of counting with a vast reported bibliography, on one the hand it has not conveyed to obtain representations of general character. And on the other hand it has origined a great confusion about the applicability of available information. In the same way it is described the advances developed in the experimental studies in the field of forced convection, as to only phase as one in two phases. (Author)
Cold water injection into two-phase mixtures
International Nuclear Information System (INIS)
This report presents the results of a review of the international literature regarding the dynamic loadings associated with the injection of cold water into two-phase mixtures. The review placed emphasis on waterhammer in nuclear power plants. Waterhammmer incidence data were reviewed for information related to thermalhydraulic conditions, underlying causes and consequential damage. Condensation induced waterhammer was found to be the most significant consequence of injecting cold water into a two-phase system. Several severe waterhammer incidents have been attributed to slug formation and steam bubble collapse under conditions of stratified steam and cold water flows. These phenomena are complex and not well understood. The current body of experimental and analytical knowledge is not large enough to establish maps of expected regimes of condensation induced waterhammer. The Electric Power Research Institute, in the United States, has undertaken a major research and development programme to develop the knowledge base for this area. The limited models and data currently available show that mechanical parameters are as important as thermodynamic conditions for the initiation of condensation induced waterhammer. Examples of bounds for avoiding two-phase waterhammer are given. These bounds are system specific and depend upon parameters such as pump capacity, pipe length and pipe orientation
Two-phase flow measurement by pulsed neutron activation techniques
International Nuclear Information System (INIS)
The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2%, and average densities were measured down to 0.08 g/cm3 with an accuracy of 0.04 g/cm3. Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm3 for 12.5 cm pipes, and to even lower ranges for larger pipes
International Nuclear Information System (INIS)
An accurate subchannel database is crucial for modeling the multidimensional two-phase flow in a rod bundle and for validating subchannel analysis codes. Based on available reference, it can be said that a point-measurement sensor for acquiring void fractions and bubble velocity distributions do not infer interactions of the subchannel flow dynamics, such as a cross flow and flow distribution, etc. In order to acquire multidimensional two-phase flow in a 10×10 rod bundle with an o.d. of 10 mm and 3110 mm length, a new sensor consisting of 11-wire by 11-wire and 10-rod by 10-rod electrodes was developed. Electric potential in the proximity region between two wires creates a void fraction in the center subchannel region, like a so-called wire mesh sensor. A unique aspect of the devised sensor is that the void fraction near the rod surface can be estimated from the electric potential in the proximity region between one wire and one rod. The additional 400 points of void fraction and phasic velocity in 10×10 bundle can therefore be acquired. The devised sensor exhibits the quasi three-dimensional flow structures, i.e. void fraction, phasic velocity and bubble chord length distributions. These quasi three-dimensional structures exhibit the complexity of two-phase flow dynamics, such as coalescence and the breakup of bubbles in transient phasic velocity distributions. (author)
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model
Energy Technology Data Exchange (ETDEWEB)
Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh
2011-10-01
We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receiving complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.
Numerical methods for limit problems in two-phase flow models
International Nuclear Information System (INIS)
Numerical difficulties are encountered during the simulation of two-phase flows. Two issues are studied in this thesis: the simulation of phase transitions on one hand, and the simulation of both compressible and incompressible flows in the other hand. Un asymptotic study has shown that the loss of hyperbolicity of the bi fluid model was responsible for the difficulties encountered by the Roe scheme during the simulation of phase transitions. Robust and accurate polynomial schemes have thus been developed. To tackle the occasional lack of positivity of the solution, a numerical treatment based on adaptive diffusion was proposed and allowed to simulate with accuracy the test-cases of a boiling channel with creation of vapor and a tee-junction with separation of the phases. In a second part, an all-speed scheme for compressible and incompressible flows have been proposed. This pressure-based semi-implicit asymptotic preserving scheme is conservative, solves an elliptic equation on the pressure, and has been designed for general equations of state. The scheme was first developed for the full Euler equations and then extended to the Navier-Stokes equations. The good behaviour of the scheme in both compressible and incompressible regimes have been investigated. An extension of the scheme to the two-phase mixture model was implemented and demonstrated the ability of the scheme to simulate two-phase flows with phase change and a water-steam equation of state. (author)
The Condensation effect on the two-phase flow stability
International Nuclear Information System (INIS)
A one-dimensional analytical model has been developed to be used for the linear analysis of density-wave oscillations in a parallel heated channel and a natural circulation loop.The heater and the riser sections are divided into a single-phase and a two-phase region.The two-phase region is represented by the drift-flux model. The model accounts for aphasic slip and subcooled boiling.The localized friction at the heater and the riser exit is treated considering the two-phase mixture.Also the effects of the condensation in the riser and the change in the system pressure have been studied.The exact equation for the heated channel and the total loop pressure drop is perturbed around the steady state.he stability characteristics of the heated channel and the loop are investigated using the Root finding method criterion.The results are summarized on instability maps in the plane of subcooled boiling number vs. phase change number (i.e., inlet subcooling vs. heater heat flux).The predictions of the model are compared with experimental results published in open literature. The results show that, the treatment effect of localized friction in two-phase mixtures stabilizes the system and improves the agreement of the calculations with the experimental results.For a parallel heated channel, the results indicate a more stable system with high inlet restriction, low outlet restriction, and high inlet velocity. And for a natural circulation loop, an increase in the inlet restriction broadened the range of the continuous circulation mode and stabilized the system, a decrease in the exit restriction or the liquid charging level shifted to the right the range of the continuous circulation mode and stabilized the system and an increase in the riser condensation shifted to the right the range of the continuous circulation mode and stabilized the system.The results show that the model agrees well with the available experimental data. In particular, the results show the significance of
Scaling and design of a transparent two-phase natural circulation loop
International Nuclear Information System (INIS)
This paper presents the scaling analysis performed for the design of a 1/4 length scale, transparent model of a typical Westinghouse pressurized water reactor steam supply system. The experimental investigations to be performed in this facility include measurements of two-phase natural circulation heat transfer in rod bundle arrays and two-phase natural circulation loop flow stagnation. Applications to advanced, passively safe, reactor designs will also be examined. These tests will be performed at low pressure; approximately 0.2 MPa (30 psia). Because of the low pressure requirement, the scaling analysis is particularly important. The scaling criteria developed by Ishii, coupled with fluid property correlations for water and freon have been used to develop a scaling analysis package. This package has been used to determine the piping and heater rod lengths, the diameters and the wall thicknesses required to scale the thermal hydraulic phenomena of interest. The scaling analysis indicates that by satisfying the two-phase power density scaling criteria, with either freon or water as the working fluid, a transparent model can be designed to simulate important thermal hydraulic phenomena. This includes pressure transients in the hot leg and steam generator tubes
Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes
Institute of Scientific and Technical Information of China (English)
ZHANG Bo; CAI Wei-min; HE Pin-jing
2007-01-01
To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared.The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.
Central upwind scheme for a compressible two-phase flow model.
Directory of Open Access Journals (Sweden)
Munshoor Ahmed
Full Text Available In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system.
Hüsken, Leonie E; Oomes, Mirjam; Schroën, Karin; Tramper, Johannes; de Bont, Jan A M; Beeftink, Rik
2002-07-01
Bioproduction of 3-methylcatechol from toluene by Pseudomonas putida MC2 was studied in the presence of an additional 1-octanol phase. This solvent was used to supply the substrate and extract the product, in order to keep the aqueous concentrations low. A hollow-fibre membrane kept the octanol and aqueous phase separated to prevent phase toxicity towards the bacterium. Volumetric production rates increased approximately 40% as compared to two-phase 3-methylcatechol production with direct phase contact. Preliminary investigations on downstream processing of 3-methylcatechol showed that 1 M of sodium hydroxide selectively extracted the disodium salt of 3-methylcatechol into an aqueous phase. PMID:12044556
WENO wavelet method for a hyperbolic model of two-phase flow in conservative form
Zeidan, Dia; Kozakevicius, Alice J.; Schmidt, Alex A.; Jakobsson, Stefan
2016-06-01
The current work presents a WENO wavelet adaptive method for solving multiphase flow problems. The grid adaptivity in each time step is obtained by the application of a thresholded interpolating wavelet transform, which allows the construction of a small yet effective sparse point representation of the solution. The spatial operator is solved by the Lax-Friedrich flux splitting approach in which the flux derivatives are approximated by the WENO scheme. Hyperbolic models of two-phase flow in conservative form are efficiently solved since shocks and rarefaction waves are precisely captured by the chosen methodology. Substantial computational gains are obtained through the grid reduction feature while maintaining the quality of the solutions.
Institute of Scientific and Technical Information of China (English)
Yi-rang Yuan
2004-01-01
For compressible two-phase displacement problem,the modified upwind finite difference fractional steps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplication of difference operators,decomposition of high order difference operators,the theory of prior estimates and techniques are used.Optimal order estimates in L 2 norm are derived for the error in the approximate solution.This method has already been applied to the numerical simulation of seawater intrusion and migration-accumulation of oil resources.
A two-phase solid/fluid model for dense granular flows including dilatancy effects
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys
2016-04-01
account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. We present several numerical tests of two-phase granular flows over sloping topography that are compared to the results of the model proposed by {Pitman and Le} [2005]. In particular, we quantify the role of the fluid and compression/dilatation processes on granular flow velocity field and runout distance. F. Bouchut, E.D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase shallow debris flow model with energy balance, {ESAIM: Math. Modelling Num. Anal.}, 49, 101-140 (2015). F. Bouchut, E. D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase two-layer model for fluidized granular flows with dilatancy effects, {J. Fluid Mech.}, submitted (2016). R.M. Iverson, M. Logan, R.G. LaHusen, M. Berti, The perfect debris flow? Aggregated results from 28 large-scale experiments, {J. Geophys. Res.}, 115, F03005 (2010). R. Jackson, The Dynamics of Fluidized Particles, {Cambridges Monographs on Mechanics} (2000). E.B. Pitman, L. Le, A two-fluid model for avalanche and debris flows, {Phil.Trans. R. Soc. A}, 363, 1573-1601 (2005). S. Roux, F. Radjai, Texture-dependent rigid plastic behaviour, {Proceedings: Physics of Dry Granular Media}, September 1997. (eds. H. J. Herrmann et al.). Kluwer. Cargèse, France, 305-311 (1998).
Experimental study of a two-phase surface jet
Perret, Matias; Esmaeilpour, Mehdi; Politano, Marcela S.; Carrica, Pablo M.
2013-04-01
Results of an experimental study of a two-phase jet are presented, with the jet issued near and below a free surface, parallel to it. The jet under study is isothermal and in fresh water, with air injectors that allow variation of the inlet air volume fraction between 0 and 13 %. Measurements of water velocity have been performed using LDV, and the jet exit conditions measured with PIV. Air volume fraction, bubble velocity and chord length distributions were measured with sapphire optical local phase detection probes. The mean free surface elevation and RMS fluctuations were obtained using local phase detection probes as well. Visualization was performed with laser-induced fluorescence. Measurements reveal that the mean free surface elevation and turbulent fluctuations significantly increase with the injection of air. The water normal Reynolds stresses are damped by the presence of bubbles in the bulk of the liquid, but very close to the free surface the effect is reversed and the normal Reynolds stresses increase slightly for the bubbly flow. The Reynolds shear stresses < {u^' } w^' } } rangle decrease when bubbles are injected, indicating turbulence attenuation, and are negative at deeper locations, as turbulent eddies shed downward carry high axial momentum deeper into the flow. Flow visualization reveals that the two-phase jet is lifted with the presence of bubbles and reaches the free surface sooner. Significant bubble coalescence is observed, leading to an increase in mean bubble size as the jet develops. The coalescence near the free surface is particularly strong, due to the time it takes the bubbles to pierce the free surface, resulting in a considerable increase in the local air volume fraction. In addition to first explore a bubbly surface jet, the comprehensive dataset reported herein can be used to validate two-phase flow models and computational tools.
A real two-phase submarine debris flow and tsunami
International Nuclear Information System (INIS)
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
A real two-phase submarine debris flow and tsunami
Pudasaini, Shiva P.; Miller, Stephen A.
2012-09-01
The general two-phase debris flow model proposed by Pudasaini [1] is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Modeling transient two-phase stratified flow in pipelines
International Nuclear Information System (INIS)
An isothermal, two-fluid model, comprised of separate mass and linear momentum conservation equations for the gas and liquid phases was formulated. Interfacial mass transfer effects were modeled via the black oil method. Both equal and unequal phase pressure formulations were evaluated. The model was used to investigate transient two-phase stratified flow in pipelines. An explicit numerical scheme was used to solve the system of equations. Experimental data were collected in an existing 425 m long, 76.2 mm diameter horizontal pipeline. Good agreement was observed between experimental and predicted results
Design and construction of two phases flow meter
International Nuclear Information System (INIS)
This paper deals with design of the gamma ray correlometer and flow loop system for measuring the velocity between two parallel cross-sections of a pipeline. In the laboratory, the radioisotope source and detector were collimated by brass with small beam slit respectively. The flow loop system consists of transparent pipeline, adjustable frequency pump and water container. As a result, when the construction of the flow loop and correlometer is completed, the velocity of two phases flow can be measured by the cross-correlation techniques. (Author)
Separation of aqueous two-phase polymer systems in microgravity
Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.
1984-01-01
Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.
A real two-phase submarine debris flow and tsunami
Energy Technology Data Exchange (ETDEWEB)
Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)
2012-09-26
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Experimental and numerical investigation on two-phase flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Ruspini, Leonardo Carlos
2013-03-01
Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non
Two-Phase pipeflow simulations with OpenFoam
Izarra Labeaga, Jon; Herreras Omagogeascoa, Nerea
2013-01-01
The main purpose of this thesis is to develop two-phase simulations using OpenFOAM. Two different situations are studied: open and closed channel flow. Different parameters are changed in each case to obtain different results, such as the inclination of the channel and the values of the velocity inlets for each phase. When dealing with the open-channel flow different inclinations are simulated and the influence of the Froude number is analyzed. The results obtained are compared with the analy...
Spectral Optical Coherence Tomography Using Two-Phase Shifting Method
Institute of Scientific and Technical Information of China (English)
MA Zhen-He; Ruikang K. Wang; ZHANG Fan; YAO Jian-Quan
2005-01-01
@@ A two-phase shifting method is introduced to eliminate the strong autocorrelation noise inherent in spectral optical coherence tomography and to mitigate the unwanted auto- and cross-coherent terms introduced by the reflections from various optical interfaces present in the system. Furthermore, this method is also able to amplify the desired signal by a factor of 2. The feasibility of such a method is demonstrated using a mirror-like object. An intact porcine cornea tissue in vitro is also used to show the potential of this method for biological imaging.
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
The author gives an overview of his research activity since 1981. He first gives a detailed presentation of properties and equations of two-phase flows in heat exchangers, and of their mathematical and numerical investigation: semi-local equations (mass conservation, momentum conservation and energy conservation), homogenized conservation equations (mass, momentum and enthalpy conservation, boundary conditions), equation closures, discretization, resolution algorithm, computational aspects and applications. Then, he reports the works performed in the field of turbulent flows, hyperbolic methods, low Mach methods, the Neptune project, and parallel computing
Energy Technology Data Exchange (ETDEWEB)
Fraser, D.W.H. [Univ. of British Columbia (Canada); Abdelmessih, A.H. [Univ. of Toronto, Ontario (Canada)
1995-09-01
A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.
International Nuclear Information System (INIS)
In the present study a new measurement technique has been developed, which uses an ultrasonic transmission signal in order to determine the vertical two phase flow pattern. The ultrasonic measurement system developed in the present study not only provides the measurement functions required for the identification of vertical two phase flow pattern but also makes the real time identification possible. Various vertical two phase flow patterns such as bubbly, slug, churn, annular flow etc have been accurately identified with the present ultrasonic measurement system. In addition to the identification of flow patterns, the qualitative information for each flow pattern can be obtained, which includes void fraction in bubbly flow, length of slug bubble and liquid tail characteristics in slug flow, and stable or transient condition of the flow patterns, etc
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.;
Gas-liquid two-phase flows are presented everywhere in industrial processes (i.e. gas-oil pipelines). In spite of the common occurrence of these two-phase flows, their understanding is limited compared to single-phase flows. Different studies on two-phase flow have focus on developing empirical...... correlations based on large sets of experiment data for void fraction [1,2] and pressure drop [3,4] which have proven to be accurate for the specific condition that their where developed for. Currently, dozens of void fraction and pressure drop correlations for different flow patterns are available in the...... literature but none of them is enough robust and suitable for different conditions (i.e. flow patterns, gas-liquid combinations, pipe inclination angles, etc.). This clearly represents a drawback and more research in required on this field....
Hou, Jiangyong
2016-02-05
In this paper, we present a hybrid method, which consists of a mixed-hybrid finite element method and a penalty discontinuous Galerkin method, for the approximation of a fractional flow formulation of a two-phase flow problem in heterogeneous media with discontinuous capillary pressure. The fractional flow formulation is comprised of a wetting phase pressure equation and a wetting phase saturation equation which are coupled through a total velocity and the saturation affected coefficients. For the wetting phase pressure equation, the continuous mixed-hybrid finite element method space can be utilized due to a fundamental property that the wetting phase pressure is continuous. While it can reduce the computational cost by using less degrees of freedom and avoiding the post-processing of velocity reconstruction, this method can also keep several good properties of the discontinuous Galerkin method, which are important to the fractional flow formulation, such as the local mass balance, continuous normal flux and capability of handling the discontinuous capillary pressure. For the wetting phase saturation equation, the penalty discontinuous Galerkin method is utilized due to its capability of handling the discontinuous jump of the wetting phase saturation. Furthermore, an adaptive algorithm for the hybrid method together with the centroidal Voronoi Delaunay triangulation technique is proposed. Five numerical examples are presented to illustrate the features of proposed numerical method, such as the optimal convergence order, the accurate and efficient velocity approximation, and the applicability to the simulation of water flooding in oil field and the oil-trapping or barrier effect phenomena.
The PDF method for Lagrangian two-phase flow simulations
International Nuclear Information System (INIS)
A recent turbulence model put forward by Pope (1991) in the context of PDF modelling has been used. In this approach, the one-point joint velocity-dissipation pdf equation is solved by simulating the instantaneous behaviour of a large number of Lagrangian fluid particles. Closure of the evolution equations of these Lagrangian particles is based on stochastic models and more specifically on diffusion processes. Such models are of direct use for two-phase flow modelling where the so-called fluid seen by discrete inclusions has to be modelled. Full Lagrangian simulations have been performed for shear-flows. It is emphasized that this approach gives far more information than traditional turbulence closures (such as the K-ε model) and therefore can be very useful for situations involving complex physics. It is also believed that the present model represents the first step towards a complete Lagrangian-Lagrangian model for dispersed two-phase flow problems. (authors). 21 refs., 6 figs
Theory and tests of two-phase turbines
Energy Technology Data Exchange (ETDEWEB)
Elliot, D.G.
1982-03-15
Two-phase turbines open the possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation turbine engines, and engine bottoming cycles. A theoretical model for two-phase impulse turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water-and-nitrogen mixtures and Refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water-and-nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for Refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water-and-nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for Refrigerant 22 with a single-stage turbine, and 0.70 (measured) and 0.85 (theoretical) for water-and-nitrogen mixtures with a two-stage turbine.
Two phase instabilities system analysis with application on Clotaire experiments
Energy Technology Data Exchange (ETDEWEB)
Pascal Monier; Jacques Belleudy; Georges Brochier [PRINCIPIA R.D., Z.I. Athelia I, 13705 La Ciotat Cedex (France); Valerie Saldo; Jean-Marie Gouirand; Pierre Gubernatis [CEA Cadarache, 13108 St Paul Lez Durance, Cedex (France)
2005-07-01
Full text of publication follows: Natural-circulation cooled Boiling Water Reactors are susceptible to undergo thermal hydraulics instabilities. The so-called Type-II instabilities due to frictional pressure losses in the core may be observed typically at nominal pressure and relatively high power in BWRs. In the framework of the NACUSP (Natural Circulation and Stability Performance) Project, a test section simulating the riser at the exit of an ESBWR core (European Simplified Boiling Water Reactor) has been set up in the CLOTAIRE facility in CEA, Center of Cadarache. Test campaigns have been conducted with stationary tests demonstrating the correct scaling of the loop with R124a as coolant fluid and with unstable tests identifying the instability thresholds. The CEDRIC thermal hydraulics code was developed with TECHNICATOME in order to simulate one or two phase flow in compact on-board PWR used for marine propulsion. A generic version of this tool, CEDRIC MultiFluides has been used for modeling transient two phase flow until stability limit with large amplitude flow oscillations such as observed during the CLOTAIRE tests. This 1D unsteady model is based on a 3-equations model together with a phase velocities difference closure law in the frame of a Drift Flux Model. The main purpose of this paper is to present the experimental results of the CLOTAIRE tests together with the validation calculations. (authors)
Experimental study of two-phase natural circulation circuit
Energy Technology Data Exchange (ETDEWEB)
Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental
2012-07-01
This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)
Droplets Formation and Merging in Two-Phase Flow Microfluidics
Directory of Open Access Journals (Sweden)
Hao Gu
2011-04-01
Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases, and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.
Investigation of Power Losses of Two-Stage Two-Phase Converter with Two-Phase Motor
Directory of Open Access Journals (Sweden)
Michal Prazenica
2011-01-01
Full Text Available The paper deals with determination of losses of two-stage power electronic system with two-phase variable orthogonal output. The simulation is focused on the investigation of losses in the converter during one period in steady-state operation. Modeling and simulation of two matrix converters with R-L load is shown in the paper. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and in application with high frequency voltage sources.
Gautschi, Walter; Rassias, Themistocles M
2011-01-01
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg
Two-phase flow induced vibrations in CANDU steam generators
International Nuclear Information System (INIS)
The U-Bend region of nuclear steam generators tube bundles have suffered from two-phase cross flow induced vibrations. Tubes in this region have experienced high amplitude vibrations leading to catastrophic failures. Turbulent buffeting and fluid-elastic instability has been identified as the main causes. Previous investigations have focused on flow regime and two-phase flow damping ratio. However, tube bundles in steam generators have vapour generated on the surface of the tubes, which might affect the flow regime, void fraction distribution, turbulent intensity levels and tube-flow interaction, all of which have the potential to change the tube vibration response. A cantilevered tube bundle made of electric cartridges heaters was built and tested in a Freon-11 flow loop at McMaster University. Tubes were arranged in a parallel triangular configuration. The bundle was exposed to two-phase cross flows consisting of different combinations of void from two sources, void generated upstream of the bundle and void generated at the surface of the tubes. Tube tip vibration response was measured optically and void fraction was measured by gamma densitometry technique. It was found that tube vibration amplitude in the transverse direction was reduced by a factor of eight for void fraction generated at the tube surfaces only, when compared to the upstream only void generation case. The main explanation for this effect is a reduction in the correlation length of the turbulent buffeting forcing function. Theoretical calculations of the tube vibration response due to turbulent buffeting under the same experimental conditions predicted a similar reduction in tube amplitude. The void fraction for the fluid-elastic instability threshold in the presence of tube bundle void fraction generation was higher than that for the upstream void fraction generation case. The first explanation of this difference is the level of turbulent buffeting forces the tube bundle was exposed to
Stability of stratified two-phase flows in horizontal channels
Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen
2016-01-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...
Loss of mass in two-phase level set computations
Energy Technology Data Exchange (ETDEWEB)
Teigen, Knut Erik; Olsen, Robert
2006-08-15
Incompressible two-phase flow computations made using the level set method are presented. The results are analyzed with regard to mass loss for Weighted Essentially Non-Oscillatory (WENO) and Essentially Non-Oscillatory (ENO) spatial discretization and first, second and third order Total Variation Diminishing Runge Kutta (TVD RK) temporal discretization. The discretization methods with the least mass loss are then used to compare different grid sizes. The test cases are colliding drops, drop falling into a film and a stratified channel. The results show as expected that higher accuracy in the temporal discretization does not affect mass loss. Finer grid resolution reduces mass loss, but with low convergence rates. For the test cases without inflow and outflow, the results indicate that the ENO discretization produces less mass loss than the WENO discretization. For the stratified channel, the difference in mass loss is small, but the ENO-discretization seems to create oscillations in the solution (author) (ml)
On drag reduction in a two-phase flow
Gatapova, E. Ya.; Ajaev, V. S.; Kabov, O. A.
2015-02-01
Bubbles collected on a local hydrophobic surface with nanocoating in a two-phase flow in a minichannel have been detected experimentally. It has been proposed to use the effect of concentration of gas bubbles on hydrophobic segments of the surface of the channel with contrast wettability for ensuring drag reduction. A two-dimensional flow model with the Navier slip condition in the region of the bubble layer gives criteria of drag reduction, depending on the slip length, dimension of bubbles, and dimension of the segment with nanocoating. The presence of the bubble layer on half of the surface of the channel can increase the flow rate of a liquid flowing through the channel by 40% at a fixed pressure gradient.
Solutal Marangoni instability in layered two-phase flows
Picardo, Jason R; Pushpavanam, S
2015-01-01
In this paper, the instability of layered two-phase flows caused by the presence of a soluble surfactant (or a surface active solute) is studied. The fluids have different viscosities, but are density matched to focus on Marangoni effects. The fluids flow between two flat plates, which are maintained at different solute concentrations. This establishes a constant flux of solute from one fluid to the other in the base state. A linear stability analysis is performed, using a combination of asymptotic and numerical methods. In the creeping flow regime, Marangoni stresses destabilize the flow, provided a concentration gradient is maintained across the fluids. One long wave and two short wave Marangoni instability modes arise, in different regions of parameter space. A well-defined condition for the long wave instability is determined in terms of the viscosity and thickness ratios of the fluids, and the direction of mass transfer. Energy budget calculations show that the Marangoni stresses that drive long and shor...
Two phase coexistence for the hydrogen-helium mixture
Fantoni, Riccardo
2015-01-01
We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Non-equilibrium effects in transient two-phase flow
International Nuclear Information System (INIS)
Depressurisation tests were carried out on Refrigerant 113 liquid flowing in a horizontal pipeline, under conditions where vapour was formed by flash evaporation. The tests covered a range of initial velocities up to 2.1 m/s in a 51 mm diameter glass pipeline at starting pressure around 1.5 bar and with varying rates of depressurisation. Measurements were made of local pressure and temperature, circulation rate, pressure difference and void fraction variation over a test section length of 2m. The local pressure and temperature measurements give a direct indication of non-equilibrium effects. The vapour formed during the flash evaporation process quickly formed a stratified type flow and a theoretical model was developed on this basis. The model includes the transient two phase low conservation equations allied to a heat transfer equation. Satisfactory agreement between theoretical predictions and experimental results was obtained. (author)
Tsunami Generated by a Two-Phase Submarine Debris Flow
Pudasaini, S. P.
2012-04-01
The general two-phase debris flow model proposed by Pudasaini (2011) is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model includes several essential physical aspects, including Mohr-Coulomb plasticity for the solid stress, while the fluid stress is modelled as a solid volume fraction gradient enhanced non-Newtonian viscous stress. The generalized interfacial momentum transfer includes the viscous drag, buoyancy, and the virtual mass. The generalized drag covers both the solid-like and fluid-like contributions, and can be applied to linear to quadratic drags. Strong couplings exist between the solid and the fluid momentum transfer. The advantage of the real two-phase debris flow model over classical single-phase or quasi-two-phase models is that by considering the solid (and/or the fluid) volume fraction appropriately, the initial mass can be divided into several (even mutually disjoint) parts; a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This offers a unique and innovative opportunity within a single framework to simultaneously simulate (a) the sliding debris (or landslide), (b) the water lake or ocean, (c) the debris impact at the lake or ocean, (d) tsunami generation and propagation, (e) mixing and separation between the solid and the fluid phases, and (f) sediment transport and deposition process in the bathymetric surface. The new model is applied to two-phase subaerial and submarine debris flows. Benchmark numerical simulations reveal that the dynamics of the debris impact induced tsunamis are fundamentally different than the tsunami generated by pure rock avalanche and landslides. Special attention is paid to study the basic features of the debris impact to the mountain lakes or oceans. This includes the generation, amplification and propagation of the multiple
Rationale for two phase polymer system microgravity separation experiments
Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.
1984-01-01
The two-phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) are mixed at concentrations above a few percent are discussed. They provide useful media for the partition and isolation of macromolecules and cell subpopulations. By manipulating their composition, separations based on a variety of molecular and surface properties are achieved, including membrane hydrophobic properties, cell surface charge, and membrane antigenicity. Work on the mechanism of cell partition shows there is a randomizing, nonthermal energy present which reduces separation resolution. This stochastic energy is probably associated with hydrodynamic interactions present during separation. Because such factors should be markedly reduced in microgravity, a series of shuttle experiments to indicate approaches to increasing the resolution of the procedure are planned.
A simplified model for two phase face seal design
Lau, S. Y.; Hughes, W. F.; Basu, P.; Beatty, P. A.
1990-01-01
A simplified quasi-isothermal low-leakage laminar model for analyzing the stiffness and the stability characteristics of two-phase face seals with real fluids is developed. Sample calculations with this model for low-leakage operations are compared with calculations for high-leakage operations, performed using the adiabatic turbulent model of Beatty and Hughes (1987). It was found that the seal characteristics predicted using the two extreme models tend to overlap with each other, indicating that the simplified laminar model may be a useful tool for seal design. The effect of coning was investigated using the simplified model. The results show that, for the same balance, a coned seal has a higher leakage rate than a parallel face seal.
A simplified model for two phase face seal design
Energy Technology Data Exchange (ETDEWEB)
Lau, S.Y.; Hughes, W.F.; Basu, P.; Beatty, P.A. (Carnegie-Mellon Univ., Pittsburgh, PA (USA) EG G Sealol, Cranston, RI (USA) Vermont Univ., Burlington (USA))
1990-07-01
A simplified quasi-isothermal low-leakage laminar model for analyzing the stiffness and the stability characteristics of two-phase face seals with real fluids is developed. Sample calculations with this model for low-leakage operations are compared with calculations for high-leakage operations, performed using the adiabatic turbulent model of Beatty and Hughes (1987). It was found that the seal characteristics predicted using the two extreme models tend to overlap with each other, indicating that the simplified laminar model may be a useful tool for seal design. The effect of coning was investigated using the simplified model. The results show that, for the same balance, a coned seal has a higher leakage rate than a parallel face seal. 13 refs.
Equations of two-phase flow in spray chamber
Institute of Scientific and Technical Information of China (English)
李新禹; 张志红; 金星; 徐杰
2009-01-01
The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.
Two-Phase Flow Complexity in Heterogeneous Media
Ghaffari, Hamed O
2009-01-01
In this study, we investigate the appeared complexity of two-phase flow (air/water) in a heterogeneous soil where the supposed porous media is non-deformable media which is under the timedependent gas pressure. After obtaining of governing equations and considering the capillary pressuresaturation and permeability functions, the evolution of the model unknown parameters were obtained. In this way, using COMSOL (FEMLAB) and fluid flow/script Module, the role of heterogeneity in intrinsic permeability was analysed. Also, the evolution of relative permeability of wetting and non-wetting fluid, capillary pressure and other parameters were elicited. In the last part, a complex network approach to analysis of emerged patterns will be employed.
Thirty-two phase sequences design with good autocorrelation properties
Indian Academy of Sciences (India)
S P Singh; K Subba Rao
2010-02-01
Polyphase Barker Sequences are ﬁnite length, uniform complex sequences; the magnitude of their aperiodic autocorrelation sidelobes are bounded by 1. Such sequences have been used in numerous real-world applications such as channel estimation, radar and spread spectrum communication. In this paper, thirty-two phase Barker sequences up to length 24 with an alphabet size of only 32 are presented. The sequences from length 25 to 289 have autocorrelation properties better than well-known Frank codes. Because of the complex structure the sequences are very difﬁcult to detect and analyse by an enemy’s electronic support measures (ESMs). The synthesized sequences are promising for practical application to radar and spread spectrum communication systems. These sequences are found using the Modiﬁed Simulated Annealing Algorithm (MSAA). The convergence rate of the algorithm is good.
Flooding in counter-current two-phase flow
International Nuclear Information System (INIS)
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding
Two-phase flow simulation of aeration on stepped spillway
Institute of Scientific and Technical Information of China (English)
CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran
2004-01-01
Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.
Dynamics Coefficient for Two-Phase Soil Model
Directory of Open Access Journals (Sweden)
Wrana Bogumił
2015-02-01
Full Text Available The paper investigates a description of energy dissipation within saturated soils-diffusion of pore-water. Soils are assumed to be two-phase poro-elastic materials, the grain skeleton of which exhibits no irreversible behavior or structural hysteretic damping. Description of motion and deformation of soil is introduced as a system of equations consisting of governing dynamic consolidation equations based on Biot theory. Selected constitutive and kinematic relations for small strains and rotation are used. This paper derives a closed form of analytical solution that characterizes the energy dissipation during steady-state vibrations of nearly and fully saturated poro-elastic columns. Moreover, the paper examines the influence of various physical factors on the fundamental period, maximum amplitude and the fraction of critical damping of the Biot column. Also the so-called dynamic coefficient which shows amplification or attenuation of dynamic response is considered.
Two-phase flow experiments through intergranular stress corrosion cracks
International Nuclear Information System (INIS)
Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flows rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate
Performance Evaluation of Enhancedgreedy-Two-Phase Deployment Algorithm
Directory of Open Access Journals (Sweden)
Kartit Ali
2013-07-01
Full Text Available Firewall is one of the most widely utilized component on any network architecture, since that a deploymentis a very important step to turn the initial policy to a target policy. This operation must be done withoutpresenting any risks or flaws. Much research has already addressed the conflict detection of policies andoptimization, but in our paper we will focus on researches that talk about strategies for the security ofpolicy deployment, some researchers have proposed a number of algorithms to solve this problem, we willdiscuss one of these algorithm then we propose an amelioration of this strategy. In [1], we have proposeda correct algorithm for the deployment type I. But in this work we will study the performance evaluation ofthe new solution called “Enhanced-Two-Phase-Deployment”. We show that the proposed solution is mostefficient.
Two-phase flow instability in a parallel multichannel system
Institute of Scientific and Technical Information of China (English)
HOU Suxia
2009-01-01
The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.
Dynamics Coefficient for Two-Phase Soil Model
Wrana, Bogumił
2015-02-01
The paper investigates a description of energy dissipation within saturated soils-diffusion of pore-water. Soils are assumed to be two-phase poro-elastic materials, the grain skeleton of which exhibits no irreversible behavior or structural hysteretic damping. Description of motion and deformation of soil is introduced as a system of equations consisting of governing dynamic consolidation equations based on Biot theory. Selected constitutive and kinematic relations for small strains and rotation are used. This paper derives a closed form of analytical solution that characterizes the energy dissipation during steady-state vibrations of nearly and fully saturated poro-elastic columns. Moreover, the paper examines the influence of various physical factors on the fundamental period, maximum amplitude and the fraction of critical damping of the Biot column. Also the so-called dynamic coefficient which shows amplification or attenuation of dynamic response is considered.
Correct numerical simulation of a two-phase coolant
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
Two phase continuous digestion of solid manure on-farm
Energy Technology Data Exchange (ETDEWEB)
Schaefer, W.; Lehto, M. [MTT Agrifood Research Finland, Vihti (Finland). Animal Production Research; Evers, L.; Granstedt, A. [Biodynamic Research Inst., Jaerna (Sweden)
2007-07-01
Present commercially available biogas plants are mainly suitable for slurry and co-substrates. Cattle, horse and poultry farms using a solid manure chain experience a crucial competitive disadvantage, because conversion to slurry technology requires additional investments. Based on the technological progress of anaerobic digestion of municipal solid waste, so called 'dry fermentation' prototype plants were developed for anaerobic digestion of organic material containing 15-50% total solids (Hoffman, 2001). These plants show added advantages compared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. On-farm research (Gronauer and Aschmann, 2004; Kusch and Oechsner, 2004) and prototype research (Linke, 2004) on dry fermentation in batch reactors show that loading and discharging of batch reactors remains difficult and/or time-consuming compared to slurry reactors. Additionally a constant level of gas generation requires offset operation of several batch reactors. Baserga et al. (1994) developed a pilot plant of 9.6 m{sup 3} capacity for continuous digestion of solid beef cattle manure on-farm. However, on-farm dry fermentation plants are not common and rarely commercially available. We assume that lack of tested technical solutions and scarceness of on-farm research results are the main reason for low acceptance of dry fermentation technology on-farm. We report about an innovative two phase farm-scale biogas plant. The plant continuously digests dairy cattle manure and organic residues of the farm and the surrounding food processing units. The two phase reactor technology was chosen for two reasons: first it offers the separation of a liquid fraction and a solid fraction for composting after hydrolysis and secondly the methanation of the liquid fraction using fixed film technology results in a very short hydraulic retention time, reduction in reactor volume, and higher methane content of the
Tomei, M Concetta; Annesini, M Cristina; Rita, Sara; Daugulis, Andrew J
2008-10-01
The objectives of this work were to demonstrate the potential of a two-phase sequencing batch reactor in degrading xenobiotics and to evaluate the kinetic parameters leading to a mathematical model of the system. 4-Nitrophenol (4NP), a typical representative of substituted phenols, was selected as the target xenobiotic; this compound has never been remediated in a two-phase bioreactor before. Partition tests were conducted to determine the most appropriate partitioning solvent, and among the three investigated solvents (1-undecanol, 2-undecanone and oleyl alcohol), 2-undecanone was chosen because of its favourable partition coefficient and its negligible emulsion-forming tendencies. Moreover, the selected solvent showed satisfactory biocompatibility characteristics with respect to the biomass, with only minor effects on the intrinsic microbial kinetics. Kinetic tests were then performed in a sequencing batch reactor (2-l volume) operated in both conventional one- and two-phase configurations, with the two-phase system showing a significant improvement in the process kinetics in terms of reduced inhibition and increased maximum removal rate. The obtained kinetic parameters suggest that the two-phase sequencing batch system may find full-scale application, as the maximum removal rate k(max) (approximately 3 mg 4NP mgVSS(-1) day(-1)) is of the same order of magnitude of heterotrophic bacteria operating in wastewater treatment plants.
Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe
Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy
2016-06-01
Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.
Identification of two-phase flow regimes under variable gravity conditions
Energy Technology Data Exchange (ETDEWEB)
Kamiel S Gabriel [University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON L1H 7K4 (Canada); Huawei Han [Mechanical Engineering Department, University of Saskatchewan 57 Campus Dr., Saskatoon, Saskatchewan, S7N 5A9 (Canada)
2005-07-01
Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)
Modeling of fluidelastic instability in tube bundle subjected to two-phase cross-flow
Energy Technology Data Exchange (ETDEWEB)
Sawadogo, T.P.; Mureithi, N.W.; Azizian, R.; Pettigrew, M.J. [Ecole Polytechnique, Dept. of Mechanical Engineering, BWC/AECL/NSERC Chair of Fluid-Structure Interaction, Montreal, Quebec (Canada)
2009-07-01
Tube arrays in steam generators and heat exchangers operating in two-phase cross-flow are subjected sometimes to strong vibration due mainly to turbulence buffeting and fluidelastic forces. This can lead to tube damage by fatigue or fretting wear. A computer implementation of a fluidelastic instability model is proposed to determine with improved accuracy the fluidelastic forces and hence the critical instability flow velocity. Usually the fluidelastic instability is 'predicted', using the Connors relation with K=3. While the value of K can be determined experimentally to get an accurate prediction of the instability, the Connors relation does not allow good estimation of the fluid forces. Consequently the RMS value of the magnitude of vibration of the tube bundle, necessary to evaluate the work rate and the tube wear is only poorly estimated. The fluidelastic instability analysis presented here is based on the quasi-steady model, originally developed for single phase flow. The fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives which are determined experimentally. The forces also depend on the tube displacement and velocity. In the computer code ABAQUS, the fluid forces are provided in the user subroutines VDLOAD or VUEL. A typical simulation of the vibration of a single flexible tube within an array in two phase cross-flow is done in ABAQUS and the results are compared with the experimental measurements for a tube with similar physical properties. For a cantilever tube, in two phase cross-flow of void fraction 60%, the numerical critical flow velocity was 2.0 m/s compared to 1.8 m/s obtained experimentally. The relative error was 5% compared to 26.6% for the Connors relation with K=3. The simulation of the vibration of a typical tube in a steam generator is also presented. The numerical results show good agreement with experimental measurements. (author)
Niven, Ivan
2008-01-01
This self-contained treatment originated as a series of lectures delivered to the Mathematical Association of America. It covers basic results on homogeneous approximation of real numbers; the analogue for complex numbers; basic results for nonhomogeneous approximation in the real case; the analogue for complex numbers; and fundamental properties of the multiples of an irrational number, for both the fractional and integral parts.The author refrains from the use of continuous fractions and includes basic results in the complex case, a feature often neglected in favor of the real number discuss
2006-01-01
This interactive tutorial presents the following concepts of Approximation Techniques: Methods of Weighted Residual (MWR), Weak Formulatioin, Piecewise Continuous Function, Galerkin Finite Element FormulationExplanations especially for mathematical statements are provided using mouseover the highlight equations. ME4613 Finite Element Methods
Two-phase micro- and macro-time scales in particle-laden turbulent channel flows
Institute of Scientific and Technical Information of China (English)
Bing Wang; Michael Manhart
2012-01-01
The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct numerical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases,respectively.Lagrangian and Eulerian time scales of both phases are calculated using velocity correlation functions.Due to flow anisotropy,micro-time scales are not the same with the theoretical estimations in large Reynolds number (isotropic) turbulence.Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number.The fluid-phase Lagrangian integral time scales increase with distance from the wall,longer than those time scales seen by particles.The Eulerian integral macro-time scales increase in near-wall regions but decrease in out-layer regions.The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales,and in good agreement with previous measurements and numerical predictions.For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions,while away from the walls the micro Lagrangian time scales are longer.The Lagrangian integral time scales are longer than the Eulerian ones.The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.
Two-Phase Flow in Pipes: Numerical Improvements and Qualitative Analysis for a Refining Process
Directory of Open Access Journals (Sweden)
Teixeira R.G.D.
2015-03-01
Full Text Available Two-phase flow in pipes occurs frequently in refineries, oil and gas production facilities and petrochemical units. The accurate design of such processing plants requires that numerical algorithms be combined with suitable models for predicting expected pressure drops. In performing such calculations, pressure gradients may be obtained from empirical correlations such as Beggs and Brill, and they must be integrated over the total length of the pipe segment, simultaneously with the enthalpy-gradient equation when the temperature profile is unknown. This paper proposes that the set of differential and algebraic equations involved should be solved as a Differential Algebraic Equations (DAE System, which poses a more CPU-efficient alternative to the “marching algorithm” employed by most related work. Demonstrating the use of specific regularization functions in preventing convergence failure in calculations due to discontinuities inherent to such empirical correlations is also a key feature of this study. The developed numerical techniques are then employed to examine the sensitivity to heat-transfer parameters of the results obtained for a typical refinery two-phase flow design problem.
Thermal effects in two-phase flow through face seals. Ph.D. Thesis
Basu, Prithwish
1988-01-01
When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description.
Stability of stratified two-phase flows in horizontal channels
Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.
2016-04-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.
Particle migration in two-phase, viscoelastic flows
Jaensson, Nick; Hulsen, Martien; Anderson, Patrick
2014-11-01
Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
Unsteady flow analysis of a two-phase hydraulic coupling
Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.
2016-06-01
Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.
Biogasification of solid wastes by two-phase anaerobic fermentation
International Nuclear Information System (INIS)
Municipal, industrial and agricultural solid wastes, and biomass deposits, cause large-scale pollution of land and water. Gaseous products of waste decomposition pollute the air and contribute to global warming. This paper describes the development of a two-phase fermentation system that alleviates methanogenic inhibition encountered with high-solids feed, accelerates methane fermentation of the solid bed, and captures methane (renewable energy) for captive use to reduce global warming. The innovative system consisted of a solid bed reactor packed with simulated solid waste at a density of 160 kg/m3 and operated with recirculation of the percolated culture (bioleachate) through the bed. A rapid onset of solids hydrolysis, acidification, denitrification and hydrogen gas formation was observed under these operating conditions. However, these fermentative reactions stopped at a total fatty acids concentration of 13,000 mg/l (as acetic) at pH 5, with a reactor head-gas composition of 75 percent carbon dioxide, 20 percent nitrogen, 2 percent hydrogen and 3 percent methane. Fermentation inhibition was alleviated by moving the bioleachate to a separate methane-phase fermenter, and recycling methanogenic effluents at pH 7 to the solid bed. Coupled operation of the two reactors promoted methanogenic conversion of the high-solids feed. (author)
Diagnosing Traffic Anomalies Using a Two-Phase Model
Institute of Scientific and Technical Information of China (English)
Bin Zhang; Jia-Hai Yang; Jian-Ping Wu; Ying-Wu Zhu
2012-01-01
Network traffic anomalies are unusual changes in a network,so diagnosing anomalies is important for network management.Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing packet header features. PCA-subspace method (Principal Component Analysis) has been verified as an efficient feature-based way in network-wide anomaly detection.Despite the powerful ability of PCA-subspace method for network-wide traffic detection,it cannot be effectively used for detection on a single link.In this paper,different from most works focusing on detection on flow-level traffic,based on observations of six traffc features for packet-level traffic,we propose a new approach B6SVM to detect anomalies for packet-level traffic on a single link.The basic idea of B6-SVM is to diagnose anomalies in a multi-dimensional view of traffic features using Support Vector Machine (SVM).Through two-phase classification,B6-SVM can detect anomalies with high detection rate and low false alarm rate.The test results demonstrate the effectiveness and potential of our technique in diagnosing anomalies.Further,compared to previous feature-based anomaly detection approaches,B6-SVM provides a framework to automatically identify possible anomalous types.The framework of B6-SVM is generic and therefore,we expect the derived insights will be helpful for similar future research efforts.
Mechanisms for two phase flow in porous media
International Nuclear Information System (INIS)
For a better understanding of transport mechanisms in soil for a system with two phases of immiscible liquids the physics of porous media gives again important contributions. In this report, the considerations mainly concentrate on horizontal transport. Our approach is based on the similarity solution of the transport equation which reduces a given nonlinear partial differential equation (PDE) to an ordinary differential equation (ODE). It can be seen, how dimensionless similarity solutions of the ODE depend, in addition to the similarity variable, on two parameters: - the capillary number Nc, giving the ratio of capillary forces and viscous forces, and - the ratio of the viscosities of the two liquid phases. It is shown, under which conditions different mechanisms of transport are to be expected, such as - a completely stable displacement or - an unstable displacement, related to viscous fingering (DLA, Diffusion Limited Aggregation) or to capillary fingering (IP, Invasion Percolation). These mechanisms are also strongly dependent on certain critical exponents (characteristic for DLA or IP). These relations are discussed in our report. Again, for some regions of saturation, mechanisms of displacement are either clearly dominated - by imbibition (e.g. water pushing oil) or - by drain (e.g. oil pushing water). Some of the results are also transformed again from the similarity solution of the ODE to a solution of the PDE (with space- and time coordinates). It is seen, that even with this somewhat simplified approach, we obtain a considerable spectrum of mechanisms. (orig.)
Passive Two-Phase Cooling of Automotive Power Electronics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.
2014-08-01
Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.
Pressure transient analysis of two-phase flow problems
Energy Technology Data Exchange (ETDEWEB)
Chu, W.C.; Reynolds, A.C.; Raghavan, R.
1986-04-01
This paper considers the analysis of pressure drawdown and buildup data for two-phase flow problems. Of primary concern is the analysis of data influenced by saturation gradients that exist within the reservoir. Wellbore storage effects are assumed to be negligible. The pressure data considered are obtained from a two-dimensional (2D) numerical coning model for an oil/water system. The authors consider constant-rate production followed by a buildup period and assume that the top, bottom, and outer boundaries of the reservoir are sealed. First, they consider the case where the producing interval is equal to the total formation thickness. Second, they discuss the effect of partial penetration. In both cases, they show that average pressure can be estimated by the Matthews-Brons-Hazebroek method and consider the computation of the skin factor. They also show that a reservoir limit test can estimate reservoir PV only if the total mobility adjacent to the wellbore does not vary with time.
Analysis of two-phase liquid metal MHD induction converter
International Nuclear Information System (INIS)
An analysis is made on the performance characteristics of a liquid-metal MHD induction converter with liquid-gas two-phase mixture as working fluid. The equivalent electrical conductivity and the velocity vary along the generator channel in this kind of induction converter. Two important parameters which represent the variations of the equivalent electrical conductivity and the velocity respectively are defined. With these parameters the induction equation is analytically solved with the perturbation technique. Quantities representing generator performance, such as power densities and generator efficiency, are obtained from the perturbed magnetic field and the parameters mentioned above. Suitable combination of values for these parameters will tend to let the effects brought by the variations of electrical conductivity and of velocity cancel each other, and the relation between these parameters is analytically derived that assures the non-perturbation of the magnetic field and of the gross output power density. In this condition of non-perturbation, the generator efficiency approaches that for the unperturbed case when the velocity variation and the inlet slip ratio are small. (auth.)
Critical two-phase flow through rough slits
International Nuclear Information System (INIS)
The knowledge of the two-phase mass flow rate through a crack in the wall of nuclear or chemical reactor components is very important under the leak-before-break criterion point of view. For providing a qualified analytical tool for calculating critical mass flow rates through such a crack a detailed test program was carried out using subcooled water up to pressures of 14 MPa. A real crack and several simulated cracks (rough slits) were examined experimentally. The important parameters such as inlet pressure, subcooling temperature of water, slit width, and inner surface roughness were varied in a wide range and the measured data compared with calculated values from different models. The data comparison indicates that the model published by Pana leads to predictions which agree best with the observed data. First calculations were carried out using the friction coefficient ζ, which results from single phase flow measurements. A correlation has been developed to calculate ζ from the geometrical dimensions of the crack and was integrated into an advanced version of the Pana model. The modified Pana model was qualified against some hundreds of test values. The measured data were predicted with a relative standard deviation of less than 20%. (orig.)
Uncertainty analysis of two-phase flow pressure drop calculations
Energy Technology Data Exchange (ETDEWEB)
Siqueira, Cezar A.M.; Costa, Bruno M.P.; Fonseca Junior, Roberto da; Gonalves, Marcelo de A.L. [PETROBRAS, Rio de Janeiro, RJ (Brazil)
2004-07-01
The simulation of multiphase flow in pipes is usually performed by petroleum engineers with two main purposes: design of new pipelines and production systems; diagnosis of flow assurance problems in existing systems. The tools used for this calculation are computer codes that use published pressure drop correlations developed for steady-state two-phase flow, such as Hagedorn-Brown, Beggs and Brill and others. Each one of these correlations is best suited for a given situation and the engineer must find out the best option for each particular case, based on his experience. In order to select the best correlation to use and to analyze the results of the calculation, the engineer must determine the reliability of computed values. The uncertainty of the computation is obtained by considering uncertainties of the correlation adopted, of the calculation algorithm and the input data. This paper proposes a method to evaluate the uncertainties of this type of calculation and presents an analysis of these uncertainties. The uncertainty analysis also allows the identification of the parameters that are more significant for the final uncertainty of the simulation. Therefore it makes possible to determine which are the input parameters that must be determined with higher accuracy and the ones that may have lower accuracy, without reducing the reliability of the results. (author)
International Nuclear Information System (INIS)
This paper presents a novel approach for solving the conservative form of the incompressible two-phase Navier–Stokes equations. In order to overcome the numerical instability induced by the potentially large density ratio encountered across the interface, the proposed method includes a Volume-of-Fluid type integration of the convective momentum transport, a monotonicity preserving momentum rescaling, and a consistent and conservative Ghost Fluid projection that includes surface tension effects. The numerical dissipation inherent in the Volume-of-Fluid treatment of the convective transport is localized in the interface vicinity, enabling the use of a kinetic energy conserving discretization away from the singularity. Two- and three-dimensional tests are presented, and the solutions shown to remain accurate at arbitrary density ratios. The proposed method is then successfully used to perform the detailed simulation of a round water jet emerging in quiescent air, therefore suggesting the applicability of the proposed algorithm to the computation of realistic turbulent atomization
Le Chenadec, Vincent; Pitsch, Heinz
2013-09-01
This paper presents a novel approach for solving the conservative form of the incompressible two-phase Navier-Stokes equations. In order to overcome the numerical instability induced by the potentially large density ratio encountered across the interface, the proposed method includes a Volume-of-Fluid type integration of the convective momentum transport, a monotonicity preserving momentum rescaling, and a consistent and conservative Ghost Fluid projection that includes surface tension effects. The numerical dissipation inherent in the Volume-of-Fluid treatment of the convective transport is localized in the interface vicinity, enabling the use of a kinetic energy conserving discretization away from the singularity. Two- and three-dimensional tests are presented, and the solutions shown to remain accurate at arbitrary density ratios. The proposed method is then successfully used to perform the detailed simulation of a round water jet emerging in quiescent air, therefore suggesting the applicability of the proposed algorithm to the computation of realistic turbulent atomization.
Energy Technology Data Exchange (ETDEWEB)
Le Chenadec, Vincent, E-mail: vlechena@stanford.edu [Department of Mechanical Engineering, Stanford University, CA 94305 (United States); Pitsch, Heinz [Department of Mechanical Engineering, Stanford University, CA 94305 (United States); Institute for Combustion Technology, RWTH Aachen, Templergraben 64, 52056 Aachen (Germany)
2013-09-15
This paper presents a novel approach for solving the conservative form of the incompressible two-phase Navier–Stokes equations. In order to overcome the numerical instability induced by the potentially large density ratio encountered across the interface, the proposed method includes a Volume-of-Fluid type integration of the convective momentum transport, a monotonicity preserving momentum rescaling, and a consistent and conservative Ghost Fluid projection that includes surface tension effects. The numerical dissipation inherent in the Volume-of-Fluid treatment of the convective transport is localized in the interface vicinity, enabling the use of a kinetic energy conserving discretization away from the singularity. Two- and three-dimensional tests are presented, and the solutions shown to remain accurate at arbitrary density ratios. The proposed method is then successfully used to perform the detailed simulation of a round water jet emerging in quiescent air, therefore suggesting the applicability of the proposed algorithm to the computation of realistic turbulent atomization.
A modified Rusanov scheme for shallow water equations with topography and two phase flows
Mohamed, Kamel; Benkhaldoun, F.
2016-06-01
In this work, we introduce a finite volume method for numerical simulation of shallow water equations with source terms in one and two space dimensions, and one-pressure model of two-phase flows in one space dimension. The proposed method is composed of two steps. The first, called predictor step, depends on a local parameter allowing to control the numerical diffusion. A strategy based on limiters theory enables to control this parameter. The second step recovers the conservation equation. The scheme can thus be turned to order 1 in the regions where the flow has a strong variation, and order 2 in the regions where the flow is regular. The numerical scheme is applied to several test cases in one and two space dimensions. This scheme demonstrates its well-balanced property, and that it is an efficient and accurate approach for solving shallow water equations with and without source terms, and water faucet problem.
Mathematical modeling of a gas jet impinging on a two phase bath
Delgado-Álvárez, J.; Ramírez-Argáez, Marco A.; González-Rivera, C.
2012-09-01
In this work a three phase 3D mathematical model was developed using the Volume Of Fluid (VOF) algorithm, which is able to accurately describe the cavity geometry and size as well as the liquid flow patterns created when a gas jet impinges on a two phase liquid free surface. These phenomena are commonly found in steelmaking operations such as in the Electric Arc Furnace (EAF) and the Basic Oxygen Furnace (BOF) where oxygen jets impinge on a steel bath and they control heat, momentum and mass transfer. The cavity formed in the liquids by the impinging jet depends on a force balance at the free surface where the inertial force of the jet governs these phenomena. The inertial force of the jet and its angle play important roles, being the lowest angle the best choice to shear the bath and promote stronger circulation and better mixing in the liquids.
Simulation of heterogeneous two-phase media using random fields and level sets
Institute of Scientific and Technical Information of China (English)
George STEFANOU[1,2
2015-01-01
The accurate and efficient simulation of random heterogeneous media is important in the framework of modeling and design of complex materials across multiple length scales. It is usually assumed that the morphology of a random microstructure can be described as a non-Gaussian random field that is completely defined by its multivariate distribution. A particular kind of non-Gaussian random fields with great practical importance is that of translation fields resulting from a simple memory-less transformation of an underlying Gaussian field with known second-order statistics. This paper provides a critical examination of existing random field models of heterogeneous two-phase media with emphasis on level-cut random fields which are a special case of translation fields. The case of random level sets, often used to represent the geometry of physical systems, is also examined. Two numerical examples are provided to illustrate the basic features of the different approaches.
Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code
Energy Technology Data Exchange (ETDEWEB)
Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.
2009-01-01
Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.
A simple volume-of-fluid reconstruction method for three-dimensional two-phase flows
Kawano, Akio
2016-01-01
A new PLIC (piecewise linear interface calculation)-type VOF (volume of fluid) method, called APPLIC (approximated PLIC) method, is presented. Although the PLIC method is one of the most accurate VOF methods, the three-dimensional algorithm is complex. %involves multiple conditional branches, Accordingly, it is hard to develop and maintain the computational code. The APPLIC method reduces the complexity using simple approximation formulae. Three numerical tests were performed to compare the accuracy of the SVOF (simplified volume of fluid), VOF/WLIC (weighed line interface calculation), THINC/SW (tangent of hyperbola for interface capturing/slope weighting), THINC/WLIC, PLIC, and APPLIC methods. The results of the tests show that the APPLIC results are as accurate as the PLIC results and are more accurate than the SVOF, VOF/WLIC, THINC/SW, and THINC/WLIC results. It was demonstrated that the APPLIC method is more computationally efficient than the PLIC method.
International Nuclear Information System (INIS)
This thesis deals with the Baer-Nunziato two-phase flow model. The main objective of this work is to propose some techniques to cope with phase vanishing regimes which produce important instabilities in the model and its numerical simulations. Through analysis and simulation methods using Suliciu relaxation approximations, we prove that in these regimes, the solutions can be stabilised by introducing some extra dissipation of the total mixture entropy. In a first approach, called the Eulerian approach, the exact resolution of the relaxation Riemann problem provides an accurate entropy-satisfying numerical scheme, which turns out to be much more efficient in terms of CPU-cost than the classical and very simple Rusanov's scheme. Moreover, the scheme is proved to handle the vanishing phase regimes with great stability. The scheme, first developed in 1D, is then extended in 3D and implemented in an industrial code developed by EDF. The second approach, called the acoustic splitting approach, considers a separation of fast acoustic waves from slow material waves. The objective is to avoid the resonance due to the interaction between these two types of waves, and to allow an implicit treatment of the acoustics, while material waves are explicitly discretized. The resulting scheme is very simple and allows to deal simply with phase vanishing. The originality of this work is to use new dissipative closure laws for the interfacial velocity and pressure, in order to control the solutions of the Riemann problem associated with the acoustic step, in the phase vanishing regimes. (author)
Optical Readout of a Two Phase Liquid Argon TPC using CCD Camera and TGEMs
Mavrokoridis, K; Carroll, J; Lazos, M; McCormick, K J; Smith, N A; Touramanis, C; Walker, J
2014-01-01
This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by Thick Gas Electron Multipliers (TGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double TGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the TGEM gain was approximately 1000 and using a 1 msec...
A Hydrodynamic Model for Slug Frequency in Horizontal Gas-Liquid Two-Phase Flow
Institute of Scientific and Technical Information of China (English)
刘磊; 孙贺东; 胡志华; 周芳德
2003-01-01
The prediction of slug frequency has important significance on gas-liquid two-phase flow. A hydrodynamic model was put forward to evaluate slug frequency for horizontal two-phase flow, based on the dependence of slug frequency on the frequency of unstable interfacial wave. Using air and water, experimental verification of the model was carried out in a large range of flow parameters. Six electrical probes were installed at different positions of a horizontal plexiglass pipe to detect slug frequency development. The pipe is 30 m long and its inner diameter is 24 ram. It is observed experimentally that the interracial wave frequency at the inlet is about i to 3 times the frequency of stable slug. The slug frequencies predicted by the model fit well with Tronconi (1990) model and the experimental data. The combination of the hydrodynamic model and the experimental data results in a conclusion that the frequency of equilibrium liquid slug is approximately half the minimum frequency of interfacial wave.
International Nuclear Information System (INIS)
As part of a study on a two-phase natural circulation flow between the outer reactor vessel and the insulation material in the reactor cavity under an external reactor vessel cooling of APR (Advanced Power Reactor) 1400, a K-HERMES-HALF (Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow-HALF scale) experiment was performed at KAERI (Korea Atomic Energy Research Institute) using an air injection method. This experiment was analyzed to verify and evaluate the experimental results using the RELAP5/MOD3 computer code. In addition, the geometry scaling on full height & full sector, and a material scaling between air-water and steam-water two phase natural circulation flow, have been performed for an application of the experimental results to an actual APR1400. The RELAP5/MOD3 results on the water circulation mass flow rate are very similar to the experimental results, in general. The water circulation mass flow rate of the full height & full sector case is approximately 7.6-times higher than that of the K-HERMEL-HALF case. The water circulation mass flow rate of the air injection case is 20-50 % higher than that of the steam injection case at 20 % of the injection rate. (author)
Molten corium concrete interaction: investigation of heat transfer in two-phase flow
International Nuclear Information System (INIS)
In the context of severe accident research for the second and the third generation of nuclear power plants, there are still open issues concerning some aspects of the concrete cavity ablation during the molten corium - concrete interaction (MCCI). The determination of heat transfer along the interfacial region between the molten corium pool and the ablating basemat concrete is crucial for the assessment of concrete ablation progression and eventually the basemat melt through. For the purpose of experimental investigation of thermal hydraulics inside a liquid pool agitated by gas bubbles, the CLARA project has been launched. The CLARA experiments are performed using simulant materials and they reveal the influence of superficial gas velocity, liquid viscosity and pool geometry on the heat transfer coefficient between the internally heated liquid pool and vertical and horizontal pool walls maintained at uniform temperature. The first test campaign has been conducted with the small pool configuration (50 cm * 25 cm * 25 cm). The tests have been performed with liquids covering a wide range of dynamic viscosity from approximately 1 mPa s to 10000 mPa s and the superficial gas velocity is varied up to 8 cm/s. This thesis comprises a brief description of MCCI phenomenology, literature reviews on the existing heat transfer correlations for two phase flow and the void fraction, a description of CLARA setup, experimental results and their interpretation. The experimental results are compared with existing models and some new models for the assessment of heat transfer coefficient in two-phase flow. (author)
Numerical methods for two-phase flow with contact lines
Energy Technology Data Exchange (ETDEWEB)
Walker, Clauido
2012-07-01
This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations
Simulation of two-phase flows by domain decomposition
International Nuclear Information System (INIS)
This thesis deals with numerical simulations of compressible fluid flows by implicit finite volume methods. Firstly, we studied and implemented an implicit version of the Roe scheme for compressible single-phase and two-phase flows. Thanks to Newton method for solving nonlinear systems, our schemes are conservative. Unfortunately, the resolution of nonlinear systems is very expensive. It is therefore essential to use an efficient algorithm to solve these systems. For large size matrices, we often use iterative methods whose convergence depends on the spectrum. We have studied the spectrum of the linear system and proposed a strategy, called Scaling, to improve the condition number of the matrix. Combined with the classical ILU pre-conditioner, our strategy has reduced significantly the GMRES iterations for local systems and the computation time. We also show some satisfactory results for low Mach-number flows using the implicit centered scheme. We then studied and implemented a domain decomposition method for compressible fluid flows. We have proposed a new interface variable which makes the Schur complement method easy to build and allows us to treat diffusion terms. Using GMRES iterative solver rather than Richardson for the interface system also provides a better performance compared to other methods. We can also decompose the computational domain into any number of sub-domains. Moreover, the Scaling strategy for the interface system has improved the condition number of the matrix and reduced the number of GMRES iterations. In comparison with the classical distributed computing, we have shown that our method is more robust and efficient. (author)
Development of a hybrid particle-mesh method for two-phase flow simulations with phase change
International Nuclear Information System (INIS)
A hybrid particle-mesh method was developed for efficient and accurate simulations of two-phase flows with phase change. In this method, the CIP/MM (constrained interpolated profile/multi-moment finite volume) method is used to calculate the main part of two-phase flows, while the finite volume particle (FVP) method is applied to represent the interface between two phases based on a Lagrangian scheme. The conservation equations are first solved by CIP/MM, and then mass, velocity and energy on the mesh grid are interpolated to numerical particles, which are distributed only on the surface of liquid phase to capture the phase interface by the FVP method. The particles are also used to calculate heat and mass transfers due to phase change on the interface. The phase of each particle is determined according to its enthalpy value interpolated from mesh grids. The mesh and particle methods are combined tightly in a single numerical solution algorithm to improve numerical accuracy and stability. Two benchmark simulations of conventional 1D Stefan problem for a vapor-liquid system and horizontal film boiling behavior demonstrate that this hybrid method is potentially applicable to two-phase flow calculations with phase change occurring at moving interface. (author)
Approximate Representations and Approximate Homomorphisms
Moore, Cristopher
2010-01-01
Approximate algebraic structures play a defining role in arithmetic combinatorics and have found remarkable applications to basic questions in number theory and pseudorandomness. Here we study approximate representations of finite groups: functions f:G -> U_d such that Pr[f(xy) = f(x) f(y)] is large, or more generally Exp_{x,y} ||f(xy) - f(x)f(y)||^2$ is small, where x and y are uniformly random elements of the group G and U_d denotes the unitary group of degree d. We bound these quantities in terms of the ratio d / d_min where d_min is the dimension of the smallest nontrivial representation of G. As an application, we bound the extent to which a function f : G -> H can be an approximate homomorphism where H is another finite group. We show that if H's representations are significantly smaller than G's, no such f can be much more homomorphic than a random function. We interpret these results as showing that if G is quasirandom, that is, if d_min is large, then G cannot be embedded in a small number of dimensi...
THE NONLINEAR BEHAVIOR OF INTERFACE BETWEEN TWO-PHASE SHEAR FLOW WITH LARGE DENSITY RATIOS
Institute of Scientific and Technical Information of China (English)
DONG Yu-hong
2006-01-01
The Navier-Stokes equations for the two-dimensional incompressible flow are used to investigate the effects of the Reynolds number and the Weber number on the behavior of interface between liquid-gas shear flow.In the present study, the density ratios are fixed at approximately 100-103.The interface between the two phases is resolved using the level-set approach.The Reynolds number and the Weber number, based on the gas, are selected as 400-10000 and 40-5000, respectively.In the past, simulations reappeared the amplitude of interface growth predicted by viscous Orr-Sommerfeld linear theory, verifying the applicability and accuracy of the numerical method over a wide range of density and viscosity ratios; now, the simulations show that the nonlinear development of ligament elongated structures and resulted in the subsequent breakup of the heavier fluid into drops.
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Schmidt, Wolfgang M
1980-01-01
"In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)
Xin Chen; Penghuan Xie; Yonghua Xiong; Yong He; Min Wu
2015-01-01
Adaptive Dynamic Programming (ADP) with critic-actor architecture is an effective way to perform online learning control. To avoid the subjectivity in the design of a neural network that serves as a critic network, kernel-based adaptive critic design (ACD) was developed recently. There are two essential issues for a static kernel-based model: how to determine proper hyperparameters in advance and how to select right samples to describe the value function. They all rely on the assessment of sa...
Hydrodynamic Dryout in Two-Phase Flows: Observations of Low Bond Number Systems
Weislogel, Mark M.; McQuillen, John B.
1998-01-01
Dryout occurs readily in certain slug and annular two-phase flows for systems that exhibit partial wetting. The mechanism for the ultimate rupture of the film is attributed to van der Waals forces, but the pace towards rupture is quickened by the surface tension instability (Rayleigh-type) of the annular film left by the advancing slug and by the many perturbations of the free surface present in the Re(sub g) approximately 0(10(exp 3)), Re(sub l) approximately 0(10(exp 4)), and Ca approximately 0(10(exp -1) flows. Results from low-gravity experiments using three different test fluids are presented and discussed. For the range of tests conducted, the effect of increasing viscosity is shown to eliminate the film rupture while the decrease of surface tension via a surfactant additive is shown to dramatically enhance it. Laboratory measurements using capillary tubes are presented which reveal the sensitivity of the dryout phenomena to particulate and surfactant contamination. Rom such observations, dryout due to the hydrodynamic-van der Waals instability can be expected in a certain range of flow parameters in the absence of heat transfer. The addition of heat transfer may only exacerbate the problem by producing thermal transport lines replete with "hot spots." A caution to this effect is issued to future space systems designers concerning the use of partially wetting working fluids.
Effect of fine-dispersed inclusions on the critical velocity analysis in the two-phase flow
Directory of Open Access Journals (Sweden)
Volgina Lyudmila Vsevolodovna
2014-12-01
Full Text Available The co-authors have designated the point for the identification of the critical velocity and intensity of the hydro-abrasive wear within the framework of the two-phase flow mechanics challenges. In this article, the two-phase flow is analyzed as the flow that has the solid phase, including ore particles, concentrates and tailings, solid fuel combustion products, sand, and construction materials, etc., and as the flow containing the liquid phase, or water. The authors have identified the influence produced by the presence of fine-dispersed solid particles in the two-phase flows that transport the milled ore concentrate due to the presence of the water. Variations in critical velocity values, driven by the per-cent clay content in the ore, were exposed to the experimental research performed by the Laboratory of Hydraulic Transportation at the Hydraulics Department, MGSU. The experimental data are consistent with the findings of the analysis of the influence produced by dust fractions on the critical velocity at the Eastern site’s placer of Malyshev deposit. The co-authors offer their methodology for the refinement of the critical velocity analysis depending on varied per cent clay content values; the diagram compiled in relative coordinates, and the approximative correlation required for practical applications. The proposed methodology consisting in feeding fine-dispersed additives into the two-phase flow, reduces the critical velocity.
Validation of Friction Models in MARS-MultiD Module with Two-Phase Cross Flow Experiment
Energy Technology Data Exchange (ETDEWEB)
Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher [Seoul National University, Seoul (Korea, Republic of); Euh, Dong-Jin [KAERI, Daejeon (Korea, Republic of)
2015-05-15
In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multidimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the multidimensional modules of system analysis codes. In this study, MARS-MultiD was used to simulate the Yang's experiment, and obtained the local variables. Then, the friction models used in MARS-MultiD were validated by comparing the two-phase flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by the MARS-MultiD. Compared with the experimental results, the calculated results by the code properly presented mass conservation which could be known from the relation between the liquid film velocity and thickness at the same flow rate. The magnitude and direction of the liquid film, however, did not follow well with experimental results. According to the results of Case-2, wall friction should be increased, and interfacial friction should be decreased in MARS-MultiD. These results show that it is needed to modify the friction models in the MARS-MultiD to simulate the two-phase cross flow.
Validation of Friction Models in MARS-MultiD Module with Two-Phase Cross Flow Experiment
International Nuclear Information System (INIS)
In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multidimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the multidimensional modules of system analysis codes. In this study, MARS-MultiD was used to simulate the Yang's experiment, and obtained the local variables. Then, the friction models used in MARS-MultiD were validated by comparing the two-phase flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by the MARS-MultiD. Compared with the experimental results, the calculated results by the code properly presented mass conservation which could be known from the relation between the liquid film velocity and thickness at the same flow rate. The magnitude and direction of the liquid film, however, did not follow well with experimental results. According to the results of Case-2, wall friction should be increased, and interfacial friction should be decreased in MARS-MultiD. These results show that it is needed to modify the friction models in the MARS-MultiD to simulate the two-phase cross flow
Experimental investigation of two-phase flow in rock salt
Energy Technology Data Exchange (ETDEWEB)
Malama, Bwalya [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Howard, Clifford L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2014-07-01
This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.
One-dimensional two-phase moving boundary problem
International Nuclear Information System (INIS)
This paper presents the results of mathematically modeling a first-order phase change for the melting of a solid. The mathematical model will be validated against an experiment. The experiment will be the melting of paraffin as it undergoes a phase change from solid to liquid. The authors approximate the partial differential equation describing the enthalpy balance by a variable grid finite difference algorithm. This work will not address interface melting where phase change is occurring at a sharp interface, and is limited to the analysis of a first-order phase change for a homogeneous mixture where mass transfer, crystal growth and reactions are neglected
Experimental Investigation of Two-Phase Flow in Rock Salt
Energy Technology Data Exchange (ETDEWEB)
Malama, Bwalya; Howard, Clifford L.
2014-07-01
This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.
Concurrent growth of two phases in 2D space
Directory of Open Access Journals (Sweden)
A.A. Burbelko
2008-12-01
Full Text Available The kinetics of phase transformations has been studied within the framework of the Kolmogorov-Johnson-Mehl-Avrami (KJMA theory. This theory accurately describes only the parallel growth of anisotropic products with identical convex shape. The identical growth velocity distribution at an interface is the indispensable condition for the above restriction. The proposed earlier extension of KJMA theory (statistical theory of the screened growth enlarges the scope of its application and eliminates the above limitation. The results of the application of this extension were compared with the results obtained during modelling of the concurrent growth of the two types of circular particles on a plane, where the said particles were characterised by different growth rates and modelling was carried out by the method of cellular automata (CA.
Bubble Dynamics in a Two-Phase Medium
Jayaprakash, Arvind; Chahine, Georges
2010-01-01
The spherical dynamics of a bubble in a compressible liquid has been studied extensively since the early work of Gilmore. Numerical codes to study the behavior, including when large non-spherical deformations are involved, have since been developed and have been shown to be accurate. The situation is however different and common knowledge less advanced when the compressibility of the medium surrounding the bubble is provided mainly by the presence of a bubbly mixture. In one of the present works being carried out at DYNAFLOW, INC., the dynamics of a primary relatively large bubble in a water mixture including very fine bubbles is being investigated experimentally and the results are being provided to several parallel on-going analytical and numerical approaches. The main/primary bubble is produced by an underwater spark discharge from two concentric electrodes placed in the bubbly medium, which is generated using electrolysis. A grid of thin perpendicular wires is used to generate bubble distributions of vary...
Anti-diffusion method for interface steepening in two-phase incompressible flow
So, K. K.; Hu, X. Y.; Adams, N. A.
2011-06-01
In this paper, we present a method for obtaining sharp interfaces in two-phase incompressible flows by an anti-diffusion correction, that is applicable in a straight-forward fashion for the improvement of two-phase flow solution schemes typically employed in practical applications. The underlying discretization is based on the volume-of-fluid (VOF) interface-capturing method on unstructured meshes. The key idea is to steepen the interface, independently of the underlying volume-fraction transport equation, by solving a diffusion equation with reverse time, i.e. an anti-diffusion equation, after each advection time step of the volume fraction. As the solution of the anti-diffusion equation requires regularization, a limiter based on the directional derivative is developed for calculating the gradient of the volume fraction. This limiter ensures the boundedness of the volume fraction. In order to control the amount of anti-diffusion introduced by the correction algorithm we propose a suitable stopping criterion for interface steepening. The formulation of the limiter and the algorithm for solving the anti-diffusion equation are applicable to 3-dimensional unstructured meshes. Validation computations are performed for passive advection of an interface, for 2-dimensional and 3-dimensional rising-bubbles, and for a rising drop in a periodically constricted channel. The results demonstrate that sharp interfaces can be recovered reliably. They show that the accuracy is similar to or even better than that of level-set methods using comparable discretizations for the flow and the level-set evolution. Also, we observe a good agreement with experimental results for the rising drop where proper interface evolution requires accurate mass conservation.
Improvement of gas-liquid two-phase flow simulation methodology on unstructured grid
International Nuclear Information System (INIS)
A high-precision gas-liquid two-phase flow simulation methodology has been developed based on a volume-of-fluid algorithm to simulate gas entrainment (GE) phenomena in sodium-cooled fast reactors. Since the GE is known to be strongly dependent on local velocity distribution formed by local structural configuration, an unstructured grid is employed in our simulation methodology to achieve an accurate modeling of system configuration. On unstructured grids, basic differential equations are usually discretized based on the collocated variable arrangement. However, it is well-known that the collocated variable arrangement often cause unphysical behaviors. We found that unphysical behaviors were induced near gas-liquid interfaces in two-phase simulations by the collocated variable arrangement. In this study, we first show that the unphysical behaviors are derived from inappropriate formulations of the momentum and velocity-pressure coupling equations. Then, improved formulations are mechanistically formulated considering the balance conditions of physical quantities. In the improved formulations, the velocities at interfacial regions are calculated using the volume fraction values and each phase's velocities. In addition, the pressure forces at the interfacial regions are calculated considering the balance with the surface tension forces. These new formulations were verified by simulating a rising air bubble in water. As the results, the improved formulations succeeded in eliminating unphysical velocity and pressure distributions near the bubble interface induced by the conventional formulations and gave the simulation results of the rising bubble shapes agreed well with experimental results. The simulations were conducted also on the unstructured grid and similar results with the results on the structured grid were obtained. (author)
Prestack wavefield approximations
Alkhalifah, Tariq
2013-09-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
Fracture toughness of two phase WC-Co cermets
International Nuclear Information System (INIS)
The present analysis is an attempt to show that fracture toughness of cermets based on WC-Co and the like can be predicted with reasonable accuracy from a simple fracture mechanics relationship. The resistance to fracture has been considered to manifest primarily from the plastic deformation of Co phase. The constrained deformation behavior of the ductile Co phase between the rigid WC grains, approximated to the behavior of ideal plastic flow of a ductile layer sandwiched between rigid platens, has been incorporated into the fracture toughness predictions. Reasonable assumptions on in situ flow and fracture behavior of Co phase have been made in such estimations. Comparison of the calculated fracture toughness values with the experimental data of a large number of WC-Co systems of varying microstructural conditions, indicates reasonable agreement
International Nuclear Information System (INIS)
Highlights: • Additional pressure drop caused by rolling motion is theoretically analyzed. • Fluctuation amplitude of pressure drop increases with increasing rolling amplitude. • Mass flux fluctuation varies with the fluctuation of frictional pressure drop. • Time average pressure drop under rolling motion is equal to that under steady state. • Phase lag between fluctuation of mass flux and pressure drop is 1/4 rolling period. - Abstract: In order to investigate the two-phase frictional pressure drop characteristics of boiling flow in a rectangular narrow channel under rolling motion, a series of experiments and theoretical analysis are performed. The results demonstrate that the total additional pressure drop fluctuation has the same period with the rolling motion, and the fluctuation amplitude increases with the increase of rolling amplitude and rolling frequency. The time average additional pressure drop is 2–3 orders of magnitude smaller than that of frictional pressure drop in the boiling region. The fluctuation amplitude of the two-phase frictional pressure drop increases with increasing rolling amplitude, rolling period and heat flux, while it decreases with the increase of system pressure. Compared with the additional pressure drop in two-phase regions the outlet quality of channel and the space variation of the experimental loop are the main reasons that induce the fluctuation of two-phase frictional pressure drop. The mass flux fluctuation varies with the fluctuation of two-phase frictional pressure drop, and the fluctuation amplitude of mass flux increases with the increase of rolling amplitude and rolling period. The phase lag between the fluctuation of mass flux and frictional pressure drop is approximately equal to 1/4 rolling period
Optical Measurement of Mass Flow of a Two-Phase Fluid
Wiley, John; Pedersen, Kevin; Koman, Valentin; Gregory, Don
2008-01-01
An optoelectronic system utilizes wavelength-dependent scattering of light for measuring the density and mass flow of a two-phase fluid in a pipe. The apparatus was invented for original use in measuring the mass flow of a two-phase cryogenic fluid (e.g., liquid hydrogen containing bubbles of hydrogen gas), but underlying principles of operation can readily be adapted to non-cryogenic two-phase fluids. The system (see figure) includes a laser module, which contains two or more laser diodes, each operating at a different wavelength. The laser module also contains beam splitters that combine the beams at the various wavelengths so as to produce two output beams, each containing all of the wavelengths. One of the multiwavelength output beams is sent, via a multimode fiberoptic cable, to a transmitting optical coupler. The other multiwavelength output beam is sent, via another multimode fiber-optic cable, to a reference detector module, wherein fiber-optic splitters split the light into several multiwavelength beams, each going to a photodiode having a spectral response that is known and that differs from the spectral responses of the other photodiodes. The outputs of these photodiodes are digitized and fed to a processor, which executes an algorithm that utilizes the known spectral responses to convert the photodiode outputs to obtain reference laser-power levels for the various wavelengths. The transmitting optical coupler is mounted in (and sealed to) a hole in the pipe and is oriented at a slant with respect to the axis of the pipe. The transmitting optical coupler contains a collimating lens and a cylindrical lens that form the light emerging from the end of the fiber-optic cable into a fan-shaped beam in a meridional plane of the pipe. Receiving optical couplers similar to the transmitting optical couplers are mounted in the same meridional plane at various longitudinal positions on the opposite side of the pipe, approximately facing the transmitting optical
Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.
Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E
2011-01-01
The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production
DEFF Research Database (Denmark)
Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri
2014-01-01
Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variab...
Controlling the long-range corrections in atomistic Monte Carlo simulations of two-phase systems.
Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J
2015-10-13
The long-range correction to the surface tension can amount to up to 55% of the calculated value of the surface tension for cutoffs in the range of 2.1-6.4 σ. The calculation of the long-range corrections to the surface tension and to the configurational energy in two-phase systems remains an active area of research. In this work, we compare the long-range corrections methods proposed by Guo and Lu ( J. Chem. Phys. 1997 , 106 , 3688 - 3695 ) and Janeček ( J. Phys. Chem. B 2006 , 110 , 6264 - 6269 ) for the calculation of the surface tension and of the coexisting densities in Monte Carlo simulations of the truncated Lennard-Jones potential and the truncated and shifted Lennard-Jones potential models. These methods require an estimate of the long-range correction at each step in the Monte Carlo simulation. We apply the full version of the Guo and Lu method, which involves the calculation of a double integral that contains a series of density differences, and we compare these results with the simplified version of the method which is routinely used in two-phase simulations. We conclude that the cutoff dependencies of the surface tension and coexisting densities are identical for the full versions of Guo and Lu and Janeček methods. We show that it is possible to avoid applying the long-range correction at every step by using the truncated Lennard-Jones potential with a cutoff rc ≥ 5 σ. The long-range correction can then be applied at the end of the simulation. The limiting factor in the accurate calculation of this final correction is an accurate estimate of the coexisting densities. Link-cell simulations performed using a cutoff rc = 5.5 σ require twice as much computing time as those with a more typical cutoff of rc = 3.0 σ. The application of the Janeček correction increases the running time of the simulation by less than 10%, and it can be profitably applied with the shorter cutoff. PMID:26574249
International Nuclear Information System (INIS)
Understanding and predicting two-phase flow and heat transfer in porous media is of fundamental interest for a number of engineering applications. Examples include thermal technologies for remediation of contaminated subsurfaces, the extraction of geothermal energy from vapor-dominated reservoirs, and the assessment of high-level nuclear waste repositories. A numerical and experimental study is reported for two-phase flow and heat transfer in a horizontal porous formation with water through flow and partial heating from below. Based on a newly developed two-phase mixture model, numerical results of the temperature distribution, liquid saturation, liquid and vapor phase velocity fields are presented for three representative cases with varying inlet velocities. It is found that the resulting two-phase structure and flow patterns are strongly dependent upon the water inlet velocity and the bottom heat flux. The former parameter measures the flow along the horizontal direction, while the latter creates a relative motion between the phases in the vertical direction. Experiments are also performed to measure temperature distributions and to visualize the two-phase flow patterns. Qualitative agreement between experiments and numerical predictions is achieved. Overall, this combined experimental and numerical study has provided new insight into conjugate single- and two-phase flow and heat transfer in porous media, although future research is required if accurate modeling of these complex problems is to be accomplished
Touma, Rony; Zeidan, Dia
2016-06-01
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential of the proposed scheme.
Ma, C.; Bothe, D.
2013-01-01
A one-field model is derived from the sharp interface continuum mechanical balances for two-phase evaporative and thermocapillary flows. Emphasis is put on a clear distinction of the different velocities at the interface which appear due to phase transfer. The one-field model is solved numerically within a Finite Volume scheme and the interface is captured using an extended Volume of Fluid method, where the interface is reconstructed linearly with the PLIC technique. The numerical heat transfer is based on a two-scalar approach where two separate temperature fields are used for the temperature inside the two phases. This results in an accurate treatment of the interfacial heat transfer, specifically the interface temperature which is crucial numerically, both for evaporation and thermocapillarity. The method is validated for two-phase heat conduction, with analytical solution in case of no evaporation and with experimental measurement in case of incorporated evaporation effect. The method is applied to realistic cases dealing with non-uniformly heated thin liquid films, i.e. liquid films on (i) structured heated substrates and (ii) locally heated substrates. The numerical predictions in terms of flow pattern, surface deformation, temperature and velocity are compared with experiments conducted at the Université Libre de Bruxelles for (i) and at the Technische Universität Darmstadt for (ii). Qualitative agreement is achieved and shows the potential of this approach to simulate thermocapillary flows with dynamically deformable interfaces combined with evaporation.
International Nuclear Information System (INIS)
Highlights: ► A numerical technique for transient two-phase flow in a vertical channel using the Drift Flux Model is presented. ► The proposed model was validated for wide range two-phase flow parameters. ► Good agreement between the predicted void fraction, RELAP5 code and the experimental data was obtained. ► The analysis lead to a better understanding of the basic mechanism of sub-cooled flow boiling. ► It was concluded that the model predicts the void fraction in two phase flow with sufficient accuracy. - Abstract: This paper presents a numerical solution of one-dimensional transient two-phase flow in a vertical channel using the Drift Flux Model (DFM). The DFM treats the two phases as a mixture, but allows slippage between the gas and the liquid phase. The DFM was used for the calculation of velocity and fraction of each phase, combined with the most relevant closure relationships models for condensation, wall evaporation, and phasic velocities. The solution of the three conservation equations for the mixture and a continuity equation for the gas phases is obtained by a semi-implicit numerical method. A finite volume method is used to discretize the governing equations on a staggered grid in the computational domain. Satisfactory agreement is shown between predicted void fraction, RELAP5 code and available experimental data under both transient and steady state conditions. Numerical solution was also obtained for a wide two-phase flow conditions: system pressure, surface heat flux, mass flow rate and inlet sub-cooling to check the model ability to predict void fraction accurately. It is concluded, therefore, that the DFM is able to predict void fraction in subcooled flow boiling with sufficient accuracy. For pressures lower than 30 bars, the DFM overestimated the void fraction in comparison with the experimental data by about 15%. The model requires less computational power to simulate than other approaches and has no limitations on the nodalization
EXPERIMENTAL STUDY OF AIR-WATER TWO-PHASE FLOW IN PARALLEL HELICALLY COILED PIPES
Panella, Bruno
2012-01-01
The air-water two-phase flow in a 12 mm inner diameter parallel helically coiled pipes is investigated with three different coils diameters. Void fraction, flow rate distribution and two-phase pressure drops along the pipes in the parallel channels are measured. The test two-phase pressure drops are compared with theoretical ones, in terms of multipliers and friction factors. The instabilities arisen during the experimental tests are investigated and are related to the void fraction and flow ...
Efficient and robust compositional two-phase reservoir simulation in fractured media
Zidane, A.; Firoozabadi, A.
2015-12-01
Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.
Migration of rigid particles in two-phase shear flow of viscoelastic fluids
Anderson, Patrick; Jaensson, Nick; Hulsen, Martien
2015-11-01
In the Stokes regime, non-Brownian, rigid particles in a shear flow will not migrate across streamlines if the fluid is Newtonian. In viscoelastic fluids, however, particles will migrate across streamlines away from areas of higher elastic stresses, e.g. towards the outer cylinder in a wide-gap Couette flow. This migration is believed to be due to a difference in normal stresses. We simulate the two-phase case where this difference in normal stresses is not due to the flow field, but rather due to the properties of the fluids. We apply the diffuse-interface model for the interface between the two fluids, which can naturally handle a changing topology of the interface, e.g. during particle adsorption. Furthermore, the diffuse-interface model includes an accurate description of surface tension and can be used for a moving contact line. A sharp interface is assumed between the particles and the fluids. Initially, a particle is placed close to an interface of two fluids with different viscoelastic properties in a shear flow. We show that based on the properties of the fluids and the interfacial tension, four regimes can be defined: 1) migration away from the interface, 2) halted migration towards the interface, 3) adsorption of the particle at the interface and 4) penetration of the particle into the other fluid. This research forms part of the research programme of the Dutch Polymer Institute (DPI), Project #746.
Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu
2016-06-01
Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).
Determination of volume fractions in two-phase flows from sound speed measurement
Energy Technology Data Exchange (ETDEWEB)
Chaudhuri, Anirban [Los Alamos National Laboratory; Sinha, Dipen N. [Los Alamos National Laboratory; Osterhoudt, Curtis F. [University of Alaska
2012-08-15
Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.
Experimental investigation of two-phase pressure drop in rough minichannels
Directory of Open Access Journals (Sweden)
Paweł Wacławczyk
2014-01-01
Full Text Available Following the general tendency of miniaturization of devices in many branches of industry, smaller and smaller components are used. Mini channels are used to construct mini heat exchangers and mini reactors. Because of this fact, predicting two-phase pressure drops along the mini tube plays an important role already at the design stage. It defines the proper and safe operating conditions of such devices. It was decided to research this phenomena in five single mini channels and undertake a comparison of various correlations models reported in literature and check how the process of changing critical Reynolds value affects the conformity of the experimental data and results reported in literature. It was found that the Mishima-Hibiki model derived from literature offers the possibility of most accurate mathematical modelling. It was also found that changing critical Reynolds value because of mini channel roughness can significantly improve the accuracy of the existing correlations models e.g. for Lee-Lee model the improvement is equal to almost 9%.
Directory of Open Access Journals (Sweden)
Clive R McMahon
Full Text Available Generally, sigmoid curves are used to describe the growth of animals over their lifetime. However, because growth rates often differ over an animal's lifetime a single curve may not accurately capture the growth. Broken-stick models constrained to pass through a common point have been proposed to describe the different growth phases, but these are often unsatisfactory because essentially there are still two functions that describe the lifetime growth. To provide a single, converged model to age animals with disparate growth phases we developed a smoothly joining two-phase nonlinear function (SJ2P, tailored to provide a more accurate description of lifetime growth of the macropod, the Tasmanian pademelon Thylogale billardierii. The model consists of the Verhulst logistic function, which describes pouch-phase growth--joining smoothly to the Brody function, which describes post-pouch growth. Results from the model demonstrate that male pademelons grew faster and bigger than females. Our approach provides a practical means of ageing wild pademelons for life history studies but given the high variability of the data used to parametrise the second growth phase of the model, the accuracy of ageing of post-weaned animals is low: accuracy might be improved with collection of longitudinal growth data. This study provides a unique, first robust method that can be used to characterise growth over the lifespan of pademelons. The development of this method is relevant to collecting age-specific vital rates from commonly used wildlife management practices to provide crucial insights into the demographic behaviour of animal populations.
International Nuclear Information System (INIS)
This thesis is devoted to the study of the Riemann problem and the construction of Godunov type numerical schemes for one or two dimensional two-phase flow models. In the first part, we study the Riemann problem for the well-known Drift-Flux, model which has been widely used for the analysis of thermal hydraulics transients. Then we use this study to construct approximate Riemann solvers and we describe the corresponding Godunov type schemes for simplified equation of state. For computation of complex two-phase flows, a weak formulation of Roe's approximate Riemann solver, which gives a method to construct a Roe-averaged jacobian matrix with a general equation of state, is proposed. For two-dimensional flows, the developed methods are based upon an approximate solver for a two-dimensional Riemann problem, according to Harten-Lax-Van Leer principles. The numerical results for standard test problems show the good behaviour of these numerical schemes for a wide range of flow conditions
Dahms, Rainer N.
2016-04-01
A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing
Directory of Open Access Journals (Sweden)
Housila P. Singh
2013-05-01
Full Text Available In this paper a double (or two-phase sampling version of (Singh and Tailor, 2005 estimator has been suggested along with its properties under large sample approximation. It is shown that the estimator due to (Kawathekar and Ajgaonkar, 1984 is a member of the proposed class of estimators. Realistic conditions have been obtained under which the proposed estimator is better than usual unbiased estimator, usual double sampling ratio ( tRd product ( tPd estimators and (Kawathekar and Ajgaonkar, 1984 estimator. This fact has been shown also through an empirical study.
Heat transfer, pressure drop and void fraction in two- phase, two-component flow in a vertical tube
Sujumnong, Manit
1998-09-01
There are very few data existing in two-phase, two- component flow where heat transfer, pressure drop and void fraction have all been measured under the same conditions. Such data are very valuable for two-phase heat-transfer model development and for testing existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction. An experiment was performed which adds markedly to the available data of the type described in terms of the range of gas and liquid flow rates and liquid Prandtl number. Heat transfer and pressure drop measurements were taken in a vertical 11.68-mm i.d. tube for two-phase (gas-liquid) flows covering a wide range of conditions. Mean void fraction measurements were taken, using quick- closing valves, in a 12.7-mm i.d. tube matching very closely pressures, temperatures, gas-phase superficial velocities and liquid-phase superficial velocities to those used in the heat-transfer and pressure-drop experiments. The gas phase was air while water and two aqueous solutions of glycerine (59 and 82% by mass) were used as the liquid phase. In the two-phase experiments the liquid Prandtl number varied from 6 to 766, the superficial liquid velocity from 0.05 to 8.5 m/s, and the superficial gas velocity from 0.02 to 119 m/s. The measured two-phase heat-transfer coefficients varied by a factor of approximately 1000, the two-phase frictional pressure drop ranged from small negative values (in slug flow) to 93 kPa and the void fraction ranged from 0.01 to 0.99; the flow patterns observed included bubble, slug, churn, annular, froth, the various transitions and annular-mist. Existing heat-transfer models or correlations requiring frictional pressure drop (or wall shear stress) and/or void fraction were: tested against the present data for mean heat-transfer coefficients. It was found that the methods with more restrictions (in terms of the applicable range of void fraction, liquid Prandtl number or liquid
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
Kou, Jisheng
2016-05-10
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests
A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation
Kou, Jisheng
2010-12-01
In this paper, we present an efficient numerical method for two-phase immiscible flow in porous media with different capillarity pressures. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressure functions. One popular scheme is to split the system into a pressure and a saturation equation, and to apply IMplicit Pressure Explicit Saturation (IMPES) approach for time stepping. One disadvantage of IMPES is instability resulting from the explicit treatment for capillary pressure. To improve stability, the capillary pressure is usually incorporated in the saturation equation which gradients of saturation appear. This approach, however, does not apply to the case of different capillary pressure functions for multiple rock-types, because of the discontinuity of saturation across rock interfaces. In this paper, we present a new treatment of capillary pressure, which appears implicitly in the pressure equation. Using an approximation of capillary function, we substitute the implicit saturation equation into the pressure equation. The coupled pressure equation will be solved implicitly and followed by the explicit saturation equation. Five numerical examples are provided to demonstrate the advantages of our approach. Comparison shows that our proposed method is more efficient and stable than the classical IMPES approach. © 2010 Elsevier Ltd.
Two-phase flow research using the DC-9/KC-135 apparatus
McQuillen, John B.; Neumann, Eric S.; Shoemaker, J. Michael
1996-01-01
Low-gravity gas-liquid flow research can be conducted aboard the NASA Lewis Research Center DC-9 or the Johnson Space Center KC-135. Air and water solutions serve as the test liquids in cylindrical test sections with constant or variable inner diameters of approximately 2.54 cm and lengths of up to 3.0 m. Superficial velocities range from 0.1 to 1.1 m/sec for liquids and from 0.1 to 25 m/sec for air. Flow rate, differential pressure, void fraction, film thickness, wall shear stress, and acceleration data are measured and recorded at data rates of up to 1000 Hz throughout the 20-sec duration of the experiment. Flow is visualized with a high-speed video system. In addition, the apparatus has a heat-transfer capability whereby sensible heat is transferred between the test-section wall and a subcooled liquid phase so that the heat-transfer characteristics of gas-liquid two-phase flows can be determined.
Unsteady MHD two-phase Couette flow of fluid-particle suspension in an annulus
Directory of Open Access Journals (Sweden)
Basant K. Jha
2011-12-01
Full Text Available The problem of two-phase unsteady MHD flow between two concentric cylinders of infinite length has been analysed when the outer cylinder is impulsively started. The system of partial differential equations describing the flow problem is formulated taking the viscosity of the particle phase into consideration. Unified closed form expressions are obtained for the velocities and the skin frictions for both cases of the applied magnetic field being fixed to either the fluid or the moving outer cylinder. The problem is solved using a combination of the Laplace transform technique, D’Alemberts and the Riemann-sum approximation methods. The solution obtained is validated by comparisons with the closed form solutions obtained for the steady states which has been derived separately. The governing equations are also solved using the implicit finite difference method to verify the present proposed method. The variation of the velocity and the skin friction with the dimensionless parameters occuring in the problem are illustrated graphically and discussed for both phases.
On Internet Traffic Classification: A Two-Phased Machine Learning Approach
Directory of Open Access Journals (Sweden)
Taimur Bakhshi
2016-01-01
Full Text Available Traffic classification utilizing flow measurement enables operators to perform essential network management. Flow accounting methods such as NetFlow are, however, considered inadequate for classification requiring additional packet-level information, host behaviour analysis, and specialized hardware limiting their practical adoption. This paper aims to overcome these challenges by proposing two-phased machine learning classification mechanism with NetFlow as input. The individual flow classes are derived per application through k-means and are further used to train a C5.0 decision tree classifier. As part of validation, the initial unsupervised phase used flow records of fifteen popular Internet applications that were collected and independently subjected to k-means clustering to determine unique flow classes generated per application. The derived flow classes were afterwards used to train and test a supervised C5.0 based decision tree. The resulting classifier reported an average accuracy of 92.37% on approximately 3.4 million test cases increasing to 96.67% with adaptive boosting. The classifier specificity factor which accounted for differentiating content specific from supplementary flows ranged between 98.37% and 99.57%. Furthermore, the computational performance and accuracy of the proposed methodology in comparison with similar machine learning techniques lead us to recommend its extension to other applications in achieving highly granular real-time traffic classification.
Non-isothermal two-phase flow in low-permeable porous media
Kolditz, O.; De Jonge, J.
In this paper, we consider non-isothermal two-phase flow of two components (air and water) in gaseous and liquid phases in extremely low-permeable porous media through the use of the finite element method (FEM). Interphase mass transfer of the components between any of the phases is evaluated by assuming local thermodynamic equilibrium between the phases. Heat transfer occurs by conduction and multiphase advection. General equations of state for phase changes (Clausius-Clapeyron and Henry law) as well as multiphase properties for the low-permeable bentonites are implemented in the code. Additionally we consider the impact of swelling/shrinking processes on porosity and permeability changes. The numerical model is implemented in the context of the simulator RockFlow/RockMech (RF/RM), which is based on object-oriented programming techniques. The finite element formulations are written in terms of dimensionless quantities. This has proved to be advantageous for preconditioning composite system matrices of coupled multi-field problems. Three application examples are presented. The first one examines differences between the Richards' approximation and the multicomponent/multiphase approach, and between two numerical coupling schemes. The second example serves as partial verification against experimental results and to demonstrate coherence between different element types. The last example shows simultaneous desaturation and resaturation in one system.
DRAG FORCE IN DENSE GAS-PARTICLE TWO-PHASE FLOW
Institute of Scientific and Technical Information of China (English)
由长福; 祁海鹰; 徐旭常
2003-01-01
Numerical simulations of flow over a stationary particle in a dense gas-particle two-phase flow have been carried out for small Reynolds numbers (less than 100).In order to study the influence of the particles interaction on the drag force,three particle arrangements have been tested:a single particle,two particles placed in the flow direction and many particles located regularly in the flow field.The Navier-Stokes equations are discretized in the three-dimensional space using finite volume method.For the first and second cases,the numerical results agree reasonably well with the data in literature.For the third case,i.e.,the multiparticle case,the influence of the particle volume fraction and Reynolds numbers on the drag force has been investigated.The results show that the computational values of the drag ratio agree approximately with the published results at higher Reynolds numbers (from 34.2 to 68.4),but there is a large difference between them at small Reynolds numbers.
Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity
Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.
1999-01-01
The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a
NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Multi-fluid k-ε-kp two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid twophase turbulence can be well predicted by this model.
CALCULATION ON TWO-PHASE FLOW TRANSIENTS AND THEIR EXPERIMENTAL RESEARCH
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow, the calculating method on flowtransients of two-phase flow is developed by means of characteristic method. As one example, a gas-liquid flow transientis calculated and it agrees well with the experimental result. It is shown that the method is satisfactory for engineeringdemand.
Numerical simulation for gas-liquid two-phase flow in pipe networks
International Nuclear Information System (INIS)
The complex pipe network characters can not directly presented in single phase flow, gas-liquid two phase flow pressure drop and void rate change model. Apply fluid network theory and computer numerical simulation technology to phase flow pipe networks carried out simulate and compute. Simulate result shows that flow resistance distribution is non-linear in two phase pipe network
Two-phase flow experimental studies in micro-models (Utrecht Studies in Earth Sciences 034)
Karadimitriou, N.K.
2013-01-01
The aim of this research project was to put more physics into theories of two-phase flow. The significance of including interfacial area as a separate variable in two-phase flow and transport models was investigated. In order to investigate experimentally the significance of the inclusion of interfa
Mass flow rate measurements in two-phase mixtrues with stagnation probes. [PWR
Energy Technology Data Exchange (ETDEWEB)
Fincke, J.R.; Deason, V.A.
1979-01-01
Applications of stagnation probes to the measurement of mass flow rate in two-phase flows are discussed. Descriptions of several stagnation devices, which have been evaluated at the Idaho National Engineering Laboratory, are presented along with modeling techniques and two-phase flow data.
A New Appraoch to Modeling Immiscible Two-phase Flow in Porous Media
DEFF Research Database (Denmark)
Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan
to modeling immiscible two-phase flow in porous media. The suggested approach to immiscible two-phase flow in porous media describes the dispersed mesoscopic fluids’ interfaces which are highly influenced by the injected interfacial energy and the local interfacial energy capacity. It reveals a new...
Institute of Scientific and Technical Information of China (English)
刘洋; 魏修成
2003-01-01
Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem, finite elementequations of elastic wave propagation in two-phase anisotropic media are derived in this paper. Numerical solutionof finite element equations is given. Finally, properties of elastic wave propagation are observed and analyzedthrough FEM modeling.
Solutions of Green s function for Lamb s problem of a two-phase saturated medium
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The solutions of Green's function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld's integral,superposition of the influence field on a free surface,authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.
Symmetrical components and power analysis for a two-phase microgrid system
DEFF Research Database (Denmark)
Alibeik, M.; Santos Jr., E. C. dos; Blaabjerg, Frede
2014-01-01
This paper presents a mathematical model for the symmetrical components and power analysis of a new microgrid system consisting of three wires and two voltages in quadrature, which is designated as a two-phase microgrid. The two-phase microgrid presents the following advantages: 1) constant power...
Geometric effects of 90-degree vertical elbows on global two-phase flow parameters
International Nuclear Information System (INIS)
Geometric effects of 90-degree vertical elbows on global two-phase flow parameters, in particular pressure drop and flow regime transition are investigated. Pressure measurements are obtained along the test section over a wide range of flow conditions in both single-phase and two-phase flow conditions. A two-phase pressure drop correlation analogous to Lockhart-Martinelli correlation is proposed to predict the minor loss across the elbows. Flow visualization is performed to study the effect of elbows on the two-phase flow regime transition. Modified flow regime maps for horizontal and vertical-downward two-phase flow are obtained which demonstrate that downstream of the elbows flow regime transition boundaries deviate significantly from the conventional flow regime transition boundaries. (author)
A MODEL FOR PREDICTING PHASE INVERSION IN OIL-WATER TWO-PHASE PIPE FLOW
Institute of Scientific and Technical Information of China (English)
GONG Jing; LI Qing-ping; YAO Hai-yuan; YU Da
2006-01-01
Experiments of phase inversion characteristics for horizontal oil-water two-phase flow in a stainless steel pipe loop (25.7 mm inner diameter,52 m long) are conducted. A new viewpoint is brought forward about the process of phase inversion in oil-water two-phase pipe flow. Using the relations between the total free energies of the pre-inversion and post-inversion dispersions, a model for predicting phase inversion in oil-water two-phase pipe flow has been developed that considers the characteristics of pipe flow. This model is compared against other models with relevant data of phase inversion in oil-water two-phase pipe flow. Results indicate that this model is better than other models in terms of calculation precision and applicability. The model is useful for guiding the design for optimal performance and safety in the operation of oil-water two-phase pipe flow in oil fields.
Hasan, Abbas; Lucas, Gary
2007-01-01
In two phase flow, differential pressures technique can be used to measure the volume fraction of the gas phase. In the case where no restriction is available in the pipeline, the differential pressure technique can be used only in vertical or inclined pipelines. Two phase air-water pressure drop across a Venturi meter may change its sign from positive to negative due to change in the compressibility of the gas phase. In other words, the inlet of the venturi (upstream section) is not...
Michal Prazenica; Branislav Dobrucky; Peter Sekerak; Lukas Kalamen
2011-01-01
This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady...
Stability of two phase natural convection in a rectangular loop with a vertical three rod heater
International Nuclear Information System (INIS)
Full text of publication follows: Nuclear Reactors are being designed which incorporate the concept of two-phase natural convection for removing heat generated in the core. Stability of natural convection systems is, in general, an important consideration. Much of the experimental data available for stability of natural convection systems is at high pressures while during startup pressures may be quite small; also, data with single annular heater elements are mostly reported. An experimental study is conducted here for determining the stability limits for two-phase natural convection in a rectangular loop with two types of heaters - an annulus heater and a three-rod cluster heater. The experimental test setup consists of a vertical heated section, a condenser section and a vertical downcomer section. The experiments were performed at atmospheric conditions and the test section is transparent for easy visualization of the flow. The steady state natural convection data matched well with that reported in the literature. The stability boundaries of the system were experimentally determined at different values of the input power and inlet subcooling and represented in terms of the appropriate non-dimensional numbers. The stability characteristics of the rectangular loop were numerically evaluated using the nonlinear stability analysis reported in the literature. The one dimensional mass, momentum and energy equations integrated in the spatial dimension using a linear enthalpy approximation within a control volume were solved numerically in the time domain to obtain the stability characteristics of the loop. A single-phase characterization of the loop was performed to obtain the frictional pressure drop inputs required for the calculations. The average friction from all the heater elements and the overall heat per unit length was used for the numerical calculations in the three rod heater case. The experimental results were closer to the numerically calculated results
Lewis, Kayla C.
In order to explain the observed time-dependent salinity variations in seafloor hydrothermal vent fluids, quasi-numerical and fully numerical fluid flow models of the NaCl-H2O system are constructed. For the quasi-numerical model, a simplified treatment of phase separation of seawater near an igneous dike is employed to obtain rough estimates of the thickness and duration of the two-phase zone, the amount of brine formed, and its distribution in the subsurface. Under the assumption that heat transfer occurs mainly by thermal conduction it is shown that, for a two-meter wide dike, the maximum width of the two phase zone is approximately 20 cm and that a zone of halite is deposited near the dike wall. The two-phase zone is mainly filled with vapor. After 13 days, the two-phase zone begins to disappear at the base of the system, and disappears completely by 16 days. The results of this simplified model agree reasonably well with transient numerical solutions for the analogous two-phase flow in a pure water system. The seafloor values of vapor salinity given by the model are compared with vapor salinity data from the "A" vent at 9-10°N on the East Pacific Rise and it is argued that either non-equilibrium thermodynamic behavior or near-surface mixing of brine with vapor in the two-phase region may explain the discrepancies between model predictions and data. For the fully numerical model, the equations governing fluid flow, the thermodynamic relations between various quantities employed, and the coupling of these elements together in a time marching scheme is discussed. The thermodynamic relations are expressed in terms of equations of state, and the latter are shown to vary both smoothly and physically in P-T-X space. In particular, vapor salinity values near the vapor-liquid-halite coexistence surface are shown to be in strong agreement with recently measured values. The fully numerical model is benchmarked against previously published heat pipe and Elder problem
Validation of Wall Friction Model in SPACE-3D Module with Two-Phase Cross Flow Experiment
Energy Technology Data Exchange (ETDEWEB)
Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher [Seoul National University, Seoul (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
In this study, SPACE-3D was used to simulate the Yang's experiment, and obtained the local variables. Then, the wall friction model used in SPACE-3D was validated by comparing the two-phase cross flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by SPACE-3D to validate the wall friction model in multi-dimensional module. Considering the realistic phenomena in the reactor, however, recent trends in safety analysis codes have tended to adopt multi-dimensional module to simulate the complex flow more accurately. Even though the module was applied to deal the multi-dimensional phenomena, implemented models in that are one-dimensional empirical models. Therefore, prior to applying the multi-dimensional module, the constitutive models implemented in the codes need to be validated. In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multi-dimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the friction models in multi-dimensional module of system analysis codes. Compared with the experiment, SPACE-3D underestimated the liquid film velocity and overestimated the liquid film thickness. From these results, it was clarified that the Wallis correlation which is used as a wall friction model in SPACE-3D overestimates the wall friction. On the other hand, H.T.F.S. correlation which is used as the wall friction in MARS-multiD underestimates the wall friction.
Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling
Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David
2016-05-01
The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.
Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David
2016-05-01
The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.
Two-phase aqueous micellar systems: an alternative method for protein purification
Directory of Open Access Journals (Sweden)
Rangel-Yagui C. O.
2004-01-01
Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.
Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid
Energy Technology Data Exchange (ETDEWEB)
Chen, D.; Yang, Z.; Zhong, Y.; Xiao, Y.; Hu, L. [Chongqing Univ. (China). Key Lab. of Low-grade Energy Utilization Technologies and Systems
2016-07-15
In pressurized water reactors (PWRs), the spacer grids of the fuel assembly has significant impact on the thermal-hydraulic performance of the fuel assembly. Particularly, the spacer grids with the mixing vanes can dramatically enhance the secondary flow and have significant effect on the void distribution in the fuel assembly. In this paper, the CFD study has been carried out to analyze the effects of the spacer grid with the steel contacts, dimples and mixing vanes on the boiling two-phase flow characteristics, such as the two-phase flow field, the void distribution, and so on. Considered the influence of the boiling phase change on two-phase flow, a boiling model was proposed and applied in the CFD simulation by using the UDF (User Defined Function) method. Furthermore, in order to analyze the effects of the spacer grid with mixing vanes, the adiabatic (without boiling) two-phase flow has also been investigated as comparison with the boiling two-phase flow in the fuel assembly with spacer grids. The CFD simulation on two-phase flow in the fuel assembly with the proposed boiling model can predict the characteristics of two-phase flow better.
An analytical method for modeling two-phase gravity-driven drainage systems in BOP applications
International Nuclear Information System (INIS)
Highlights: ► An actual gravity drainage system in an operating power plant is described. ► A drain flow oscillation exists in the system, which is replicated using RELAP5. ► The RELAP model identifies that steam binding due to poor venting is the cause. ► The RELAP model shows that new vent piping prevents the flow oscillations. ► The revised vent piping is installed in the plant and resolves the flow oscillations. - Abstract: Two-phase gravity-driven drainage systems are used in many applications within nuclear power Balance of Plant (BOP) applications such as the drain lines for moisture separator re-heaters (MSRs) and feedwater heaters. Design of these systems is typically based on industry-oriented guidelines and operator-based experience. Changes in plant operation, such as uprates and equipment modification and/or replacement, are relatively common as plants seek to generate more power with greater efficiency. These plant modifications may inadvertently change system operation from design conditions and impose undesirable system transients. This paper seeks to provide a method for analyzing BOP drainage systems in an effort to characterize and mitigate drain flow transients. Previous methodologies diagnose and evaluate drain instability through measurement, empirical analysis, and operational experience. This paper identifies methods that can be utilized to generate computational models of discrete plant drainage systems that decrease the level of speculation involved in previous analyses. Additionally, a real-world application of this method is presented to demonstrate how computer modeling can accurately mimic plant transients.
Single and two-phase flow fluid dynamics in parallel helical coils
De Salve, M.; Orio, M.; Panella, B.
2014-04-01
The design of helical coiled steam generators requires the knowledge of the single and two-phase fluid dynamics. The present work reports the results of an experimental campaign on single-phase and two phase pressure drops and void fraction in three parallel helicoidal pipes, in which the total water flow rate is splitted by means of a branch. With this test configuration the distribution of the water flow rate in the helicoidal pipes and the phenomena of the instability of the two-phase flow have been experimentally investigated.
International Nuclear Information System (INIS)
The capability of RELAP5 to model single and two-phase acoustic waves is demonstrated with the use of fine temporal and spatial discretizations. Two cases were considered: a single phase air shock tube problem and pressure waves observed by Takeda and Toda in a two-phase decompression experiment in a pipe. Whereas the agreement for the single phase case is excellent, some discrepancies were observed in the two-phase case. However, RELAP5 produced markedly better results after adjusting the bubble size and the choked flow area. These results illustrate the need of a dynamic model for the interfacial area concentration (i.e., the bubble size). (author)
Two-phase flow measurements with advanced instrumented spool pieces and local conductivity probes
International Nuclear Information System (INIS)
A series of two-phase, air-water and steam-water tests performed with instrumented spool pieces and with conductivity probes obtained from Atomic Energy of Canada, Ltd. is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Application of some two-phase mass flow models to the recorded spool piece data is made and preliminary results are shown. Velocity and void fraction information derived from the conductivity probes is presented and compared to velocities and void fractions obtained using the spool piece instrumentation
Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation
Energy Technology Data Exchange (ETDEWEB)
Wu, Mengjie [Colorado School of Mines, Golden; Xiao, Feng [Colorado School of Mines, Golden; Johnson-Paben, Rebecca [Colorado School of Mines, Golden; Retterer, Scott T [ORNL; Yin, Xiaolong [Colorado School of Mines, Golden; Neeves, Keith B [ORNL
2012-01-01
The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by a highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.
Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor
Directory of Open Access Journals (Sweden)
Li Dan
2015-01-01
Full Text Available With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-phase frictional pressure drop in the microchannel significantly increases with the decreasing microchannel diameter; Lockhart-Martinelli relationship in divided-phase flow pattern can preferably predict the gas-liquid two-phase frictional pressure drop in the microchannel, but the Tabular constant needs to be corrected.
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
Energy Technology Data Exchange (ETDEWEB)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-15
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities.
Non-local two phase flow momentum transport in S BWR
International Nuclear Information System (INIS)
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow
International Nuclear Information System (INIS)
Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model
Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Wu, Hao; Dong, Feng [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin (China)
2014-04-11
Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.
Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow
Wu, Hao; Dong, Feng
2014-04-01
Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.
Non-local two phase flow momentum transport in S BWR
Energy Technology Data Exchange (ETDEWEB)
Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)
2015-09-15
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase
Barsky, Eugene
2010-01-01
This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...
Single and two-phase flow pressure drop for CANFLEX bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)
1998-12-31
Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)
Directory of Open Access Journals (Sweden)
Mosdorf Romuald
2015-06-01
Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.
Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary
2014-06-10
A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.
Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field; FINAL
International Nuclear Information System (INIS)
A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant
Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting
Energy Technology Data Exchange (ETDEWEB)
Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)
1995-09-01
This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.
Modified Diffusion Flux Model for Analysis of Turbulent Gas-Particle Two-Phase Flows
Institute of Scientific and Technical Information of China (English)
YANG Ruichang; ZHOU Weiduo; FUKUDA Kenji; JU Zejian; SHANG Zhi
2005-01-01
A modified diffusion flux model (DFM) was developed to analyze turbulent multi-dimensional gas-particle two-phase flows. In the model, the solid particles move in a modified acceleration field, , which includes the effects of various forces on the particles as if all the forces have the same effect on the particles as the gravity. The accelerations due to various forces are then taken into account in the calculation of the diffusion velocities of the solid particles in the gas-particle two-phase flow. The DFM was used to numerically simulate the gas-solid two-phase flow behind a vertical backward-facing step. The numerical simulation compared well with experimental data and numerical results using both the k-ε-Ap and k-ε-kp two-fluid models available in the literature. The comparison shows that the modified diffusion flux model correctly simulates the turbulent gas-particle two-phase flow.
CURE OF A MICROGEL-EPOXY RESIN TWO-PHASE POLYMER WITH ETHYLENE DIAMINE
Institute of Scientific and Technical Information of China (English)
SONG Aiteng; HUANG Wei; YU Yunzhao
1992-01-01
The curing of a microgel-epoxy resin two phase polymer prepared by in situ copolymerization of unsaturated polyester with acrylic monomer was studied. The unsaturated unit reacted with N- H during the cure of the resin with ethylene diamine. The Michael type reaction was ten times more rapid than the addition of N -H to epoxide .This was accounted for the lower apparent activation energy of the curing of the two phase resin.
Scaling analysis of gas-liquid two-phase flow pattern in microgravity
Lee, Jinho
1993-01-01
A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.
Detection of reactor antineutrino coherent scattering off nuclei with a two-phase noble gas detector
Akimov, Dmitri; Bondar, Alexander; Burenkov, Alexander; Buzulutskov, Alexei
2009-01-01
Estimation of the signal amplitudes and counting rates for coherent scattering of reactor antineutrino off atomic nuclei in two-phase xenon and argon detectors has been done. A conceptual design of detector based on the existing technologies and experience has been proposed. It is shown that a condensed xenon/argon two-phase detector possesses the necessary sensitivity for the use in experiment on detection of coherent scattering of the reactor antineutrino off nuclei. It is shown that a two-...
CHOOSING STRUCTURE-DEPENDENT DRAG COEFFICIENT IN MODELING GAS-SOLID TWO-PHASE FLOW
Institute of Scientific and Technical Information of China (English)
Ning Yang; Wei Wang; Wei Ge; Jinghai Li
2003-01-01
@@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.
Numerical simulation of two-phase gas-liquid flows in inclined and vertical pipelines
Loilier, P.
2006-01-01
The present thesis describes the advances made in modelling two-phase flows in inclined pipes using a transient one-dimensional approach. The research is a developement of an existing numerical methodology, capable of simulating stratified and slugging two-phase flows in horizontal or inclined single pipes. The aim of the present work is to extend the capabilities of the approach in order (i) to account for the effect of the pipe topography in the numerical solution of the two-...
A research on the mechanisms of transition from annular flow in two-phase pipeline flow
International Nuclear Information System (INIS)
Various kinds mechanisms of transitions from two-phase annular flow in tubes were studied and modelled, and the affection factors on the transitions were also discussed. Some mathematical equations and transition criteria for every mechanisms presented were derived, and an unified general criterion for the annular flow transitions in whole range of pipe inclinations was recommended. The boundaries predicted show good agreement with the air-water two-phase experimental data
Vertical annular gas–liquid two-phase flow in large diameter pipes
Aliyu, A. M.
2015-01-01
Gas–liquid annular two phase flow in pipes is important in the oil and gas, nuclear and the process industries. It has been identified as one of the most frequently encountered flow regimes and many models (empirical and theoretical) for the film flow and droplet behaviour for example have been developed since the 1950s. However, the behaviour in large pipes (those with diameter greater than 100 mm) has not been fully explored. As a result, the two- phase flow characteristic...
NEW STUDYING OF LATTICE BOLTZMANN METHOD FOR TWO-PHASE DRIVEN IN POROUS MEDIA
Institute of Scientific and Technical Information of China (English)
许友生; 刘慈群; 俞慧丹
2002-01-01
By using the interaction of particles, such as the physical principle of the same attract each other and the different repulse each other, a new model of Lattice Boltzmann to simulate the two-phase driven in porous media was discussed. The result shows effectively for the problem of two-phase driven in porous media. Furthermore, the method economizes on computer time, has less fiuctuation on boundary surface and takes no average measure.
Effective-Medium Theory for Two-Phase Random Composites with an Interfacial Shell
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
According to the Bruggeman theory and MaxwelI-Garnett theory, the effective dielectric constant of a two-phase random composite with an interfacial shell is presented. The nonlinearity of the theory is obvious. Especially, the theory is suited to study the dielectric properties of two-phase random composites with a spherical interracial shell. The theoretical results on dielectric properkies of polystyrene-barium titanate composites with an interracial shell are in good agreement with experimental data.
Two-phase bounded acceleration traffic flow model: Analytical solutions and applications
LEBACQUE, JP
2003-01-01
The present paper describes a two phase traffic flow model. One phase is traffic equilibrium: flow and speed are functions of density, and traffic acceleration is low. The second phase is characterized by constant acceleration. This model extends first order traffic flow models and recaptures the fact that traffic acceleration is bounded. The paper show how to calculate analytical solutions of the two-phase model for dynamic traffic situations, provides a set of calculation rules, and analyze...
Treatment technologies of liquid and solid wastes from two-phase olive oil mills
Rincón, Bárbara; Raposo, Francisco; Borja, Rafael
2006-01-01
Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three identifiabl...
Treatment technologies of liquid and solid wastes from two-phase olive oil mills
Borja Padilla, Rafael; Raposo Bejines, Francisco; Rincón, Bárbara
2006-01-01
Over the last 10 years the manufacture of olive oil has undergone important evolutionary changes in the equipment used for the separation of olive oil from the remaining components. The latest development has been the introduction of a two-phase centrifugation process in which a horizontally-mounted centrifuge is used for a primary separation of the olive oil fraction from the vegetable solid material and vegetation water. Therefore, the new two-phase olive oil mills produce three ident...
Two-phase flow and heat transfer symposium-workshop. Proceedings of condensed papers
International Nuclear Information System (INIS)
Two-phase flow applications are found in a wide range of engineering systems, such as boiling water reactors, conventional steam boilers, evaporators of refrigeration systems, and evaporative and condensive heat exchangers in chemical and petroleum industries. Over the past two decades, two-phase flow instability problems have been a challenge to many investigators. Such instabilities could induce boiling crisis, disturb control systems and/or cause mechanical damage. It is important to be able to predict the conditions under which a two-phase flow system will perform without instability. Therefore, the understanding of two-phase flow phenomena is extremely important for the design, control and performance prediction of such systems. Because of the recent energy crisis, many other two-phase flow problems have also become important. Some of them are the modeling of the loss of coolant accident in pressurized water nuclear reactors, scaling up of fluidized bed reactors for converting coal to clean gaseous and liquid fuels, and design of heat exchangers for liquified natural gas, and design of heat exchangers for liquified natural gas. There is a need to provide researchers and engineers in this field with an opportunity to exchange their experience and ideas in order to assess the state-of-the-art of two-phase flow and heat transfer studies, and to establish a basis for identification of areas of future research and application. This symposium provides the latest information on the status of two-phase flow and heat transfer research, development and applications. It also establish a rational basis for identification of areas of two-phase flow and heat transfer for further research and application
Lee, Pilhwa; Wolgemuth, Charles W.
2016-01-01
The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels.
A study of the effects of flashing inception on maximum and minimum critical two-phase flow rates
International Nuclear Information System (INIS)
Critical flow is a common phenomenon that plays an important role in a variety of engineering applications. The prediction of the critical flow rate following a pipe rupture is of paramount importance in the safety analysis of nuclear reactors. Here, the ability to maintain adequate core cooling is highly dependent on the critical mass flux. As the local pressure decreases along the flow length to below saturation, the fluid becomes metastable and begins to flash. The location where this occurs defines the onset of two-phase flow (flashing inception point) within the pipe. The results of an experimental study of critical two-phase flow of saturated and subcooled water through long tubes are reported. The location of flashing inception was accurately controlled through the use of a new device. This allowed for a systematic study of the effects of the location of flashing inception on the critical mass flux. Data were obtained for different stagnation temperatures, pressures and test section length. The results show that a range in the critical mass flux exists for each stagnation condition. This range was dependent on the location of flashing inception. The critical mass flux was found to increase with a decrease in the superheat at flashing inception. A decrease in this superheat also occurred as the location of flashing inception was moved upstream
Separated two-phase flow regime parameter measurement by a high speed ultrasonic pulse-echo system.
Masala, Tatiana; Harvel, Glenn; Chang, Jen-Shih
2007-11-01
In this work, a high speed ultrasonic multitransducer pulse-echo system using a four transducer method was used for the dynamic characterization of gas-liquid two-phase separated flow regimes. The ultrasonic system consists of an ultrasonic pulse signal generator, multiplexer, 10 MHz (0.64 cm) ultrasonic transducers, and a data acquisition system. Four transducers are mounted on a horizontal 2.1 cm inner diameter circular pipe. The system uses a pulse-echo method sampled every 0.5 ms for a 1 s duration. A peak detection algorithm (the C-scan mode) is developed to extract the location of the gas-liquid interface after signal processing. Using the measured instantaneous location of the gas/liquid interface, two-phase flow interfacial parameters in separated flow regimes are determined such as liquid level and void fraction for stratified wavy and annular flow. The shape of the gas-liquid interface and, hence, the instantaneous and cross-sectional averaged void fraction is also determined. The results show that the high speed ultrasonic pulse-echo system provides accurate results for the determination of the liquid level within +/-1.5%, and the time averaged liquid level measurements performed in the present work agree within +/-10% with the theoretical models. The results also show that the time averaged void fraction measurements for a stratified smooth flow, stratified wavy flow, and annular flow qualitatively agree with the theoretical predictions.
Bastian, Peter
2013-01-01
In this paper we formulate and test numerically a fully-coupled discontinuous Galerkin (DG) method for incompressible two-phase flow with discontinuous capillary pressure. The spatial discretization uses the symmetric interior penalty DG formulation with weighted averages and is based on a wetting-phase potential / capillary potential formulation of the two-phase flow system. After discretizing in time with diagonally implicit Runge-Kutta schemes the resulting systems of nonlinear algebraic equations are solved with Newton's method and the arising systems of linear equations are solved efficiently and in parallel with an algebraic multigrid method. The new scheme is investigated for various test problems from the literature and is also compared to a cell-centered finite volume scheme in terms of accuracy and time to solution. We find that the method is accurate, robust and efficient. In particular no post-processing of the DG velocity field is necessary in contrast to results reported by several authors for d...
Structural developments of turbulent two-phase flow in large pipes
International Nuclear Information System (INIS)
In connection with the thermohydraulic problems of two-phase flow that may be encountered under certain operating conditions in piping systems containing heat sources and sinks such as a CANDU reactor heat transport system, this study investigates some of the turbulent characteristics of both cocurrent air-water two-phase flow and single phase flow in large pipes with horizontal orientation. Pitot tubes together with hot film anemometry have been shown to be an adequate measurement system in turbulent dispersed two-phase flow. A practical semi-empirical formula has been developed to predict local mixture velocity as a function of differential head read by Pitot tube, local void fraction, flow pattern constant, gas-liquid properties, momentum transfer factor and two-phase flow quality. The structural developments of the dispersed mixture velocity was studied along a straight horizontal PVC run and expressed in terms of the radial distance and the pipeline length. A correlation is introduced to determine the local mixture velocity in terms of radial and streamwise distance, two-phase flow quality, gas and liquid densities. A similar correlation is presented to predict the local developments of the void fraction. In addition to those normalized correlations, hypothetical interpretations of the experienced phenonema are presented. It was found that the mixture velocity is significantly influenced by the volumetric mixing ratio of both phases. Conclusions are drawn in the special cases of turbulent single and two-phase flow
Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows
Institute of Scientific and Technical Information of China (English)
唐学林; 徐宇; 吴玉林
2003-01-01
The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.
IMPROVED SUBGRID SCALE MODEL FOR DENSE TURBULENT SOLID-LIQUID TWO-PHASE FLOWS
Institute of Scientific and Technical Information of China (English)
TANG Xuelin; QIAN Zhongdong; WU Yulin
2004-01-01
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.
Oppermann, Sebastian; Stein, Florian; Kragl, Udo
2011-02-01
The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.
Directory of Open Access Journals (Sweden)
Lukas Kalamen
2011-01-01
Full Text Available This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources.
Mapping moveout approximations in TI media
Stovas, Alexey
2013-11-21
Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
. The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension....... Applications of our general framework include those from number theory (classical, complex, p-adic and formal power series) and dynamical systems (iterated function schemes, rational maps and Kleinian groups)....
Xie, Hai-Qiong; Zeng, Zhong; Zhang, Liang-Qi; Liang, Gong-You; Hiroshi, Mizuseki; Yoshiyuki, Kawazoe
2012-12-01
In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.
Zhang, Hong
2016-01-01
Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a travelling wave ansatz and efficient numerical methods. The travelling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behaviour. Special attention is paid to the non-monotonic profiles. The travelling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.
Variant of a volume-of-fluid method for surface tension-dominant two-phase flows
Indian Academy of Sciences (India)
G Biswas
2013-12-01
The capabilities of the volume-of-fluid method for the calculation of surface tension-dominant two-phase flows are explained. The accurate calculation of the interface remains a problem for the volume-of-fluid method if the density ratios of the fluids in different phases are high. The simulations of bubble growth is performed in water at near critical pressure for different degrees of superheat using combined levelset and volume-of fluid (CLSVOF) method. The effect of superheat on the frequency of bubble formation was analyzed. A deviation from the periodic bubble release is observed in the case of superheat of 20 K in water. The vapor-jet-like columnar structure is observed. Effect of heat flux on the slender vapor column has also been explained.
Energy Technology Data Exchange (ETDEWEB)
Mohammadi, M. [Petroleum Univ. of Technology, Ahwaz (Iran, Islamic Republic of). Gas Engineering Dept.
2006-07-01
Liquid holdup in pipelines refers to the fraction of pipe that is occupied by liquid. Accurate prediction of liquid holdup associated with multiphase flow is important for the design and operation of modern petroleum production systems. Multiphase flow refers to the concurrent flow of 2 or more phases, liquid, solid or gas, where motion affects the interface between the phases. The ability to predict liquid holdup makes it possible to calculate a pressure gradient based on a two-phase friction factor. However, this approach is dependent on the accuracy of flow pattern predictions and is subject to discontinuities in predictions made across flow pattern transition boundaries. Artificial neural networks (ANN) are computing tools that can recognize complex patterns within available data. ANN has been used successfully to solve many difficult engineering problems including multiphase flow problems that involve pressure drop, flow pattern identification and liquid holdup. This study used a 3-layer backpropagation ANN model for predicting the liquid holdup in gas-liquid two-phase flow at all ranges of pipe inclinations. Five independent sets of experimental data were used, covering a wide range of variables such as inclination from horizontal, pipe diameter, gas and liquid superficial velocity, liquid viscosity, density and surface tension. The model is independent of flow pattern determination and uses an individual method for all conditions. Experimental results have shown that the newly developed model can accurately predict liquid holdup in terms of the lowest absolute average percent error, the lowest standard deviation and the highest correlation coefficient. This study confirmed the power of ANN models in solving complicated engineering problems. 28 refs., 5 tabs., 4 figs., 1 appendix.
International Nuclear Information System (INIS)
An experimental and analytical study on the mass flux and reaction force of water single-phase and steam-water two-phase jets discharged from a thin nozzle was carried out. The mass flux of water jet is well predicted using the Bernoulli's equation with the contraction coefficient, but the recovery of contraction at the nozzle exit should be considered to evaluate the reaction force. The L/D of the nozzle affects the mass flux and reaction force of the two-phase jet, i.e., the mass flux decreases and the reaction force increases with the L/D. The behavior of high-temperature water jet is similar to that of the water jet if the L/D is smaller or nozzle inlet pressure is higher. The behaviors of the mass flux and the reaction force show hysteresis depending on the decrease or increase of nozzle inlet pressure. The mass flux and reaction force can be well predicted by the critical flow analysis based on a separated flow model with the non-equilibrium parameter. (author)
Energy Technology Data Exchange (ETDEWEB)
Hamada, Hirotsugu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Takahashi, Minoru; Inoue, Akira; Aritomi, Masanori [Tokyo Inst. of Tech. (Japan)
2003-01-01
An experimental and analytical study on the mass flux and reaction force of water single-phase and steam-water two-phase jets discharged from a thin nozzle was carried out. The mass flux of water jet is well predicted using the Bernoulli's equation with the contraction coefficient, but the recovery of contraction at the nozzle exit should be considered to evaluate the reaction force. The L/D of the nozzle affects the mass flux and reaction force of the two-phase jet, i.e., the mass flux decreases and the reaction force increases with the L/D. The behavior of high-temperature water jet is similar to that of the water jet if the L/D is smaller or nozzle inlet pressure is higher. The behaviors of the mass flux and the reaction force show hysteresis depending on the decrease or increase of nozzle inlet pressure. The mass flux and reaction force can be well predicted by the critical flow analysis based on a separated flow model with the non-equilibrium parameter. (author)
Directory of Open Access Journals (Sweden)
Marios S. Valavanides
2016-02-01
Full Text Available Steady-state two-phase flow in porous media is a process whereby a wetting phase displaces a non-wetting phase within a pore network. It is an off-equilibrium stationary process—in the sense that it is maintained in dynamic equilibrium at the expense of energy supplied to the system. The efficiency of the process depends on its spontaneity, measurable by the rate of global entropy production. The latter has been proposed to comprise two components: the rate of mechanical energy dissipation at constant temperature (a thermal entropy component, Q/T, in the continuum mechanics scale and the configurational entropy (a Boltzmann–Gibbs entropy component, klnW, due to the existence of a canonical ensemble of flow configurations, physically admissible to the externally imposed macrostate conditions. Here, we propose an analytical model to account the number of microstates, lnW, in two-phase flows in pore networks. Combinatorial analysis is implemented to evaluate the number of identified microstates per physically admissible internal flow arrangement, compatible with the imposed steady-state flow conditions. Then, Stirling’s approximation is applied to downscale the large factorial numbers. Finally, the number of microstates is estimated by contriving an appropriate mixing scheme over the canonical ensemble of the physically admissible flow configurations. Indicative computations are furnished.
Dynamic behavior of pipes conveying gas–liquid two-phase flow
Energy Technology Data Exchange (ETDEWEB)
An, Chen, E-mail: anchen@cup.edu.cn [Offshore Oil/Gas Research Center, China University of Petroleum-Beijing, Beijing 102249 (China); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Nuclear Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, CP 68509, Rio de Janeiro 21941-972 (Brazil)
2015-10-15
Highlights: • Dynamic behavior of pipes conveying gas–liquid two-phase flow was analyzed. • The generalized integral transform technique (GITT) was applied. • Excellent convergence behavior and long-time stability were shown. • Effects of volumetric quality and volumetric flow rate on dynamic behavior were studied. • Normalized volumetric-flow-rate stability envelope of dynamic system was determined. - Abstract: In this paper, the dynamic behavior of pipes conveying gas–liquid two-phase flow was analytically and numerically investigated on the basis of the generalized integral transform technique (GITT). The use of the GITT approach in the analysis of the transverse vibration equation lead to a coupled system of second order differential equations in the dimensionless temporal variable. The Mathematica's built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. The characteristics of gas–liquid two-phase flow were represented by a slip-ratio factor model that was devised and used for similar problems. Good convergence behavior of the proposed eigenfunction expansions is demonstrated for calculating the transverse displacement at various points of pipes conveying air–water two-phase flow. Parametric studies were performed to analyze the effects of the volumetric gas fraction and the volumetric flow rate on the dynamic behavior of pipes conveying air–water two-phase flow. Besides, the normalized volumetric-flow-rate stability envelope for the dynamic system was obtained.
Performance characteristics of two-phase-flow turbo-expanders used in water-cooled chillers
Energy Technology Data Exchange (ETDEWEB)
Brasz, J.J. [United Technologies Carrier, New York, NY (United States)
1999-07-01
Use of two-phase-flow throttle loss recovery devices in water-cooled chillers requires satisfactory part-load operation. This paper describes the results of two-phase-flow impulse turbine testing and the data reduction of the test results into a two-phase-flow turbine off-design performance model. It was found that the main parameter controlling the efficiency of two-phase-flow turbine is the ratio of the nozzle spouting velocity to the rotor speed. The turbine mass flow rate is mainly controlled by inlet subcooling of the entering liquid. The strong sensitivity of turbine mass flow rate on inlet subcooling allows the use of a conventional float valve upstream of the turbine as an effective means of controlling the turbine during part-load operation. For a well-designed two-phase-flow turbine, nozzle spouting velocity and therefore turbine efficiency is hardly affected by the amount of inlet subcooling. Also, capacity can be substantially reduced by a reduction in the amount of inlet subcooling entering the turbine nozzles. Hence, turbine part-load efficiency equals its full-load efficiency over a wide range of flow rates using this control concept. (Author)
Rheology of two-phase systems: A microphysical and observational approach
Platt, John P.
2015-08-01
Ductile shear zones commonly contain distinctive bands of high strain rock characterized by intimately mixed fine-grained two-phase or polyphase material. These ultramylonite bands are weaker than the surrounding material, and may play a critical role in strain localization. How such zones develop, how the phases become evenly dispersed, the bulk rheology, and the controls on grain size, are all unclear. The following generic scenario may resolve some of these questions. 1) Dislocation creep and dynamic recrystallization cause grain-size reduction: commonly, the recrystallized grain sizes of the two phases differ. 2) Grain size reduction causes a switch to grain-boundary diffusion creep, which requires grain-boundary sliding. Diffusion allows one phase to fill spaces that open between grains of the other: this will happen most rapidly in the finer-grained phase. The grain size of the resulting mixture is therefore controlled by that of the finer-grained phase. This leads to mixing and dispersion of the two phases, producing a fine-grained, evenly dispersed two-phase aggregate. 3) The bulk rheology will be controlled by grain-boundary diffusion creep of the two phases, with the grain size controlled by the finer-grained phase. Bulk flow laws can be developed for quartz-feldspar and olivine-orthopyroxene ultramylonites based on these concepts, using appropriate mixing laws.
Gas-liquid two-phase flow across a bank of micropillars
Krishnamurthy, Santosh; Peles, Yoav
2007-04-01
Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.
A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport
Directory of Open Access Journals (Sweden)
Gilberto Espinosa-Paredes
2012-01-01
Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.
Two phase convective heat transfer augmentation in swirl flow with non-boiling
Energy Technology Data Exchange (ETDEWEB)
Cha, K.O. [Myong Ji University, Kyonggi-do (Korea, Republic of); Kim, J.G. [Myongji University Graduate School, Kyonggi-do (Korea, Republic of)
1995-10-01
Two phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and various heat exchangers. This experimental study has been investigated the classification of the flow pattern, the local void distribution and convective heat transfer in swirl and non-swirl two phase flow under the isothermal and nonisothermal conditions. The convective heat transfer coefficients in the single phase water flow were measured and compared with the calculated results from the Sieder-Tate correlation. These coefficients were used for comparisons with the two-phase heat transfer coefficients in the flow orientations. The experimental results indicate, that the void probe signal and probability density function of void distribution can used into classify the flow patterns, no significant difference in voidage distribution was observed between isothermal and non-isothermal condition in non-swirl flow, the values of two phase heat transfer coefficients increase when superficial air velocities increase, and the enhancement of the values is observed to be most pronounced at the highest superficial water velocity in non-swirl flow. Also two phase heat transfer coefficients in swirl flow are increased when the twist ratios are decreased. (author). 13 refs., 15 figs.
Institute of Scientific and Technical Information of China (English)
Gao Zhong-Ke; Hu Li-Dan; Jin Ning-De
2013-01-01
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow.We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals.Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability.We find that the generated network inherits the main features of the time series in the network structure.In particular,the networks from time series with different dynamics exhibit distinct topological properties.Finally,we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks.The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.
DSMC simulation of two-phase plume flow with UV radiation
Energy Technology Data Exchange (ETDEWEB)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)
2014-12-09
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Hejranfar, Kazem; Ezzatneshan, Eslam
2015-11-01
A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also
OPTIMIZATION DESIGN OF GAS-PARTICLE TWO-PHASE AXIAL-FLOW FAN
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on the shaping theory of writhed blade in streamline design, the geometric shape of blade is designed and then computational formulas for the dynamic design of fan with writhed the blades in gas-particle two-phase axial-flow are derived with the two-phase continuum coupling model. Concurrently, the correlation between the structure of impeller and flow-field dynamic functional parameters is presented. Further, the software for the optimization design of gas-particle two-phase axial-flow fan with writhed blades is obtained. By means of the available software, a sample fan is formed with its all dynamic characteristic curves and geometric shape. Finally, the conclusion on the effect of particles on fan running is reached, quantitatively and qualitatively, as is expected in the fan industry.
The Two-Phase Hell-Shaw Flow: Construction of an Exact Solution
Malaikah, K. R.
2013-03-01
We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem is closely linked to its counterpart in a one-phase problem
Analysis of data obtained in two-phase flow tests of primary heat transport pumps
International Nuclear Information System (INIS)
This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
International Nuclear Information System (INIS)
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the 'flow monograms' describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the 'interface monograms', whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system 'operational monogram'. The 'operational monogram' enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop
Developments in the research of air-water two-phase flows in turbomachinery
International Nuclear Information System (INIS)
Recently, engineering problems associated with two-phase flows in turbomachinery have become increasingly important in relation to the safety analysis of nuclear reactors or the usage of low quality energy resources; the research on this subject has been promoted. It is a really knotty problem caused by the multiform flow patterns as well as the variety of its applications. However, the mechanics in two-phase machines may involve similar phenomena. In this paper, developments of the research of air-water mixtures in turbomachinery will be briefly reviewed, and the mechanics of two-phase flows in rotating flow fields and the prediction methods of the performance of turbomachinery based on some analytical models are discussed. (author)
Thermodynamic properties and mixing thermodynamic parameters of two-phase metallic melts
Institute of Scientific and Technical Information of China (English)
Jian Zhang
2005-01-01
Based on the calculating model of metallic melts involving eutectic, the calculating equations of mixing thermodynamic parameters for two phase metallic melts have been formulated in the light of those equations of homogeneous solutions. Irrespective as to whether the activity deviation relative to Raoultian behavior is positive or negative, or the deviation is symmetrical or unsymmetrical, the evaluated results not only agree well with experimental values, but also strictly obey the mass action law. This testifies that these equations can authentically reflect the structural reality and mixing thermodynamic characteristics of two-phase metallic melts. The calculating equations of mixing thermodynamic parameters for the model of two phase metallic melts offer two practical criteria (activity and mixing thermodynamic parameters) and one theoretical criterion (the mass action law).
Experimental study on two-phase flow in horizontal tube bundle using SF6-water
International Nuclear Information System (INIS)
It is important to know the flow structure in industrial products that use gas-liquid two-phase flow. The gas-liquid density ratio is one of the most important parameters in the simulation of flow structure. In this study, a vertical upward two-phase flow in a horizontal tube bundle, which occurs frequently on the shell side of heat exchangers such as PWR steam generators, was measured. This test facility can simulate the behaviors of water-vapor two-phase flow at high pressures (5.6 MPaabs) by using sulfur hexafluoride (SF6) gas for the gas phase and water for liquid phase at ambient temperatures and low pressures. These results were compared with the values generated by previous empirical equations to verify soundness of this facility and measurement method. (author)
Visualization and measurement of two-phase flow in tight rod bundle by neutron tomography
International Nuclear Information System (INIS)
Neutron tomography thermal-hydraulic measurement technique is originally developed based on the neutron radiography, computed tomography and two-phase flow measurement techniques. The purpose of the developing is to measure the void fraction distribution in the Reduced-Moderation Water Reactor which is a water-cooled breeder reactor designed by the JAERI as a future reactor. We have visualized and measured the void distribution of air/water two-phase flow and boiling flow in tight-lattice rod bundles. We used the research reactor JRR-3 as a neutron source. Three-dimensional data can be obtained in order to evaluate the numerical analysis codes. In this manuscript, the neutron tomography system, comparison between the reconstruction methods of computed tomography and examples of the measured two-phase flow data which was taken in the 7 rod bundle with a gap between rods of 1.0 mm. (author)
Selective separation and enrichment of proteins in aqueous two-phase extraction system
Institute of Scientific and Technical Information of China (English)
Feng Qu; Hao Qin; Min Dong; Dong Xu Zhao; Xin Ying Zhao; Jing Hua Zhang
2009-01-01
A simple aqueous two-phase extraction system(ATPS)of PEG/phosphate was proposed for selective separation and enrichment of proteins.The combination of ATPE with HPLC was applied to identify the partition of proteins in two phases.Five proteins (bovine serum albumin,Cytochrome C,lysozyme,myoglobin,and trypsin)were used as model proteins to study the effect of phosphate concentration and pH on proteins partition.The PEG/phosphate system was firstly applied to real human saliva and plasma samples,some proteins showed obviously different partition in two phases.The primary results manifest the selective separation and enrichment of proteins in ATPS provided the potential for high abundance proteins depletion in proteomics.
The solidification of two-phase heterogeneous materials: Theory versus experiment
Institute of Scientific and Technical Information of China (English)
ZHANG Bin; KIM Tongbeum; LU TianJian
2009-01-01
The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied. The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores. Experiments using distilled water simulating the aluminum melt to be solidified (frozen) were subsequently conducted to validate the analytical model for two selected porosities (ε), ε=0 and 0.5. Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification. The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores, as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.
Hydraulic Behaviour of He II in Stratified Counter-Current Two-Phase Flow
Rousset, B; Jäger, B; Van Weelderen, R; Weisend, J G
1998-01-01
Future large devices using superconducting magnets or RF cavities (e.g. LHC or TESLA) need He II two-phase flow for cooling. The research carried out into counter-current superfluid two-phase flow was the continuation of work on co-current flow and benefited from all the knowledge acquired both experimentally and theoretically. Experiments were conducted on two different pipe diameters (40 and 65 m m I.D. tube) for slopes ranging between 0 and 2%, and for temperatures ranging between 1.8 and 2 K. This paper introduces the theoretical model, describes the tests, and provides a critical review of the results obtained in He II counter current two-phase flow.
Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model
Luo, Y.; Zuo, Z. G.; Liu, S. H.; Fan, H. G.; Zhuge, W. L.
2013-12-01
The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k-ɛ turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling.
Two-phase flow transients and the stability of once-through steam generators
International Nuclear Information System (INIS)
The study of the behaviour of once-through steam-generators and in particular of their stability (occurence of self-sustained oscillations for example) requires the calculation under transient conditions of once-through two phase flows. Starting from the general conservation principles, and to allow the review of the necessary assumptions and models, the ideal description of the development and use of a practical mathematical model is made. It is thus possible to introduce rationally the constitutive laws which are necessary for the two phase flow description, as also the concepts of superabondant constitutive law and of coherence of the mathematical model (in practice of the computer program). The conservation principles impose compatibility constraints to the various elementary models (i.e. to the constitutive equations) which have to be put in the computer program. With the assumption of one dimensional flow, six partial differential equations appear to be necessary for the transient description of two-phase flows
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Energy Technology Data Exchange (ETDEWEB)
Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
Entropy analysis on non-equilibrium two-phase flow models
Energy Technology Data Exchange (ETDEWEB)
Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.
Two-phase air-water stratified flow measurement using ultrasonic techniques
Fan, Shiwei; Yan, Tinghu; Yeung, Hoi
2014-04-01
In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.
Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model
International Nuclear Information System (INIS)
The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k–ε turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Numerical investigation of the mechanism of two-phase flow instability in parallel narrow channels
Energy Technology Data Exchange (ETDEWEB)
Hu, Lian [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Huang, Yanping, E-mail: hyanping007@163.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yuan, Dewen; Wang, Yanling [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Pan, Liangming [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China)
2015-06-15
Highlights: • A mathematical model is proposed to predict the two-phase flow instability. • The mathematical model predicted result agrees well with the experimental result. • Oscillation characteristics of the two-phase flow instability is discussed in detail. - Abstract: In this paper, the mechanism of two-phase flow instability in parallel narrow channels is studied theoretically, and the characteristic of the flow instability is discussed in detail. Due to the significant confining effect of the narrow channel on the vapor–liquid interface, the two-phase flow resistance in the narrow channel is probably different from that in conventional channel. Therefore, the vapor confined number (N{sub conf}), defined by the size of narrow channel and bubble detachment diameter, is considered in the “Chisholm B model” to investigate the two-phase flow pressure drop. The flow instability boundaries are plotted in parameter plane with phase-change-number (N{sub pch}) and subcooling-number (N{sub sub}) under different working conditions. It is found that the predicted result agrees well with the experimental result. According to the predicted result, the oscillation behaviors near the flow instability boundary indicate that the Supercritical Hopf bifurcation appears in high sub-cooled region and the Subcritical Hopf bifurcation appears in low sub-cooled region. Also, a detailed analysis about the effects of key parameters on the characteristic of two-phase flow instability and the flow instability boundary is proposed, including the effects of inlet subcooling, heating power, void distribution parameter and drift velocity.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the Biot's theory about two-phase saturated medium, according to the character of d function, the Green function on two-phase saturated medium by the point source under concentrated force can be derived. By the Betti's theorem for the two-phase saturated medium field, the source vector and static displacement field by elastic dislocation on the two-phase saturated medium were comprehensively discussed.
Characterization of annular two-phase gas-liquid flows in microgravity
Bousman, W. Scott; Mcquillen, John B.
1994-01-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
Problems of heat transfer and hydraulics of two-phase media
Kutateladze, S S
1969-01-01
Problems of Heat Transfer and Hydraulics of Two-Phase Media presents the theory of heat transfer and hydrodynamics. This book discusses the various aspects of heat transfer and the flow of two-phase systems. Organized into two parts encompassing 22 chapters, this book starts with an overview of the laws of similarity for heat transfer to or from a flowing liquid with various physical properties and allowed for variation in viscosity and thermal conductivity. This book then explores the general functional relationship that exists between viscosity and thermal conductivity for thermodynamically
Silva. EDF two-phase 1D annular model of a CFB boiler furnace
Energy Technology Data Exchange (ETDEWEB)
Montat, D.; Fauquet, Ph. [Electricite de France (EDF), 78 - Chatou (France). Researckh and Development Div.; Lafanechere, L.; Bursi, J.M. [Electricite de France (EDF) (France). Construction Div.
1997-01-01
SILVA computer code is used for the modelling of the thermal-hydraulics and of the combustion of a coal-fired CFBC solid loop. In a first step, only the furnace is considered. The model is based on a 1D annular two phases description of the hydrodynamics. The model is based on particle mass balances and pressure drop calculations. A basic combustion model is incorporated into this model. The coal combustion is divided in two phases, the combustion of volatile matter and the heterogeneous combustion. The model has been developed within LEGO software and can be included into the global model of the solid loop developed by EDF. (author) 26 refs.
Simulation of two-phase flows and numerical evaluation of interfacial area
International Nuclear Information System (INIS)
Rising bubbles are simulated numerically as one of the fundamental two-phase flow phenomena using the two-component two-phase lattice Boltzmann method, since sharp interfaces are obtained and the coalescence and breakup of bubbles are simulated easily. The variation of interfacial area is measured for one or two rising bubbles. It is found that the interfacial area decreases during the coalescence of two bubbles while it increases during the breakup of a bubble. The change in the interfacial area is shown to correspond to the change in the shape of the bubbles. (authors)
Simulation of two-phase flows and numerical evaluation of interfacial area
International Nuclear Information System (INIS)
Rising bubbles are simulated numerically as one of the fundamental two-phase flow phenomena using the two-component two-phase lattice Boltzmann method, since sharp interfaces are obtained and the coalescence and breakup of bubbles are simulated easily. The variation of interfacial area is measured for one or two rising bubbles. It is found that the interfacial area decreases during the coalescence of two bubbles while it increases during the breakup of a bubble. The change in the interfacial area is shown to correspond to the change in the shape of the bubbles. (author)
Two-phase flow stability structure in a natural circulation system
Energy Technology Data Exchange (ETDEWEB)
Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)
1995-09-01
The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.
Position Control of Synchronous Motor Drive by Modified Adaptive Two-phase Sliding Mode Controller
Institute of Scientific and Technical Information of China (English)
Mohamed Said Sayed Ahmed; Ping Zhang; Yun-Jie Wu
2008-01-01
A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain-ties and external disturbances is proposed in this paper. The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase. The 2nd phase is used mainly in the case of disturbed states. Also, it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC). The modified controller is useful in position control of a permanent magnet synchronous drive.
Investigation on two-phase flow instability in steam generator of integrated nuclear reactor
Institute of Scientific and Technical Information of China (English)
无
1996-01-01
In the pressure range of 3-18MPa,high pressure steam-water two-phase flow density wave instability in vertical upward parallel pipes with inner diameter of 12mm is studied experimentally.The oscillation curves of two-phase flow instability and the effects of several parameters on the oscillation threshold of the system are obtained.Based on the small pertubation linearization method and the stability principles of automatic control system,a mathematical model is developed to predict the characteristics of density wave instability threshold.The predictions of the model are in good agreement with the experimental results.
Film boiling on spheres in single- and two-phase flows.
Energy Technology Data Exchange (ETDEWEB)
Liu, C.; Theofanous, T. G.
2000-08-29
Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.
Development of high pressure two-phase choked flow analysis methodology in complex piping system
International Nuclear Information System (INIS)
Choked flow mechanism, characteristics of two-phase flow sound velocity and compressibility effects on flow through various piping system components are studied to develop analysis methodology for high pressure two-phase choked flow in complex piping system which allows choking flow rate evaluation and piping system design related analysis. Piping flow can be said choked if Mach number is equal to 1 and compressibility effects can be accounted through modified incompressible formula in momentum equation. Based on these findings, overall analysis system is developed to study thermal-hydraulic effects on steady-state piping system flow and future research items are presented. (Author)
A study on nuclear propulsion using gas-solid two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Miyato, Naoaki; Kataoka, Isao; Serizawa, Akimi [Kyoto Univ. (Japan). Faculty of Engineering
1997-05-01
A solid core nuclear rocket has been considered a candidate for the first manned mission to Mars. The reason is that the solid core nuclear rocket has higher specific impulse than a chemical rocket. But its engine thrust is as much as that of the chemical rocket. We have thought of use of gas-solid two-phase flow for higher engine thrust on nuclear thermal propulsion and examined the effect of gas-solid two-phase flow on the engine thrust and the specific impulse of the solid core nuclear rocket. (author)
Conduction in a two-phase plane with diamond-shaped tiling
Helsing, Johan; Grimvall, Göran; Bao, Ke-da
1991-07-01
The effective conductivity of a two-phase two-dimensional composite with diamond-shaped tiling is considered. This analysis, based on a projection of the boundary conditions on linear combinations of solutions to the electrostatic equation that are orthonormal on the boundary, generalizes results by Keller [J. Math. Phys. 28, 2516 (1987)] and others. Numerical results are given for several conductivity ratios of the two phases and for varying obtuse angles of the tiles. Special emphasis is given to very large and very small conductivity differences, and very elongated tiles.
Determination of production-shipment policy using a two-phase algebraic approach
Directory of Open Access Journals (Sweden)
Huei-Hsin Chang
2012-04-01
Full Text Available The optimal production-shipment policy for end products using mathematicalmodeling and a two-phase algebraic approach is investigated. A manufacturing systemwith a random defective rate, a rework process, and multiple deliveries is studied with thepurpose of deriving the optimal replenishment lot size and shipment policy that minimisestotal production-delivery costs. The conventional method uses differential calculus on thesystem cost function to determine the economic lot size and optimal number of shipmentsfor such an integrated vendor-buyer system, whereas the proposed two-phase algebraicapproach is a straightforward method that enables practitioners who may not havesufficient knowledge of calculus to manage real-world systems more effectively.
Yans Guardia Puebla; Suyén Rodríguez Pérez; Yennys Cuscó Varona; Janet Jiménez Hernández; Víctor Sánchez Girón
2014-01-01
The present work shows the results of the two-phase anaerobic digestion assessment for the treatment of coffee wet wastewater. The effect of recycle on the anaerobic digestion process was studied. Twooverall organic loading rate (OLR) values of 4,2 and 5,7 kgCOD·m -3 ·d -1 , with same overall hydraulic retention time (HRT) of 21,5 h was evaluated.In a two-phase system wereapplied two recycle rate of 0,4 and 1,0, of the effluent of an UASB-UAF methanogenic hybrid reactor towards an UASB acidog...
A phenomenological model of two-phase (air/fuel droplet developing and breakup
Directory of Open Access Journals (Sweden)
Pavlović Radomir R.
2013-01-01
Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.
On the peculiarities of LDA method in two-phase flows with high concentrations of particles
Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.
2016-10-01
Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.
Film boiling on spheres in single- and two-phase flows. Final report
Energy Technology Data Exchange (ETDEWEB)
Liu, C.; Theofanous, T.G.
1994-12-01
Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40{degrees}C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900{degrees}C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1-{alpha}){sup 1/4} (with {alpha} being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multisphere structure on the film boiling heat transfer in single- and two-phase flows.
Validation of NEPTUNE-CFD two-phase flow models using experimental data
Jorge Pérez Mañes; Victor Hugo Sánchez Espinoza; Sergio Chiva Vicent; Michael Böttcher; Robert Stieglitz
2014-01-01
This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNEC-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD ...
RESEARCH ON THE FLOW STABILITY IN A CYLINDRICAL PARTICLE TWO-PHASE BOUNDARY LAYER
Institute of Scientific and Technical Information of China (English)
林建忠; 聂德明
2003-01-01
Based on the momentum and constitutive equations, the modified Orr-Sommerfeld equation describing the flow stability in a cylindrical particle two-phase flow was derived. For a cylindrical particle two-phase boundary layer, the neutral stability curves and critical Reynolds number were given with numerical simulation. The results show that the cylindrical particles have a suppression effect on the flow instability, the larger the particle volume fraction and the particle aspect-ratio are, the more obvious the suppression effect is.
Evaluation of Gaussian approximations for data assimilation in reservoir models
Iglesias, Marco A.
2013-07-14
implementation of the MCMC method provides the gold standard against which the aforementioned Gaussian approximations are assessed. We present numerical synthetic experiments where we quantify the capability of each of the ad hoc Gaussian approximation in reproducing the mean and the variance of the posterior distribution (characterized via MCMC) associated to a data assimilation problem. Both single-phase and two-phase (oil-water) reservoir models are considered so that fundamental differences in the resulting forward operators are highlighted. The main objective of our controlled experiments was to exhibit the substantial discrepancies of the approximation properties of standard ad hoc Gaussian approximations. Numerical investigations of the type we present here will lead to the greater understanding of the cost-efficient, but ad hoc, Bayesian techniques used for data assimilation in petroleum reservoirs and hence ultimately to improved techniques with more accurate uncertainty quantification. © 2013 Springer Science+Business Media Dordrecht.
International Nuclear Information System (INIS)
Two-phase flow can trigger vibration phenomena that are not well predicted by models like the homogeneous model. Concerning the steam generator of a Candu type reactor, these vibrations may lead to the failure of tubes. The coupling between thermo-hydraulic and vibration phenomena requires models that treat sliding between liquid and vapor phases. The purpose of this work is to study a series of experiments performed in a freon loop. These experiments simulate a two-phase flow through a bundle of tubes. Most estimations of vibratory parameters are based on the assumption of a uniform distribution of the void fraction. An optic probe has been used to measure the void fraction. The first part of this study is devoted to the processing of the response spectra given by the probe. The second part presents an estimation of the void fraction given by different models, a comparison between experimental and theoretical results allows to discuss their validity range. (A.C.)
Wijethunga, Pavithra A. L.; Moon, Hyejin
2015-09-01
Aqueous two-phase systems (ATPSs) allow an advantageous aqueous two-phase extraction process (ATPE), a special type of liquid-liquid extraction. Compared with conventional liquid-liquid extraction using aqueous/organic extraction media, ATPE is known to provide relatively easy mass transfer and a gentle environment for biological separation applications. Considering the recent interest in microscale ATPE, we aimed to study (i) the potential of preparing ATPS droplets on a digital microfluidic device, and (ii) the influence of the fluidic dynamics created during the formation of ATPS, with the goal of enhancing on-chip ATPE process. On-chip ATPS formation was evaluated by preparing a series of ATPSs on electrowetting on dielectric digital microfluidic chips and comparing their characteristics with the same ATPSs prepared at macroscale using conventional procedures. An enhanced on-chip drop-to-drop ATPE process was achieved by incorporating a self-mixing condition created during ATPSformation. Results indicate a successful on-chip ATPS preparation as well as enhanced extraction performance by self-mixing in the absence of forced mixing. Findings of this research suggest an alternative, simple, yet adequate technique to provide mixing for on-chip applications, such as sample preparation in portable microfluidics, for which it is unfavorable to implement complicated mixing sequences or complex device geometries.
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2012-05-01
Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.
A New Method for Ultrasound Detection of Interfacial Position in Gas-Liquid Two-Phase Flow
Directory of Open Access Journals (Sweden)
Fábio Rizental Coutinho
2014-05-01
Full Text Available Ultrasonic measurement techniques for velocity estimation are currently widely used in fluid flow studies and applications. An accurate determination of interfacial position in gas-liquid two-phase flows is still an open problem. The quality of this information directly reflects on the accuracy of void fraction measurement, and it provides a means of discriminating velocity information of both phases. The algorithm known as Velocity Matched Spectrum (VM Spectrum is a velocity estimator that stands out from other methods by returning a spectrum of velocities for each interrogated volume sample. Interface detection of free-rising bubbles in quiescent liquid presents some difficulties for interface detection due to abrupt changes in interface inclination. In this work a method based on velocity spectrum curve shape is used to generate a spatial-temporal mapping, which, after spatial filtering, yields an accurate contour of the air-water interface. It is shown that the proposed technique yields a RMS error between 1.71 and 3.39 and a probability of detection failure and false detection between 0.89% and 11.9% in determining the spatial-temporal gas-liquid interface position in the flow of free rising bubbles in stagnant liquid. This result is valid for both free path and with transducer emitting through a metallic plate or a Plexiglas pipe.
Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator
Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de
2008-01-01
A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze
Rank 0 invariant solutions of dynamics of two-phase medium
Panov, Alexandr
2016-08-01
A system of partial differential equations which describes dynamics of two-phase medium is considered. Lie algebra of symmetry group of this system was found. For some 4-dimensional subalgebras of invariant solutions is found. All other 4-dimensional subalgebras will give only partial invariant solutions of this system.
Effects of gravity and inlet location on a two-phase countercurrent imbibition in porous media
El-Amin, M.F.
2012-01-01
We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.
Nonequilibrium capillarity effects in two-phase flow through porous media at different scales
Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.
2011-01-01
A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two-phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments
Characteristics of horizontal two-phase helium flow at low mass velocities
International Nuclear Information System (INIS)
Two-phase helium flows experimental and theoretical exploration results, including data on flow regimes, pressure drop, and void fraction, are presented. The circular, annular, and slot channels are examined. All the considered data are for low mass velocities and near-adiabatic conditions
Evaluation of Low-Cost Topologies for Two-Phase Induction Motor Drives, in Industrial Applications
DEFF Research Database (Denmark)
Blaabjerg, Frede; Lungeanu, Florin; Skaug, Kenneth;
2002-01-01
This paper investigates and compares the potential of the two-phase induction motors to accommodate variable speed operation in ac drive. The analysis is based on both theory and experimental work, showing a conflict between the performances on one side, and the cost/complexity for such ac drives...... is a compromise between practical factors....
Hydrodynamics of two phase flow through homogeneous and stratified porous layers
International Nuclear Information System (INIS)
An experimental investigation of two-phase flow through porous layers formed of nonheated glass particles has been made. The effect of particle size, particle size distribution, bed porosity and bed stratification on void fraction and pressure drop through particulate beds formed in a cylindrical and rectangular test section has been investigated. A model based on drift flux approach has been developed for the void fraction in homogeneous beds. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two-phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined. The observations in stratified beds indicate depletion or build up of voids at the interface between high and low permeability regions. Blocking of the flow into one of the layers of laterally stratified beds caused the pressures at different horizontal locations at the same bed height to be different from each other
A two-phase flow model of the Rayleigh endash Taylor mixing zone
International Nuclear Information System (INIS)
The Rayleigh endash Taylor instability of an interface separating fluids of distinct density is driven by an acceleration across the interface. Low order statistical moments of fluctuating fluid quantities characterize the hydrodynamics of the mixing zone. A new model is proposed for the momentum coupling between the two phases. This model is validated against computational data for compressible flows, including flows near the incompressible limit. Our main result is a zero parameter first order closure for ensemble averaged two phase flow equations. We do not, however, fully solve the closure problem, as the equations we derive are missing an (internal) boundary condition along any surface for which either phase goes to zero volume fraction. In this sense, the closure problem is reduced from a volume to a surface condition, rather than being solved completely. We compare two formulations of the statistical moments, one based on two phase flow and the other on turbulence models. These formulations describe different aspects of the mixing process. For the problem considered, the two phase flow moments appear to be preferable, in that they subsume the turbulence moments but not conversely. copyright 1996 American Institute of Physics
Effects of Gravity and Inlet Location on a Two-Phase Countercurrent Imbibition in Porous Media
Directory of Open Access Journals (Sweden)
M. F. El-Amin
2012-01-01
Full Text Available We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.
Lattice-Boltzmann-based two-phase thermal model for simulating phase change
Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.
2013-01-01
A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A
Approaches to myosin modelling in a two-phase flow model for cell motility
Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.
2016-04-01
A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.
Two-phase flow in membrane processes: A technology with a future
Wibisono, Y.; Cornelissen, E.R.; Kemperman, A.J.B.; Meer, van der W.G.J.; Nijmeijer, K.
2014-01-01
Worldwide, the application of a (gas/liquid) two-phase flow in membrane processes has received ample scientific deliberation because of its potential to reduce concentration polarization and membrane fouling, and therefore enhance membrane flux. Gas/liquid flows are now used to promote turbulence an
Two-Phase Flow in Rotating Hele-Shaw Cells with Coriolis Effects
Escher, Joachim; Walker, Christoph
2011-01-01
The free boundary problem of a two phase flow in a rotating Hele-Shaw cell with Coriolis effects is studied. Existence and uniqueness of solutions near spheres is established, and the asymptotic stability and instability of the trivial solution is characterized in dependence on the fluid densities.
Analysis of water hammer in two-component two-phase flows
International Nuclear Information System (INIS)
The water hammer phenomena caused by a sudden valve closure in air-water two-phase flows must be clarified for the safety analysis of LOCA in reactors and further for the safety of boilers, chemical plants, pipe transport of fluids such as petroleum and natural gas. In the present paper water hammer phenomena caused by a sudden valve closure in two-component two-phase flow are investigated theoretically and experimentally. The phenomena are more complicated that in single phase-flow due to the fact of the presence of compressible component. Basic partial differential equations based on a one-dimensional homogeneous flow model are solved by the method of characteristic. The analysis is extended to include friction in a two-phase mixture depending on the local flow pattern. The profiles of the pressure transients, the propagation velocity of pressure waves and the effect of valve closure on the transient pressure are found. Different two-phase flow pattern and frictional pressure drop correlations were used including Baker, Chesholm and Beggs ampersand Bril correlations
Pigging analysis for gas-liquid two phase flow in pipelines
International Nuclear Information System (INIS)
A new method to analyze transient phenomena caused by pigging in gas-liquid two-phase flow is developed. During pigging, a pipeline is divided into three sections by two moving boundaries, namely the pig and the leading edge of the liquid slug in front of the pig. The basic equations are mass, momentum and energy conservation equations. The boundary conditions at the moving boundaries are determined from the mass conservation across the boundaries, etc. A finite difference method is used to solve the equations numerically. The method described above is also capable of analyzing transient two-phase flow caused by pressure and flow rate changes. Thus the over-all analysis of transient two-phase flow in pipelines becomes possible. A series of air-water two-phase flow pigging experiments was conducted using 105.3 mm diameter and 1436.5 m long test pipeline. The agreement between the measured and the calculated results is very good
Flow instabilities in two-phase flow system with and without phase change
International Nuclear Information System (INIS)
The gas-liquid two-phase flow of various types, such as single component or multiple components, and boiling two-phase flow or insulated two-phase flow, exist in piping systems, and the undesirable phenomena for the operation of systems such as the large scale pulsation of flow rate and the uneven distribution of flow may occur according to the condition. Generally these phenomena are called unstable flow. The author has carried out the research on unstable flow with air-water two-phase flow system, but a question arose to what extent the results in air-water system are applicable to boiling system. The unstable flow is explained with some examples. In this study, the similarity of pulsation in boiling system and insulated system was clarified, using the examples of pressure drop oscillation and flow rate distribution, and the theory to treat them in unified way was presented. The range of discussion is limited to the phenomena that do not depend on the microstructure of flow. The experimental setups were Freon boiling system, air-water capillary system and air-water vertical tube system. The characteristics of pressure drop oscillation and the fundamental mechanism, the theoretical analysis of pressure drop oscillation, the uneven distribution of flow rate in parallel tubes, the stability of flow rate distribution, and the numerical simulation are reported. (Kako, I.)
Separation of gas from liquid in a two-phase flow system
Hayes, L. G.; Elliott, D. G.
1973-01-01
Separation system causes jets which leave two-phase nozzles to impinge on each other, so that liquid from jets tends to coalesce in center of combined jet streams while gas phase is forced to outer periphery. Thus, because liquid coalescence is achieved without resort to separation with solid surfaces, cycle efficiency is improved.
THREE-WAY-CATALYTIC CONVERTERS: ANALYTICAL INVESTIGATION OF A TWO-PHASE MODELL I. SEPARATION METHOD
Volkmann, J.; Migranov, N.
2010-01-01
The two-phase-model describes the thermal and chemical behaviour of a three-way-catalytic onverter (TWC). According to this model energy, mass balance equations for gas and solid phase are taking into account. These equations are investigated by the separation of variables method in order to construct solutions.
Severe slugging in gas-liquid two-phase pipe flow
Malekzadeh, R.
2012-01-01
transportation facilities. In an offshore oil and gas production facility, pipeline-riser systems are required to transport two-phase hydrocarbons from subsurface oil and gas wells to a central production platform. Severe slugs reaching several thousands pipe diameters may occur when transporting g
A boundary element approach to estimate the free surface in stratified two-phase flow
International Nuclear Information System (INIS)
Two-phase flows widely exist in many industries. Measuring the phase distribution in two-phase flow is important for the optimization and control of some industrial processes. Electrical resistance tomography (ERT) is a promising non-intrusive visualization technique for monitoring the two-phase flow. However, due to its nonlinear and ill-posed character, high-quality image reconstruction is difficult and some iterative approach is time consuming. In this paper, a boundary element approach is presented for directly estimating the free-surface in two-phase flow using ERT. The unknown free surface is parameterized by a Bézier curve. Coefficients of its control points are estimated by minimizing a residual function using the iterative Levenberg–Marquardt method. To speed up the estimation process, the physical model of ERT is formulated using a boundary element method. Based on this formulation, the forward problem is fast solved through a small size system matrix and the Jacobian matrix is efficiently calculated using an analytic method. After several numerical experiments, this approach is proved fast and precise and several factors influencing the estimation quality are analyzed based on these simulations. (paper)
Experimental Study of Two-Phase Thermosyphon using R-22 as a Working Fluid
Directory of Open Access Journals (Sweden)
Theeb Maathe. А.
2016-01-01
Full Text Available The two-phase closed thermosyphon (TPCT is an effective heat transfer device decreasing the ground temperature around it in cold season. In this paper an experimental study has been done by using R-22 as a working fluids, the temperature and the pressure of the TPCT where measured with time (Transient study.
International Nuclear Information System (INIS)
An experimental study has been undertaken on the MHD induction power generation, with liquid-gas two-phase mixture as working fluid. The effect on the generator performance brought by variations of the electrical conductivity was experimentally proved by a model experiment in which the two-phase fluid flow was simulated by a solid metal plate of gradually changing cross-sectional area. A second experiment with actual NaK-N2 two-phase flow was performed, which proved that the effect on generator performance brought by the variations of electrical conductivity and of fluid velocity along the channel tended to cancel each other, resulting in substantially reduced distortion of the overall flow behavior. In an actual generator channel, a constant cross section would be unfavorable for realizing non-perturbation conditions, on account of the hydraulic behavior of two-phase flow, but nonetheless, the degradation of generator efficiency can be limited to within a few percent. A generator channel of gradually increasing cross section would be preferable for realizing non-perturbation conditions. (auth.)
Karadimitriou, N. K.; Hassanizadeh, S. M.; Joekar-Niasar, V.; Kleingeld, P. J.
2014-01-01
Recent computational studies of two-phase flow suggest that the role of fluid-fluid interfaces should be explicitly included in the capillarity equation as well as equations of motion of phases. The aim of this study has been to perform experiments where transient movement of interfaces can be monit
Microreactor concepts for enhanced mass transfer in the two-phase hydroformylation of 1-octene
Energy Technology Data Exchange (ETDEWEB)
Dietzsch, E.; Mueller, J.; Voelkel, N.; Klemm, E. [Chemnitz Univ. of Technology (Germany). Dept. of Chemical Technology
2006-07-01
Using higher olefins such as 1-octene in the so called two-phase hydroformylation technology with a water soluble catalyst, the observed reaction rates are much slower than that of short chain alkenes, because the mass transfer of 1-octene to the aqueous catalyst phase can be assumed as a rate limiting step. A solution for this problem preserving the advantages of the two-phase technology is the application of microreactors. Using them, a process intensification should be achieved because of their superior intrinsic interface areas between different phases. In preliminary studies we investigated different mixing concepts for generating optimum and stable G/L/L-mixtures of synthesis gas, 1-octene and catalyst solution which were subsequently fed to a capillary microreactor conducting the hydroformylation. Since the mass transport of 1-octene into the aqueous catalyst phase should be the mainly limiting step, it was the aim to achieve a maximum dispersion of the organic in the aqueous phase. For comparison purposes investigations of the two-phase hydroformylation of 1-octene in a continuous stirred autoclave were performed. These experiments are the basis to evaluate and quantify a process intensification by the use of microreactors in the hydroformylation according to the two-phase technology. (orig.)
A FINITE ELEMENT COLLOCATION METHOD FOR TWO-PHASE INCOMPRESSIBLE IMMISCIBLE PROBLEMS
Institute of Scientific and Technical Information of China (English)
Ma Ning
2007-01-01
Two-phase, incompressible, immiscible flow in porous media is governed by a coupled system of nonlinear partial differential equations. The pressure equation is elliptic,whereas the concentration equation is parabolic, and both are treated by the collocation scheme. Existence and uniqueness of solutions of the algorithm are proved. A optimal convergence analysis is given for the method.
RELAP5 two-phase fluid model and numerical scheme for economic LWR system simulation
International Nuclear Information System (INIS)
The RELAP5 two-phase fluid model and the associated numerical scheme are summarized. The experience accrued in development of a fast running light water reactor system transient analysis code is reviewed and example of the code application are given
Two parametric flow measurement in gas-liquid two-phase flow
Chen, Z.; Chen, C.; Xu, Y.; Zhao, Z.
The importance and current development of two parametric measurement during two-phase flow are briefly reviewed in this paper. Gas-liquid two-phase two parametric metering experiments were conducted by using an oval gear meter and a sharp edged orifice mounted in series in a horizontal pipe. Compressed air and water were used as gas and liquid phases respectively. The correlations, which can be used to predict the total flow rate and volumetric quality of two-phase flow or volumetric flow rate of each phase, have also been proposed in this paper. Comparison of the calculated values of flow rate of each phase from the correlations with the test data showed that the root mean square fractional deviation for gas flow rate is 2.9 percent and for liquid flow rate 4.4 percent. The method proposed in this paper can be used to measure the gas and liquid flow rate in two-phase flow region without having to separate the phases.
Effects of Macroparticle Sizes on Two-phase Mixture Discharge Under DC Voltage
Institute of Scientific and Technical Information of China (English)
YAO Wenjun; HE Zhenghao; DENG Heming; WANG Guoli; ZHANG Man; MA Jun; LI Jin; YE Qizheng; HU Hui
2012-01-01
The discharge laws of the two-phase mixtures are of significance to the lightning protection and external insulation of HV transmission lines under the influence of severe climatic conditions. The initiation and propagation of discharge and its influence factors are the fundamental problems to be studied.
Energy Technology Data Exchange (ETDEWEB)
Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Nuclear Engineering Center, Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Professor Lineu Prestes, 2242 Cidade Universitaria, CEP 05508-000 Sao Paulo (Brazil); Masotti, P.H.F., E-mail: pmasotti@ipen.br [Nuclear Engineering Center, Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Professor Lineu Prestes, 2242 Cidade Universitaria, CEP 05508-000 Sao Paulo (Brazil); Penha, R.M.L., E-mail: rmpenha@ipen.br [Nuclear Engineering Center, Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Professor Lineu Prestes, 2242 Cidade Universitaria, CEP 05508-000 Sao Paulo (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Nuclear Engineering Center, Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Professor Lineu Prestes, 2242 Cidade Universitaria, CEP 05508-000 Sao Paulo (Brazil); Sabundjian, G., E-mail: gdjian@ipen.br [Nuclear Engineering Center, Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Professor Lineu Prestes, 2242 Cidade Universitaria, CEP 05508-000 Sao Paulo (Brazil); Torres, W.M., E-mail: wmtorres@ipen.br [Nuclear Engineering Center, Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, Av. Professor Lineu Prestes, 2242 Cidade Universitaria, CEP 05508-000 Sao Paulo (Brazil); and others
2012-09-15
Highlights: Black-Right-Pointing-Pointer A fuzzy classification system for two-phase flow instability patterns is developed. Black-Right-Pointing-Pointer Flow patterns are classified based on images of natural circulation experiments. Black-Right-Pointing-Pointer Fuzzy inference is optimized to use single grayscale profiles as input. - Abstract: Two-phase flow on natural circulation phenomenon has been an important theme on recent studies related to nuclear reactor designs. The accuracy of heat transfer estimation has been improved with new models that require precise prediction of pattern transitions of flow. In this work, visualization of natural circulation cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. A Fuzzy Flow-type Classification System (FFCS) was developed to classify these patterns based only on image extracted features. Image acquisition and temperature measurements were simultaneously done. Experiments in natural circulation facility were adjusted to generate a series of characteristic two-phase flow instability periodic cycles. The facility is composed of a loop of glass tubes, a heat source using electrical heaters, a cold source using a helicoidal heat exchanger, a visualization section and thermocouples positioned over different loop sections. The instability cyclic period is estimated based on temperature measurements associated with the detection of a flow transition image pattern. FFCS shows good results provided that adequate image acquisition parameters and pre-processing adjustments are used.
Lamb's integral formulas of two-phase saturated medium for soil dynamic with drainage
Institute of Scientific and Technical Information of China (English)
Bo-yang DING; Gai-hong DANG; Jin-hua YUAN
2010-01-01
When dynamic force is applied to a saturated porous soil,drainage is common.In this paper,the saturated porous soil with a two-phase saturated medium is simulated,and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem(the reciprocal theorem).According to the basic solution to Biot's equation,Green's function Gij and three terms of Green's function G4i,Gi4,and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented.The displacement field with drainage,the magnitude of drainage,and the pore pressure of the center explosion source are obtained in computation.The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared.Good agreement is observed.
Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML
2009-01-01
Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously
Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows
Sihao, L. V.
2013-10-10
A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013
Comparison of two-phase and three-phase methanol synthesis processes
van de Graaf, G.H; Beenackers, A.A C M
1996-01-01
A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The b
Extraction of peptide tagged cutinase in detergent-based aqueous two-phase systems
Rodenbrock, A.; Selber, K.; Egmond, M.R.; Kula, M.-R.
2010-01-01
Detergent-based aqueous two-phase systems have the advantage to require only one auxiliary chemical to induce phase separation above the cloud point. In a systematic study the efficiency of tryptophan-rich peptide tags was investigated to enhance the partitioning of an enzyme to the detergent-rich p
International Nuclear Information System (INIS)
The two-phase control absorber works on the principle that the neutron flux in a nuclear reactor can be regulated by changing the density of a two-phase fluid flowing through U-tubes in the reactor core. The concept is considered to be a strong candidate for use in future CANDU nuclear reactors with either vertical or horizontal pressure tubes. In addition to the experiments carried out previously on vertically oriented U-tubes and reported separately, a series of tests with horizontal U-tubes was performed. The results confirmed that U-tube orientation has no measurable effect on the performance of the two-phase control absorber concept. In particular, the measured pressure drops, mixture densities, fluid velocities and void propagation velocities, at given operating conditions, were identical in the two orientations, within experimental error. The results of the experiments and analyses were incorporated in a steady-state design code that was used in the conceptual design of a Two-Phase Absorber Control System for a CANDU-PHW-1250 power reactor. The experimental data are available separately as AECL-6532 Supplement. (auth)
Two-phase flow operational maps for multi-microchannel evaporators
International Nuclear Information System (INIS)
Highlights: • New operational maps for several different micro-evaporators are presented. • Inlet micro-orifices prevented flow instability, back flow, and flow maldistribution. • Eight different operating regimes were distinguished. • The flashing two-phase flow without back flow operating regime is preferred. -- Abstract: The current paper presents new operational maps for several different multi-microchannel evaporators, with and without any inlet restrictions (micro-orifices), for the two-phase flow of refrigerants R245fa, R236fa, and R1234ze(E). The test fluids flowed in 67 parallel channels, each having a cross-sectional area of 100 × 100 μm2. In order to emulate the power dissipated by active components in a 3D CMOS CPU chip, two aluminium microheaters were sputtered onto the back-side of the test section providing a 0.5 cm2 each. Without any inlet restrictions in the micro-evaporator, significant parallel channel flow instabilities, vapor back flow, and flow maldistribution led to high-amplitude and high-frequency temperature and pressure oscillations. Such undesired phenomena were then prevented by placing restrictions at the inlet of each channel. High-speed flow visualization distinguished eight different operating regimes of the two-phase flow depending on the tested operating conditions. Therefore, the preferred operating regimes can be easily traced. In particular, flashing two-phase flow without back flow appeared to be the best operating regime without any flow and temperature instabilities
Development of an electrical impedance computed tomographic two-phase flows analyzer. Final report
Energy Technology Data Exchange (ETDEWEB)
Ovacik, L.; Jones, O.C.
1998-08-01
This report summarizes the work on the research project on this cooperative program between DOE and Hitachi, Ltd. Major advances were made in the computational reconstruction of images from electrical excitation and response data with respect to existing capabilities reported in the literature. A demonstration is provided of the imaging of one or more circular objects within the measurement plane with demonstrated linear resolution of six parts in two hundred. At this point it can be said that accurate excitation and measurement of boundary voltages and currents appears adequate to obtain reasonable images of the real conductivity distribution within a body and the outlines of insulating targets suspended within a homogeneous conducting medium. The quality of images is heavily dependent on the theoretical and numerical implementation of imaging algorithms. The overall imaging system described has the potential of being both fast and cost effective in comparison with alternative methods. The methods developed use multiple plate-electrode excitation in conjunction with finite element block decomposition, preconditioned voltage conversion, layer approximation of the third dimension and post processing of boundary measurements to obtain optimal boundary excitations. Reasonably accurate imaging of single and multiple targets of differing size, location and separation is demonstrated and the resulting images are better than any others found in the literature. Recommendations for future effort include the improvement in computational algorithms with emphasis on internal conductivity shape functions and the use of adaptive development of quadrilateral (2-D) or tetrahedral or hexahedral (3-D) elements to coincide with large discrete zone boundaries in the fields, development of a truly binary model and completion of a fast imaging system. Further, the rudimentary methods shown herein for three-dimensional imaging need improving.
Modelling of interfacial area and turbulence in two-phase flow
International Nuclear Information System (INIS)
Full text of publication follows: Computational Two-Fluid Dynamics (CTFD) modelling is still under development. The single pressure two-fluid model is widely used as a model basis for the multidimensional simulation of typical two-phase flow phenomena, e.g. void and pressure wave propagation, phase transitions, sharp interface movements, thermal and mechanical non-equilibrium /1/. The conservation equations based on an averaging procedure are written for each phase allowing both phases to co-exist at any point in space. The local volumetric fraction alone, one of the solution variables of the two-fluid model, is not sufficient to describe the topology of the two phases and consequently the flow regime can not be determined by the two-fluid model. A determination of the flow situation requires additional knowledge of the interface. The concentration of the interfacial area is one of the key parameters that gives information of the flow pattern. It is also an important parameter for the modelling of interfacial friction forces and interfacial transfer terms. The modelling of a transport equation for the interfacial area concentration covering the whole two-phase flow range is outlined in this paper. In this transport equation the forces acting on the interface and mass transfer are modelled. Observed phenomena, e.g. bubble coalescence or disintegration, are not explicitly modelled, they are the result of the interacting forces on bubble interface. Thus the modelling is mainly based on first principles and is largely free from empiricism /2/. First validation calculations will be presented. For the modelling of turbulence in two-phase flows new transport equations for the turbulent kinetic energy and its dissipation are proposed, where turbulent shear stress for two-phase flows will be modelled. Beyond this the new turbulence model differentiates between turbulent scales and the usual constants of the dissipation rate equation are modelled /2/. A first verification
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yijie [ORNL; Lim, Hyun-Kyung [ORNL; de Almeida, Valmor F [ORNL; Navamita, Ray [State University of New York, Stony Brook; Wang, Shuqiang [State University of New York, Stony Brook; Glimm, James G [ORNL; Li, Xiao-lin [State University of New York, Stony Brook; Jiao, Xiangmin [ORNL
2012-06-01
This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.
Energy Technology Data Exchange (ETDEWEB)
Suryawijaya, P.; Kosyna, G. [Pfleiderer-Inst. fuer Stroemungsmaschinen, Technische Univ. Braunschweig, Braunschweig (Germany)
2003-03-01
A liquid/gas two-phase flow (liquid contains undissolved gas) can be found in a wide range of pump applications, especially in chemical industries, off-shore oil production and nuclear reactors. It is well known that the performance of single stage centrifugal pumps decreases rapidly under liquid/gas two-phase flow conditions. The consequences of entrained gas depend on the relative amount of gas and liquid present, and vary from a slight deterioration on performance up to complete blockage known as ''gas locking''. Before gas locking occurs, other phenomena such as pump head degradation, surging and ''gas blocking'' take place. For two-phase flow applications of centrifugal pump the influence of the entrained gas on pump behaviour must be predictable. This is a hard task due to the complexity involved in modelling multiphase flow inside turbomachines. An accurate prediction of the performance for any pump handling liquid/gas mixture is still a problem today. This paper reports on a research project, carried out at the Pfleiderer-Institute for Turbomachinery, Technical University of Braunschweig, Germany. The purpose of this project is to get a better understanding of the physical background of the two-phase flow behaviour of the centrifugal pumps by measuring the static pressure on the impeller blade surfaces and by optical observation under varying two-phase flow conditions. The results will also be used to validate a numerical code, which is developed in a related research project. The project is focused on two centrifugal pumps, one scaled down from the other, having the same low specific speed number ns = 27. The pumps are operating under variable two-phase flow conditions. Air and water were used as working fluids. Flow structures within the pump impeller and the overall pump performance are investigated by numerical simulation and experiments. One impeller blade of the pump is equipped with eight KULITE trademark sub
A study on the two-phase flow characteristics of nanofluids
International Nuclear Information System (INIS)
While a considerable body of research exists regarding enhancements of the heat transfer using nanofluids, the basic hydraulic phenomenon of a nanofluid has not been investigated as much. Several studies were reported related to the pressure drop of nanofluid flow and a few researches on the hydraulic characteristics of two-phase nanofluid flow were conducted. Two-phase Flow Analysis in a Helical Wire Inserted Tube using CFD Code An analysis on the two-phase flow in a helical wire inserted tube using commercial CFD code, CFX11.0, was performed in bubbly flow and annular flow regions. The analysis method was validated with the experimental results of Keishi Takeshima. Bubbly and annular flows in a 10 mm inner diameter tube with varying pitch lengths and inserted wire diameters were simulated using the same analysis methods after validation. The geometry range of p/D was 1-4 and e/D was 0.08-0.12. The results show that the inserted wire with a larger diameter increased swirl flow generation. An increasing swirl flow was seen as the pitch length increased. Regarding pressure loss, smaller pitch lengths and inserted wires with larger diameters resulted in larger pressure loss. The average liquid film thickness increased as the pitch length and the diameter of the inserted wire increased in the annular flow region. Both in the bubbly flow and annular flow regions, the effect of pitch length on swirl flow generation and pressure loss was more significant than that of the inserted wire diameters. An Experimental Study on the Two-Phase Flow Characteristics of Nanofluids The main objective of this study is to investigate the basic hydraulic phenomenon of the nanofluid in the two-phase flow region. For the accomplishment of this objective, a series of experiments have been performed. The first one is the pressure drop and pressure fluctuation measurements in a vertically upward air-water two-phase flow. The air and the water based nanofluid were used as working fluids under
Institute of Scientific and Technical Information of China (English)
P.A.Nikrityuk; K.Eckert; R.Grundmann; B.Willers; S.Eckert
2003-01-01
The main aim of this work is to study numerically the influence of an external magnetic field on the solidification processes of two-component materials. Based on the continuum model of two-phase flow a mathematical model for the directional solidification of a binary alloy in a magnetic field is presented. The model includes mass,momentum, energy and species mass conservation equations written in compressible form and additional relationships describing the temperature-solute coupling. The geometry under study is a cylindrical mold with adiabatic walls and cooled bottom. The macroscale transport in the solidification of alloys is governed by the progress of the two-phase mushy zone, which is treated by means of a porous medium approach. The volume fraction of liquid and solid phases, respectively, is calculated from a 2D approximation of the phase diagram. The results of calculation are compared with experimental data.
Leike, Reimar H
2016-01-01
In Bayesian statistics probability distributions express beliefs. However, for many problems the beliefs cannot be computed analytically and approximations of beliefs are needed. We seek a ranking function that quantifies how "embarrassing" it is to communicate a given approximation. We show that there is only one ranking under the requirements that (1) the best ranked approximation is the non-approximated belief and (2) that the ranking judges approximations only by their predictions for actual outcomes. We find that this ranking is equivalent to the Kullback-Leibler divergence that is frequently used in the literature. However, there seems to be confusion about the correct order in which its functional arguments, the approximated and non-approximated beliefs, should be used. We hope that our elementary derivation settles the apparent confusion. We show for example that when approximating beliefs with Gaussian distributions the optimal approximation is given by moment matching. This is in contrast to many su...
Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples
Energy Technology Data Exchange (ETDEWEB)
Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.
2003-07-01
This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two-phase
Computer code for gas-liquid two-phase vortex motions: GLVM
Yeh, T. T.
1986-01-01
A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.
Simon, Moritz
2013-01-01
Motivated by applications in subsurface CO2 sequestration, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, where the time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system and formulate the optimal control problem. For the discretization we use a variant of the BOX method, a locally conservative control-volume FE method. The timestep-wise Lagrangian of the control problem is implemented as a functional in the PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT. Finally, we present some numerical results in a heterogeneous model reservoir.
Numerical simulation of oil-water two-phase flow in horizontal pipes
Energy Technology Data Exchange (ETDEWEB)
Santos, Michelly Martuchele; Ramirez, Ramiro Gustavo [Federal University of Itajuba (UNIFEI), MG (Brazil)], E-mail: ramirez@unifei.edu.br
2010-07-01
The numerical simulation of two phase flow through the CFD techniques have become of great interest due to the complexity of this type of flow. The present work aims to simulate the oil-water two-phase flow in horizontal pipes for stratification analysis of the mixture. In numerical simulations, incompressible flow, isothermal, steady state and laminar flow were considered. Numerical analysis of flow stratification was carried out for horizontal straight and curved pipe. FLUENT was the commercial software employed in the simulation. Three-dimensional mesh generated by ICEM-CFD program was used for numerical simulation. The numerical analysis flow pattern was carried out employing the Eulerian model, considering the drag and lift interphase forces. The simulation results for the horizontal straight pipe were qualitatively validated with experimental data obtained in the Laboratory of Phase Separation of UNIFEI. (author)
Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Shemyakina, E; Sokolov, A
2016-01-01
A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49$\\pm$7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N$_2$ content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.
Two-phase SPH modelling of waves caused by dam break over a movable bed
Institute of Scientific and Technical Information of China (English)
Seyedeh Leila RAZAVITOOSI; Seyed Ali AYYOUBZADEH; Alireza VALIZADEH
2014-01-01
This paper describes the application of the Smoothed Particle Hydrodynamics (SPH) method for modeling two dimensional waves caused by dam break over a movable bed in two dimensions. The two phase SPH method is developed to solve the Navier-Stokes equations. Both fluid and sediment phases are described by particles as weakly compressible fluids and the incompressibility is achieved by the equation of state. The sediment phase is modeled as a non-Newtonian fluid using three alternative approaches of artificial viscosity and Bingham Model. In this paper, the new formulations for two-phase flows are proposed. The numerical results obtained from the developed SPH model show acceptable accuracy with comparison to experimental data.
First-Order System Least Squares and the Energetic Variational Approach for Two-Phase Flow
Adler, J H; Liu, C; Manteuffel, T; Zikatanov, L
2010-01-01
This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen-Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.
Experimental study of micron size droplets in a two phase flow in a converging - diverging nozzle
International Nuclear Information System (INIS)
The fluid present in a pressurized vessel in normal operation is generally a mono-phase one. In accidental regime (a breach for example), a two-phase (ring and/or dispersed) flow appears and the flow is submitted to large accelerations when passing through the breach, and is then dispersed in the atmosphere. This research thesis reports an experimental simulation of an accident by generating, through a discharge of an upstream vessel into a downstream vessel, a strongly accelerated gaseous-liquid two-phase flow, with an essentially dispersed configuration in a convergent-divergent nozzle. In order to characterize the speed and diameter evolution of the dispersed liquid phase, the author reports a comparative study of two different liquid aerosols: micron-size droplets of di-octyl phthalate (DOP) of known concentration and diameter, and water droplets obtained by heterogeneous spontaneous condensation
Critical conditions during unsteady efflux of two-phase medium following the pipeline break
International Nuclear Information System (INIS)
Unsteady efflux of two-phase medium following the pipeline break has been studied. The experiments with saturated and underheated water at the pressure of 32 bar were carried out on the pipe with 102.3 mm diameter and 3 m length. The liquid underheating, reaching 14 deg C under the experimental conditions and parameter variation dynamics have been analyzed. A comparison with the quasi-stationary methods is given. The theoretical analysis of the unsteady efflux is made on the basis of the two-phase homogeneous equilibrium model. Numerical solution of the difference equations has been made along the characteristic directions by the Godynov layer method. The comparison of the calculated and experimental results gives a satisfactory agreement during the main unsealing period
Effect of grain size reduction on high temperature oxidation ofbinary two-phase alloys
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The effect of grain size reduction on the high temperature oxidation of binary two-phase alloys was discussed based on the recent research progress. The results show that for those two-phase alloys with coarse grain prepared by the conventional methods, complex oxide scales are easily formed after oxidation under high oxygen pressure or under oxygen pressure below the stability limit of the less reactive component oxides. On the contrary, for the nano-sized alloys, an exclusive external oxidation of the most reactive component usually occurs during oxidation in air or pure oxygen even for much lower content of the most reactive component. So the gain size reduction is not always beneficial to improve the oxidation resistance of the materials, but exhibits different effects depending mainly on the protective feature of the scales. The transition mechanisms between the different oxidation modes are discussed with respect to the thermodynamic and dynamic aspects.
The FDF or LES/PDF method for turbulent two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Chibbaro, S [Institut Jean Le Rond D' Alembert University Pierre et Marie Curie et CNRS UMR7190, 4, place Jussieu 75252 Paris Cedex 05 (France); Minier, Jean-Pierre, E-mail: sergio.chibbaro@upmc.fr [EDF R and D Division Quai Wattiou 78100 Chatou France (France)
2011-12-22
In this paper, a new formalism for the filtered density function (FDF) approach is developed for the treatment of turbulent polydispersed two-phase flows in LES simulations. Contrary to the FDF used for turbulent reactive single-phase flows, the present formalislm is based on Lagrangian quantities and, in particular, on the Lagrangian filtered mass density function (LFMDF) as the central concept. This framework allows modeling and simulation of particle flows for LES to be set in a rigorous context and various links with other approaches to be made. In particular, the relation between LES for particle simulations of single-phase flows and Smoothed Particle Hydrodynamics (SPH) is put forward. Then, the discussion and derivation of possible subgrid stochastic models used for Lagrangian models in two-phase flows can set in a clear probabilistic equivalence with the corresponding LFMDF.
The FDF or LES/PDF method for turbulent two-phase flows
Chibbaro, Sergio
2011-01-01
In this paper, a new formalism for the filtered density function (FDF) approach is developed for the treatment of turbulent polydispersed two-phase flows in LES simulations. Contrary to the FDF used for turbulent reactive single-phase flows, the present formalislm is based on Lagrangian quantities and, in particular, on the Lagrangian filtered mass density function (LFMDF) as the central concept. This framework allows modeling and simulation of particle flows for LES to be set in a rigorous context and various links with other approaches to be made. In particular, the relation between LES for particle simulations of single-phase flows and Smoothed Particle Hydrodynamics (SPH) is put forward. Then, the discussion and derivation of possible subgrid stochastic models used for Lagrangian models in two-phase flows can set in a clear probabilistic equivalence with the corresponding LFMDF.
Improving deformability of stainless and heat resisting two-phase steels in cold or hot rolling
International Nuclear Information System (INIS)
The effect is studied of the polymorphous α→γ - transformation occurring in the deformation zone under the action of deformation itself, in martensitic-ferritic steels, on the position of the critical brittleness temperature (Tsub(c)). As this transformation develops, the level of Tsub(c) in these steels shifts to the lower-temperature region. The formation of the optimal phase composition in the process of hot plastic deformation itself may be one of the possible ways for enhancing the deformability of two-phase martensitic ferritic steels during the subsequent cold rolling, as well as of austenitic-ferritic steels during hot deformation. Optimal conditions for the proposed technology of high-temperature mechanical treatment as applied to two-phase corrosion and heat-resistant steels have been developed
Experimental study on steam-water two-phase flow frictional pressure drops in helical coils
Institute of Scientific and Technical Information of China (English)
无
1997-01-01
Experiments of steam-water two-phase flow frictional pressure drop in a vertical helical coil were carried out in the high-pressure water test loop of Xi'an jiaotong University,The coil is made of stainless steel tube with an inner diameter of 16mm,the helix diameter measured from tube axis to tube axis is 1.3m,and helix angle of the coil is 3.65°,The experimental conditions are:pressurep=4-18MPa,mass velocity G=400-1400kg/(m2.s),inner wall heat flux q=100-700kW/m2,Based on these data,a correlation for predicting the steam-water two-phase flow frictional pressure drop was derived,it can be used for the design of steam generator of HTGR.
Velocity measurements in the liquid metal flow driven by a two-phase inductor
Pedcenko, A; Priede, J; Gerbeth, G; Hermann, R
2013-01-01
We present the results of velocity measurements obtained by ultrasonic Doppler velocimetry and local potential probes in the flow of GaInSn eutectic melt driven by a two-phase inductor in a cylindrical container. This type of flow is expected in a recent modification to the floating zone technique for the growth of small-diameter single intermetallic compound crystals. We show that the flow structure can be changed from the typical two toroidal vortices to a single vortex by increasing the phase shift between the currents in the two coils from 0 to 90 degrees. The latter configuration is thought to be favourable for the growth of single crystals. The flow is also computed numerically and a reasonable agreement with the experimental results is found. The obtained results may be useful for the design of combined two-phase electromagnetic stirrers and induction heaters for metal or semiconductor melts.
A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows
Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.
2015-11-01
In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme
Targeted Delivery by Smart Capsules for Controlling Two-phase Flow in Porous Media
Fan, J.; Weitz, D.
2015-12-01
Understanding and controlling two-phase flow in porous media are of particular importance to the relevant industry applications, such as enhanced oil recovery, CO2 sequestration, and groundwater remediation. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for (a) delivering surfactant to the vicinity of oil-water interface and (b) delivering microgels to the high permeability region and therefore blocking the pore space there, respectively. We also show that flooding these two capsules into porous media effectively reduces the trapped oil and improves the homogeneity of the medium, respectively. Besides of its industrial applications, this technique also opens a new window to study the mechanism of two-phase flow in porous media.
Two-phase dusty fluid flow along a cone with variable properties
Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy
2016-09-01
In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).
A Batch Arrival Retrial Queue with Two Phases of Service and Bernoulli Vacation Schedule
Institute of Scientific and Technical Information of China (English)
Gautam Choudhury; Kandarpa Deka
2013-01-01
We consider an MX/G/1 queueing system with two phases of heterogeneous service and Bernoulli vacation schedule which operate under a linear retrial policy.In addition,each individual customer is subject to a control admission policy upon the arrival.This model generalizes both the classical M/G/1 retrial queue with arrivals in batches and a two phase batch arrival queue with a single vacation under Bernoulli vacation schedule.We will carry out an extensive stationary analysis of the system,including existence of the stationary regime,embedded Markov chain,steady state distribution of the server state and number of customer in the retrial group,stochastic decomposition and calculation of the first moment.
Measurement of average density and relative volumes in a dispersed two-phase fluid
Sreepada, Sastry R.; Rippel, Robert R.
1992-01-01
An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.