Compact and Accurate Turbocharger Modelling for Engine Control
DEFF Research Database (Denmark)
Sorenson, Spencer C; Hendricks, Elbert; Magnússon, Sigurjón
2005-01-01
With the current trend towards engine downsizing, the use of turbochargers to obtain extra engine power has become common. A great díffuculty in the use of turbochargers is in the modelling of the compressor map. In general this is done by inserting the compressor map directly into the engine ECU...... turbocharges with radial compressors for either Spark Ignition (SI) or diesel engines...
Mean Value Modelling of Turbocharged SI Engines
DEFF Research Database (Denmark)
Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.
1998-01-01
The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented.......The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented....
A new control-oriented transient model of variable geometry turbocharger
International Nuclear Information System (INIS)
Bahiuddin, Irfan; Mazlan, Saiful Amri; Imaduddin, Fitrian; Ubaidillah
2017-01-01
The flow input of a variable geometry turbocharger turbine is highly unsteady due to rapid and periodic pressure dynamics in engine combustion chambers. Several VGT control methods have been developed to recover more energy from the highly pulsating exhaust gas flow. To develop a control system for the highly pulsating flow condition, an accurate and valid unsteady model is required. This study focuses on the derivation of governing the unsteady control-oriented model (COM) for a turbine of an actively controlled turbocharger (ACT). The COM has the capability to predict the turbocharger behaviour regarding the instantaneous turbine actual and isentropic powers in different effective throat areas. The COM is a modified version of a conventional mean value model (MVM) with an additional feature to calculate the turbine angular velocity and torque for determining the actual power. The simulation results were further compared with experimental data in two general scenarios. The first scenario was simulations on fixed geometry positions. The second simulation scenario considered the nozzle movement after receiving a signal from the controller in different cases. The comparison between simulation and experimental results showed similarities in the recovered power behaviours the turbine inlet area increases or vice versa. The model also has proved its reliability to replicate general behaviour as in the example of ACT cases presented in this paper. However, the model is incapable to replicate the detailed and complicated phenomena, such as choking effect and hysteresis effect. - Highlights: • A control-oriented model of a variable geometry turbocharger turbine is proposed. • Isentropic and actual power behaviour estimations on turbocharger turbine. • A simulation tool for developing active control systems of turbocharger turbines.
Mean Value Modelling of a Turbocharged SI Engine
DEFF Research Database (Denmark)
Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.
1998-01-01
An important paradigm for the modelling of naturallly aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines...... but not the cycle-by-cycle behavior. In principle such models are also physically based,are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple...... physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has...
Determination of heat flows inside turbochargers by means of a one dimensional lumped model
Olmeda González, Pablo Cesar; Dolz Ruiz, Vicente; Arnau Martínez, Francisco José; Reyes Belmonte, Miguel Angel
2013-01-01
In the present paper, a methodology to calculate the heat fluxes inside a turbocharger from diesel passenger car is presented. The heat transfer phenomenon is solved by using a one dimensional lumped model that takes into account both the heat fluxes between the different turbocharger elements, as well as the heat fluxes between the working fluids and the turbocharger elements. This heat transfer study is supported by the high temperature differences between the working fluids passing thr...
International Nuclear Information System (INIS)
Sakellaridis, Nikolaos F.; Raptotasios, Spyridon I.; Antonopoulos, Antonis K.; Mavropoulos, Georgios C.; Hountalas, Dimitrios T.
2015-01-01
Engine cycle simulation models are increasingly used in diesel engine simulation and diagnostic applications, reducing experimental effort. Turbocharger simulation plays an important role in model's ability to accurately predict engine performance and emissions. The present work describes the development of a complete engine simulation model for marine Diesel engines based on a new methodology for turbocharger modelling utilizing physically based meanline models for compressor and turbine. Simulation accuracy is evaluated against engine bench measurements. The methodology was developed to overcome the problem of limited experimental maps availability for compressor and turbine, often encountered in large marine diesel engine simulation and diagnostic studies. Data from the engine bench are used to calibrate the models, as well as to estimate turbocharger shaft mechanical efficiency. Closed cycle and gas exchange are modelled using an existing multizone thermodynamic model. The proposed methodology is applied on a 2-stroke marine diesel engine and its evaluation is based on the comparison of predictions against measured engine data. It is demonstrated model's ability to predict engine response with load variation regarding both turbocharger performance and closed cycle parameters, as well as NOx emission trends, making it an effective tool for both engine diagnostic and optimization studies. - Highlights: • Marine two stroke diesel engine simulation model. • Turbine and compressor simulation using physical meanline models. • Methodology to derive T/C component efficiency and T/C shaft mechanical efficiency. • Extensive validation of predictions against experimental data.
International Nuclear Information System (INIS)
Harley, P; Spence, S; Early, J; Filsinger, D; Dietrich, M
2013-01-01
Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors
Research on Control-Oriented Modeling for Turbocharged SI and DI Gasoline Engines
Directory of Open Access Journals (Sweden)
Feitie Zhang
2015-01-01
Full Text Available In order to analyze system performance and develop model-based control algorithms for turbocharged spark ignition and direct injection (SIDI gasoline engines, a control oriented mean value model is developed and validated. The model is constructed based on theoretical analysis for the different components, including the compressor, turbine, air filter, intercooler, throttle, manifold, and combustion chamber. Compressor mass flow and efficiency are modeled as parameterized functions. A standard nozzle model is used to approximate the mass flow through the turbine, and the turbine efficiency is modeled as a function of blade speed ratio (BSR. The air filter is modeled as a tube for capturing its pressure drop feature. The effectiveness number of transfer units (NTU modeling method is utilized for the intercooler. The throttle model consists of the standard nozzle model with an effective area regressed to throttle position. Manifolds are modeled for their dynamically varying pressure state. For the cylinder, the air mass flow into cylinders, fuel mass, torque, and exhaust temperature are modeled. Compared to the conventional lookup table approach, transient dynamics error can be improved significantly through using the model from this work.
International Nuclear Information System (INIS)
Galindo, J.; Serrano, J.R.; Climent, H.; Varnier, O.
2010-01-01
Present work presents an analytical study of two-stage turbocharging configuration performance. The aim of this work is to understand the influence of different two-stage-architecture parameters to optimize the use of exhaust manifold gases energy and to aid decision making process. An analytical model giving the relationship between global compression ratio and global expansion ratio is developed as a function of basic engine and turbocharging system parameters. Having an analytical solution, the influence of different variables, such as expansion ratio between HP and LP turbine, intercooler efficiency, turbochargers efficiency, cooling fluid temperature and exhaust temperature are studied independently. Engine simulations with proposed analytical model have been performed to analyze the influence of these different parameters on brake thermal efficiency and pumping mean effective pressure. The results obtained show the overall performance of the two-stage system for the whole operative range and characterize the optimum control of the elements for each operative condition. The model was also used to compare single-stage and two-stage architectures performance for the same engine operative conditions. Benefits and limits in terms of breathing capabilities and brake thermal efficiency of each type of system have been presented and analyzed.
Model-Based State Feedback Controller Design for a Turbocharged Diesel Engine with an EGR System
Directory of Open Access Journals (Sweden)
Tianpu Dong
2015-05-01
Full Text Available This paper describes a method for the control of transient exhaust gas recirculation (EGR systems. Firstly, a state space model of the air system is developed by simplifying a mean value model. The state space model is linearized by using linearization theory and validated by the GT-Power data with an operating point of the diesel engine. Secondly, a state feedback controller based on the intake oxygen mass fraction is designed for EGR control. Since direct measurement of the intake oxygen mass fraction is unavailable on the engine, the estimation method for intake oxygen mass fraction has been proposed in this paper. The control strategy is analyzed by using co-simulation with the Matlab/Simulink and GT-Powers software. Finally, the whole control system is experimentally validated against experimental data of a turbocharged diesel engine. The control effect of the state feedback controller compared with PID controller proved to be further verify the feasibility and advantages of the proposed state feedback controller.
Non-adiabatic pressure loss boundary condition for modelling turbocharger turbine pulsating flow
International Nuclear Information System (INIS)
Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.
2015-01-01
Highlights: • Bespoke non-adiabatic pressure loss boundary for pulse flow turbine modelling. • Predictions show convincing results against experimental and literature data. • Predicted pulse pressure propagation is in good agreement with literature data. • New methodology is time efficient and requires minimal geometrical inputs. - Abstract: This paper presents a simplified methodology of pulse flow turbine modelling, as an alternative over the meanline integrated methodology outlined in previous work, in order to make its application to engine cycle simulation codes much more straight forward. This is enabled through the development of a bespoke non-adiabatic pressure loss boundary to represent the turbine rotor. In this paper, turbocharger turbine pulse flow performance predictions are presented along with a comparison of computation duration against the previously established integrated meanline method. Plots of prediction deviation indicate that the mass flow rate and actual power predictions from both methods are highly comparable and are reasonably close to experimental data. However, the new boundary condition required significantly lower computational time and rotor geometrical inputs. In addition, the pressure wave propagation in this simplified unsteady turbine model at different pulse frequencies has also been found to be in agreement with data from the literature, thereby supporting the confidence in its ability to simulate the wave action encountered in turbine pulse flow operation
Modelling of Outer and Inner Film Oil Pressure for Floating Ring Bearing Clearance in Turbochargers
International Nuclear Information System (INIS)
Zhang Hao; Shi Zhanqun; Gu Fengshou; Ball, Andrew
2011-01-01
Floating ring bearing is widely used in turbochargers to undertake the extreme condition of high rotating speed and high operating temperature. It is also the most concerned by the designers and users alike due to its high failure rate and high maintenance cost. Any little clearance change may result in oil leakage, which in turn cause blue smoke or black smoke according to leakage types. However, there is no condition monitoring of this bearing because it is almost impossible to measure the clearance especially the inner clearance, in which the inner oil film directly bears the high speed rotation. In stead of measuring clearance directly, this paper has proposed a method that uses film pressure as a measure to monitor the bearing clearance and its variation. A non-linear mathematical model is developed by using Reynolds equations with non-linear oil film pressure. A full description of the outer and inner film is provided along both axial and radial directions. A numerical simulation is immediately carried out. Variable clearance changes are investigated using the mathematical model. Results show the relationship between clearance and film pressure.
Modelling the Turbocharger Cut Off Application Due to Slow Steaming Operation 12RTA96C-B Engine
Directory of Open Access Journals (Sweden)
Karsten Wehner
2017-09-01
Full Text Available Out of the total operational costs of a ship, fuel costs account for by far the highest proportion. In view of the global economic situation and the rising oil prices, shipowners and charterers are looking for solutions to cut costs by reducing fuel consumption. Low load operation, also well-known as “slow steaming”, represents the currently most effective and popular measure to cut fuel costs and, in consequence, the total operational costs for increased competitiveness in the market. Low load operation is possible and there is an increasing trend to operate in these very low engine load ranges. As the engines were not designed for this operational condition, various retrofit modifications to the engine can compensate for this. By using low load operation, the reduction of the RPM gives problems when sailing at low speed. A turbocharger (TC compresses inlet air to a high pressure and after cooling this compressed air it results in higher mass of air in the cylinder. But when running at a low power load this air reaches temperatures that are too low for an optimal combustion process. One of the solution comes from the company Wärtsilä. They install so called “low steam engine kits”. When this kit is installed it allows the engine operators to cut off one turbocharger of the engine, this result’s in a higher RPM for the operating turbochargers. When the remaining TC’s have a higher RPM their efficiency improves and gives the engine more air for combustion.The goal of this Bachelor thesis is to make a calculation modelling and prove that by switching off one or more turbocharger on the system will improve the efficiency in slow steaming operation. Beside that, this thesis is aims to estimated the performance of the engine in both operation condition.
Investigation of turbocharger compressor surge inception by means of an acoustic two-port model
Kabral, R.; Åbom, M.
2018-01-01
The use of centrifugal compressors have increased tremendously in the last decade being implemented in the modern IC engine design as a key component. However, an efficient implementation is restricted by the compression system surge phenomenon. The focus in the investigation of surge inception have mainly been on the aerodynamic field while neglecting the acoustic field. In the present work a new method based on the full acoustic 2-port model is proposed for investigation of centrifugal compressor stall and surge inception. Essentially, the compressor is acoustically decoupled from the compression system, hence enabling the determination of sound generation and the quantification of internal aero-acoustic coupling effects, both independently of the connected pipe system. These frequency dependent quantities are indicating if the compressor is prone to self-sustained oscillations in case of positive feedback when installed in a system. The method is demonstrated on experimentally determined 2-port data of an automotive turbocharger centrifugal compressor under a variety of realistic operating conditions.
Rotordynamics of automotive turbochargers
Nguyen-Schäfer, Hung
2015-01-01
Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm. The broadly interdisciplinary field of turbocharger rotordynamics involves 1) Thermodynamics and Turbo-Matching of Turbochargers 2) Dynamics of Turbomachinery 3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory 4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory 5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation 6) Computation of Nonlinear Responses of a Turbocharger Rotor 7) Aero and Vibroacoustics of Turbochargers 8) Shop and Trim Balancing at Two Planes of the Rotor 9) Tribology of the Bearing Surface Roughness 10) Design of Turbocharger Platforms using the Similarity Laws The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear character...
Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.
1985-01-01
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.
Super Turbocharging the Direct Injection Diesel engine
Boretti, Albert
2018-03-01
The steady operation of a turbocharged diesel direct injection (TDI) engine featuring a variable speed ratio mechanism linking the turbocharger shaft to the crankshaft is modelled in the present study. Key parameters of the variable speed ratio mechanism are range of speed ratios, efficiency and inertia, in addition to the ability to control relative speed and flow of power. The device receives energy from, or delivers energy to, the crankshaft or the turbocharger. In addition to the pistons of the internal combustion engine (ICE), also the turbocharger thus contributes to the total mechanical power output of the engine. The energy supply from the crankshaft is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, the maximum torque is drastically improved, radically expanding the load range. Additionally, moving closer to the points of operation of a balanced turbocharger, it is also possible to improve both the efficiency η, defined as the ratio of the piston crankshaft power to the fuel flow power, and the total efficiency η*, defined as the ratio of piston crankshaft power augmented of the power from the turbocharger shaft to the fuel flow power, even if of a minimal extent. The energy supply to the crankshaft is possible mostly at high speeds and high loads, where otherwise the turbine could have been waste gated, and during decelerations. The use of the energy at the turbine otherwise waste gated translates in improvements of the total fuel conversion efficiency η* more than the efficiency η. Much smaller improvements are obtained for the maximum torque, yet again moving closer to the points of operation of a balanced turbocharger. Adopting a much larger turbocharger (target displacement x speed 30% larger than a conventional turbocharger), better torque outputs and fuel conversion efficiencies η* and η are possible at every speed vs. the engine with a smaller, balanced turbocharger. This result
Lifecycle optimized ethanol-gasoline blends for turbocharged engines
Zhang, Bo; Sarathy, Mani
2016-01-01
This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission
International Nuclear Information System (INIS)
Ahmed, Fayez Shakil; Laghrouche, Salah; Mehmood, Adeel; El Bagdouri, Mohammed
2014-01-01
Highlights: • Estimation of aerodynamic force on variable turbine geometry vanes and actuator. • Method based on exhaust gas flow modeling. • Simulation tool for integration of aerodynamic force in automotive simulation software. - Abstract: This paper provides a reliable tool for simulating the effects of exhaust gas flow through the variable turbine geometry section of a variable geometry turbocharger (VGT), on flow control mechanism. The main objective is to estimate the resistive aerodynamic force exerted by the flow upon the variable geometry vanes and the controlling actuator, in order to improve the control of vane angles. To achieve this, a 1D model of the exhaust flow is developed using Navier–Stokes equations. As the flow characteristics depend upon the volute geometry, impeller blade force and the existing viscous friction, the related source terms (losses) are also included in the model. In order to guarantee stability, an implicit numerical solver has been developed for the resolution of the Navier–Stokes problem. The resulting simulation tool has been validated through comparison with experimentally obtained values of turbine inlet pressure and the aerodynamic force as measured at the actuator shaft. The simulator shows good compliance with experimental results
An experimental procedure to determine heat transfer properties of turbochargers
Serrano, J. R.; Olmeda, P.; Páez, A.; Vidal, F.
2010-03-01
Heat transfer phenomena in turbochargers have been a subject of investigation due to their importance for the correct determination of compressor real work when modelling. The commonly stated condition of adiabaticity for turbochargers during normal operation of an engine has been revaluated because important deviations from adiabatic behaviour have been stated in many studies in this issue especially when the turbocharger is running at low rotational speeds/loads. The deviations mentioned do not permit us to assess properly the turbine and compressor efficiencies since the pure aerodynamic effects cannot be separated from the non-desired heat transfer due to the presence of both phenomena during turbocharger operation. The correction of the aforesaid facts is necessary to properly feed engine models with reliable information and in this way increase the quality of the results in any modelling process. The present work proposes a thermal characterization methodology successfully applied in a turbocharger for a passenger car which is based on the physics of the turbocharger. Its application helps to understand the thermal behaviour of the turbocharger, and the results obtained constitute vital information for future modelling efforts which involve the use of the information obtained from the proposed methodology. The conductance values obtained from the proposed methodology have been applied to correct a procedure for measuring the mechanical efficiency of the tested turbocharger.
An experimental procedure to determine heat transfer properties of turbochargers
International Nuclear Information System (INIS)
Serrano, J R; Olmeda, P; Páez, A; Vidal, F
2010-01-01
Heat transfer phenomena in turbochargers have been a subject of investigation due to their importance for the correct determination of compressor real work when modelling. The commonly stated condition of adiabaticity for turbochargers during normal operation of an engine has been revaluated because important deviations from adiabatic behaviour have been stated in many studies in this issue especially when the turbocharger is running at low rotational speeds/loads. The deviations mentioned do not permit us to assess properly the turbine and compressor efficiencies since the pure aerodynamic effects cannot be separated from the non-desired heat transfer due to the presence of both phenomena during turbocharger operation. The correction of the aforesaid facts is necessary to properly feed engine models with reliable information and in this way increase the quality of the results in any modelling process. The present work proposes a thermal characterization methodology successfully applied in a turbocharger for a passenger car which is based on the physics of the turbocharger. Its application helps to understand the thermal behaviour of the turbocharger, and the results obtained constitute vital information for future modelling efforts which involve the use of the information obtained from the proposed methodology. The conductance values obtained from the proposed methodology have been applied to correct a procedure for measuring the mechanical efficiency of the tested turbocharger
Energy Technology Data Exchange (ETDEWEB)
Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Cervello, C. [Conselleria de Cultura, Educacion y Deporte, Generalitat Valenciana (Spain)
2008-12-15
The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation. (author)
International Nuclear Information System (INIS)
Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A.; Cervello, C.
2008-01-01
The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation
Energy Technology Data Exchange (ETDEWEB)
Galindo, J.; Lujan, J.M.; Serrano, J.R.; Dolz, V. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain); Guilain, S. [Renault s.a.s., Lardy (France)
2006-01-15
This paper describes a heat transfer model to be implemented in a global engine 1-D gas-dynamic code to calculate reciprocating internal combustion engine performance in steady and transient operations. A trade off between simplicity and accuracy has been looked for, in order to fit with the stated objective. To validate the model, the temperature of the exhaust manifold wall in a high-speed direct injection (HSDI) turbocharged diesel engine has been measured during a full load transient. In addition, an indirect assessment of the exhaust gas temperature during this transient process has been carried out. The results show good agreement between the measured and modelled data with good accuracy to predict the engine performance. A dual-walled air gap exhaust manifold has been tested in order to quantify the potential of exhaust gas thermal energy saving on engine transient performance. The experimental results together with the heat transfer model have been used to analyse the influence of thermal energy saving on dynamic performance during the load transient of an HSDI turbocharged diesel engine. (author)
Accurate Modeling of Advanced Reflectarrays
DEFF Research Database (Denmark)
Zhou, Min
to the conventional phase-only optimization technique (POT), the geometrical parameters of the array elements are directly optimized to fulfill the far-field requirements, thus maintaining a direct relation between optimization goals and optimization variables. As a result, better designs can be obtained compared...... of the incident field, the choice of basis functions, and the technique to calculate the far-field. Based on accurate reference measurements of two offset reflectarrays carried out at the DTU-ESA Spherical NearField Antenna Test Facility, it was concluded that the three latter factors are particularly important...... using the GDOT to demonstrate its capabilities. To verify the accuracy of the GDOT, two offset contoured beam reflectarrays that radiate a high-gain beam on a European coverage have been designed and manufactured, and subsequently measured at the DTU-ESA Spherical Near-Field Antenna Test Facility...
Lifecycle optimized ethanol-gasoline blends for turbocharged engines
Zhang, Bo
2016-08-16
This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission of ethanol blended gasoline mixtures in future engines. The optimal fuel blend (lowest CO2 emitting fuel) is identified. A range of gasoline fuels is studied, containing different ethanol volume percentages (E0–E40), research octane numbers (RON, 92–105), and octane sensitivities (8.5–15.5). Sugarcane-based and cellulosic ethanol-blended gasolines are shown to be effective in reducing lifecycle CO2 emission, while corn-based ethanol is not as effective. A refinery simulation of production emission was utilized, and combined with vehicle fuel consumption modeling to determine the lifecycle CO2 emissions associated with ethanol-blended gasoline in turbocharged engines. The critical parameters studied, and related to blended fuel lifecycle CO2 emissions, are ethanol content, research octane number, and octane sensitivity. The lowest-emitting blended fuel had an ethanol content of 32 vol%, RON of 105, and octane sensitivity of 15.5; resulting in a CO2 reduction of 7.1%, compared to the reference gasoline fuel and engine technology. The advantage of ethanol addition is greatest on a per unit basis at low concentrations. Finally, this study shows that engine-downsizing technology can yield an additional CO2 reduction of up to 25.5% in a two-stage downsized turbocharged engine burning the optimum sugarcane-based fuel blend. The social cost savings in the USA, from the CO2 reduction, is estimated to be as much as $187 billion/year. © 2016 Elsevier Ltd
Turbocharging Normalization in Highland Conditions
Directory of Open Access Journals (Sweden)
I. V. Filippov
2017-01-01
Full Text Available To ensure many production processes are used compressors of various types, including turbochargers, which produce compressed air. The actual performance values of turbochargers used in highlands are significantly different from the certified values, and parameters of compressed air do not always guarantee the smooth and efficient functioning for consumers.The paper presents research results of the turbochargers of 4CI 425MX4 type, a series of "CENTAC", manufactured by INGERSOL – RAND Company. The research has been conducted in industrial highland conditions in difficult climatic environment. There were almost no investigations of turbochargers running in highland conditions. The combination of low atmospheric pressure with high temperature of the intake air causes the abnormal operating conditions of a turbocharger. Only N. M. Barannikov in his paper shows the results of theoretical studies of such operating conditions, but as to the practical research, there is no information at all.To normalize the turbocharger operation an option of the mechanical pressurization in the suction pipe is adopted. As a result of theoretical research, a TurboMAX blower MAX500 was chosen as a supercharger. The next stage of theoretical research was to construct characteristics of the turbocharger 4CI 425MX4 with a mechanical supercharger in the suction pipe. The boost reduces to the minimum the time of using additional compressors when parameters of the intake air are changed and ensures the smooth and efficient functioning for consumers.To verify the results of theoretical studies, namely, the technique for recalculation of the turbocharger characteristics under the real conditions of suction, were carried out the experimental researches. The average error between experimental and theoretical data is 2,9783 %, which confirms the validity of the technique used for reduction of the turbocharger characteristics to those under the real conditions of suction.
Directory of Open Access Journals (Sweden)
Hong Zhang
2017-12-01
Full Text Available This paper is focused on the performance of centrifugal compressors for vehicle turbochargers operating at high altitude. The reasons for turbocharged diesel engine power loss increases and bad economy performance caused by exhaust gas energy utilization are investigated. The atmosphere’s impact on the turbocharger centrifugal compressor’s energy distribution characteristics under the plateau is discussed. The key parameters that affect compressor characteristics are concluded in a theoretical method. A simulation calculation model is established to accurately predict compressor performance at high altitude. By comparing the experimental results, the calculation results are validated. The details of the internal flow fields analysis, including critical parameters of a compressor operating at high altitude, are analyzed. The results show that with the increase of altitude from 0 m to 4500 m, the peak efficiency of the compressor is reduced by 2.4%, while the peak pressure ratio is increased by 7%. The main influence characters of the plateau environment on the turbocharger centrifugal compressor performance, such as blade loads, exergy utilization and entropy distribution are concluded. The key factors for compressor performance and compressor energy flow control design method operated at high altitude are obtained.
Two operating modes for turbocharger system
International Nuclear Information System (INIS)
Bayomi, Nazih N.; Abd El-Maksoud, Rafea M.
2012-01-01
Highlights: ► A turbocharger system that operates in power assisted mode is introduced. ► The parameters affecting performance of the turbocharger is presented. ► Different operational charts for turbocharger are presented. ► The parametric study is helpful guide to determine turbocharger dimensioning. - Abstract: The present paper introduces a turbocharger system that operates in two different modes according to turbocharging requirements. In the first mode, the turbocharger is operating with power assistance at lower engine speeds where the power of the exhaust gases is insufficient. Thereafter, the second mode is switched leading the compressor and the turbine of the turbocharger to rotate separately for best performance. Analysis is presented to find out the parameters affecting the operation of the turbocharger and their values to achieve enhanced turbocharger performance with high efficient impellers. The parameters studied are based on data of the turbocharger operating conditions and the operational requirements of the engine. The analysis considers the turbocharger system, its turbine and its compressor. The operational charts demonstrate the simulated results for two operating modes. This study is helpful as a guide to determine the turbocharger dimensioning and blade profile assignment without using any given blade dimensional value.
Mental models accurately predict emotion transitions.
Thornton, Mark A; Tamir, Diana I
2017-06-06
Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.
Mental models accurately predict emotion transitions
Thornton, Mark A.; Tamir, Diana I.
2017-01-01
Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373
Accurate Modeling Method for Cu Interconnect
Yamada, Kenta; Kitahara, Hiroshi; Asai, Yoshihiko; Sakamoto, Hideo; Okada, Norio; Yasuda, Makoto; Oda, Noriaki; Sakurai, Michio; Hiroi, Masayuki; Takewaki, Toshiyuki; Ohnishi, Sadayuki; Iguchi, Manabu; Minda, Hiroyasu; Suzuki, Mieko
This paper proposes an accurate modeling method of the copper interconnect cross-section in which the width and thickness dependence on layout patterns and density caused by processes (CMP, etching, sputtering, lithography, and so on) are fully, incorporated and universally expressed. In addition, we have developed specific test patterns for the model parameters extraction, and an efficient extraction flow. We have extracted the model parameters for 0.15μm CMOS using this method and confirmed that 10%τpd error normally observed with conventional LPE (Layout Parameters Extraction) was completely dissolved. Moreover, it is verified that the model can be applied to more advanced technologies (90nm, 65nm and 55nm CMOS). Since the interconnect delay variations due to the processes constitute a significant part of what have conventionally been treated as random variations, use of the proposed model could enable one to greatly narrow the guardbands required to guarantee a desired yield, thereby facilitating design closure.
Directory of Open Access Journals (Sweden)
Lukas Bernhauser
2017-03-01
Full Text Available Increasing quality demands of combustion engines require, amongst others, improvements of the engine’s acoustics and all (subcomponents mounted to the latter. A significant impact to the audible tonal noise spectrum results from the vibratory motions of fast-rotating turbocharger rotor systems in multiple hydrodynamic bearings such as floating bearing rings. Particularly, the study of self-excited non-linear vibrations of the rotor-bearing systems is crucial for the understanding, prevention or reduction of the noise and, consequently, for a sustainable engine acoustics development. This work presents an efficient modeling approach for the investigation, optimization, and design improvement of complex turbocharger rotors in hydrodynamic journal bearings, including floating bearing rings with circular and non-circular bearing geometries. The capability of tonal non-synchronous vibration prevention using non-circular bearing shapes is demonstrated with dynamic run-up simulations of the presented model. These findings and the performance of our model are compared and validated with results of a classical Laval/Jeffcott rotor-bearing model and a specific turbocharger model found in the literature. It is shown that the presented simulation method yields fast and accurate results and furthermore, that non-circular bearing shapes are an effective measure to reduce or even prevent self-excited tonal noise.
Advanced turbocharger rotor for variable geometry turbocharging systems
Energy Technology Data Exchange (ETDEWEB)
Stafford, R.J.; Mulloy, J.M.; Yonushonis, T.M.; Weber, H.G.; Patel, M.J. [Cummins Engine Co., Inc., Columbus, IN (United States)
1997-12-31
Turbocharging of diesel engines has enhanced fuel economy and reduced diesel engine emissions. The initial applications of turbochargers to heavy duty diesel engines during the early 1970`s reduced Bosch smoke (a measure of particulate matter used at the time) from 2.4 to 0.6 units. Current turbochargers are optimized at one set of engine conditions and by necessity, at the off-design conditions or transient conditions the fuel economy and emissions performance are penalized. A rotor was designed and a prototype fabricated which showed as much as a 10% efficiency improvement at off-design conditions. The leading edges are blunt and rounded to accept the flow from the turbine nozzles at a variety of inlet conditions with a minimum of losses. The rotor efficiency is better at all conditions and the advantage improves as it operates at conditions further from the design point. Unfortunately, the conventional materials from which this turbine rotor was constructed had inadequate strength to allow its use on engines, and had such high rotational inertia that transient response would have been severely compromised.
Aero and vibroacoustics of automotive turbochargers
Energy Technology Data Exchange (ETDEWEB)
Nguyen-Schaefer, Hung [Bosch Mahle Turbo Systems GmbH, Stuttgart (Germany)
2013-02-01
First book about the aeroacoustics of automotive turbochargers. Author of the book ''Rotordynamics of Automotive Turbochargers'', Springer, 2012. Written by an R and D expert in the turbocharger industry. Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill's analogy, is required to investigate airborne noises produced by turbochargers in passenger vehicles. The content of this book is intended for advanced undergraduates, graduates in mechanical engineering, research scientists and practicing engineers who want to better understand the interactions between these working fields and the resulting impact on the interesting topic of Aero and Vibroacoustics of Automotive Turbochargers.
Energy Technology Data Exchange (ETDEWEB)
Zahn, Sebastian
2012-11-01
Model-based and simulation-based approaches increasingly are used in the process of software development and function development for automobile control devices in order to reduce the development time as well as to save test-stand trials. The author of the contribution under consideration reports on the design of a dynamic model of a diesel engine for the hardware-in-the-loop test environment. The development, the test and pre-application of modern engine control units of automobiles with a cylinder-based combustion control is in the focus of the model application. The developed real-time model of the engine consists of a air pathway model, an exhaust gas pathway model, a VTG turbocharger model, a model of the cylinder group as well as an emission model. The parametrization of the engine model requires a continuous setting method. The model is validated by means of stationary and dynamic measured data of the engine test stand.
Effect of turbocharging system on the performance of a natural gas engine
International Nuclear Information System (INIS)
Kesgin, Ugur
2005-01-01
The effect of the turbocharging system on the performance of the gas engine family, which is used in combined power plants, is investigated. These investigations show a clear improvement potential for the future of the engine series optimised here. To do this, a computational model in which zero dimensional phenomena within the cylinder and one dimensional phenomena in the engine inlet and exhaust system are used is verified. Using this engine model, the effects of the parameters of the exhaust and turbocharging system on the engine performance are obtained. In particular, the following parameters are chosen: diameter of the exhaust manifold, diameter of the pipe at the turbine exit, efficiency of the turbocharger, location of the turbocharger, back pressure at the turbine exit and pressure losses (resistances) before the compressor. This paper presents the results of these investigations
Energy Technology Data Exchange (ETDEWEB)
Nguyen-Schaefer, Hung [Bosch Mahle Turbo Systems GmbH und Co. KG, Stuttgart (Germany)
2012-11-01
Describes the rotordynamics of automotive turbochargers. Requires only a minimum of mathematical background. Written by an R and D expert from industry. This book deals with rotordynamics of automotive turbochargers while encompassing the analysis of the dynamics of rotating machines at very high rotor speeds of 300,000 rpm and above. This interdisciplinary field involves 1. thermodynamics and turbo-matching knowledge to compute working conditions of turbochargers, 2. fluid and bearing dynamics to calculate various operating thrust loads and to design the rotating floating ring bearings (two-oil-film bearings), and 3. tribology to improve the rotor stability and to reduce the bearing friction. Mathematical background in modeling and simulation methods is necessary; however, the prerequisites have been kept to a minimum. The book addresses both practitioners working in the field of rotordynamics of automotive turbochargers and graduate students in mechanical engineering.
Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement
Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.
2004-06-01
In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.
Induced Unbalance as a Method for Improving the Dynamic Stability of High-Speed Turbochargers
Gordon Kirk, R.; Alsaeed, Ali A.
2011-01-01
The high-speed diesel engine turbocharger is known to have subsynchronous vibrations for a wide speed range. The bearing fluid-film instability is the main source of the vibration. The nonlinear forces inside the bearings are causing the rotor to whirl in a limit cycle. This study presents a new method for improving the dynamic stability by inducing the turbocharger rotor unbalance in order to suppress the subsynchronous vibration. The finite-element model of the turbocharger with floating-ring bearings is numerically solved for the nonlinear time-transient response. Both compressor and turbine added unbalance are induced and the dynamic stability is computed. The turbocharger model with linearized floating-ring bearings is also solved for eigenvalues to predict the modes of instability. The linear analysis demonstrates that the forward whirling mode of the floating-ring at the compressor end also becomes unstable at the higher turbocharger speeds, in addition to the unstable forward conical and cylindrical modes. The numerical predictions are also compared to the former experimental results of a similar turbocharger. The results of the study show that the subsynchronous frequency amplitude of the dominant first mode is reduced when inducing either the compressor or the turbine unbalance at a certain level. © 2011 R. Gordon Kirk and Ali A. Alsaeed.
Nonstationary heat flow in the piston of the turbocharged engine
Directory of Open Access Journals (Sweden)
Piotr GUSTOF
2010-01-01
Full Text Available In this study the numeric computations of nonstationary heat flow in form of temperature distribution on characteristic surfaces of the piston of the turbocharged engine at the beginning phase its work was presented. The computations were performed for fragmentary load engine by means of the two-zone combustion model, the boundary conditions of III kind and the finite elements method (FEM by using of COSMOS/M program.
Aero and vibroacoustics of automotive turbochargers
Nguyen-Schäfer, Hung
2013-01-01
Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill’s analogy, is required to investigate airborne noises produced by turbochargers in passenger vehi...
Accurate Electromagnetic Modeling Methods for Integrated Circuits
Sheng, Z.
2010-01-01
The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on
Anatomically accurate, finite model eye for optical modeling.
Liou, H L; Brennan, N A
1997-08-01
There is a need for a schematic eye that models vision accurately under various conditions such as refractive surgical procedures, contact lens and spectacle wear, and near vision. Here we propose a new model eye close to anatomical, biometric, and optical realities. This is a finite model with four aspheric refracting surfaces and a gradient-index lens. It has an equivalent power of 60.35 D and an axial length of 23.95 mm. The new model eye provides spherical aberration values within the limits of empirical results and predicts chromatic aberration for wavelengths between 380 and 750 nm. It provides a model for calculating optical transfer functions and predicting optical performance of the eye.
A new, accurate predictive model for incident hypertension
DEFF Research Database (Denmark)
Völzke, Henry; Fung, Glenn; Ittermann, Till
2013-01-01
Data mining represents an alternative approach to identify new predictors of multifactorial diseases. This work aimed at building an accurate predictive model for incident hypertension using data mining procedures.......Data mining represents an alternative approach to identify new predictors of multifactorial diseases. This work aimed at building an accurate predictive model for incident hypertension using data mining procedures....
Wang, Longkai; Bin, Guangfu; Li, Xuejun; Liu, Dingqu
2016-03-01
For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.
Advanced Turbo-Charging Research and Development
Energy Technology Data Exchange (ETDEWEB)
None
2008-02-27
The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger' because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.
Accurate modeling and maximum power point detection of ...
African Journals Online (AJOL)
Accurate modeling and maximum power point detection of photovoltaic ... Determination of MPP enables the PV system to deliver maximum available power. ..... adaptive artificial neural network: Proposition for a new sizing procedure.
Energy Technology Data Exchange (ETDEWEB)
Przybylski, D.; Shelyag, S.; Cally, P. S. [Monash Center for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia)
2015-07-01
We present a technique to construct a spectropolarimetrically accurate magnetohydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion, and absorption in the solar interior and photosphere with the sunspot embedded into it. With the 6173 Å magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as the full Stokes vector for the simulation at various positions at the solar disk, and analyze the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterized. An increase in acoustic power in the simulated observations of the sunspot umbra away from the solar disk center was confirmed as the slow magnetoacoustic wave.
International Nuclear Information System (INIS)
Przybylski, D.; Shelyag, S.; Cally, P. S.
2015-01-01
We present a technique to construct a spectropolarimetrically accurate magnetohydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion, and absorption in the solar interior and photosphere with the sunspot embedded into it. With the 6173 Å magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as the full Stokes vector for the simulation at various positions at the solar disk, and analyze the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterized. An increase in acoustic power in the simulated observations of the sunspot umbra away from the solar disk center was confirmed as the slow magnetoacoustic wave
Accurate lithography simulation model based on convolutional neural networks
Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki
2017-07-01
Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.
Characterisation, control, and energy management of electrified turbocharged diesel engines
International Nuclear Information System (INIS)
Zhao, Dezong; Winward, Edward; Yang, Zhijia; Stobart, Richard; Steffen, Thomas
2017-01-01
Highlights: • A real-time energy management framework for electrified engines is proposed. • A multi-variable robust controller is designed. • Characterisation on the air system of electrified diesel engines is given. • Reliable for engine downsizing because of the promising transient performance. - Abstract: The electrification of engine components offers significant opportunities for fuel efficiency improvements. The electrified turbocharger is one of the most attractive options since it recovers part of the engine exhaust gas mechanical energy to assist boosting. Therefore, the engine can be downsized through improved transient responsiveness. In the electrified turbocharger, an electric machine is mounted on the turbine shaft and changes the air system dynamics, so characterisation of the new layout is essential. A systematic control solution is required to manage energy flows in the hybrid system. In this paper, a framework for characterisation, control, and energy management for an electrified turbocharged diesel engine is proposed. The impacts of the electric machine on fuel economy and air system variables are analysed. Based on the characterisation, a two-level control structure is proposed. A real-time energy management strategy is employed as the supervisory level controller to generate the optimal values of critical variables, while a model-based multi-variable controller is designed as the low level controller to track the values. The two controllers work together in a cascade to address both fuel economy optimisation and battery state-of-charge maintenance. The proposed control strategy is validated on a high fidelity physical engine model. The tracking performance shows the proposed framework is a promising solution in regulating the behavior of electrified engines.
Concept and performance study of turbocharged solid propellant ramjet
Li, Jiang; Liu, Kai; Liu, Yang; Liu, Shichang
2018-06-01
This study proposes a turbocharged solid propellant ramjet (TSPR) propulsion system that integrates a turbocharged system consisting of a solid propellant (SP) air turbo rocket (ATR) and the fuel-rich gas generator of a solid propellant ramjet (SPR). First, a suitable propellant scheme was determined for the TSPR. A solid hydrocarbon propellant is used to generate gas for driving the turbine, and a boron-based fuel-rich propellant is used to provide fuel-rich gas to the afterburner. An appropriate TSPR structure was also determined. The TSPR's thermodynamic cycle was analysed to prove its theoretical feasibility. The results showed that the TSPR's specific cycle power was larger than those of SP-ATR and SPR and thermal efficiency was slightly less than that of SP-ATR. Overall, TSPR showed optimal performance in a wide flight envelope. The specific impulses and specific thrusts of TSPR, SP-ATR, and SPR in the flight envelope were calculated and compared. TSPR's flight envelope roughly overlapped that of SP-ATR, its specific impulse was larger than that of SP-ATR, and its specific thrust was larger than those of SP-ATR and SPR. Attempts to improve the TSPR off-design performance prompted our proposal of a control plan for off-design codes in which both the turbocharger corrected speed and combustor excess gas coefficient are kept constant. An off-design performance model was established by analysing the TSPR working process. We concluded that TSPR with a constant corrected speed had wider flight envelope, higher thrust, and higher specific impulse than TSPR with a constant physical speed determined by calculating the performance of off-design TSPR codes under different control plans. The results of this study can provide a reference for further studies on TSPRs.
Computer simulation of a turbocharged direct injection diesel engine
International Nuclear Information System (INIS)
Bannikiv, M.G.; Saeed, M.
2005-01-01
Engine model described in this paper was developed to investigate the working process and overall performance of a heavy-duty turbocharged direct injection diesel engine. The primary focus was made on exploring the methods of engine power boosting, study of engine behaviour after their implementation and optimization of all engine parameters. Engine model is classified as on zone, zero dimensional and phenomenological and includes submodels for in cylinder heat transfer, heat release and valve flow processes. Turbocharger model is developed using the available maps of turbine and compressor. The whole engine system is zero dimensional and the different system components are liked by means of mean values for mass flow, temperatures, pressures and gas composition. NASA polynomials are used for computing thermal properties of mixture of gasses. Model is flexible and easy to accommodate additional submodels of various physical phenomena such as emission formation, fuel injection, ignition delay period calculation etc. The software is developed in MATLAB. Software was used to analyse an evaporative cooling of boost air as a method of an increase of engine power. Results of simulation are provided in the paper. For the augmented engine, mechanical and thermal loads required for the strength analyses were obtained. (author)
Entropy generation in a diesel engine turbocharging system
International Nuclear Information System (INIS)
Nakonieczny, K.
2002-01-01
The paper describes a model of entropy production in a diesel engine turbocharging system, discussing the processes occurring in the compressor, turbine, piping system, charge-air cooler and valves with the exclusion of combustion. The charging efficiency of the system is studied in two distinct engine operating states, conforming to maximum torque and nominal power conditions. Unlike in the standard approach, where the irreversibilities are derived from the balance equation for exergy and thus are addressed inexactly, the criterion function based on the notion of entropy generation, introduced in this paper, improves second law analysis of turbocharged engines by accounting for a direct description of the system internal irreversibilities. This function is used for the examination of an impact of the system design parameters on its efficiency. Computations based on the unsteady one-dimensional flow model show that, under the variations of the inlet pipe length, the timings of inlet valve opening and exhaust valve closure, and the valve overlap period, a favourable correlation can be found between the decrease of entropy production and the increase in amount of air charged into the engine cylinders. The other variables under study, including the turbine equivalent area, temperature decrease in intercooler and wastegate effective area ratio, show an opposite correlation, and thus, can be viewed as constraints in the system optimisation
An Accurate and Dynamic Computer Graphics Muscle Model
Levine, David Asher
1997-01-01
A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.
Allele-sharing models: LOD scores and accurate linkage tests.
Kong, A; Cox, N J
1997-11-01
Starting with a test statistic for linkage analysis based on allele sharing, we propose an associated one-parameter model. Under general missing-data patterns, this model allows exact calculation of likelihood ratios and LOD scores and has been implemented by a simple modification of existing software. Most important, accurate linkage tests can be performed. Using an example, we show that some previously suggested approaches to handling less than perfectly informative data can be unacceptably conservative. Situations in which this model may not perform well are discussed, and an alternative model that requires additional computations is suggested.
Advanced diesel electronic fuel injection and turbocharging
Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.
1993-12-01
The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.
Accurate modeling of the hose instability in plasma wakefield accelerators
Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.; Martinez de la Ossa, A.; Osterhoff, J.; Esarey, E.; Leemans, W. P.
2018-05-01
Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. It paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.
Bayesian calibration of power plant models for accurate performance prediction
International Nuclear Information System (INIS)
Boksteen, Sowande Z.; Buijtenen, Jos P. van; Pecnik, Rene; Vecht, Dick van der
2014-01-01
Highlights: • Bayesian calibration is applied to power plant performance prediction. • Measurements from a plant in operation are used for model calibration. • A gas turbine performance model and steam cycle model are calibrated. • An integrated plant model is derived. • Part load efficiency is accurately predicted as a function of ambient conditions. - Abstract: Gas turbine combined cycles are expected to play an increasingly important role in the balancing of supply and demand in future energy markets. Thermodynamic modeling of these energy systems is frequently applied to assist in decision making processes related to the management of plant operation and maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities and plant operators make decisions with limited or no regard of uncertainties. As the steady integration of wind and solar energy into the energy market induces extra uncertainties, part load operation and reliability are becoming increasingly important. In the current study, methods are proposed to not only quantify various types of uncertainties in measurements and plant model parameters using measured data, but to also assess their effect on various aspects of performance prediction. The authors aim to account for model parameter and measurement uncertainty, and for systematic discrepancy of models with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan is used, which is especially suitable for high-dimensional industrial problems. The article derives a calibrated model of the plant efficiency as a function of ambient conditions and operational parameters, which is also accurate in part load. The article shows that complete statistical modeling of power plants not only enhances process models, but can also increases confidence in operational decisions
Effects of Pulsating Flow on Mass Flow Balance and Surge Margin in Parallel Turbocharged Engines
Thomasson, Andreas; Eriksson, Lars
2015-01-01
The paper extends a mean value model of a parallel turbocharged internal combustion engine with a crank angle resolved cylinder model. The result is a 0D engine model that includes the pulsating flow from the intake and exhaust valves. The model captures variations in turbo speed and pressure, and therefore variations in the compressor operating point, during an engine cycle. The model is used to study the effect of the pulsating flow on mass flow balance and surge margin in parallel turbocha...
Acoustics development for exhaust gas turbochargers; Akustische Auslegung von Abgasturboladern
Energy Technology Data Exchange (ETDEWEB)
Pischinger, S.; Aymanns, R.; Atzler, M. [Technische Hochschule Aachen (DE). Lehrstuhl fuer Verbrennungskraftmaschinen (VKA); Stoffels, H. [Ford-Werke GmbH, Koeln (Germany). Bereich R und D Antriebsstrang-Ottomotor; Steffens, C.; Stohr, R. [FEV Motorentechnik GmbH, Aachen (Germany). Abt. Fahrzeugphysik/Akustik
2008-03-15
The increasing application of turbocharged engines shifts turbocharger acoustics more into the focus of development. Here the noise behaviour of the turbocharger provides a conflict between costs and acoustics. In the context of the FVV research project No 866 'Turbo Charger Noise' the noise behaviour of turbochargers was subjected to systematic experimental investigations and a hybrid simulation methodology was developed at the institute for combustion engines (VKA) of the RWTH Aachen. The good conformity of calculation and measurement ensures the characterization of the acoustical behaviour and implementation of acoustical measures in the layout of the turbocharger early in the development process. Thus cost-intensive rework can be avoided at the end of the development process. (orig.)
Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics
Directory of Open Access Journals (Sweden)
Cecilia Noecker
2015-03-01
Full Text Available Upon infection of a new host, human immunodeficiency virus (HIV replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV. First, we found that the mode of virus production by infected cells (budding vs. bursting has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral
Accurate Holdup Calculations with Predictive Modeling & Data Integration
Energy Technology Data Exchange (ETDEWEB)
Azmy, Yousry [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Cacuci, Dan [Univ. of South Carolina, Columbia, SC (United States). Dept. of Mechanical Engineering
2017-04-03
In facilities that process special nuclear material (SNM) it is important to account accurately for the fissile material that enters and leaves the plant. Although there are many stages and processes through which materials must be traced and measured, the focus of this project is material that is “held-up” in equipment, pipes, and ducts during normal operation and that can accumulate over time into significant quantities. Accurately estimating the holdup is essential for proper SNM accounting (vis-à-vis nuclear non-proliferation), criticality and radiation safety, waste management, and efficient plant operation. Usually it is not possible to directly measure the holdup quantity and location, so these must be inferred from measured radiation fields, primarily gamma and less frequently neutrons. Current methods to quantify holdup, i.e. Generalized Geometry Holdup (GGH), primarily rely on simple source configurations and crude radiation transport models aided by ad hoc correction factors. This project seeks an alternate method of performing measurement-based holdup calculations using a predictive model that employs state-of-the-art radiation transport codes capable of accurately simulating such situations. Inverse and data assimilation methods use the forward transport model to search for a source configuration that best matches the measured data and simultaneously provide an estimate of the level of confidence in the correctness of such configuration. In this work the holdup problem is re-interpreted as an inverse problem that is under-determined, hence may permit multiple solutions. A probabilistic approach is applied to solving the resulting inverse problem. This approach rates possible solutions according to their plausibility given the measurements and initial information. This is accomplished through the use of Bayes’ Theorem that resolves the issue of multiple solutions by giving an estimate of the probability of observing each possible solution. To use
Centrifugal compressor design options for small turbochargers
Energy Technology Data Exchange (ETDEWEB)
Rodgers, C. [ITC, San Diego (United States)
1998-07-01
Evolutionary development of the small turbocharger centrifugal compressor over the past four decades has resulted in a finely honed turbomachinery component satisfying both thermodynamic and economic constraints. At this penultimate stage of development an appraisal was considered timely of the remaining design options that exist to enhance the performance characteristics and cost reduction features. This paper presents the results of an analytical study of various small centrifugal compressor design options, assessed in merit of both aerodynamic and manufacturing cost attributes, together with recommendations for future research avenues. (author)
Accurate modeling and evaluation of microstructures in complex materials
Tahmasebi, Pejman
2018-02-01
Accurate characterization of heterogeneous materials is of great importance for different fields of science and engineering. Such a goal can be achieved through imaging. Acquiring three- or two-dimensional images under different conditions is not, however, always plausible. On the other hand, accurate characterization of complex and multiphase materials requires various digital images (I) under different conditions. An ensemble method is presented that can take one single (or a set of) I(s) and stochastically produce several similar models of the given disordered material. The method is based on a successive calculating of a conditional probability by which the initial stochastic models are produced. Then, a graph formulation is utilized for removing unrealistic structures. A distance transform function for the Is with highly connected microstructure and long-range features is considered which results in a new I that is more informative. Reproduction of the I is also considered through a histogram matching approach in an iterative framework. Such an iterative algorithm avoids reproduction of unrealistic structures. Furthermore, a multiscale approach, based on pyramid representation of the large Is, is presented that can produce materials with millions of pixels in a matter of seconds. Finally, the nonstationary systems—those for which the distribution of data varies spatially—are studied using two different methods. The method is tested on several complex and large examples of microstructures. The produced results are all in excellent agreement with the utilized Is and the similarities are quantified using various correlation functions.
Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.
Wu, Tim; Hung, Alice; Mithraratne, Kumar
2014-11-01
This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data.
A new, accurate predictive model for incident hypertension.
Völzke, Henry; Fung, Glenn; Ittermann, Till; Yu, Shipeng; Baumeister, Sebastian E; Dörr, Marcus; Lieb, Wolfgang; Völker, Uwe; Linneberg, Allan; Jørgensen, Torben; Felix, Stephan B; Rettig, Rainer; Rao, Bharat; Kroemer, Heyo K
2013-11-01
Data mining represents an alternative approach to identify new predictors of multifactorial diseases. This work aimed at building an accurate predictive model for incident hypertension using data mining procedures. The primary study population consisted of 1605 normotensive individuals aged 20-79 years with 5-year follow-up from the population-based study, that is the Study of Health in Pomerania (SHIP). The initial set was randomly split into a training and a testing set. We used a probabilistic graphical model applying a Bayesian network to create a predictive model for incident hypertension and compared the predictive performance with the established Framingham risk score for hypertension. Finally, the model was validated in 2887 participants from INTER99, a Danish community-based intervention study. In the training set of SHIP data, the Bayesian network used a small subset of relevant baseline features including age, mean arterial pressure, rs16998073, serum glucose and urinary albumin concentrations. Furthermore, we detected relevant interactions between age and serum glucose as well as between rs16998073 and urinary albumin concentrations [area under the receiver operating characteristic (AUC 0.76)]. The model was confirmed in the SHIP validation set (AUC 0.78) and externally replicated in INTER99 (AUC 0.77). Compared to the established Framingham risk score for hypertension, the predictive performance of the new model was similar in the SHIP validation set and moderately better in INTER99. Data mining procedures identified a predictive model for incident hypertension, which included innovative and easy-to-measure variables. The findings promise great applicability in screening settings and clinical practice.
Accurate, low-cost 3D-models of gullies
Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine
2015-04-01
Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we
Work Turbochargers under Reduced Pressure in the Suction Pipe
Directory of Open Access Journals (Sweden)
I. V. Filippov
2014-01-01
Full Text Available In case consumers have a significant need in the compressed air, the use of turbochargers is a promising direction. The turbocharger operation is largely defined by its running conditions, namely parameters of the intake air and cooling conditions.The paper presents the results of experimental studies of turbochargers type 4CI 425MX4 of series "CENTAC" manufactured by INGERSOL-RAND, which were performed under industrial conditions in a mountainous area with difficult climatic conditions. There were, essentially, no researches of running turbochargers in mountainous areas. The combination of low atmospheric pressure, high temperature of intake air, and specific cooling conditions causes abnormal mode of turbocharger operation. The results of theoretical studies of such modes are found only in N.M. Barannikov’s work while there is no mentioned empirical research at all.Experimental studies were conducted under industrial conditions in the form of passive experiment. All measurements were carried out using a standard measuring system included in the system of compressor monitor and control. During the experimental studies temperature regimes at the turbocharger stage were controlled, and turbocharger pressure ratio and weight output were determined.The results of the research can be formulated as follows:- highland conditions and seasonal variations of atmospheric air have a negative impact on the operation of the turbochargers;- specific work value as an indicator of the economical efficiency exceeds that of the nameplate by 12...21 % depending on the climatic conditions.The problem of functioning normalization of the turbochargers seems to be relevant not only for the considered type of compressor, but also for that of the less power. It is proposed to consider two ways:- installation of the fifth additional stage;- mechanical pressurization in the suction pipe by means of blowers of high power.To make final decision it is necessary to conduct
Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.
Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M
2013-04-02
A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.
Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet
Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang
2018-02-01
Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.
International Nuclear Information System (INIS)
Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.
2014-01-01
Highlights: • 3D CFD modeling of a turbocharger turbine with pulsating flow. • Characterization based on turbine speed and frequency. • Speed has higher influence on turbine performance compared to frequency. • Detailed localized flow behavior are shown for better understanding. - Abstract: The ever-increasing demand for low carbon applications in automotive industry has intensified the development of highly efficient engines and energy recovery devices. Even though there are significant developments in the alternative powertrains such as full electric, their full deployment is hindered by high costing and unattractive life-cycle energy and emission balance. Thus powertrain based on highly efficient internal combustion engines are still considered to be the mainstream for years to come. Traditionally, turbocharger has been an essential tool to boost the engine power, however in recent years it is seen as an enabling technology for engine downsizing. It is a well-known fact that a turbocharger turbine in an internal combustion engine operates in a highly pulsating exhaust flow. There are numerous studies looking into the complex interaction of the pulsating exhaust gas within the turbocharger turbine, however the phenomena is still not fully integrated into the design stage. Industry practice is still to design and match the turbine to an engine based on steady performance maps. The current work is undertaken with the mind to move one step closer towards fully integrating the pulsating flow performance into the turbocharger turbine design. This paper presents the development efforts and results from a full 3-D CFD model of a turbocharger turbine stage. The simulations were conducted at 30,000 rpm and 48,000 rpm (50% and 80% design speed respectively) for both 20 Hz and 80 Hz pulsating flow inlet conditions. Complete validation procedure using cold-flow experimental data is also described. The temporal and spatial resolutions of the incidence angle at the
Availability analysis of a turbocharged diesel engine operating under transient load conditions
International Nuclear Information System (INIS)
Rakopoulos, C.D.; Giakoumis, E.G.
2004-01-01
A computer analysis is developed for studying the energy and availability performance of a turbocharged diesel engine, operating under transient load conditions. The model incorporates many novel features for the simulation of transient operation, such as detailed analysis of mechanical friction, separate consideration for the processes of each cylinder during a cycle ('multi-cylinder' model) and mathematical modeling of the fuel pump. This model has been validated against experimental data taken from a turbocharged diesel engine, located at the authors' laboratory and operated under transient conditions. The availability terms for the diesel engine and its subsystems are analyzed, i.e. cylinder for both the open and closed parts of the cycle, inlet and exhaust manifolds, turbocharger and aftercooler. The present analysis reveals, via multiple diagrams, how the availability properties of the diesel engine and its subsystems develop during the evolution of the engine cycles, assessing the importance of each property. In particular the irreversibilities term, which is absent from any analysis based solely on the first-law of thermodynamics, is given in detail as regards transient response as well as the rate and cumulative terms during a cycle, revealing the magnitude of contribution of all the subsystems to the total availability destruction
Energy Technology Data Exchange (ETDEWEB)
Marques Gomes, Andre; Schmidt, Sebastian; Neumann, Jens [BMW Group, Muenchen (Germany)
2011-07-01
The simulation fo the thermodynamical properties of turbochargers in IC engines is mostly done with 1D gas exchange simulation tools, in which the turbocharger is represented by maps, or with 3D-CFD tools, in which a more precise geometrical detail of the charger can be considered. The present work aims for a modeling depth which lies between these 2 variants. This approach (''1D gas exchange simulation with 1D modeling of the turbocharger'') is not only motivated by enabling a better interaction, when compared to the map-based approach, between an IC engine and the turbocharger, but by distinctly reducing the modeling efforts and computing time when compared to the 3D-CFD approach. Within the study, a coarsely discretized model of a centrifugal compressor is built using only the model library of the commercial software GT-Power. For the validation regarding total pressure ratio and isentropic efficiency, the results of the stationary simulations of two different compressors are compared to CFD and measurement results. Differences can be seen only close to the choking limit of the compressor. The model was further used to demonstrate its applicability in extrapolated regions of the compressor map and in the instable operating range near the surge limit. (orig.)
Accurate Online Full Charge Capacity Modeling of Smartphone Batteries
Hoque, Mohammad A.; Siekkinen, Matti; Koo, Jonghoe; Tarkoma, Sasu
2016-01-01
Full charge capacity (FCC) refers to the amount of energy a battery can hold. It is the fundamental property of smartphone batteries that diminishes as the battery ages and is charged/discharged. We investigate the behavior of smartphone batteries while charging and demonstrate that the battery voltage and charging rate information can together characterize the FCC of a battery. We propose a new method for accurately estimating FCC without exposing low-level system details or introducing new ...
Effect of the Miller cycle on the performance of turbocharged hydrogen internal combustion engines
International Nuclear Information System (INIS)
Luo, Qing-he; Sun, Bai-gang
2016-01-01
Highlights: • The Miller cycle can increase power density for turbocharged hydrogen engines. • The boundaries is limited by the turbocharged system and valve lift. • Broke power and BSFC of using Miller cycle is the best in three technical methods. - Abstract: Hydrogen is a promising energy carrier, and the port fuel injection (PFI) is a fuel-flexible, durable, and relatively cheap method of energy conversion. However, the contradiction of increasing the power density and controlling NOx emissions limits the wide application of PFI hydrogen internal combustion engines. To address this issue, two typical thermodynamic cycles—the Miller and Otto cycles—are studied based on the calculation model proposed in this study. The thermodynamic cycle analyses of the two cycles are compared and results show that the thermal efficiency of the Miller cycle (η_M_i_l_l_e_r) is higher than η_O_t_t_o, when the multiplied result of the inlet pressure and Miller cycle coefficient (δ_Mγ_M) is larger than that of the Otto cycle (i.e., the value of the inlet pressure ratio multiplied by the Miller cycle coefficient is larger than the value of the inlet pressure ratio of the Otto cycle). The results also show that the intake valve closure (IVC) of the Miller cycle is limited by the inlet pressure and valve lift. The two factors show the boundaries of the Miller cycle in increasing the power density of the turbocharged PFI hydrogen engine. The ways of lean burn + Otto cycle (LO), stoichiometric equivalence ratio burn + EGR + Otto cycle (SEO) and Miller cycle in turbocharged hydrogen engine are compared, the results show that the Miller cycle has the highest power density and the lowest BSFC among the three methods at an engine speed of 2800 rpm and NOx emissions below 100 ppm. The brake power of the Miller cycle increases by 37.7% higher than that of the LO and 26.3% higher than that of SEO, when γ_M is 0.7. The BSFC of the Miller cycle decreases by 16% lower than that of
An accurate and simple large signal model of HEMT
DEFF Research Database (Denmark)
Liu, Qing
1989-01-01
A large-signal model of discrete HEMTs (high-electron-mobility transistors) has been developed. It is simple and suitable for SPICE simulation of hybrid digital ICs. The model parameters are extracted by using computer programs and data provided by the manufacturer. Based on this model, a hybrid...
New process model proves accurate in tests on catalytic reformer
Energy Technology Data Exchange (ETDEWEB)
Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. (Inst. Mexicano del Petroleo, Mexico City (Mexico))
1994-07-25
A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.
Numerical simulation investigation on centrifugal compressor performance of turbocharger
International Nuclear Information System (INIS)
Li, Jie; Yin, Yuting; Li, Shuqi; Zhang, Jizhong
2013-01-01
In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.
Numerical simulation investigation on centrifugal compressor performance of turbocharger
Energy Technology Data Exchange (ETDEWEB)
Li, Jie [China Iron and Steel Research Institute Group, Beijing (China); Yin, Yuting [China North Engine Research Institute, Datong (China); Li, Shuqi; Zhang, Jizhong [Science and Technology Diesel Engine Turbocharging Laboratory, Datong (China)
2013-06-15
In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.
Accurate phenotyping: Reconciling approaches through Bayesian model averaging.
Directory of Open Access Journals (Sweden)
Carla Chia-Ming Chen
Full Text Available Genetic research into complex diseases is frequently hindered by a lack of clear biomarkers for phenotype ascertainment. Phenotypes for such diseases are often identified on the basis of clinically defined criteria; however such criteria may not be suitable for understanding the genetic composition of the diseases. Various statistical approaches have been proposed for phenotype definition; however our previous studies have shown that differences in phenotypes estimated using different approaches have substantial impact on subsequent analyses. Instead of obtaining results based upon a single model, we propose a new method, using Bayesian model averaging to overcome problems associated with phenotype definition. Although Bayesian model averaging has been used in other fields of research, this is the first study that uses Bayesian model averaging to reconcile phenotypes obtained using multiple models. We illustrate the new method by applying it to simulated genetic and phenotypic data for Kofendred personality disorder-an imaginary disease with several sub-types. Two separate statistical methods were used to identify clusters of individuals with distinct phenotypes: latent class analysis and grade of membership. Bayesian model averaging was then used to combine the two clusterings for the purpose of subsequent linkage analyses. We found that causative genetic loci for the disease produced higher LOD scores using model averaging than under either individual model separately. We attribute this improvement to consolidation of the cores of phenotype clusters identified using each individual method.
A water wave model with horizontal circulation and accurate dispersion
Cotter, C.; Bokhove, Onno
We describe a new water wave model which is variational, and combines a depth-averaged vertical (component of) vorticity with depth-dependent potential flow. The model facilitates the further restriction of the vertical profile of the velocity potential to n-th order polynomials or a finite element
Fast and accurate modeling of stray light in optical systems
Perrin, Jean-Claude
2017-11-01
The first problem to be solved in most optical designs with respect to stray light is that of internal reflections on the several surfaces of individual lenses and mirrors, and on the detector itself. The level of stray light ratio can be considerably reduced by taking into account the stray light during the optimization to determine solutions in which the irradiance due to these ghosts is kept to the minimum possible value. Unhappily, the routines available in most optical design software's, for example CODE V, do not permit all alone to make exact quantitative calculations of the stray light due to these ghosts. Therefore, the engineer in charge of the optical design is confronted to the problem of using two different software's, one for the design and optimization, for example CODE V, one for stray light analysis, for example ASAP. This makes a complete optimization very complex . Nevertheless, using special techniques and combinations of the routines available in CODE V, it is possible to have at its disposal a software macro tool to do such an analysis quickly and accurately, including Monte-Carlo ray tracing, or taking into account diffraction effects. This analysis can be done in a few minutes, to be compared to hours with other software's.
Accurate wind farm development and operation. Advanced wake modelling
Energy Technology Data Exchange (ETDEWEB)
Brand, A.; Bot, E.; Ozdemir, H. [ECN Unit Wind Energy, P.O. Box 1, NL 1755 ZG Petten (Netherlands); Steinfeld, G.; Drueke, S.; Schmidt, M. [ForWind, Center for Wind Energy Research, Carl von Ossietzky Universitaet Oldenburg, D-26129 Oldenburg (Germany); Mittelmeier, N. REpower Systems SE, D-22297 Hamburg (Germany))
2013-11-15
The ability is demonstrated to calculate wind farm wakes on the basis of ambient conditions that were calculated with an atmospheric model. Specifically, comparisons are described between predicted and observed ambient conditions, and between power predictions from three wind farm wake models and power measurements, for a single and a double wake situation. The comparisons are based on performance indicators and test criteria, with the objective to determine the percentage of predictions that fall within a given range about the observed value. The Alpha Ventus site is considered, which consists of a wind farm with the same name and the met mast FINO1. Data from the 6 REpower wind turbines and the FINO1 met mast were employed. The atmospheric model WRF predicted the ambient conditions at the location and the measurement heights of the FINO1 mast. May the predictability of the wind speed and the wind direction be reasonable if sufficiently sized tolerances are employed, it is fairly impossible to predict the ambient turbulence intensity and vertical shear. Three wind farm wake models predicted the individual turbine powers: FLaP-Jensen and FLaP-Ainslie from ForWind Oldenburg, and FarmFlow from ECN. The reliabilities of the FLaP-Ainslie and the FarmFlow wind farm wake models are of equal order, and higher than FLaP-Jensen. Any difference between the predictions from these models is most clear in the double wake situation. Here FarmFlow slightly outperforms FLaP-Ainslie.
Double Layered Sheath in Accurate HV XLPE Cable Modeling
DEFF Research Database (Denmark)
Gudmundsdottir, Unnur Stella; Silva, J. De; Bak, Claus Leth
2010-01-01
This paper discusses modelling of high voltage AC underground cables. For long cables, when crossbonding points are present, not only the coaxial mode of propagation is excited during transient phenomena, but also the intersheath mode. This causes inaccurate simulation results for high frequency...
Innovative technologies to accurately model waves and moored ship motions
CSIR Research Space (South Africa)
van der Molen, W
2010-09-01
Full Text Available Late in 2009 CSIR Built Environment in Stellenbosch was awarded a contract to carry out extensive physical and numerical modelling to study the wave conditions and associated moored ship motions, for the design of a new iron ore export jetty for BHP...
Solid oxide fuel cell power plant with an anode recycle loop turbocharger
Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.
2015-07-14
An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).
Accurate Antenna Models in Ground Penetrating Radar Diffraction Tomography
DEFF Research Database (Denmark)
Meincke, Peter; Kim, Oleksiy S.
2002-01-01
are modeled by their plane-wave receiving and transmitting spectra. We find these spectra numerically for a resistively loaded dipole using the method of moments. Also, we illustrate, through a numerical example, the importance of taking into account the correct antenna pattern in GPR diffraction tomography.......Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence...... of this interface in the inversion scheme (see Hansen, T.B. and Meincke Johansen, P., IEEE Trans. Geoscience and Remote Sensing, vol.38, p.496-506, 2000). Hansen and Meincke Johansen modeled the antennas as ideal (Hertzian) electric dipoles. Since practical GPR antennas are not ideal, it is of interest...
Composite PET and MRI for accurate localization and metabolic modeling
International Nuclear Information System (INIS)
Bidaut, L.
1991-01-01
This paper reports that in order to help in analyzing PET data and really take advantage of their metabolic content, a system was designed and implemented to align and process data from various medical imaging modalities, particularly (but not only) for brain studies. Although this system is for now mostly used for anatomical localization, multi-modality ROIs and pharmaco-kinetic modeling, more multi-modality protocols will be implemented in the future, not only to help in PET reconstruction data correction and semi-automated ROI definition, but also for helping in improving diagnostic accuracy along with surgery and therapy planning
Vascular Augmentation in Renal Transplantation: Supercharging and Turbocharging
Directory of Open Access Journals (Sweden)
Euicheol C. Jeong
2017-05-01
Full Text Available The most common anatomic variant seen in donor kidneys for renal transplantation is the presence of multiple renal arteries, which can cause an increased risk of complications. Accessory renal arteries should be anastomosed to the proper source arteries to improve renal perfusion via the appropriate vascular reconstruction techniques. In microsurgery, 2 kinds of vascular augmentation methods, known as ‘supercharging’ and ‘turbocharging,’ have been introduced to ensure vascular perfusion in the transferred flap. Supercharging uses a distant source of the vessels, while turbocharging uses vascular sources within the same flap territory. These technical concepts can also be applied in renal transplantation, and in this report, we describe 2 patients who underwent procedures using supercharging and turbocharging. In one case, the ipsilateral deep inferior epigastric artery was transposed to the accessory renal artery (supercharging, and in the other case, the accessory renal artery was anastomosed to the corresponding main renal artery with a vascular graft (turbocharging. The transplanted kidneys showed good perfusion and proper function. No cases of renal failure, hypertension, rejection, or urologic complications were observed. These microsurgical techniques can be safely utilized for renal transplantation with donor kidneys that have multiple arteries with a lower complication rate and better outcome.
Vascular Augmentation in Renal Transplantation: Supercharging and Turbocharging.
Jeong, Euicheol C; Hwang, Seung Hwan; Eo, Su Rak
2017-05-01
The most common anatomic variant seen in donor kidneys for renal transplantation is the presence of multiple renal arteries, which can cause an increased risk of complications. Accessory renal arteries should be anastomosed to the proper source arteries to improve renal perfusion via the appropriate vascular reconstruction techniques. In microsurgery, 2 kinds of vascular augmentation methods, known as 'supercharging' and 'turbocharging,' have been introduced to ensure vascular perfusion in the transferred flap. Supercharging uses a distant source of the vessels, while turbocharging uses vascular sources within the same flap territory. These technical concepts can also be applied in renal transplantation, and in this report, we describe 2 patients who underwent procedures using supercharging and turbocharging. In one case, the ipsilateral deep inferior epigastric artery was transposed to the accessory renal artery (supercharging), and in the other case, the accessory renal artery was anastomosed to the corresponding main renal artery with a vascular graft (turbocharging). The transplanted kidneys showed good perfusion and proper function. No cases of renal failure, hypertension, rejection, or urologic complications were observed. These microsurgical techniques can be safely utilized for renal transplantation with donor kidneys that have multiple arteries with a lower complication rate and better outcome.
Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels
International Nuclear Information System (INIS)
Duarte, Jorge; Amador, Germán; Garcia, Jesus; Fontalvo, Armando; Vasquez Padilla, Ricardo; Sanjuan, Marco; Gonzalez Quiroga, Arturo
2014-01-01
Control strategies for auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels are presented. Ambient temperature and ambient pressure are considered as the disturbing variables. A thermodynamic model for predicting temperature at the ignition point is developed, adjusted and validated with a large experimental data-set from high power turbocharged engines. Based on this model, the performance of feedback and feedforward auto-ignition control strategies is explored. A robustness and fragility analysis for the Feedback control strategies is presented. The feedforward control strategy showed the best performance however its implementation entails adding a sensor and new control logic. The proposed control strategies and the proposed thermodynamic model are useful tools for increasing the range of application of gaseous fuels with low methane number while ensuring a safe running in internal combustion engines. - Highlights: • A model for predicting temperature at the ignition point. • Robust PID, modified PID, and feedforward strategies for auto-ignition control. • λ′ were the best set of tuning equations for calculating controller parameters. • Robust PID showed significant improvements in auto-ignition control. • Feedforward control showed the best performance
Cylinder-averaged histories of nitrogen oxide in a DI diesel with simulated turbocharging
Donahue, Ronald J.; Borman, Gary L.; Bower, Glenn R.
1994-10-01
An experimental study was conducted using the dumping technique (total cylinder sampling) to produce cylinder mass-averaged nitric oxide histories. Data were taken using a four stroke diesel research engine employing a quiescent chamber, high pressure direct injection fuel system, and simulated turbocharging. Two fuels were used to determine fuel cetane number effects. Two loads were run, one at an equivalence ratio of 0.5 and the other at a ratio of 0.3. The engine speed was held constant at 1500 rpm. Under the turbocharged and retarded timing conditions of this study, nitric oxide was produced up to the point of about 85% mass burned. Two different models were used to simulate the engine mn conditions: the phenomenological Hiroyasu spray-combustion model, and the three dimensional, U.W.-ERO modified KIVA-2 computational fluid dynamic code. Both of the models predicted the correct nitric oxide trend. Although the modified KIVA-2 combustion model using Zeldovich kinetics correctly predicted the shapes of the nitric oxide histories, it did not predict the exhaust concentrations without arbitrary adjustment based on experimental values.
Zhongbo Zhang; Lifu Li
2018-01-01
In this study, an in-cylinder steam injection method is introduced and applied to a turbocharged diesel engine for waste heat recovery and NOx emission reduction. In the method, cool water was first heated into superheated steam by exhaust. Then the superheated steam was directly injected into the cylinder during the compression stroke. The potential for fuel savings and NOx emission reduction obtained by this method was investigated. First, a two-zone combustion model for the baseline engine...
Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter
2009-03-31
AFRL-RV-HA-TR-2009-1055 Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter ...m (or even 500 m) at mid to high latitudes . At low latitudes , the FDTD model exhibits variations that make it difficult to determine a reliable...Scientific, Final 3. DATES COVERED (From - To) 02-08-2006 – 31-12-2008 4. TITLE AND SUBTITLE Accurate Modeling of Ionospheric Electromagnetic Fields
Hudin, Jamal Maulana; Riana, Dwiza
2016-01-01
Accurate accounting information system is one of accounting information systems used in the sixcompanies in the city of Sukabumi. DeLone and McLean information system success model is asuitable model to measure the success of the application of information systems in an organizationor company. This study will analyze factors that measure the success of DeLone & McLeaninformation systems model to the users of the Accurate accounting information systems in sixcompanies in the city of Sukabumi. ...
Combustion mode switching with a turbocharged/supercharged engine
Mond, Alan; Jiang, Li
2015-09-22
A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.
Comparative study of oxihydrogen injection in turbocharged compression ignition engines
Barna, L.; Lelea, D.
2018-01-01
This document proposes for analysis, comparative study of the turbocharged, compression-ignition engine, equipped with EGR valve, operation in case the injection in intake manifold thereof a maximum flow rate of 1l/min oxyhydrogen resulted of water electrolysis, at two different injection pressures, namely 100 Pa and 3000 Pa, from the point of view of flue gas opacity. We found a substantial reduction of flue gas opacity in both cases compared to conventional diesel operation, but in different proportions.
Variable geometry turbocharging for lower emissions and improved torque characteristics
Energy Technology Data Exchange (ETDEWEB)
Hawley, J.G.; Wallace, F.J.; Cox, A. [Bath Univ., Dept. of Mechanical Engineering, Bath (United Kingdom); Horrocks, R.W.; Bird, G.L. [Ford Motor Company Ltd., Engineering Centre for Advanced Vehicle Technology (Diesels), Dunton (United Kingdom)
1999-07-01
Currently, 80 per cent of european diesel passenger cars are turbocharged and, as emission standards become more stringent, this figure is expected to approach 100 per cent in the near future. One major focus that has emerged of the high-speed diesel engine is the application of variable geometry turbocharging (VGT). An extensive steady state experimental investigation has been undertaken on a prototype 1.8 L direct injection (DI) diesel engine to compare the potential benefits of VGT relative to the standard build of the engine with a wastegated fixed geometry turbocharger (FGT). Under part load operation, where emission production is significant in the European drive cycle, independent control of both VCT vane position and exhaust gas recirculation (EGR) value position was used to optimise emission levels. A reduction in the levels of nitrogen oxides (NO{sub x}) of up to 45 per cent was observed at discrete operating points without compromising FGT levels of fuel consumption or smoke. Under limiting torque conditions a 10 per cent improvement was achieved with the VGT over and above the figures of the baseline FGT build within the limiting criteria set for maximum cylinder pressure, smoke level and pre-turbine temperature. (Author)
Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation
Energy Technology Data Exchange (ETDEWEB)
Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp
2017-02-01
The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.
Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling
2018-01-01
Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the…
International Nuclear Information System (INIS)
Yang, Mingyang; Martinez-Botas, Ricardo; Rajoo, Srithar; Yokoyama, Takao; Ibaraki, Seiichi
2015-01-01
Highlights: • Cycle averaged efficiency is higher for the volute A (low aspect ratio). • More distorted flow in volute B is the reason for performance deterioration. • Flow in volute B (high aspect ratio) is more sensitive to pulsating flow. - Abstract: Engine downsizing is a proven method for CO_2 reduction in Internal Combustion Engine (ICE). A turbocharger, which reclaims the energy from the exhaust gas to boost the intake air, can effectively improve the power density of the engine thus is one of the key enablers to achieve the engine downsizing. Acknowledging its importance, many research efforts have gone into improving a turbocharger performance, which includes turbine volute. The cross-section design of a turbine volute in a turbocharger is usually a compromise between the engine level packaging and desired performance. Thus, it is beneficial to evaluate the effects of cross-sectional shape on a turbine performance. This paper presents experimental and computational investigation of the influence of volute cross-sectional shape on the performance of a radial turbocharger turbine under pulsating conditions. The cross-sectional shape of the baseline volute (denoted as Volute B) was optimized (Volute A) while the annulus distribution of area-to-radius ratio (A/R) for the two volute configurations are kept the same. Experimental results show that the turbine with the optimized volute A has better cycle averaged efficiency under pulsating flow conditions, for different loadings and frequencies. The advantage of performance is influenced by the operational conditions. After the experiment, a validated unsteady computational fluid dynamics (CFD) modeling was employed to investigate the mechanism by which performance differs between the baseline volute and the optimized version. Computational results show a stronger flow distortion in spanwise direction at the rotor inlet with the baseline volute. Furthermore, compared with the optimized volute, the flow
International Nuclear Information System (INIS)
Katrasnik, Tomaz; Medica, Vladimir; Trenc, Ferdinand
2005-01-01
Reliability of electric supply systems is among the most required necessities of modern society. Turbocharged diesel engine driven alternating current generating sets are often used to prevent electric black outs and/or as prime electric energy suppliers. It is well known that turbocharged diesel engines suffer from an inadequate response to a sudden load increase, this being a consequence of the nature of the energy exchange between the engine and the turbocharger. The dynamic response of turbocharged diesel engines could be improved by electric assisting systems, either by direct energy supply with an integrated starter-generator-booster (ISG) mounted on the engine flywheel, or by an indirect energy supply with an electrically assisted turbocharger. An experimentally verified zero dimensional computer simulation method was used for the analysis of both types of electrical assistance. The paper offers an analysis of the interaction between a turbocharged diesel engine and different electric assisting systems, as well as the requirements for the supporting electric motors that could improve the dynamic response of a diesel engine while driving an AC generating set. When performance class compliance is a concern, it is evident that an integrated starter-generator-booster outperforms an electrically assisted turbocharger for the investigated generating set. However, the electric energy consumption and frequency recovery times are smaller when an electrically assisted turbocharger is applied
Towards robust design optimization of automotive turbocharger rotor-bearing systems
Eling, R.P.T.
2018-01-01
In the competitive automotive market, the performance of turbochargers is constantly being pushed towards their theoretical optimum. One of the key components of the turbocharger is the rotor-bearing system, which determines the friction losses and noise output and furthermore affects the overall
Buchman, Michael; Winter, Amos
2015-11-01
Turbocharging an engine increases specific power, improves fuel economy, reduces emissions, and lowers cost compared to a naturally aspirated engine of the same power output. These advantages make turbocharging commonplace for multi-cylinder engines. Single cylinder engineers are not commonly turbocharged due to the phase lag between the exhaust stroke, which powers the turbocharger, and the intake stroke, when air is pumped into the engine. Our proposed method of turbocharging single cylinder engines is to add an ``air capacitor'' to the intake manifold, an additional volume that acts as a buffer to store compressed air between the exhaust and intake strokes, and smooth out the pressure pulses from the turbocharger. This talk presents experimental results from a single cylinder, turbocharged diesel engine fit with various sized air capacitors. Power output from the engine was measured using a dynamometer made from a generator, with the electrical power dissipated with resistive heating elements. We found that intake air density increases with capacitor size as theoretically predicted, ranging from 40 to 60 percent depending on heat transfer. Our experiment was able to produce 29 percent more power compared to using natural aspiration. These results validated that an air capacitor and turbocharger may be a simple, cost effective means of increasing the power density of single cylinder engines.
Accurate monoenergetic electron parameters of laser wakefield in a bubble model
Raheli, A.; Rahmatallahpur, S. H.
2012-11-01
A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal model and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. As a result, the quasi-mono-energetic electrons output beam interacting with the laser plasma can be more appropriately described with this model.
Bagheri, Shahriar; Wu, Nan; Filizadeh, Shaahin
2018-06-01
This paper presents an iterative numerical method that accurately models an energy harvesting system charging a capacitor with piezoelectric patches. The constitutive relations of piezoelectric materials connected with an external charging circuit with a diode bridge and capacitors lead to the electromechanical coupling effect and the difficulty of deriving accurate transient mechanical response, as well as the charging progress. The proposed model is built upon the Euler-Bernoulli beam theory and takes into account the electromechanical coupling effects as well as the dynamic process of charging an external storage capacitor. The model is validated through experimental tests on a cantilever beam coated with piezoelectric patches. Several parametric studies are performed and the functionality of the model is verified. The efficiency of power harvesting system can be predicted and tuned considering variations in different design parameters. Such a model can be utilized to design robust and optimal energy harvesting system.
Fast and accurate exercise policies for Bermudan swaptions in the LIBOR market model
P.K. Karlsson (Patrik); S. Jain (Shashi); C.W. Oosterlee (Kees)
2016-01-01
htmlabstractThis paper describes an American Monte Carlo approach for obtaining fast and accurate exercise policies for pricing of callable LIBOR Exotics (e.g., Bermudan swaptions) in the LIBOR market model using the Stochastic Grid Bundling Method (SGBM). SGBM is a bundling and regression based
In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling
Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.
2013-01-01
This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is
Accurate protein structure modeling using sparse NMR data and homologous structure information.
Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David
2012-06-19
While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.
A new model for the accurate calculation of natural gas viscosity
Xiaohong Yang; Shunxi Zhang; Weiling Zhu
2017-01-01
Viscosity of natural gas is a basic and important parameter, of theoretical and practical significance in the domain of natural gas recovery, transmission and processing. In order to obtain the accurate viscosity data efficiently at a low cost, a new model and its corresponding functional relation are derived on the basis of the relationship among viscosity, temperature and density derived from the kinetic theory of gases. After the model parameters were optimized using a lot of experimental ...
A Method for Turbocharging Four-Stroke Single Cylinder Engines
Buchman, Michael; Winter, Amos
2014-11-01
Turbocharging is not conventionally used with single cylinder engines due to the timing mismatch between when the turbo is powered and when it can deliver air to the cylinder. The proposed solution involves a fixed, pressurized volume - which we call an air capacitor - on the intake side of the engine between the turbocharger and intake valves. The capacitor acts as a buffer and would be implemented as a new style of intake manifold with a larger volume than traditional systems. This talk will present the flow analysis used to determine the optimal size for the capacitor, which was found to be four to five times the engine capacity, as well as its anticipated contributions to engine performance. For a capacitor sized for a one-liter engine, the time to reach operating pressure was found to be approximately two seconds, which would be acceptable for slowly accelerating applications and steady state applications. The air density increase that could be achieved, compared to ambient air, was found to vary between fifty percent for adiabatic compression and no heat transfer from the capacitor, to eighty percent for perfect heat transfer. These increases in density are proportional to, to first order, the anticipated power increases that could be realized. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374.
Heat transfer in turbocharger turbines under steady, pulsating and transient conditions
International Nuclear Information System (INIS)
Burke, R.D.; Vagg, C.R.M.; Chalet, D.; Chesse, P.
2015-01-01
Highlights: • Compare turbine heat transfer correlations from different studies. • Compare heat transfer for a same turbine on-engine and on gas-stand. • Analyse heat transfer under steady and transient operating conditions. • Gas stand heat transfer correlations are transferrable to engine conditions. • Heat flows can be reversed compared to steady conditions during transients. - Abstract: Heat transfer is significant in turbochargers and a number of mathematical models have been proposed to account for the heat transfer, however these have predominantly been validated under steady flow conditions. A variable geometry turbocharger from a 2.2 L Diesel engine was studied, both on gas stand and on-engine, under steady and transient conditions. The results showed that heat transfer accounts for at least 20% of total enthalpy change in the turbine and significantly more at lower mechanical powers. A convective heat transfer correlation was derived from experimental measurements to account for heat transfer between the gases and the turbine housing and proved consistent with those published from other researchers. This relationship was subsequently shown to be consistent between engine and gas stand operation: using this correlation in a 1D gas dynamics simulation reduced the turbine outlet temperature error from 33 °C to 3 °C. Using the model under transient conditions highlighted the effect of housing thermal inertia. The peak transient heat flow was strongly linked to the dynamics of the turbine inlet temperature: for all increases, the peak heat flow was higher than under thermally stable conditions due to colder housing. For all decreases in gas temperature, the peak heat flow was lower and for temperature drops of more than 100 °C the heat flow was reversed during the transient
Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model.
Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng
2015-06-10
In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This simulation method could be used for fast and accurate focusing analysis of a large photon sieve.
Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag
Directory of Open Access Journals (Sweden)
S. Shaaban
2012-01-01
Full Text Available Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.
Simple, fast and accurate two-diode model for photovoltaic modules
Energy Technology Data Exchange (ETDEWEB)
Ishaque, Kashif; Salam, Zainal; Taheri, Hamed [Faculty of Electrical Engineering, Universiti Teknologi Malaysia, UTM 81310, Skudai, Johor Bahru (Malaysia)
2011-02-15
This paper proposes an improved modeling approach for the two-diode model of photovoltaic (PV) module. The main contribution of this work is the simplification of the current equation, in which only four parameters are required, compared to six or more in the previously developed two-diode models. Furthermore the values of the series and parallel resistances are computed using a simple and fast iterative method. To validate the accuracy of the proposed model, six PV modules of different types (multi-crystalline, mono-crystalline and thin-film) from various manufacturers are tested. The performance of the model is evaluated against the popular single diode models. It is found that the proposed model is superior when subjected to irradiance and temperature variations. In particular the model matches very accurately for all important points of the I-V curves, i.e. the peak power, short-circuit current and open circuit voltage. The modeling method is useful for PV power converter designers and circuit simulator developers who require simple, fast yet accurate model for the PV module. (author)
Missif, Lial Raja; Kadhum, Mohammad M.
2017-09-01
Wireless Sensor Network (WSN) has been widely used for monitoring where sensors are deployed to operate independently to sense abnormal phenomena. Most of the proposed environmental monitoring systems are designed based on a predetermined sensing range which does not reflect the sensor reliability, event characteristics, and the environment conditions. Measuring of the capability of a sensor node to accurately detect an event within a sensing field is of great important for monitoring applications. This paper presents an efficient mechanism for even detection based on probabilistic sensing model. Different models have been presented theoretically in this paper to examine their adaptability and applicability to the real environment applications. The numerical results of the experimental evaluation have showed that the probabilistic sensing model provides accurate observation and delectability of an event, and it can be utilized for different environment scenarios.
International Nuclear Information System (INIS)
Amini, Y; Emdad, H; Farid, M
2014-01-01
Piezoelectric energy harvesting (PEH) from ambient energy sources, particularly vibrations, has attracted considerable interest throughout the last decade. Since fluid flow has a high energy density, it is one of the best candidates for PEH. Indeed, a piezoelectric energy harvesting process from the fluid flow takes the form of natural three-way coupling of the turbulent fluid flow, the electromechanical effect of the piezoelectric material and the electrical circuit. There are some experimental and numerical studies about piezoelectric energy harvesting from fluid flow in literatures. Nevertheless, accurate modeling for predicting characteristics of this three-way coupling has not yet been developed. In the present study, accurate modeling for this triple coupling is developed and validated by experimental results. A new code based on this modeling in an openFOAM platform is developed. (paper)
Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea
Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.
2016-02-01
The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.
Accurate path integration in continuous attractor network models of grid cells.
Burak, Yoram; Fiete, Ila R
2009-02-01
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.
Corazza, Stefano; Gambaretto, Emiliano; Mündermann, Lars; Andriacchi, Thomas P
2010-04-01
A novel approach for the automatic generation of a subject-specific model consisting of morphological and joint location information is described. The aim is to address the need for efficient and accurate model generation for markerless motion capture (MMC) and biomechanical studies. The algorithm applied and expanded on previous work on human shapes space by embedding location information for ten joint centers in a subject-specific free-form surface. The optimal locations of joint centers in the 3-D mesh were learned through linear regression over a set of nine subjects whose joint centers were known. The model was shown to be sufficiently accurate for both kinematic (joint centers) and morphological (shape of the body) information to allow accurate tracking with MMC systems. The automatic model generation algorithm was applied to 3-D meshes of different quality and resolution such as laser scans and visual hulls. The complete method was tested using nine subjects of different gender, body mass index (BMI), age, and ethnicity. Experimental training error and cross-validation errors were 19 and 25 mm, respectively, on average over the joints of the ten subjects analyzed in the study.
Can phenological models predict tree phenology accurately under climate change conditions?
Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry
2014-05-01
The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay
Fast and accurate Bayesian model criticism and conflict diagnostics using R-INLA
Ferkingstad, Egil
2017-10-16
Bayesian hierarchical models are increasingly popular for realistic modelling and analysis of complex data. This trend is accompanied by the need for flexible, general and computationally efficient methods for model criticism and conflict detection. Usually, a Bayesian hierarchical model incorporates a grouping of the individual data points, as, for example, with individuals in repeated measurement data. In such cases, the following question arises: Are any of the groups “outliers,” or in conflict with the remaining groups? Existing general approaches aiming to answer such questions tend to be extremely computationally demanding when model fitting is based on Markov chain Monte Carlo. We show how group-level model criticism and conflict detection can be carried out quickly and accurately through integrated nested Laplace approximations (INLA). The new method is implemented as a part of the open-source R-INLA package for Bayesian computing (http://r-inla.org).
Directory of Open Access Journals (Sweden)
F. Coccetti
2003-01-01
Full Text Available In this contribution we present an accurate investigation of three different techniques for the modeling of complex planar circuits. The em analysis is performed by means of different electromagnetic full-wave solvers in the timedomain and in the frequency-domain. The first one is the Transmission Line Matrix (TLM method. In the second one the TLM method is combined with the Integral Equation (IE method. The latter is based on the Generalized Transverse Resonance Diffraction (GTRD. In order to test the methods we model different structures and compare the calculated Sparameters to measured results, with good agreement.
Engine with exhaust gas recirculation system and variable geometry turbocharger
Keating, Edward J.
2015-11-03
An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.
Turbocharger with variable nozzle having vane sealing surfaces
Arnold, Philippe [Hennecourt, FR; Petitjean, Dominique [Julienrupt, FR; Ruquart, Anthony [Thaon les Vosges, FR; Dupont, Guillaume [Thaon les Vosges, FR; Jeckel, Denis [Thaon les Vosges, FR
2011-11-15
A variable nozzle for a turbocharger includes a plurality of vanes rotatably mounted on a nozzle ring and disposed in a nozzle flow path defined between the nozzle ring and an opposite nozzle wall. Either or both of the faces of the nozzle ring and nozzle wall include(s) at least one step that defines sealing surfaces positioned to be substantially abutted by airfoil surfaces of the vanes in the closed position of the vanes and to be spaced from the airfoil surfaces in positions other than the closed position. This substantial abutment between the airfoil surfaces and the sealing surfaces serves to substantially prevent exhaust gas from leaking past the ends of the airfoil portions. At the same time, clearances between the nozzle ring face and the end faces of the airfoil portions can be sufficiently large to prevent binding of the vanes under all operating conditions.
Exhaust gas turbocharger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen
Energy Technology Data Exchange (ETDEWEB)
Behnert, R.; Dommes, W.; Gerwig, W.
1982-01-21
The invention aimes at the heat protection of a turbocharger for internal combustion engines. The turbine is feeded with exhaust gas and drives the shaft of a compressor. For resolving this problem a thermal shield has been installed on the backside of the turbine. The shaft is sealed with an elastic gasket ring. This gasket avoids the deposition of dust and dirt. As a consequence of this constructive measure a growth of tinder and oxides can be avoided as well as the deposition of dirt. A constant reflection factor is ensured. The thermal shield can be manufactured of thin sheet with a nickel surface and can fastened with distance pieces on the backside of the turbine case. Furthermore it is possible to use a ceramic heat shield.
International Nuclear Information System (INIS)
Saito, Toki; Nakajima, Yoshikazu; Sugita, Naohiko; Mitsuishi, Mamoru; Hashizume, Hiroyuki; Kuramoto, Kouichi; Nakashima, Yosio
2011-01-01
Statistical deformable model based two-dimensional/three-dimensional (2-D/3-D) registration is a promising method for estimating the position and shape of patient bone in the surgical space. Since its accuracy depends on the statistical model capacity, we propose a method for accurately generating a statistical bone model from a CT volume. Our method employs the Sphere-Attribute-Image (SAI) and has improved the accuracy of corresponding point search in statistical model generation. At first, target bone surfaces are extracted as SAIs from the CT volume. Then the textures of SAIs are classified to some regions using Maximally-stable-extremal-regions methods. Next, corresponding regions are determined using Normalized cross-correlation (NCC). Finally, corresponding points in each corresponding region are determined using NCC. The application of our method to femur bone models was performed, and worked well in the experiments. (author)
Gustof, P.; Hornik, A.
2016-09-01
In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.
Amin Mahmoudzadeh Andwari; Apostolos Pesiridis; Vahid Esfahanian; Ali Salavati-Zadeh; Apostolos Karvountzis-Kontakiotis; Vishal Muralidharan
2017-01-01
In this study the influence of utilization of two Waste Heat Recovery (WHR) strategies, namely organic Rankine cycle (ORC) and turbocompounding, have been investigated based on the performance of a heavy-duty diesel engine using 1-D simulation engine code (GT-Power) in terms of Brake Specific Fuel Consumptions (BSFC) at various engine speeds and Brake Mean Effective Pressures (BMEP). The model of a 6-cylinder turbocharged engine (Holset HDX55V) was calibrated using an experimental BSFC map to...
Javed, A.; Kamphues, E.; Hartuc, T.; Pecnik, R.; Van Buijtenen, J.P.
2015-01-01
The compressor impellers for mass-produced turbochargers are generally die-casted and machined to their final configuration. Manufacturing uncertainties are inherently introduced as stochastic dimensional deviations in the impeller geometry. These deviations eventually propagate into the compressor
Accurate, model-based tuning of synthetic gene expression using introns in S. cerevisiae.
Directory of Open Access Journals (Sweden)
Ido Yofe
2014-06-01
Full Text Available Introns are key regulators of eukaryotic gene expression and present a potentially powerful tool for the design of synthetic eukaryotic gene expression systems. However, intronic control over gene expression is governed by a multitude of complex, incompletely understood, regulatory mechanisms. Despite this lack of detailed mechanistic understanding, here we show how a relatively simple model enables accurate and predictable tuning of synthetic gene expression system in yeast using several predictive intron features such as transcript folding and sequence motifs. Using only natural Saccharomyces cerevisiae introns as regulators, we demonstrate fine and accurate control over gene expression spanning a 100 fold expression range. These results broaden the engineering toolbox of synthetic gene expression systems and provide a framework in which precise and robust tuning of gene expression is accomplished.
Accurate anisotropic material modelling using only tensile tests for hot and cold forming
Abspoel, M.; Scholting, M. E.; Lansbergen, M.; Neelis, B. M.
2017-09-01
Accurate material data for simulations require a lot of effort. Advanced yield loci require many different kinds of tests and a Forming Limit Curve (FLC) needs a large amount of samples. Many people use simple material models to reduce the effort of testing, however some models are either not accurate enough (i.e. Hill’48), or do not describe new types of materials (i.e. Keeler). Advanced yield loci describe the anisotropic materials behaviour accurately, but are not widely adopted because of the specialized tests, and data post-processing is a hurdle for many. To overcome these issues, correlations between the advanced yield locus points (biaxial, plane strain and shear) and mechanical properties have been investigated. This resulted in accurate prediction of the advanced stress points using only Rm, Ag and r-values in three directions from which a Vegter yield locus can be constructed with low effort. FLC’s can be predicted with the equations of Abspoel & Scholting depending on total elongation A80, r-value and thickness. Both predictive methods are initially developed for steel, aluminium and stainless steel (BCC and FCC materials). The validity of the predicted Vegter yield locus is investigated with simulation and measurements on both hot and cold formed parts and compared with Hill’48. An adapted specimen geometry, to ensure a homogeneous temperature distribution in the Gleeble hot tensile test, was used to measure the mechanical properties needed to predict a hot Vegter yield locus. Since for hot material, testing of stress states other than uniaxial is really challenging, the prediction for the yield locus adds a lot of value. For the hot FLC an A80 sample with a homogeneous temperature distribution is needed which is due to size limitations not possible in the Gleeble tensile tester. Heating the sample in an industrial type furnace and tensile testing it in a dedicated device is a good alternative to determine the necessary parameters for the FLC
Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.
2016-05-01
To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine
An accurate fatigue damage model for welded joints subjected to variable amplitude loading
Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.
2017-12-01
Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.
Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling
2018-01-01
Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the fifth rib, and the sixth cervical (C6) vertebra were used to produce digital models. These were then used to produce 1:1 scale physical models with the FDM printer. The anatomical features of the digital models and three-dimensional (3D) printed models were then compared with those of the original skeletal specimens. The results of this study demonstrated that both digital and physical scale models of animal skeletal components could be rapidly produced using 3D printing technology. In terms of accuracy between models and original specimens, the standard deviations of the femur and the fifth rib measurements were 0.0351 and 0.0572, respectively. All of the features except the nutrient foramina on the original bone specimens could be identified in the digital and 3D printed models. Moreover, the 3D printed models could serve as a viable alternative to original bone specimens when used in anatomy education, as determined from student surveys. This study demonstrated an important example of reproducing bone models to be used in anatomy education and veterinary clinical training. Anat Sci Educ 11: 73-80. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
A.F. Sherwani
2016-01-01
In this paper, the effect of various advancements in turbocharging technology on diesel engine power, fuel consumption, thermal efficiency, volumetric efficiency and emissions are reviewed and analyzed.Turbochargers are used throughout the automotive industry to enhance the output of an internal combustion engine without increasing the cylinder capacity. The emphasis today is to provide a feasible engineering solution to manufacturing economics and greener road vehicles. It is because of thes...
Exhaust gas turbo-charger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen
Energy Technology Data Exchange (ETDEWEB)
Behnert, R.
1982-01-07
The invention is concerned with a exhaust gas turbocharger for internal combustion engines. A turbine driving a compressor, is feeded with the exhaust gas. Intended is the over-temperature protection of the exhaust gas turbocharger. For this reason a ring shaped sheet with a well polished nickel surface, serves as thermal shield. A sealing avoids soiling of the turbine shaft. Due to the heat shielding effect no tinder, oxide or dirt deposition is possible. The heat reflection factor is constant.
Improvement of a land surface model for accurate prediction of surface energy and water balances
International Nuclear Information System (INIS)
Katata, Genki
2009-02-01
In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)
A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever.
Marzi, Andrea; Banadyga, Logan; Haddock, Elaine; Thomas, Tina; Shen, Kui; Horne, Eva J; Scott, Dana P; Feldmann, Heinz; Ebihara, Hideki
2016-12-15
Marburg virus (MARV), a close relative of Ebola virus, is the causative agent of a severe human disease known as Marburg hemorrhagic fever (MHF). No licensed vaccine or therapeutic exists to treat MHF, and MARV is therefore classified as a Tier 1 select agent and a category A bioterrorism agent. In order to develop countermeasures against this severe disease, animal models that accurately recapitulate human disease are required. Here we describe the development of a novel, uniformly lethal Syrian golden hamster model of MHF using a hamster-adapted MARV variant Angola. Remarkably, this model displayed almost all of the clinical features of MHF seen in humans and non-human primates, including coagulation abnormalities, hemorrhagic manifestations, petechial rash, and a severely dysregulated immune response. This MHF hamster model represents a powerful tool for further dissecting MARV pathogenesis and accelerating the development of effective medical countermeasures against human MHF.
BEYOND ELLIPSE(S): ACCURATELY MODELING THE ISOPHOTAL STRUCTURE OF GALAXIES WITH ISOFIT AND CMODEL
International Nuclear Information System (INIS)
Ciambur, B. C.
2015-01-01
This work introduces a new fitting formalism for isophotes that enables more accurate modeling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter that defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar coordinate to the “eccentric anomaly.” This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial, cross-like features in residual images are completely removed. The formalism has been implemented into the Image Reduction and Analysis Facility tasks Ellipse and Bmodel to create the new tasks “Isofit,” and “Cmodel.” The new tools are demonstrated here with application to five galaxies, chosen to be representative case-studies for several areas where this technique makes it possible to gain new scientific insight. Specifically: properly quantifying boxy/disky isophotes via the fourth harmonic order in edge-on galaxies, quantifying X-shaped/peanut bulges, higher-order Fourier moments for modeling bars in disks, and complex isophote shapes. Higher order (n > 4) harmonics now become meaningful and may correlate with structural properties, as boxyness/diskyness is known to do. This work also illustrates how the accurate construction, and subtraction, of a model from a galaxy image facilitates the identification and recovery of over-lapping sources such as globular clusters and the optical counterparts of X-ray sources
Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models
Directory of Open Access Journals (Sweden)
Aeriel Belk
2018-02-01
Full Text Available Death investigations often include an effort to establish the postmortem interval (PMI in cases in which the time of death is uncertain. The postmortem interval can lead to the identification of the deceased and the validation of witness statements and suspect alibis. Recent research has demonstrated that microbes provide an accurate clock that starts at death and relies on ecological change in the microbial communities that normally inhabit a body and its surrounding environment. Here, we explore how to build the most robust Random Forest regression models for prediction of PMI by testing models built on different sample types (gravesoil, skin of the torso, skin of the head, gene markers (16S ribosomal RNA (rRNA, 18S rRNA, internal transcribed spacer regions (ITS, and taxonomic levels (sequence variants, species, genus, etc.. We also tested whether particular suites of indicator microbes were informative across different datasets. Generally, results indicate that the most accurate models for predicting PMI were built using gravesoil and skin data using the 16S rRNA genetic marker at the taxonomic level of phyla. Additionally, several phyla consistently contributed highly to model accuracy and may be candidate indicators of PMI.
Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models
Directory of Open Access Journals (Sweden)
Stovgaard Kasper
2010-08-01
Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for
Vladescu, Jason C; Carroll, Regina; Paden, Amber; Kodak, Tiffany M
2012-01-01
The present study replicates and extends previous research on the use of video modeling (VM) with voiceover instruction to train staff to implement discrete-trial instruction (DTI). After staff trainees reached the mastery criterion when teaching an adult confederate with VM, they taught a child with a developmental disability using DTI. The results showed that the staff trainees' accurate implementation of DTI remained high, and both child participants acquired new skills. These findings provide additional support that VM may be an effective method to train staff members to conduct DTI.
Directory of Open Access Journals (Sweden)
J. Wohlfeil
2012-07-01
Full Text Available Modern pixel-wise image matching algorithms like Semi-Global Matching (SGM are able to compute high resolution digital surface models from airborne and spaceborne stereo imagery. Although image matching itself can be performed automatically, there are prerequisites, like high geometric accuracy, which are essential for ensuring the high quality of resulting surface models. Especially for line cameras, these prerequisites currently require laborious manual interaction using standard tools, which is a growing problem due to continually increasing demand for such surface models. The tedious work includes partly or fully manual selection of tie- and/or ground control points for ensuring the required accuracy of the relative orientation of images for stereo matching. It also includes masking of large water areas that seriously reduce the quality of the results. Furthermore, a good estimate of the depth range is required, since accurate estimates can seriously reduce the processing time for stereo matching. In this paper an approach is presented that allows performing all these steps fully automated. It includes very robust and precise tie point selection, enabling the accurate calculation of the images’ relative orientation via bundle adjustment. It is also shown how water masking and elevation range estimation can be performed automatically on the base of freely available SRTM data. Extensive tests with a large number of different satellite images from QuickBird and WorldView are presented as proof of the robustness and reliability of the proposed method.
An accurate behavioral model for single-photon avalanche diode statistical performance simulation
Xu, Yue; Zhao, Tingchen; Li, Ding
2018-01-01
An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.
Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.
2013-01-01
The gas holdup time (tM) is a dominant parameter in gas chromatographic retention models. The difference equation (DE) model proposed by Wu et al. (J. Chromatogr. A 2012, http://dx.doi.org/10.1016/j.chroma.2012.07.077) excluded tM. In the present paper, we propose that the relationship between the adjusted retention time tRZ′ and carbon number z of n-alkanes follows a quadratic equation (QE) when an accurate tM is obtained. This QE model is the same as or better than the DE model for an accurate expression of the retention behavior of n-alkanes and model applications. The QE model covers a larger range of n-alkanes with better curve fittings than the linear model. The accuracy of the QE model was approximately 2–6 times better than the DE model and 18–540 times better than the LE model. Standard deviations of the QE model were approximately 2–3 times smaller than those of the DE model. PMID:22989489
Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin
2017-10-01
To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may
A simple but accurate procedure for solving the five-parameter model
International Nuclear Information System (INIS)
Mares, Oana; Paulescu, Marius; Badescu, Viorel
2015-01-01
Highlights: • A new procedure for extracting the parameters of the one-diode model is proposed. • Only the basic information listed in the datasheet of PV modules are required. • Results demonstrate a simple, robust and accurate procedure. - Abstract: The current–voltage characteristic of a photovoltaic module is typically evaluated by using a model based on the solar cell equivalent circuit. The complexity of the procedure applied for extracting the model parameters depends on data available in manufacture’s datasheet. Since the datasheet is not detailed enough, simplified models have to be used in many cases. This paper proposes a new procedure for extracting the parameters of the one-diode model in standard test conditions, using only the basic data listed by all manufactures in datasheet (short circuit current, open circuit voltage and maximum power point). The procedure is validated by using manufacturers’ data for six commercially crystalline silicon photovoltaic modules. Comparing the computed and measured current–voltage characteristics the determination coefficient is in the range 0.976–0.998. Thus, the proposed procedure represents a feasible tool for solving the five-parameter model applied to crystalline silicon photovoltaic modules. The procedure is described in detail, to guide potential users to derive similar models for other types of photovoltaic modules.
Directory of Open Access Journals (Sweden)
Suzhi Xiao
2016-04-01
Full Text Available In order to acquire an accurate three-dimensional (3D measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2016-04-28
In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.
Accurate calibration of the velocity-dependent one-scale model for domain walls
Energy Technology Data Exchange (ETDEWEB)
Leite, A.M.M., E-mail: up080322016@alunos.fc.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ecole Polytechnique, 91128 Palaiseau Cedex (France); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2013-01-08
We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048{sup 3}, and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c{sub w}=0.34{+-}0.16 and k{sub w}=0.98{+-}0.07, which are of higher precision than (but in agreement with) earlier estimates.
Accurate calibration of the velocity-dependent one-scale model for domain walls
International Nuclear Information System (INIS)
Leite, A.M.M.; Martins, C.J.A.P.; Shellard, E.P.S.
2013-01-01
We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048 3 , and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c w =0.34±0.16 and k w =0.98±0.07, which are of higher precision than (but in agreement with) earlier estimates.
Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-09-18
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).
Wang, Huai-Chun; Minh, Bui Quang; Susko, Edward; Roger, Andrew J
2018-03-01
Proteins have distinct structural and functional constraints at different sites that lead to site-specific preferences for particular amino acid residues as the sequences evolve. Heterogeneity in the amino acid substitution process between sites is not modeled by commonly used empirical amino acid exchange matrices. Such model misspecification can lead to artefacts in phylogenetic estimation such as long-branch attraction. Although sophisticated site-heterogeneous mixture models have been developed to address this problem in both Bayesian and maximum likelihood (ML) frameworks, their formidable computational time and memory usage severely limits their use in large phylogenomic analyses. Here we propose a posterior mean site frequency (PMSF) method as a rapid and efficient approximation to full empirical profile mixture models for ML analysis. The PMSF approach assigns a conditional mean amino acid frequency profile to each site calculated based on a mixture model fitted to the data using a preliminary guide tree. These PMSF profiles can then be used for in-depth tree-searching in place of the full mixture model. Compared with widely used empirical mixture models with $k$ classes, our implementation of PMSF in IQ-TREE (http://www.iqtree.org) speeds up the computation by approximately $k$/1.5-fold and requires a small fraction of the RAM. Furthermore, this speedup allows, for the first time, full nonparametric bootstrap analyses to be conducted under complex site-heterogeneous models on large concatenated data matrices. Our simulations and empirical data analyses demonstrate that PMSF can effectively ameliorate long-branch attraction artefacts. In some empirical and simulation settings PMSF provided more accurate estimates of phylogenies than the mixture models from which they derive.
International Nuclear Information System (INIS)
Giakoumis, Evangelos G.; Dimaratos, Athanasios M.; Rakopoulos, Constantine D.
2011-01-01
Diesel engine noise radiation has drawn increased attention in recent years since it is associated with the passengers' and pedestrians' discomfort, a fact that has been acknowledged by the manufacturers and the legislation in many countries. In the current study, experimental tests were conducted on a truck, turbocharged diesel engine in order to investigate the mechanism of combustion noise emission under various transient schedules experienced during daily driving conditions, namely acceleration and load increase. To this aim, a fully instrumented test bed was set up in order to capture the development of key engine and turbocharger variables during the transient events. Analytical diagrams are provided to explain the behavior of combustion noise radiation in conjunction with cylinder pressure (spectrum), turbocharger and governor/fuel pump response. Turbocharger lag was found to be the main cause for the noise spikes during all test cases examined, with the engine injection timing calibration and the slow adjustment of cylinder wall temperature to the new fueling conditions playing a vital role. The analysis was extended with a quasi-steady approximation of transient combustion noise using steady-state maps, in order to better highlight the effect of dynamic engine operation on combustion noise emissions. -- Highlights: → Studying the effects of acceleration and load increase on the combustion noise radiation from a turbocharged diesel engine. → Turbocharger lag was the most notable contributor for the behavior of combustion noise radiation. → Turbocharged diesel engine behaves noisier at acceleration compared with the steady-state operation. → Fuel limiter, governing and engine injection timing calibration play a decisive role on the emission of combustion noise. → Transient noise radiation was smoothed the slower the acceleration and the smaller the demanded speed increase.
A new model for the accurate calculation of natural gas viscosity
Directory of Open Access Journals (Sweden)
Xiaohong Yang
2017-03-01
Full Text Available Viscosity of natural gas is a basic and important parameter, of theoretical and practical significance in the domain of natural gas recovery, transmission and processing. In order to obtain the accurate viscosity data efficiently at a low cost, a new model and its corresponding functional relation are derived on the basis of the relationship among viscosity, temperature and density derived from the kinetic theory of gases. After the model parameters were optimized using a lot of experimental data, the diagram showing the variation of viscosity along with temperature and density is prepared, showing that: ① the gas viscosity increases with the increase of density as well as the increase of temperature in the low density region; ② the gas viscosity increases with the decrease of temperature in high density region. With this new model, the viscosity of 9 natural gas samples was calculated precisely. The average relative deviation between these calculated values and 1539 experimental data measured at 250–450 K and 0.10–140.0 MPa is less than 1.9%. Compared with the 793 experimental data with a measurement error less than 0.5%, the maximum relative deviation is less than 0.98%. It is concluded that this new model is more advantageous than the previous 8 models in terms of simplicity, accuracy, fast calculation, and direct applicability to the CO2 bearing gas samples.
HIGHLY-ACCURATE MODEL ORDER REDUCTION TECHNIQUE ON A DISCRETE DOMAIN
Directory of Open Access Journals (Sweden)
L. D. Ribeiro
2015-09-01
Full Text Available AbstractIn this work, we present a highly-accurate technique of model order reduction applied to staged processes. The proposed method reduces the dimension of the original system based on null values of moment-weighted sums of heat and mass balance residuals on real stages. To compute these sums of weighted residuals, a discrete form of Gauss-Lobatto quadrature was developed, allowing a high degree of accuracy in these calculations. The locations where the residuals are cancelled vary with time and operating conditions, characterizing a desirable adaptive nature of this technique. Balances related to upstream and downstream devices (such as condenser, reboiler, and feed tray of a distillation column are considered as boundary conditions of the corresponding difference-differential equations system. The chosen number of moments is the dimension of the reduced model being much lower than the dimension of the complete model and does not depend on the size of the original model. Scaling of the discrete independent variable related with the stages was crucial for the computational implementation of the proposed method, avoiding accumulation of round-off errors present even in low-degree polynomial approximations in the original discrete variable. Dynamical simulations of distillation columns were carried out to check the performance of the proposed model order reduction technique. The obtained results show the superiority of the proposed procedure in comparison with the orthogonal collocation method.
Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model
International Nuclear Information System (INIS)
Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.
2007-01-01
Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem
International Nuclear Information System (INIS)
Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.
2014-01-01
Highlights: • Unsteady turbine performance prediction by integrating the 1-D and meanline models. • The optimum discretization length/diameter ratio is identified. • No improvement is gained by increasing the number of rotor entries. • The predicted instantaneous mass flow and output power are analysed in detail. - Abstract: Stringent emission regulations are driving engine manufacturers to increase investment into enabling technologies to achieve better specific fuel consumption, thermal efficiency and most importantly carbon reduction. Engine downsizing is seen as a key enabler to successfully achieve all of these requirements. Boosting through turbocharging is widely regarded as one of the most promising technologies for engine downsizing. However, the wide range of engine speeds and loads requires enhanced quality of engine-turbocharger matching, compared to the conventional approach which considers only the full load condition. Thus, development of computational models capable of predicting the unsteady behaviour of a turbocharger turbine is crucial to the overall matching process. A purely one-dimensional (1D) turbine model is capable of good unsteady swallowing capacity predictions, however it has not been fully exploited to predict instantaneous turbine power. On the contrary, meanline models (zero-dimensional) are regarded as a good tool to determine turbine efficiency in steady state but they do not include any information about the pressure wave action occurring within the turbine. This paper explores an alternative methodology to predict instantaneous turbine power and swallowing capacity by integrating one-dimensional and meanline models. A single entry mixed-flow turbine is modelled using a 1D gas dynamic code to solve the unsteady flow state in the volute, consequently used as the input for a meanline model to evaluate the instantaneous turbine power. The key in the effectiveness of this methodology relies on the synchronisation of the flow
Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.
2018-04-01
Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter halos. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the "accurate" regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard ΛCDM + halo model against the clustering of SDSS DR7 galaxies. Specifically, we use the projected correlation function, group multiplicity function and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir halos) matches the clustering of low luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the "standard" halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.
International Nuclear Information System (INIS)
Katsanos, C.O.; Hountalas, D.T.; Zannis, T.C.
2013-01-01
Highlights: • A diesel model was developed using charts for turbocharger and power turbine. • The maximum value of bsfc improvement is 4.1% at 100% engine load. • The generated electric power ranges from 23 kW to 62 kW. • Turbocharger turbine efficiency decreases slightly with the power turbine speed. • Turbocompounding increases the average pressure value in the exhaust manifold. - Abstract: In diesel engines, approximately 30–40% of the energy supplied by the fuel is rejected to the ambience through exhaust gases. Therefore, there is a potentiality for further considerable increase of diesel engine efficiency with the utilization of exhaust gas heat and its conversion to mechanical or electrical energy. In the present study, the operational behavior of a heavy-duty (HD) diesel truck engine equipped with an electric turbocompounding system is examined on a theoretical basis. The electrical turbocompounding configuration comprised of a power turbine coupled to an electric generator, which is installed downstream to the turbocharger (T/C) turbine. A diesel engine simulation model has been developed using operating charts for both turbocharger and power turbine. A method for introducing the operating charts into the engine model is described thoroughly. A parametric analysis is conducted with the developed simulation tool, where the varying parameter is the rotational speed of power turbine shaft. In this study, the interaction between the power turbine and the turbocharged diesel engine is examined in detail. The effect of power turbine speed on T/C components efficiencies, power turbine efficiency, exhaust pressure and temperature, engine boost pressure and air to fuel ratio is evaluated. In addition, theoretical results for the potential impact of electrical turbocompounding on the generated electric power, net engine power and relative improvement of brake specific fuel consumption (bsfc) are provided. The critical evaluation of the theoretical
An accurate analytical solution of a zero-dimensional greenhouse model for global warming
International Nuclear Information System (INIS)
Foong, S K
2006-01-01
In introducing the complex subject of global warming, books and papers usually use the zero-dimensional greenhouse model. When the ratio of the infrared radiation energy of the Earth's surface that is lost to outer space to the non-reflected average solar radiation energy is small, the model admits an accurate approximate analytical solution-the resulting energy balance equation of the model is a quartic equation that can be solved analytically-and thus provides an alternative solution and instructional strategy. A search through the literature fails to find an analytical solution, suggesting that the solution may be new. In this paper, we review the model, derive the approximation and obtain its solution. The dependence of the temperature of the surface of the Earth and the temperature of the atmosphere on seven parameters is made explicit. A simple and convenient formula for global warming (or cooling) in terms of the percentage change of the parameters is derived. The dependence of the surface temperature on the parameters is illustrated by several representative graphs
Application of thin plate splines for accurate regional ionosphere modeling with multi-GNSS data
Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej
2016-04-01
GNSS-derived regional ionosphere models are widely used in both precise positioning, ionosphere and space weather studies. However, their accuracy is often not sufficient to support precise positioning, RTK in particular. In this paper, we presented new approach that uses solely carrier phase multi-GNSS observables and thin plate splines (TPS) for accurate ionospheric TEC modeling. TPS is a closed solution of a variational problem minimizing both the sum of squared second derivatives of a smoothing function and the deviation between data points and this function. This approach is used in UWM-rt1 regional ionosphere model developed at UWM in Olsztyn. The model allows for providing ionospheric TEC maps with high spatial and temporal resolutions - 0.2x0.2 degrees and 2.5 minutes, respectively. For TEC estimation, EPN and EUPOS reference station data is used. The maps are available with delay of 15-60 minutes. In this paper we compare the performance of UWM-rt1 model with IGS global and CODE regional ionosphere maps during ionospheric storm that took place on March 17th, 2015. During this storm, the TEC level over Europe doubled comparing to earlier quiet days. The performance of the UWM-rt1 model was validated by (a) comparison to reference double-differenced ionospheric corrections over selected baselines, and (b) analysis of post-fit residuals to calibrated carrier phase geometry-free observational arcs at selected test stations. The results show a very good performance of UWM-rt1 model. The obtained post-fit residuals in case of UWM maps are lower by one order of magnitude comparing to IGS maps. The accuracy of UWM-rt1 -derived TEC maps is estimated at 0.5 TECU. This may be directly translated to the user positioning domain.
Spiral CT scanning plan to generate accurate Fe models of the human femur
International Nuclear Information System (INIS)
Zannoni, C.; Testi, D.; Capello, A.
1999-01-01
In spiral computed tomography (CT), source rotation, patient translation, and data acquisition are continuously conducted. Settings of the detector collimation and the table increment affect the image quality in terms of spatial and contrast resolution. This study assessed and measured the efficacy of spiral CT in those applications where the accurate reconstruction of bone morphology is critical: custom made prosthesis design or three dimensional modelling of the mechanical behaviour of long bones. Results show that conventional CT grants the highest accuracy. Spiral CT with D=5 mm and P=1,5 in the regions where the morphology is more regular, slightly degrades the image quality but allows to acquire at comparable cost an higher number of images increasing the longitudinal resolution of the acquired data set. (author)
Multi-fidelity machine learning models for accurate bandgap predictions of solids
International Nuclear Information System (INIS)
Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab
2016-01-01
Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelity quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.
Accurate Treatment of Collisions and Water-Delivery in Models of Terrestrial Planet Formation
Haghighipour, Nader; Maindl, Thomas; Schaefer, Christoph
2017-10-01
It is widely accepted that collisions among solid bodies, ignited by their interactions with planetary embryos is the key process in the formation of terrestrial planets and transport of volatiles and chemical compounds to their accretion zones. Unfortunately, due to computational complexities, these collisions are often treated in a rudimentary way. Impacts are considered to be perfectly inelastic and volatiles are considered to be fully transferred from one object to the other. This perfect-merging assumption has profound effects on the mass and composition of final planetary bodies as it grossly overestimates the masses of these objects and the amounts of volatiles and chemical elements transferred to them. It also entirely neglects collisional-loss of volatiles (e.g., water) and draws an unrealistic connection between these properties and the chemical structure of the protoplanetary disk (i.e., the location of their original carriers). We have developed a new and comprehensive methodology to simulate growth of embryos to planetary bodies where we use a combination of SPH and N-body codes to accurately model collisions as well as the transport/transfer of chemical compounds. Our methodology accounts for the loss of volatiles (e.g., ice sublimation) during the orbital evolution of their careers and accurately tracks their transfer from one body to another. Results of our simulations show that traditional N-body modeling of terrestrial planet formation overestimates the amount of the mass and water contents of the final planets by over 60% implying that not only the amount of water they suggest is far from being realistic, small planets such as Mars can also form in these simulations when collisions are treated properly. We will present details of our methodology and discuss its implications for terrestrial planet formation and water delivery to Earth.
An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows
Liang, Tengfei
2013-01-01
Aiming at simulating micro gas flows with accurate boundary conditions, an efficient hybrid algorithmis developed by combining themolecular dynamics (MD) method with the direct simulationMonte Carlo (DSMC)method. The efficiency comes from the fact that theMD method is applied only within the gas-wall interaction layer, characterized by the cut-off distance of the gas-solid interaction potential, to resolve accurately the gas-wall interaction process, while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer. A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface, hence there is no need for one-toone mapping between a MD gas molecule and a DSMC simulation particle. Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the "smart-wall model" proposed by Barisik et al. The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem. Both the accuracy and efficiency of the hybrid algorithm are discussed. As an application, the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface. Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models. ©c 2014 Global-Science Press.
Karamanis, N.; Palfreyman, D.; Arcoumanis, C.; Martinez-Botas, R. F.
2006-07-01
The detailed flow characteristics of three high-pressure-ratio mixed-flow turbines were investigated under both steady and pulsating flow conditions. Two rotors featured a constant inlet blade angle, one with 12 blades and the second with 10. The third rotor was shorter and had a nominally constant incidence angle. The rotors find application on an automotive high-speed large commercial diesel turbocharger. The steady flow entering and exiting the blades has been quantified by a laser Doppler velocimetry system. The measurements were performed at a plane 3.0-mm ahead of the rotor leading edge and 9.5-mm downstream the rotor trailing edge. The turbine test conditions corresponded to the peak efficiency point at two rotational speeds, 29,400 and 41,300-rpm. The results were resolved in a blade-to-blade sense to examine fully the nature of the flow at turbocharger representative conditions. A correlation between the combined effects of incidence and exit flow angle with the isentropic efficiency has been verified. Regarding pulsating flow, the velocity data and their corresponding instantaneous velocity triangles were resolved in a blade-to-blade sense to understand better the complex phenomenon. The results highlighted the potential of a nominally constant incidence design to absorb better the inadequacy of the volute to discharge the exhaust gas uniformly along the blade leading edge. A double vortex rotating in a clockwise sense propagated on the plane normal to the meridional direction. This should be attributed to the effect of the passing blade that was acting as a blockage to the flow. The phenomenon was more pronounced near the suction and pressure surfaces of the blade, but diminished at the mid-passage region where the flow exhibited its best level of guidance. The full mixed flow turbine stage under transient conditions was modelled firstly with a 'steady' inlet and secondly with a 'pulsating' inlet boundary condition. In both cases comparison was made to
Simulating the effects of turbocharging on the emission levels of a gasoline engine
Directory of Open Access Journals (Sweden)
Amir Reza Mahmoudi
2017-12-01
Full Text Available The main objective of this work was to respond to the global concern for the rise of the emissions and the necessity of preventing them to form rather than dealing with their after-effects. Therefore, the production levels of four main emissions, namely NOx, CO2, CO and UHC in gasoline engine of Nissan Maxima 1994 is assessed via 1-D simulation with the GT-Power code. Then, a proper matching of turbine-compressor is carried out to propose a turbocharger for the engine, and the resultant emissions are compared to the naturally aspirated engine. It is found that the emission levels of NOx, CO, and CO2 are higher in terms of their concentration in the exhaust fume of the turbocharged engine, in comparison with the naturally aspirated engine. However, at the same time, the brake power and the brake specific emissions produced by the turbocharged engine are respectively higher and lower than those of the naturally aspirated engine. Therefore, it is concluded that, for a specific application, turbocharging provides the chance to achieve the performance of a potential naturally aspirated engine while producing lower emissions. Keywords: Emission, Gasoline SI engine, Turbocharging, GT-Power, 1-D simulation, Brake specific
An accurate real-time model of maglev planar motor based on compound Simpson numerical integration
Directory of Open Access Journals (Sweden)
Baoquan Kou
2017-05-01
Full Text Available To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.
An accurate real-time model of maglev planar motor based on compound Simpson numerical integration
Kou, Baoquan; Xing, Feng; Zhang, Lu; Zhou, Yiheng; Liu, Jiaqi
2017-05-01
To realize the high-speed and precise control of the maglev planar motor, a more accurate real-time electromagnetic model, which considers the influence of the coil corners, is proposed in this paper. Three coordinate systems for the stator, mover and corner coil are established. The coil is divided into two segments, the straight coil segment and the corner coil segment, in order to obtain a complete electromagnetic model. When only take the first harmonic of the flux density distribution of a Halbach magnet array into account, the integration method can be carried out towards the two segments according to Lorenz force law. The force and torque analysis formula of the straight coil segment can be derived directly from Newton-Leibniz formula, however, this is not applicable to the corner coil segment. Therefore, Compound Simpson numerical integration method is proposed in this paper to solve the corner segment. With the validation of simulation and experiment, the proposed model has high accuracy and can realize practical application easily.
Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region
Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping
2016-01-01
A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.
A new algebraic turbulence model for accurate description of airfoil flows
Xiao, Meng-Juan; She, Zhen-Su
2017-11-01
We report a new algebraic turbulence model (SED-SL) based on the SED theory, a symmetry-based approach to quantifying wall turbulence. The model specifies a multi-layer profile of a stress length (SL) function in both the streamwise and wall-normal directions, which thus define the eddy viscosity in the RANS equation (e.g. a zero-equation model). After a successful simulation of flat plate flow (APS meeting, 2016), we report here further applications of the model to the flow around airfoil, with significant improvement of the prediction accuracy of the lift (CL) and drag (CD) coefficients compared to other popular models (e.g. BL, SA, etc.). Two airfoils, namely RAE2822 airfoil and NACA0012 airfoil, are computed for over 50 cases. The results are compared to experimental data from AGARD report, which shows deviations of CL bounded within 2%, and CD within 2 counts (10-4) for RAE2822 and 6 counts for NACA0012 respectively (under a systematic adjustment of the flow conditions). In all these calculations, only one parameter (proportional to the Karmen constant) shows slight variation with Mach number. The most remarkable outcome is, for the first time, the accurate prediction of the drag coefficient. The other interesting outcome is the physical interpretation of the multi-layer parameters: they specify the corresponding multi-layer structure of turbulent boundary layer; when used together with simulation data, the SED-SL enables one to extract physical information from empirical data, and to understand the variation of the turbulent boundary layer.
Estimating Gravity Biases with Wavelets in Support of a 1-cm Accurate Geoid Model
Ahlgren, K.; Li, X.
2017-12-01
Systematic errors that reside in surface gravity datasets are one of the major hurdles in constructing a high-accuracy geoid model at high resolutions. The National Oceanic and Atmospheric Administration's (NOAA) National Geodetic Survey (NGS) has an extensive historical surface gravity dataset consisting of approximately 10 million gravity points that are known to have systematic biases at the mGal level (Saleh et al. 2013). As most relevant metadata is absent, estimating and removing these errors to be consistent with a global geopotential model and airborne data in the corresponding wavelength is quite a difficult endeavor. However, this is crucial to support a 1-cm accurate geoid model for the United States. With recently available independent gravity information from GRACE/GOCE and airborne gravity from the NGS Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, several different methods of bias estimation are investigated which utilize radial basis functions and wavelet decomposition. We estimate a surface gravity value by incorporating a satellite gravity model, airborne gravity data, and forward-modeled topography at wavelet levels according to each dataset's spatial wavelength. Considering the estimated gravity values over an entire gravity survey, an estimate of the bias and/or correction for the entire survey can be found and applied. In order to assess the accuracy of each bias estimation method, two techniques are used. First, each bias estimation method is used to predict the bias for two high-quality (unbiased and high accuracy) geoid slope validation surveys (GSVS) (Smith et al. 2013 & Wang et al. 2017). Since these surveys are unbiased, the various bias estimation methods should reflect that and provide an absolute accuracy metric for each of the bias estimation methods. Secondly, the corrected gravity datasets from each of the bias estimation methods are used to build a geoid model. The accuracy of each geoid model
Lung ultrasound accurately detects pneumothorax in a preterm newborn lamb model.
Blank, Douglas A; Hooper, Stuart B; Binder-Heschl, Corinna; Kluckow, Martin; Gill, Andrew W; LaRosa, Domenic A; Inocencio, Ishmael M; Moxham, Alison; Rodgers, Karyn; Zahra, Valerie A; Davis, Peter G; Polglase, Graeme R
2016-06-01
Pneumothorax is a common emergency affecting extremely preterm. In adult studies, lung ultrasound has performed better than chest x-ray in the diagnosis of pneumothorax. The purpose of this study was to determine the efficacy of lung ultrasound (LUS) examination to detect pneumothorax using a preterm animal model. This was a prospective, observational study using newborn Border-Leicester lambs at gestational age = 126 days (equivalent to gestational age = 26 weeks in humans) receiving mechanical ventilation from birth to 2 h of life. At the conclusion of the experiment, LUS was performed, the lambs were then euthanised and a post-mortem exam was immediately performed. We used previously published ultrasound techniques to identify pneumothorax. Test characteristics of LUS to detect pneumothorax were calculated, using the post-mortem exam as the 'gold standard' test. Nine lambs (18 lungs) were examined. Four lambs had a unilateral pneumothorax, all of which were identified by LUS with no false positives. This was the first study to use post-mortem findings to test the efficacy of LUS to detect pneumothorax in a newborn animal model. Lung ultrasound accurately detected pneumothorax, verified by post-mortem exam, in premature, newborn lambs. © 2016 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir
2018-04-10
We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .
Directory of Open Access Journals (Sweden)
Qingwen Li
2015-01-01
Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.
Mehra, Tarun; Koljonen, Virve; Seifert, Burkhardt; Volbracht, Jörk; Giovanoli, Pietro; Plock, Jan; Moos, Rudolf Maria
2015-01-01
Reimbursement systems have difficulties depicting the actual cost of burn treatment, leaving care providers with a significant financial burden. Our aim was to establish a simple and accurate reimbursement model compatible with prospective payment systems. A total of 370 966 electronic medical records of patients discharged in 2012 to 2013 from Swiss university hospitals were reviewed. A total of 828 cases of burns including 109 cases of severe burns were retained. Costs, revenues and earnings for severe and nonsevere burns were analysed and a linear regression model predicting total inpatient treatment costs was established. The median total costs per case for severe burns was tenfold higher than for nonsevere burns (179 949 CHF [167 353 EUR] vs 11 312 CHF [10 520 EUR], interquartile ranges 96 782-328 618 CHF vs 4 874-27 783 CHF, p <0.001). The median of earnings per case for nonsevere burns was 588 CHF (547 EUR) (interquartile range -6 720 - 5 354 CHF) whereas severe burns incurred a large financial loss to care providers, with median earnings of -33 178 CHF (30 856 EUR) (interquartile range -95 533 - 23 662 CHF). Differences were highly significant (p <0.001). Our linear regression model predicting total costs per case with length of stay (LOS) as independent variable had an adjusted R2 of 0.67 (p <0.001 for LOS). Severe burns are systematically underfunded within the Swiss reimbursement system. Flat-rate DRG-based refunds poorly reflect the actual treatment costs. In conclusion, we suggest a reimbursement model based on a per diem rate for treatment of severe burns.
ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS
International Nuclear Information System (INIS)
Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.
2009-01-01
A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance ΛCDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and ΛCDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the ΛCDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass, when
Serres, Nicolas
2010-11-09
A turbine assembly for a variable-geometry turbocharger includes a turbine housing defining a divided volute having first and second scrolls, wherein the first scroll has a substantially smaller volume than the second scroll. The first scroll feeds exhaust gas to a first portion of a turbine wheel upstream of the throat of the wheel, while the second scroll feeds gas to a second portion of the wheel at least part of which is downstream of the throat. Flow from the second scroll is regulated by a sliding piston. The first scroll can be optimized for low-flow conditions such that the turbocharger can operate effectively like a small fixed-geometry turbocharger when the piston is closed. The turbine housing defines an inlet that is divided by a dividing wall into two portions respectively feeding gas to the two scrolls, a leading edge of the dividing wall being downstream of the inlet mouth.
Directory of Open Access Journals (Sweden)
Korczewski Zbigniew
2015-01-01
Full Text Available The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple.
Preliminary results on performance testing of a turbocharged rotary combustion engine
Meng, P. R.; Rice, W. J.; Schock, H. J.; Pringle, D. P.
1982-01-01
The performance of a turbocharged rotary engine at power levels above 75 kW (100 hp) was studied. A twin rotor turbocharged Mazda engine was tested at speeds of 3000 to 6000 rpm and boost pressures to 7 psi. The NASA developed combustion diagnostic instrumentation was used to quantify indicated and pumping mean effect pressures, peak pressure, and face to face variability on a cycle by cycle basis. Results of this testing showed that a 5900 rpm a 36 percent increase in power was obtained by operating the engine in the turbocharged configuration. When operating with lean carburetor jets at 105 hp (78.3 kW) and 4000 rpm, a brake specific fuel consumption of 0.45 lbm/lb-hr was measured.
Geometric Optimization of Turbocharger Compressor and Its Influence on Engine Performance
Directory of Open Access Journals (Sweden)
Zhang Fangming
2017-01-01
Full Text Available This paper consists of two parts: aerodynamic and mechanical multi-objective optimization for centrifugal compressor impeller through combining the three dimensional fluid dynamic simulation module CFX 16.1, the static structure in the ANSYS Workbench and the optimization software optiSLang; and a comparison and analysis of the effects of the optimized compressor on the engine performance by the one dimensional simulation tool GT-Power. In the process of optimization, the compressor design point is regarded as the optimizing point, while impeller blades and hub line were parameterized through the Bezier curve. Pressure ratio, isentropic efficiency, quality and maximum deformation and maximum internal stress of the impeller were defined as the output conditions. MOP module was then adopted in optiSLang for the parameters sensitivity analysis and mapping relationship modeling between the impeller parameters and the objective functions. The genetic algorithm is applied to find out and validate the optimal design. Through 1D simulation tool GT-Power, the influence of the optimized compressor on rotational speed of the turbocharger, backpressure and pumping loss under different engine operating conditions is analyzed and compared.
Accurate estimate of the relic density and the kinetic decoupling in nonthermal dark matter models
International Nuclear Information System (INIS)
Arcadi, Giorgio; Ullio, Piero
2011-01-01
Nonthermal dark matter generation is an appealing alternative to the standard paradigm of thermal WIMP dark matter. We reconsider nonthermal production mechanisms in a systematic way, and develop a numerical code for accurate computations of the dark matter relic density. We discuss, in particular, scenarios with long-lived massive states decaying into dark matter particles, appearing naturally in several beyond the standard model theories, such as supergravity and superstring frameworks. Since nonthermal production favors dark matter candidates with large pair annihilation rates, we analyze the possible connection with the anomalies detected in the lepton cosmic-ray flux by Pamela and Fermi. Concentrating on supersymmetric models, we consider the effect of these nonstandard cosmologies in selecting a preferred mass scale for the lightest supersymmetric particle as a dark matter candidate, and the consequent impact on the interpretation of new physics discovered or excluded at the LHC. Finally, we examine a rather predictive model, the G2-MSSM, investigating some of the standard assumptions usually implemented in the solution of the Boltzmann equation for the dark matter component, including coannihilations. We question the hypothesis that kinetic equilibrium holds along the whole phase of dark matter generation, and the validity of the factorization usually implemented to rewrite the system of a coupled Boltzmann equation for each coannihilating species as a single equation for the sum of all the number densities. As a byproduct we develop here a formalism to compute the kinetic decoupling temperature in case of coannihilating particles, which can also be applied to other particle physics frameworks, and also to standard thermal relics within a standard cosmology.
Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination
Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael
2014-05-01
Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of
Turney, Benjamin W
2014-03-01
Obtaining renal access is one of the most important and complex steps in learning percutaneous nephrolithotomy (PCNL). Ideally, this skill should be practiced outside the operating room. There is a need for anatomically accurate and cheap models for simulated training. The objective was to develop a cost-effective, anatomically accurate, nonbiologic training model for simulated PCNL access under fluoroscopic guidance. Collecting systems from routine computed tomography urograms were extracted and reformatted using specialized software. These images were printed in a water-soluble plastic on a three-dimensional (3D) printer to create biomodels. These models were embedded in silicone and then the models were dissolved in water to leave a hollow collecting system within a silicone model. These PCNL models were filled with contrast medium and sealed. A layer of dense foam acted as a spacer to replicate the tissues between skin and kidney. 3D printed models of human collecting systems are a useful adjunct in planning PCNL access. The PCNL access training model is relatively low cost and reproduces the anatomy of the renal collecting system faithfully. A range of models reflecting the variety and complexity of human collecting systems can be reproduced. The fluoroscopic triangulation process needed to target the calix of choice can be practiced successfully in this model. This silicone PCNL training model accurately replicates the anatomic architecture and orientation of the human renal collecting system. It provides a safe, clean, and effective model for training in accurate fluoroscopy-guided PCNL access.
Energy Technology Data Exchange (ETDEWEB)
Hawley, J.G.; Wallace, F.J.; Pease, A.C.; Cox, A. [University of Bath (United Kingdom). School of Mechanical Engineering; Horrocks, R.W.; Bird, G.L. [Ford Motor Co. Ltd., Basildon (United Kingdom)
1997-07-01
This paper represents the results of an extensive testing programme conducted at the University of Bath on behalf of the Ford Motor Company on a prototype 1.8 litre direct injection (DI) diesel engine. The testing compared the effects of a standard wastegate controlled fixed geometry turbocharger (FGT) with a variable geometry turbocharger (VGT) at discrete part-load operating points. The object being to evaluate the NOx reduction potential at these points due to the VGT and varying exhaust gas recirculation schedules. A reduction in NOx of up to 45 percent was observed without compromising fuel consumption or smoke levels. (author)
International Nuclear Information System (INIS)
Chin, Vun Jack; Salam, Zainal; Ishaque, Kashif
2016-01-01
Highlights: • An accurate computational method for the two-diode model of PV module is proposed. • The hybrid method employs analytical equations and Differential Evolution (DE). • I PV , I o1 , and R p are computed analytically, while a 1 , a 2 , I o2 and R s are optimized. • This allows the model parameters to be computed without using costly assumptions. - Abstract: This paper proposes an accurate computational technique for the two-diode model of PV module. Unlike previous methods, it does not rely on assumptions that cause the accuracy to be compromised. The key to this improvement is the implementation of a hybrid solution, i.e. by incorporating the analytical method with the differential evolution (DE) optimization technique. Three parameters, i.e. I PV , I o1 , and R p are computed analytically, while the remaining, a 1 , a 2 , I o2 and R s are optimized using the DE. To validate its accuracy, the proposed method is tested on three PV modules of different technologies: mono-crystalline, poly-crystalline and thin film. Furthermore, its performance is evaluated against two popular computational methods for the two-diode model. The proposed method is found to exhibit superior accuracy for the variation in irradiance and temperature for all module types. In particular, the improvement in accuracy is evident at low irradiance conditions; the root-mean-square error is one order of magnitude lower than that of the other methods. In addition, the values of the model parameters are consistent with the physics of PV cell. It is envisaged that the method can be very useful for PV simulation, in which accuracy of the model is of prime concern.
Towards more accurate wind and solar power prediction by improving NWP model physics
Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo
2014-05-01
nighttime to well mixed conditions during the day presents a big challenge to NWP models. Fast decrease and successive increase in hub-height wind speed after sunrise, and the formation of nocturnal low level jets will be discussed. For PV, the life cycle of low stratus clouds and fog is crucial. Capturing these processes correctly depends on the accurate simulation of diffusion or vertical momentum transport and the interaction with other atmospheric and soil processes within the numerical weather model. Results from Single Column Model simulations and 3d case studies will be presented. Emphasis is placed on wind forecasts; however, some references to highlights concerning the PV-developments will also be given. *) ORKA: Optimierung von Ensembleprognosen regenerativer Einspeisung für den Kürzestfristbereich am Anwendungsbeispiel der Netzsicherheitsrechnungen **) EWeLiNE: Erstellung innovativer Wetter- und Leistungsprognosemodelle für die Netzintegration wetterabhängiger Energieträger, www.projekt-eweline.de
Wheeler, M.F.
2010-09-06
For many years there have been formulations considered for modeling single phase ow on general hexahedra grids. These include the extended mixed nite element method, and families of mimetic nite di erence methods. In most of these schemes either no rate of convergence of the algorithm has been demonstrated both theoret- ically and computationally or a more complicated saddle point system needs to be solved for an accurate solution. Here we describe a multipoint ux mixed nite element (MFMFE) method [5, 2, 3]. This method is motivated from the multipoint ux approximation (MPFA) method [1]. The MFMFE method is locally conservative with continuous ux approximations and is a cell-centered scheme for the pressure. Compared to the MPFA method, the MFMFE has a variational formulation, since it can be viewed as a mixed nite element with special approximating spaces and quadrature rules. The framework allows han- dling of hexahedral grids with non-planar faces by applying trilinear mappings from physical elements to reference cubic elements. In addition, there are several multi- scale and multiphysics extensions such as the mortar mixed nite element method that allows the treatment of non-matching grids [4]. Extensions to the two-phase oil-water ow are considered. We reformulate the two- phase model in terms of total velocity, capillary velocity, water pressure, and water saturation. We choose water pressure and water saturation as primary variables. The total velocity is driven by the gradient of the water pressure and total mobility. Iterative coupling scheme is employed for the coupled system. This scheme allows treatments of di erent time scales for the water pressure and water saturation. In each time step, we rst solve the pressure equation using the MFMFE method; we then Center for Subsurface Modeling, The University of Texas at Austin, Austin, TX 78712; mfw@ices.utexas.edu. yCenter for Subsurface Modeling, The University of Texas at Austin, Austin, TX 78712; gxue
Toward accurate tooth segmentation from computed tomography images using a hybrid level set model
Energy Technology Data Exchange (ETDEWEB)
Gan, Yangzhou; Zhao, Qunfei [Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240 (China); Xia, Zeyang, E-mail: zy.xia@siat.ac.cn, E-mail: jing.xiong@siat.ac.cn; Hu, Ying [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and The Chinese University of Hong Kong, Shenzhen 518055 (China); Xiong, Jing, E-mail: zy.xia@siat.ac.cn, E-mail: jing.xiong@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510855 (China); Zhang, Jianwei [TAMS, Department of Informatics, University of Hamburg, Hamburg 22527 (Germany)
2015-01-15
Purpose: A three-dimensional (3D) model of the teeth provides important information for orthodontic diagnosis and treatment planning. Tooth segmentation is an essential step in generating the 3D digital model from computed tomography (CT) images. The aim of this study is to develop an accurate and efficient tooth segmentation method from CT images. Methods: The 3D dental CT volumetric images are segmented slice by slice in a two-dimensional (2D) transverse plane. The 2D segmentation is composed of a manual initialization step and an automatic slice by slice segmentation step. In the manual initialization step, the user manually picks a starting slice and selects a seed point for each tooth in this slice. In the automatic slice segmentation step, a developed hybrid level set model is applied to segment tooth contours from each slice. Tooth contour propagation strategy is employed to initialize the level set function automatically. Cone beam CT (CBCT) images of two subjects were used to tune the parameters. Images of 16 additional subjects were used to validate the performance of the method. Volume overlap metrics and surface distance metrics were adopted to assess the segmentation accuracy quantitatively. The volume overlap metrics were volume difference (VD, mm{sup 3}) and Dice similarity coefficient (DSC, %). The surface distance metrics were average symmetric surface distance (ASSD, mm), RMS (root mean square) symmetric surface distance (RMSSSD, mm), and maximum symmetric surface distance (MSSD, mm). Computation time was recorded to assess the efficiency. The performance of the proposed method has been compared with two state-of-the-art methods. Results: For the tested CBCT images, the VD, DSC, ASSD, RMSSSD, and MSSD for the incisor were 38.16 ± 12.94 mm{sup 3}, 88.82 ± 2.14%, 0.29 ± 0.03 mm, 0.32 ± 0.08 mm, and 1.25 ± 0.58 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the canine were 49.12 ± 9.33 mm{sup 3}, 91.57 ± 0.82%, 0.27 ± 0.02 mm, 0
Toward accurate tooth segmentation from computed tomography images using a hybrid level set model
International Nuclear Information System (INIS)
Gan, Yangzhou; Zhao, Qunfei; Xia, Zeyang; Hu, Ying; Xiong, Jing; Zhang, Jianwei
2015-01-01
Purpose: A three-dimensional (3D) model of the teeth provides important information for orthodontic diagnosis and treatment planning. Tooth segmentation is an essential step in generating the 3D digital model from computed tomography (CT) images. The aim of this study is to develop an accurate and efficient tooth segmentation method from CT images. Methods: The 3D dental CT volumetric images are segmented slice by slice in a two-dimensional (2D) transverse plane. The 2D segmentation is composed of a manual initialization step and an automatic slice by slice segmentation step. In the manual initialization step, the user manually picks a starting slice and selects a seed point for each tooth in this slice. In the automatic slice segmentation step, a developed hybrid level set model is applied to segment tooth contours from each slice. Tooth contour propagation strategy is employed to initialize the level set function automatically. Cone beam CT (CBCT) images of two subjects were used to tune the parameters. Images of 16 additional subjects were used to validate the performance of the method. Volume overlap metrics and surface distance metrics were adopted to assess the segmentation accuracy quantitatively. The volume overlap metrics were volume difference (VD, mm 3 ) and Dice similarity coefficient (DSC, %). The surface distance metrics were average symmetric surface distance (ASSD, mm), RMS (root mean square) symmetric surface distance (RMSSSD, mm), and maximum symmetric surface distance (MSSD, mm). Computation time was recorded to assess the efficiency. The performance of the proposed method has been compared with two state-of-the-art methods. Results: For the tested CBCT images, the VD, DSC, ASSD, RMSSSD, and MSSD for the incisor were 38.16 ± 12.94 mm 3 , 88.82 ± 2.14%, 0.29 ± 0.03 mm, 0.32 ± 0.08 mm, and 1.25 ± 0.58 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the canine were 49.12 ± 9.33 mm 3 , 91.57 ± 0.82%, 0.27 ± 0.02 mm, 0.28 ± 0.03 mm
Rapcsak, Steven Z.; Henry, Maya L.; Teague, Sommer L.; Carnahan, Susan D.; Beeson, Pélagie M.
2007-01-01
Coltheart and colleagues (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Castles, Bates, & Coltheart, 2006) have demonstrated that an equation derived from dual-route theory accurately predicts reading performance in young normal readers and in children with reading impairment due to developmental dyslexia or stroke. In this paper we present evidence that the dual-route equation and a related multiple regression model also accurately predict both reading and spelling performance in adult...
Directory of Open Access Journals (Sweden)
Tosun Erdi
2017-01-01
Full Text Available This study was aimed at estimating the variation of several engine control parameters within the rotational speed-load map, using regression analysis and artificial neural network techniques. Duration of injection, specific fuel consumption, exhaust gas at turbine inlet, and within the catalytic converter brick were chosen as the output parameters for the models, while engine speed and brake mean effective pressure were selected as independent variables for prediction. Measurements were performed on a turbocharged direct injection spark ignition engine fueled with gasoline. A three-layer feed-forward structure and back-propagation algorithm was used for training the artificial neural network. It was concluded that this technique is capable of predicting engine parameters with better accuracy than linear and non-linear regression techniques.
Directory of Open Access Journals (Sweden)
Aleksander HORNIK
2011-01-01
Full Text Available This article presented the numeric computations of non-stationary heat flow in the form of distribution of temperature fields on characteristic surfaces of the piston for two different rotational speeds for the same engine load during 60 seconds during in which the engine worked. The object of research was a turbocharged Diesel engine with a direct fuel injection to the combustion chamber and the engine cubic capacity that is 2390 [cm3] and power rating, which is 85 [kW]. The numeric computations were carried out by the use of the finite element method (FEM with the help of COSMOS/M software and the use of the two – zone combustion model.
SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES
Energy Technology Data Exchange (ETDEWEB)
Lelli, Federico; McGaugh, Stacy S. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Schombert, James M., E-mail: federico.lelli@case.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)
2016-12-01
We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii) V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
Nemati, Shamim; Holder, Andre; Razmi, Fereshteh; Stanley, Matthew D; Clifford, Gari D; Buchman, Timothy G
2018-04-01
Sepsis is among the leading causes of morbidity, mortality, and cost overruns in critically ill patients. Early intervention with antibiotics improves survival in septic patients. However, no clinically validated system exists for real-time prediction of sepsis onset. We aimed to develop and validate an Artificial Intelligence Sepsis Expert algorithm for early prediction of sepsis. Observational cohort study. Academic medical center from January 2013 to December 2015. Over 31,000 admissions to the ICUs at two Emory University hospitals (development cohort), in addition to over 52,000 ICU patients from the publicly available Medical Information Mart for Intensive Care-III ICU database (validation cohort). Patients who met the Third International Consensus Definitions for Sepsis (Sepsis-3) prior to or within 4 hours of their ICU admission were excluded, resulting in roughly 27,000 and 42,000 patients within our development and validation cohorts, respectively. None. High-resolution vital signs time series and electronic medical record data were extracted. A set of 65 features (variables) were calculated on hourly basis and passed to the Artificial Intelligence Sepsis Expert algorithm to predict onset of sepsis in the proceeding T hours (where T = 12, 8, 6, or 4). Artificial Intelligence Sepsis Expert was used to predict onset of sepsis in the proceeding T hours and to produce a list of the most significant contributing factors. For the 12-, 8-, 6-, and 4-hour ahead prediction of sepsis, Artificial Intelligence Sepsis Expert achieved area under the receiver operating characteristic in the range of 0.83-0.85. Performance of the Artificial Intelligence Sepsis Expert on the development and validation cohorts was indistinguishable. Using data available in the ICU in real-time, Artificial Intelligence Sepsis Expert can accurately predict the onset of sepsis in an ICU patient 4-12 hours prior to clinical recognition. A prospective study is necessary to determine the
International Nuclear Information System (INIS)
Arbab, M.I.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Imtenan, S.; Sajjad, H.; Rizwanul Fattah, I.M.
2015-01-01
Highlights: • Properties limitation of biodiesel has been overcome using multiple biodiesel blends. • New biodiesel was developed using biodiesel–biodiesel optimum blend. • Engine performance and emission was tested with the newly developed biodiesels. • New biodiesels showed better engine performance than other tested fuels. - Abstract: Fossil fuel depletion, global warming with rapid changes in climate, and increases in oil prices have motivated scientists to search for alternative fuel. Biodiesel can be an effective solution despite some limitations, such as poor fuel properties and engine performance. From this perspective, experiments were carried out to improve fuel properties and engine performance by using a binary blend of palm and coconut biodiesel at an optimized ratio. MATLAB optimization tool was used to determine this blend ratio. A new biodiesel was developed and represented by PC (optimum blend of palm and coconut biodiesel). Engine performance and emission were tested under a full load at variable speed condition by using a 20% blend of each biodiesel with petroleum diesel, and the results were compared with petroleum diesel under both turbocharged and non-turbocharged conditions. PC20 (blend of 20% PC biodiesel and 80% petroleum diesel) showed the highest engine power with lower brake-specific fuel consumption than the other tested fuels in the presence of a turbocharger. The emissions of PC20 were lower than those of all other tested fuels. The experimental analysis reveals that PC showed superior performance and emission over palm biodiesel blend
Development and testing of a HD diesel engine with two-state turbocharging
Sturm, W.L.; Kruithof, J.
2000-01-01
A research project was carried out in which a DAF engine was equipped with a two-stage turbocharging system. Objectives were to investigate an engine concept with very high BMEP (25-30 bars), maintaining acceptable emissions and fuel consumption, while concentrating on the control system and
Accurate Energy Consumption Modeling of IEEE 802.15.4e TSCH Using Dual-BandOpenMote Hardware.
Daneels, Glenn; Municio, Esteban; Van de Velde, Bruno; Ergeerts, Glenn; Weyn, Maarten; Latré, Steven; Famaey, Jeroen
2018-02-02
The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things (IoT) environments. This paper presents an accurate and up-to-date energy consumption model for devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and radio state changes, thus providing a precise representation of the device behavior and an accurate prediction of its energy consumption. Moreover, energy measurements were performed with a dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations were conducted to observe the TSCH energy consumption effects in end-to-end communication for both frequency bands. Experimental verification of the model shows that it accurately models the consumption for all possible packet sizes and that the calculated consumption on average differs less than 3% from the measured consumption. This deviation includes measurement inaccuracies and the variations of the guard time. As such, the proposed model is very suitable for accurate energy consumption modeling of TSCH networks.
International Nuclear Information System (INIS)
Fu, Jianqin; Liu, Jingping; Deng, Banglin; Feng, Renhua; Yang, Jing; Zhou, Feng; Zhao, Xiaohuan
2014-01-01
Highlights: • The calculation method for SAT engine was developed and introduced. • SAT can effectively promote the low-speed performances of IC engine. • At 1500 r/min, intake pressure reaches target value and torque is increased by 25%. • The thermal efficiency of SAT engine only has a slight increase. - Abstract: An approach for IC engine exhaust gas energy recovery, named as steam-assisted turbocharging (SAT), is developed to assist the exhaust turbocharger. A steam generating plant is coupled to the exhaust turbocharged engine’s exhaust pipe, which uses the high-temperature exhaust gas to generate steam. The steam is injected into turbine inlet and used as the supplementary working medium for turbine. By this means, turbine output power and then boosting pressure can be promoted due to the increase of turbine working medium. To reveal the advantages and energy saving potentials of SAT, this concept was applied to an exhaust turbocharging engine, and a parameter analysis was carried out. Research results show that, SAT can effectively promote the low-speed performances of IC engine, and make the peak torque shift to low-speed area. At 1500 r/min, the intake gas pressure can reach the desired value and the torque can be increased by 25.0% over the exhaust turbocharging engine, while the pumping mean effective pressure (PMEP) and thermal efficiency only have a slight increase. At 1000 r/min, the improvement of IC engine performances is very limited due to the low exhaust gas energy
Directory of Open Access Journals (Sweden)
E. Zadorozhnaya
2017-12-01
Full Text Available One of the most urgent issues of the modern world and domestic automobile and tractor production is the problem of the production of efficient and reliable turbochargers. The rotor bearings largely determine the reliable operation of the turbocharger. By increasing the degree of the forcing of the engine the turbocharger rotor speed and the load increases significantly. Working conditions of bearings also complicated because of the temperature rise. In this case the bearing of the turbine and the compressor bearing works in different thermal conditions. The definition of the thermal state of the bearings can be performed experimentally. However, to perform these studies the sophisticated experimental equipment must be used. Researchers can't perform experiments for each type of turbocharger. Therefore, the applying of the theoretical approaches becomes more relevant. The peculiarity of the considered problem is the design of the bearings, which are made in the form of multilayer bearings with floating rings. Such designs increase the number of the parameters that affect the behaviour of the rotor. For the calculation of the multilayer bearings and turbocharger rotor dynamics a method and calculation algorithm was developed. A plan of the experiment based on the orthogonal central composite plan was drawn up. The regression equations for rotor amplitude and bearing temperature were obtained. As variable parameters the clearances (external and internal, rotor speed, pressure and lubricant temperature were used. The results of the calculation were compared with experimental results obtained at the plant. Non-Newtonian properties of the lubricants were taken into account in the calculations. Comparative results showed good agreement. In this way the resulting function can be applied to studies of the similarly multilayer bearings without complicated experimental studies.
Can crop-climate models be accurate and precise? A case study for wheat production in Denmark
DEFF Research Database (Denmark)
Montesino San Martin, Manuel; Olesen, Jørgen E.; Porter, John Roy
2015-01-01
Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical....... Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher...... suitable for generic model ensembles for near-term agricultural impact assessments of climate change....
Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models
DEFF Research Database (Denmark)
Stovgaard, Kasper; Andreetta, Christian; Ferkinghoff-Borg, Jesper
2010-01-01
, which is paramount for structure determination based on statistical inference. Results: We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids......DBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for use in statistical inference of protein structures from SAXS data....
F1 style MGU-H applied to the turbocharger of a gasoline hybrid electric passenger car
Boretti, Albert
2017-12-01
We consider a turbocharged gasoline direct injection (DI) engine featuring a motor-generator-unit (MGU-H) fitted on the turbocharger shaft. The MGU-H receives or delivers energy to the same energy storage (ES) of the hybrid power unit that comprises a motor-generator unit on the driveline (MGU-K) in addition to the internal combustion engine (ICE). The energy supply from the ES is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, it also improves the ratio of engine crankshaft power to fuel flow power, as well as the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power. The energy supply to the ES is possible at high speeds and loads, where otherwise the turbine could have been waste gated, and during decelerations. This improves the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power.
Ustinov, E A
2014-10-07
Commensurate-incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs-Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton-graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton-carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas-solid and solid-solid system.
International Nuclear Information System (INIS)
Ustinov, E. A.
2014-01-01
Commensurate–incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs–Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton–graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton–carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas–solid and solid–solid system
International Nuclear Information System (INIS)
Yamacli, Serhan; Avci, Mutlu
2009-01-01
In this work, development of a voltage dependent resistance model for metallic carbon nanotubes is aimed. Firstly, the resistance of metallic carbon nanotube interconnects are obtained from ab initio simulations and then the voltage dependence of the resistance is modeled through regression. Self-consistent non-equilibrium Green's function formalism combined with density functional theory is used for calculating the voltage dependent resistance of metallic carbon nanotubes. It is shown that voltage dependent resistances of carbon nanotubes can be accurately modeled as a polynomial function which enables rapid integration of carbon nanotube interconnect models into electronic design automation tools.
Energy Technology Data Exchange (ETDEWEB)
Huang, P-C; Hsu, C-H [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Hsiao, I-T [Department Medical Imaging and Radiological Sciences, Chang Gung University, Tao-Yuan, Taiwan (China); Lin, K M [Medical Engineering Research Division, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan (China)], E-mail: cghsu@mx.nthu.edu.tw
2009-06-15
Accurate modeling of the photon acquisition process in pinhole SPECT is essential for optimizing resolution. In this work, the authors develop an accurate system model in which pinhole finite aperture and depth-dependent geometric sensitivity are explicitly included. To achieve high-resolution pinhole SPECT, the voxel size is usually set in the range of sub-millimeter so that the total number of image voxels increase accordingly. It is inevitably that a system matrix that models a variety of favorable physical factors will become extremely sophisticated. An efficient implementation for such an accurate system model is proposed in this research. We first use the geometric symmetries to reduce redundant entries in the matrix. Due to the sparseness of the matrix, only non-zero terms are stored. A novel center-to-radius recording rule is also developed to effectively describe the relation between a voxel and its related detectors at every projection angle. The proposed system matrix is also suitable for multi-threaded computing. Finally, the accuracy and effectiveness of the proposed system model is evaluated in a workstation equipped with two Quad-Core Intel X eon processors.
MULTI SENSOR DATA INTEGRATION FOR AN ACCURATE 3D MODEL GENERATION
Directory of Open Access Journals (Sweden)
S. Chhatkuli
2015-05-01
Full Text Available The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other’s weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.
2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software
Energy Technology Data Exchange (ETDEWEB)
Carrington, David Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Jiajia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-10-25
Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.
A globally accurate theory for a class of binary mixture models
Dickman, Adriana G.; Stell, G.
The self-consistent Ornstein-Zernike approximation results for the 3D Ising model are used to obtain phase diagrams for binary mixtures described by decorated models, yielding the plait point, binodals, and closed-loop coexistence curves for the models proposed by Widom, Clark, Neece, and Wheeler. The results are in good agreement with series expansions and experiments.
Oil Coking Prevention Using Electric Water Pump for Turbo-Charge Spark-Ignition Engines
Directory of Open Access Journals (Sweden)
Han-Ching Lin
2014-01-01
Full Text Available Turbocharger has been widely implemented for internal combustion engine to increase an engine's power output and reduce fuel consumption. However, its operating temperature would rise to 340°C when engine stalls. This higher temperature may results in bearing wear, run-out, and stick, due to oil coking and insufficient lubrication. In order to overcome these problems, this paper employs Electric Water Pump (EWP to supply cool liquid to turbocharger actively when the engine stalls. The system layout, operating timing, and duration of EWP are investigated for obtaining optimal performance. The primarily experimental results show that the proposed layout and control strategy have a lower temperature of 100°C than the conventional temperature 225°C.
THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS
Energy Technology Data Exchange (ETDEWEB)
Smith, Randall K. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Valencic, Lynne A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-241, Cambridge, MA 02139 (United States)
2016-02-20
Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model as a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.
Rapcsak, Steven Z; Henry, Maya L; Teague, Sommer L; Carnahan, Susan D; Beeson, Pélagie M
2007-06-18
Coltheart and co-workers [Castles, A., Bates, T. C., & Coltheart, M. (2006). John Marshall and the developmental dyslexias. Aphasiology, 20, 871-892; Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204-256] have demonstrated that an equation derived from dual-route theory accurately predicts reading performance in young normal readers and in children with reading impairment due to developmental dyslexia or stroke. In this paper, we present evidence that the dual-route equation and a related multiple regression model also accurately predict both reading and spelling performance in adult neurological patients with acquired alexia and agraphia. These findings provide empirical support for dual-route theories of written language processing.
Aftertreatment in a pre-turbocharger position. Size and fuel consumption advantage for Tier 4
Energy Technology Data Exchange (ETDEWEB)
Bruestle, Claus [Emitec, Inc., Rochester Hills, MI (United States); Tomazic, Dean; Franke, Michael [FEV, Inc., Auburn Hills, MI (United States)
2013-05-15
As the 2014 implementation of EPA Tier 4 fast approaches in the US A, manufacturers of large bore diesel engines face a dilemma. The stringent limits set by Tier 4 legislation require large, heavy and expensive emissions control systems but severe constraints on installation space, weight and cost exist for these systems. A viable solution is to place catalysts and filters upstream of the turbocharger. (orig.)
Fault Tolerance for Industrial Actuators in Absence of Accurate Models and Hardware Redundancy
DEFF Research Database (Denmark)
Papageorgiou, Dimitrios; Blanke, Mogens; Niemann, Hans Henrik
2015-01-01
This paper investigates Fault-Tolerant Control for closed-loop systems where only coarse models are available and there is lack of actuator and sensor redundancies. The problem is approached in the form of a typical servomotor in closed-loop. A linear model is extracted from input/output data to ...
Can we Use Low-Cost 360 Degree Cameras to Create Accurate 3d Models?
Barazzetti, L.; Previtali, M.; Roncoroni, F.
2018-05-01
360 degree cameras capture the whole scene around a photographer in a single shot. Cheap 360 cameras are a new paradigm in photogrammetry. The camera can be pointed to any direction, and the large field of view reduces the number of photographs. This paper aims to show that accurate metric reconstructions can be achieved with affordable sensors (less than 300 euro). The camera used in this work is the Xiaomi Mijia Mi Sphere 360, which has a cost of about 300 USD (January 2018). Experiments demonstrate that millimeter-level accuracy can be obtained during the image orientation and surface reconstruction steps, in which the solution from 360° images was compared to check points measured with a total station and laser scanning point clouds. The paper will summarize some practical rules for image acquisition as well as the importance of ground control points to remove possible deformations of the network during bundle adjustment, especially for long sequences with unfavorable geometry. The generation of orthophotos from images having a 360° field of view (that captures the entire scene around the camera) is discussed. Finally, the paper illustrates some case studies where the use of a 360° camera could be a better choice than a project based on central perspective cameras. Basically, 360° cameras become very useful in the survey of long and narrow spaces, as well as interior areas like small rooms.
CRADA Final Report for CRADA Number NFE-08-01671 Materials for Advanced Turbocharger Designs
Energy Technology Data Exchange (ETDEWEB)
Maziasz, P. J. [ORNL; Wilson, M. [Honeywell
2014-11-28
Results were obtained on residual stresses in the weld of the steel shaft to the Ni-based superalloy turbine wheel for turbochargers. Neutron diffraction studies at the HFIR Residual Stress Facility showed asymmetric tensile stresses after electron-beam welding of the wheel and shaft. A post-weld heat-treatment was found to relieve and reduce the residual stresses. Results were also obtained on cast CF8C-Plus steel as an upgrade alternative to cast irons (SiMo, Ni-resist) for higher temperature capability and performance for the turbocharger housing. CF8C-Plus steel has demonstrated creep-rupture resistance at 600-950oC, and is more creep-resistant than HK30Nb, but lacks oxidation-resistance at 800oC and above in 10% water vapor. New modified CF8C-Plus Cu/W steels with Cr and Ni additions show better oxidation resistance at 800oC in 10% water vapor, and have capability to higher temperatures. For automotive gasoline engine turbocharger applications, higher temperatures are required, so at the end of this project, testing began at 1000oC and above.
An Investigation on the Efficiency Correction Method of the Turbocharger at Low Speed
Directory of Open Access Journals (Sweden)
Jin Eun Chung
2018-01-01
Full Text Available The heat transfer in the turbocharger occurs due to the temperature difference between the exhaust gas and intake air, coolant, and oil. This heat transfer causes the efficiency of the compressor and turbine to be distorted, which is known to be exacerbated during low rotational speeds. Thus, this study proposes a method to mitigate the distortion of the test result data caused by heat transfer in the turbocharger. With this method, the representative compressor temperature is defined and the heat transfer rate of the compressor is calculated by considering the effect of the oil and turbine inlet temperatures at low rotation speeds, when the cold and the hot gas test are simultaneously performed. The correction of compressor efficiency, depending on the turbine inlet temperature, was performed through both hot and cold gas tests and the results showed a maximum of 16% error prior to correction and a maximum of 3% error after the correction. In addition, it shows that it is possible to correct the efficiency distortion of the turbocharger by heat transfer by correcting to the combined turbine efficiency based on the corrected compressor efficiency.
Accurate and dynamic predictive model for better prediction in medicine and healthcare.
Alanazi, H O; Abdullah, A H; Qureshi, K N; Ismail, A S
2018-05-01
Information and communication technologies (ICTs) have changed the trend into new integrated operations and methods in all fields of life. The health sector has also adopted new technologies to improve the systems and provide better services to customers. Predictive models in health care are also influenced from new technologies to predict the different disease outcomes. However, still, existing predictive models have suffered from some limitations in terms of predictive outcomes performance. In order to improve predictive model performance, this paper proposed a predictive model by classifying the disease predictions into different categories. To achieve this model performance, this paper uses traumatic brain injury (TBI) datasets. TBI is one of the serious diseases worldwide and needs more attention due to its seriousness and serious impacts on human life. The proposed predictive model improves the predictive performance of TBI. The TBI data set is developed and approved by neurologists to set its features. The experiment results show that the proposed model has achieved significant results including accuracy, sensitivity, and specificity.
Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description
Directory of Open Access Journals (Sweden)
Jan Hackenberg
2014-05-01
Full Text Available This paper presents a method for fitting cylinders into a point cloud, derived from a terrestrial laser-scanned tree. Utilizing high scan quality data as the input, the resulting models describe the branching structure of the tree, capable of detecting branches with a diameter smaller than a centimeter. The cylinders are stored as a hierarchical tree-like data structure encapsulating parent-child neighbor relations and incorporating the tree’s direction of growth. This structure enables the efficient extraction of tree components, such as the stem or a single branch. The method was validated both by applying a comparison of the resulting cylinder models with ground truth data and by an analysis between the input point clouds and the models. Tree models were accomplished representing more than 99% of the input point cloud, with an average distance from the cylinder model to the point cloud within sub-millimeter accuracy. After validation, the method was applied to build two allometric models based on 24 tree point clouds as an example of the application. Computation terminated successfully within less than 30 min. For the model predicting the total above ground volume, the coefficient of determination was 0.965, showing the high potential of terrestrial laser-scanning for forest inventories.
Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R
2016-01-25
Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in 3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. Copyright © 2015 Elsevier Ltd. All rights reserved.
A new geometric-based model to accurately estimate arm and leg inertial estimates.
Wicke, Jason; Dumas, Geneviève A
2014-06-03
Segment estimates of mass, center of mass and moment of inertia are required input parameters to analyze the forces and moments acting across the joints. The objectives of this study were to propose a new geometric model for limb segments, to evaluate it against criterion values obtained from DXA, and to compare its performance to five other popular models. Twenty five female and 24 male college students participated in the study. For the criterion measures, the participants underwent a whole body DXA scan, and estimates for segment mass, center of mass location, and moment of inertia (frontal plane) were directly computed from the DXA mass units. For the new model, the volume was determined from two standing frontal and sagittal photographs. Each segment was modeled as a stack of slices, the sections of which were ellipses if they are not adjoining another segment and sectioned ellipses if they were adjoining another segment (e.g. upper arm and trunk). Length of axes of the ellipses was obtained from the photographs. In addition, a sex-specific, non-uniform density function was developed for each segment. A series of anthropometric measurements were also taken by directly following the definitions provided of the different body segment models tested, and the same parameters determined for each model. Comparison of models showed that estimates from the new model were consistently closer to the DXA criterion than those from the other models, with an error of less than 5% for mass and moment of inertia and less than about 6% for center of mass location. Copyright © 2014. Published by Elsevier Ltd.
International Nuclear Information System (INIS)
Maeda, Chiaki; Tasaki, Satoko; Kirihara, Soshu
2011-01-01
Computer graphic models of bioscaffolds with four-coordinate lattice structures of solid rods in artificial bones were designed by using a computer aided design. The scaffold models composed of acryl resin with hydroxyapatite particles at 45vol. % were fabricated by using stereolithography of a computer aided manufacturing. After dewaxing and sintering heat treatment processes, the ceramics scaffold models with four-coordinate lattices and fine hydroxyapatite microstructures were obtained successfully. By using a computer aided analysis, it was found that bio-fluids could flow extensively inside the sintered scaffolds. This result shows that the lattice structures will realize appropriate bio-fluid circulations and promote regenerations of new bones.
Energy Technology Data Exchange (ETDEWEB)
Maeda, Chiaki; Tasaki, Satoko; Kirihara, Soshu, E-mail: c-maeda@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki City, Osaka 567-0047 (Japan)
2011-05-15
Computer graphic models of bioscaffolds with four-coordinate lattice structures of solid rods in artificial bones were designed by using a computer aided design. The scaffold models composed of acryl resin with hydroxyapatite particles at 45vol. % were fabricated by using stereolithography of a computer aided manufacturing. After dewaxing and sintering heat treatment processes, the ceramics scaffold models with four-coordinate lattices and fine hydroxyapatite microstructures were obtained successfully. By using a computer aided analysis, it was found that bio-fluids could flow extensively inside the sintered scaffolds. This result shows that the lattice structures will realize appropriate bio-fluid circulations and promote regenerations of new bones.
DEFF Research Database (Denmark)
Chon, K H; Cohen, R J; Holstein-Rathlou, N H
1997-01-01
A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving...... average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre...
submitter A model for the accurate computation of the lateral scattering of protons in water
Bellinzona, EV; Embriaco, A; Ferrari, A; Fontana, A; Mairani, A; Parodi, K; Rotondi, A; Sala, P; Tessonnier, T
2016-01-01
A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code. The effects of the nuclear interactions are parametrized with a two-parameter tail function, adjusted on MC data calculated with FLUKA. The model, after the convolution with the beam and the detector response, is in agreement with recent proton data in water from HIT. The model gives results with the same accuracy of the MC codes based on Molière theory, with a much shorter computing time.
Wheeler, M.F.; Xue, G.
2010-01-01
For many years there have been formulations considered for modeling single phase ow on general hexahedra grids. These include the extended mixed nite element method, and families of mimetic nite di erence methods. In most of these schemes either
Scalable and Accurate SMT-Based Model Checking of Data Flow Systems
2013-10-31
of variable x is always less than that of variable y) can be represented in this theory. • A theory of inductive datatypes . Modeling software... datatypes can be done directly in this theory. • A theory of arrays. Software that uses arrays can be modeled with constraints in this theory, as can...Arithmetic (and specialized fragments) Arrays Inductive datatypes Bit-vectors Uninterpreted functions SMT Engine Input interfaces FEATURES Support for
Efficient and accurate log-Lévy approximations to Lévy driven LIBOR models
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Schoenmakers, John; Skovmand, David
2011-01-01
The LIBOR market model is very popular for pricing interest rate derivatives, but is known to have several pitfalls. In addition, if the model is driven by a jump process, then the complexity of the drift term is growing exponentially fast (as a function of the tenor length). In this work, we con...... ratchet caps show that the approximations perform very well. In addition, we also consider the log-L\\'evy approximation of annuities, which offers good approximations for high volatility regimes....
Accurate Models for Evaluating the Direct Conducted and Radiated Emissions from Integrated Circuits
Directory of Open Access Journals (Sweden)
Domenico Capriglione
2018-03-01
Full Text Available This paper deals with the electromagnetic compatibility (EMC issues related to the direct and radiated emissions from a high-speed integrated circuits (ICs. These emissions are evaluated here by means of circuital and electromagnetic models. As for the conducted emission, an equivalent circuit model is derived to describe the IC and the effect of its loads (package, printed circuit board, decaps, etc., based on the Integrated Circuit Emission Model template (ICEM. As for the radiated emission, an electromagnetic model is proposed, based on the superposition of the fields generated in the far field region by the loop currents flowing into the IC and the package pins. A custom experimental setup is designed for validating the models. Specifically, for the radiated emission measurement, a custom test board is designed and realized, able to highlight the contribution of the direct emission from the IC, usually hidden by the indirect emission coming from the printed circuit board. Measurements of the package currents and of the far-field emitted fields are carried out, providing a satisfactory agreement with the model predictions.
Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen
2016-04-11
Exterior orientation parameters' (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang'E-1, compared to the existing space resection model.
Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu
2015-09-01
Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Xuemiao Xu
2016-04-01
Full Text Available Exterior orientation parameters’ (EOP estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang’E-1, compared to the existing space resection model.
Upton, Daniel J; McQueen-Mason, Simon J; Wood, A Jamie
2017-01-01
Aspergillus niger fermentation has provided the chief source of industrial citric acid for over 50 years. Traditional strain development of this organism was achieved through random mutagenesis, but advances in genomics have enabled the development of genome-scale metabolic modelling that can be used to make predictive improvements in fermentation performance. The parent citric acid-producing strain of A. niger , ATCC 1015, has been described previously by a genome-scale metabolic model that encapsulates its response to ambient pH. Here, we report the development of a novel double optimisation modelling approach that generates time-dependent citric acid fermentation using dynamic flux balance analysis. The output from this model shows a good match with empirical fermentation data. Our studies suggest that citric acid production commences upon a switch to phosphate-limited growth and this is validated by fitting to empirical data, which confirms the diauxic growth behaviour and the role of phosphate storage as polyphosphate. The calibrated time-course model reflects observed metabolic events and generates reliable in silico data for industrially relevant fermentative time series, and for the behaviour of engineered strains suggesting that our approach can be used as a powerful tool for predictive metabolic engineering.
Color-SIFT model: a robust and an accurate shot boundary detection algorithm
Sharmila Kumari, M.; Shekar, B. H.
2010-02-01
In this paper, a new technique called color-SIFT model is devised for shot boundary detection. Unlike scale invariant feature transform model that uses only grayscale information and misses important visual information regarding color, here we have adopted different color planes to extract keypoints which are subsequently used to detect shot boundaries. The basic SIFT model has four stages namely scale-space peak selection, keypoint localization, orientation assignment and keypoint descriptor and all these four stages were employed to extract key descriptors in each color plane. The proposed model works on three different color planes and a fusion has been made to take a decision on number of keypoint matches for shot boundary identification and hence is different from the color global scale invariant feature transform that works on quantized images. In addition, the proposed algorithm possess invariance to linear transformation and robust to occlusion and noisy environment. Experiments have been conducted on the standard TRECVID video database to reveal the performance of the proposed model.
Accurate Estimation of Target amounts Using Expanded BASS Model for Demand-Side Management
Kim, Hyun-Woong; Park, Jong-Jin; Kim, Jin-O.
2008-10-01
The electricity demand in Korea has rapidly increased along with a steady economic growth since 1970s. Therefore Korea has positively propelled not only SSM (Supply-Side Management) but also DSM (Demand-Side Management) activities to reduce investment cost of generating units and to save supply costs of electricity through the enhancement of whole national energy utilization efficiency. However study for rebate, which have influence on success or failure on DSM program, is not sufficient. This paper executed to modeling mathematically expanded Bass model considering rebates, which have influence on penetration amounts for DSM program. To reflect rebate effect more preciously, the pricing function using in expanded Bass model directly reflects response of potential participants for rebate level.
DEFF Research Database (Denmark)
Kiil, Søren; Johnsson, Jan Erik; Dam-Johansen, Kim
1999-01-01
Danish limestone types with very different particle size distributions (PSDs). All limestones were of a high purity. Model predictions were found to be qualitatively in good agreement with experimental data without any use of adjustable parameters. Deviations between measurements and simulations were...... attributed primarily to the PSD measurements of the limestone particles, which were used as model inputs. The PSDs, measured using a laser diffrac-tion-based Malvern analyser, were probably not representative of the limestone samples because agglomeration phenomena took place when the particles were...
Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.
Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre
2017-10-01
We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.
Efficient and Accurate Log-Levy Approximations of Levy-Driven LIBOR Models
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Schoenmakers, John; Skovmand, David
2012-01-01
The LIBOR market model is very popular for pricing interest rate derivatives but is known to have several pitfalls. In addition, if the model is driven by a jump process, then the complexity of the drift term grows exponentially fast (as a function of the tenor length). We consider a Lévy-driven ...... ratchet caps show that the approximations perform very well. In addition, we also consider the log-Lévy approximation of annuities, which offers good approximations for high-volatility regimes....
Czech Academy of Sciences Publication Activity Database
Bardhan, J. P.; Jungwirth, Pavel; Makowski, L.
Roč. 137, č. 12 ( 2012 ), 124101/1-124101/6 ISSN 0021-9606 R&D Projects: GA MŠk LH12001 Institutional research plan: CEZ:AV0Z40550506 Keywords : ion solvation * continuum models * linear response Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.164, year: 2012
Fast and accurate Bayesian model criticism and conflict diagnostics using R-INLA
Ferkingstad, Egil; Held, Leonhard; Rue, Haavard
2017-01-01
. Usually, a Bayesian hierarchical model incorporates a grouping of the individual data points, as, for example, with individuals in repeated measurement data. In such cases, the following question arises: Are any of the groups “outliers,” or in conflict
Accurate reduction of a model of circadian rhythms by delayed quasi steady state assumptions
Czech Academy of Sciences Publication Activity Database
Vejchodský, Tomáš
2014-01-01
Roč. 139, č. 4 (2014), s. 577-585 ISSN 0862-7959 Grant - others:European Commission(XE) StochDetBioModel(328008) Program:FP7 Institutional support: RVO:67985840 Keywords : biochemical networks * gene regulatory networks * oscillating systems * periodic solution Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/144135
Efficient accurate syntactic direct translation models: one tree at a time
Hassan, H.; Sima'an, K.; Way, A.
2011-01-01
A challenging aspect of Statistical Machine Translation from Arabic to English lies in bringing the Arabic source morpho-syntax to bear on the lexical as well as word-order choices of the English target string. In this article, we extend the feature-rich discriminative Direct Translation Model 2
Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Katz, Nathan; Zhu, Yanqing; Lin, Gloria; Choa, Ruth; Bagel, Jessica; O'Donnell, Patricia; Fitzgerald, Caitlin A; Langan, Therese; Wang, Ping; Casal, Margret L; Haskins, Mark E; Wilson, James M
2016-09-01
High fidelity animal models of human disease are essential for preclinical evaluation of novel gene and protein therapeutics. However, these studies can be complicated by exaggerated immune responses against the human transgene. Here we demonstrate that dogs with a genetic deficiency of the enzyme α-l-iduronidase (IDUA), a model of the lysosomal storage disease mucopolysaccharidosis type I (MPS I), can be rendered immunologically tolerant to human IDUA through neonatal exposure to the enzyme. Using MPS I dogs tolerized to human IDUA as neonates, we evaluated intrathecal delivery of an adeno-associated virus serotype 9 vector expressing human IDUA as a therapy for the central nervous system manifestations of MPS I. These studies established the efficacy of the human vector in the canine model, and allowed for estimation of the minimum effective dose, providing key information for the design of first-in-human trials. This approach can facilitate evaluation of human therapeutics in relevant animal models, and may also have clinical applications for the prevention of immune responses to gene and protein replacement therapies. Copyright © 2016 Elsevier Inc. All rights reserved.
An accurate coarse-grained model for chitosan polysaccharides in aqueous solution.
Directory of Open Access Journals (Sweden)
Levan Tsereteli
Full Text Available Computational models can provide detailed information about molecular conformations and interactions in solution, which is currently inaccessible by other means in many cases. Here we describe an efficient and precise coarse-grained model for long polysaccharides in aqueous solution at different physico-chemical conditions such as pH and ionic strength. The Model is carefully constructed based on all-atom simulations of small saccharides and metadynamics sampling of the dihedral angles in the glycosidic links, which represent the most flexible degrees of freedom of the polysaccharides. The model is validated against experimental data for Chitosan molecules in solution with various degree of deacetylation, and is shown to closely reproduce the available experimental data. For long polymers, subtle differences of the free energy maps of the glycosidic links are found to significantly affect the measurable polymer properties. Therefore, for titratable monomers the free energy maps of the corresponding links are updated according to the current charge of the monomers. We then characterize the microscopic and mesoscopic structural properties of large chitosan polysaccharides in solution for a wide range of solvent pH and ionic strength, and investigate the effect of polymer length and degree and pattern of deacetylation on the polymer properties.
An accurate coarse-grained model for chitosan polysaccharides in aqueous solution.
Tsereteli, Levan; Grafmüller, Andrea
2017-01-01
Computational models can provide detailed information about molecular conformations and interactions in solution, which is currently inaccessible by other means in many cases. Here we describe an efficient and precise coarse-grained model for long polysaccharides in aqueous solution at different physico-chemical conditions such as pH and ionic strength. The Model is carefully constructed based on all-atom simulations of small saccharides and metadynamics sampling of the dihedral angles in the glycosidic links, which represent the most flexible degrees of freedom of the polysaccharides. The model is validated against experimental data for Chitosan molecules in solution with various degree of deacetylation, and is shown to closely reproduce the available experimental data. For long polymers, subtle differences of the free energy maps of the glycosidic links are found to significantly affect the measurable polymer properties. Therefore, for titratable monomers the free energy maps of the corresponding links are updated according to the current charge of the monomers. We then characterize the microscopic and mesoscopic structural properties of large chitosan polysaccharides in solution for a wide range of solvent pH and ionic strength, and investigate the effect of polymer length and degree and pattern of deacetylation on the polymer properties.
Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions
Lachut, M.; Bennett, J.
2016-09-01
The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.
Steady and unsteady experimental analysis of a turbocharger for automotive applications
International Nuclear Information System (INIS)
Bontempo, R.; Cardone, M.; Manna, M.; Vorraro, G.
2015-01-01
Highlights: • Steady and unsteady characteristics of a turbocharger are analysed by experimental means. • The steady state characteristic maps are obtained for both the compressor and the turbine. • The validity of the classical adiabatic assumption is questioned. • The compressor efficiency evaluated through the adiabatic assumption may lead to a 5–10% relative error. • The mild and deep compressor surge phenomena have been experimentally investigated. - Abstract: The paper describes the steady and unsteady performance characteristics of a small size turbocharger typically employed in automotive downsized engine applications. The analysis is carried out by experimental means using an innovative hot gas generator system specifically designed for turbocharger testing which is capable of delivering a wide range of flow rates with adequate thermodynamic characteristics. More in detail, the gas generator consists of a medium size direct injection compression ignition Internal Combustion Engine (ICE) feeding the turbine of the test article. To independently set the hot gas mass flow rate and the turbine inlet temperature, the operating parameters of the aforementioned ICE are specified through an electronic control unit in a fully automated manner. Compared to previously presented data [1] (Energy Procedia, vol. 45, pp 1116-1125, 2014), those reported herein have been collected with the help of newly installed equipment and controlling software allowing for the estimation of the thermal power transferred from the turbocharger to the environment. In particular, thanks to a first law analysis, the collected measurements have shown that the algebraic sum of the thermal power transferred to the lubricating oil as well as to the environment is roughly speaking 20–30% of the compressor total enthalpy change per unit time. Moreover, it has been shown that evaluating the compressor efficiency through classical expression based on the adiabatic assumption leads to
Sapsis, Themistoklis P; Majda, Andrew J
2013-08-20
A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.
A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets
Directory of Open Access Journals (Sweden)
S. Carcano
2013-11-01
Full Text Available An improved version of the PDAC (Pyroclastic Dispersal Analysis Code, Esposti Ongaro et al., 2007 numerical model for the simulation of multiphase volcanic flows is presented and validated for the simulation of multiphase volcanic jets in supersonic regimes. The present version of PDAC includes second-order time- and space discretizations and fully multidimensional advection discretizations in order to reduce numerical diffusion and enhance the accuracy of the original model. The model is tested on the problem of jet decompression in both two and three dimensions. For homogeneous jets, numerical results are consistent with experimental results at the laboratory scale (Lewis and Carlson, 1964. For nonequilibrium gas–particle jets, we consider monodisperse and bidisperse mixtures, and we quantify nonequilibrium effects in terms of the ratio between the particle relaxation time and a characteristic jet timescale. For coarse particles and low particle load, numerical simulations well reproduce laboratory experiments and numerical simulations carried out with an Eulerian–Lagrangian model (Sommerfeld, 1993. At the volcanic scale, we consider steady-state conditions associated with the development of Vulcanian and sub-Plinian eruptions. For the finest particles produced in these regimes, we demonstrate that the solid phase is in mechanical and thermal equilibrium with the gas phase and that the jet decompression structure is well described by a pseudogas model (Ogden et al., 2008. Coarse particles, on the other hand, display significant nonequilibrium effects, which associated with their larger relaxation time. Deviations from the equilibrium regime, with maximum velocity and temperature differences on the order of 150 m s−1 and 80 K across shock waves, occur especially during the rapid acceleration phases, and are able to modify substantially the jet dynamics with respect to the homogeneous case.
Can segmental model reductions quantify whole-body balance accurately during dynamic activities?
Jamkrajang, Parunchaya; Robinson, Mark A; Limroongreungrat, Weerawat; Vanrenterghem, Jos
2017-07-01
When investigating whole-body balance in dynamic tasks, adequately tracking the whole-body centre of mass (CoM) or derivatives such as the extrapolated centre of mass (XCoM) can be crucial but add considerable measurement efforts. The aim of this study was to investigate whether reduced kinematic models can still provide adequate CoM and XCoM representations during dynamic sporting tasks. Seventeen healthy recreationally active subjects (14 males and 3 females; age, 24.9±3.2years; height, 177.3±6.9cm; body mass 72.6±7.0kg) participated in this study. Participants completed three dynamic movements, jumping, kicking, and overarm throwing. Marker-based kinematic data were collected with 10 optoelectronic cameras at 250Hz (Oqus Qualisys, Gothenburg, Sweden). The differences between (X)CoM from a full-body model (gold standard) and (X)CoM representations based on six selected model reductions were evaluated using a Bland-Altman approach. A threshold difference was set at ±2cm to help the reader interpret which model can still provide an acceptable (X)CoM representation. Antero-posterior and medio-lateral displacement profiles of the CoM representation based on lower limbs, trunk and upper limbs showed strong agreement, slightly reduced for lower limbs and trunk only. Representations based on lower limbs only showed less strong agreement, particularly for XCoM in kicking. Overall, our results provide justification of the use of certain model reductions for specific needs, saving measurement effort whilst limiting the error of tracking (X)CoM trajectories in the context of whole-body balance investigation. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Jebur Ahmed
2018-01-01
Full Text Available 3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D modelling applications is the current question that needs an answer. Therefore; in this paper, the performance of the Agisoft PhotoScan software was assessed and analyzed to show the potential of the software for accurate 3D modelling applications. To investigate this, a study was carried out in the University of Baghdad / Al-Jaderia campus using data collected from airborne metric camera with 457m flying height. The Agisoft results show potential according to the research objective and the dataset quality following statistical and validation shape analysis.
International Nuclear Information System (INIS)
Pino, Francisco; Roé, Nuria; Aguiar, Pablo; Falcon, Carles; Ros, Domènec; Pavía, Javier
2015-01-01
Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery
Energy Technology Data Exchange (ETDEWEB)
Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08907 (Spain); Roé, Nuria [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036 (Spain); Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Complexo Hospitalario Universitario de Santiago de Compostela 15706, Spain and Grupo de Imagen Molecular, Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Galicia 15782 (Spain); Falcon, Carles; Ros, Domènec [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Pavía, Javier [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 080836 (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); and Servei de Medicina Nuclear, Hospital Clínic, Barcelona 08036 (Spain)
2015-02-15
Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery
International Nuclear Information System (INIS)
Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke
2015-01-01
Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was
Energy Technology Data Exchange (ETDEWEB)
Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024 (United States)
2015-11-15
Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was
Yu, Victoria Y; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A; Sheng, Ke
2015-11-01
Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup
Accurate Simulation of 802.11 Indoor Links: A "Bursty" Channel Model Based on Real Measurements
Directory of Open Access Journals (Sweden)
Agüero Ramón
2010-01-01
Full Text Available We propose a novel channel model to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the "bursty" behavior which characterizes indoor wireless scenarios, having a great impact on the behavior of upper layer protocols. We compare this channel model, integrated within the Network Simulator (ns-2 platform, with other traditional approaches, showing that it is able to better reflect the real behavior which was empirically assessed.
Accurate Modeling of The Siemens S7 SCADA Protocol For Intrusion Detection And Digital Forensic
Directory of Open Access Journals (Sweden)
Amit Kleinmann
2014-09-01
Full Text Available The Siemens S7 protocol is commonly used in SCADA systems for communications between a Human Machine Interface (HMI and the Programmable Logic Controllers (PLCs. This paper presents a model-based Intrusion Detection Systems (IDS designed for S7 networks. The approach is based on the key observation that S7 traffic to and from a specific PLC is highly periodic; as a result, each HMI-PLC channel can be modeled using its own unique Deterministic Finite Automaton (DFA. The resulting DFA-based IDS is very sensitive and is able to flag anomalies such as a message appearing out of its position in the normal sequence or a message referring to a single unexpected bit. The intrusion detection approach was evaluated on traffic from two production systems. Despite its high sensitivity, the system had a very low false positive rate - over 99.82% of the traffic was identified as normal.
Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.
Wen, Chenyu; Zhang, Zhen; Zhang, Shi-Li
2017-10-27
Nanopores have been explored for various biochemical and nanoparticle analyses, primarily via characterizing the ionic current through the pores. At present, however, size determination for solid-state nanopores is experimentally tedious and theoretically unaccountable. Here, we establish a physical model by introducing an effective transport length, L eff , that measures, for a symmetric nanopore, twice the distance from the center of the nanopore where the electric field is the highest to the point along the nanopore axis where the electric field falls to e -1 of this maximum. By [Formula: see text], a simple expression S 0 = f (G, σ, h, β) is derived to algebraically correlate minimum nanopore cross-section area S 0 to nanopore conductance G, electrolyte conductivity σ, and membrane thickness h with β to denote pore shape that is determined by the pore fabrication technique. The model agrees excellently with experimental results for nanopores in graphene, single-layer MoS 2 , and ultrathin SiN x films. The generality of the model is verified by applying it to micrometer-size pores.
An accurate Kriging-based regional ionospheric model using combined GPS/BeiDou observations
Abdelazeem, Mohamed; Çelik, Rahmi N.; El-Rabbany, Ahmed
2018-01-01
In this study, we propose a regional ionospheric model (RIM) based on both of the GPS-only and the combined GPS/BeiDou observations for single-frequency precise point positioning (SF-PPP) users in Europe. GPS/BeiDou observations from 16 reference stations are processed in the zero-difference mode. A least-squares algorithm is developed to determine the vertical total electron content (VTEC) bi-linear function parameters for a 15-minute time interval. The Kriging interpolation method is used to estimate the VTEC values at a 1 ° × 1 ° grid. The resulting RIMs are validated for PPP applications using GNSS observations from another set of stations. The SF-PPP accuracy and convergence time obtained through the proposed RIMs are computed and compared with those obtained through the international GNSS service global ionospheric maps (IGS-GIM). The results show that the RIMs speed up the convergence time and enhance the overall positioning accuracy in comparison with the IGS-GIM model, particularly the combined GPS/BeiDou-based model.
International Nuclear Information System (INIS)
Jha, D.K.; Kant, Tarun; Srinivas, K.; Singh, R.K.
2013-01-01
Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature
Accurate 3d Textured Models of Vessels for the Improvement of the Educational Tools of a Museum
Soile, S.; Adam, K.; Ioannidis, C.; Georgopoulos, A.
2013-02-01
Besides the demonstration of the findings, modern museums organize educational programs which aim to experience and knowledge sharing combined with entertainment rather than to pure learning. Toward that effort, 2D and 3D digital representations are gradually replacing the traditional recording of the findings through photos or drawings. The present paper refers to a project that aims to create 3D textured models of two lekythoi that are exhibited in the National Archaeological Museum of Athens in Greece; on the surfaces of these lekythoi scenes of the adventures of Odysseus are depicted. The project is expected to support the production of an educational movie and some other relevant interactive educational programs for the museum. The creation of accurate developments of the paintings and of accurate 3D models is the basis for the visualization of the adventures of the mythical hero. The data collection was made by using a structured light scanner consisting of two machine vision cameras that are used for the determination of geometry of the object, a high resolution camera for the recording of the texture, and a DLP projector. The creation of the final accurate 3D textured model is a complicated and tiring procedure which includes the collection of geometric data, the creation of the surface, the noise filtering, the merging of individual surfaces, the creation of a c-mesh, the creation of the UV map, the provision of the texture and, finally, the general processing of the 3D textured object. For a better result a combination of commercial and in-house software made for the automation of various steps of the procedure was used. The results derived from the above procedure were especially satisfactory in terms of accuracy and quality of the model. However, the procedure was proved to be time consuming while the use of various software packages presumes the services of a specialist.
Energy Technology Data Exchange (ETDEWEB)
Jha, D.K., E-mail: dkjha@barc.gov.in [Civil Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kant, Tarun [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Srinivas, K. [Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
2013-12-15
Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature.
Inference Under a Wright-Fisher Model Using an Accurate Beta Approximation
DEFF Research Database (Denmark)
Tataru, Paula; Bataillon, Thomas; Hobolth, Asger
2015-01-01
frequencies and the influence of evolutionary pressures, such as mutation and selection. Despite its simple mathematical formulation, exact results for the distribution of allele frequency (DAF) as a function of time are not available in closed analytic form. Existing approximations build......, the probability of being on the boundary can be positive, corresponding to the allele being either lost or fixed. Here, we introduce the beta with spikes, an extension of the beta approximation, which explicitly models the loss and fixation probabilities as two spikes at the boundaries. We show that the addition...
Bardhan, Jaydeep P; Jungwirth, Pavel; Makowski, Lee
2012-09-28
Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular "linear response" model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution).
Xie, Weihong; Yu, Yang
2017-01-01
Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly. PMID:29124062
Directory of Open Access Journals (Sweden)
Fan Liang
2017-01-01
Full Text Available Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly.
Flow Modeling in Pelton Turbines by an Accurate Eulerian and a Fast Lagrangian Evaluation Method
Directory of Open Access Journals (Sweden)
A. Panagiotopoulos
2015-01-01
Full Text Available The recent development of CFD has allowed the flow modeling in impulse hydro turbines that includes complex phenomena like free surface flow, multifluid interaction, and unsteady, time dependent flow. Some commercial and open-source CFD codes, which implement Eulerian methods, have been validated against experimental results showing satisfactory accuracy. Nevertheless, further improvement of accuracy is still a challenge, while the computational cost is very high and unaffordable for multiparametric design optimization of the turbine’s runner. In the present work a CFD Eulerian approach is applied at first, in order to simulate the flow in the runner of a Pelton turbine model installed at the laboratory. Then, a particulate method, the Fast Lagrangian Simulation (FLS, is used for the same case, which is much faster and hence potentially suitable for numerical design optimization, providing that it can achieve adequate accuracy. The results of both methods for various turbine operation conditions, as also for modified runner and bucket designs, are presented and discussed in the paper. In all examined cases the FLS method shows very good accuracy in predicting the hydraulic efficiency of the runner, although the computed flow evolution and the torque curve exhibit some systematic differences from the Eulerian results.
Multiconjugate adaptive optics applied to an anatomically accurate human eye model.
Bedggood, P A; Ashman, R; Smith, G; Metha, A B
2006-09-04
Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.
Bardhan, Jaydeep P.; Jungwirth, Pavel; Makowski, Lee
2012-01-01
Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular “linear response” model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution). PMID:23020318
Multiconjugate adaptive optics applied to an anatomically accurate human eye model
Bedggood, P. A.; Ashman, R.; Smith, G.; Metha, A. B.
2006-09-01
Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.
Seemann, Gunnar; Panfilov, Alexander V.; Vandersickel, Nele
2017-01-01
Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before completion of the repolarization phase, which can result in ectopic beats. However, the series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhythmias are not well understood. Therefore, we aimed to investigate the influence of this single cell behavior on the whole heart level. For this study we used a modified version of the Ten Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D ventricle model including realistic fiber orientations. To increase the likelihood of EAD formation at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid delayed rectifier Potassium current and raising the L-type Calcium current. Varying these parameters defined a 2D parametric space where different excitation patterns could be classified. Depending on the initial conditions, by either exciting the ventricles with a spiral formation or burst pacing protocol, we found multiple different spatio-temporal excitation patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Calcium waves at the same time and in same tissue settings. In the parameter region governed by the B pattern, single cells were able to repolarize completely and different (spiral) waves chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibrillation type A patterns consisted of multiple small rotating spirals. Single cells failed to repolarize to the resting membrane potential hence
Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft
Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei
2018-05-01
Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).
Secular Orbit Evolution in Systems with a Strong External Perturber—A Simple and Accurate Model
Energy Technology Data Exchange (ETDEWEB)
Andrade-Ines, Eduardo [Institute de Mécanique Céleste et des Calcul des Éphémérides—Observatoire de Paris, 77 Avenue Denfert Rochereau, F-75014 Paris (France); Eggl, Siegfried, E-mail: eandrade.ines@gmail.com, E-mail: siegfried.eggl@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 91109 Pasadena, CA (United States)
2017-04-01
We present a semi-analytical correction to the seminal solution for the secular motion of a planet’s orbit under gravitational influence of an external perturber derived by Heppenheimer. A comparison between analytical predictions and numerical simulations allows us to determine corrective factors for the secular frequency and forced eccentricity in the coplanar restricted three-body problem. The correction is given in the form of a polynomial function of the system’s parameters that can be applied to first-order forced eccentricity and secular frequency estimates. The resulting secular equations are simple, straight forward to use, and improve the fidelity of Heppenheimers solution well beyond higher-order models. The quality and convergence of the corrected secular equations are tested for a wide range of parameters and limits of its applicability are given.
A more accurate modeling of the effects of actuators in large space structures
Hablani, H. B.
1981-01-01
The paper deals with finite actuators. A nonspinning three-axis stabilized space vehicle having a two-dimensional large structure and a rigid body at the center is chosen for analysis. The torquers acting on the vehicle are modeled as antisymmetric forces distributed in a small but finite area. In the limit they represent point torquers which also are treated as a special case of surface distribution of dipoles. Ordinary and partial differential equations governing the forced vibrations of the vehicle are derived by using Hamilton's principle. Associated modal inputs are obtained for both the distributed moments and the distributed forces. It is shown that the finite torquers excite the higher modes less than the point torquers. Modal cost analysis proves to be a suitable methodology to this end.
A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system
Metcalf, Jessica L; Wegener Parfrey, Laura; Gonzalez, Antonio; Lauber, Christian L; Knights, Dan; Ackermann, Gail; Humphrey, Gregory C; Gebert, Matthew J; Van Treuren, Will; Berg-Lyons, Donna; Keepers, Kyle; Guo, Yan; Bullard, James; Fierer, Noah; Carter, David O; Knight, Rob
2013-01-01
Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI: http://dx.doi.org/10.7554/eLife.01104.001 PMID:24137541
Constant size descriptors for accurate machine learning models of molecular properties
Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole; Yaron, David J.
2018-06-01
Two different classes of molecular representations for use in machine learning of thermodynamic and electronic properties are studied. The representations are evaluated by monitoring the performance of linear and kernel ridge regression models on well-studied data sets of small organic molecules. One class of representations studied here counts the occurrence of bonding patterns in the molecule. These require only the connectivity of atoms in the molecule as may be obtained from a line diagram or a SMILES string. The second class utilizes the three-dimensional structure of the molecule. These include the Coulomb matrix and Bag of Bonds, which list the inter-atomic distances present in the molecule, and Encoded Bonds, which encode such lists into a feature vector whose length is independent of molecular size. Encoded Bonds' features introduced here have the advantage of leading to models that may be trained on smaller molecules and then used successfully on larger molecules. A wide range of feature sets are constructed by selecting, at each rank, either a graph or geometry-based feature. Here, rank refers to the number of atoms involved in the feature, e.g., atom counts are rank 1, while Encoded Bonds are rank 2. For atomization energies in the QM7 data set, the best graph-based feature set gives a mean absolute error of 3.4 kcal/mol. Inclusion of 3D geometry substantially enhances the performance, with Encoded Bonds giving 2.4 kcal/mol, when used alone, and 1.19 kcal/mol, when combined with graph features.
Directory of Open Access Journals (Sweden)
Hualei Li
2014-01-01
Full Text Available Recovering the boost pressure is very important in improving the dynamic performance of diesel engines at high altitudes. A regulated two-stage turbocharging system is an adequate solution for power recovery of diesel engines. In the present study, the change of boost pressure and engine power at different altitudes was investigated, and a regulated two-stage turbocharging system was constructed with an original turbocharger and a matched low pressure turbocharger. The valve control strategies for boost pressure recovery, which formed the basis of the power recovery method, are presented here. The simulation results showed that this system was effective in recovering the boost pressure at different speeds and various altitudes. The turbine bypass valve and compressor bypass valve had different modes to adapt to changes in operating conditions. The boost pressure recovery could not ensure power recovery over the entire operating range of the diesel engine, because of variation in overall turbocharger efficiency. The fuel-injection compensation method along with the valve control strategies for boost pressure recovery was able to reach the power recovery target.
A new, accurate, global hydrography data for remote sensing and modelling of river hydrodynamics
Yamazaki, D.
2017-12-01
A high-resolution hydrography data is an important baseline data for remote sensing and modelling of river hydrodynamics, given the spatial scale of river network is much smaller than that of land hydrology or atmosphere/ocean circulations. For about 10 years, HydroSHEDS, developed based on the SRTM3 DEM, has been the only available global-scale hydrography data. However, the data availability at the time of HydroSHEDS development limited the quality of the represented river networks. Here, we developed a new global hydrography data using latest geodata such as the multi-error-removed elevation data (MERIT DEM), Landsat-based global water body data (GSWO & G3WBM), cloud-sourced open geography database (OpenStreetMap). The new hydrography data covers the entire globe (including boreal regions above 60N), and it represents more detailed structure of the world river network and contains consistent supplementary data layers such as hydrologically adjusted elevations and river channel width. In the AGU meeting, the developing methodology, assessed quality, and potential applications of the new global hydrography data will be introduced.
Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S
2009-04-01
The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin.
Energy Technology Data Exchange (ETDEWEB)
Bok, H.-H.; Kim, S.N.; Suh, D.W. [Graduate Institute of Ferrous Technology, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongsangbuk-do (Korea, Republic of); Barlat, F., E-mail: f.barlat@postech.ac.kr [Graduate Institute of Ferrous Technology, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongsangbuk-do (Korea, Republic of); Lee, M.-G., E-mail: myounglee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul (Korea, Republic of)
2015-02-25
A non-isothermal phase transformation kinetics model obtained by modifying the well-known JMAK approach is proposed for application to a low carbon boron steel (22MnB5) sheet. In the modified kinetics model, the parameters are functions of both temperature and cooling rate, and can be identified by a numerical optimization method. Moreover, in this approach the transformation start and finish temperatures are variable instead of the constants that depend on chemical composition. These variable reference temperatures are determined from the measured CCT diagram using dilatation experiments. The kinetics model developed in this work captures the complex transformation behavior of the boron steel sheet sample accurately. In particular, the predicted hardness and phase fractions in the specimens subjected to a wide range of cooling rates were validated by experiments.
Directory of Open Access Journals (Sweden)
M. Zacharek
2017-05-01
Full Text Available These studies have been conductedusing non-metric digital camera and dense image matching algorithms, as non-contact methods of creating monuments documentation.In order toprocess the imagery, few open-source software and algorithms of generating adense point cloud from images have been executed. In the research, the OSM Bundler, VisualSFM software, and web application ARC3D were used. Images obtained for each of the investigated objects were processed using those applications, and then dense point clouds and textured 3D models were created. As a result of post-processing, obtained models were filtered and scaled.The research showedthat even using the open-source software it is possible toobtain accurate 3D models of structures (with an accuracy of a few centimeters, but for the purpose of documentation and conservation of cultural and historical heritage, such accuracy can be insufficient.
van Wyk, Marnus J; Bingle, Marianne; Meyer, Frans J C
2005-09-01
International bodies such as International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineering (IEEE) make provision for human exposure assessment based on SAR calculations (or measurements) and basic restrictions. In the case of base station exposure this is mostly applicable to occupational exposure scenarios in the very near field of these antennas where the conservative reference level criteria could be unnecessarily restrictive. This study presents a variety of critical aspects that need to be considered when calculating SAR in a human body close to a mobile phone base station antenna. A hybrid FEM/MoM technique is proposed as a suitable numerical method to obtain accurate results. The verification of the FEM/MoM implementation has been presented in a previous publication; the focus of this study is an investigation into the detail that must be included in a numerical model of the antenna, to accurately represent the real-world scenario. This is accomplished by comparing numerical results to measurements for a generic GSM base station antenna and appropriate, representative canonical and human phantoms. The results show that it is critical to take the disturbance effect of the human phantom (a large conductive body) on the base station antenna into account when the antenna-phantom spacing is less than 300 mm. For these small spacings, the antenna structure must be modeled in detail. The conclusion is that it is feasible to calculate, using the proposed techniques and methodology, accurate occupational compliance zones around base station antennas based on a SAR profile and basic restriction guidelines. (c) 2005 Wiley-Liss, Inc.
Directory of Open Access Journals (Sweden)
Niklas Berliner
Full Text Available Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases.
Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.
2016-01-01
A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.
Gray, Alan; Harlen, Oliver G; Harris, Sarah A; Khalid, Syma; Leung, Yuk Ming; Lonsdale, Richard; Mulholland, Adrian J; Pearson, Arwen R; Read, Daniel J; Richardson, Robin A
2015-01-01
Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.
International Nuclear Information System (INIS)
ZareNezhad, Bahman; Aminian, Ali
2011-01-01
This paper presents a new approach based on using an artificial neural network (ANN) model for predicting the acid dew points of the combustion gases in process and power plants. The most important acidic combustion gases namely, SO 3 , SO 2 , NO 2 , HCl and HBr are considered in this investigation. Proposed Network is trained using the Levenberg-Marquardt back propagation algorithm and the hyperbolic tangent sigmoid activation function is applied to calculate the output values of the neurons of the hidden layer. According to the network's training, validation and testing results, a three layer neural network with nine neurons in the hidden layer is selected as the best architecture for accurate prediction of the acidic combustion gases dew points over wide ranges of acid and moisture concentrations. The proposed neural network model can have significant application in predicting the condensation temperatures of different acid gases to mitigate the corrosion problems in stacks, pollution control devices and energy recovery systems.
Directory of Open Access Journals (Sweden)
Sergei L Kosakovsky Pond
2009-11-01
Full Text Available Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1 are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (approximately 5% fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance
Wärtsilä turbocharger wash and dew point controller integration
Perälä, Antti
2013-01-01
There are two separate control cabinets used in Wärtsilä marine solutions, Turbocharger Wash Control and the Dew Point Control. The cabinets contain similar PLCs with I/O-cards needed in the system and touch screen for monitoring and controlling purposes. The purpose of the thesis was to find and implement a solution for integration of the control cabinets. The advantages of the integration are savings in material, space in the engine room and amount of work. The aim of the project was to cre...
Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement
Energy Technology Data Exchange (ETDEWEB)
Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)
2010-01-15
Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)
Energy Technology Data Exchange (ETDEWEB)
Vial, A.; Dridi, M.; Cunff, L. le [Universite de Technologie de Troyes, Institut Charles Delaunay, CNRS UMR 6279, Laboratoire de Nanotechnologie et d' Instrumentation Optique, 12, rue Marie Curie, BP-2060, Troyes Cedex (France); Laroche, T. [Universite de Franche-Comte, Institut FEMTO-ST, CNRS UMR 6174, Departement de Physique et de Metrologie des Oscillateurs, Besancon Cedex (France)
2011-06-15
We present FDTD simulations results obtained using the Drude critical points model. This model enables spectroscopic studies of metallic structures over wider wavelength ranges than usually used, and it facilitates the study of structures made of several metals. (orig.)
Pineda, M.; Stamatakis, M.
2017-07-01
Modeling the kinetics of surface catalyzed reactions is essential for the design of reactors and chemical processes. The majority of microkinetic models employ mean-field approximations, which lead to an approximate description of catalytic kinetics by assuming spatially uncorrelated adsorbates. On the other hand, kinetic Monte Carlo (KMC) methods provide a discrete-space continuous-time stochastic formulation that enables an accurate treatment of spatial correlations in the adlayer, but at a significant computation cost. In this work, we use the so-called cluster mean-field approach to develop higher order approximations that systematically increase the accuracy of kinetic models by treating spatial correlations at a progressively higher level of detail. We further demonstrate our approach on a reduced model for NO oxidation incorporating first nearest-neighbor lateral interactions and construct a sequence of approximations of increasingly higher accuracy, which we compare with KMC and mean-field. The latter is found to perform rather poorly, overestimating the turnover frequency by several orders of magnitude for this system. On the other hand, our approximations, while more computationally intense than the traditional mean-field treatment, still achieve tremendous computational savings compared to KMC simulations, thereby opening the way for employing them in multiscale modeling frameworks.
Muñoz-Esparza, Domingo; Kosović, Branko; Jiménez, Pedro A.; Coen, Janice L.
2018-04-01
The level-set method is typically used to track and propagate the fire perimeter in wildland fire models. Herein, a high-order level-set method using fifth-order WENO scheme for the discretization of spatial derivatives and third-order explicit Runge-Kutta temporal integration is implemented within the Weather Research and Forecasting model wildland fire physics package, WRF-Fire. The algorithm includes solution of an additional partial differential equation for level-set reinitialization. The accuracy of the fire-front shape and rate of spread in uncoupled simulations is systematically analyzed. It is demonstrated that the common implementation used by level-set-based wildfire models yields to rate-of-spread errors in the range 10-35% for typical grid sizes (Δ = 12.5-100 m) and considerably underestimates fire area. Moreover, the amplitude of fire-front gradients in the presence of explicitly resolved turbulence features is systematically underestimated. In contrast, the new WRF-Fire algorithm results in rate-of-spread errors that are lower than 1% and that become nearly grid independent. Also, the underestimation of fire area at the sharp transition between the fire front and the lateral flanks is found to be reduced by a factor of ≈7. A hybrid-order level-set method with locally reduced artificial viscosity is proposed, which substantially alleviates the computational cost associated with high-order discretizations while preserving accuracy. Simulations of the Last Chance wildfire demonstrate additional benefits of high-order accurate level-set algorithms when dealing with complex fuel heterogeneities, enabling propagation across narrow fuel gaps and more accurate fire backing over the lee side of no fuel clusters.
Accurate analytic model potentials for D2 and H2 based on the perturbed-Morse--oscillator model
International Nuclear Information System (INIS)
Huffaker, J.N.; Cohen, D.I.
1986-01-01
Model potentials with as few as 19 free parameters are fitted to published ab initio abiabatic potentials for D 2 and H 2 , with accuracy such that rovibrational eigenvalues are in error by only about 10 -2 cm -1 . A three-parameter model is suggested for describing nonadiabatic effects on eigenvalues, with the intention that such a model might be suitable for all hydrides. Dunham coefficients are calculated from the perturbed-Morse--oscillator series expansion of the model, permitting a critical evaluation of convergence properties of both the Dunham series and the WKB series
de Léséleuc, Sylvain; Weber, Sebastian; Lienhard, Vincent; Barredo, Daniel; Büchler, Hans Peter; Lahaye, Thierry; Browaeys, Antoine
2018-03-01
We study a system of atoms that are laser driven to n D3 /2 Rydberg states and assess how accurately they can be mapped onto spin-1 /2 particles for the quantum simulation of anisotropic Ising magnets. Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark these theoretical observations against experiments using two atoms. Finally, we show that in these conditions, the experimental dynamics observed after a quench is in good agreement with numerical simulations of spin-1 /2 Ising models in systems with up to 49 spins, for which numerical simulations become intractable.
Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P
2015-02-10
A diode-laser-absorption-spectroscopy-based sensor system was used to perform high-speed (100 Hz to 5 kHz) measurements of gas properties (temperature, pressure, and H(2)O vapor concentration) at the turbocharger inlet and at the exhaust gas recirculation (EGR) cooler exit of a diesel engine. An earlier version of this system was previously used for high-speed measurements of gas temperature and H(2)O vapor concentration in the intake manifold of the diesel engine. A 1387.2 N m tunable distributed feedback diode laser was used to scan across multiple H(2)O absorption transitions, and the direct absorption signal was recorded using a high-speed data acquisition system. Compact optical connectors were designed to conduct simultaneous measurements in the intake manifold, the EGR cooler exit, and the turbocharger inlet of the engine. For measurements at the turbocharger inlet, these custom optical connectors survived gas temperatures as high as 800 K using a simple and passive arrangement in which the temperature-sensitive components were protected from high temperatures using ceramic insulators. This arrangement reduced system cost and complexity by eliminating the need for any active water or oil cooling. Diode-laser measurements performed during steady-state engine operation were within 5% of the thermocouple and pressure sensor measurements, and within 10% of the H(2)O concentration values derived from the CO(2) gas analyzer measurements. Measurements were also performed in the engine during transient events. In one such transient event, where a step change in fueling was introduced, the diode-laser sensor was able to capture the 30 ms change in the gas properties; the thermocouple, on the other hand, required 7.4 s to accurately reflect the change in gas conditions, while the gas analyzer required nearly 600 ms. To the best of our knowledge, this is the first implementation of such a simple and passive arrangement of high-temperature optical connectors as well
Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph
Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.
Directory of Open Access Journals (Sweden)
Chehhat A.
2016-12-01
Full Text Available Low solidity diffuser in centrifugal compressors can achieve both high efficiency and wide operating ranges which is of great importance for turbocharger compressor. Low solidity is achieved by using a low chord to pitch ratio. In this work, a CFD simulation is carried out to examine the effect of solidity on airflow field of a turbocharger centrifugal compressor which consists of a simple-splitter impeller and a vaned diffuser. By changing the number of diffuser vanes while keeping the number of impeller blades constant, the solidity value of the diffuser is varied. The characteristics of the compressor are evaluated for 6, 8, 10 and 12 stator vanes which correspond to solidity of: 0.78, 1.04, 1.29 and 1.55, respectively. The spatial distribution of the pressure, velocity and turbulent kinetic energy show that the diffuser solidity has significant effect on flow field and compressor performance map. The compressor with a 6 vanes diffuser has higher efficiency and operates at a wider range of flow rate relative to that obtained with larger vans number. However a non-uniform flow at the compressor exit was observed with relatively high turbulent kinetic energy.
Viceconti, Marco; Davinelli, Mario; Taddei, Fulvia; Cappello, Angelo
2004-10-01
Most of the finite element models of bones used in orthopaedic biomechanics research are based on generic anatomies. However, in many cases it would be useful to generate from CT data a separate finite element model for each subject of a study group. In a recent study a hexahedral mesh generator based on a grid projection algorithm was found very effective in terms of accuracy and automation. However, so far the use of this method has been documented only on data collected in vitro and only for long bones. The present study was aimed at verifying if this method represents a procedure for the generation of finite element models of human bones from data collected in vivo, robust, accurate, automatic and general enough to be used in clinical studies. Robustness, automation and numerical accuracy of the proposed method were assessed on five femoral CT data sets of patients affected by various pathologies. The generality of the method was verified by processing a femur, an ileum, a phalanx, a proximal femur reconstruction, and the micro-CT of a small sample of spongy bone. The method was found robust enough to cope with the variability of the five femurs, producing meshes with a numerical accuracy and a computational weight comparable to those found in vitro. Even when the method was used to process the other bones the levels of mesh conditioning remained within acceptable limits. Thus, it may be concluded that the method presents a generality sufficient to cope with almost any orthopaedic application.
International Nuclear Information System (INIS)
Chang, Chih-Hao; Liou, Meng-Sing
2007-01-01
In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM + -up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion
Dechow, C D; Rogers, G W
2018-05-01
Expectation of genetic merit in commercial dairy herds is routinely estimated using a 4-path genetic selection model that was derived for a closed population, but commercial herds using artificial insemination sires are not closed. The 4-path model also predicts a higher rate of genetic progress in elite herds that provide artificial insemination sires than in commercial herds that use such sires, which counters other theoretical assumptions and observations of realized genetic responses. The aim of this work is to clarify whether genetic merit in commercial herds is more accurately reflected under the assumptions of the 4-path genetic response formula or by a genetic lag formula. We demonstrate by tracing the transmission of genetic merit from parents to offspring that the rate of genetic progress in commercial dairy farms is expected to be the same as that in the genetic nucleus. The lag in genetic merit between the nucleus and commercial farms is a function of sire and dam generation interval, the rate of genetic progress in elite artificial insemination herds, and genetic merit of sires and dams. To predict how strategies such as the use of young versus daughter-proven sires, culling heifers following genomic testing, or selective use of sexed semen will alter genetic merit in commercial herds, genetic merit expectations for commercial herds should be modeled using genetic lag expectations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Feng, Y.; Sardei, F.; Kisslinger, J.
2005-01-01
The paper presents a new simple and accurate numerical field-line mapping technique providing a high-quality representation of field lines as required by a Monte Carlo modeling of plasma edge transport in the complex magnetic boundaries of three-dimensional (3D) toroidal fusion devices. Using a toroidal sequence of precomputed 3D finite flux-tube meshes, the method advances field lines through a simple bilinear, forward/backward symmetric interpolation at the interfaces between two adjacent flux tubes. It is a reversible field-line mapping (RFLM) algorithm ensuring a continuous and unique reconstruction of field lines at any point of the 3D boundary. The reversibility property has a strong impact on the efficiency of modeling the highly anisotropic plasma edge transport in general closed or open configurations of arbitrary ergodicity as it avoids artificial cross-field diffusion of the fast parallel transport. For stellarator-symmetric magnetic configurations, which are the standard case for stellarators, the reversibility additionally provides an average cancellation of the radial interpolation errors of field lines circulating around closed magnetic flux surfaces. The RFLM technique has been implemented in the 3D edge transport code EMC3-EIRENE and is used routinely for plasma transport modeling in the boundaries of several low-shear and high-shear stellarators as well as in the boundary of a tokamak with 3D magnetic edge perturbations
Huang, Guo-Jiao; Bai, Chao-Ying; Greenhalgh, Stewart
2013-09-01
The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algorithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted from subsurface interfaces, but cannot calculate the other later reflections/conversions having a minimax time path. In order to overcome the above limitations, we introduce the concept of a stationary minimax time path of Fermat's Principle into the multistage irregular shortest path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for 49 different kinds of crustal, mantle and core phases show that the maximum absolute traveltime error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical tests in terms of computational accuracy and CPU time consumption indicate that the new scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking in regional or global traveltime tomography.
Directory of Open Access Journals (Sweden)
Chesse P.
2011-09-01
Full Text Available Usually, turbochargers used within internal combustion engine simulation software are modelled in an adiabatic manner. However, during our experimental tests we found that this is not necessarily the case. The direct use of the manufacturer’s map is not possible anymore. A simple method which considers the heat transfers is proposed. It is based on experimental tests made on hot air supplied turbocharger test bench. The difference with the adiabatic model is considerable mainly for low compressor power. This corresponds to internal combustion engine low loads. En général, les turbocompresseurs pris en compte dans les logiciels de simulation moteur sont modélisés de façon adiabatique. Cependant, les tests expérimentaux effectués au laboratoire montrent que ce n’est pas toujours le cas. L’utilisation directe des champs de fonctionnement fournis par les constructeurs de turbomachines n’est alors plus possible. Une évaluation quantitative de ces transferts, basée sur des tests réalisés sur un banc d’essais turbo à air chaud, est présentée. Puis ils sont pris en compte afin de calculer les caractéristiques réelles de fonctionnement d’un compresseur. La différence avec le modèle adiabatique apparaît très importante pour les faibles puissances compresseur. Ceci correspond aux faibles charges moteur.
Directory of Open Access Journals (Sweden)
Jianzhong Zhou
2017-12-01
Full Text Available Model simulation and control of pumped storage unit (PSU are essential to improve the dynamic quality of power station. Only under the premise of the PSU models reflecting the actual transient process, the novel control method can be properly applied in the engineering. The contributions of this paper are that (1 a real-time accurate equivalent circuit model (RAECM of PSU via error compensation is proposed to reconcile the conflict between real-time online simulation and accuracy under various operating conditions, and (2 an adaptive predicted fuzzy PID controller (APFPID based on RAECM is put forward to overcome the instability of conventional control under no-load conditions with low water head. Respectively, all hydraulic factors in pipeline system are fully considered based on equivalent lumped-circuits theorem. The pretreatment, which consists of improved Suter-transformation and BP neural network, and online simulation method featured by two iterative loops are synthetically proposed to improve the solving accuracy of the pump-turbine. Moreover, the modified formulas for compensating error are derived with variable-spatial discretization to improve the accuracy of the real-time simulation further. The implicit RadauIIA method is verified to be more suitable for PSUGS owing to wider stable domain. Then, APFPID controller is constructed based on the integration of fuzzy PID and the model predictive control. Rolling prediction by RAECM is proposed to replace rolling optimization with its computational speed guaranteed. Finally, the simulation and on-site measurements are compared to prove trustworthy of RAECM under various running conditions. Comparative experiments also indicate that APFPID controller outperforms other controllers in most cases, especially low water head conditions. Satisfying results of RAECM have been achieved in engineering and it provides a novel model reference for PSUGS.
Evans, Cherice; Findley, Gary L.
The quasi-free electron energy V0 (ρ) is important in understanding electron transport through a fluid, as well as for modeling electron attachment reactions in fluids. Our group has developed an isotropic local Wigner-Seitz model that allows one to successfully calculate the quasi-free electron energy for a variety of atomic and molecular fluids from low density to the density of the triple point liquid with only a single adjustable parameter. This model, when coupled with the quasi-free electron energy data and the thermodynamic data for the fluids, also can yield optimized intermolecular potential parameters and the zero kinetic energy electron scattering length. In this poster, we give a review of the isotropic local Wigner-Seitz model in comparison to previous theoretical models for the quasi-free electron energy. All measurements were performed at the University of Wisconsin Synchrotron Radiation Center. This work was supported by a Grants from the National Science Foundation (NSF CHE-0956719), the Petroleum Research Fund (45728-B6 and 5-24880), the Louisiana Board of Regents Support Fund (LEQSF(2006-09)-RD-A33), and the Professional Staff Congress City University of New York.
Energy Technology Data Exchange (ETDEWEB)
Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.
2008-10-20
One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic
Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development
Energy Technology Data Exchange (ETDEWEB)
Wagner, Terrance [Ford Motor Co., Dearborn, MI (United States)
2015-12-31
This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.
Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes
2018-06-01
Organic materials with a high index of refraction (RI) are attracting considerable interest due to their potential application in optic and optoelectronic devices. However, most of these applications require an RI value of 1.7 or larger, while typical carbon-based polymers only exhibit values in the range of 1.3-1.5. This paper introduces an efficient computational protocol for the accurate prediction of RI values in polymers to facilitate in silico studies that can guide the discovery and design of next-generation high-RI materials. Our protocol is based on the Lorentz-Lorenz equation and is parametrized by the polarizability and number density values of a given candidate compound. In the proposed scheme, we compute the former using first-principles electronic structure theory and the latter using an approximation based on van der Waals volumes. The critical parameter in the number density approximation is the packing fraction of the bulk polymer, for which we have devised a machine learning model. We demonstrate the performance of the proposed RI protocol by testing its predictions against the experimentally known RI values of 112 optical polymers. Our approach to combine first-principles and data modeling emerges as both a successful and a highly economical path to determining the RI values for a wide range of organic polymers.
Energy Technology Data Exchange (ETDEWEB)
Gray, Alan [The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Harlen, Oliver G. [University of Leeds, Leeds LS2 9JT (United Kingdom); Harris, Sarah A., E-mail: s.a.harris@leeds.ac.uk [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Leeds, Leeds LS2 9JT (United Kingdom); Khalid, Syma; Leung, Yuk Ming [University of Southampton, Southampton SO17 1BJ (United Kingdom); Lonsdale, Richard [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg (Germany); Mulholland, Adrian J. [University of Bristol, Bristol BS8 1TS (United Kingdom); Pearson, Arwen R. [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Hamburg, Hamburg (Germany); Read, Daniel J.; Richardson, Robin A. [University of Leeds, Leeds LS2 9JT (United Kingdom); The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom)
2015-01-01
The current computational techniques available for biomolecular simulation are described, and the successes and limitations of each with reference to the experimental biophysical methods that they complement are presented. Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.
Directory of Open Access Journals (Sweden)
Wenrui Huang
2010-03-01
Full Text Available This paper presents an improvement of the Mellor and Yamada's 2nd order turbulence model in the Princeton Ocean Model (POM for better predictions of vertical stratifications of salinity in estuaries. The model was evaluated in the strongly stratified estuary, Apalachicola River, Florida, USA. The three-dimensional hydrodynamic model was applied to study the stratified flow and salinity intrusion in the estuary in response to tide, wind, and buoyancy forces. Model tests indicate that model predictions over estimate the stratification when using the default turbulent parameters. Analytic studies of density-induced and wind-induced flows indicate that accurate estimation of vertical eddy viscosity plays an important role in describing vertical profiles. Initial model revision experiments show that the traditional approach of modifying empirical constants in the turbulence model leads to numerical instability. In order to improve the performance of the turbulence model while maintaining numerical stability, a stratification factor was introduced to allow adjustment of the vertical turbulent eddy viscosity and diffusivity. Sensitivity studies indicate that the stratification factor, ranging from 1.0 to 1.2, does not cause numerical instability in Apalachicola River. Model simulations show that increasing the turbulent eddy viscosity by a stratification factor of 1.12 results in an optimal agreement between model predictions and observations in the case study presented in this study. Using the proposed stratification factor provides a useful way for coastal modelers to improve the turbulence model performance in predicting vertical turbulent mixing in stratified estuaries and coastal waters.
Moghadas, D.; André, F.; Vereecken, H.; Lambot, S.
2009-04-01
singularities. We tested the model in controlled laboratory conditions for EMI measurements at different heights above a copper sheet, playing the role of a perfect electrical conductor. Good agreement was obtained between the measurements and the model, especially for the resonance frequency of the loop antenna. The loop antenna height could be retrieved by inversion of the Green's function. For practical applications, the method is still limited by the low sensitivity of the antenna with respect to the dynamic range of the VNA. Once this will be resolved, we believe that the proposed method should be very flexible and promising for accurate, multi-frequency EMI data inversion.
Yin, Mengchen; Chen, Ni; Huang, Quan; Marla, Anastasia Sulindro; Ma, Junming; Ye, Jie; Mo, Wen
2017-12-01
Youden index was .4243, .3003, and .7189, respectively. The Hosmer-Lemeshow test showed a good fitting of the predictive model, with an overall accuracy of 89.6%. This study establishes a new and accurate predictive model for the efficacy of ESWT in managing patients with chronic plantar fasciitis. The use of these parameters, in the form of a predictive model for ESWT efficacy, has the potential to improve decision-making in the application of ESWT. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano
2015-11-01
Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended
McCoy, Rajiv C.; Garud, Nandita R.; Kelley, Joanna L.; Boggs, Carol L.; Petrov, Dmitri A.
2015-01-01
The analysis of molecular data from natural populations has allowed researchers to answer diverse ecological questions that were previously intractable. In particular, ecologists are often interested in the demographic history of populations, information that is rarely available from historical records. Methods have been developed to infer demographic parameters from genomic data, but it is not well understood how inferred parameters compare to true population history or depend on aspects of experimental design. Here we present and evaluate a method of SNP discovery using RNA-sequencing and demographic inference using the program δaδi, which uses a diffusion approximation to the allele frequency spectrum to fit demographic models. We test these methods in a population of the checkerspot butterfly Euphydryas gillettii. This population was intentionally introduced to Gothic, Colorado in 1977 and has since experienced extreme fluctuations including bottlenecks of fewer than 25 adults, as documented by nearly annual field surveys. Using RNA-sequencing of eight individuals from Colorado and eight individuals from a native population in Wyoming, we generate the first genomic resources for this system. While demographic inference is commonly used to examine ancient demography, our study demonstrates that our inexpensive, all-in-one approach to marker discovery and genotyping provides sufficient data to accurately infer the timing of a recent bottleneck. This demographic scenario is relevant for many species of conservation concern, few of which have sequenced genomes. Our results are remarkably insensitive to sample size or number of genomic markers, which has important implications for applying this method to other non-model systems. PMID:24237665
Directory of Open Access Journals (Sweden)
Keun Ryu
2018-04-01
Full Text Available The current work introduces a new semi-floating ring bearing (SFRB system developed for improving the rotordynamic and vibration performance of automotive turbochargers (TCs at extreme operation conditions, such as high temperature, severe external force excitation, and large rotor imbalance. The new bearing design replaces outer oil films, i.e., squeeze film dampers (SFDs, in TC SFRBs with wire mesh dampers (WMDs. This SFRB configuration integrating WMDs aims to implement reliable mechanical components, as an inexpensive and simple alternative to SFDs, with consistent and superior damping capability, as well as predictable forced performance. Since WMDs are in series with the inner oil films of SFRBs, experimentally determined force coefficients of WMDs are of great importance in the design process of TC rotor-bearing systems (RBSs. Presently, the measurements of applied static load and ensuing deflection determine the structural stiffnesses of the WMDs. The WMD damping parameters, including dissipated energy, loss factor, and dry friction coefficient, are estimated from the area of the distinctive local hysteresis loop of the load versus WMD displacement data recorded during consecutive loading-unloading cycles as a function of applied preload with a constant amplitude of motion. The changes in WMD loss factor and dry friction coefficient due to increases in preload are more significant for the WMDs with lower density. The present work shows, to date, the most comprehensive measurements of static load characteristics on the WMDs for application into small automotive TCs. More importantly, the extensive test measurements of WMD deflection versus increasing static loads will aid to anchor predictions of future computation model.
International Nuclear Information System (INIS)
Shah, A.N.; Baluch, A.H.; Chao, H.
2009-01-01
Direct injection compression ignition engines have proved to be the best option in heavy duty applications like transportation and power generation ,but rapid depleting sources of conventional fossil fuels, their rising prices and ever increasing environmental issues are the major concerns. Alternative fuels, particularly bio fuels are receiving increasing attention during the last few years. Biodiesel has already been commercialized in the transport sector. In the present work, a turbocharged intercooled and DI diesel engine has been alternatively fuelled with biodiesel and its 20% blend with commercial diesel. The experimental results show that BSFC, maximum combustion pressure and start of injection angle increase; on the other hand BSEC, maximum rate of pressure rise, ignition lag and premixed combustion amount decrease however HRR duration remains almost unaffected in the case of biodiesel as compared to commercial diesel. (author)
Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine
Energy Technology Data Exchange (ETDEWEB)
Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering
2003-09-01
A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)
Energy Technology Data Exchange (ETDEWEB)
Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering
2003-09-01
The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)
Directory of Open Access Journals (Sweden)
J. Cebulski
2015-01-01
Full Text Available This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C and 1 100 °C, which was followed by validation under operating conditions. To do so, the tests were carried out over a distance of 20 000 km. The last stage involved examination of the surfaces after the test drive. The obtained results are the basis for further research in this field.
RENAULT Energy TCe 90. The first RENAULT gasoline 3 cylinder turbocharged engine
Energy Technology Data Exchange (ETDEWEB)
Ser, Antoine; Covin, Bruno; Levasseur, Denis [Renault SAS, Rueil-Malmaison (France); Boiarciuc, Andrei [Renault SAS, Lardy (France)
2013-08-01
This paper describes the characteristics of a new 0.9 l, 3 cylinder gasoline turbocharged engine. This new 'downsized' engine will be the core of the B and entry segment for Renault. As part of the Energy TCe family, this engine will offer a power level of 66kW close to a naturally aspirated 1.4 l, with very low CO{sub 2} emissions and reduced costs of ownership. The Energy TCe 90 is both segment leader for real life fuel consumption on Clio 4, and among the best gasoline engines regarding CO{sub 2} emissions with only 99 g CO{sub 2}/km. Based on Renault's experience in turbocharged gasoline engines, this engine features optimized combustion in order to obtain a significantly reduced fuel consumption combined with good driveability. This new product in Renault's powertrain line up offers an attractive Total Cost of Ownership for many customers. It is an intermediate offer between diesel and traditional gasoline, a clever solution for mid distance drivers. To meet all customer requirements, the main improvement features are: - Global design for consumption reduction with optimized combustion system based on high tumble motion and intake VTC. Friction reduction, introducing DLC and a new generation of controlled oil pump has been developed. - A compact exhaust system, introducing convergent exhaust ports, an integrated turbo-manifold system and a closed coupled catalyst converter for thermodynamic optimisation, providing benefits for fast warm up and high dynamic response. - Stop and Start by reinforced starter system and regenerative breaking controlled by ESM. Cost competitiveness, a constant preoccupation for Renault, is ensured by the carry-over of industrial facilities and efficient use of the Renault-Nissan Alliance's worldwide supplier base. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kjemtrup, N; Grone, O S
1994-03-03
A large two-stroke turbocharged internal combusted engine has a reactor for reduction of the NO[sub x]-content in the exhaust gas connected upstream of the turbocharger. At least one sensor measures at least one engine parameter and in a control unit it is determined whether the reactor is heated by the exhaust gas, which heating may cause reduced energy supply to the turbocharger. When this is the case the control unit opens for supply of supplementary air or gas to the engine which may be effected by starting an auxiliary blower and/or by actuating a control means in a bypass conduit so that a large amount of exhaust gas with a corresponding increase in the power is delivered to the turbocharger turbine. (author) figs.
Directory of Open Access Journals (Sweden)
Andreas Tuerk
2017-05-01
Full Text Available Accuracy of transcript quantification with RNA-Seq is negatively affected by positional fragment bias. This article introduces Mix2 (rd. "mixquare", a transcript quantification method which uses a mixture of probability distributions to model and thereby neutralize the effects of positional fragment bias. The parameters of Mix2 are trained by Expectation Maximization resulting in simultaneous transcript abundance and bias estimates. We compare Mix2 to Cufflinks, RSEM, eXpress and PennSeq; state-of-the-art quantification methods implementing some form of bias correction. On four synthetic biases we show that the accuracy of Mix2 overall exceeds the accuracy of the other methods and that its bias estimates converge to the correct solution. We further evaluate Mix2 on real RNA-Seq data from the Microarray and Sequencing Quality Control (MAQC, SEQC Consortia. On MAQC data, Mix2 achieves improved correlation to qPCR measurements with a relative increase in R2 between 4% and 50%. Mix2 also yields repeatable concentration estimates across technical replicates with a relative increase in R2 between 8% and 47% and reduced standard deviation across the full concentration range. We further observe more accurate detection of differential expression with a relative increase in true positives between 74% and 378% for 5% false positives. In addition, Mix2 reveals 5 dominant biases in MAQC data deviating from the common assumption of a uniform fragment distribution. On SEQC data, Mix2 yields higher consistency between measured and predicted concentration ratios. A relative error of 20% or less is obtained for 51% of transcripts by Mix2, 40% of transcripts by Cufflinks and RSEM and 30% by eXpress. Titration order consistency is correct for 47% of transcripts for Mix2, 41% for Cufflinks and RSEM and 34% for eXpress. We, further, observe improved repeatability across laboratory sites with a relative increase in R2 between 8% and 44% and reduced standard deviation.
Siri, Sangeeta K; Latte, Mrityunjaya V
2017-11-01
Many different diseases can occur in the liver, including infections such as hepatitis, cirrhosis, cancer and over effect of medication or toxins. The foremost stage for computer-aided diagnosis of liver is the identification of liver region. Liver segmentation algorithms extract liver image from scan images which helps in virtual surgery simulation, speedup the diagnosis, accurate investigation and surgery planning. The existing liver segmentation algorithms try to extort exact liver image from abdominal Computed Tomography (CT) scan images. It is an open problem because of ambiguous boundaries, large variation in intensity distribution, variability of liver geometry from patient to patient and presence of noise. A novel approach is proposed to meet challenges in extracting the exact liver image from abdominal CT scan images. The proposed approach consists of three phases: (1) Pre-processing (2) CT scan image transformation to Neutrosophic Set (NS) and (3) Post-processing. In pre-processing, the noise is removed by median filter. The "new structure" is designed to transform a CT scan image into neutrosophic domain which is expressed using three membership subset: True subset (T), False subset (F) and Indeterminacy subset (I). This transform approximately extracts the liver image structure. In post processing phase, morphological operation is performed on indeterminacy subset (I) and apply Chan-Vese (C-V) model with detection of initial contour within liver without user intervention. This resulted in liver boundary identification with high accuracy. Experiments show that, the proposed method is effective, robust and comparable with existing algorithm for liver segmentation of CT scan images. Copyright © 2017 Elsevier B.V. All rights reserved.
Ji, Yunguang; Xu, Yangyang; Li, Hongtao; Oklejas, Michael; Xue, Shuqi
2018-01-01
A new type of hydraulic turbocharger energy recovery system was designed and applied in the decarbonisation process by propylene carbonate of a 100k tons ammonia synthesis system firstly in China. Compared with existing energy recovery devices, hydraulic turbocharger energy recovery system runs more smoothly, has lower failure rate, longer service life and greater comprehensive benefits due to its unique structure, simpler adjustment process and better adaptability to fluid fluctuation.
International Nuclear Information System (INIS)
Malaescu, B.
2010-01-01
The scope of this thesis is to obtain and use accurate data on e + e - annihilation into hadrons at energies of 1 GeV of magnitude order. These data represent a very valuable input for Standard Model tests involving vacuum polarization, such as the comparison of the muon magnetic moment to theory, and for QCD tests and applications. The different parts of this thesis describe four aspects of my work in this context. First, the measurements of cross sections as a function of energy necessitate the unfolding of data spectra from detector effects. I have proposed a new iterative unfolding method for experimental data, with improved capabilities compared to existing tools. Secondly, the experimental core of this thesis is a study of the process e + e - → K + K - from threshold to 5 GeV using the initial state radiation (ISR) method (through the measurement of e + e - → K + K - γ) with the BABAR detector. All relevant efficiencies are measured with experimental data and the absolute normalization comes from the simultaneously measured μμγ process. I have performed the full analysis which achieves a systematic uncertainty of 0.7% on the dominant φ resonance. Results on e + e - → π + π - from threshold to 3 GeV are also presented. Thirdly, a comparison based on 2 different ways to get a prediction of the muon magnetic moment: the Standard Model and the hadronic tau decay, shows an interesting hint for new physics effects (3.2 σ effect). Fourthly, QCD sum rules are powerful tools for obtaining precise information on QCD parameters, such as the strong coupling α S . I have worked on experimental data concerning the spectral functions from τ decays measured by ALEPH. I have discussed to some detail the perturbative QCD prediction obtained with two different methods: fixed-order perturbation theory (FOPT) and contour-improved perturbative theory (CIPT). The corresponding theoretical uncertainties have been studied at the τ and Z mass scales. The CIPT method
DEFF Research Database (Denmark)
Wu, Rui; Iannuzzo, Francesco; Wang, Huai
2014-01-01
A basic problem in the IGBT short-circuit failure mechanism study is to obtain realistic temperature distribution inside the chip, which demands accurate electrical simulation to obtain power loss distribution as well as detailed IGBT geometry and material information. This paper describes an unp...
Silitonga, Arridina Susan; Hassan, Masjuki Haji; Ong, Hwai Chyuan; Kusumo, Fitranto
2017-11-01
The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.
Yang, Q.; Liu, X.; Wu, W.; Kizer, S.; Baize, R. R.
2016-12-01
Fast and accurate radiative transfer model is the key for satellite data assimilation and observation system simulation experiments for numerical weather prediction and climate study applications. We proposed and developed a dual stream PCRTM-SOLAR model which may simulate radiative transfer in the cloudy atmosphere with solar radiation quickly and accurately. Multi-scattering of multiple layers of clouds/aerosols is included in the model. The root-mean-square errors are usually less than 5x10-4 mW/cm2.sr.cm-1. The computation speed is 3 to 4 orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This model will enable a vast new set of scientific calculations that were previously limited due to the computational expenses of available radiative transfer models.
DEFF Research Database (Denmark)
Brandt, J.; Bastrup-Birk, A.; Christensen, J.H.
1998-01-01
A tracer model, the DREAM, which is based on a combination of a near-range Lagrangian model and a long-range Eulerian model, has been developed. The meteorological meso-scale model, MM5V1, is implemented as a meteorological driver for the tracer model. The model system is used for studying...
Nonlinear effects of unbalance in the rotor-floating ring bearing system of turbochargers
Tian, L.; Wang, W. J.; Peng, Z. J.
2013-01-01
Turbocharger (TC) rotor-floating ring bearing (FRB) system is characterised by high speed as well as high non-linearity. Using the run-up and run-down simulation method, this paper systematically investigates the influence of unbalance on the rotordynamic characteristics of a real TC-FRB system over the speed range from 0 Hz to 3500 Hz. The rotor is discretized by the finite element method, and the desired oil film forces at each simulation step are calculated by an efficient analytical method. The imposed unbalance amount and distribution are the variables considered in the performed non-stationary simulations. The newly obtained results evidently show the distinct phenomena brought about by the variations of the unbalance offset, which confirms that the unbalance level is a critical parameter for the system response. In the meantime, the variations of unbalance distribution, i.e. out-of-phase and in-phase unbalance, can lead to entirely different simulation results as well, which proves the distribution of unbalance is not negligible during the dynamic analysis of the rotor-FRB system. Additionally, considerable effort has been placed on the description as well as discussion of a unique phenomenon termed Critical Limit Cycle Oscillation (CLC Oscillation), which is of great importance and interest to the TC research and development.
Study on the Combustion Process and Emissions of a Turbocharged Diesel Engine with EGR
Directory of Open Access Journals (Sweden)
Mei Deqing
2012-01-01
Full Text Available A high pressure EGR system was adopted to a turbocharged inter-cooled diesel engine, to analyze its combustion and emission characteristics under the condition of different loads and constant speed. Under the same steady operating mode, with the increase of EGR rate, the temperature of compressed gas ascended, the ignition delay was shortened, the pressure and temperature of the burned gas descended, and the combustion process was prolonged. According to the experimental data, it was found that, at the same EGR rate, lower the load of engine was, lower the temperature in cylinder, and higher the increase rate of CO was. However, the increase rate of HC present a falling trend. The decrease rate of the specific emission of NOx linearly varied with EGR rate with a slope of 1.651. The increase rate of smoke opacity behaved a second-order polynomial uprising trend, and the higher the load was, the sharpener the smoke opacity deteriorated, with the increase of EGR rate. From the point of emission view, the engine with EGR system can achieve the lesser exhaust emissions in some operations by adjusting the engine parameters.
Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine
International Nuclear Information System (INIS)
Usta, N.
2005-01-01
Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines. In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends. (Author)
Energy Technology Data Exchange (ETDEWEB)
Canakci, M. [Kocaeli University, Izmit (Turkey). Department of Mechanical Education
2007-04-15
In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO{sub x} increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO{sub x} and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine. (author)
Numerical simulation of air flow through turbocharger compressors with dual volute design
Energy Technology Data Exchange (ETDEWEB)
Jiao, Kui; Li, Xianguo; Wu, Hao [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada); Sun, Harold; Schram, Tim [Ford Motor Company, Dearborn, MI 48126 (United States); Krivitzky, Eric; Larosiliere, Louis M. [Concepts NREC, White River Junction, VT 05001 (United States)
2009-11-15
In this paper, turbocharger centrifugal compressors with dual volute design were investigated by using Computational Fluid Dynamics (CFD) method. The numerical simulation focused on the air flow from compressor impeller inlet to volute exit, and the overall performance level and range are predicted. The numerical investigation revealed that the dual volute design could separate the compressor into two operating regions: ''high efficiency'' and ''low efficiency'' regions with different air flow characteristics, and treating these two regions separately with dual diffuser design showed extended stable operating range and improved efficiency by comparing with conventional single volute design. The ''dual sequential volute'' concept also showed the potential to further extend the stable operating range by closing one of the volutes at low air flow rates. Furthermore, by comparing with other alternate designs such as variable diffuser vanes and variable inlet guide vanes, the operation of the dual sequential volute also features relatively simple control and calibration. (author)
Chowdhury, Amor; Sarjaš, Andrej
2016-09-15
The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.
International Nuclear Information System (INIS)
Wake, N.; Chandarana, H.; Huang, W.C.; Taneja, S.S.; Rosenkrantz, A.B.
2016-01-01
Highlights: • We examine 3D printing in the context of urologic oncology. • Patient-specific 3D printed kidney and prostate tumor models were created. • 3D printed models extend the current capabilities of conventional 3D visualization. • 3D printed models may be used for surgical planning and intraoperative guidance.
Remij, E.W.; Remmers, J.J.C.; Huyghe, J.M.R.J.; Smeulders, D.M.J.
2015-01-01
In this paper, we present an enhanced local pressure model for modelling fluid pressure driven fractures in porous saturated materials. Using the partition-of-unity property of finite element shape functions, we describe the displacement and pressure fields across the fracture as a strong
Amini, Changeez; Taherpour, Abbas; Khattab, Tamer; Gazor, Saeed
2017-01-01
This paper presents an improved propagation channel model for the visible light in indoor environments. We employ this model to derive an enhanced positioning algorithm using on the relation between the time-of-arrivals (TOAs) and the distances for two cases either by assuming known or unknown transmitter and receiver vertical distances. We propose two estimators, namely the maximum likelihood estimator and an estimator by employing the method of moments. To have an evaluation basis for these methods, we calculate the Cramer-Rao lower bound (CRLB) for the performance of the estimations. We show that the proposed model and estimations result in a superior performance in positioning when the transmitter and receiver are perfectly synchronized in comparison to the existing state-of-the-art counterparts. Moreover, the corresponding CRLB of the proposed model represents almost about 20 dB reduction in the localization error bound in comparison with the previous model for some practical scenarios.
Reniers, Jorn M.; Mulder, Grietus; Ober-Blöbaum, Sina; Howey, David A.
2018-03-01
The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions.
Plancade, Sandra; Rozenholc, Yves; Lund, Eiliv
2012-12-11
Illumina BeadArray technology includes non specific negative control features that allow a precise estimation of the background noise. As an alternative to the background subtraction proposed in BeadStudio which leads to an important loss of information by generating negative values, a background correction method modeling the observed intensities as the sum of the exponentially distributed signal and normally distributed noise has been developed. Nevertheless, Wang and Ye (2012) display a kernel-based estimator of the signal distribution on Illumina BeadArrays and suggest that a gamma distribution would represent a better modeling of the signal density. Hence, the normal-exponential modeling may not be appropriate for Illumina data and background corrections derived from this model may lead to wrong estimation. We propose a more flexible modeling based on a gamma distributed signal and a normal distributed background noise and develop the associated background correction, implemented in the R-package NormalGamma. Our model proves to be markedly more accurate to model Illumina BeadArrays: on the one hand, it is shown on two types of Illumina BeadChips that this model offers a more correct fit of the observed intensities. On the other hand, the comparison of the operating characteristics of several background correction procedures on spike-in and on normal-gamma simulated data shows high similarities, reinforcing the validation of the normal-gamma modeling. The performance of the background corrections based on the normal-gamma and normal-exponential models are compared on two dilution data sets, through testing procedures which represent various experimental designs. Surprisingly, we observe that the implementation of a more accurate parametrisation in the model-based background correction does not increase the sensitivity. These results may be explained by the operating characteristics of the estimators: the normal-gamma background correction offers an improvement
Directory of Open Access Journals (Sweden)
Thivaharan Albin
2016-07-01
Full Text Available Increasingly complex air path concepts are investigated to achieve a substantial reduction in fuel consumption while improving the vehicle dynamics. One promising technology is the two-stage turbocharging for gasoline engines, where a high pressure and a low pressure turbocharger are placed in series. For exploiting the high potential, a control concept has to be developed that allows for coordinated management of the two turbocharger stages. In this paper, the control strategy is investigated. Therefore, the effect of the actuated values on transient response and pumping losses is analyzed. Based on these findings, an optimization-based control algorithm is developed that allows taking both requirements into account. The developed new controller allows achieving a fast transient response, while at the same time reducing pumping losses in stationary operation.
Vinyard, David J; Zachary, Chase E; Ananyev, Gennady; Dismukes, G Charles
2013-07-01
Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions. Copyright © 2013 Elsevier B.V. All rights reserved.
Gancedo, Matthieu
Increase in emission regulations in the transport industry brings the need to have more efficient engines. A path followed by the automobile industry is to downsize the size of the internal combustion engine and increase the air density at the intake to keep the engine power when needed. Typically a centrifugal compressor is used to force the air into the engine, it can be powered from the engine shaft (superchargers) or extracting energy contained into the hot exhaust gases with a turbine (turbochargers). The flow range of the compressor needs to match the one of the engine. However compressors mass flow operating range is limited by choke on the high end and surge on the low end. In order to extend the operation at low mass flow rates, the use of passive devices for turbocharger centrifugal compressors was explored since the late 80's. Hence, casing treatments including flow recirculation from the inducer part of the compressor have been shown to move the surge limit to lower flows. Yet, the working mechanisms are still not well understood and thus, to optimize the design of this by-pass system, it is necessary to determine the nature of the changes induced by the device both on the dynamic stability of the pressure delivery and on the flow at the inlet. The compressor studied here features a self-recirculating casing treatment at the inlet. The recirculation passage could be blocked to carry a direct comparison between the cases with and without the flow feature. To grasp the effect on compressor stability, pressure measurements were taken in the different constituting elements of the compressor. The study of the mean pressure variations across the operating map showed that the tongue region is a limiting element. Dynamic pressure measurements revealed that the instabilities generated near the inducer when the recirculation is blocked increase the overall instability levels at the compressor outlet and propagating pressure waves starting at the tongue occurred
Orenstein, Yaron; Wang, Yuhao; Berger, Bonnie
2016-06-15
Protein-RNA interactions, which play vital roles in many processes, are mediated through both RNA sequence and structure. CLIP-based methods, which measure protein-RNA binding in vivo, suffer from experimental noise and systematic biases, whereas in vitro experiments capture a clearer signal of protein RNA-binding. Among them, RNAcompete provides binding affinities of a specific protein to more than 240 000 unstructured RNA probes in one experiment. The computational challenge is to infer RNA structure- and sequence-based binding models from these data. The state-of-the-art in sequence models, Deepbind, does not model structural preferences. RNAcontext models both sequence and structure preferences, but is outperformed by GraphProt. Unfortunately, GraphProt cannot detect structural preferences from RNAcompete data due to the unstructured nature of the data, as noted by its developers, nor can it be tractably run on the full RNACompete dataset. We develop RCK, an efficient, scalable algorithm that infers both sequence and structure preferences based on a new k-mer based model. Remarkably, even though RNAcompete data is designed to be unstructured, RCK can still learn structural preferences from it. RCK significantly outperforms both RNAcontext and Deepbind in in vitro binding prediction for 244 RNAcompete experiments. Moreover, RCK is also faster and uses less memory, which enables scalability. While currently on par with existing methods in in vivo binding prediction on a small scale test, we demonstrate that RCK will increasingly benefit from experimentally measured RNA structure profiles as compared to computationally predicted ones. By running RCK on the entire RNAcompete dataset, we generate and provide as a resource a set of protein-RNA structure-based models on an unprecedented scale. Software and models are freely available at http://rck.csail.mit.edu/ bab@mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by
Channumsin, Sittiporn; Ceriotti, Matteo; Radice, Gianmarco
2018-02-01
A new type of space debris in near geosynchronous orbit (GEO) was recently discovered and later identified as exhibiting unique characteristics associated with high area-to-mass ratio (HAMR) objects, such as high rotation rates and high reflection properties. Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that its motion depends on the actual effective area, orientation of that effective area, reflection properties and the area-to-mass ratio of the object is not stable over time. Previous investigations have modelled this type of debris as rigid bodies (constant area-to-mass ratios) or discrete deformed body; however, these simplifications will lead to inaccurate long term orbital predictions. This paper proposes a simple yet reliable model of a thin, deformable membrane based on multibody dynamics. The membrane is modelled as a series of flat plates, connected through joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account through lump masses at the joints. The attitude and orbital motion of this flexible membrane model is then propagated near GEO to predict its orbital evolution under the perturbations of solar radiation pressure, Earth's gravity field (J2), third body gravitational fields (the Sun and Moon) and self-shadowing. These results are then compared to those obtained for two rigid body models (cannonball and flat rigid plate). In addition, Monte Carlo simulations of the flexible model by varying initial attitude and deformation angle (different shape) are investigated and compared with the two rigid models (cannonball and flat rigid plate) over a period of 100 days. The numerical results demonstrate that cannonball and rigid flat plate are not appropriate to capture the true dynamical evolution of these objects, at the cost of increased computational time.
Barker, John R.; Martinez, Antonio
2018-04-01
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self
The Role of Tribology in the Development of an Oil-Free Turbocharger
Dellacorte, Christopher
1997-01-01
Gas-turbine-based aeropropulsion engines are technologically mature. Thus, as with any mature technology, revolutionary approaches will be needed to achieve the significant performance gains that will keep the U.S. propulsion manufacturers well ahead of foreign competition. One such approach is the development of oil-free turbomachinery utilizing advanced foil air bearings, seals, and solid lubricants. By eliminating oil-lubricated bearings and seals and supporting an engine rotor on an air film, significant improvements can be realized. For example, the entire oil system including pipes, lines, filters, cooler, and tanks could be removed, thereby saving considerable weight. Since air has no thermal decomposition temperature, engine systems could operate without excessive cooling. Also, since air bearings have no diameter-rpm fatigue limits (D-N limits), engines could be designed to operate at much higher speeds and higher density, which would result in a smaller aeropropulsion package. Because of recent advances in compliant foil air bearings and high temperature solid lubricants, these technologies can be applied to oil-free turbomachinery. In an effort to develop these technologies and to demonstrate a project along the path to an oil-free gas turbine engine, NASA has undertaken the development of an oil-free turbocharger for a heavy duty diesel engine. This turbomachine can reach 120000 rpm at a bearing temperature of 540 C (1000 F) and, in comparison to oil-lubricated bearings, can increase efficiency by 10 to 15 percent because of reduced friction. In addition, because there are no oil lubricants, there are no seal-leakage-induced emissions.
ModFOLD6: an accurate web server for the global and local quality estimation of 3D protein models.
Maghrabi, Ali H A; McGuffin, Liam J
2017-07-03
Methods that reliably estimate the likely similarity between the predicted and native structures of proteins have become essential for driving the acceptance and adoption of three-dimensional protein models by life scientists. ModFOLD6 is the latest version of our leading resource for Estimates of Model Accuracy (EMA), which uses a pioneering hybrid quasi-single model approach. The ModFOLD6 server integrates scores from three pure-single model methods and three quasi-single model methods using a neural network to estimate local quality scores. Additionally, the server provides three options for producing global score estimates, depending on the requirements of the user: (i) ModFOLD6_rank, which is optimized for ranking/selection, (ii) ModFOLD6_cor, which is optimized for correlations of predicted and observed scores and (iii) ModFOLD6 global for balanced performance. The ModFOLD6 methods rank among the top few for EMA, according to independent blind testing by the CASP12 assessors. The ModFOLD6 server is also continuously automatically evaluated as part of the CAMEO project, where significant performance gains have been observed compared to our previous server and other publicly available servers. The ModFOLD6 server is freely available at: http://www.reading.ac.uk/bioinf/ModFOLD/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Directory of Open Access Journals (Sweden)
Rajib Kar
2010-09-01
Full Text Available This work presents an accurate and efficient model to compute the delay and slew metric of on-chip interconnect of high speed CMOS circuits foe ramp input. Our metric assumption is based on the Burr’s Distribution function. The Burr’s distribution is used to characterize the normalized homogeneous portion of the step response. We used the PERI (Probability distribution function Extension for Ramp Inputs technique that extends delay metrics and slew metric for step inputs to the more general and realistic non-step inputs. The accuracy of our models is justified with the results compared with that of SPICE simulations.
Energy Technology Data Exchange (ETDEWEB)
Carrington, David Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Jiajia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-05
KIVA-hpFE is a high performance computer software for solving the physics of multi-species and multiphase turbulent reactive flow in complex geometries having immersed moving parts. The code is written in Fortran 90/95 and can be used on any computer platform with any popular complier. The code is in two versions, a serial version and a parallel version utilizing MPICH2 type Message Passing Interface (MPI or Intel MPI) for solving distributed domains. The parallel version is at least 30x faster than the serial version and much faster than our previous generation of parallel engine modeling software, by many factors. The 5th generation algorithm construction is a Galerkin type Finite Element Method (FEM) solving conservative momentum, species, and energy transport equations along with two-equation turbulent model k-ω Reynolds Averaged Navier-Stokes (RANS) model and a Vreman type dynamic Large Eddy Simulation (LES) method. The LES method is capable modeling transitional flow from laminar to fully turbulent; therefore, this LES method does not require special hybrid or blending to walls. The FEM projection method also uses a Petrov-Galerkin (P-G) stabilization along with pressure stabilization. We employ hierarchical basis sets, constructed on the fly with enrichment in areas associated with relatively larger error as determined by error estimation methods. In addition, when not using the hp-adaptive module, the code employs Lagrangian basis or shape functions. The shape functions are constructed for hexahedral, prismatic and tetrahedral elements. The software is designed to solve many types of reactive flow problems, from burners to internal combustion engines and turbines. In addition, the formulation allows for direct integration of solid bodies (conjugate heat transfer), as in heat transfer through housings, parts, cylinders. It can also easily be extended to stress modeling of solids, used in fluid structure interactions problems, solidification, porous media
Douvartzides, S.; Karmalis, I.
2016-11-01
A detailed method is presented on the thermal design of a natural gas - diesel dual fuel internal combustion engine. An 18 cylinder four stroke turbocharged engine is considered to operate at a maximum speed of 500 rpm for marine and power plant applications. Thermodynamic, heat transfer and fluid flow phenomena are mathematically analyzed to provide a real cycle analysis together with a complete set of calculated operation conditions, power characteristics and engine efficiencies. The method is found to provide results in close agreement to published data for the actual performance of similar engines such as V18 MAN 51/60DF.
International Nuclear Information System (INIS)
Maher, A.; Quboa, K. M.
2011-01-01
In this paper, a reformulation for the recently published dielectric properties dispersion models of the breast tissues is carried out to be used by CST simulation tool. The reformulation includes tabulation of the real and imaginary parts versus frequency on ultra-wideband (UWB) for these models by MATLAB programs. The tables are imported and fitted by CST simulation tool to second or first order general equations. The results have shown good agreement between the original and the imported data. The MATLAB programs written in MATLAB code are included in the appendix.
International Nuclear Information System (INIS)
Esfandiar, Habib; KoraYem, Moharam Habibnejad
2015-01-01
In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.
Energy Technology Data Exchange (ETDEWEB)
De Backer, A.; Bos, K.H.W. van den [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Van den Broek, W. [AG Strukturforschung/Elektronenmikroskopie, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)
2016-12-15
An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. - Highlights: • An efficient model-based method for quantitative electron microscopy is introduced. • Images are modelled as a superposition of 2D Gaussian peaks. • Overlap between neighbouring columns is taken into account. • Structure parameters can be obtained with the highest precision and accuracy. • StatSTEM, auser friendly program (GNU public license) is developed.
Energy Technology Data Exchange (ETDEWEB)
Esfandiar, Habib; KoraYem, Moharam Habibnejad [Islamic Azad University, Tehran (Iran, Islamic Republic of)
2015-09-15
In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.
DEFF Research Database (Denmark)
Farinotti, Daniel; Brinkerhoff, Douglas J.; Clarke, Garry K. C.
2017-01-01
Knowledge of the ice thickness distribution of glaciers and ice caps is an important prerequisite for many glaciological and hydrological investigations. A wealth of approaches has recently been presented for inferring ice thickness from characteristics of the surface. With the Ice Thickness Models...
International Nuclear Information System (INIS)
Levkovitch, Vladislav; Svendsen, Bob
2007-01-01
Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading
International Nuclear Information System (INIS)
Levkovitch, Vladislav; Svendsen, Bob
2007-01-01
Sheet metal forming involves large strains and severe strain-path changes. Large plastic strains lead in many metals to the development of persistent dislocation structures resulting in strong flow anisotropy. This induced anisotropic behavior manifests itself in the case of a strain path change through very different stress-strain responses depending on the type of the strain-path change. While many metals exhibit a drop of the yield stress (Bauschinger effect) after a load reversal, some metals show an increase of the yield stress after an orthogonal strain-path change (so-called cross hardening). To model the Bauschinger effect, kinematic hardening has been successfully used for years. However, the usage of the kinematic hardening leads automatically to a drop of the yield stress after an orthogonal strain-path change contradicting tests exhibiting the cross hardening effect. Another effect, not accounted for in the classical elasto-plasticity, is the difference between the tensile and compressive strength, exhibited e.g. by some steel materials. In this work we present a phenomenological material model whose structure is motivated by polycrystalline modeling that takes into account the evolution of polarized dislocation structures on the grain level - the main cause of the induced flow anisotropy on the macroscopic level. The model considers besides the movement of the yield surface and its proportional expansion, as it is the case in conventional plasticity, also the changes of the yield surface shape (distortional hardening) and accounts for the pressure dependence of the flow stress. All these additional attributes turn out to be essential to model the stress-strain response of dual phase high strength steels subjected to non-proportional loading
DEFF Research Database (Denmark)
Nielsen, S.B.; Clausen, O.R.; Gallagher, Kerry
2011-01-01
the thermal history information contained in high quality thermal maturity data comprising temperature profiles, vitrinite reflectance and apatite fission track data. Having remained open for experimental purposes, the data of two of the deep wells (Aars-1 and Farsoe-1) are of exceptionally high quality. Here...... about the magnitude of deposition and erosion during this hiatus. We use Markov Chain Monte Carlo with a transient one-dimensional thermal model to explore the parameter space of potential thermal history solutions, using the different available data as constraints. The variable parameters comprise...... inversion of the STZ. This is in agreement with numerical rheological models of inversion zone dynamics, which explain how marginal trough subsidence occurred as a consequence of late Cretaceous compressional inversion and erosion along the inversion axis (Nielsen et al. 2005, 2007). Following this, the in-plane...
2017-02-01
nucleus green ) is attached to the shell of the eye via the zonule fibers (orange) and the ciliary body (pink). The zonule fibers are approximated in our...as shown in the literature.13,24 (a and b) A study conducted by Norman et al.24 with images from normal human subjects sectioned into 15 equal...Fig. 13 Scleral thickness variation procedure in the model: a) scleral thickness variation contours with thickness values noted from Norman et al
Directory of Open Access Journals (Sweden)
Juliann E Kosovec
Full Text Available OBJECTIVE: To assess the reliability of magnetic resonance imaging (MRI for detection of esophageal cancer in the Levrat model of end-to-side esophagojejunostomy. BACKGROUND: The Levrat model has proven utility in terms of its ability to replicate Barrett's carcinogenesis by inducing gastroduodenoesophageal reflux (GDER. Due to lack of data on the utility of non-invasive methods for detection of esophageal cancer, treatment efficacy studies have been limited, as adenocarcinoma histology has only been validated post-mortem. It would therefore be of great value if the validity and reliability of MRI could be established in this setting. METHODS: Chronic GDER reflux was induced in 19 male Sprague-Dawley rats using the modified Levrat model. At 40 weeks post-surgery, all animals underwent endoscopy, MRI scanning, and post-mortem histological analysis of the esophagus and anastomosis. With post-mortem histology serving as the gold standard, assessment of presence of esophageal cancer was made by five esophageal specialists and five radiologists on endoscopy and MRI, respectively. RESULTS: The accuracy of MRI and endoscopic analysis to correctly identify cancer vs. no cancer was 85.3% and 50.5%, respectively. ROC curves demonstrated that MRI rating had an AUC of 0.966 (p<0.001 and endoscopy rating had an AUC of 0.534 (p = 0.804. The sensitivity and specificity of MRI for identifying cancer vs. no-cancer was 89.1% and 80% respectively, as compared to 45.5% and 57.5% for endoscopy. False positive rates of MRI and endoscopy were 20% and 42.5%, respectively. CONCLUSIONS: MRI is a more reliable diagnostic method than endoscopy in the Levrat model. The non-invasiveness of the tool and its potential to volumetrically quantify the size and number of tumors likely makes it even more useful in evaluating novel agents and their efficacy in treatment studies of esophageal cancer.
Laub, Bernard; Grinstead, Jay; Dyakonov, Artem; Venkatapathy, Ethiraj
2011-01-01
Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.
International Nuclear Information System (INIS)
Vu-Quoc, L.; Lesburg, L.; Zhang, X.
2004-01-01
An elasto-plastic frictional tangential force-displacement (TFD) model for spheres in contact for accurate and efficient granular-flow simulations is presented in this paper; the present TFD is consistent with the elasto-plastic normal force-displacement (NFD) model presented in [ASME Journal of Applied Mechanics 67 (2) (2000) 363; Proceedings of the Royal Society of London, Series A 455 (1991) (1999) 4013]. The proposed elasto-plastic frictional TFD model is accurate, and is validated against non-linear finite-element analyses involving plastic flows under both loading and unloading conditions. The novelty of the present TFD model lies in (i) the additive decomposition of the elasto-plastic contact area radius into an elastic part and a plastic part, (ii) the correction of the particles' radii at the contact point, and (iii) the correction of the particles' elastic moduli. The correction of the contact-area radius represents an effect of plastic deformation in colliding particles; the correction of the radius of curvature represents a permanent indentation after impact; the correction of the elastic moduli represents a softening of the material due to plastic flow. The construction of both the present elasto-plastic frictional TFD model and its consistent companion, the elasto-plastic NFD model, parallels the formalism of the continuum theory of elasto-plasticity. Both NFD and TFD models form a coherent set of force-displacement (FD) models not available hitherto for granular-flow simulations, and are consistent with the Hertz, Cattaneo, Mindlin, Deresiewicz contact mechanics theory. Together, these FD models will allow for efficient simulations of granular flows (or granular gases) involving a large number of particles
DEFF Research Database (Denmark)
Mihet-Popa, Lucian; Camacho, Oscar Mauricio Forero; Nørgård, Per Bromand
2013-01-01
This paper presents a battery test platform including two Li-ion battery designed for hybrid and EV applications, and charging/discharging tests under different operating conditions carried out for developing an accurate dynamic electro-thermal model of a high power Li-ion battery pack system....... The aim of the tests has been to study the impact of the battery degradation and to find out the dynamic characteristics of the cells including nonlinear open circuit voltage, series resistance and parallel transient circuit at different charge/discharge currents and cell temperature. An equivalent...... circuit model, based on the runtime battery model and the Thevenin circuit model, with parameters obtained from the tests and depending on SOC, current and temperature has been implemented in MATLAB/Simulink and Power Factory. A good alignment between simulations and measurements has been found....
Energy Technology Data Exchange (ETDEWEB)
Sezen, Halil [The Ohio State Univ., Columbus, OH (United States). Dept. of Civil, Environmental and Geodetic Engineering; Aldemir, Tunc [The Ohio State Univ., Columbus, OH (United States). College of Engineering, Nuclear Engineering Program, Dept. of Mechanical and Aerospace Engineering; Denning, R. [The Ohio State Univ., Columbus, OH (United States); Vaidya, N. [Rizzo Associates, Pittsburgh, PA (United States)
2017-12-29
Probabilistic risk assessment of nuclear power plants initially focused on events initiated by internal faults at the plant, rather than external hazards including earthquakes and flooding. Although the importance of external hazards risk analysis is now well recognized, the methods for analyzing low probability external hazards rely heavily on subjective judgment of specialists, often resulting in substantial conservatism. This research developed a framework to integrate the risk of seismic and flooding events using realistic structural models and simulation of response of nuclear structures. The results of four application case studies are presented.
International Nuclear Information System (INIS)
Sharp, Leah Z.; Egorova, Dassia; Domcke, Wolfgang
2010-01-01
Two-dimensional (2D) photon-echo spectra of a single subunit of the Fenna-Matthews-Olson (FMO) bacteriochlorophyll trimer of Chlorobium tepidum are simulated, employing the equation-of-motion phase-matching approach (EOM-PMA). We consider a slightly extended version of the previously proposed Frenkel exciton model, which explicitly accounts for exciton coherences in the secular approximation. The study is motivated by a recent experiment reporting long-lived coherent oscillations in 2D transients [Engel et al., Nature 446, 782 (2007)] and aims primarily at accurate simulations of the spectroscopic signals, with the focus on oscillations of 2D peak intensities with population time. The EOM-PMA accurately accounts for finite pulse durations as well as pulse-overlap effects and does not invoke approximations apart from the weak-field limit for a given material system. The population relaxation parameters of the exciton model are taken from the literature. The effects of various dephasing mechanisms on coherence lifetimes are thoroughly studied. It is found that the experimentally detected multiple frequencies in peak oscillations cannot be reproduced by the employed FMO model, which calls for the development of a more sophisticated exciton model of the FMO complex.
A new expression of Ns versus Ef to an accurate control charge model for AlGaAs/GaAs
Bouneb, I.; Kerrour, F.
2016-03-01
Semi-conductor components become the privileged support of information and communication, particularly appreciation to the development of the internet. Today, MOS transistors on silicon dominate largely the semi-conductors market, however the diminution of transistors grid length is not enough to enhance the performances and respect Moore law. Particularly, for broadband telecommunications systems, where faster components are required. For this reason, alternative structures proposed like hetero structures IV-IV or III-V [1] have been.The most effective components in this area (High Electron Mobility Transistor: HEMT) on IIIV substrate. This work investigates an approach for contributing to the development of a numerical model based on physical and numerical modelling of the potential at heterostructure in AlGaAs/GaAs interface. We have developed calculation using projective methods allowed the Hamiltonian integration using Green functions in Schrodinger equation, for a rigorous resolution “self coherent” with Poisson equation. A simple analytical approach for charge-control in quantum well region of an AlGaAs/GaAs HEMT structure was presented. A charge-control equation, accounting for a variable average distance of the 2-DEG from the interface was introduced. Our approach which have aim to obtain ns-Vg characteristics is mainly based on: A new linear expression of Fermi-level variation with two-dimensional electron gas density in high electron mobility and also is mainly based on the notion of effective doping and a new expression of AEc
Cotrufo, M. F.
2017-12-01
Mineral-associated organic matter (MAOM) is the largest and most persistent pool of carbon in soil. Understanding and correctly modeling its dynamic is key to suggest management practices that can augment soil carbon storage for climate change mitigation, as well as increase soil organic matter (SOM) stocks to support soil health on the long-term. In the Microbial Efficiency Mineral Stabilization (MEMS) framework we proposed that, contrary to what originally thought, this form of persistent SOM is derived from the labile components of plant inputs, through their efficient microbial processing. I will present results from several experiments using dual isotope labeling of plant inputs that largely confirm this opinion, and point to the key role of dissolved organic matter in MAOM formation, and to the dynamic nature of the outer layer of MAOM. I will also show how we are incorporating this understanding in a new SOM model, which uses physically defined measurable pools rather than turnover-defined pools to forecast C cycling in soil.
Garfinkel, C I; Schwartz, C
2017-10-16
The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime stratospheric polar vortex in the period preceding stratospheric sudden warmings is evaluated in operational subseasonal forecasting models. Reforecasts which simulate stronger MJO-related convection in the Tropical West Pacific also simulate enhanced heat flux in the lowermost stratosphere and a more realistic vortex evolution. The time scale on which vortex predictability is enhanced lies between 2 and 4 weeks for nearly all cases. Those stratospheric sudden warmings that were preceded by a strong MJO event are more predictable at ∼20 day leads than stratospheric sudden warmings not preceded by a MJO event. Hence, knowledge of the MJO can contribute to enhanced predictability, at least in a probabilistic sense, of the Northern Hemisphere polar stratosphere.
Energy Technology Data Exchange (ETDEWEB)
Myint, P. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Firoozabadi, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-03-27
Thermodynamic property calculations of mixtures containing carbon dioxide (CO_{2}) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO_{2} activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO_{2}, pure water, and both CO_{2}-rich and aqueous (H_{2}O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun’s model yields accurate results for the partial molar enthalpy of CO_{2}. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H_{2}O-CO_{2}-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.
International Nuclear Information System (INIS)
Linares Rosales, Haydee M.; Lara Mas, Elier; Alfonso Laguardia, Rodolfo
2015-01-01
Simulation of a linear accelerator (linac) head requires determining the parameters that characterize the primary electron beam striking on the target which is a step that plays a vital role in the accuracy of Monte Carlo calculations. In this work, the commissioning of photon beams (6 MV and 15 MV) of an Elekta Precise accelerator, using the Monte Carlo code EGSnrc, was performed. The influence of the primary electron beam characteristics on the absorbed dose distribution for two photon qualities was studied. Using different combinations of mean energy and radial FWHM of the primary electron beam, deposited doses were calculated in a water phantom, for different field sizes. Based on the deposited dose in the phantom, depth dose curves and lateral dose profiles were constructed and compared with experimental values measured in an arrangement similar to the simulation. Taking into account the main differences between calculations and measurements, an acceptability criteria based on confidence limits was implemented. As expected, the lateral dose profiles for small field sizes were strongly influenced by the radial distribution (FWHM). The combinations of energy/FWHM that best reproduced the experimental results were used to generate the phase spaces, in order to obtain a model with the motorized wedge included and to calculate output factors. A good agreement was obtained between simulations and measurements for a wide range of fi eld sizes, being all the results found within the range of tolerance. (author)
Energy Technology Data Exchange (ETDEWEB)
Dall' Ora, M.; Botticella, M. T.; Della Valle, M. [INAF, Osservatorio Astronomico di Capodimonte, Napoli (Italy); Pumo, M. L.; Zampieri, L.; Tomasella, L.; Cappellaro, E.; Benetti, S. [INAF, Osservatorio Astronomico di Padova, I-35122 Padova (Italy); Pignata, G.; Bufano, F. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Bayless, A. J. [Southwest Research Institute, Department of Space Science, 6220 Culebra Road, San Antonio, TX 78238 (United States); Pritchard, T. A. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Taubenberger, S.; Benitez, S. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Kotak, R.; Inserra, C.; Fraser, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom); Elias-Rosa, N. [Institut de Ciències de l' Espai (CSIC-IEEC) Campus UAB, Torre C5, Za plata, E-08193 Bellaterra, Barcelona (Spain); Haislip, J. B. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 120 E. Cameron Ave., Chapel Hill, NC 27599 (United States); Harutyunyan, A. [Fundación Galileo Galilei - Telescopio Nazionale Galileo, Rambla José Ana Fernández Pérez 7, E-38712 Breña Baja, TF - Spain (Spain); and others
2014-06-01
We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the {sup 56}Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical-infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M {sub env} ∼ 20 M {sub ☉}, progenitor radius R ∼ 3 × 10{sup 13} cm (∼430 R {sub ☉}), explosion energy E ∼ 1.5 foe, and initial {sup 56}Ni mass ∼0.06 M {sub ☉}. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M {sub ☉} of the Type IIP events.
Bright, Jane; Torres, Guillermo
2018-01-01
We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.
Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R
2017-11-14
The crystal structure prediction (CSP) of a given compound from its molecular diagram is a fundamental challenge in computational chemistry with implications in relevant technological fields. A key component of CSP is the method to calculate the lattice energy of a crystal, which allows the ranking of candidate structures. This work is the second part of our investigation to assess the potential of the exchange-hole dipole moment (XDM) dispersion model for crystal structure prediction. In this article, we study the relatively large, nonplanar, mostly flexible molecules in the first five blind tests held by the Cambridge Crystallographic Data Centre. Four of the seven experimental structures are predicted as the energy minimum, and thermal effects are demonstrated to have a large impact on the ranking of at least another compound. As in the first part of this series, delocalization error affects the results for a single crystal (compound X), in this case by detrimentally overstabilizing the π-conjugated conformation of the monomer. Overall, B86bPBE-XDM correctly predicts 16 of the 21 compounds in the five blind tests, a result similar to the one obtained using the best CSP method available to date (dispersion-corrected PW91 by Neumann et al.). Perhaps more importantly, the systems for which B86bPBE-XDM fails to predict the experimental structure as the energy minimum are mostly the same as with Neumann's method, which suggests that similar difficulties (absence of vibrational free energy corrections, delocalization error,...) are not limited to B86bPBE-XDM but affect GGA-based DFT-methods in general. Our work confirms B86bPBE-XDM as an excellent option for crystal energy ranking in CSP and offers a guide to identify crystals (organic salts, conjugated flexible systems) where difficulties may appear.
Zuñiga, Cristal; Li, Chien-Ting; Huelsman, Tyler; Levering, Jennifer; Zielinski, Daniel C; McConnell, Brian O; Long, Christopher P; Knoshaug, Eric P; Guarnieri, Michael T; Antoniewicz, Maciek R; Betenbaugh, Michael J; Zengler, Karsten
2016-09-01
The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. © 2016 American Society of Plant Biologists. All rights reserved.
Zuñiga, Cristal; Li, Chien-Ting; Zielinski, Daniel C.; Guarnieri, Michael T.; Antoniewicz, Maciek R.; Zengler, Karsten
2016-01-01
The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. PMID:27372244
Directory of Open Access Journals (Sweden)
Amin Mahmoudzadeh Andwari
2017-07-01
Full Text Available In this study the influence of utilization of two Waste Heat Recovery (WHR strategies, namely organic Rankine cycle (ORC and turbocompounding, have been investigated based on the performance of a heavy-duty diesel engine using 1-D simulation engine code (GT-Power in terms of Brake Specific Fuel Consumptions (BSFC at various engine speeds and Brake Mean Effective Pressures (BMEP. The model of a 6-cylinder turbocharged engine (Holset HDX55V was calibrated using an experimental BSFC map to predict engine exhaust thermodynamic conditions such as exhaust mass flow rate and exhaust temperature under various operating conditions. These engine exhaust conditions were then utilized to feed the inlet conditions for both the ORC and turbocompounding models, evaluating the available exhaust energy to be recovered by each technology. Firstly the ORC system model was simulated to obtain the power that can be generated from the system. Having this additional power converted to useful work, the BSFC was observed to reduce around 2–5% depending upon engine’s speed and BMEP. The initial model of the engine was then modified by considering a second turbine representing turbocompounding heat recovery system. The BSFC was increased due to the back-pressure from the second turbine, but the energy generated from the turbine was sufficient to reduce the BSFC further. However, by application of turbocompounding no improvement in BSFC was achieved at low engine’s speeds. It is concluded that ORC heat recovery system produces a satisfactory results at low engine speeds with both low and high loads whereas at medium and high engine speeds turbocompounding heat recovery system causes higher BSFC reduction.
International Nuclear Information System (INIS)
Galindo, J.; Serrano, J.R.; Margot, X.; Tiseira, A.; Schorn, N.; Kindl, H.
2007-01-01
Due to the packaging constraints to which turbocharged engines are submitted in passenger cars, the inlet duct of the centrifugal compressor often requires a 90 o bend. The compressor inlet perpendicular to its axis disturbs the flow and reduces the compressor performance. This paper presents an interesting solution based on a specifically designed inlet swirl-generator device (SGD) that palliates these negative effects. In addition, the SGD can be used to extend the surge margin of the compressor if the position of the SGD blades is modified in function of the reciprocating engine operation conditions. The paper describes how the swirl level and the pressure losses generated by the device have been characterized in a continuous flow test rig. After this the SGD plus a centrifugal compressor from a turbocharger unit have been tested in a specific turbocharger test bench. The results obtained show the influence of the SGD blades position on the compressor performance. In order to better understand the influence of the SGD on the turbocharger behaviour, the flow velocity triangles near the inducer have been reconstructed using an approach based on CFD calculations
Wang, Shiyao; Deng, Zhidong; Yin, Gang
2016-02-24
A high-performance differential global positioning system (GPS) receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.
Directory of Open Access Journals (Sweden)
Shiyao Wang
2016-02-01
Full Text Available A high-performance differential global positioning system (GPS receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU/dead reckoning (DR data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.
Energy Technology Data Exchange (ETDEWEB)
Rybynok, V O; Kyriacou, P A [City University, London (United Kingdom)
2007-10-15
Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.
Rybynok, V. O.; Kyriacou, P. A.
2007-10-01
Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.
International Nuclear Information System (INIS)
Rybynok, V O; Kyriacou, P A
2007-01-01
Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media
Gancedo, Matthieu; Gutmark, Ephraim; Guillou, Erwann
2016-02-01
Turbocharging reciprocating engines is a viable solution in order to meet the new regulations for emissions and fuel efficiency in part because turbochargers allow to use smaller, more efficient engines (downsizing) while maintaining power. A major challenge is to match the flow range of a dynamic turbomachine (the centrifugal compressor in the turbocharger) with a positive displacement pump (the engine) as the flow range of the latter is typically higher. The operating range of the compressor is thus of prime interest. At low mass flow rate (MFR), the compressor range is limited by the occurrence of surge. To control and improve it, numerous and varied methods have been used. Yet, an automotive application requires that the solution remains relatively simple and preferably passive. A common feature that has been demonstrated to improve the surge line is the use of flow recirculation in the inducer region through a circumferential bleed slot around the shroud, also called "ported shroud", similar to what has been developed for axial compressors in the past. The compressor studied here features such a device. In order to better understand the effect of the recirculation slot on the compressor functioning, flow measurements were performed at the inlet using particle image velocimetry and the results were correlated with pressure measurements nearby. Measurements were taken on a compressor with and without recirculation and across the full range of normal operation and during surge using a phase-locking method to obtain average flow fields throughout the entire surge cycle. When the recirculation is blocked, it was found that strong backflow develops at low MFR perturbing the incoming flow and inducing significant preswirl. The slot eliminated most of the backflow in front of the inducer making the compressor operation more stable. The measurements performed during surge showed strong backflow occurring periodically during the outlet pressure drop and when the
Directory of Open Access Journals (Sweden)
Sheila M Reynolds
2010-07-01
Full Text Available DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the
Reynolds, Sheila M; Bilmes, Jeff A; Noble, William Stafford
2010-07-08
DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the
Reynolds, Sheila M.; Bilmes, Jeff A.; Noble, William Stafford
2010-01-01
DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence—301 base pairs, centered at the position to be scored—with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the
Joshi, Shuchi N; Srinivas, Nuggehally R; Parmar, Deven V
2018-03-01
Our aim was to develop and validate the extrapolative performance of a regression model using a limited sampling strategy for accurate estimation of the area under the plasma concentration versus time curve for saroglitazar. Healthy subject pharmacokinetic data from a well-powered food-effect study (fasted vs fed treatments; n = 50) was used in this work. The first 25 subjects' serial plasma concentration data up to 72 hours and corresponding AUC 0-t (ie, 72 hours) from the fasting group comprised a training dataset to develop the limited sampling model. The internal datasets for prediction included the remaining 25 subjects from the fasting group and all 50 subjects from the fed condition of the same study. The external datasets included pharmacokinetic data for saroglitazar from previous single-dose clinical studies. Limited sampling models were composed of 1-, 2-, and 3-concentration-time points' correlation with AUC 0-t of saroglitazar. Only models with regression coefficients (R 2 ) >0.90 were screened for further evaluation. The best R 2 model was validated for its utility based on mean prediction error, mean absolute prediction error, and root mean square error. Both correlations between predicted and observed AUC 0-t of saroglitazar and verification of precision and bias using Bland-Altman plot were carried out. None of the evaluated 1- and 2-concentration-time points models achieved R 2 > 0.90. Among the various 3-concentration-time points models, only 4 equations passed the predefined criterion of R 2 > 0.90. Limited sampling models with time points 0.5, 2, and 8 hours (R 2 = 0.9323) and 0.75, 2, and 8 hours (R 2 = 0.9375) were validated. Mean prediction error, mean absolute prediction error, and root mean square error were prediction of saroglitazar. The same models, when applied to the AUC 0-t prediction of saroglitazar sulfoxide, showed mean prediction error, mean absolute prediction error, and root mean square error model predicts the exposure of
Ida, Masato; Taniguchi, Nobuyuki
2003-09-01
This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.
Energy Technology Data Exchange (ETDEWEB)
Danyluk, P.; Gutoski, G. [Coltec Industries Inc., Fairbanks Morse Engine Division (United States); Chen, S.K. [PEI Consultants (United States)
1998-12-31
This paper describes the benefits of sequential turbocharging in improving the operating envelope of a medium speed diesel engine. In particular, the high torque, low speed performance envelope can be greatly extended over that of a standard medium speed engine and, in addition, can offer improved operating range over what has been achieved with compressor air bypass/waste gate systems. This paper compares the three approaches on the basis of possible operating envelopes for a specific application, the new U.S. Navy LPD-17 amphibious assault ship, which has a very demanding requirement for high torque at low engine speed and low ambient temperatures. Comparison is made to the earlier approach to extend the operating envelope on the U.S. Navy LSD-41 class engines. The LSD-41 fleet has been in service since 1985 running with a compressor air bypass system developed jointly by Lockheed Shipyard and Coltec Industries for the U.S. Navy. (au)
Effect of DMDF on the PM emission from a turbo-charged diesel engine with DDOC and DPOC
International Nuclear Information System (INIS)
Geng, Peng; Yao, Chunde; Wang, Quangang; Wei, Lijiang; Liu, Junheng; Pan, Wang; Han, Guopeng
2015-01-01
Highlights: • A new technical route on the reductions of smoke emissions and PM was introduced. • Smoke emissions and PM from turbo-charged diesel engine with DMDF were measured. • Interior relation on dry-soot, smoke opacity and PM was analyzed. • Effects of DMDF, DDOC and DPOC on smoke emissions and PM were investigated. • Particle number and mass concentrations and size contribution with DMDF were realized. - Abstract: This study is aimed to investigate the combined application of diesel methanol dual fuel (DMDF) and a simple after-treatment for reducing particulate matter (PM) emissions of a diesel engine. The effects of DMDF, a double diesel oxidation catalyst (DDOC) and a DOC closely coupled with a particulate oxidation catalyst (POC) in series (DPOC) on smoke emissions, particulate mass and number concentrations and size distributions were analyzed. Tests were conducted on a 4-cylinder turbo-charged, inter-cooling, mechanical in-line fuel injection pump diesel engine modified to DMDF combustion mode. Testing results showed that, before the DDOC and the DPOC, the dry-soot and smoke opacity efficiency decreases with the increase of substitution ratio of methanol at high engine load. There is a significant decrease of smoke opacity in DMDF mode after the DDOC, while the DPOC has a significant effect on the reduction in dry-soot emission. There is an average reduction in dry-soot by 25% in pure diesel fuel mode after the DDOC, while in DMDF mode, the average reduction is more than 60%, and the maximum reduction in dry-soot is up to 96%. There is a slightly reduction in PM emissions at low substitution ratio of methanol, while the high substitution ratio of methanol leads to more reduction in PM emissions. After the DDOC and the DPOC, particulate number and mass concentrations, especially nuclear particles, can be significantly reduced when the exhaust gas temperature is enough high
Orun, A B; Seker, H; Uslan, V; Goodyer, E; Smith, G
2017-06-01
The textural structure of 'skin age'-related subskin components enables us to identify and analyse their unique characteristics, thus making substantial progress towards establishing an accurate skin age model. This is achieved by a two-stage process. First by the application of textural analysis using laser speckle imaging, which is sensitive to textural effects within the λ = 650 nm spectral band region. In the second stage, a Bayesian inference method is used to select attributes from which a predictive model is built. This technique enables us to contrast different skin age models, such as the laser speckle effect against the more widely used normal light (LED) imaging method, whereby it is shown that our laser speckle-based technique yields better results. The method introduced here is non-invasive, low cost and capable of operating in real time; having the potential to compete against high-cost instrumentation such as confocal microscopy or similar imaging devices used for skin age identification purposes. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Tsao, Chao-hsi; Freniere, Edward R.; Smith, Linda
2009-02-01
The use of white LEDs for solid-state lighting to address applications in the automotive, architectural and general illumination markets is just emerging. LEDs promise greater energy efficiency and lower maintenance costs. However, there is a significant amount of design and cost optimization to be done while companies continue to improve semiconductor manufacturing processes and begin to apply more efficient and better color rendering luminescent materials such as phosphor and quantum dot nanomaterials. In the last decade, accurate and predictive opto-mechanical software modeling has enabled adherence to performance, consistency, cost, and aesthetic criteria without the cost and time associated with iterative hardware prototyping. More sophisticated models that include simulation of optical phenomenon, such as luminescence, promise to yield designs that are more predictive - giving design engineers and materials scientists more control over the design process to quickly reach optimum performance, manufacturability, and cost criteria. A design case study is presented where first, a phosphor formulation and excitation source are optimized for a white light. The phosphor formulation, the excitation source and other LED components are optically and mechanically modeled and ray traced. Finally, its performance is analyzed. A blue LED source is characterized by its relative spectral power distribution and angular intensity distribution. YAG:Ce phosphor is characterized by relative absorption, excitation and emission spectra, quantum efficiency and bulk absorption coefficient. Bulk scatter properties are characterized by wavelength dependent scatter coefficients, anisotropy and bulk absorption coefficient.
Spectrally accurate contour dynamics
International Nuclear Information System (INIS)
Van Buskirk, R.D.; Marcus, P.S.
1994-01-01
We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use
Campargue, Alain; Kassi, Samir; Mondelain, Didier; Romanini, Daniele; Lechevallier, Loïc; Vasilchenko, Semyon
2017-06-01
The semi empirical MT_CKD model of the absorption continuum of water vapor is widely used in atmospheric radiative transfer codes of the atmosphere of Earth and exoplanets but lacks of experimental validation in the atmospheric windows. Recent laboratory measurements by Fourier transform Spectroscopy have led to self-continuum cross-sections much larger than the MT_CKD values in the near infrared transparency windows. In the present work, we report on accurate water vapor absorption continuum measurements by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) at selected spectral points of the transparency windows centered around 4.0, 2.1 and 1.25 μm. The temperature dependence of the absorption continuum at 4.38 μm and 3.32 μm is measured in the 23-39 °C range. The self-continuum water vapor absorption is derived either from the baseline variation of spectra recorded for a series of pressure values over a small spectral interval or from baseline monitoring at fixed laser frequency, during pressure ramps. In order to avoid possible bias approaching the water saturation pressure, the maximum pressure value was limited to about 16 Torr, corresponding to a 75% humidity rate. After subtraction of the local water monomer lines contribution, self-continuum cross-sections, C_{S}, were determined with a few % accuracy from the pressure squared dependence of the spectra base line level. Together with our previous CRDS and OF-CEAS measurements in the 2.1 and 1.6 μm windows, the derived water vapor self-continuum provides a unique set of water vapor self-continuum cross-sections for a test of the MT_CKD model in four transparency windows. Although showing some important deviations of the absolute values (up to a factor of 4 at the center of the 2.1 μm window), our accurate measurements validate the overall frequency dependence of the MT_CKD2.8 model.
Rey, Michael; Nikitin, Andrei V.; Tyuterev, Vladimir G.
2017-10-01
Modeling atmospheres of hot exoplanets and brown dwarfs requires high-T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of 12CH4 in the infrared range 0-13,400 cm-1 up to T max = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm-1 and intensity cutoff down to 10-33 cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line position accuracies of 0.001-0.01 cm-1. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high-T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.
International Nuclear Information System (INIS)
Sjerić, Momir; Taritaš, Ivan; Tomić, Rudolf; Blažić, Mislav; Kozarac, Darko; Lulić, Zoran
2016-01-01
Highlights: • A cylinder model was calibrated according to experimental results. • A full cycle simulation model of turbocharged spark-ignition engine was made. • Engine performance with high pressure exhaust gas recirculation was studied. • Cooled exhaust gas recirculation lowers exhaust temperature and knock occurrence. • Leaner mixtures enable fuel consumption improvement of up to 11.2%. - Abstract: The numerical analysis of performance of a four cylinder highly boosted spark-ignition engine at full load is described in this paper, with the research focused on introducing high pressure exhaust gas recirculation for control of engine limiting factors such as knock, turbine inlet temperature and cyclic variability. For this analysis the cycle-simulation model which includes modeling of the entire engine flow path, early flame kernel growth, mixture stratification, turbulent combustion, in-cylinder turbulence, knock and cyclic variability was applied. The cylinder sub-models such as ignition, turbulence and combustion were validated by using the experimental results of a naturally aspirated multi cylinder spark-ignition engine. The high load operation, which served as a benchmark value, was obtained by a standard procedure used in calibration of engines, i.e. operation with fuel enrichment and without exhaust gas recirculation. By introducing exhaust gas recirculation and by optimizing other engine operating parameters, the influence of exhaust gas recirculation on engine performance is obtained. The optimum operating parameters, such as spark advance, intake pressure, air to fuel ratio, were found to meet the imposed requirements in terms of fuel consumption, knock occurrence, exhaust gas temperature and variation of indicated mean effective pressure. By comparing the results of the base point with the results that used exhaust gas recirculation the improvement in fuel consumption of 8.7%, 11.2% and 1.5% at engine speeds of 2000 rpm, 3500 rpm and 5000
International Nuclear Information System (INIS)
Michos, Constantine N.; Lion, Simone; Vlaskos, Ioannis; Taccani, Rodolfo
2017-01-01
Highlights: • Waste heat recovery on internal combustion engines is studied. • The backpressure effect of the Organic Rankine Cycle boiler has been evaluated. • Three different state-of-the art turbocharging technologies have been assessed. • Six different fluids for medium-high temperature recovery have been considered. • A reduction up to 10% in fuel consumption can be achieved. - Abstract: In marine and power generation sectors, waste heat recovery technologies are attracting growing attention in order to increase heavy duty diesel engines efficiency and decrease fuel consumption, with the purpose of respecting stringent emissions legislations. In this work, the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged, V12 heavy duty diesel engine, for typical marine and power generation applications has been investigated using the commercial software Ricardo WAVE. Three different state-of-the art turbocharging strategies are assessed in order to counterbalance the increased pumping losses of the engine due to the boiler installation: fixed turbine, Waste-Gate (WG) and Variable Geometry Turbine (VGT). At the same time, the steady-state thermodynamic performance of two different ORC configurations, simple tail-pipe evaporator and recuperated simple tail-pipe evaporator layouts, are assessed, with the scope of further increasing the engine power output, recovering unutilized exhaust gas heat. Several different working fluids, suitable for medium-high temperature waste heat recovery, are evaluated and screened, considering, as well, health and safety issues. Thermodynamic cycle parameters such as, for example, evaporation and condensing pressures, working fluid mass flow and cycle temperatures, are optimized in order to obtain the maximum improvement in Brake Specific Fuel Consumption (bsfc). From the engine side point of view, a VGT turbocharger is the most favorable solution to withstand increased
International Nuclear Information System (INIS)
Rakopoulos, C.D.; Dimaratos, A.M.; Giakoumis, E.G.; Rakopoulos, D.C.
2011-01-01
Highlights: → Turbocharged diesel engine emissions during starting with bio-diesel or n-butanol diesel blends. → Peak pollutant emissions due to turbo-lag. → Significant bio-diesel effects on combustion behavior and stability. → Negative effects on NO emissions for both blends. → Positive effects on smoke emissions only for n-butanol blend. -- Abstract: The control of transient emissions from turbocharged diesel engines is an important objective for automotive manufacturers, as stringent criteria for exhaust emissions must be met. Starting, in particular, is a process of significant importance owing to its major contribution to the overall emissions during a transient test cycle. On the other hand, bio-fuels are getting impetus today as renewable substitutes for conventional fuels, especially in the transport sector. In the present work, experimental tests were conducted at the authors' laboratory on a bus/truck, turbocharged diesel engine in order to investigate the formation mechanisms of nitric oxide (NO), smoke, and combustion noise radiation during hot starting for various alternative fuel blends. To this aim, a fully instrumented test bed was set up, using ultra-fast response analyzers capable of capturing the instantaneous development of emissions as well as various other key engine and turbocharger parameters. The experimental test matrix included three different fuels, namely neat diesel fuel and two blends of diesel fuel with either bio-diesel (30% by vol.) or n-butanol (25% by vol.). With reference to the neat diesel fuel case during the starting event, the bio-diesel blend resulted in deterioration of both pollutant emissions as well as increased combustion instability, while the n-butanol (normal butanol) blend decreased significantly exhaust gas opacity but increased notably NO emission.
Directory of Open Access Journals (Sweden)
Feng Chai
2016-10-01
Full Text Available High power density outer-rotor motors commonly use water or oil cooling. A reasonable thermal design for outer-rotor air-cooling motors can effectively enhance the power density without the fluid circulating device. Research on the heat dissipation mechanism of an outer-rotor air-cooling motor can provide guidelines for the selection of the suitable cooling mode and the design of the cooling structure. This study investigates the temperature field of the motor through computational fluid dynamics (CFD and presents a method to overcome the difficulties in building an accurate temperature field model. The proposed method mainly includes two aspects: a new method for calculating the equivalent thermal conductivity (ETC of the air-gap in the laminar state and an equivalent treatment to the thermal circuit that comprises a hub, shaft, and bearings. Using an outer-rotor air-cooling in-wheel motor as an example, the temperature field of this motor is calculated numerically using the proposed method; the results are experimentally verified. The heat transfer rate (HTR of each cooling path is obtained using the numerical results and analytic formulas. The influences of the structural parameters on temperature increases and the HTR of each cooling path are analyzed. Thereafter, the overload capability of the motor is analyzed in various overload conditions.
Harsch, A; Marzilli, L A; Bunt, R C; Stubbe, J; Vouros, P
2000-05-01
Bleomycin B(2)(BLM) in the presence of iron [Fe(II)] and O(2)catalyzes single-stranded (ss) and double-stranded (ds) cleavage of DNA. Electrospray ionization ion trap mass spectrometry was used to monitor these cleavage processes. Two duplex oligonucleotides containing an ethylene oxide tether between both strands were used in this investigation, allowing facile monitoring of all ss and ds cleavage events. A sequence for site-specific binding and cleavage by Fe-BLM was incorporated into each analyte. One of these core sequences, GTAC, is a known hot-spot for ds cleavage, while the other sequence, GGCC, is a hot-spot for ss cleavage. Incubation of each oligo-nucleotide under anaerobic conditions with Fe(II)-BLM allowed detection of the non-covalent ternary Fe-BLM/oligonucleotide complex in the gas phase. Cleavage studies were then performed utilizing O(2)-activated Fe(II)-BLM. No work-up or separation steps were required and direct MS and MS/MS analyses of the crude reaction mixtures confirmed sequence-specific Fe-BLM-induced cleavage. Comparison of the cleavage patterns for both oligonucleotides revealed sequence-dependent preferences for ss and ds cleavages in accordance with previously established gel electrophoresis analysis of hairpin oligonucleotides. This novel methodology allowed direct, rapid and accurate determination of cleavage profiles of model duplex oligonucleotides after exposure to activated Fe-BLM.
Energy Technology Data Exchange (ETDEWEB)
Rey, Michael; Tyuterev, Vladimir G. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2 (France); Nikitin, Andrei V., E-mail: michael.rey@univ-reims.fr [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, SB RAS, 634055 Tomsk (Russian Federation)
2017-10-01
Modeling atmospheres of hot exoplanets and brown dwarfs requires high- T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of {sup 12}CH{sub 4} in the infrared range 0–13,400 cm{sup −1} up to T {sub max} = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm{sup −1} and intensity cutoff down to 10{sup −33} cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line position accuracies of 0.001–0.01 cm{sup −1}. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high- T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.
Directory of Open Access Journals (Sweden)
Francesca Galassi
Full Text Available Assessment of coronary stenosis severity is crucial in clinical practice. This study proposes a novel method to generate 3D models of stenotic coronary arteries, directly from 2D coronary images, and suitable for immediate assessment of the stenosis severity.From multiple 2D X-ray coronary arteriogram projections, 2D vessels were extracted. A 3D centreline was reconstructed as intersection of surfaces from corresponding branches. Next, 3D luminal contours were generated in a two-step process: first, a Non-Uniform Rational B-Spline (NURBS circular contour was designed and, second, its control points were adjusted to interpolate computed 3D boundary points. Finally, a 3D surface was generated as an interpolation across the control points of the contours and used in the analysis of the severity of a lesion. To evaluate the method, we compared 3D reconstructed lesions with Optical Coherence Tomography (OCT, an invasive imaging modality that enables high-resolution endoluminal visualization of lesion anatomy.Validation was performed on routine clinical data. Analysis of paired cross-sectional area discrepancies indicated that the proposed method more closely represented OCT contours than conventional approaches in luminal surface reconstruction, with overall root-mean-square errors ranging from 0.213mm2 to 1.013mm2, and maximum error of 1.837mm2. Comparison of volume reduction due to a lesion with corresponding FFR measurement suggests that the method may help in estimating the physiological significance of a lesion.The algorithm accurately reconstructed 3D models of lesioned arteries and enabled quantitative assessment of stenoses. The proposed method has the potential to allow immediate analysis of the stenoses in clinical practice, thereby providing incremental diagnostic and prognostic information to guide treatments in real time and without the need for invasive techniques.
International Nuclear Information System (INIS)
Silva, Goncalo; Talon, Laurent; Ginzburg, Irina
2017-01-01
The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes–Brinkman–Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes–Brinkman–Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies the effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM
Energy Technology Data Exchange (ETDEWEB)
Silva, Goncalo, E-mail: goncalo.nuno.silva@gmail.com [Irstea, Antony Regional Centre, HBAN, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony cedex (France); Talon, Laurent, E-mail: talon@fast.u-psud.fr [CNRS (UMR 7608), Laboratoire FAST, Batiment 502, Campus University, 91405 Orsay (France); Ginzburg, Irina, E-mail: irina.ginzburg@irstea.fr [Irstea, Antony Regional Centre, HBAN, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony cedex (France)
2017-04-15
The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes–Brinkman–Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes–Brinkman–Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies the effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM
Rotary engine performance limits predicted by a zero-dimensional model
Bartrand, Timothy A.; Willis, Edward A.
1992-01-01
A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.
International Nuclear Information System (INIS)
Grillo, C.; Suyu, S. H.; Umetsu, K.; Rosati, P.; Caminha, G. B.; Mercurio, A.; Balestra, I.; Munari, E.; Nonino, M.; De Lucia, G.; Borgani, S.; Biviano, A.; Girardi, M.; Lombardi, M.; Gobat, R.; Coe, D.; Koekemoer, A. M.; Postman, M.; Zitrin, A.; Halkola, A.
2015-01-01
We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the Cluster Lensing And Supernova survey with Hubble (CLASH) and Frontier Fields galaxy cluster MACS J0416.1–2403. We show and employ our extensive spectroscopic data set taken with the VIsible Multi-Object Spectrograph instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log (M * /M ☉ ) ≅ 8.6. We reproduce the measured positions of a set of 30 multiple images with a remarkable median offset of only 0.''3 by means of a comprehensive strong lensing model comprised of two cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components, parameterized with dual pseudo-isothermal total mass profiles. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ∼5%, including the systematic uncertainties estimated from six distinct mass models. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological N-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1–2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide intriguing
Energy Technology Data Exchange (ETDEWEB)
Grillo, C. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Suyu, S. H.; Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Rosati, P.; Caminha, G. B. [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Mercurio, A. [INAF - Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Balestra, I.; Munari, E.; Nonino, M.; De Lucia, G.; Borgani, S.; Biviano, A.; Girardi, M. [INAF - Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143, Trieste (Italy); Lombardi, M. [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy); Gobat, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Universitè Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Coe, D.; Koekemoer, A. M.; Postman, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Zitrin, A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Halkola, A., E-mail: grillo@dark-cosmology.dk; and others
2015-02-10
We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the Cluster Lensing And Supernova survey with Hubble (CLASH) and Frontier Fields galaxy cluster MACS J0416.1–2403. We show and employ our extensive spectroscopic data set taken with the VIsible Multi-Object Spectrograph instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log (M {sub *}/M {sub ☉}) ≅ 8.6. We reproduce the measured positions of a set of 30 multiple images with a remarkable median offset of only 0.''3 by means of a comprehensive strong lensing model comprised of two cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components, parameterized with dual pseudo-isothermal total mass profiles. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ∼5%, including the systematic uncertainties estimated from six distinct mass models. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological N-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1–2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide
Accurate quantum chemical calculations
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.
Directory of Open Access Journals (Sweden)
Lino Guzzella
2013-03-01
Full Text Available The availability of compressed air in combination with downsizing and turbocharging is a promising approach to improve the fuel economy and the driveability of internal combustion engines. The compressed air is used to boost and start the engine. It is generated during deceleration phases by running the engine as a piston compressor. In this paper, a camshaft-driven valve is considered for the control of the air exchange between the tank and the combustion chamber. Such a valve system is cost-effective and robust. Each pneumatic engine mode is realized by a separate cam. The air mass transfer in each mode is analyzed. Special attention is paid to the tank pressure dependence. The air demand in the boost mode is found to increase with the tank pressure. However, the dependence on the tank pressure is small in the most relevant operating region. The air demand of the pneumatic start shows a piecewise continuous dependence on the tank pressure. Finally, a tank sizing method is proposed which uses a quasi-static simulation. It is applied to a compact class vehicle, for which a tank volume of less than 10 L is sufficient. A further reduction of the tank volume is limited by the specifications imposed on the pneumatic start.
International Nuclear Information System (INIS)
Masood, M.I.
2015-01-01
in this work it is attempted to optimize the combustion parameters such as instantaneous heal release (IR), cylinder Pressure (P) and rate of change oj pressure per degree crank angle (dP/do)) and the emissions characteristics such as NOx and Smoke of 2 turbocharged direct injection (DI) compression ignition (Cl) engine alternatively run on pure biodiesel (Bl 00), diesel and biodiesel-diesel blend (B20: applying Grey Taguchi method (GTM), GTM is used to convert multi variables into a single objective function The process environment comprising three input parameters (speed of the engine, load and type of fuel:, were used in this case, The design of experiment (DOE: was selected on an orthogonal array based on L9 (33) The Optimum Parameters were found on the basis ol Grey Relational Grade (GRG) and signal to noise (SN: ratio using GTM, The resulted optimum combination of the input parameters was used to get maximum possible values of IR, P and least possible values ol NOx, smoke and dP/do, The higher values of IH and I measure the better performance of the engine, while lower values of NO x' smoke and dP/do are the ultimate objectives of the study, According to the results It was revealed that B 1 00 fuel, 1800 rpm speed and 10% load offer the optimum combination for the desired performance of the engine along with reduced pollutants, Analysis of Variance (ANOVA) based on, software Minitab 16 was used to get the mos: significant input parameter keeping in view responses Fuel type and engine load were found to be the dominant factors with 48,16% and 43.18% impact or the output parameters, respectively, Finally the results were validated using Artificial Neural Network (ANN) through Mat lab. (author)
Energy Technology Data Exchange (ETDEWEB)
Heiduk, Thomas; Kuhn, Michael; Stichlmeir, Maximilian; Unselt, Florian [Audi AG, Ingolstadt (Germany)
2011-07-15
The launch of the new 1.8 l TFSI engine marks the third generation of the successful four-cylinder gasoline engine family from Audi. With consistently reduced frictional losses, the advanced combustion process and new mono-scroll turbocharger and electric wastegate technology, the engine represents a new benchmark in terms of performance and fuel-efficiency. The power plant has already been configured to meet even the strictest future emissions standards worldwide. The mixture formation, the combustion process and the turbocharger of the new engine are described below. The base engine and the thermomanagement system were described in the first part of this article in MTZ 6. (orig.)
International Nuclear Information System (INIS)
Boretti, Alberto
2012-01-01
Highlights: ► The main advantages of ethanol vs. gasoline are higher knock resistance and heat of vaporization. ► Direct injection and turbo charging are the key features of high efficiency and high power density ethanol engines. ► Advanced ethanol engines are enablers of vehicle fuel energy economy similar to Diesel engines. ► Waste bio mass ethanol may cut the nonrenewable energy costs of fossil fuels passenger cars by almost 90%. - Abstract: Current flexi fuel gasoline and ethanol engines have efficiencies generally lower than dedicated gasoline engines. Considering ethanol has a few advantages with reference to gasoline, namely the higher octane number and the larger heat of vaporization, the paper explores the potentials of dedicated pure ethanol engines using the most advanced techniques available for gasoline engines, specifically direct injection, turbo charging and variable valve actuation. Computations are performed with state-of-the-art, well validated, engine and vehicle performance simulations packages, generally accepted to produce accurate results when targeting major trends in engine developments. The higher compression ratio and the higher boost permitted by ethanol allows larger than gasoline top engine brake thermal efficiencies and peak power and torque, while the variable valve actuation produces smaller penalties in efficiency changing the load than in conventional throttle controlled engines.
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2016-06-21
In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.
International Nuclear Information System (INIS)
Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide
2016-01-01
In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH • radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH • radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.
Energy Technology Data Exchange (ETDEWEB)
Thomas, John F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian H [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huff, Shean P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-03-01
The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance
International Nuclear Information System (INIS)
Chingyuan Wu; Yeongwen Daih
1985-01-01
In this paper an analytical mobility model is developed for the I-V characteristics of n-channel enhancement-mode MOSFETs, in which the effects of the two-dimensional electric fields in the surface inversion channel and the parasitic resistances due to contact and interconnection are included. Most importantly, the developed mobility model easily takes the device structure and process into consideration. In order to demonstrate the capabilities of the developed model, the structure- and process-oriented parameters in the present mobility model are calculated explicitly for an n-channel enhancement-mode MOSFET with single-channel boron implantation. Moreover, n-channel MOSFETs with different channel lengths fabricated in a production line by using a set of test keys have been characterized and the measured mobilities have been compared to the model. Excellent agreement has been obtained for all ranges of the fabricated channel lengths, which strongly support the accuracy of the model. (author)
Sénéchal, Monique
2017-01-01
The goal was to assess the role of invented spelling to subsequent reading and spelling as proposed by the Nested Skills Model of Early Literacy Acquisition. 107 English-speaking children were tested at the beginning of kindergarten and grade 1, and at the end of grade 1. The findings provided support for the proposed model. First, the role played…
Durand, Jean-Louis; Delusca, Kenel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Weigel, Hans Johachim; Ruane, Alexander Clark; Rosenzweig, Cynthia E.; Jones, Jim; Ahuja, Laj;
2017-01-01
This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration [CO2] on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thunen Institute in Braunschweig, Germany (Manderscheid et al. 2014). Data for ambient [CO2] and irrigated treatments were provided to the 21 models for calibrating plant traits, including weather, soil and management data as well as yield, grain number, above ground biomass, leaf area index, nitrogen concentration in biomass and grain, water use and soil water content. Models differed in their representation of carbon assimilation and evapotranspiration processes. The models reproduced the absence of yield response to elevated [CO2] under well-watered conditions, as well as the impact of water deficit at ambient [CO2], with 50 percent of models within a range of plus/minus 1 Mg ha(exp. -1) around the mean. The bias of the median of the 21 models was less than 1 Mg ha(exp. -1). However under water deficit in one of the two years, the models captured only 30 percent of the exceptionally high [CO2] enhancement on yield observed. Furthermore the ensemble of models was unable to simulate the very low soil water content at anthesis and the increase of soil water and grain number brought about by the elevated [CO2] under dry conditions. Overall, we found models with explicit stomatal control on transpiration tended to perform better. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase.
Process informed accurate compact modelling of 14-nm FinFET variability and application to statistical 6T-SRAM simulations
Wang, Xingsheng; Reid, Dave; Wang, Liping; Millar, Campbell; Burenkov, Alex; Evanschitzky, Peter; Baer, Eberhard; Lorenz, Juergen; Asenov, Asen
2016-01-01
This paper presents a TCAD based design technology co-optimization (DTCO) process for 14nm SOI FinFET based SRAM, which employs an enhanced variability aware compact modeling approach that fully takes process and lithography simulations and their impact on 6T-SRAM layout into account. Realistic double patterned gates and fins and their impacts are taken into account in the development of the variability-aware compact model. Finally, global process induced variability and local statistical var...
Directory of Open Access Journals (Sweden)
Hitinder S Gurm
Full Text Available BACKGROUND: Transfusion is a common complication of Percutaneous Coronary Intervention (PCI and is associated with adverse short and long term outcomes. There is no risk model for identifying patients most likely to receive transfusion after PCI. The objective of our study was to develop and validate a tool for predicting receipt of blood transfusion in patients undergoing contemporary PCI. METHODS: Random forest models were developed utilizing 45 pre-procedural clinical and laboratory variables to estimate the receipt of transfusion in patients undergoing PCI. The most influential variables were selected for inclusion in an abbreviated model. Model performance estimating transfusion was evaluated in an independent validation dataset using area under the ROC curve (AUC, with net reclassification improvement (NRI used to compare full and reduced model prediction after grouping in low, intermediate, and high risk categories. The impact of procedural anticoagulation on observed versus predicted transfusion rates were assessed for the different risk categories. RESULTS: Our study cohort was comprised of 103,294 PCI procedures performed at 46 hospitals between July 2009 through December 2012 in Michigan of which 72,328 (70% were randomly selected for training the models, and 30,966 (30% for validation. The models demonstrated excellent calibration and discrimination (AUC: full model = 0.888 (95% CI 0.877-0.899, reduced model AUC = 0.880 (95% CI, 0.868-0.892, p for difference 0.003, NRI = 2.77%, p = 0.007. Procedural anticoagulation and radial access significantly influenced transfusion rates in the intermediate and high risk patients but no clinically relevant impact was noted in low risk patients, who made up 70% of the total cohort. CONCLUSIONS: The risk of transfusion among patients undergoing PCI can be reliably calculated using a novel easy to use computational tool (https://bmc2.org/calculators/transfusion. This risk prediction
Energy Technology Data Exchange (ETDEWEB)
Escarela-Perez, R. [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo 180, Col. Reynosa, C.P. 02200, Mexico D.F. (Mexico); Kulkarni, S.V. [Electrical Engineering Department, Indian Institute of Technology, Bombay (India); Melgoza, E. [Instituto Tecnologico de Morelia, Av. Tecnologico 1500, Morelia, Mich., C.P. 58120 (Mexico)
2008-11-15
A six-port impedance network for a three-phase transformer is obtained from a 3D time-harmonic finite-element (FE) model. The network model properly captures the eddy current effects of the transformer tank and frame. All theorems and tools of passive linear networks can be used with the multi-port model to simulate several important operating conditions without resorting anymore to computationally expensive 3D FE simulations. The results of the network model are of the same quality as those produced by the FE program. Although the passive network may seem limited by the assumption of linearity, many important transformer operating conditions imply unsaturated states. Single-phase load-loss measurements are employed to demonstrate the effectiveness of the network model and to understand phenomena that could not be explained with conventional equivalent circuits. In addition, formal deduction of novel closed-form formulae is presented for the calculation of the leakage impedance measured at the high and low voltage sides of the transformer. (author)
Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A
2011-10-01
Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions.
Myers, Tanya L; Tonkyn, Russell G; Danby, Tyler O; Taubman, Matthew S; Bernacki, Bruce E; Birnbaum, Jerome C; Sharpe, Steven W; Johnson, Timothy J
2018-04-01
For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties that include chemical structure, optical band strength, volatility, and viscosity. By obtaining the optical constants, one can model most optical phenomena in media and at interfaces including reflection, refraction, and dispersion. Based on the works of others, we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organic, and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for dimethyl methylphosphonate (DMMP) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.
Munawar, Muhammad Jawad; Lin, Chengyan; Cnudde, Veerle; Bultreys, Tom; Dong, Chunmei; Zhang, Xianguo; De Boever, Wesley; Zahid, Muhammad Aleem; Wu, Yuqi
2018-03-26
Pore scale flow simulations heavily depend on petrographic characterizing and modeling of reservoir rocks. Mineral phase segmentation and pore network modeling are crucial stages in micro-CT based rock modeling. The success of the pore network model (PNM) to predict petrophysical properties relies on image segmentation, image resolution and most importantly nature of rock (homogenous, complex or microporous). The pore network modeling has experienced extensive research and development during last decade, however the application of these models to a variety of naturally heterogenous reservoir rock is still a challenge. In this paper, four samples from a low permeable to tight sandstone reservoir were used to characterize their petrographic and petrophysical properties using high-resolution micro-CT imaging. The phase segmentation analysis from micro-CT images shows that 5-6% microporous regions are present in kaolinite rich sandstone (E3 and E4), while 1.7-1.8% are present in illite rich sandstone (E1 and E2). The pore system percolates without micropores in E1 and E2 while it does not percolate without micropores in E3 and E4. In E1 and E2, total MICP porosity is equal to the volume percent of macrospores determined from micro-CT images, which indicate that the macropores are well connected and microspores do not play any role in non-wetting fluid (mercury) displacement process. Whereas in E3 and E4 sandstones, the volume percent of micropores is far less (almost 50%) than the total MICP porosity which means that almost half of the pore space was not detected by the micro-CT scan. PNM behaved well in E1 and E2 where better agreement exists in PNM and MICP measurements. While E3 and E4 exhibit multiscale pore space which cannot be addressed with single scale PNM method, a multiscale approach is needed to characterize such complex rocks. This study provides helpful insights towards the application of existing micro-CT based petrographic characterization methodology
Okeme, Joseph O; Parnis, J Mark; Poole, Justen; Diamond, Miriam L; Jantunen, Liisa M
2016-08-01
Polydimethylsiloxane (PDMS) shows promise for use as a passive air sampler (PAS) for semi-volatile organic compounds (SVOCs). To use PDMS as a PAS, knowledge of its chemical-specific partitioning behaviour and time to equilibrium is needed. Here we report on the effectiveness of two approaches for estimating the partitioning properties of polydimethylsiloxane (PDMS), values of PDMS-to-air partition ratios or coefficients (KPDMS-Air), and time to equilibrium of a range of SVOCs. Measured values of KPDMS-Air, Exp' at 25 °C obtained using the gas chromatography retention method (GC-RT) were compared with estimates from a poly-parameter free energy relationship (pp-FLER) and a COSMO-RS oligomer-based model. Target SVOCs included novel flame retardants (NFRs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), organophosphate flame retardants (OPFRs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Significant positive relationships were found between log KPDMS-Air, Exp' and estimates made using the pp-FLER model (log KPDMS-Air, pp-LFER) and the COSMOtherm program (log KPDMS-Air, COSMOtherm). The discrepancy and bias between measured and predicted values were much higher for COSMO-RS than the pp-LFER model, indicating the anticipated better performance of the pp-LFER model than COSMO-RS. Calculations made using measured KPDMS-Air, Exp' values show that a PDMS PAS of 0.1 cm thickness will reach 25% of its equilibrium capacity in ∼1 day for alpha-hexachlorocyclohexane (α-HCH) to ∼ 500 years for tris (4-tert-butylphenyl) phosphate (TTBPP), which brackets the volatility range of all compounds tested. The results presented show the utility of GC-RT method for rapid and precise measurements of KPDMS-Air. Copyright © 2016. Published by Elsevier Ltd.
Lagi, Marco; Bar-Yam, Yavni; Bertrand, Karla Z; Bar-Yam, Yaneer
2015-11-10
Recent increases in basic food prices are severely affecting vulnerable populations worldwide. Proposed causes such as shortages of grain due to adverse weather, increasing meat consumption in China and India, conversion of corn to ethanol in the United States, and investor speculation on commodity markets lead to widely differing implications for policy. A lack of clarity about which factors are responsible reinforces policy inaction. Here, for the first time to our knowledge, we construct a dynamic model that quantitatively agrees with food prices. The results show that the dominant causes of price increases are investor speculation and ethanol conversion. Models that just treat supply and demand are not consistent with the actual price dynamics. The two sharp peaks in 2007/2008 and 2010/2011 are specifically due to investor speculation, whereas an underlying upward trend is due to increasing demand from ethanol conversion. The model includes investor trend following as well as shifting between commodities, equities, and bonds to take advantage of increased expected returns. Claims that speculators cannot influence grain prices are shown to be invalid by direct analysis of price-setting practices of granaries. Both causes of price increase, speculative investment and ethanol conversion, are promoted by recent regulatory changes-deregulation of the commodity markets, and policies promoting the conversion of corn to ethanol. Rapid action is needed to reduce the impacts of the price increases on global hunger.
Harrison, R. G.
2015-07-01
A mean-field positive-feedback (PFB) theory of ferromagnetism is used to explain the origin of Barkhausen noise (BN) and to show why it is most pronounced in the irreversible regions of the hysteresis loop. By incorporating the ABBM-Sablik model of BN into the PFB theory, we obtain analytical solutions that simultaneously describe both the major hysteresis loop and, by calculating separate expressions for the differential susceptibility in the irreversible and reversible regions, the BN power response at all points of the loop. The PFB theory depends on summing components of the applied field, in particular, the non-monotonic field-magnetization relationship characterizing hysteresis, associated with physical processes occurring in the material. The resulting physical model is then validated by detailed comparisons with measured single-peak BN data in three different steels. It also agrees with the well-known influence of a demagnetizing field on the position and shape of these peaks. The results could form the basis of a physics-based method for modeling and understanding the significance of the observed single-peak (and in multi-constituent materials, multi-peak) BN envelope responses seen in contemporary applications of BN, such as quality control in manufacturing, non-destructive testing, and monitoring the microstructural state of ferromagnetic materials.
Turbocharging Quantum Tomography
Energy Technology Data Exchange (ETDEWEB)
Blume-Kohout, Robin J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Gamble, John King [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nielsen, Erik [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Maunz, Peter Lukas Wilhelm [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Scholten, Travis L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rudinger, Kenneth Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-01-01
Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.
Accurate Evaluation of Quantum Integrals
Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)
1995-01-01
Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.
Directory of Open Access Journals (Sweden)
Julia Lambret-Frotté
Full Text Available Employing reference genes to normalize the data generated with quantitative PCR (qPCR can increase the accuracy and reliability of this method. Previous results have shown that no single housekeeping gene can be universally applied to all experiments. Thus, the identification of a suitable reference gene represents a critical step of any qPCR analysis. Setaria viridis has recently been proposed as a model system for the study of Panicoid grasses, a crop family of major agronomic importance. Therefore, this paper aims to identify suitable S. viridis reference genes that can enhance the analysis of gene expression in this novel model plant. The first aim of this study was the identification of a suitable RNA extraction method that could retrieve a high quality and yield of RNA. After this, two distinct algorithms were used to assess the gene expression of fifteen different candidate genes in eighteen different samples, which were divided into two major datasets, the developmental and the leaf gradient. The best-ranked pair of reference genes from the developmental dataset included genes that encoded a phosphoglucomutase and a folylpolyglutamate synthase; genes that encoded a cullin and the same phosphoglucomutase as above were the most stable genes in the leaf gradient dataset. Additionally, the expression pattern of two target genes, a SvAP3/PI MADS-box transcription factor and the carbon-fixation enzyme PEPC, were assessed to illustrate the reliability of the chosen reference genes. This study has shown that novel reference genes may perform better than traditional housekeeping genes, a phenomenon which has been previously reported. These results illustrate the importance of carefully validating reference gene candidates for each experimental set before employing them as universal standards. Additionally, the robustness of the expression of the target genes may increase the utility of S. viridis as a model for Panicoid grasses.
Directory of Open Access Journals (Sweden)
Sinem Oktem-Okullu
Full Text Available The outcome of H. pylori infection is closely related with bacteria's virulence factors and host immune response. The association between T cells and H. pylori infection has been identified, but the effects of the nine major H. pylori specific virulence factors; cagA, vacA, oipA, babA, hpaA, napA, dupA, ureA, ureB on T cell response in H. pylori infected patients have not been fully elucidated. We developed a multiplex- PCR assay to detect nine H. pylori virulence genes with in a three PCR reactions. Also, the expression levels of Th1, Th17 and Treg cell specific cytokines and transcription factors were detected by using qRT-PCR assays. Furthermore, a novel expert derived model is developed to identify set of factors and rules that can distinguish the ulcer patients from gastritis patients. Within all virulence factors that we tested, we identified a correlation between the presence of napA virulence gene and ulcer disease as a first data. Additionally, a positive correlation between the H. pylori dupA virulence factor and IFN-γ, and H. pylori babA virulence factor and IL-17 was detected in gastritis and ulcer patients respectively. By using computer-based models, clinical outcomes of a patients infected with H. pylori can be predicted by screening the patient's H. pylori vacA m1/m2, ureA and cagA status and IFN-γ (Th1, IL-17 (Th17, and FOXP3 (Treg expression levels. Herein, we report, for the first time, the relationship between H. pylori virulence factors and host immune responses for diagnostic prediction of gastric diseases using computer-based models.
Oktem-Okullu, Sinem; Tiftikci, Arzu; Saruc, Murat; Cicek, Bahattin; Vardareli, Eser; Tozun, Nurdan; Kocagoz, Tanil; Sezerman, Ugur; Yavuz, Ahmet Sinan; Sayi-Yazgan, Ayca
2015-01-01
The outcome of H. pylori infection is closely related with bacteria's virulence factors and host immune response. The association between T cells and H. pylori infection has been identified, but the effects of the nine major H. pylori specific virulence factors; cagA, vacA, oipA, babA, hpaA, napA, dupA, ureA, ureB on T cell response in H. pylori infected patients have not been fully elucidated. We developed a multiplex- PCR assay to detect nine H. pylori virulence genes with in a three PCR reactions. Also, the expression levels of Th1, Th17 and Treg cell specific cytokines and transcription factors were detected by using qRT-PCR assays. Furthermore, a novel expert derived model is developed to identify set of factors and rules that can distinguish the ulcer patients from gastritis patients. Within all virulence factors that we tested, we identified a correlation between the presence of napA virulence gene and ulcer disease as a first data. Additionally, a positive correlation between the H. pylori dupA virulence factor and IFN-γ, and H. pylori babA virulence factor and IL-17 was detected in gastritis and ulcer patients respectively. By using computer-based models, clinical outcomes of a patients infected with H. pylori can be predicted by screening the patient's H. pylori vacA m1/m2, ureA and cagA status and IFN-γ (Th1), IL-17 (Th17), and FOXP3 (Treg) expression levels. Herein, we report, for the first time, the relationship between H. pylori virulence factors and host immune responses for diagnostic prediction of gastric diseases using computer-based models.
Directory of Open Access Journals (Sweden)
Sajjad Emami
2013-06-01
Full Text Available In this study, maintaining a constant fuel rate, injection pressure of 275 bar to 1000 bar (275×102 kPa to 1000×102 kPa, has been changed. Effect of injection pressure, the pressure inside the cylinder on the free energy, power, engine indicators, particularly indicators of fuel consumption, pollutants and their effects on parameters affecting the output of the engine combustion chamber have been studied in droplet diameter. Finally, the effects of fuel mixture equivalence, Cantor temperature, soot and NOx due to the increase of injection pressure, engine efficiency and emissions have been examined.
Energy Technology Data Exchange (ETDEWEB)
Ma, Fanhua; Wang, Mingyue; Jiang, Long; Chen, Renzhe; Deng, Jiao; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy Tsinghua University, Beijing 100084 (China)
2010-06-15
This paper investigates the effect of high hydrogen volumetric ratio of 55% on performance and emission characteristics in a turbocharged lean burn natural gas engine. The experimental data was conducted under various operating conditions including different spark timing, excess air ratio (lambda), and manifold pressure. It is found that the addition of hydrogen at a high volumetric ratio could significantly extend the lean burn limit, improve the engine lean burn ability, decrease burn duration, and yield higher thermal efficiency. The CO, CH{sub 4} emissions were reduced and NO{sub x} emission could be kept an acceptable low level with high hydrogen content under lean burn conditions when ignition timing were optimized. (author)
Energy Technology Data Exchange (ETDEWEB)
Schopp, Johann; Duengen, Rainer; Fach, Heiko [BMW Group, Muenchen (Germany); Schuenemann, Erik
2013-01-15
In July 2012, BMW has launched its new V8 gasoline engine with so-called TwinPower Turbo technology, including turbocharging, direct injection and fully variable valve gear Valvetronic. The main objectives were to achieve a significant reduction in fuel consumption and a moderate increase in power output, to derive a 4.0-l engine-capacity version, as well as to ensure high process commonality with the new BMW M5 engine simultaneously developed by BMW M GmbH which uses a virtually identical basic engine. It was first deployed simultaneously in the new 6 Series Gran Coupe, the 5 Series Gran Turismo, the 6 Series and the revised 7 Series. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kaiser, R.; Olesen, M. [Zeuna Staerker GmbH und Co. KG (Germany)
2002-06-01
Under the pressure of ever shorter development times and high demands on exhaust systems in terms of exhaust counterpressure, acoustic and sensory aspects and exhaust purification, Zeuna Staerker started at an early stage to use advanced CFD methods in their product development process. The contribution investigates the effects of simplified assumptions of boundary conditions, using laser optical flow measurements on a turbocharger with a catalyst near the engine. [German] Immer kuerzer werdende Entwicklungszeiten und die hohen Anforderungen an Abgasanlagen hinsichtlich Abgasgegendruck, Akustik, Sensorik und Abgasreinigung fuehrten bei Zeuna Staerker schon fruehzeitig zur Etablierung ausgereifter CFD-Methoden im Produktentwicklungsprozess. Doch wie stark werden CFD-Berechnungen durch die aufgepraegten Randbedingungen beeinflusst, wenn diese nach Abgasturbolader oft vereinfacht angenommen werden muessen? Mit Hilfe laseroptischer Stroemungsmessungen an einem Abgasturbolader mit motornahem Katalysator wird dieser Frage nachgegangen. (orig.)
Rosati, Dora P.; Molina, Chai; Earn, David J. D.
2015-12-01
Human behaviour and disease dynamics can greatly influence each other. In particular, people often engage in self-protective behaviours that affect epidemic patterns (e.g., vaccination, use of barrier precautions, isolation, etc.). Self-protective measures usually have a mitigating effect on an epidemic [16], but can in principle have negative impacts at the population level [12,15,18]. The structure of underlying social and biological contact networks can significantly influence the specific ways in which population-level effects are manifested. Using a different contact network in a disease dynamics model-keeping all else equal-can yield very different epidemic patterns. For example, it has been shown that when individuals imitate their neighbours' vaccination decisions with some probability, this can lead to herd immunity in some networks [9], yet for other networks it can preserve clusters of susceptible individuals that can drive further outbreaks of infectious disease [12].
DEFF Research Database (Denmark)
Poulsen, Christian B; Pedrigi, Ryan M; Pareek, Nilesh
2018-01-01
AIMS: In-vivo validation of coronary optical coherence tomography (OCT) against histology and the effects of plaque burden (PB) on plaque classification remain unreported. We investigated this in a porcine model with human-like coronary atherosclerosis. METHODS AND RESULTS: Five female Yucatan D374...... a validated algorithm. Lesions were adjudicated using the Virmani classification and PB assessed from histology. OCT had a high sensitivity, but modest specificity (92.9% and 74.6%), for identifying fibrous cap atheroma (FCA). The reduced specificity for OCT was due to misclassification of plaques...... with histologically defined pathological intimal thickening (PIT) as FCA (46.1% of the frames with histological PIT were misclassified). PIT lesions misclassified as FCA by OCT had a statistically higher PB than in other OCT frames (median 32.0% versus 13.4%; p
Directory of Open Access Journals (Sweden)
Vaisman Iosif I
2010-10-01
Full Text Available Abstract Background HIV-1 targets human cells expressing both the CD4 receptor, which binds the viral envelope glycoprotein gp120, as well as either the CCR5 (R5 or CXCR4 (X4 co-receptors, which interact primarily with the third hypervariable loop (V3 loop of gp120. Determination of HIV-1 affinity for either the R5 or X4 co-receptor on host cells facilitates the inclusion of co-receptor antagonists as a part of patient treatment strategies. A dataset of 1193 distinct gp120 V3 loop peptide sequences (989 R5-utilizing, 204 X4-capable is utilized to train predictive classifiers based on implementations of random forest, support vector machine, boosted decision tree, and neural network machine learning algorithms. An in silico mutagenesis procedure employing multibody statistical potentials, computational geometry, and threading of variant V3 sequences onto an experimental structure, is used to generate a feature vector representation for each variant whose components measure environmental perturbations at corresponding structural positions. Results Classifier performance is evaluated based on stratified 10-fold cross-validation, stratified dataset splits (2/3 training, 1/3 validation, and leave-one-out cross-validation. Best reported values of sensitivity (85%, specificity (100%, and precision (98% for predicting X4-capable HIV-1 virus, overall accuracy (97%, Matthew's correlation coefficient (89%, balanced error rate (0.08, and ROC area (0.97 all reach critical thresholds, suggesting that the models outperform six other state-of-the-art methods and come closer to competing with phenotype assays. Conclusions The trained classifiers provide instantaneous and reliable predictions regarding HIV-1 co-receptor usage, requiring only translated V3 loop genotypes as input. Furthermore, the novelty of these computational mutagenesis based predictor attributes distinguishes the models as orthogonal and complementary to previous methods that utilize sequence
May, M. J.; Beiersdorfer, P.; Dunn, J.; Jordan, N.; Hansen, S. B.; Osterheld, A. L.; Faenov, A. Ya.; Pikuz, T. A.; Skobelev, I. Yu.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Murra, D.; Reale, A.; Reale, L.; Tomassetti, G.; Ritucci, A.; Francucci, M.; Martellucci, S.; Petrocelli, G.
2005-06-01
Iron spectra have been recorded from plasmas created at three different laser plasma facilities: the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET) laser at LLNL in California (USA). The measurements provide a means of identifying dielectronic satellite lines from Fe XVI and Fe XV in the vicinity of the strong 2p-->3d transitions of Fe XVII. About 80 Δn>=1 lines of Fe XV (Mg-like) to Fe XIX (O-like) were recorded between 13.8 and 17.1 Å with a high spectral resolution (λ/Δλ~4000) about 30 of these lines are from Fe XVI and Fe XV. The laser-produced plasmas had electron temperatures between 100 and 500 eV and electron densities between 1020 and 1022 cm-3. The Hebrew University Lawrence Livermore Atomic Code (HULLAC) was used to calculate the atomic structure and atomic rates for Fe XV-XIX. HULLAC was used to calculate synthetic line intensities at Te=200 eV and ne=1021 cm-3 for three different conditions to illustrate the role of opacity: optically thin plasmas with no excitation-autoionization/dielectronic recombination (EA/DR) contributions to the line intensities, optically thin plasmas that included EA/DR contributions to the line intensities, and optically thick plasmas (optical depth ~200 μm) that included EA/DR contributions to the line intensities. The optically thick simulation best reproduced the recorded spectrum from the Hercules laser. However, some discrepancies between the modeling and the recorded spectra remain.
International Nuclear Information System (INIS)
Paglia, Gianluca; Rohl, Andrew L.; Gale, Julian D.; Buckley, Craig E.
2005-01-01
We have performed an extensive computational study of γ-Al 2 O 3 , beginning with the geometric analysis of approximately 1.47 billion spinel-based structural candidates, followed by derivative method energy minimization calculations of approximately 122 000 structures. Optimization of the spinel-based structural models demonstrated that structures exhibiting nonspinel site occupancy after simulation were more energetically favorable, as suggested in other computational studies. More importantly, none of the spinel structures exhibited simulated diffraction patterns that were characteristic of γ-Al 2 O 3 . This suggests that cations of γ-Al 2 O 3 are not exclusively held in spinel positions, that the spinel model of γ-Al 2 O 3 does not accurately reflect its structure, and that a representative structure cannot be achieved from molecular modeling when the spinel representation is used as the starting structure. The latter two of these three findings are extremely important when trying to accurately model the structure. A second set of starting models were generated with a large number of cations occupying c symmetry positions, based on the findings from recent experiments. Optimization of the new c symmetry-based structural models resulted in simulated diffraction patterns that were characteristic of γ-Al 2 O 3 . The modeling, conducted using supercells, yields a more accurate and complete determination of the defect structure of γ-Al 2 O 3 than can be achieved with current experimental techniques. The results show that on average over 40% of the cations in the structure occupy nonspinel positions, and approximately two-thirds of these occupy c symmetry positions. The structures exhibit variable occupancy in the site positions that follow local symmetry exclusion rules. This variation was predominantly represented by a migration of cations away from a symmetry positions to other tetrahedral site positions during optimization which were found not to affect the
Towards accurate emergency response behavior
International Nuclear Information System (INIS)
Sargent, T.O.
1981-01-01
Nuclear reactor operator emergency response behavior has persisted as a training problem through lack of information. The industry needs an accurate definition of operator behavior in adverse stress conditions, and training methods which will produce the desired behavior. Newly assembled information from fifty years of research into human behavior in both high and low stress provides a more accurate definition of appropriate operator response, and supports training methods which will produce the needed control room behavior. The research indicates that operator response in emergencies is divided into two modes, conditioned behavior and knowledge based behavior. Methods which assure accurate conditioned behavior, and provide for the recovery of knowledge based behavior, are described in detail
Fast and accurate methods for phylogenomic analyses
Directory of Open Access Journals (Sweden)
Warnow Tandy
2011-10-01
Full Text Available Abstract Background Species phylogenies are not estimated directly, but rather through phylogenetic analyses of different gene datasets. However, true gene trees can differ from the true species tree (and hence from one another due to biological processes such as horizontal gene transfer, incomplete lineage sorting, and gene duplication and loss, so that no single gene tree is a reliable estimate of the species tree. Several methods have been developed to estimate species trees from estimated gene trees, differing according to the specific algorithmic technique used and the biological model used to explain differences between species and gene trees. Relatively little is known about the relative performance of these methods. Results We report on a study evaluating several different methods for estimating species trees from sequence datasets, simulating sequence evolution under a complex model including indels (insertions and deletions, substitutions, and incomplete lineage sorting. The most important finding of our study is that some fast and simple methods are nearly as accurate as the most accurate methods, which employ sophisticated statistical methods and are computationally quite intensive. We also observe that methods that explicitly consider errors in the estimated gene trees produce more accurate trees than methods that assume the estimated gene trees are correct. Conclusions Our study shows that highly accurate estimations of species trees are achievable, even when gene trees differ from each other and from the species tree, and that these estimations can be obtained using fairly simple and computationally tractable methods.
Accurate modeling of UV written waveguide components
DEFF Research Database (Denmark)
Svalgaard, Mikael
BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....
Accurate modelling of UV written waveguide components
DEFF Research Database (Denmark)
Svalgaard, Mikael
BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....
Caccavale, Justin; Fiumara, David; Stapf, Michael; Sweitzer, Liedeke; Anderson, Hannah J; Gorky, Jonathan; Dhurjati, Prasad; Galileo, Deni S
2017-12-11
Glioblastoma multiforme (GBM) is a devastating brain cancer for which there is no known cure. Its malignancy is due to rapid cell division along with high motility and invasiveness of cells into the brain tissue. Simple 2-dimensional laboratory assays (e.g., a scratch assay) commonly are used to measure the effects of various experimental perturbations, such as treatment with chemical inhibitors. Several mathematical models have been developed to aid the understanding of the motile behavior and proliferation of GBM cells. However, many are mathematically complicated, look at multiple interdependent phenomena, and/or use modeling software not freely available to the research community. These attributes make the adoption of models and simulations of even simple 2-dimensional cell behavior an uncommon practice by cancer cell biologists. Herein, we developed an accurate, yet simple, rule-based modeling framework to describe the in vitro behavior of GBM cells that are stimulated by the L1CAM protein using freely available NetLogo software. In our model L1CAM is released by cells to act through two cell surface receptors and a point of signaling convergence to increase cell motility and proliferation. A simple graphical interface is provided so that changes can be made easily to several parameters controlling cell behavior, and behavior of the cells is viewed both pictorially and with dedicated graphs. We fully describe the hierarchical rule-based modeling framework, show simulation results under several settings, describe the accuracy compared to experimental data, and discuss the potential usefulness for predicting future experimental outcomes and for use as a teaching tool for cell biology students. It is concluded that this simple modeling framework and its simulations accurately reflect much of the GBM cell motility behavior observed experimentally in vitro in the laboratory. Our framework can be modified easily to suit the needs of investigators interested in other
Energy Technology Data Exchange (ETDEWEB)
Tinschmann, Georg; Holand, Peter; Benetschik, Hannes [MAN Diesel SE, Augsburg (Germany); Eilts, Peter [Technische Univ. Braunschweig (Germany). Inst. fuer Verbrennungskraftmaschinen
2008-10-15
Under the auspices of the European Hercules research programme development work was undertaken on a large, type 6L 32/44 CR diesel engine from MAN Diesel SE to equip it with a flexible two-stage turbocharging system and variable valve timing. The purpose of the investigations was to achieve a drastic reduction in emissions of oxides of nitrogen without incurring fuel consumption penalties and while also attaining a significant increase in power output. (orig.)
Arockia Bazil Raj, A.; Padmavathi, S.
2016-07-01
Atmospheric parameters strongly affect the performance of Free Space Optical Communication (FSOC) system when the optical wave is propagating through the inhomogeneous turbulent medium. Developing a model to get an accurate prediction of optical attenuation according to meteorological parameters becomes significant to understand the behaviour of FSOC channel during different seasons. A dedicated free space optical link experimental set-up is developed for the range of 0.5 km at an altitude of 15.25 m. The diurnal profile of received power and corresponding meteorological parameters are continuously measured using the developed optoelectronic assembly and weather station, respectively, and stored in a data logging computer. Measured meteorological parameters (as input factors) and optical attenuation (as response factor) of size [177147 × 4] are used for linear regression analysis and to design the mathematical model that is more suitable to predict the atmospheric optical attenuation at our test field. A model that exhibits the R2 value of 98.76% and average percentage deviation of 1.59% is considered for practical implementation. The prediction accuracy of the proposed model is investigated along with the comparative results obtained from some of the existing models in terms of Root Mean Square Error (RMSE) during different local seasons in one-year period. The average RMSE value of 0.043-dB/km is obtained in the longer range dynamic of meteorological parameters variations.
When Is Network Lasso Accurate?
Directory of Open Access Journals (Sweden)
Alexander Jung
2018-01-01
Full Text Available The “least absolute shrinkage and selection operator” (Lasso method has been adapted recently for network-structured datasets. In particular, this network Lasso method allows to learn graph signals from a small number of noisy signal samples by using the total variation of a graph signal for regularization. While efficient and scalable implementations of the network Lasso are available, only little is known about the conditions on the underlying network structure which ensure network Lasso to be accurate. By leveraging concepts of compressed sensing, we address this gap and derive precise conditions on the underlying network topology and sampling set which guarantee the network Lasso for a particular loss function to deliver an accurate estimate of the entire underlying graph signal. We also quantify the error incurred by network Lasso in terms of two constants which reflect the connectivity of the sampled nodes.
The Accurate Particle Tracer Code
Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi
2016-01-01
The Accurate Particle Tracer (APT) code is designed for large-scale particle simulations on dynamical systems. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and non-linear problems. Under the well-designed integrated and modularized framework, APT serves as a universal platform for researchers from different fields, such as plasma physics, accelerator physics, space science, fusio...
International Nuclear Information System (INIS)
Deslattes, R.D.
1987-01-01
Heavy ion accelerators are the most flexible and readily accessible sources of highly charged ions. These having only one or two remaining electrons have spectra whose accurate measurement is of considerable theoretical significance. Certain features of ion production by accelerators tend to limit the accuracy which can be realized in measurement of these spectra. This report aims to provide background about spectroscopic limitations and discuss how accelerator operations may be selected to permit attaining intrinsically limited data
Accurate determination of antenna directivity
DEFF Research Database (Denmark)
Dich, Mikael
1997-01-01
The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...
Energy Technology Data Exchange (ETDEWEB)
Steinparzer, Fritz; Klueting, Manfred; Poggel, Juergen [BMW Group, Muenchen (Germany)
2012-11-01
The supercharged 4.4 l V8 turbo engine launched on the market as a completely new design in 2008 represents an important cornerstone in the high-end product portfolio offered by BMW. This engine has undergone a fundamental revision in response to the more exacting requirements for reducing fuel consumption, improving stationary and dynamic performance and establishing the preconditions for compliance with the next, tighter round of global exhaust legislation levels. Furthermore, it was necessary to expand the application portfolio to the new BMW M5 as well. The mechanism of the engine, the combustion process and the supercharging were developed further in a consistent way on the basis of the tried-and-tested fundamental concept of the 90 V8 power plant. With the integration of BMW VALVETRONIC, the engine now possesses the globally unique combination of direct injection, exhaust turbocharging and fully variable injection intake valve timing which is already used in BMW in-line engines. In the new M5, the new engine achieves a nominal power of 412 kW, a max. torque of 680 Nm and maximum revs of 7200 rpm with a standard consumption of only 9.9 l/100 km. As a result, it sustainably underlines the BMW strategy of EfficientDynamics in the top-category vehicle segment as well. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ma, Fanhua; Wang, Mingyue; Jiang, Long; Deng, Jiao; Chen, Renzhe; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)
2010-11-15
This paper investigates the effect of various hydrogen ratios in HCNG (hydrogen-enriched compressed natural gas) fuels on performance and emission characteristics at wide open throttle operating conditions using a turbocharged spark-ignition natural gas engine. The experimental data was taken at hydrogen fractions of 0%, 30% and 55% by volume and was conducted under different excess air ratio ({lambda}) at MBT operating conditions. It is found that under various {lambda}, the addition of hydrogen can significantly reduce CO, CH{sub 4} emissions and the NO{sub x} emission remain at an acceptable level when ignition timing is optimized. Using the same excess air ratio, as more hydrogen is added the power, exhaust temperatures and max cylinder pressure decrease slowly until the mixture's lower heating value remains unchanged with the hydrogen enrichment, then they rise gradually. In addition, the early flame development period and the flame propagation duration are both shorter, and the indicated thermal efficiency and maximum heat release rate both increase with more hydrogen addition. (author)
Zheng, Xinqian; Zhang, Yangjun; Yang, Mingyang; Bamba, Takahiro; Tamaki, Hideaki
2013-03-01
This is part II of a two-part paper involving the development of an asymmetrical flow control method to widen the operating range of a turbocharger centrifugal compressor with high-pressure ratio. A nonaxisymmetrical self-recirculation casing treatment (SRCT) as an instance of asymmetrical flow control method is presented. Experimental and numerical methods were used to investigate the impact of nonaxisymmetrical SRCT on the surge point of the centrifugal compressor. First, the influence of the geometry of a symmetric SRCT on the compressor performance was studied by means of numerical simulation. The key parameter of the SRCT was found to be the distance from the main blade leading edge to the rear groove (S r ). Next, several arrangements of a nonaxisymmetrical SRCT were designed, based on flow analysis presented in part I. Then, a series of experiments were carried out to analyze the influence of nonaxisymmetrical SRCT on the compressor performance. Results show that the nonaxisymmetrical SRCT has a certain influence on the performance and has a larger potential for stability improvement than the traditional symmetric SRCT. For the investigated SRCT, the surge flow rate of the compressor with the nonaxisymmetrical SRCTs is about 10% lower than that of the compressor with symmetric SRCT. The largest surge margin (smallest surge flow rate) can be obtained when the phase of the largest S r is coincident with the phase of the minimum static pressure in the vicinity of the leading edge of the splitter blades.
Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang
2013-03-01
This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.
Accurate thickness measurement of graphene
International Nuclear Information System (INIS)
Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T
2016-01-01
Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)
Rey, Michaël; Nikitin, Andrei V.; Bézard, Bruno; Rannou, Pascal; Coustenis, Athena; Tyuterev, Vladimir G.
2018-03-01
The spectrum of methane is very important for the analysis and modeling of Titan's atmosphere but its insufficient knowledge in the near infrared, with the absence of reliable absorption coefficients, is an important limitation. In order to help the astronomer community for analyzing high-quality spectra, we report in the present work the first accurate theoretical methane line lists (T = 50-350 K) of 12CH4 and 13CH4 up to 13400 cm-1 ( > 0.75 μm). These lists are built from extensive variational calculations using our recent ab initio potential and dipole moment surfaces and will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru). Validation of these lists is presented throughout the present paper. For the sample of lines where upper energies were available from published analyses of experimental laboratory 12CH4 spectra, small empirical corrections in positions were introduced that could be useful for future high-resolution applications. We finally apply the TheoRetS line list to model Titan spectra as observed by VIMS and by DISR, respectively onboard Cassini and Huygens. These data are used to check that the TheoReTS line lists are able to model observations. We also make comparisons with other experimental or theoretical line lists. It appears that TheoRetS gives very reliable results better than ExoMol and even than HITRAN2012, except around 1.6 μm where it gives very similar results. We conclude that TheoReTS is suitable to be used for the modeling of planetary radiative transfer and photometry. A re-analysis of spectra recorded by the DISR instrument during the descent of the Huygens probe suggests that the CH4 mixing ratio decreases with altitude in Titan's stratosphere, reaching a value of ∼10-2 above the 110 km altitude.
How Accurately can we Calculate Thermal Systems?
International Nuclear Information System (INIS)
Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A
2004-01-01
I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K eff , for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors
Accurate control testing for clay liner permeability
Energy Technology Data Exchange (ETDEWEB)
Mitchell, R J
1991-08-01
Two series of centrifuge tests were carried out to evaluate the use of centrifuge modelling as a method of accurate control testing of clay liner permeability. The first series used a large 3 m radius geotechnical centrifuge and the second series a small 0.5 m radius machine built specifically for research on clay liners. Two permeability cells were fabricated in order to provide direct data comparisons between the two methods of permeability testing. In both cases, the centrifuge method proved to be effective and efficient, and was found to be free of both the technical difficulties and leakage risks normally associated with laboratory permeability testing of fine grained soils. Two materials were tested, a consolidated kaolin clay having an average permeability coefficient of 1.2{times}10{sup -9} m/s and a compacted illite clay having a permeability coefficient of 2.0{times}10{sup -11} m/s. Four additional tests were carried out to demonstrate that the 0.5 m radius centrifuge could be used for linear performance modelling to evaluate factors such as volumetric water content, compaction method and density, leachate compatibility and other construction effects on liner leakage. The main advantages of centrifuge testing of clay liners are rapid and accurate evaluation of hydraulic properties and realistic stress modelling for performance evaluations. 8 refs., 12 figs., 7 tabs.
The accurate particle tracer code
Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi; Yao, Yicun
2017-11-01
The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runaway electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world's fastest computer, the Sunway TaihuLight supercomputer, by supporting master-slave architecture of Sunway many-core processors. Based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.
Bouwma-Gearhart, Jana; Stewart, James; Brown, Keffrelyn
2009-01-01
Understanding the particulate nature of matter (PNM) is vital for participating in many areas of science. We assessed 11 students' atomic/molecular-level explanations of real-world phenomena after their participation in a modelling-based PNM unit. All 11 students offered a scientifically acceptable model regarding atomic/molecular behaviour in…
Hu, Lianrui; Chen, Kejuan; Chen, Hui
2017-10-10
Accurate modelings of reactions involving 3d transition metals (TMs) are very challenging to both ab initio and DFT approaches. To gain more knowledge in this field, we herein explored typical σ-bond activations of H-H, C-H, C-Cl, and C-C bonds promoted by nickel(0), a low-valent late 3d TM. For the key parameters of activation energy (ΔE ‡ ) and reaction energy (ΔE R ) for these reactions, various issues related to the computational accuracy were systematically investigated. From the scrutiny of convergence issue with one-electron basis set, augmented (A) basis functions are found to be important, and the CCSD(T)/CBS level with complete basis set (CBS) limit extrapolation based on augmented double-ζ and triple-ζ basis pair (ADZ and ATZ), which produces deviations below 1 kcal/mol from the reference, is recommended for larger systems. As an alternative, the explicitly correlated F12 method can accelerate the basis set convergence further, especially after its CBS extrapolations. Thus, the CCSD(T)-F12/CBS(ADZ-ATZ) level with computational cost comparable to the conventional CCSD(T)/CBS(ADZ-ATZ) level, is found to reach the accuracy of the conventional CCSD(T)/A5Z level, which produces deviations below 0.5 kcal/mol from the reference, and is also highly recommendable. Scalar relativistic effects and 3s3p core-valence correlation are non-negligible for achieving chemical accuracy of around 1 kcal/mol. From the scrutiny of convergence issue with the N-electron basis set, in comparison with the reference CCSDTQ result, CCSD(T) is found to be able to calculate ΔE ‡ quite accurately, which is not true for the ΔE R calculations. Using highest-level CCSD(T) results of ΔE ‡ in this work as references, we tested 18 DFT methods and found that PBE0 and CAM-B3LYP are among the three best performing functionals, irrespective of DFT empirical dispersion correction. With empirical dispersion correction included, ωB97XD is also recommendable due to its improved
International Nuclear Information System (INIS)
Ghazikhani, M.; Davarpanah, M.; Shaegh, S.A. Mousavi
2008-01-01
This experimental study was conducted to investigate the effects of different opening ranges of waste-gate of a turbo-charged DI diesel engine on improving the exhaust soot emission. Different opening ranges of waste-gate were supplied using an adjustable spring to load the actuating rod of the waste-gate in which, increasing the opening range of the waste-gate decreases the inlet manifold pressure. In this study, the maximum inlet manifold pressures which were supplied by changing the opening range of waste-gate were 0.1 bar, 0.23 bar, 0.26 bar and 0.52 bar over atmosphere and experiments were conducted under the ECE-R49, 13 mode standard test. At each mode of the test, soot emission was recorded and then brake specific soot emission was calculated. Results indicate that, soot emission decreases with increasing the maximum inlet manifold pressure from 0.1 bar to 0.23 bar. This reduction may be due to increasing the intake-air temperature which results in reduction of ignition delay that prolongs the late combustion phase. This improves the soot burnout process because enough time and sufficient in-cylinder temperature are available at the late combustion phase prior to exhaust valve opening. While for the higher maximum inlet manifold pressures from 0.23 bar to 0.52 bar, although there are enough time at the late combustion phase, but the soot emission increases which could be due to more reduction of the in-cylinder gas temperature at the end of combustion before EVO
Directory of Open Access Journals (Sweden)
Denna Michael
2014-01-01
Full Text Available Introduction: Spectrum epidemiological models are used by UNAIDS to provide global, regional and national HIV estimates and projections, which are then used for evidence-based health planning for HIV services. However, there are no validations of the Spectrum model against empirical serological and mortality data from populations in sub-Saharan Africa. Methods: Serologic, demographic and verbal autopsy data have been regularly collected among over 30,000 residents in north-western Tanzania since 1994. Five-year age-specific mortality rates (ASMRs per 1,000 person years and the probability of dying between 15 and 60 years of age (45Q15, were calculated and compared with the Spectrum model outputs. Mortality trends by HIV status are shown for periods before the introduction of antiretroviral therapy (1994–1999, 2000–2005 and the first 5 years afterwards (2005–2009. Results: Among 30–34 year olds of both sexes, observed ASMRs per 1,000 person years were 13.33 (95% CI: 10.75–16.52 in the period 1994–1999, 11.03 (95% CI: 8.84–13.77 in 2000–2004, and 6.22 (95% CI; 4.75–8.15 in 2005–2009. Among the same age group, the ASMRs estimated by the Spectrum model were 10.55, 11.13 and 8.15 for the periods 1994–1999, 2000–2004 and 2005–2009, respectively. The cohort data, for both sexes combined, showed that the 45Q15 declined from 39% (95% CI: 27–55% in 1994 to 22% (95% CI: 17–29% in 2009, whereas the Spectrum model predicted a decline from 43% in 1994 to 37% in 2009. Conclusion: From 1994 to 2009, the observed decrease in ASMRs was steeper in younger age groups than that predicted by the Spectrum model, perhaps because the Spectrum model under-estimated the ASMRs in 30–34 year olds in 1994–99. However, the Spectrum model predicted a greater decrease in 45Q15 mortality than observed in the cohort, although the reasons for this over-estimate are unclear.
An accurate nonlinear Monte Carlo collision operator
International Nuclear Information System (INIS)
Wang, W.X.; Okamoto, M.; Nakajima, N.; Murakami, S.
1995-03-01
A three dimensional nonlinear Monte Carlo collision model is developed based on Coulomb binary collisions with the emphasis both on the accuracy and implementation efficiency. The operator of simple form fulfills particle number, momentum and energy conservation laws, and is equivalent to exact Fokker-Planck operator by correctly reproducing the friction coefficient and diffusion tensor, in addition, can effectively assure small-angle collisions with a binary scattering angle distributed in a limited range near zero. Two highly vectorizable algorithms are designed for its fast implementation. Various test simulations regarding relaxation processes, electrical conductivity, etc. are carried out in velocity space. The test results, which is in good agreement with theory, and timing results on vector computers show that it is practically applicable. The operator may be used for accurately simulating collisional transport problems in magnetized and unmagnetized plasmas. (author)
Energy Technology Data Exchange (ETDEWEB)
Venson, Giuliano Gardolinski [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], e-mail: venson@ufmg.br; Barros, Jose Eduardo Mautone; Pereira, Josemar Figueiredo [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)], e-mail: mautone@des.cefetmg.br, e-mail: josemar_cefet@yahoo.com.br
2006-07-01
This work presents the modeling of a gas microturbine power generator. The microturbine consists in a small thermo-electrical power unit, design for combined heat and power generation. The unit has an electric generator, coaxially connected with a turbocharger, which one is driven by a fuel burner. The system also incorporates an air regenerator, used for pre-heat the combustion air, and a heat exchanger, used for water heating. The objective of the modeling is the attainment of the electrical performance and the operational limits for the microturbine in function of the subsystems operational conditions. The modeling is based on the first law of the thermodynamic, using specific models for each component. In the combustion chamber is used a model that takes the fuel injection properties, as absolute pressure and temperature. A semi-empirical model, based in the modified Euler equation, is used in the turbocharger. In the air regenerator and heat exchanger, the method of mean logarithmic temperature difference is used. Through the modeling of a commercial microturbine, reference values obtained were used in some subsystems of a new microturbine. The results for this new microturbine in development, based in automotive turbochargers, indicate a nominal electrical power of 38 kW with electrical efficiency of 33% and global efficiency of 73%. (author)
Geodetic analysis of disputed accurate qibla direction
Saksono, Tono; Fulazzaky, Mohamad Ali; Sari, Zamah
2018-04-01
Muslims perform the prayers facing towards the correct qibla direction would be the only one of the practical issues in linking theoretical studies with practice. The concept of facing towards the Kaaba in Mecca during the prayers has long been the source of controversy among the muslim communities to not only in poor and developing countries but also in developed countries. The aims of this study were to analyse the geodetic azimuths of qibla calculated using three different models of the Earth. The use of ellipsoidal model of the Earth could be the best method for determining the accurate direction of Kaaba from anywhere on the Earth's surface. A muslim cannot direct himself towards the qibla correctly if he cannot see the Kaaba due to setting out process and certain motions during the prayer this can significantly shift the qibla direction from the actual position of the Kaaba. The requirement of muslim prayed facing towards the Kaaba is more as spiritual prerequisite rather than physical evidence.
Luján, José M.; Galindo, José; Serrano, José R.; Pla, Benjamín
2008-06-01
Exhaust gas recirculation (EGR) is currently the most important NOx emission control system. During the last few years the EGR rate has increased progressively as pollutant emission regulations have become more restrictive. High EGR rate levels have given the effect of the unsuitable EGR and air distribution between cylinders away, which causes undesirable engine behavior. In this sense, the study of the EGR distribution between cylinders achieves high importance. However, despite the fact that the EGR is continuously under study, not many studies have been undertaken to approach its distribution between cylinders. In concordance with the aspects outlined before, the aim of this paper is to propose a methodology that permits us to identify the EGR cylinder-to-cylinder dispersion in a commercial engine. In order to achieve this objective, experimental tests have been combined with both one-dimensional and three-dimensional fluid dynamic models.
A stiffly accurate integrator for elastodynamic problems
Michels, Dominik L.
2017-07-21
We present a new integration algorithm for the accurate and efficient solution of stiff elastodynamic problems governed by the second-order ordinary differential equations of structural mechanics. Current methods have the shortcoming that their performance is highly dependent on the numerical stiffness of the underlying system that often leads to unrealistic behavior or a significant loss of efficiency. To overcome these limitations, we present a new integration method which is based on a mathematical reformulation of the underlying differential equations, an exponential treatment of the full nonlinear forcing operator as opposed to more standard partially implicit or exponential approaches, and the utilization of the concept of stiff accuracy which ensures that the efficiency of the simulations is significantly less sensitive to increased stiffness. As a consequence, we are able to tremendously accelerate the simulation of stiff systems compared to established integrators and significantly increase the overall accuracy. The advantageous behavior of this approach is demonstrated on a broad spectrum of complex examples like deformable bodies, textiles, bristles, and human hair. Our easily parallelizable integrator enables more complex and realistic models to be explored in visual computing without compromising efficiency.
Accurately Detecting Students' Lies regarding Relational Aggression by Correctional Instructions
Dickhauser, Oliver; Reinhard, Marc-Andre; Marksteiner, Tamara
2012-01-01
This study investigates the effect of correctional instructions when detecting lies about relational aggression. Based on models from the field of social psychology, we predict that correctional instruction will lead to a less pronounced lie bias and to more accurate lie detection. Seventy-five teachers received videotapes of students' true denial…