Sample records for accurate sr isotope

  1. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas


    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  2. Genesis of Sr Isotopes in Groundwater of Hebei Plain


    To analyze the genesis of Sr isotopes in groundwater of Hebei plain, time-accumulative effect of 87Sr/86Sr ratio was studied. It is shown that 87Sr/86Sr ratio increases with the increasing age and depth of groundwater and has a positive correlation to 4Heexc and a negative correlation to δ18O and δD.The groundwater is divided into three groups to discuss the relation between 87Sr/86Sr ratio and Sr2+ content: ① moderate Sr2+ content and higher 87Sr/86Sr ratio (water Ⅰ); ② lower Sr2+ content and higher 87Sr/86Sr ratio (water Ⅱ); and ③ higher Sr2+ content and lower 87Sr/86Sr ratio (water Ⅲ), that is hot water. On the basis of integrated analysis, it was considered that ① the radiogenic Sr in the Quaternary groundwater (Q4-Q1) originates from weathering of silicate rich in Na and Rb, mainly from plagioclase; ② the radiogenic Sr of hot water in Huanghua port is attributed to carbonate dissolution, with lower 87Sr/86Sr ratio and higher Sr/Na ratio; ③ the recharge area is laterally recharged by the groundwater flowing through igneous and metamorphic rocks, with moderate 87Sr/86Sr ratio. However, the formation mechanism of Sr isotopes in Tertiary groundwater needs further studies.

  3. Estimating the distribution of strontium isotope ratios (87Sr/86Sr in the Precambrian of Finland

    Lars Kaislaniemi


    Full Text Available A method to estimate the 87Sr/86Sr ratio of a rock based on its age and Rb/Sr ratio is presented. This method, together with data from the Rock Geochemical Database of Finland (n=6544 is used to estimate the 87Sr/86Sr ratios in the Precambrian of Finland and in its different major units. A generalization to cover the whole area of Finland is achieved by smoothing of estimation points. The estimation method is evaluated by comparing its results to published Rb-Sr isotope analyses (n=138 obtained on the Finnish Precambrian. The results show correspondence to different geological units of Finland,but no systematic difference between Archaean and younger areas is evident. Evaluation of the method shows that most of the estimates are reliable and accurate to be used as background material for provenance studies in archaeology, paleontology and sedimentology. However, some granitic rocks may have large (>1.0 % relative errors.Strontium concentration weighted average of the estimates differs only by 0.001 from the average 87Sr/86Sr ratio (0.730 of the rivers on the Fennoscandian shield.

  4. Shape coexistence in neutron-rich Sr isotopes : Coulomb excitation of 98Sr

    Clément, E; Görgen, A.; Korten, W.; Walle J. van de, [No Value


    In this addendum we ask for beam time to perform Coulomb excitation of 98Sr in order to complete our program on the study of shape coexistence and evolution of collectivity in neutron rich strontium isotopes at N=60.

  5. Origins of invasive piscivores determined from the strontium isotope ratio (87Sr/86Sr) of otoliths

    Wolff, Brian A.; Johnson, Brett M.; Breton, Andre R.; Martinez, Patrick J.; Winkelman, Dana L.; Gillanders, Bronwyn


    We examined strontium isotope ratios (87Sr/86Sr) in fish otoliths to determine the origins of invasive piscivores in the Upper Colorado River Basin (UCRB, western USA). We examined 87Sr/86Sr from fishes in different reservoirs, as well as the temporal stability and interspecies variability of 87Sr/86Sr of fishes within reservoirs, determined if 87Sr/86Sr would be useful for "fingerprinting" reservoirs where invasive piscivores may have been escaping into riverine habitat of endangered fishes in the UCRB, and looked for evidence that such movement was occurring. Our results showed that in most cases 87Sr/86Sr was unique among reservoirs, overlapped among species in a given reservoir, and was temporally stable across years. We identified the likely reservoir of origin of river-caught fish in some cases, and we were also able to determine the year of possible escapement. The approach allowed us to precisely describe the 87Sr/86Sr fingerprint of reservoir fishes, trace likely origins of immigrant river fish, and exclude potential sources, enabling managers to focus control efforts more efficiently. Our results demonstrate the potential utility of 87Sr/86Sr as a site-specific and temporally stable marker for reservoir fish and its promise for tracking fish movements of invasive fishes in river-reservoir systems.

  6. Fertilizer characterization: isotopic data (N, S, O, C, and Sr).

    Vitòria, Laura; Otero, Neus; Soler, Albert; Canals, Angels


    A detailed isotopic characterization (delta15N(Ntotal), delta15N(NO3), delta18O(NO3), delta34S(SO4), delta18O(SO4), (delta13C(Ctotal), and 87Sr/86Sr) of 27 commercial fertilizers used in Spain is presented in this paper. Results together with a compilation of fertilizer isotopic published data are used for two purposes: (i) to identify the origin of the primary constituents and raw materials used in fertilizer manufacture and relate these data with their heavy metals and rare earth elements (REE) contents; (ii) to compare the fertilizer isotopic signatures with natural values and other anthropogenic pollutants and evaluate the usefulness of multi-isotopic analyses to trace fertilizer contaminations in future study cases. Isotope data permit us to know, in most cases, the origin of the primary constituents of fertilizers, and the 87Sr/86Sr ratio distinguishes the origin of the phosphate content--phosphorites or carbonatites--which in turn implies a qualitatively defined and potentially contaminant presence of REE and heavy metals in fertilizers. Delta15N, delta34S, and 87Sr/86Sr have already been used to trace fertilizer contaminations. Their utility can be improved by the coupled use of delta15N(NO3)-delta18O(NO3) and delta34S(SO4)-delta18O(SO4) to evaluate the fractionation processes that can affect contaminants. Moreover, multi-isotopic analyses, using heavy isotopes, allow us to see beyond the fractionation effects to the fertilizer stable isotope signatures and a better distinction from other anthropogenic contaminants.

  7. Effect of Wood Aging on Wine Mineral Composition and (87)Sr/(86)Sr Isotopic Ratio.

    Kaya, Ayse D; Bruno de Sousa, Raúl; Curvelo-Garcia, António S; Ricardo-da-Silva, Jorge M; Catarino, Sofia


    The evolution of mineral composition and wine strontium isotopic ratio (87)Sr/(86)Sr (Sr IR) during wood aging were investigated. A red wine was aged in stainless steel tanks with French oak staves (Quercus sessiliflora Salisb.), with three industrial scale replicates. Sampling was carried out after 30, 60, and 90 days of aging, and the wines were evaluated in terms of general analysis, phenolic composition, total polysaccharides, multielement composition, and Sr IR. Li, Be, Mg, Al, Sc, Ti, V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Mo, Sb, Cs, Ba, Pr, Nd, Sm, Eu, Dy, Ho, Er, Yb, Lu, Tl, and Pb elements and (87)Sr/(86)Sr were determined by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and Na, K, Ca, and Fe by flame atomic absorption spectrometry (FAAS). Two-way ANOVA was applied to assess wood aging and time effect on Sr IR and mineral composition. Wood aging resulted in significantly higher concentrations of Mg, V, Co, Ni, and Sr. At the end of the aging period, wine exhibited statistically identical Sr IR compared to control. Study suggests that wood aging does not affect (87)Sr/(86)Sr, not precluding the use of this parameter for wine traceability purposes.

  8. Investigating human geographic origins using dual-isotope (87Sr/86Sr, δ18O) assignment approaches

    Sonnemann, Till F.; Shafie, Termeh; Hofman, Corinne L.; Brandes, Ulrik; Davies, Gareth R.


    Substantial progress in the application of multiple isotope analyses has greatly improved the ability to identify nonlocal individuals amongst archaeological populations over the past decades. More recently the development of large scale models of spatial isotopic variation (isoscapes) has contributed to improved geographic assignments of human and animal origins. Persistent challenges remain, however, in the accurate identification of individual geographic origins from skeletal isotope data in studies of human (and animal) migration and provenance. In an attempt to develop and test more standardized and quantitative approaches to geographic assignment of individual origins using isotopic data two methods, combining 87Sr/86Sr and δ18O isoscapes, are examined for the Circum-Caribbean region: 1) an Interval approach using a defined range of fixed isotopic variation per location; and 2) a Likelihood assignment approach using univariate and bivariate probability density functions. These two methods are tested with enamel isotope data from a modern sample of known origin from Caracas, Venezuela and further explored with two archaeological samples of unknown origin recovered from Cuba and Trinidad. The results emphasize both the potential and limitation of the different approaches. Validation tests on the known origin sample exclude most areas of the Circum-Caribbean region and correctly highlight Caracas as a possible place of origin with both approaches. The positive validation results clearly demonstrate the overall efficacy of a dual-isotope approach to geoprovenance. The accuracy and precision of geographic assignments may be further improved by better understanding of the relationships between environmental and biological isotope variation; continued development and refinement of relevant isoscapes; and the eventual incorporation of a broader array of isotope proxy data. PMID:28222163

  9. Sr isotopic constraints on the process of glauconitization

    Clauer, Norbert; Keppens, Eddy; Stille, Peter


    Sr isotopic data of Holocene glauconitic pellets suggest a twofold glauconitization process that is strongly linked to the detrital clay minerals from surrounding mud which act as precursors until the K2O content of the glauconitic material reaches 4%. Above that, a detectable sea-water influence becomes progressively predominant. The process seems to start with a dissolution-crystallization reaction in equilibrium with the precursor, which is followed by a maturation process in isotopic equilibrium with sea-water Sr, while the K2O content increases further. This chemical evolutionary process may also occur for other types of clay minerals.

  10. An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes.

    Durante, Caterina; Baschieri, Carlo; Bertacchini, Lucia; Bertelli, Davide; Cocchi, Marina; Marchetti, Andrea; Manzini, Daniela; Papotti, Giulia; Sighinolfi, Simona


    Geographical origin and authenticity of food are topics of interest for both consumers and producers. Among the different indicators used for traceability studies, (87)Sr/(86)Sr isotopic ratio has provided excellent results. In this study, two analytical approaches for wine sample pre-treatment, microwave and low temperature mineralisation, were investigated to develop accurate and precise analytical method for (87)Sr/(86)Sr determination. The two procedures led to comparable results (paired t-test, with twine sample), processed during each sample batch (calculated Relative Standard Deviation, RSD%, equal to 0.002%. Lambrusco PDO (Protected Designation of Origin) wines coming from four different vintages (2009, 2010, 2011 and 2012) were pre-treated according to the best procedure and their isotopic values were compared with isotopic data coming from (i) soils of their territory of origin and (ii) wines obtained by same grape varieties cultivated in different districts. The obtained results have shown no significant variability among the different vintages of wines and a perfect agreement between the isotopic range of the soils and wines has been observed. Nevertheless, the investigated indicator was not enough powerful to discriminate between similar products. To this regard, it is worth to note that more soil samples as well as wines coming from different districts will be considered to obtain more trustworthy results.

  11. Rb-Sr and Sm-Nd Ages of Zagami DML and SR Isotopic Heterogeneity in Zagami

    Nyquist, L.aurenceE.; Shih, C.-Y.; Reese, Y. D.


    Zagami contains lithologic heterogeneity suggesting that it did not form in a homogeneous, thick lava flow [1]. We have previously investigated the Sr and Nd isotopic systematics of Coarse-Grained (CG) and Fine-Grained (FG) lithologies described by [2]. Both appear to belong to Normal Zagami (NZ) [1,3], but their initial Sr-isotopic compositions differ [4,5]. Here we report new analyses of the Dark Mottled Lithology (DML, [3]) that show its age and initial Sr and Nd isotopic compositions to be identical within error limits with those of CG, but Sr initial isotopic compositions differ from those of FG.

  12. Additional Sr Isotopic Heterogeneity in Zagami Olivine-Rich Lithology

    Misawa, K.; Niihara, T.; Shih, C.-Y; Reese, Y. D.; Nyquist, L. E.; Yoneda, S.; Yamashita, H.


    Prior isotopic analyses of Zagami have established differing initial Sr-87/Sr-86 (ISr) ratios of among Zagami lithologies, fine-grained (FG), coarse-grained (CG), and dark mottled lithologies (DML)]. The Zagami sample (KPM-NLH000057) newly allocated from the Kanagawa Prefectural Museum of Natural History contained DML and the Ol-rich lithology which included more ferroan olivines (Ol-rich: Fa(sub 97- 99) vs late-stage melt pockets: Fa(sub 90-97)]). We have combined mineralogy-petrology and Rb-Sr isotopic studies on the Kanagawa Zagami sample, which will provide additional clues to the genesis of enriched shergottites and to the evolution of Martian crust and mantle

  13. Disturbed Sr and Nd Isotope Systematics in Zircons With Concordant SHRIMP U-Pb Ages

    Weaver, K. L.; Bennett, V. C.; Depaolo, D. J.; Mundil, R.


    Little is known about the Sr- and Nd-isotopic systematics of zircon. With slow diffusion rates and a high resistance to weathering, zircon should preserve accurate age information and initial Sr and Nd isotopic ratios. As a common accessory mineral, it could provide petrogenetic information for rocks that have been altered, weathered, or metamorphosed. We have investigated the Sm-Nd and Rb-Sr systematics of zircons from unmetamorphosed granitic rocks that have yielded concordant U-Pb SHRIMP (Sensitive High Resolution Ion Microprobe) ages and have depleted mantle signatures for Nd and Sr isotopes. Zircon populations from mantle-derived igneous rocks with ages of 0.1, 1.7, and 3.8 Ga were chosen for Sr and Nd isotopic analysis. Low concentrations (Sr, 4 to 8 ppm and Nd, 6 to 12 ppm) and small grain size necessitate the use of multigrain aliquots. Meaningful results can be obtained only if all of the zircons in the rock are a coherent population with homogeneous ages throughout and among grains. Zircon U-Pb ages were characterized using the SHRIMP RG, and trace element concentrations were measured by LA-ICPMS. The populations are homogeneous and the material ablated by the ion beam ( ˜~20 μ m spot size) shows little evidence of lead loss. Results on zircons of 100 Ma and 1700 Ma indicate that both the Rb-Sr and Sm-Nd systems have been severely disturbed. For the 1700 Ma granitic rocks from the Yavapai sequence of Arizona, zircon Sm-Nd apparent ages are ca. 1000 Ma! Leaching was used to remove contributions from adhering or included minerals, but leached residues that presumably most closely approximate the composition of the pure zircon (e.g. have high Sm/Nd) are no less disturbed than unleached samples. Despite the U-Pb SHRIMP ages indicating a closed system, the zircons have failed to preserve a reasonable age or initial isotopic composition for Sr and Nd, indicating that parts of the crystal might be severely affected by radiation damage resulting in disturbed

  14. Least destructive sampling of human remains using laser drilling for Sr isotope analysis by TIMS

    Willmes, Malte; Moffat, Ian; Grün, Rainer; Armstrong, Richard; Kinsley, Les; McMorrow, Linda


    Strontium isotope ratios (87Sr/86Sr) measured in ancient human remains can be used to reconstruct migration patterns of ancient human populations. This application is based on the fact that different geologic regions have distinct Sr isotope signatures that are cycled through the soils, plants and rivers, and eventually enter the food cycle. Sr isotope ratios measured in skeletal remains (bones and teeth) reflect the average of dietary Sr that was consumed when the tissue was formed, allowing the investigation of human migration between geologically distinct terrains. The analysis of human remains is always a sensitive topic requiring minimal damage to the sample, while at the same time providing highly precise and accurate results. Samples can be analysed either by solution methods like thermal ionisation mass spectrometry (TIMS), or by in-situ laser ablation MC-ICP-MS. For TIMS a drill is used to extract a small amount of sample, which is then digested in acid and Sr is separated out using ion exchange chromatography. This technique provides highly precise and accurate results, because any isobaric interferences are removed during chemical separation. The drawback is that drilling may cause visible damage to the sample, restricting access to precious human remains. LA-MC-ICP-MS analysis is very fast and nearly destruction free. However, the accuracy and precision of LA-MC-ICP-MS is limited by a number of factors including large instrumental mass discrimination, laser-induced isotopic and elemental fractionations and molecular interferences on 87Sr. Its application thus requires rigorous data reduction, which can introduce significant uncertainties into the analysis. This is especially true for samples with relatively low Sr concentrations such as human teeth (e.g., Woodhead et al., 2005; Horstwood et al., 2008; Vroon et al., 2008). In addition, LA-MC-ICP-MS has traditionally required a flat sample surface, thus an unbroken tooth needs to be cut, which is rather

  15. Sr - an element shows the way - Applications of Sr isotopes for provenance, tracing and migration (Invited)

    Prohaska, T.; Irrgeher, J.; Zitek, A.; Teschler Nicola, M.


    Strontium - named after the small Scottish town Strontian - as such is an element with little popularity. Firstly described by Martin Heinrich Klaproth in 1798, the metal is used in metallurgy to some extent whereas its compounds are interesting in glass industries, electronics and pyrotechnics. The element has chemical similarity to Ca and makes up 1/60 of the earth’s amount of the latter. Nonetheless, it is its isotopic composition which makes Sr so interesting for a large number of scientists. The natural composition of the four naturally occurring isotopes (84Sr, 86Sr 87Sr and 88Sr) varies in nature due to the radioactive decay of 87Rb to 87Sr. Thus, it was early recognized as geochronometer especially in Ca rich matrices. With increasing precision of applied methodology, the natural variation of the 87Sr/86Sr isotope ratio (analyzed at first mainly by thermal ionization mass spectrometry (TIMS)) became more and more popular in provenance studies. The natural variation of the ratio is mainly determined by the geological age and the original composition of the rock and can be used therefore as fingerprint of the local geology. The ratio is transferred with no significant fractionation via the water into plants and finally via the food chain into animal and human tissues (especially bones and teeth). As the element is chemically similar to Ca, it appears in most matrices. The use for provenance studies is supported by the fact that the long half life (4.8 x 1010 years) does not lead to an alteration during the time scales which are investigated (from recent samples to human or animal skeletal remains which date back up to 30.000 BC). The uniqueness of the system besides the natural variation is defined by the ubiquity in nature and the relatively high (and thus measurable) elemental concentration in most tissues. It was finally the advent of multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) which augmented the number of applications

  16. Do foraminifera accurately record seawater neodymium isotope composition?

    Scrivner, Adam; Skinner, Luke; Vance, Derek


    , Earth Planet. Sci. Lett. 265, 571-587. Lacan, F., and Jeandel, C., 2005a. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface, Earth Planet. Sci. Lett. 232, 245-257. Piepgras, D.J., and Wasserburg, G.J., 1987. Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations. Geochim. Cosmochim. Acta 51, 1257-1271. Rutberg, R.L., Hemming, S.R., and Goldstein, S.L., 2000. Reduced North Atlantic deep water flux to the glacial southern ocean inferred from neodymium isotope ratios. Nature 405, 935-938. Tachikawa, K., Roy-Barman, M., Michard, A., Thouron, D., Yeghicheyan, D., and Jeandel, C., 2004. Neodymium isotopes in the Mediterranean Sea: comparison between seawater and sediment signals. Geochim. Cosmochim. Acta 68, 3095-3106.

  17. Accurate and precise zinc isotope ratio measurements in urban aerosols.

    Gioia, Simone; Weiss, Dominik; Coles, Barry; Arnold, Tim; Babinski, Marly


    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05 per thousand per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37 per thousand in coarse and between -1.04 and 0.02 per thousand in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta(66)Zn(Imperial) = 0.26 +/- 0.10 per thousand).

  18. Mass measurements of neutron-rich Rb and Sr isotopes

    Klawitter, R; Brodeur, M; Chowdhury, U; Chausdhuri, A; Fallis, J; Gallant, A T; Grossheim, A; Kwiatkowski, A A; Lascar, D; Leach, K G; Lennarz, A; Macdonald, T D; Pearkes, J; Seeraji, S; Simon, M C; Simon, V V; Schultz, B E; Dilling, J


    We report on the mass measurements of several neutron-rich $\\mathrm{Rb}$ and $\\mathrm{Sr}$ isotopes in the $A \\approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,99}\\mathrm{Rb}$ and $^{98-100}\\mathrm{Sr}$ have been determined with a precision of $6 - 12\\ \\mathrm{keV}$, making their uncertainty negligible for r-process nucleosynthesis network calculations. The mass of $^{101}\\mathrm{Sr}$ has been determined directly for the first time with a precision eight times higher than the previous indirect measurement and a deviation of $3\\sigma$ when compared to the Atomic Mass Evaluation. We also confirm the mass of $^{100}\\mathrm{Rb}$ from a previous measurement. Furthermore, our data indicates the existance of a low-lying isomer with $80\\ \\mathrm{keV}$ excitation energy in $^{98}\\mathrm{Rb}$. We show that our updated mass values lead to minor changes in the r-process by calculating fractional abundances in the $A\\approx 100$ re...

  19. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals


    The Sr isotopic systematics in the weathering profiles of biotite granite and granite porphyry in southern Jiangxi Province were investigated. The results showed that during the chemical weathering of granites, remarked fractionation occurred between Rb and Sr. During the early stages of chemical weathering of granites, the released Sr/Si and Sr/Ca ratios are larger than those of the parent rocks, and the leaching rate of Sr is higher than those of Si, Ca, K, Rb, etc. Dynamic variations in relative weathering rates of the main Sr-contributing minerals led to fluctuation with time in 87Sr/86Sr ratios of inherent and released Sr in the weathering crust of granite. Successive weathering of biotite, plagioclase and K-feldspar made 87Sr/86Sr ratios in the weathering residues show such a fluctuation trend as to decrease first, increase, and then decrease again till they maintain stable. This work further indicates that when Sr isotopes are used to trace biogeochemical processes on both the catchment and global scales, one must seriously take account of the prefer-ential release of Sr from dissolving solid phase and the fluctuation of 87Sr/86Sr ratios caused by the variations of relative weathering rates of Sr-contributing minerals.

  20. Sr fluxes and isotopic compositions of the eleven rivers originating from the Qinghai-Tibet Plateau and their contributions to 87Sr/86Sr evolution of seawater


    To evaluate influence of chemical weathering of the Qinghai-Tibet Plateau (QTP) on seawater 87Sr/86Sr variation, river water and sediment samples were collected, and their Sr concentrations and isotopic compositions analyzed, from the seven large rivers that originated from the QTP. By combining these with the data of the Ganges, Brahmaputra, Indus and Irrawaddy originated in the southern QTP, the total Sr flux of the eleven rivers reaches 3.47×109 mol·a-1, which accounts for 10.2% of the total Sr flux transported by the global rivers. The weighted mean 87Sr/86Sr is 0.71694, higher than the average value of the global rivers. The 87Srex (87Sr flux in excess of the seawater 87Sr/86Sr ratio) of the Chinese seven rivers is 1.55×106 mol·a-1, only accounting for about 6% of the value of the eleven rivers originated from QTP, and the Ganges-Brahmaputra system accounts for 86%. We assume that the QTP rivers have no strontium contributions to the oceans before ~40 Ma and the Sr fluxes of the global rivers, except the QTP eleven rivers, are constant, then a maximum linear increase in Sr fluxes of the QTP rivers from zero to the modern value in response to tectonic uplift can explain ~69% increase of seawater 87Sr/86Sr over the past ~40 Ma and the remainder of 31% is perhaps provided from other factors.

  1. Radiogenic and stable Sr isotope ratios (87Sr/86Sr, δ88/86Sr) as tracers of riverine cation sources and biogeochemical cycling in the Milford Sound region of Fiordland, New Zealand

    Andrews, M. Grace; Jacobson, Andrew D.; Lehn, Gregory O.; Horton, Travis W.; Craw, Dave


    This study reports radiogenic Sr isotope ratios (87Sr/86Sr), stable Sr isotope ratios (δ88/86Sr), and major ion concentrations for river, rock, sediment, soil, and plant samples collected from the Cleddau and Hollyford catchments in the Milford Sound region of Fiordland, New Zealand. The catchments primarily drain gabbro, but some tributaries access limestone and volcanogenic sediments. The goal of the study was to understand controls on riverine δ88/86Sr values in a landscape with multiple factors that may influence chemical weathering, including dense vegetation, high rainfall, and abundant, freshly-eroded Holocene fluvio-glacial and landslide debris. Rivers draining gabbro have higher δ88/86Sr values than bedrock, by as much as ∼0.14‰, and the δ88/86Sr values strongly correlate with molar Ca/Sr ratios (R2 = 0.69). Leaching of rocks and sediment reveals no evidence for the preferential dissolution of minerals having high δ88/86Sr values and Ca/Sr ratios. In-stream Sr isotope fractionation seems unlikely because comparison against 87Sr/86Sr and Ca/Sr ratios demonstrates that riverine δ88/86Sr values conservatively trace water-mass mixing. The riverine data are best explained by the input of soil water, which is distinct from potential bedrock end-members (i.e., silicates and carbonates) based on δ88/86Sr but indistinguishable in terms of Ca/Sr and 87Sr/86Sr. While strontium isotope fractionation during secondary mineral formation and pedogenesis is possible, clay mineral formation is minor and most soils are poorly developed. Instead, soil water δ88/86Sr values more likely reflect plant uptake. Plant samples yielded a wide range of δ88/86Sr values, but on average, they are lower than those for bedrock, consistent with the expectation that plants preferentially incorporate lighter Sr isotopes. Mass-balance constraints, together with 87Sr/86Sr ratios, indicate that soil water δ88/86Sr values are ∼0.30‰ higher than bedrock δ88/86Sr values, and

  2. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: Reconsidering matrix interferences in bioapatites and biogenic carbonates

    Irrgeher, Johanna; Galler, Patrick; Prohaska, Thomas


    This study is dedicated to the systematic investigation of the effect of interferences on Sr isotopic analyses in biological apatite and carbonate matrices using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC ICP-MS). Trends towards higher 87Sr/86Sr ratios for LA-MC ICP-MS compared to solution-nebulization based MC ICP-MS when analysing bioapatite matrices (e.g. human teeth) and lower ratios in case of calcium carbonates (e.g. fish ear stones) were observed. This effect can be related to the presence of significant matrix-related interferences such as molecular ions (e.g. (40Ca-31P-16O)+, (40Ar-31P-16O)+, (42Ca-44Ca)+, (46Ca40Ar)+) as well as in many cases concomitant atomic ions (e.g. 87Rb+, 174Hf2 +). Direct 87Sr/86Sr ratio measurements in Ca-rich samples are conducted without the possibility of prior sample separation, which can be accomplished routinely for solution-based analysis. The presence of Ca-Ar and Ca-Ca molecular ion interferences in the mass range of Sr isotopes is shown using the mass resolving capabilities of a single collector inductively coupled plasma sector field mass spectrometer operated in medium mass resolution when analysing bioapatites and calcium carbonate samples. The major focus was set on analysing human tooth samples, fish hard parts and geological carbonates. Potential sources of interferences were identified and corrected for. The combined corrections of interferences and adequate instrumental isotopic fractionation correction procedures lead to accurate data even though increased uncertainties have to be taken into account. The results are discussed along with approaches presented in literature for data correction in laser ablation analysis.

  3. Accurate mass measurements on neutron-deficient krypton isotopes

    Rodriguez, D. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany)]. E-mail:; Audi, G. [CSNSM-IN2P3-CNRS, 91405 Orsay-Campus(France); Aystoe, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, 40351 Jyvaeskylae (Finland); Beck, D. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Blaum, K. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Bollen, G. [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Herfurth, F. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Jokinen, A. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, 40351 Jyvaeskylae (Finland); Kellerbauer, A. [CERN, Division EP, 1211 Geneva 23 (Switzerland); Kluge, H.-J. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); University of Heidelberg, 69120 Heidelberg (Germany); Kolhinen, V.S. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, 40351 Jyvaeskylae (Finland); Oinonen, M. [Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki (Finland); Sauvan, E. [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Schwarz, S. [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States)


    The masses of {sup 72-78,80,82,86}Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for {sup 72-75}Kr outweighed previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  4. Accurate mass measurements on neutron-deficient krypton isotopes

    Rodríguez, D; Äystö, J; Beck, D


    The masses of $^{72–78,80,82,86}$Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for $^{72–75}$Kr being more precise than the previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  5. Sr isotopes in the Orgueil CI meteorite: Chronology of early solar system hydrothermal activity

    J D Macdougall


    New Sr isotopic analyses and calculated formation ages of carbonates from the Orgueil CI meteorite are reported. Among the samples analyzed in this work, dolomites give the youngest formation ages and may have been deposited intermittently starting near the time of parent body formation and continuing for at least 30 Ma. The Sr isotope data also suggest that breunnerites (Fe-Mn-Mg carbonates) crystallized after dolomite formation. Leaching experiments on bulk meteorite samples provide evidence for a very mobile, water soluble Sr reservoir in Orgueil that is characterized by extremely radiogenic Sr (87Sr/86Sr ≈ 0.81- 0.82). This unsupported Sr reflects recent element redistribution, possibly at the time of parent body breakup recorded by the ∼10 Ma exposure age of Orgueil. The carbonate data in particular corroborate earlier indications that hydrothermal processes were among the earliest events to affect the CI parent body.

  6. Sr fluxes and isotopic compositions of the eleven rivers originating from the Qinghai-Tibet Plateau and their contributions to 87Sr/86Sr evolution of seawater

    WU WeiHua; YANG JieDong; XU ShiJin; LI GaoJun; YIN HongWei; TAO XianCong


    To evaluate influence of chemical weathering of the Qinghai-Tibet Plateau (QTP) on seawater 87Sr/66Srvariation, river water and sediment samples were collected, and their Sr concentrations and isotopic compositions analyzed, from the seven large rivers that originated from the QTP. By combining these with the data of the Ganges, Brahmaputra, Indus and Irrawaddy originated in the southern QTP, the total transported by the global rivers. The weighted mean 87Sr/86Sr is 0.71694, higher than the average value of the global rivers. The 87Srex (87Sr flux in excess of the seawater 87Sr/66Sr ratio) of the Chinese seven QTP, and the Ganges-Brahmaputra system accounts for 86%. We assume that the QTP rivers have no strontium contributions to the oceans before -40 Ma and the Sr fluxes of the global rivers, except the QTP eleven rivers, are constant, then a maximum linear increase in Sr fluxes of the QTP rivers from zero to the modern value in response to tectonic uplift can explain -69% increase of seawater 87Sr/86Sr over the past -40 Ma and the remainder of 31% is perhaps provided from other factors.

  7. Shape coexistence in neutron-rich Sr isotopes : Coulomb excitation of $^{96}$Sr

    Clement, E; Siem, S; Czosnyka, T


    The nuclei in the mass region A $\\cong$ 100 around Sr and Zr show a dramatic change of the nuclear ground-state shape from near spherical for N $\\leq$ 58 to strongly deformed for N $\\geq$ 60. Theoretical calculations predict the coexistence of slightly oblate and strongly prolate deformed configurations in the transitional region. However, excited rotational structures based on the highly deformed configuration, which becomes the ground state at N = 60, are not firmly established in the lighter isotopes, and the earlier interpretation of a very abrupt change of shape has been challenged by recent experimental results in favor of a rather gradual change. We propose to study the electromagnetic properties of the neutron-rich nucleus $_{38}^{96}$Sr$_{58}$ by low-energy Coulomb excitation using the REX-ISOLDE facility and the MINIBALL detector array. Both transitional and diagonal matrix elements will be extracted, resulting in a complete description of the transition strengths and quadrupole moments of the low-l...

  8. Sr isotopes and U series radionuclides in the Sangemini area (Central Italy: Hydrogeology implications

    Maurizio Barbieri


    Full Text Available The strontium isotopic ratio (expressed as 87Sr/86Sr of groundwater represents a useful method for studying and understanding the groundwater circulations, also, the U and Ra isotopic compositions can vary as function of the groundwater residence time. This paper reports an evaluation of the probable recharge area of the Sangemini mineral water springs (Terni-Umbria Central Italy and an estimate of the residence time of the aquifer by coupling Sr and U series isotopic systematics. For this study have been analyzed four water sample for the isotope ratio of 87Sr/86Sr, and eleven samples, shallow waters and groundwaters, for U and Ra, furthermore were determined the values of isotopic ratio for sample of typical rocks of the area. The results of this study allow to identify: a recharge area in a restricted sector of the Meso-Cenozoic carbonates a longer and more effective water/rock interaction in the Quaternary series. U and Ra recoil models allow to estimate a groundwater residence time of about 350 years and a total water volume whose value (64*106 m3 agrees with the limited extension of the aquifer. The extension of the aquifer was constrained by comparing Sr isotopic composition of waters and local geological formations. Groundwaters seem mainly to circulate in clayey sandy Quaternary series characterized by low redox conditions.

  9. A change of Sr cycle in the Ediacaran Ocean: Evidence from radiogenic and stable isotope ratios of Sr, in Three Gorges, South China.

    Sawaki, Y.; Tahata, M.; Komiya, T.; Maruyama, S.


    Objective. To decode surface environmental changes and patterns of biological evolution during the Ediacaran Methods employed. We undertook deep drilling in Three Gorges area in South China to obtain continuous and fresh samples without surface alteration and oxidation. 87Sr/86Sr and 88Sr/86Sr ratios of the fresh carbonate rocks were measured with multiple collector-inductively coupled plasma-mass spectrometric techniques. We discuss the surface environmental change in the Ediacaran by comparing the Sr isotope ratios with 13C/12C and 18O/16O. Result. The chemostratigraphy of 87Sr/86Sr ratios of the drilled samples displays a smooth curve and two large positive shifts in the Ediacaran. The combination of the detailed chemostratigraphies of 13C/12C, 18O/16O, and 87Sr/86Sr enable us to find connections among them and indicates that the first large positive shift of 87Sr/86Sr is slightly preceded by negative 13C/12C and positive 18O/16O excursions. The second large positive shift of 87Sr/86Sr is simultaneous with positive 13C/12C shift and clearly precedes next negative 13C/12C excursion. Considering Mn content and Fe content of carbonate rocks, which respond to redox in the ocean, the first positive shift can be explained by Gaskiers glaciation. Exposed surface of continental crust were increased by regression accompanied by Gaskiers glaciation and enhanced weathering rate by rivers increased seawater 87Sr/86Sr. The second positive shift of 87Sr/86Sr is a long-term fluctuation. We speculate enhanced weathering rate, resulting from convergence of Gondwana supercontinent, as a cause of the second positive shift of 87Sr/86Sr. Chemostratigraphy of 88Sr/86Sr also displays a smooth curve. Before Gaskiers glaciation, 88Sr/86Sr curve have a negative correlation with 87Sr/86Sr fluctuation. We interpret that this negative correlation is explained by mass-dependent fractionation. When Sr are increased in ocean (high 87Sr/86Sr), 86Sr are selectively taken in carbonate (low 88Sr

  10. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P


    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  11. Systematic of Nuclear Ground State Properties in Sr Isotope by Covariant Density Functional Theory

    TIAN; Yuan


    <正>The hyperfine structure and isotope shifts of Sr-isotopes, both even-even and odd-even nuclei, are studied in the covariant density functional theory (DFT) with the new parameter set DD-PC1. Pairing correlation is treated by using the Bogoliubov with a separable form of the pairing interaction. Spin-parity,

  12. Isotope abundance ratios of sr in wine provenance determinations, in a tree-root activity study, and of pb in a pollution study on tree-rings.

    Horn, P; Hölzl, S; Todt, W; Matthies, D


    Abstract In this contribution, the various and fundamentally different uses and applications of isotope signatures (of both heavy and light elements) are discussed. Examples are given for the successful use of (87)Sr/(86)Sr in uncovering fraud in wine trade. Also, in an experiment related to "Waldsterben", (87)Sr/(86)Sr analyses reveal rather unexpected responses of spruces and maple-trees to mechanical damage of their roots. In another study, from (206)Pb/(207)Pb (and (208)Pb/(207)Pb) analyses of tree growth-rings it is demonstrated that they do not accurately record lead burdens in the environment. This is contrary to current views on the subject of tree-rings as reliable banks of past heavy metal pollutions of the biosphere. Furthermore, new perspectives of applications of isotopes in biological tissues, including those of cosmogenic and nucleogenic origin will be shortly outlined.

  13. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS.

    Swoboda, S; Brunner, M; Boulyga, S F; Galler, P; Horacek, M; Prohaska, T


    This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, The Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH4NO3 extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the 'Marchfelder Spargel' can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%.

  14. Analytical procedures for determining Pb and Sr isotopic compositions in water samples by ID-TIMS

    Veridiana Martins


    Full Text Available Few articles deal with lead and strontium isotopic analysis of water samples. The aim of this study was to define the chemical procedures for Pb and Sr isotopic analyses of groundwater samples from an urban sedimentary aquifer. Thirty lead and fourteen strontium isotopic analyses were performed to test different analytical procedures. Pb and Sr isotopic ratios as well as Sr concentration did not vary using different chemical procedures. However, the Pb concentrations were very dependent on the different procedures. Therefore, the choice of the best analytical procedure was based on the Pb results, which indicated a higher reproducibility from samples that had been filtered and acidified before the evaporation, had their residues totally dissolved, and were purified by ion chromatography using the Biorad® column. Our results showed no changes in Pb ratios with the storage time.

  15. Sr isotope tracing of aquifer interactions in an area of accelerating coal-bed methane production, Powder River Basin, Wyoming

    Frost, C.D.; Pearson, B.N.; Ogle, K.M.; Heffern, E.L.; Lyman, R.M. [University of Wyoming, Laramie, WY (United States). Dept. of Geology & Geophysics


    Sr isotope data on groundwater samples from coal and overlying sandstone aquifers in the eastern Powder River Basin, Wyoming, demonstrate that the Sr isotope ratio effectively identifies groundwater from different aquifers where major ion geochemistry and 0 and H stable isotope data fail. Groundwaters from sandstone aquifers have a uniform Sr-87/Sr-86 ratio of 0.7126-0.7127. Waters from coal seams vary from Sr-87/Sr-86 ratio = 0.7127 near the recharge area to 0.7151 farther into the basin. The distinct Sr isotope signatures of sandstone and coal aquifers may reflect different sources of Sr in these two rock types: Sr in sandstones is held primarily in carbonate cement, whereas coals contain more radiogenic Sr in organic matter. The Sr isotope ratio is useful in identifying wells that contain mixed waters, whether due to well construction or to incomplete aquifer isolation. Measurement and continued monitoring of the Sr isotope ratio in groundwaters should provide a powerful tool for characterizing the impact of the burgeoning coal-bed methane industry on the hydrology of the Powder River Basin.

  16. Temporal variations of Sr isotopic compositions for the rocks from Dogo, Oki islands Shimane Prefecture

    Fujimaki, Hirokazu; Xu Hong; Aoki, Ken-ichiro (Tohoku Univ., Sendai (Japan). Faculty of Science)


    Fifty-three volcanic rocks from Dogo island, Oki, Shimane Prefecture, southwestern Japan were analyzed for Sr isotopic compositions with two basement rocks. The rock samples consist of calc-alkali rock suite, Nagaoda shoshonite-banakite suite, Oki trachyte-rhyolite suite, Dogo mugearite suite, Hei trachyte and Tsuzurao rhyolite series, and Daimanjiyama, Ohmine, Kuroshima, Shiroshimazaki, Saigo, and Misaki alkali basalt groups in the order of probable eruption sequence. The volcanic rocks of calc-alkali suite and shoshonite-banakite suite were produced before Japan Sea opening (ca. 15 Ma), and both have {sup 87}Sr/{sup 86}Sr ratios higher than 0.7068. Long after Japan Sea opening Oki-trachyte-rhyolite suite was erupted (ca. 6.6 Ma); they have rather low {sup 87}Sr/{sup 86}Sr ratios (0.7066-0.7081). Mugearites followed and have similar Sr isotopic composition, whereas 4.6 Ma old Daimanjiyama basalts have clearly low {sup 87}Sr/{sup 86}Sr ratios (0.7050-0.7051). The rocks erupted 3-4 Ma seem to have the lowest {sup 87}Sr/{sup 86}Sr ratios; they are Ohmine, Kuroshima, Shiroshimazaki alkali basalt suites (0.7044-0.7048). The {sup 87}Sr/{sup 86}Sr ratios of the Saigo basalts erupted 0.84 Ma are higher than those erupted 3-4 Ma. The latest volcanic products in Dogo island, Misaki basalt suite has even higher {sup 87}Sr/{sup 86}Sr ratios (0.7054-0.7057) than the Saigo basalt suite. Thus, temporal and systematic variation of Sr isotopic compositions of the volcanic rocks from Dogo can be recognized. The {sup 87}Sr/{sup 86}Sr ratios of the rocks were once as high as 0.7066 or even higher than 0.708, but they started decreasing down to ca. 0.7044-0.7048 4-3 Ma ago. Since then the ratios rebounded to 0.7049-0.7055. The Hei trachyte and Tsuzurao rhyolite series are not included in this temporal and systematic change. (Abstract Truncated)

  17. All-diode-laser cooling of Sr+ isotope ions for analytical applications

    Jung, Kyunghun; Yamamoto, Kazuhiro; Yamamoto, Yuta; Miyabe, Masabumi; Wakaida, Ikuo; Hasegawa, Shuichi


    Trapping and cooling of Sr+ isotope ions by an all-diode-laser system has been demonstrated in order to develop a novel mass spectrometric technique in combination with ion trap-laser cooling. First, we constructed external cavity diode lasers and associated stabilization apparatus for laser cooling of Sr+ ions. The transition frequencies confirmed by optogalvanic spectroscopy enabled successful cooling of 88Sr+ ions. An image of two trapped ions has been captured by CCD camera. Minor isotopes, 84Sr+ and 86Sr+, were also cooled and trapped. From an analysis of the observed spectra of a string crystal of each isotope, the isotope shifts of the cooling transition (5s 2S1/2 → 5p 2P1/2) of Sr+ ions were determined to be +371(8) MHz for Δν84-88 and +169(8) MHz for Δν86-88. In the case of the repumping transition (4d 2D3/2 → 5p 2P1/2), Δν84-88 and Δν86-88 were measured to be -833(6) and -400(5) MHz, respectively. These values are in good agreement with previously reported values.

  18. Geochemistry Meets Anthropology: the use of Sr Isotopes as Tracers for Ancient Human Migration.

    Solis, G.; Schaaf, P.; Hernandez, T.; Horn, P.; Manzanilla, L.


    Sr isotopes have increasingly become an important tool in archeology and anthropology in determining provenance of humans. By comparing isotopic signatures of human teeth and bone with the soil environment, Sr isotope ratios have been used as tracers identifying living areas. Sr isotope ratios in tooth enamel reflect the source of diet during youth, whereas ratios in dentine and bones come from the food growing in local geologies around the time of death. However, since analytical procedures vary from lab to lab we present here our new technique and how it affects results. We studied 11 teeth and 12 bone samples from the archeological site of Teotihuacan, central Mexico, as well as soil and water from the locality. Mechanical sample preparation of all teeth involved isolation of the enamel layer with the aid of an orthodontical micro-tool. For some enamel samples up to three fractions (two leachates and residue) were obtained for measurement. Thoroughly cleaned bone material underwent no leaching. As an example, 87Sr/86Sr results from a sample with ratios of 0.70477 for bone (which is identical to highland soil), 0.70530 for first leachate, 0.70590 for second leachate, and 0.70668 (mean accuracy +/- 0.00004) for enamel, clearly show enamel contamination by mobile Sr probably from soil. We thus find that repeated cleaning and particularly repeated leaching procedures, including isotopic measurement of the leachates, are critical to differentiate primary from secondary Sr isotope ratios as product of interaction of soil, sediments and water from the substrate where burials took place.

  19. Sr Isotopes at the Onset of the Ice Ages at the Northern Apennines

    Fuchs, Rita; Lazar, Boaz; Angiolini, Lucia; Crippa, Gaia; Stein, Mordechai


    Sr isotopes can be used to constrain the marine Sr budget. The temporal variations in the 87Sr/86Sr ratios (radiogenic Sr) have been reconstructed over the past few decades based on marine macro and micro fossils data (e.g. brachiopods and foraminifera). It is used to constrain the sources and amounts of strontium that dictate the temporal variations in oceanic Sr throughout the Phanerozoic. On the other hand, the study of processes controlling the composition stable Sr isotopes (δ88/86Sr) is very new and only limited research was conducted on this topic during the past few years. Up to date, no δ88/86Sr data are available for considerable parts of Earth's history and the contribution of the potential Sr sources to the oceans is poorly constrained. Here, we set to examine the behavior of radiogenic and stable Sr isotopes in the marine environment of the northern Apennines (Italy) during the time interval of the late Pliocene to early-Middle Pleistocene - upon the onset of ice ages in the northern latitudes. We collected fossil mollusks from outcrops of the Arda and Stirone Rivers that are rich in bivalves, brachiopods, foraminifera (that were used for establishing the chronostratigraphy of the sections) and other genera. Ecological and sedimentological analysis of the section suggest a normal marine environment of depth range of several tens of meters that existed on the southern flanks of the large Po embayment. In order to evaluate the potential of the fossil assemblages in the Arda and Stirone sections to serve as reliable recorders of the marine δ88/86Sr of seawater during the desired period, we examined mineralogical and chemical properties of the fossils (e.g. distribution of trace elements like Sr and Mg in the skeletons, microstructures like secondary fillings of punctate shells in brachiopod) and measured the 87Sr/86Sr ratios. Among the species analyzed, Aequipecten opercularis (bivalve) and Glycymeris inflata (bivalve) have aragonite skeletons that

  20. Sr Isotopes and human skeletal remains, improving a methodological approach in migration studies

    Solis Pichardo, G.; Schaaf, P. E.; Hernandez, T.; Horn, P.; Manzanilla, L. R.


    Asserting mobility of ancient humans is a major issue for anthropologists. Sr isotopes are widely used in anthropological sciences to trace human migration histories from ancient burials. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Until now, tooth enamel was considered to be less sensitive to secondary Sr contamination due to its higher crystallinity and larger sizes of the biogenic apatites in comparison to that in bone and dentine. In the past, enamel as well as bone material was powdered, dissolved and analyzed by thermal ionization mass spectrometry (TIMS). In this contribution we show, however, that simple dissolution of enamel frequently yields erroneous results. Tooth enamel is often affected by secondary strontium contamination processes such as caries or diagenetic and environmental input, which can change the original isotopic composition. To avoid these problems we introduced a pre-treatment and three-step leaching procedure in enamel samples. Leaching is carried out with acetic acid of different concentrations, yielding two leachates and one residue of each sample. Frequently the 87Sr/86Sr results of the three leachates display different values confirming that secondary contamination did occur. Several examples from Teotihuacan, central Mexico demonstrate that enamel 87Sr/86Sr without leaching can show correct biogenic values, but there is also a considerable probability for these values to represent a mixture of original and secondary Sr without significance for migration reconstructions. Only the residue value is interpreted by us as the representative ratio for

  1. Sr, Nd, Pb Isotope geochemistry and magma evolution of the potassic volcanic rocks, Wudalianchi, Northeast China

    Junwen, W.; Guanghong, X.; Tatsumoto, M.; Basu, A.R.


    Wudalianchi volcanic rocks are the most typical Cenozoic potassic volcanic rocks in eastern China. Compositional comparisons between whole rocks and glasses of various occurrences indicate that the magma tends to become rich in silica and alkalis as a result of crystal differentiation in the course of evolution. They are unique in isotopic composition with more radiogenic Sr but less radiogenic Pb.87Sr /86 Sr is higher and143Nd/144Nd is lower than the undifferentiated global values. In comparison to continental potash volcanic rocks, Pb isotopes are apparently lower. These various threads of evidence indicate that the rocks were derived from a primary enriched mantle which had not been subjected to reworking and shows no sign of incorporation of crustal material. The correlation between Pb and Sr suggests the regional heterogeneity in the upper mantle in terms of chemical composition. ?? 1989 Institute of Geochemistry, Chinese Academy of Sciences.

  2. High throughput Sr isotope analysis using an automated column chemistry system

    Mackey, G. N.; Fernandez, D.


    A new method has been developed for rapidly measuring 87Sr/86Sr isotope ratios using an autosampler that automates column chemistry for Sr purification. The autosampler, a SC2 DX with FAST2 valve block, produced by Elemental Scientific, Inc., utilizes a pair of six-way valves, a vacuum, and a peristaltic pump to load a sample from an autosampler tube onto the Eichrom Sr Resin in the separation column. The autosampler then elutes the sample from the column directly into the spray chamber of the mass spectrometer. Measurements are made on a Thermo-Finnigan Neptune ICP-MS. Sample-blank pairs require approximately 30 minutes for analysis. Normal throughput for the system is 24 samples and 11 standards per day. Adjustment of the pump speed allows for rapid loading of the column followed by a 3-minute data acquisition period with no fractionation of the Sr being eluted from the column. All data are blank-, interference-, and normalization-corrected online using 86Sr/88Sr = 0.1194. Analytical precision on a typical 66 ng/g analysis is ±0.00003 (2σ SE). Reproducibility of the SRM987 Sr standard (66 ng/g) over the course of a typical sequence is ±0.00004 (2σ SD, n=11). For comparison, offline column separation of the SRM987 Sr standard (66 ng/g) was conducted and measured using the same instrument method, yielding a reproducibility of ±0.00004 (2σ SD, n=7). The long-term average of the SRM987 standard (10-200 ng/g) utilizing the online column chemistry method is 0.71027 ± 0.00010 (2σ SD, n=239). A small memory effect has been measured by alternating spiked samples (87Sr/86Sr = 0.67465) with the SRM987 standard. The bias measured in this test (87Sr/86Sr +0.00006) slightly exceeds the 2σ standard reproducibility for a typical run with sample and standard concentrations near 66 ng/g, but is within the 2σ long-term reproducibility of the method. The optimal concentration range for the offline column chemistry system is 50-250 ng/g Sr. Sample concentrations above 250

  3. Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China

    Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.


    Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.

  4. Geochronology of Ailaoshan-Jinshajiang alkali- rich intrusive rocks and their Sr and Nd isotopic characteristics

    张玉泉; 谢应雯


    Twenty-nine isotopic ages, ranging from 41 to 27 Ma, are presented for the alkali-rich intrusive rocks and their coexisting alkaline volcanic rocks, lamprophyres and acidic porphyries, indicating that they are Tertiary in age. The alkali-rich intrusive rocks have 143Nd/144Nd ratios from 0. 512 415 to 0. 512 544, and 87Sr/86Sr ratios from 0.705 4 to 0.706 8, suggesting that their material originates from an enriched mantle source.

  5. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    Hui. Hejiu; Neal, Clive, R.; Shih, Chi-Yu; Nyquist, Laurence E.


    Pristine Apollo 14 (A-14) high-Al basalts represent the oldest volcanic deposits returned from the Moon [1,2] and are relatively enriched in Al2O3 (>11 wt%) compared to other mare basalts (7-11 wt%). Literature Rb-Sr isotopic data suggest there are at least three different eruption episodes for the A-14 high-Al basalts spanning the age range approx.4.3 Ga to approx.3.95 Ga [1,3]. Therefore, the high-Al basalts may record lunar mantle evolution between the formation of lunar crust (approx.4.4 Ga) and the main basin-filling mare volcanism (basalts were originally classified into five compositional groups [5,6], and then regrouped into three with a possible fourth comprising 14072 based on the whole-rock incompatible trace element (ITE) ratios and Rb-Sr radiometric ages [7]. However, Rb-Sr ages of these basalts from different laboratories may not be consistent with each other because of the use of different 87Rb decay constants [8] and different isochron derivation methods over the last four decades. This study involved a literature search for Rb-Sr isotopic data previously reported for the high-Al basalts. With the re-calculated Rb-Sr radiometric ages, eruption episodes of A-14 high-Al basalts were determined, and their petrogenesis was investigated in light of the "new" Rb-Sr isotopic data and published trace element abundances of these basalts.

  6. Sr Isotopic Evidence on the Spilitic Degradation of the Deccan Basalt

    K V Subbarao


    Similar Sr isotopic ratios (∼0.7055) for the tholeiite-spilite flow unit and the associated mineral phases, of Bombay (Deccan Traps) provide a direct evidence for the spilitic degradation of tholeiite. In contrast, a dramatic increase in the rare earth elements (REE) from basalt to spilite is rather puzzling as rare earths are considered to be relatively immobile. The geochemistry thus suggests that the process of spilitization is due to the reaction with a complex fluid having identical Sr-isotopic composition as that of the basaltic magma - thereby masking the details of the mixing process.

  7. Tracing of industrial aerosol sources in an urban environment using Pb, Sr, and Nd isotopes.

    Geagea, Majdi Lahd; Stille, Peter; Gauthier-Lafaye, François; Millet, Maurice


    A comprehensive Pb-Sr-Nd isotope tracer study of atmospheric trace metal pollution has been performed in the urban environment of Strasbourg-Kehl. Filter dust of the principal pollutant sources (waste incinerators, thermal power plant and steel plant) and soot of car and ship exhausts have been analyzed. In addition tree barks (as biomonitors) and PM10 have been analyzed to trace and determine the distribution of the pollution in the environment. The industrial sources have highly variable epsilonNd values (-9.7 and -12.5 for incinerators and -17.5 for steel plant). Much higher epsilonNd values have been found for soot of car exhausts (-6 and -6.9). These high values make the Nd isotope system a powerful tool for the discrimination of traffic emissions but especially for the identification of diesel derived particles in the urban environment. The 206Pb/207Pb isotope ratios of gasoline are low (1.089) compared to diesel soot (1.159). The 26Pb/207Pb ratios of 1.151-1.152 for the steel plant and 1.152 for the solid waste incinerator are close to the Pb isotope ratio of diesel. The 87Sr/ 8Sr isotope ratios of the principal industrial sources vary significantly: 0.7095 for the domestic solid waste incinerator, 0.709 for the steel plant, and 0.7087 for car exhaust soot. PM10 aerosols collected in the urban center of Strasbourg show the influence of the pollutant sources at 3-7 km distance from the center. Most of the aerosols Pb isotopic compositions suggest Pb admixtures from at least three sources: a natural background and in function of the wind direction the domestic waste incinerator (S-wind) or the steel plant and the chemical waste incinerator (NE-wind). The traffic contribution can only be estimated with help of Nd isotopes. Therefore the clear identification of different pollutant sources in the urban environment is only possible by combining the three different isotope systems and is based on the fact that significant differences exist between the Pb, Sr, and

  8. Decoupled Rb-Sr and Sm-Nd isotopic evolution of the continental crust

    Goldstein, S. L.


    Evidence was presented that the Rb-Sr and Sm-Nd isotopic systems are decoupled in crust-mantle evolution. Rare earth element (including Sm and Nd) residue principally in silicates, and are resistant to mobilization by weathering and metamorphism. In contrast, Rb and Sr are easily fractionated by crustal processes and residue in carbonates as well as in silicates. As a result, continental Sr, but not Nd, can be recycled into the mantle by exchange of seawater with basalt at spreading ridges and by subduction of carbonates associated with ridge processes. These effects result in mean Rb-Sr ages of the continental crust and of the upper mantle that are too young. Crustal growth curves based largely on Rb-Sr data, such that of Hurley and Rand, are therefore incorrect.

  9. Sr-O isotope systematics in the Campi Flegrei magma systems

    Wörner, Gerhard; Iovine, Raffaella; Carmine Mazzeo, Fabio; D'Antonio, Massimo; Arienzo, Ilenia; Civetta, Lucia; Orsi, Giovanni


    Combined radiogenic Sr- and stable O-isotopes are a powerful tool to distinguish between (a) contamination of mantle magma sources by fluids and subducted sediment and (b) assimilation of magmas during ascent through the crust. Advance in laser fluorination mass spectrometry permits to measure small samples and single mineral grains. This allows to directly link Sr- and O-isotope measurements practically for the same sample material. Although isotopic heterogeneity remains a problem even at this level, this approach avoids problems of weathering and mineral-melt disequilibria. We analysed mineral separates (feldspar, Fe-cpx, Mg-cpx, magnetite, olivine) from 37 samples covering the stratigraphic sequence of the Campi Flegrei volcanic field: Pre-Campanian Ignimbrite (Pre CI; >39.28 ka), Campanian Ignimbrite (CI; 39.28 ka), Post Campanian Ignimbrite/Pre Neapolitan Yellow Tuff (Post CI/pre NYT; 14.90 ka), Neapolitan Yellow Tuff (NYT; 14.90 ka), and Post-Neapolitan Yellow Tuff (Post NYT; 12.8 ka-1538 A.D.) deposits. Sr isotopic compositions were determined using standard cation-exchange methods on separated hand-picked feldspar, clinopyroxene and olivine phenocrysts (~300mg) and on whole rocks, in case of not enough amount of crystals. By infrared laser fluorination was, instead, measured the oxygen isotopic composition of ~0.3 mg of hand-picked phenocrysts. Recalculating measured mineral O-isotope values to magmatic values to account for mineral-melt 18O/16O-fractionation at various SiO2-contens of the melt should provide a data set that better constrains magma isotope compositions and magma sources. Sr-isotopes span a range from 0.7069 to 0.7082 that exceed the variations in the bulk rock samples (0.7071-0.7081). However, these ranges vary significantly between eruptive periods. For example the Sr-isotope variation in the Neapolitan Yellow Tuff is only between 0.70750 and 0.70754 for minerals and whole rocks. Similarly, recalculated δ18O-melt values show a large

  10. Barite mineralization in Kalana speleothems, Central Estonia: Sr, S and O isotope characterization

    Mikk Gaškov


    Full Text Available Barite mineralization in association with calcitic speleothem precipitates in cave structures in Silurian Aeronian carbonate rocks in Kalana quarry, Central Estonia, was studied. Barite mineralization in Kalana occurs in two generations – euhedral bladed-tabular barite zonal crystals from a few to 10 cm in size, growing on the limestone-dolomite wall-rock (generation I, and sparsely placed thin tabular crystals a few millimetres thick and up to 1 cm in size, growing on calcitic crusts (generation II. The barite crystals of generation I are frequently found embedded by paragenetically later calcitic botryoidal crusts. The Sr and S isotopic composition of barite crystals shows a trend of increasing Sr isotope ratios (from 0.7114 to 0.7120 and δ34S values (from 13‰ to 33‰ from the central parts towards the edges of zonal crystals. This suggests barite precipitation by mixing of two endmember fluids at varying ratios during barite formation: warm (up to 70 °C reducing fluid bearing Ba, characterized by an elevated radiogenic Sr- and 34S-enriched isotopic signal, and a cooler ambient fluid bearing an isotopically lighter dissolved sulphate, characterized by lower Sr isotope ratios. The excess of radiogenic 87Sr in barite compared to Phanerozoic seawater values suggests Sr derived from a continental source, whereas sulphate was derived either from oxidized H2S or a modified seawater source. Gradual increase in δ34S values towards the outer zones could also indicate the 34S enrichment due to bacterial sulphate reduction, even though there is no paired 34S and 18O enrichment of sulphate, characteristic of bacterial reworking. This can be interpreted as indicating an open system with limited sulphate resupply where the δ18O composition of sulphate was equilibrated with warm ascending hydrothermal fluid.

  11. Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS

    Swoboda, S.; Brunner, M.; Boulyga, S.F.; Galler, P.; Prohaska, T. [University of Natural Resources and Applied Life Sciences, Department of Chemistry-VIRIS Project, Vienna (Austria); Horacek, M. [Austrian Research Centers GmbH, Seibersdorf (Austria)


    This work focuses on testing and application of Sr isotope signatures for the fast and reliable authentication and traceability of Asparagus officinalis originating from Marchfeld, Austria, using multicollector inductively coupled plasma mass spectrometry after optimised Rb/Sr separation. The major sample pool comprises freeze-dried and microwave-digested asparagus samples from Hungary and Slovakia which are compared with Austrian asparagus originating from the Marchfeld region, which is a protected geographical indication. Additional samples from Peru, the Netherlands and Germany were limited in number and allowed therefore only restricted statistical evaluation. Asparagus samples from Marchfeld were harvested within two subsequent years in order to investigate the annual variation. The results show that the Sr isotope ratio is consistent within these 2 years of investigation. Moreover, the Sr isotope ratio of total Sr in soil was found to be significantly higher than in an NH{sub 4}NO{sub 3} extract, reflecting the mobile (bioavailable) phase. The isotope composition in the latter extract corresponds well to the range found in the asparagus samples in Marchfeld, even though the concentration of Sr in asparagus shows no direct correlation to the concentration of Sr in the mobile phase of the soil. The major question was whether the 'Marchfelder Spargel' can be distinguished from samples from the neighbouring countries of Hungary and Slovakia. According to our findings, they can be clearly (100%) singled out from the Hungarian samples and can be distinguished from the Slovakian asparagus samples with a probability of more than 80%. (orig.)

  12. Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.

    Wall, Andy; Jain, Jinesh; Stewart, Brian; Capo, Rosemary; Hakala, Alexandra J.; Hammack, Richard; Guthrie, George


    Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

  13. Saharan dust in Yucatan soils: Sr isotope and trace element evidence of dust inputs

    Das, R.; Pett-Ridge, J. C.; D'Odorico, P.; Lawrence, D.


    Saharan dust transport is an important source of material for soil development in Caribbean islands, and may even be a larger source than the weathering of parent material on calcareous substrates in the Florida Keys and Bahamas. The Yucatan peninsula has similar soils and limestone parent materials, and receives annual Saharan dust inputs, but the importance of long-range dust transport for soil development in the region remains uncertain. Here we find evidence of Saharan dust in soils from a karst landscape in the central Yucatan peninsula using Sr isotopes, trace and rare earth element geochemistry. 87Sr/86Sr isotope ratios and trace element concentrations were measured in three soil profiles - an upland mature forest, upland secondary forest and depositional lowland (bajo) mature forest. 87Sr/86Sr isotope ratios in the upland mature and secondary forests were close to local limestone bedrock, while the bajo soil profile had higher values than local bedrock or Central American volcanic inputs, indicating the influence of Saharan dust. Trace element concentrations and rare earth element patterns in the upland mature forest and bajo profiles are more similar to values for Saharan dust and Central American volcanic sources than to local limestone bedrock. However, influence from volcanic sources would have lower 87Sr/86Sr values, indicating that Saharan dust influence is more likely. The bajo soil shows higher 87Sr/86Sr ratios and trace element concentrations compared to the upland soils, especially the secondary forest profile, indicating that soil disturbance and transport within the karst landscape influence the fate of eolian inputs and trace element geochemistry of soils in this region. Saharan dust is an important input to soil development at this location, and further work using isotopes and rare earth elements are necessary to quantify long-term dust inputs as a source material for soil development; Plot of Sr isotope ratio vs trace element (Zr/Y) ratio in

  14. Sr Isotopes and Migration of Prairie Mammoths (Mammuthus columbi) from Laguna de las Cruces, San Luis Potosi, Mexico

    Solis-Pichardo, G.; Perez-Crespo, V.; Schaaf, P. E.; Arroyo-Cabrales, J.


    Asserting mobility of ancient humans is a major issue for anthropologists. For more than 25 years, Sr isotopes have been used as a resourceful tracer tool in this context. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. Sr isotope ratios are obtained through the geologic substrate and its overlying soil, from where an individual got hold of food and water; these ratios are in turn incorporated into the dentition and skeleton during tissue formation. In previous studies from Teotihuacan, Mexico we have shown that a three-step leaching procedure on tooth enamel samples is important to assure that only the biogenic Sr isotope contribution is analyzed. The same Sr isotopic tools can function concerning ancient animal migration patterns. To determine or to discard the mobility of prairie mammoths (Mammuthus columbi) found at Laguna de las Cruces, San Luis Potosi, México the leaching procedure was applied on six molar samples from several fossil remains. The initial hypothesis was to use 87Sr/86Sr values to verify if the mammoth population was a mixture of individuals from various herds and further by comparing their Sr isotopic composition with that of plants and soils, to confirm their geographic origin. The dissimilar Sr results point to two distinct mammoth groups. The mammoth population from Laguna de Cruces was then not a family unit because it was composed by individuals originated from different localities. Only one individual was identified as local. Others could have walked as much as 100 km to find food and water sources.

  15. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes

    Futa, K.; Stern, C.R.


    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra

  16. Sr isotope evolution during chemical weathering of granites -- impact of relative weathering rates of minerals

    MA; Yingjun


    [1]Ma, Y. J., Liu, C. Q., Geochemistry of strontium isotopes in the crust weathering system, Acta Mineralogica Sinica (in Chinese), 1998, 18(3): 350.[2]Ma, Y. J., Liu, C. Q., Using strontium isotopes to trace nutrient element circulation and hydrochemical evolution within an ecosystem, Advance in Earth Sciences (in Chinese), 1999, 14 (4): 377.[3]Brantley, S. L., Chesley, J. T., Stillings, L. L., Isotopic ratios and release rates of strontium from weathering feldspars, Geochim. Cosmochim. Acta, 1998, 62(9): 1493.[4]Blum, J. D., Erel, Y., A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation, Nature, 1995, 373: 415.[5]Blum, J. D., Erel, Y., Rb-Sr isotope systematics of granitic soil chronosequence: The importance of biotite weathering, Geochim. Cosmochim. Acta, 1997, 61(15): 3193.[6]Bullen, T., Krabbenhoft, D., Kendall, C., Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA, Geochim. Cosmochim. Acta, 1996, 60: 1807.[7]Bullen, T., White, A., Blum, A. et al., Chemical weathering of a soil chronosequence on granitoid alluvium: Ⅱminer-alogic and isotopic constraints on the behavior of strontium, Geochim. Cosmochim. Acta, 1997, 61: 291.[8]Blum, J. D., Erel, Y., Brown, K., 87Sr/86Sr ratios of Sierra Nevada stream waters: Implications for relative mineral weath-ering rates, Geochim. Cosmochim. Acta, 1993, 57: 5019.[9]Ma Yingjun, Trace element and strontium isotope geochemistry during chemical weathering, Ph. D. Dissertation, 1999, Institute of Geochemistry, Chinese Academy of Sciences.[10]Nesbitt, H. W., Markovics, G., Price, R. C., Chemical processes affecting alkalis and alkaline earths during continental weathering, Geochim. Cosmochim. Acta, 1980, 44: 1659.[11]Clauer, N., Strontium and argon isotopes in naturally weathered biotites, muscovites and feldspars, Chem. Geol., 1981, 31: 325.[12

  17. Stable Isotopes of Sr and Pb as Tracers of Sources of Airborne Particulate Matter in Kyrgyzstan

    ConclusionsElemental concentrations were higher at the LIDAR site compared to the Bishkek site. Also, concentrations were higher during dust than non-dust events at both sites.The Sr isotopic ratios suggest dust from another region, such as from Western China, Africa, or Middle E...

  18. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    Hui, H.; Neal, C. R.; Shih, C.-Y.; Nyquist, L. E.


    Four eruption episodes were identified for A-14 high-Al basalts. Rb-Sr isotopic data and ITE ratios show that their parental melt compositions of are correlated through mixing of evolved components with a relatively primitive magma ocean cumulate.

  19. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution

    Sherman, Laura S., E-mail: [University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109 (United States); Blum, Joel D. [University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109 (United States); Dvonch, J. Timothy [University of Michigan, Air Quality Laboratory, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Gratz, Lynne E. [University of Washington-Bothell, 18115 Campus Way NE, Bothell, WA 98011 (United States); Landis, Matthew S. [U.S. EPA, Office of Research and Development, Research Triangle Park, NC 27709 (United States)


    The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) present human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it is difficult to trace emissions from point sources to impacted sites. Recent studies suggest that metal isotope ratios may be useful for distinguishing between and tracing source emissions. We measured Pb, strontium (Sr), and Hg isotope ratios in daily precipitation samples that were collected at seven sites across the Great Lakes region between 2003 and 2007. Lead isotope ratios ({sup 207}Pb/{sup 206}Pb = 0.8062 to 0.8554) suggest that Pb deposition was influenced by coal combustion and processing of Mississippi Valley-Type Pb ore deposits. Regional differences in Sr isotope ratios ({sup 87}Sr/{sup 86}Sr = 0.70859 to 0.71155) are likely related to coal fly ash and soil dust. Mercury isotope ratios (δ{sup 202}Hg = − 1.13 to 0.13‰) also varied among the sites, likely due to regional differences in coal isotopic composition, and fractionation occurring within industrial facilities and in the atmosphere. These data represent the first combined characterization of Pb, Sr, and Hg isotope ratios in precipitation collected across the Great Lakes region. We demonstrate the utility of multiple metal isotope ratios in parallel with traditional trace element multivariate statistical modeling to enable more complete pollution source attribution. - Highlights: • We measured Pb, Sr, and Hg isotopes in precipitation from the Great Lakes region. • Pb isotopes suggest that deposition was impacted by coal combustion and metal production. • Sr isotope ratios vary regionally, likely due to soil dust and coal fly ash. • Hg isotopes vary due to fractionation occurring within facilities and the atmosphere. • Isotope results support conclusions of previous trace element receptor modeling.

  20. Addressing the current bottlenecks of metabolomics: Isotopic Ratio Outlier Analysis™, an isotopic-labeling technique for accurate biochemical profiling.

    de Jong, Felice A; Beecher, Chris


    Metabolomics or biochemical profiling is a fast emerging science; however, there are still many associated bottlenecks to overcome before measurements will be considered robust. Advances in MS resolution and sensitivity, ultra pressure LC-MS, ESI, and isotopic approaches such as flux analysis and stable-isotope dilution, have made it easier to quantitate biochemicals. The digitization of mass spectrometers has simplified informatic aspects. However, issues of analytical variability, ion suppression and metabolite identification still plague metabolomics investigators. These hurdles need to be overcome for accurate metabolite quantitation not only for in vitro systems, but for complex matrices such as biofluids and tissues, before it is possible to routinely identify biomarkers that are associated with the early prediction and diagnosis of diseases. In this report, we describe a novel isotopic-labeling method that uses the creation of distinct biochemical signatures to eliminate current bottlenecks and enable accurate metabolic profiling.

  1. The Sr-isotopic stratigraphy of the Northern Limb of the Bushveld Complex, South Africa

    Mangwegape, Mpho; Roelofse, Frederick; Mock, Timothy; Carlson, Richard W.


    We present a compilation of Sr-isotopic data obtained on plagioclase from 27 samples covering the entire stratigraphy of the Northern Limb of the Bushveld Complex as determined by LA-MC-ICPMS. The lower parts of the Main Zone in the Northern Limb are characterised by significant variations in Sr-isotopic compositions (87Sr/86Sr ˜0.7087 ± 0.0005 (1-σ)) coupled with very limited differentiation as exemplified by plagioclase An%, suggesting construction of the lower Main Zone through the repeated influx of magmas. Fairly constant Sr-isotopic compositions of plagioclase within the Upper and upper Main Zones (87Sr/86Sr ˜0.7073 ± 0.0003) coupled with a broad normal differentiation trend are suggestive of fractionation processes being the dominant factor in the petrogenesis of these zones. The present results argue against the laterally extensive troctolite horizon of the Northern Limb having a Critical Zone parentage or being the direct equivalent of the Pyroxenite Marker in the Northern Limb. It may, however, be an analogue of the Pyroxenite Marker in that it occurs at the approximate level where the last voluminuous influx of magma into the Northern Limb is inferred to have taken place. The nature of the magmas that gave rise to the lower parts of the Main Zone in the Northern Limb deserves further investigation in light of the fact that plagioclase here shows considerable variation both within and between individual co-existing plagioclase crystals that may point to the intrusion of crystal mushes as opposed to aphyric liquids.

  2. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the southern Andes

    Futa, Kiyoto; Stern, C.R.


    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46/sup 0/S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54/sup 0/S) range for /sup 87/Sr//sup 86/Sr from 0.70280 to 0.70591 and for /sup 143/Nd//sup 144/Nd from 0.51314 to 0.51255. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have /sup 87/Sr//sup 86/Sr, /sup 143/Nd//sup 144/Nd, La/Yb, Ba/La and Hf/Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35/sup 0/S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33/sup 0/ and 34/sup 0/S, basaltic andesites and andesites have higher /sup 87/Sr//sup 86/Sr, Rb/Cs, and Hf/Lu, and lower /sup 143/Nd//sup 144/Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54/sup 0/S) has Sr and Nd isotopic compositions and K/Rb and Ba/La similar to MORB. The high La/Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO/sub 2/, K/sub 2/O, Rb, Ba, Ba/La, and /sup 87/Sr//sup 86/Sr and decrease in MgO, Sr, K/Rb, Rb/Cs, and /sup 143/Nd//sup 144/Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra-crustal contamination. (orig./SHOE).

  3. REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions.

    Geagea, M Lahd; Stille, P; Millet, M; Perrone, Th


    A comprehensive Pb-Sr-Nd isotope and REE tracer study of atmospheric trace metal pollution by a steel plant situated to the north of the urban communities of Strasbourg (France) and Kehl (Germany) has been performed using tree barks as biomonitors. The 206Pb/207Pb and 208Pb/207Pb isotopic ratios of the steel plant's filter dust are similar to values found in dust of waste incinerators. The 87Sr/86Sr ratio is similar to present-day ratios of Phanerozoic or Precambrian granitic rocks. The 143Nd/144Nd isotopic composition is very low and corresponds to an (Nd) value of -17.5. Such a low value is characteristic of old Precambrian granitic rocks and banded iron formations. Thus, this low (Nd) value might point to the origin of the iron necessary for the steel production. The fact, that this isotopic composition does not occur in crustal rocks of Western Central Europe makes the Nd isotope ratio a powerful tool to trace steel plants atmospheric emissions. The rare earth element (REE) distribution pattern of the steel plant's filter dust shows very specific fractionations like La and Nd enrichments which are traceable in tree barks over a distance of 4 km. The Pb, Sr and Nd isotope ratios not only enable the steel plant's emissions to be traced in a north-easterly direction, along the principal wind pathway but also enables the interference of this emission at 4 km NE from the steel plant with another atmospheric component originating from the Strasbourg Rhine harbour to be identified.

  4. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland

    Zieliński, Mateusz, E-mail: [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Dopieralska, Jolanta, E-mail: [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Belka, Zdzislaw, E-mail: [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Walczak, Aleksandra, E-mail: [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Siepak, Marcin, E-mail: [Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań (Poland); Jakubowicz, Michal, E-mail: [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland)


    Anthropogenic impact on surface waters and other elements in the environment was investigated in the Noteć River basin in central Poland. The approach was to trace changes in the Sr isotope composition ({sup 87}Sr/{sup 86}Sr) and concentration in space and time. Systematic sampling of the river water shows a very wide range of {sup 87}Sr/{sup 86}Sr ratios, from 0.7089 to 0.7127. This strong variation, however, is restricted to the upper course of the river, whereas the water in the lower course typically shows {sup 87}Sr/{sup 86}Sr values around 0.7104–0.7105. Variations in {sup 87}Sr/{sup 86}Sr are associated with a wide range of Sr concentrations, from 0.14 to 1.32 mg/L. We find that strong variations in {sup 87}Sr/{sup 86}Sr and Sr concentrations can be accounted for by mixing of two end-members: 1) atmospheric waters charged with Sr from the near-surface weathering and wash-out of Quaternary glaciogenic deposits, and 2) waters introduced into the river from an open pit lignite mine. The first reservoir is characterized by a low Sr content and high {sup 87}Sr/{sup 86}Sr ratios, whereas mine waters display opposite characteristics. Anthropogenic pollution is also induced by extensive use of fertilizers which constitute the third source of Sr in the environment. The study has an important implication for future archeological studies in the region. It shows that the present-day Sr isotope signatures of river water, flora and fauna cannot be used unambiguously to determine the “baseline” for bioavailable {sup 87}Sr/{sup 86}Sr in the past. - Highlights: • Sr isotopes fingerprint water sources and their interactions in a complex river system. • Mine waters and fertilizers are critical anthropogenic additions in the river water. • Limited usage of environmental isotopic data in archeological studies. • Sr budget of the river is dynamic and temporary.

  5. Conservation of (87)Sr/(86)Sr isotopic ratios during the winemaking processes of 'Red' wines to validate their use as geographic tracer.

    Marchionni, Sara; Buccianti, Antonella; Bollati, Andrea; Braschi, Eleonora; Cifelli, Francesca; Molin, Paola; Parotto, Maurizio; Mattei, Massimo; Tommasini, Simone; Conticelli, Sandro


    (87)Sr/(86)Sr has been determined in wines, musts grape juices, soils and rocks from six selected vineyards of 'Cesanese' wine area. Cesanese is a monocultivar wine from a small region characterised by different geologic substrata, a key locality to test the influence of both substratum and winemaking procedure on the (87)Sr/(86)Sr of wines. Experimental work has been performed on wines from different vintage years to check possible seasonal variations. The data reveal that (87)Sr/(86)Sr does not change through time, to validate the selection of wineries performed, and in addition no isotopic variations are observed during winemaking. Indeed, no significant isotopic variations have been observed in musts and wines. These findings reinforce the hypothesis that the isotopic signature of wines is strongly related to the bioavailable fraction of the soil rather than to its bulk. The data corroborate the possibility that Sr-isotopes of high-quality wines can be used as a reliable tool for fingerprinting wine geographic provenance.

  6. Interpretation of isotopic data in groundwater-rock systems: Model development and application to Sr isotope data from Yucca Mountain

    Johnson, Thomas M.; Depaolo, Donald J.


    A model enabling extraction of hydrologic information from spatial and temporal patterns in measurements of isotope ratios in water-rock systems is presented. The model describes the evolution of isotope ratios in response to solute transport and water-rock interaction. In advective systems, a single dimensionless parameter (a Damköhler number, ND) dominates in determining the distance over which isotopic equilibrium between the water and rock is approached. Some isotope ratios act as conservative tracers (ND ≪ 1), while others reflect only interaction with the local host rock (ND ≫ 1). If ND is close to one (i.e., the distance for equilibration is close to the length scale of observation), isotope ratio measurements can be used to determine ND, which in turn may yield information concerning reaction rates, or spatial variations in water velocity. Zones of high velocity (e.g., as a result of greater fracture density), or less reactive zones, may be identified through observation of their lower ND values. The model is applied to paleohydrologic interpretations of Sr isotope data from calcite fracture fillings in drill cores from Yucca Mountain, Nevada (Marshall et al., 1992). The results agree with other studies suggesting "fast path" transport in the unsaturated zone. Also, we find that the data do not give a conclusive indication of paleowater table elevation because of the effects of water-rock interaction.

  7. Minor-element and Sr-isotope geochemistry of tertiary stocks, Colorado mineral belt

    Simmons, E.C.; Hedge, C.E.


    Rocks of the northeast portion of the Colorado mineral belt form two petrographically, chemically and geographically distinct rock suites: (1) a silica oversaturated granodiorite suite; and (2) a silica saturated, high alkali monzonite suite. Rocks of the granodiorite suite generally have Sr contents less than 1000 ppm, subparallel REE patterns and initial 87Sr/ 86Sr ratios greater than 0.707. Rocks of the monzonite suite are restricted to the northeast part of the mineral belt, where few rocks of the granodiorite suite occur, and generally have Sr contents greater than 1000 ppm, highly variable REE patterns and 87Sr/86Sr initial ratios less than 0.706. Despite forming simple, smooth trends on major element variation diagrams, trace element data for rocks of the granodiorite suite indicate that they were not derived from a single magma. These rocks were derived from magmas having similar REE patterns, but variable Rb and Sr contents, and Rb/Sr ratios. The preferred explanation for these rocks is that they were derived by partial melting of a mixed source, which yielded pyroxene granulite or pyroxenite residues. The monzonite suite is chemically and petrographically more complex than the granodiorite suite. It is subdivided here into alkalic and mafic monzonites, and quartz syenites, based on the textural relations of their ferromagnesian phases and quartz. The geochemistry of these three rock types require derivation from separate and chemically distinct magma types. The preferred explanation for the alkalic monzonites is derivation from a heterogeneous mafic source, leaving a residue dominated by garnet and clinopyroxene. Early crystallization of sphene from these magmas was responsible for the severe depletion of the REE observed in the residual magmas. The lower Sr content and higher Rb/Sr ratios of the mafic monzonites requires a plagioclase-bearing source. The Sr-isotope systematics of the majority of these rocks are interpreted to be largely primary, and not

  8. Sr, Ca, and C isotope systematic in small tropical catchments, La Selva, Costa Rica

    Wiegand, B. A.; Schwendenmann, L.


    Sr, Ca, and C isotopes were analyzed to assess sources and biogeochemical processes affecting surface and groundwater composition of four small catchments located at La Selva Biological Station, Costa Rica. 87Sr/86Sr ratios were employed to quantify inputs from mineral weathering and atmospheric sources. δ13C values of dissolved organic carbon (DOC) and δ44Ca values provide information on biological processes that affect water chemistry. Sr2+ and Ca2+ concentrations of surface and groundwater show large variations due to intermixture of bedrock groundwater with local groundwater [1]. Low 87Sr/86Sr ratios suggest weathering of volcanic rocks as the primary solute source in bedrock groundwater, while atmospheric and in situ weathering contributions are predominant in local groundwater. Contributions of bedrock groundwater constitute > 60 % in the Salto, Saltito and Arboleda catchments, whereas the Taconazo catchment receives atmospheric inputs of > 95 % in addition to local weathering contributions. Surface water and groundwater wells show δ13C-DOC values between -24 ‰ and -30 ‰ due to transfer of organic carbon from the soil zone. δ44Ca values of dissolved Ca2+ in surface and groundwater are considerably fractionated from the input sources rainwater and bedrock groundwater. Light δ44Ca values are preferentially distributed in stream water and shallow groundwater horizons and contrast with heavy Ca isotopes in deeper groundwater wells. Biological processes including plant uptake and decomposition in combination with cation exchange processes in the soils may explain the fractionation of Ca isotopes. [1]Genereux et al., 2009. Water Resour. Res, 45, W08413, doi:10.1029/2008WR007630

  9. Rb-Sr and Sm-Nd Isotopic Studies of Lunar Green and Orange Glasses

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.


    Lunar volcanic glassy beads have been considered as quenched basaltic magmas derived directly from deep lunar mantle during fire-fountaining eruptions [1]. Since these sub-mm size glassy melt droplets were cooled in a hot gaseous medium during free flight [2], they have not been subject to mineral fractionations. Thus, they represent primary magmas and are the best samples for the investigation of the lunar mantle. Previously, we presented preliminary Rb- Sr and Sm-Nd isotopic results for green and orange glassy samples from green glass clod 15426,63 and orange soil 74220,44, respectively [3]. Using these isotopic data, initial Sr-87/Sr-86 and Nd ratios for these pristine mare glass sources can be calculated from their respective crystallization ages previously determined by other age-dating techniques. These isotopic data were used to evaluate the mineralogy of the mantle sources. In this report, we analyzed additional glassy samples in order to further characterize isotopic signatures of their source regions. Also, we'll postulate a relationship between these two major mare basalt source mineralogies in the context of lunar magma ocean dynamics.

  10. Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence

    Bullen, Thomas D.; Chadwick, Oliver A.


    Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba recycling flux returned to the surface as litterfall. This observation implicates an uptake flux from an additional source which we attribute to biolifting. We view the heavy exchangeable Ba relative to soil parent values in deeper soils at sites where P is enriched in surface soils, and indeed at all but the wettest site across the climosequence, to represent the complement of an isotopically light Ba fraction removed from these soils by plant roots consistent with the biolifting hypothesis. We further suggest that

  11. Gamma-spectrometric determination of the sup 8 sup 9 Sr isotope half-life

    Popov, Y S; Markushin, M N; Kupriyanov, V N; Timofeev, G A


    Using the method of semiconductor [Ge(Li)-detector] gamma-spectroscopy by the results of measurements of 913 keV ( sup 8 sup 9 Sr) gamma-line intensity for 6000 h, using as internal reference the 661.7 keV ( sup 1 sup 3 sup 7 Cs) gamma-line, the value of sup 8 sup 9 Sr isotope half-life has been calculated, which proved to be 1208+-9 h or 50.34+-0.37 days. Error is provided for confidential probability P = 0.95

  12. The geographic distribution of Sr isotopes from surface waters and soil extracts over the island of Bornholm (Denmark) – A base for provenance studies in archaeology and agriculture

    Frei, Robert; Frei, Karin Margarita


    In this paper we report the Sr isotope signatures, and Sr, Al and Na concentrations of 30 surface waters (lakes/ponds and rivers/creeks) and 19 soil sample extracts from the island of Bornholm (Denmark) and present a categorized 87Sr/86Sr value distribution map that may serve as a base for proven......In this paper we report the Sr isotope signatures, and Sr, Al and Na concentrations of 30 surface waters (lakes/ponds and rivers/creeks) and 19 soil sample extracts from the island of Bornholm (Denmark) and present a categorized 87Sr/86Sr value distribution map that may serve as a base...... for provenance studies, including archaeological migration and authenticity proof for particular food products. The Sr isotopic compositions of surface waters range from 87Sr/86Sr = 0.7097–0.7281 (average 0.7175 ± 0.0049; 1σ), whereas 0.1 M HNO3, 0.05 M HNO3, and 0.01 M CaCl2 soil extracts range from 87Sr/86Sr...... Sr isotope composition vs. Sr, Na and Al concentration relationships of soil extracts imply that lowering of the isotopic composition of leachable Sr on Bornholm results as a consequence of significant admixture to this fraction of Sr deposited as marine salts (aerosols), and that rainwater only has...

  13. Experimental evidence shows no fractionation of strontium isotopes ((87)Sr/(86)Sr) among soil, plants, and herbivores: implications for tracking wildlife and forensic science.

    Flockhart, D T Tyler; Kyser, T Kurt; Chipley, Don; Miller, Nathan G; Norris, D Ryan


    Strontium isotopes ((87)Sr/(86)Sr) can be useful biological markers for a wide range of forensic science applications, including wildlife tracking. However, one of the main advantages of using (87)Sr/(86)Sr values, that there is no fractionation from geological bedrock sources through the food web, also happens to be a critical assumption that has never been tested experimentally. We test this assumption by measuring (87)Sr/(86)Sr values across three trophic levels in a controlled greenhouse experiment. Adult monarch butterflies were raised on obligate larval host milkweed plants that were, in turn, grown on seven different soil types collected across Canada. We found no significant differences between (87)Sr/(86)Sr values in leachable Sr from soil minerals, organic soil, milkweed leaves, and monarch butterfly wings. Our results suggest that strontium isoscapes developed from (87)Sr/(86)Sr values in bedrock or soil may serve as a reliable biological marker in forensic science for a range of taxa and across large geographic areas.

  14. Enhancement of ferromagnetism by oxygen isotope substitution in strontium ruthenate SrRuO3

    Kawanaka, Hirofumi; Aiura, Yoshihiro; Hasebe, Takayuki; Yokoyama, Makoto; Masui, Takahiko; Nishihara, Yoshikazu; Yanagisawa, Takashi


    The oxygen isotope effect of the ferromagnetic transition in itinerant ferromagnet strontium ruthenate SrRuO3 with a Curie temperature Tc of 160 K is studied. We observed for the first time a shift of ∆Tc ~ 1 K by oxygen isotope substitution of 16O → 18O in SrRuO3 by precise measurements of DC and AC magnetizations. The results surprisingly lead to the noteworthy inverse isotope effect with negative coefficient α = -∂ lnTc/∂ lnM. The Raman spectra indicate that the main vibration frequency of 16O at 363 cm-1 shifts to 341 cm-1 following oxygen isotope substitution 18O. This shift is remarkably consistent with the Debye frequency being proportional to ∝ 1√M where M is the mass of an oxygen atom. The positive isotope shift of ∆Tc can be understood by taking account of the electron-phonon interaction.

  15. Sr isotope geochemistry of megacrysts from continental rift and converging plate margin alkaline volcanism in South Italy

    Vollmer, R.; Johnston, Kate; Ghiara, M. R.; Lirer, L.; Munno, Rosalba


    Mineral phases of two-clinopyroxene alkaline lavas from continental rift and plate margin volcanism in South Italy have been analyzed for their Sr isotopic composition and concentration. Sr isotope disequilibria are observed between megacrysts and groundmass in all seven analysed Campanian potassic lavas, but not in a lava from Stromboli, a volcano in the Eolian arc. Variations in 87Sr/ 86Sr ratios for different phases in the lavas are likely to reflect primary Sr isotope variations in the primitive lavas (rather than crustal contamination effects). It is suggested that the observed mineral disequilibria point to the intimate association of a range of primary magmas and small-scale source heterogeneities for the Campanian volcanism. The lack of mineral disequilibria for Stromboli suggests that here source heterogeneities are absent or else exist on a very much larger scale. It is therefore unlikely that there is any genetic connection between these two types of alkaline volcanism in South Italy.

  16. Sr isotopic chemostratigraphy of Precambrian carbonate rocks in the Amderma Rise, Pai-Khoi Ridge

    Kuznetsov, A. B.; Starikova, E. V.; Maslov, A. V.; Konstantinova, G. V.


    The Sr and C isotopic compositions of Precambrian carbonate rocks are determined for Amderma Rise, in the northeastern margin of Pai-Khoi Ridge. Based on the Sr isotopic chemostratigraphy, it is established for the first time that the Amderma Formation is referred to the Early Vendian, while the Morozovsk Formation is Late Riphean in age. This conclusion along with detailed mapping proves that the Precambrian "section" of the Amderma Rise is a series of tectonic plates combined in a nonchronostratigraphic order. Volcanic and sedimentary rocks of the Morozovsk and Sokolninsk formations make up the allochthon proper, while carbonate rocks of the Amderma Formation make up the para-autochthon. The high values of δ13C (up to +9.5‰) identified in limestones of both formations suggest a considerable distance of the Pai-Khoi paleobasin from the passive margin of the Baltic Region upon facies similarity to the Laurentia active margins.

  17. Description of the neutron deficient Sr and Zr isotopes in the interacting boson model

    Bucurescu, D.; Cata, G.; Cutoiu, D.; Constantinescu, G.; Ivascu, M.; Zamfir, N.V. (Institutul Central de Fizica, Bucharest (Romania))


    The available experimental data for the neutron deficient isotopes of Sr (78 to 86) and Zr (80 to 86) are collected and compared to the predictions of IBA-1 model calculations. The variations of the collectivity along these two isotopic chains is well reproduced with a set of smoothly varying parameters of the model. The description of both the energy levels and the B(E2) transition probabilities improves with decreasing N, the hamiltonian evolving towards an SU(3) dynamical symmetry. Both the large B(E2) value of the 2/sub 1//sup +/->0/sup +/sub(g.s.) transition and the predicted prolate shape for the very light isotopes, agree well with the recent findings of superdeformed nuclei around Z, N proportional 38. Transition strengths for the (p,t) reaction are calculated and compared to experimental observations for 0/sup +/ states, and a discussion is made about the possible intruder character of the O/sub 2//sup +/ state. The interacting boson-fermion approximation (IBFA) model is used to extend the calculations to some odd nuclei. Two shell (1gsub(9/2), 2dsub(5/2)) calculations are performed for the positive-parity states in /sup 83/Sr, /sup 81/Sr and /sup 85/Y and they compare well with the experimental level scheme of these nuclei below 3 MeV excitation.

  18. Rb-Sr and Nd-Sr isotope geochemistry and petrogenesis of the Misho Mountains mafic dikes (NW Iran

    Maryam Ahankoub


    Full Text Available Introduction There are some theories about the Paleotethys event during the Paleozoic that have been proposed by geologists (Metcalfe, 2006. Some scientist offered some pieces of evidence about the northern margin of Gondwana (Zhu et al., 2010. The Paleotethys Ocean and Hercynian orogenic report first in Iran, have been Offered from the Morrow and Misho Mountain (Eftekharnejad, 1981. Misho Mountains is located between the north and south Misho faults and cause the formation of a positive flower structure (Moayyed and Hossainzade, 2011. There is theory about Misho southern fault as the best candidate of the Paleotethys suture zone (Moayyed and Hossainzade, 2011. Geochemistry and Sr –Nd isotopic data of the A2 granitic and Synite rocks of the East Misho, indicate that the magmatism post collision has occurred in the active continental margin by extensional zones of the following the closure of the Paleotethys (Ahankoub, 2012. Granite and syenite rocks have been cut by mafic dikes. Mafic dikes are often formed in extensional tectonic settings related to mantle plume or continental break –up (Zhu et al., 2009. In this paper, we use the geochemistry and Nd-Sr isotope data to determined petrogenesis, tectono-magmatic setting and age of Misho mafic dikes. Materials and methods After petrography study of 30 thin sections of mafic dike rocks, 8 samples were selected for whole-rock chemical analyses using ICP-MS and ICP-AES instruments by ACME Company in Vancouver, Canada. We prepared 6 sample For Sm-Nd and Rb-Sr analysis. Sr and Nd isotope ratios were measured with a thermal ionization mass spectrometer, VG Sector 54–30 at the Nagoya University. The isotope abundances of Rb, Sr, Nd, and Sm were measured by the ID method with a Finnigan MAT Thermoquad THQ thermal ionization quadrupole mass spectrometer at the Nagoya University. NBS987 and JNdi-1 were measured as natural Sr and Nd isotope ratio standards (Tanaka et al., 2000. Averages and 2σ errors

  19. Refinement of the supercontinent cycle with Hf, Nd and Sr isotopes

    Kent C. Condie


    External and internal orogens show similar patterns in ɛNd and ɛHf with age suggesting that both juvenile and reworked crustal components are produced in both types of orogens with similar proportions. However, both types of orogens clearly produce more juvenile isotopic signatures in retreating mode than in advancing mode. Many secular changes in ɛHf and ɛNd distributions correlate with the supercontinent cycle. Although supercontinent breakup is correlated with short-lived decreasing ɛHf and ɛNd (≤100 Myr for most supercontinents, there is no isotopic evidence for the breakup of the Paleoproterozoic supercontinent Nuna. Assembly of supercontinents by extroversion is recorded by decreasing ɛNd in granitoids and metasediments and decreasing ɛHf in zircons, attesting to the role of crustal reworking in external orogens in advancing mode. As expected, seawater Sr isotopes increase and seawater Nd isotopes decrease during supercontinent assembly by extroversion. Pangea is the only supercontinent that has a clear isotopic record of introversion assembly, during which median ɛNd and ɛHf rise rapidly for ≤100 Myr. Although expected to increase, radiogenic seawater Sr decreases (and seawater Nd increases during assembly of Pangea, a feature that may be caused by juvenile input into the oceans from new ocean ridges and external orogens in retreating mode. The fact that a probable onset of plate tectonics around 3 Ga is not recorded in isotopic distributions may be due the existence of widespread felsic crust formed prior to the onset of plate tectonics in a stagnant lid tectonic regime, as supported by Nd and Hf model ages.

  20. Isotope shifts of natural Sr+ measured by laser fluorescence in a sympathetically cooled Coulomb crystal

    Dubost, B.; Dubessy, R.; Szymanski, B.; Guibal, S.; Likforman, J.-P.; Guidoni, L.


    We measured by laser spectroscopy the isotope shifts between naturally occurring even isotopes of strontium ions for both the 5s2S1/2→5p2P1/2 (violet) and the 4d2D3/2→5p2P1/2 (infrared) dipole-allowed optical transitions. Fluorescence spectra were taken by simultaneous measurements on a two-component Coulomb crystal in a linear Paul trap containing 103-104 laser-cooled Sr+ ions. The isotope shifts are extracted from the experimental spectra by fitting the data with the analytical solution of the optical Bloch equations describing a three-level atom interacting with two laser beams. This technique allowed us to increase the precision with respect to previously reported data obtained by optogalvanic spectroscopy or fast atomic-beam techniques. The results for the 5s2S1/2→5p2P1/2 transition are ν88-ν84=+378(4) MHz and ν88-ν86=+170(3) MHz, in agreement with previously reported measurements. In the case of the previously unexplored 4d2D3/2→5p2P1/2 transition we find ν88-ν84=-828(4) MHz and ν88-ν86=-402(2) MHz. These results provide more data for stringent tests of theoretical calculations of the isotope shifts of alkali-metal-like atoms. Moreover, they simplify the identification and the addressing of Sr+ isotopes for ion frequency standards or quantum-information-processing applications in the case of multi-isotope ion strings.

  1. Extreme heterogeneity in Sr isotope systematic in the Himalayan leucogranites: A possible mechanism of partial melting based on thermal modeling

    Dilip K Mukhopadhyay


    The small leucogranite plutons occurring in linear belts in the Higher Himalayas have formed due to post-collision partial melting within the Himalayan crust. Several studies have documented that the Sr isotopic ratios in the granite bodies show chaotic variation and meaningful Rb-Sr isochron ages are difficult, if not impossible, to obtain. In tectonically overthickened crust, the depth-temperature profile (geotherm) remains strongly transient for the first tens of millions of years. It is proposed here that the intersecting relations between the transient geotherms and activity-dependent solidus/melting curves may generate small pods of magma at di erent depths and at di erent times. Each of these pods will have its unique Sr isotopic ratios. Coalescence of these small pods of magma without any e ective homogenization due to deformation-induced fast segregation, ascent and emplacement may lead to pluton-wide extreme heterogeneity in Sr isotopic ratios.

  2. Strontium isotope ({sup 87}SR/{sup 86}SR) chemistry in produced oilfield waters : the IEA Weyburn CO{sub 2} Monitoring and Storage Project

    Quattrocchi, F.; Bencini, R.; Cinti, D.; Galli, G.; Pizzino, L.; Voltattorni, N. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Barbieri, M. [La Sapienza Univ., Rome (Italy). IGAG-CNR; Durocher, K.; Shevalier, M. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics; Gunter, W.D.; Perkins, E.H. [Alberta Research Council, Edmonton, AB (Canada)


    A water-alternating-gas (WAG) enhanced oil recovery (EOR) technique is used at the Weyburn Field in southern Saskatchewan, the site of an international project on carbon sequestration. Carbon dioxide (CO{sub 2}) and water are injected into the Midale Formation of the Weyburn Field. In 2001, Italy's Istituto Nazionale di Geofisica e Vulcanologia (INGV) conducted geochemical monitoring of the Weyburn Field oil waters in conjunction with the University of Calgary and the Alberta Research Council. In addition to the main chemistry and gas chemistry, approximately 25 strontium isotopic ratios ({sup 87}Sr/{sup 86}Sr) were analysed in order to improve the knowledge about the CO{sub 2} storage potential. The main reason for monitoring produced fluid and gas isotopes is to quantify water-gas-rock reactions in the reservoir and to better predict the long-term storage of CO{sub 2} in the subsurface. This paper described in detail the methodology used to measure the {sup 87}Sr/{sup 86}Sr ratio. The areas characterized by lowest values of the Sr isotopic ratio represented contamination zones of Mississippian Midale fluids by re-injected Mannville make-up water. These zones had lower Sr isotopic values that coincided with the highest injection volumes of Cretaceous water used for industrial flooding. Concurrently, the average field-wide {sup 87}Sr/{sup 86}Sr values were approaching Mississippian host-rock values, pointing towards areas of the field characterized by higher carbonate dissolution, as a result of continue CO{sub 2} injection. Both injected CO{sub 2} and carbonate mineral dissolution in the reservoir have been traced. Injected CO{sub 2} has a distinctive {delta}{sup 13}C signature of -21 per cent, a value that remained stable through 2 years of up to 10 per cent CO{sub 2} recycling. Therefore, the second strontium isotope scenario fits well with the {delta}{sup 13}C data. The Sr isotopic ratio in produced fluids increases with time, indicating input from

  3. Tracking selenium behaviour in chalk aquifer (northern France): Sr and 34S-sulphates isotopes constraints.

    Cary, Lise; Benabderraziq, Hind; Elkhattabi, Jamal; Parmentier, Marc; Gourcy, Laurence; Négrel, Philippe


    Groundwaters in parts of the Paris Basin (France) are facing increasing selenium (Se) contents that can exceed the drinking water limit of 10 μg/L according to the European Framework Directive in the field of water policy (2000/60/EC). To better understand the groundwater origins and the selenium dynamics, the water chemistry of the Chalk aquifer supplying drinkable water to Lille city was studied. This area is submitted to quantitative and qualitative pressure from industrial, urban and agriculture origins. An integrated study was settled to determine the water sources and dynamics of elements, with a focus on Se. After a large chemical characterisation of the groundwater chemistry in the four field wells, a monthly monitoring was held in four wells and in the Deûle channel. Chemical analysis of major and trace elements, stable isotopes (δ18O, δ2H), strontium isotopes, and δ34S and δ18O of sulphates were realised. The chemical composition of solids sampled at various depths at vicinity of the four wells was also analysed. The specific geochemical signature of groundwater as revealed by Sr isotopes, in addition to element concentrations ratios like Mg/Sr and Se/Sr, highlighted mixture of three main groundwaters bodies: (1) the upstream groundwaters in the recharge area with the most radiogenic 87Sr/86Sr isotopic signature; (2) the confined groundwaters with high Sr concentrations due to water-rock interactions and the lowest 87Sr/86Sr isotopic signature close to the one of the chalk in Paris and London basins; (3) the Se-rich formations of Tertiary and Quaternary. The contents of Se, mainly present as SeV I (and locally as SeIV ), displayed spatial and temporal disparities that can be explained by geological and hydrogeological conditions. Se-rich clayed sediments originating from the dismantling of Se-rich tertiary formations (i.e. Ypresian) overlay the chalk formation and can be found in saturated conditions depending of the water table level. Oxidation of

  4. Geochemistry of trace elements and Sr- Nd isotopes of foraminifera shell from the Okinawa Trough


    Trace elemental associations and Sr - Nd isotopic compositions are of important to recognition of biogenic material from mixed marine sediments. The foraminifera shell from the Okinawa Trough strongly enrichesSr, P, Mn andBa, enriches Li, U, Th, Sc, Co, Cu, Pb, Zn, Cr, Rb, Y, Sb and light rare earth elements, slightly enriches V, Ga, Zr, Nb, Cd and middle rare earth elements,is short of Mo, In, Sn, Cs, Hf, Ta, W, Ti, Bi and heavy rare earth elements. The mechanism of elemental enrichment in forminifera is the concentrations of trace elements in sea water and selective absorption of trace elements during foraminifera living, as well as the geochemical affinity between major elements and trace elements. The REE (rare earth elements) partition pattern of foraminifera shell of the Okinawa Trough shows enrichment of middle rare earth elements with slightly negative Ce anomaly,which are different from those of foraminifera of the Pacific Ocean. The Sr, Nd isotopic ratios of the Okinawa Trough foraminifera are 0.709 769 and 0.512 162, respectively, which are different not only from those of oceanic water, but also from those of river water of China's Mainland, the former is slightly higher than those of oceanic water, but much lower than those of river water; the latter is slightly lower than those of oceanic water, but higher than those of river water, demonstrating that the Okinawa Trough sea water has been influenced by river water of China's Mainland.

  5. U-Sr isotopic speedometer: Fluid flow and chemical weatheringrates inaquifers

    Maher, Kate; DePaolo, Donald J.; Christensen, John N.


    Both chemical weathering rates and fluid flow are difficultto measure in natural systems. However, these parameters are critical forunderstanding the hydrochemical evolution of aquifers, predicting thefate and transport of contaminants, and for water resources/water qualityconsiderations. 87Sr/86Sr and (234U/238U) activity ratios are sensitiveindicators of water-rock interaction, and thus provide a means ofquantifying both flow and reactivity. The 87Sr/86Sr values in groundwaters are controlled by the ratio of the dissolution rate to the flowrate. Similarly, the (234U/238U) ratio of natural ground waters is abalance between the flow rate and the dissolution of solids, andalpha-recoil loss of 234U from the solids. By coupling these two isotopesystems it is possible to constrain both the long-term (ca. 100's to1000's of years) flow rate and bulk dissolution rate along the flow path.Previous estimates of the ratio of the dissolution rate to theinfiltration flux from Sr isotopes (87Sr/86Sr) are combined with a modelfor (234U/238U) to constrain the infiltration flux and dissolution ratefor a 70-m deep vadose zone core from Hanford, Washington. The coupledmodel for both (234U/238U) ratios and the 87Sr/86Sr data suggests aninfiltration flux of 5+-2 mm/yr, and bulk silicate dissolution ratesbetween 10-15.7 and 10-16.5 mol/m2/s. The process of alpha-recoilenrichment, while primarily responsible for the observed variation in(234U/238U) of natural systems, is difficult to quantify. However, therate of this process in natural systems affects the interpretation ofmost U-series data. Models for quantifying the alpha-recoil loss fractionbased on geometric predictions, surface area constraints, and chemicalmethods are also presented. The agreement between the chemical andtheoretical methods, such as direct measurement of (234U/238U) of thesmall grain size fraction and geometric calculations for that sizefraction, is quite good.

  6. Clay minerals and Sr-Nd isotopes of the sediments along the western margin of India and their implication for sediment provenance

    Kessarkar, P.M.; Rao, V.P.; Ahmad, S.M.; Babu, G.A.

    . Sr (Karim and Veizer, 2000) and Nd (Clift et al., 2002) isotopes for the sediments of the Indus River, Sr and Nd isotopes of the di¡erent Deccan Traps formations (Light- foot et al., 1990) and Sr and Nd (Peucat et al., 1989) or Nd isotopes (Harris et... of the di¡erent geological forma- tions, see legend to (A). The 87 Sr/ 86 Sr ratios and O Nd of the river sediments and geological formations (after Peucat et al., 1989; Lightfoot et al., 1990; Harris et al., 1994; Karim and Veizer, 2000; Clift et al., 2002...

  7. Precision frequency measurement of 1S0-3P1 intercombination lines of Sr isotopes

    Liu, Hui; Gao, Feng; Ye-Bing, Wang; Xiao, Tian; Jie, Ren; Ben-Quan, Lu; Qin-Fang, Xu; Yu-Lin, Xie; Hong, Chang


    We report on frequency measurement of the intercombination (5s2)1S0-(5s5p)3P1 transition of the four natural isotopes of strontium, including 88Sr (82.58%), 87Sr (7.0%), 86Sr (9.86%), and 84Sr (0.56%). A narrow-linewidth laser that is locked to an ultra-low expansion (ULE) optical cavity with a finesse of 12000 is evaluated at a linewidth of 200 Hz with a fractional frequency drift of 2.8×10-13 at an integration time of 1 s. The fluorescence collector and detector are specially designed, based on a thermal atomic beam. Using a double-pass acousto-optic modulator (AOM) combined with a fiber and laser power stabilization configuration to detune the laser frequency enables high signal-to-noise ratios and precision saturated spectra to be obtained for the six transition lines, which allows us to determine the transition frequency precisely. The optical frequency is measured using an optical frequency synthesizer referenced to an H maser. Both the statistical values and the final values, including the corrections and uncertainties, are derived for a comparison with the values given in other works. Project supported by the National Natural Science Foundation of China (Grant No. 61127901) and the Key Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).

  8. Trace elemental and 87Sr/86Sr isotopic compositions as a method for identifying sediment sources in a major coastal estuary

    Malamud-Roam, F. P.; Ingram, B. L.; Malamud-Roam, K. P.; Collins, J.


    Maintenance and health of tidal wetlands depends most fundamentally on adequate sediment supply. In the San Francisco Bay estuary, tidal marshes that once surrounded the estuary providing natural protection from storms, habitat for a variety of plant and animal species and a host of other important ecological functions, are threatened by rising sea level and insufficient sediments. We present results from an ongoing study evaluating the relative sources of sediments that feed the San Francisco Bay tidal marshlands using their geochemical signatures. We have analyzed the concentrations of 21 trace and major elements and 87Sr/86Sr isotopic ratios in the suspended sediments of major tributaries to the Sacramento - San Joaquin Delta and of smaller tributaries surrounding the northern reach of the Bay estuary. We have also analyzed the geochemical compositions of sediments from marsh surface samples and from a series of short (50-100 cm long) sediment cores collected from Novato Creek Marsh, on the western edge of San Pablo bay. Previous results show that the sediments from the three primary end members can be distinguished, and the results presented here will elaborate, using a combination of multivariate analyses and a mixing model to evaluate the likely sources of sediments occupying the marsh surface, both modern and pre- modern (i.e., before large-scale changes to California hydrologic systems). Initial elemental and 87Sr/86Sr isotopic results indicate that a significant share of the suspended sediments in the estuary and on the marsh surfaces may not come from either of the two major river systems, the Sacramento and San Joaquin. The mean 87Sr/86Sr isotopic ratio measured in samples from Sacramento river tributaries is 0. 706380 and the measured mean of samples from the San Joaquin river tributaries is 0.707191. Of the samples collected from local creeks around San Pablo bay that have been analyzed to date, there is a range of Sr isotope values from 0.709243 to 0

  9. Sr isotope study in the drainage water in semi-arid irrigation district, Adana, Turley

    Kume, T.; Akca, E.; Nakano, T.; Nagano, T.; Kapur, S.; Watanabe, T.


    The management of drainage water from irrigated lands is an important issue not only for agricultural planning but also for environmental conservation. In arid and semi-arid regions, drainage water is reused as irrigation water due to lack of enough fresh irrigation water and irrigation schemes. The drainage water reuse should be undertaken only if long-term deleterious effects on soil properties can be avoided. In addition to salt concentration, the origin of salts of drainage water should be examined to avoid agricultural and environmental pollution. The Lower Seyhan Irrigation Project (LSIP), Adana, Turkey, faces to the Mediterranean. In the LSIP, intensive irrigated agriculture has conducted since 1960s. Recently, total amount of applied irrigation water has been increased along with expansion of agricultural area and fertilizer input is also increasing. Some part of the southern lowest fields is under sea level. Soil salinization and shallow groundwater have been observed in the lowest part due to irrigation water seepage from upper stream and insufficient drainage. Moreover, agricultural drainage water has been used for irrigation water there, so that the salt is a mixture of several components. Therefore, geo-chemical measurements are indispensable to clarify the source of salt. In this study, we focused on the isotopic and chemical compositions of agricultural drain water of three main drainage canals in the LSIP. Seasonal changes in drainage features were examined using 87Sr/86Sr ratio (Sr isotope ratio) and major cation data. The abundances of possible end components were determined using mixing model. The result of measurements showed that there was a good relationship between 87Sr/86Sr values and reciprocal values of Sr concentration, while drain water quality clearly differed between summer and winter. This means Sr of drain water consists of several origins. The relationship and other data showed that Sr of drain water was a mixture of three

  10. Geochemistry and Sr, Nd isotopic composition of the Hronic Upper Paleozoic basic rocks (Western Carpathians, Slovakia

    Vozár Jozef


    Full Text Available The paper presents new major and trace element and first Sr-Nd isotope data from selected lavas among the Permian basaltic andesite and basalts of the Hronicum Unit and the dolerite dykes cutting mainly the Pennsylvanian strata. The basic rocks are characterized by small to moderate mg# numbers (30 to 54 and high SiO2 contents (51-57 wt. %. Low values of TiO2 (1.07-1.76 wt. % span the low-Ti basalts. Ti/Y ratios in the dolerite dykes as well as the basaltic andesite and basalt of the 1st eruption phase are close to the recommended boundary 500 between high-Ti and low-Ti basalts. Ti/Y value from the 2nd eruption phase basalt is higher and inclined to the high-Ti basalts. In spite of this fact, in all studied Hronicum basic rocks Fe2O3* is lower than 12 wt. % and Nb/La ratios (0.3-0.6 are low, which is more characteristic of low-Ti basalts. The basic rocks are characterized by Nb/La ratios (0.56 to 0.33, and negative correlations between Nb/La and SiO2, which point to crustal assimilation and fraction crystallization. The intercept for Sr evolution lines of the 1st intrusive phase basalt is closest to the expected extrusions age (about 290 Ma with an initial 87Sr/86Sr ratio of about 0.7054. Small differences in calculated values ISr document a partial Sr isotopic heterogeneity source (0.70435-0.70566, or possible contamination of the original magma by crustal material. For Nd analyses of the three samples, the calculated values εCHUR (285 Ma are positive (from 1.75 to 3.97 for all samples with only subtle variation. Chemical and isotopic data permit us to assume that the parental magma for the Hronicum basic rocks was generated from an enriched heterogeneous source in the subcontinental lithospheric mantle.

  11. Geochemistry and Sr, Nd isotopic composition of the Hronic Upper Paleozoic basic rocks (Western Carpathians, Slovakia)

    Vozár, Jozef; Spišiak, Ján; Vozárová, Anna; Bazarnik, Jakub; Krái, Ján


    The paper presents new major and trace element and first Sr-Nd isotope data from selected lavas among the Permian basaltic andesite and basalts of the Hronicum Unit and the dolerite dykes cutting mainly the Pennsylvanian strata. The basic rocks are characterized by small to moderate mg# numbers (30 to 54) and high SiO2 contents (51-57 wt. %). Low values of TiO2 (1.07-1.76 wt. %) span the low-Ti basalts. Ti/Y ratios in the dolerite dykes as well as the basaltic andesite and basalt of the 1st eruption phase are close to the recommended boundary 500 between high-Ti and low-Ti basalts. Ti/Y value from the 2nd eruption phase basalt is higher and inclined to the high-Ti basalts. In spite of this fact, in all studied Hronicum basic rocks Fe2O3* is lower than 12 wt. % and Nb/La ratios (0.3-0.6) are low, which is more characteristic of low-Ti basalts. The basic rocks are characterized by Nb/La ratios (0.56 to 0.33), and negative correlations between Nb/La and SiO2, which point to crustal assimilation and fraction crystallization. The intercept for Sr evolution lines of the 1st intrusive phase basalt is closest to the expected extrusions age (about 290 Ma) with an initial 87Sr/86Sr ratio of about 0.7054. Small differences in calculated values ISr document a partial Sr isotopic heterogeneity source (0.70435-0.70566), or possible contamination of the original magma by crustal material. For Nd analyses of the three samples, the calculated values ɛCHUR (285 Ma) are positive (from 1.75 to 3.97) for all samples with only subtle variation. Chemical and isotopic data permit us to assume that the parental magma for the Hronicum basic rocks was generated from an enriched heterogeneous source in the subcontinental lithospheric mantle.

  12. Determination of Sr and Ca sources in small tropical catchments (La Selva, Costa Rica) - A comparison of Sr and Ca isotopes

    Wiegand, B. A.; Schwendenmann, L.


    SummaryA comparative study of Sr and Ca isotopes was conducted to assess solute sources and effects of biogeochemical processes on surface water and groundwater in four small tropical catchments located at La Selva Biological Station, Costa Rica. Variable concentrations of dissolved Sr2+ and Ca2+ in the catchments are related to mixing of waters from different origin. Three catchments are influenced by high-solute bedrock groundwater, while another catchment is primarily supplied by local recharge. 87Sr/86Sr ratios were employed to discriminate contributions from mineral weathering and atmospheric sources. Solutes in bedrock groundwater have a predominant geogenic origin, whereas local recharge is characterized by low-solute inputs from rainwater and minor in situ weathering releases from nutrient-depleted soils. Bedrock groundwater contributes more than 60% of dissolved Sr2+ to surface discharge in the Salto, Saltito, and Arboleda catchments, whereas the Taconazo catchment receives more than 95% of dissolved Sr2+ from rainwater. δ44/40Ca values of dissolved Ca2+ vary greatly in the catchments, mainly as a result of heterogeneous Ca isotope compositions of the contributing sources. Based on differences in δ44/40Ca values, two distinct bedrock groundwaters discharging at the Salto and the Arboleda catchments are suggested. Effects of biological processes in the plant-soil system on solute generation in the catchments are indicated by variable Ca/Sr ratios. However, these effects cannot clearly be assessed by Ca isotopes due to the strong heterogeneity of δ44/40Ca values of Ca2+ sources and high Ca2+ concentrations in bedrock groundwater.

  13. Sr and Pb isotopic geochemistry of feldspars and implications for the growth of megacrysts in plutonic settings.

    Munnikhuis, J.; Glazner, A. F.; Coleman, D. S.; Mills, R. D.


    Why megacrystic textures develop in silicic igneous rocks is still unknown. One hypothesis is that these crystals nucleate early in a magma chamber with a high liquid content. A supportive observation of this hypothesis is areas in plutons with high concentrations of megacrysts suggesting flow sorting. Another group of hypotheses suggest megacrystic textures form during protracted late-stage coarsening in a low-melt, interlocked matrix due to either thermal oscillations from incremental pluton emplacement, or Ostwald ripening. Isotopic analyses of large, euhedral K-feldspar megacrysts from the Cretaceous intrusive suites of the Sierra Nevada batholith (SNB) provide new insight into their origin. Megacrysts from the SNB reach the decimeter scale, are Or rich (85-90%), are perthitic, and host mineral inclusions of nearly all phases in the host rock. In-situ micro-drilling of transects, from core to rim, of the alkali feldspars provides material for Sr and Pb isotopic analyses by thermal ionization mass spectrometry (TIMS). Preliminary 87Sr/86Sr(i) isotopic data from samples from the Cathedral Peak Granodiorite, of the Tuolumne Intrusive Suite range from 0.706337 to 0.706452 (~1.6ɛSr) near the cores, whereas a sawtooth pattern with larger variability, 0.706179 to 0.706533 (~5ɛSr), occurs nears the rims. We interpret these preliminary data to indicate that the late portion of growth (i.e. crystal rim) was dominated by either cannibalism of small K-feldspar crystals with isotopic variability, or by addition of isotopically diverse late components to the magma. By comparing the Sr and Pb isotopic stratigraphy of megacrysts from a variety of rock matrices and different granitoids in the SNB isotopic trends can be evaluated to determine if crystals sizes are dependent on disequilibrium processes or grow at a steady state.

  14. C-, Sr-isotope stratigraphy of carbonate rocks from the Southern Espinhaço Ridge, Minas Gerais, southeastern Brazil



    Full Text Available Neoproterozoic carbonate rocks comprise different stratigraphic units in the southern part of the Espinhaço Ridge, Minas Gerais, Brazil. C, O- and Sr-isotope analyses were carried out along four selected stratigraphic sections across these formations. These are: (i the Rio Pardo Grande Formation in the upper portion of the Espinhaço Supergroup, sampled in section 3; (ii Macaúbas Group laminated limestones (Tijucuçu Farm and dolostone layers (Domingas Formation have been respectively sampled along the so-called sections 1 and 2, and (iii the lower stratigraphic units of the Bambuí Group, sampled in section 4. Laminated limestone samples from the Macaúbas Group have δ13C values as high as 10.9‰ decreasing up section to -1.1‰ and 87Sr/86Sr values vary from 0.7072 to 0.7076, a range commonly observed in Cryogenian rocks. In section 2, dolomitic samples exhibit 87Sr/86Sr from 0.7076 to 0.7077 while in section 3, 87Sr/86Sr from 0.7074 to 0.7079. In section 4, 87Sr/86Sr values are around 0.7080. The values of 87Sr/86Sr observed in carbonate samples from the Macaúbas Group are similar to those observed in the Sr-isotope secular curve for the Neoproterozoic. Carbonate samples from the base of the Bambuí Group correlate with Ediacaran fingerprints, after the Marinoan (ca. 635 Ma glaciation.

  15. Reconstructing conditions during dolomite formation on a Carnian coastal sabkha/alluvial plain using 87Sr/86Sr isotopes - Travenanzes Formation, northern Italy

    Rieder, Maximilian; Wegner, Wencke; Horschinegg, Monika; Preto, Nereo; Breda, Anna; Klötzli, Urs; Peckmann, Jörn; Meister, Patrick


    The study of large amounts of dolomite that formed in the Triassic Tethyan realm is hampered by late diagenetic or hydrothermal overprint. These dolomites are difficult to link to past environmental and early diagenetic conditions, and their correlation to models for dolomite formation in modern environments is problematic. Preto et al. (2015) suggested, based on evidence from nano-scale structure analysis by transmission electron microscopy and petrographic observations, that dolomites in the Carnian Travenanzes Formation of the Southern Alps (Dolomites area) represent a preserved primary phase. The Travenanzes Formation was deposited in an extended alluvial plain or coastal sabkha environment subject to a semi-arid climate. Beds and nodules of nearly stoichiometric dolomite are embedded in large amounts of clay, which shielded early formed dolomite from diagenetic fluids. This finding of penecontemporaneous dolomite provides an ideal model case for reconstructing past environmental conditions at the time of dolomite precipitation. While Preto et al. (2015) argued that dolomite formation was mediated by extracellular polymeric substances produced by sulphate-reducing bacteria, it remains unclear whether precipitation occurred from evaporating seawater or mainly from brine derived from evaporating continental groundwater. Both cases exist in modern environments of dolomite formation. In the coastal sabkhas of Abu Dhabi and Qatar, dolomite precipitates from concentrated brine derived from seawater, either through seepage and reflux or through evaporative pumping (the sabkha model). In the coastal ephemeral lakes of the Coorong Lagoon system (South Australia) dolomite precipitation occurs from evaporating groundwater. The goal of this study is to distinguish marine from continental influence during formation of Carnian dolomite using 87Sr/86Sr isotope ratios. Sr isotopes could reveal different origins of ionic solutions for dolomite precipitation, which is not

  16. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina

    Søager, Nina; Holm, Paul Martin; Thirlwall, Matthew F.


    The presented Sr, Nd, Hf and double-spike Pb-isotopic analyses of Quaternary basalts from the Payenia volcanic province in southern Mendoza, Argentina, confirm the presence of two distinct mantle types feeding the Payenia volcanism. The southern Payenia mantle source feeding the intraplate-type Río...... is suggested to be caused by step-wise melt extraction due to repeated injections of subduction zone fluids and melts. The lower crustal contamination trends found in the trace element variations of basalt groups from all parts of the Payenia province are also recognized in isotopic space and the dominant...... isotope assimilation trends indicate lower crustal contaminants with more unradiogenic Pb, lower 143Nd/144Nd and 176Hf/177Hf and higher or similar 87Sr/86Sr as the mantle melts. These characteristics are similar to those found in lower crustal xenoliths from the northern Proterozoic Cuyania terrane...

  17. Sr Isotope Constraints on the Age and Source of Ore—Forming Materials of Gold Deposits,Southwestern Hunan

    彭建堂; 戴塔根; 等


    We have measured Rb and Sr concentrations in fluid inclusions of quartz in gold deposits,southwestern Hunan,The Rb-Sr isochron ages of 435±9Ma and 412±33Ma are respectively determined,revealing that gold mineralization in this area took place in the Caledonian period rather than in the Wuling-Xuefeng period as traditionalyy considered.Sr isotope geochemistry of the hydrothermal fluid indicates that the ore-forming materials are of crust origin,derived largely from the ore-hositng strata rather than from the basic dikes.

  18. Geochemical research on C-O and Sr-Nd isotopes of mantle-derived rocks from Shandong Province, China

    LIU Jianming; ZHANG Hongfu; SUN Jinggui; YE Jie


    This paper presents systematic studies on the C-O and Sr-Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C-O isotopic compositions with δ13C and δ18O in the range of -4.8‰--7.6‰ and +9.9‰-+13.2‰, respectively. However, Cretaceous three different types of mantle-derived rocks have quite different C-O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr-Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C-O and Sr-Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demonstrates that the lithospheric mantle beneath the region underwent at least twice reconstructions since the Paleozoic. Available data imply that the first reconstruction mainly happened during the Triassic-Jurassic time with gradual changes and the second in the Cretaceous with abrupt changes. Results also show that the early Cretaceous (especially at 120-130 Ma) was perhaps the key period leading to the dramatic change of the Mesozoic geodynamics on the eastern North China Craton.

  19. Isotope shifts of natural Sr+ measured by laser fluorescence in a sympathetically cooled Coulomb crystal

    Dubost, Brice; Szymanski, Benjamin; Guibal, Samuel; Likforman, Jean-Pierre; Guidoni, Luca


    We measured by laser spectroscopy the isotope shifts between naturally-occurring even-isotopes of strontium ions for both the $5s\\,\\,^2S_{1/2}\\to 5p\\,\\,^2P_{1/2}$ (violet) and the $4d\\,\\,^2D_{3/2}\\to 5p\\,\\,^2P_{1/2}$ (infrared) dipole-allowed optical transitions. Fluorescence spectra were taken by simultaneous measurements on a two-component Coulomb crystal in a linear Paul trap containing $10^3$--$10^4$ laser-cooled Sr$^+$ ions. The isotope shifts are extracted from the experimental spectra by fitting the data with the analytical solution of the optical Bloch equations describing a three-level atom in interaction with two laser beams. This technique allowed us to increase the precision with respect to previously reported data obtained by optogalvanic spectroscopy or fast atomic-beam techniques. The results for the $5s\\,\\,^2S_{1/2}\\to 5p\\,\\,^2P_{1/2}$ transition are $\

  20. Sr-Nd isotope geochemistry of eolian dust of the arid-semiarid areas in China: Implications for loess provenance and monsoon evolution

    RAO Wenbo; YANG Jiedong; CHEN Jun; LI Gaojun


    Minerals and rocks have distinct 87Sr/86Sr and 143Nd/144Nd ratios, depending on their geological origin and ages, and these isotope ratios are less altered than elemental composition during transport in the atmosphere or after deposition as sediments, thus stable isotopes of Sr and Nd have great potential as tracers for provenance and transport of materials. During the hypergene process, Sr isotope ratios of sediments are controlled by their parent rocks, particle sizes and chemical weathering. In general, the higher the Sr isotope ratios of parent rocks, and/or the more the fine-grained fractions, and/or the stronger the chemical weathering, thus the higher the Sr isotope ratios of sediments. On the contrary, there are lower Sr isotope ratios of sediments. Nd isotope ratios of sediments, independent of their particle sizes and chemical weathering, are only associated with parent rocks. For the provenance of the Chinese Loess Plateau, different reseachers drew discordant and even contradictory conclusions by using the method of Sr-Nd isotopic tracing. From the previous Nd isotope data, it is considered that the Tarim Basin, deserts in the central and west parts of Inner Mongolia and the Tibetan Plateau are the main sources of the Chinese Loess Plateau, and are also manufacturers for eolian dust of the Far East regions, together with the Chinese Loess Plateau. Sr isotope ratios of eolian dust are solely affected by wind sorting and weathering-pedogenesis due to its homogeneous composition in the Chinese Loess Plateau. Wind sorting is related to the East Asian winter monsoon but weathering-pedogenesis is mainly associated with the East Asian summer monsoon. Studies on Sr isotopic compositions of the loess-paleosol sequence suggest that 87Sr/86Sr ratios in acid-soluble materials are an index for chemical weathering intensity of the Chinese Loess Plateau, indicating the East Asian summer monsoon variations, whereas 87Sr/86Sr ratios in acid-insoluble materials are

  1. Nd-Sr-Pb Isotopic Link Between Panarea And Sardinia Predating The Opening Of The Tyrrhenian Sea

    Raia, F.; Ayuso, R. A.; de Vivo, B.; Somma, R.


    Plio-Quaternary Tyrrhenian magmatism in the Italian peninsula and Aeolian volcanic rocks is characterized by systematic trends in Sr-Nd-Pb isotopic space, implicating different mantle end-member source contributions [1 and reference therein]. The isotopic trends also support the notion of mantle-crust interaction during magma genesis. New isotopic data on lava and tephra from Panarea island represent its entire eruptive history, and together with the GEOROC database, allow for a regional evaluation of the isotopic trends in the Tyrrhenian region. Panarea rocks vary from andesite to rhyolite, show a systematic depletion of CaO, FeOT, MnO, MgO, TiO2 wt.% and enrichment in alkalis consistent with crystal fractionation. Most Sr-Nd-Pb isotopic compositions (86Sr/87Sr:0.70464-0.70604; 143Nd/144Nd:0.512473-0.512578; 206Pb/204Pb:19.162-19.241; 207Pb/204Pb:15.628-15.709; 208Pb/204Pb:39.270-39.016) fall midway between the compositions of the calc- alkaline western sector and Stromboli and Campanian volcanic rocks (located in the Aeolian eastern sector and Southern Italian Peninsula respectively). Notably, some rocks in Panarea display comparable Pb-Sr isotope compositions but much lower Nd-isotope ratios (143Nd/144Nd:0.512235-0.512415) than previously found in the Aeolian archipelago. Nd and Sr isotopic compositions plot close to the fields of the northern and central Plio- Quaternary volcanic rocks (e.g.Mt Arci) and Oligo-Miocene rocks (143Nd/144Nd:0.51218-0.51270) from Sardinia and trend toward a mantle end-member (EM1). This newly observed isotopic similarity between Panarea and Sardinia could represent an ancient source link predating the opening of the Tyrrhenian Sea that can be explained by 1) delamination of the Sardinian lower crust during Hercynian continental collision, or 2) modification of the lithospheric mantle during Oligo-Miocene arc-type volcanism, coeval back arc extension, and counter- clockwise rotation of the Corsica-Sardinia block. [1] Peccerillo, A

  2. Comprehensive Pb-Sr-Nd-Hf isotopic, trace element, and mineralogical characterization of mafic to ultramafic rock reference materials

    Fourny, Anaïs.; Weis, Dominique; Scoates, James S.


    Controlling the accuracy and precision of geochemical analyses requires the use of characterized reference materials with matrices similar to those of the unknown samples being analyzed. We report a comprehensive Pb-Sr-Nd-Hf isotopic and trace element concentration data set, combined with quantitative phase analysis by XRD Rietveld refinement, for a wide range of mafic to ultramafic rock reference materials analyzed at the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia. The samples include a pyroxenite (NIM-P), five basalts (BHVO-2, BIR-1a, JB-3, BE-N, GSR-3), a diabase (W-2), a dolerite (DNC-1), a norite (NIM-N), and an anorthosite (AN-G); results from a leucogabbro (Stillwater) are also reported. Individual isotopic ratios determined by MC-ICP-MS and TIMS, and multielement analyses by HR-ICP-MS are reported with 4-12 complete analytical duplicates for each sample. The basaltic reference materials have coherent Sr and Nd isotopic ratios with external precision below 50 ppm (2SD) and below 100 ppm for Hf isotopes (except BIR-1a). For Pb isotopic reproducibility, several of the basalts (JB-3, BHVO-2) require acid leaching prior to dissolution. The plutonic reference materials also have coherent Sr and Nd isotopic ratios (<50 ppm), however, obtaining good reproducibility for Pb and Hf isotopic ratios is more challenging for NIM-P, NIM-N, and AN-G due to a variety of factors, including postcrystallization Pb mobility and the presence of accessory zircon. Collectively, these results form a comprehensive new database that can be used by the geochemical community for evaluating the radiogenic isotope and trace element compositions of volcanic and plutonic mafic-ultramafic rocks.

  3. Sm-Nd and Initial Sr-87/Sr-86 Isotopic Systematics of Asuka 881394 and Cumulate Eucrites Yamato 980318/433 Compared

    Nyquist, L. E.; Shih, C-Y; Young, Y. D.; Takeda, H.


    The Asuka 881394 achondrite contains fossil Al-26 and Mn-53 and has a Pb-206/Pb-207 age of 4566.5 +/- 0.2 Ma, the oldest for an achondrite. Recent re-investigation of A881394 yielded revised initial Sm-146/Sm-144 = (9.1 +/- 1.4) x 10(exp -3), a Sm-147-Nd-143 age of 4525 +/- 58 Ma, a Rb-87-Sr-87 age of 4490 +/- 130 Ma, and initial Sr-87/Sr-86 = 0.698991 +/- 19, respectively. The relatively large uncertainties in the Sm-Nd and Rb-Sr ages are due to disturbances of the isotopic systematics of tridymite and other minor phases. A preliminary value for the Sm-147-Nd-143 age of the Yamato 980318 cumulate eucrite of 4560 +/- 150 Ma was refined in later work to 4567 +/- 24 Ma as reported orally at LPSC 35. Similarly, a preliminary value for Sm-146/Sm-144 = (7.7 +/- 1.2) x 10 (exp -3) was refined to (6.0 +/- 0.3) x 10(exp -3). For Yamato 980433, a Sm-147-Nd-143 age of 4542 +/-42 Ma and Sm-146/Sm-144 = (5.7 +/- 0.5) x 10(exp -3) has been reported. Because these two cumulate eucrites are paired, we consider them to represent one igneous rock and present their combined isotopic data here.

  4. Environmental isotopes (18O, 2H, and 87Sr/86Sr) as a tool in groundwater investigations in the Keta Basin, Ghana

    Jørgensen, Niels; Banoeng-Yakubo, Bruce


    Analyses of environmental isotopes (18O, 2H, and 87Sr/86Sr) are applied to groundwater studies with emphasis on saline groundwater in aquifers in the Keta Basin, Ghana. The 87Sr/86Sr ratios of groundwater and surface water of the Keta Basin primarily reflect the geology and the mineralogical composition of the formations in the catchments and recharge areas. The isotopic compositions of 18O and 2H of deep groundwater have small variations and plot close to the global meteoric water line. Shallow groundwater and surface water have considerably larger variations in isotopic compositions, which reflect evaporation and preservation of seasonal fluctuations. A significant excess of chloride in shallow groundwater in comparison to the calculated evaporation loss is the result of a combination of evaporation and marine sources. Groundwaters from deep wells and dug wells in near-coastal aquifers are characterized by relatively high chloride contents, and the significance of marine influence is evidenced by well-defined mixing lines for strontium isotopes, and hydrogen and oxygen stable isotopes, with isotopic compositions of seawater as one end member. The results derived from environmental isotopes in this study demonstrate that a multi-isotope approach is a useful tool to identify the origin and sources of saline groundwater. Résumé. L'analyse des isotopes du milieu (18O, 2H, et 87Sr/86Sr) a été mise en œuvre pour des études hydrogéologiques portant sur des eaux souterraines salées des aquifères du bassin de Keta (Ghana). Les rapports isotopiques 87Sr/86Sr de l'eau souterraine et de l'eau de surface du bassin de Keta reflètent principalement la géologie et la composition minéralogique des formations des bassins d'alimentation et des zones de recharge. Les compositions isotopiques en 18O et en 2H des eaux souterraines profondes présentent de faibles variations et se placent près de la droite des eaux météoriques mondiales. Les eaux des nappes peu profondes

  5. Geochronology and paleothermometry of Neogene sediments from the Vøring Plateau using Sr, C and O isotopes

    Smalley, P. C.; Nordaa, A.; Råheim, A.


    The Neogene sediments from DSDP site 341 on the Vøring Plateau, Norwegian Sea, contain a thin glauconitic pellet-bearing subunit, which separates underlying pelagic clays from overlying glacial-marine sediments. Oxygen isotope measurements of benthic foraminifera show aδ 18O shift of + 1%. during deposition of this subunit, probably a combined effect of a drop in bottom water temperature and a rise in seawaterδ 18O. The chronology of this sedimentological and O isotope transition is, however, poorly constrained by fossil evidence. Rb sbnd Sr dating of glauconitic pellets indicates that the lower part of the glauconitic subunit was deposited 11.6 ± 0.2 Ma ago. Further geochronological evidence, derived from the Sr and C isotopic compositions of foraminifera compared with known seawater-time variations, indicates that the lower pelagic clays are early to middle Miocene, deposited at a mean rate of ˜ 15 m/Ma. The glauconitic subunit contains part of the middle Miocene and probably all of the late Miocene in a condensed sequence with a very low mean depositional rate (˜ 0.2 m/Ma). The overlying glacial marine sediments are probably Pliocene, with a high mean rate of deposition, ˜ 45 m/Ma. This is the first application of C, O and Sr isotopic stratigraphy combined with Rb sbnd Sr dating of glauconitic minerals, and it illustrates the applications of this integrated approach in geochronology.

  6. High-Resolution Paleosalinity Reconstruction From Laguna de la Leche, North Coastal Cuba, Using Sr, O, and C Isotopes

    Peros, M. C.; Reinhardt, E. G.; Schwarcz, H. P.; Davis, A. M.


    Isotopes of Sr, O, and C were studied from a 227-cm long sediment core to develop a high-resolution paleosalinity record to investigate the paleohydrology of Laguna de la Leche, north coastal Cuba, during the Middle to Late Holocene. Palynological, plant macrofossil, foraminiferal, ostracode, gastropod, and charophyte data from predominantly euryhaline taxa, coupled with a radiocarbon-based chronology, indicate that the wetland evolved through four phases: (1) an oligohaline lake existed from 6200 to 4800 cal yr B.P.; (2) water level in the lake increased and the system freshened from 4800 to 4200 cal yr B.P.; (3) a mesohaline lagoon replaced the lake 4200 cal yr B.P.; and (4) mangroves enclosed the lagoon beginning 1700 cal yr B.P., forming a mesohaline lake. Isotopic ratios were measured on specimens of the euryhaline foraminifer Ammonia beccarii, although several measurements were also made on other calcareous microfossils in order to identify potential taphonomic and/or vital effects. The 87Sr/86Sr results show that the average salinity of Laguna de la Leche was 1.7 ppt during the early lake phase and 8 ppt during the lagoon phase - a change driven by relative sea level rise. The delta18O results do not record the salinity increase seen in the 87Sr/86Sr data, but instead indicate high evaporation from the lake surface. Variability in delta13C was controlled by plant productivity, episodic marine incursions, and vegetation community change. There is some evidence for seasonal effect and the lateral transport of microfossils prior to burial. Our results show that Sr isotopes, while often cited as a powerful paleosalinity tool, should be used in conjunction with other indicators when investigating paleosalinity trends; relying solely on any single isotopic or ecological indicator can lead to inaccurate results, especially in semi-enclosed and closed hydrological systems.

  7. Sr-Nd-Pb-Hf isotope systematics of the Hugo Dummett Cu-Au porphyry deposit (Oyu Tolgoi, Mongolia)

    Dolgopolova, A.; Seltmann, R.; Armstrong, R.; Belousova, E.; Pankhurst, R. J.; Kavalieris, I.


    Major and trace element geochemistry including Sr-Nd-Pb-Hf isotopic data are presented for a representative sample suite of Late Devonian to Early Carboniferous plutonic and volcanic rocks from the Hugo Dummett deposit of the giant Oyu Tolgoi porphyry Cu-Au district in South Gobi, Mongolia. Sr and Nd isotopes (whole-rock) show restricted ranges of initial compositions, with positive ɛNdt mainly between + 3.4 and + 7.4 and (87Sr/86Sr)t predominantly between 0.7037 and 0.7045 reflecting magma generation from a relatively uniform juvenile lithophile-element depleted source. Previously dated zircons from the plutonic rocks exhibit a sample-averaged range of ɛHft values of + 11.6 to + 14.5. Depleted-mantle model ages of 420-830 (Nd) and 320-730 Ma (zircon Hf) limit the involvement of pre-Neoproterozoic crust in the petrogenesis of the intermediate to felsic calc-alkaline magmas to, at most, a minor role. Pb isotopes (whole-rock) show a narrow range of unradiogenic initial compositions: 206Pb/204Pb 17.40-17.94, 207Pb/204Pb 15.43-15.49 and 208Pb/204Pb 37.25-37.64, in agreement with Sr-Nd-Hf isotopes indicating the dominance of a mantle component. All four isotopic systems suggest that the magmas from which the large Oyu Tolgoi porphyry system was generated originated predominantly from juvenile material within the subduction-related setting of the Gurvansayhan terrane.

  8. Magma genesis and chamber processes at Los Humeros caldera, Mexico-Nd and Sr isotope data

    Verma, Surendra P.


    The Mexican volcanic belt (MVB), a roughly east-west structure, consists of many late Tertiary and Quaternary cindercones, domes, calderas and stratovolcanoes1,2. Los Humeros caldera (approximately 19°40' N latitude, 97°25' W longitude) lies on the northeastern part of the MVB where the belt overlaps with another major volcanic province, the Eastern cordillera3 (Fig. 1). A compilation6 of the bulk chemical analyses of the two major volcanic provinces indicates that the MVB is characterized largely by calc-alkaline series whereas rocks of the alkaline series dominate the Eastern cordiliera (EC). Pleistocene to Recent basaltic to rhyolitic volcanism in Los Humeros caldera, one of the best known examples of a well-developed caldera in Mexico7-9, presumably associated with the subduction of Cocos plate along the Middle America trench, shows that the initial 87Sr/86Sr ratios range from 0.7039 to 0.7048 and the initial 143Nd/144Nd ratios from 0.5126 to 0.5129. We show here that these isotope ratios are negatively correlated and lie on the mantle array defined by MORB and oceanic island rocks; implying that Los Humeros magmas were generated in the upper mantle with very little, if any, contribution from the subducted oceanic crust, sediments or continental crust.

  9. Microscopic study of low-lying yrast spectra and deformation systematics in neutron-rich 98−106Sr isotopes

    Anil Chandan; Suram Singh; Arun Bharti; S K Khosa


    Variation-after-projection (VAP) calculations in conjunction with Hartree–Bogoliubov (HB) ansatz have been carried out for = 98–106 strontium isotopes. In this framework, the yrast spectra with ≥ 10+, (2) transition probabilities, quadrupole deformation parameter and occupation numbers for various shell model orbits have been obtained. The results of the calculation for yrast spectra give an indication that it is important to include the hexadecapole–hexadecapole component of the two-body interaction for obtaining various nuclear structure quantities in Sr isotopes. Besides this, it is also found that the simultaneous polarization of 3/2 and 5/2 proton subshells is a significant factor in making a sizeable contribution to the deformation in neutron-rich Sr isotopes.

  10. Isotopic (Pb, Sr, Nd, C, O) evidence for plume-related sampling of an ancient, depleted mantle reservoir

    Chen, Wei; Simonetti, Antonio


    The exact mantle source for carbonatite melts remains highly controversial. Despite their predominant occurrence within continental (lithospheric) domains, the radiogenic isotope data from young (oceanic island basalts (OIBs). This feature suggests an intimate petrogenetic relationship with asthenospheric mantle. New Pb, Sr, C, and O isotopic data are reported here for constituent minerals from the Oka carbonatite complex, which is associated with the Cretaceous Monteregian Igneous Province (MIP), northeastern North America. The Pb isotope data define linear arrays in Pb-Pb isotope diagrams, with the corresponding Sr isotope ratios being highly variable (0.70314-0.70343); both these features are consistent with open system behavior involving at least three distinct mantle reservoirs. Compared to the isotope composition of known mantle sources for OIBs and carbonatite occurrences worldwide, the least radiogenic 207Pb/204Pb (14.96 ± 0.07) and 208Pb/204Pb (37.29 ± 0.15) isotopic compositions relative to their corresponding 206Pb/204Pb ratios (18.86 ± 0.08) reported here are distinct, and indicate the involvement of an ancient depleted mantle (ADM) source. The extremely unradiogenic Pb isotope compositions necessitate U/Pb fractionation early in Earth's history (prior to 4.0 Ga ago) and growth via a multi-stage Pb evolution model. The combined stable (C and O) and radiogenic isotopic compositions effectively rule out crustal/lithosphere contamination during the petrogenetic history of the Oka complex. Instead, the isotopic variations reported here most likely result from the mixing of discrete, small volume partial melts derived from a heterogeneous plume source characterized by a mixed HIMU-EM1-ADM signature.

  11. Investigating the hydrological significance of stalagmite geochemistry (Mg, Sr) using Sr isotope and particulate element records across the Late Glacial-to-Holocene transition

    Belli, R.; Borsato, A.; Frisia, S.; Drysdale, R.; Maas, R.; Greig, A.


    The trace element and Sr isotope records in two coeval stalagmites characterized by different growth rates and flow regimes at Savi cave (Grotta Savi, NE Italy) reveal different sources and incorporation mechanisms for Mg and Sr. Mg is sourced primarily from dissolved cave host rock while particulate Mg derived from soil plays a subordinate role. The presence of particulate-borne Mg is inferred from the co-variation of Mg and particle-associated elements (Th, Al and Mn) which are preferentially concentrated in open columnar calcite layers. Variation in Mg concentrations corrected for particle-influenced components, the Mgc parameter, is controlled by water-rock interaction, with higher and lower Mgc during dry and wet phases, respectively. This is thought to reflect incongruent dissolution of Mg-rich phases. Correction of Sr concentrations for contributions from airborne exogenic Sr, based on 87Sr/86Sr ratios, yields the bedrock-only contribution (Src). Src variation in stalagmite calcite is influenced by speleothem growth rate and by variation of the calcite-water Sr partitioning in wet and dry phases, and only to a minor extent by incongruent dissolution of Mg-rich phases. Concentration profiles for Mgc and Srcg (corrected for growth rate effects) show inverse correlations and are inferred to show hydrological significance which is captured in a hydrological index, HI. We suggest HI provides robust information on water-rock interaction related to hydrological changes and can be utilized in both wet and semi-arid environments, provided the corrections for soil Mg and exogenic Sr can be applied with confidence. Application of the HI index allows correction of Grotta Savi oxygen isotope data, to yield a δ18Oc time series that shows when changes in moisture sources and atmospheric reorganization, or changes in moisture amount, were significant. This is especially evident during the Younger Dryas (YD). The Savi record supports the concept of a two-phase YD, marked by

  12. Pb, Nd, Sr and Os isotopic systematics of Brazilian cretaceous potassic rocks

    Araujo, Ana Lucia Novaes; Sichel, Susanna Eleonora [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Geociencias. Laboratorio de Geologia Marinha (LAGEMAR)]. E-mail:; Gaspar, Jose Carlos; Costa, Vicente Sergio [Brasilia Univ., DF (Brazil). Inst. de Geociencias; Carlson, Richard Walter [Carnegie Institution of Washington, Washington, DC (United States). DTM; Teixeira, Noevaldo Araujo [NTX Consultoria, Brasilia, DF (Brazil)


    Mafic potassic rocks of the Alto Paranaiba (Minas Gerais), Juina (Mato Grosso), and Pimenta BUeno (Mato Grosso) belong to a large lineament of rocks that crosses from western to southeastern Brazil and have been associated to a hot spot track by several authors. These provinces intruded the Neoproterozoic Brasilia and Paraguay fold belts (Alto Paranaiba, Paranatinga), and the Mesoproterozoic Rio Negro-Jurema belt (Juina, Pimenta Vueno). Pb isotopic compositions of the studied provinces show a wide variation. {sup 206} Pb/{sup 204} Pb of kimberlites (18.47-19.23) and kamafugities (17.79-18.71) from the Alto Paranaiba Province are close to the Tristaan/Walvis Ridge composition. The {sup 206} Pb/{sup 204} Pb of the paranatinga (19.38-19.87) and Pimenta Bueno (19.78-21.00) provinces are similar to the South African Group I Kimberlite compositional fields, while Juina is displaced to higher Pb isotopic ratios (, close to those shown ny HIMU ocean island +(OIB).Although the Pb isotopic composition of the more northern alkalic provinces ranges towards the values seen for HIMU OIB, the Sr andNd isotopic composition of these samples is not like HIMU, nor in combination with Pb, like any other ocean island basalt. With the exception of the limberlites from the Alto Paranaiba, which range to quite unradiogenic compositions, most of the samples have {sup 187} Os/{sup 188} Os between 0.13 and 0.15. The Nd model ages of Juina kimberlites vary from 1.70-1.73 Ga, and could be indicating a prior accretion period into the mobile belt. Nd model ages for paranatinga kimberlites vary between 0.56 and 0.64 Ga and Pimenta Bueno kimberlites from 0.72 to 1.05 Ga. Minimum Re depletion model ages for Paranatinga kimberlites vary between 0.74 and 0.93 and Pimenta Bueno kimberlites from 0.9 to 1.3 Ga, indicating that the Nd isotopic signartures could have been affected by metasomatic overprint in Neoroterozoic. (author)

  13. A study of REE and Pb, Sr and Nd isotopes in garnet-lherzolite xenoliths from Mingxi, Fujian Province

    Wankang, H.; Junwen, W.; Basu, A.R.; Tatsumoto, M.


    The REE and Pb, Sr, Nd isotopes in three xenoliths from limburgite and scoria-breccias, including spinel-lherzolite, spinel-garnet-lherzolite and phlogopite-gamet-lherzolite, were analysed. The REE contents of the xenoliths are 1.3 to 3.3 times those of the chondrites with their REE patterns characterized by weak LREE depletion. The143Nd/144Nd values of whole rocks and minerals range from 0.51306 to 0.51345 with ??Nd=+ 8.2- +15.8,206Pb/204 Pb < 18.673, and207Pb/204Pb < 15.574. All this goes to show that the upper mantle in Mingxi at the depth of 67-82 km is a depleted mantle of MORB type, with87Sr/86 Sr ratios 0.70237-0.70390. In Nd-Sr diagram the data points of whole rocks are all out of the mantle array, implying that the xenoliths from Mingxi have more radiogenic Sr isotopes than those of the mantle array. ?? 1993 Institute of Geochemistry, Chinese Academy of Sciences.

  14. Contrasting Sr isotope ratios in plagioclase from different formations of the mid-Miocene Columbia River Basalt Group

    Starkel, W. A.; Wolff, J.; Eckberg, A.; Ramos, F.


    Many early Columbia River Basalt flows of the Steens and Imnaha Formations are characterized by abundant, texturally complex, coarse plagioclase phenocrysts. In Imnaha lavas, the feldspars typically have more radiogenic 87Sr/86Sr than whole rock and matrix, and may exhibit complex isotopic zoning that is not correlated with An content. Imnaha plagioclase grains are interpreted as variably-contaminated crystals produced when high-crystallinity mid-crustal basaltic intrusions exchanged interstitial melt with adjacent partly-melted crustal rock; this isotopically variable debris was then remobilized by subsequent intrusion of mantle-derived basalt and brought to the surface as an isotopically heterogeneous mixture. In contrast, plagioclase grains in the texturally very similar Steens lavas are isotopically near-homogeneous and 87Sr/86Sr is not significantly displaced from that of the bulk rock. This is consistent with magma- crust interaction at low degrees of crustal melting during the early stages of the Columbia River flood basalt episode, where Steens and Imnaha lavas were erupted from distinct magma systems hosted by different types of crust that exerted different degrees of isotopic leverage on the mantle-derived magmas [1]. Thermal input to the Steens system declined at the same time as the Imnaha magmatic flux increased to ultimately produce the huge outpouring of Grande Ronde lavas, which are mixtures of mantle- and crust-derived liquids, the latter produced during high degrees of crustal melting during the time of peak magmatic flux. [1] Wolff et al. (2008) Nature Geoscience 1, 177-180.

  15. Exploring the impact of temperature and fluid chemistry on Ca and Sr isotope composition of Arctica islandica shells via experimental alteration

    Goos, Manuela; Eisenhauer, Anton; Liebetrau, Volker; Böhm, Florian; Fietzke, Jan; Nehrke, Gernot; Buhl, Dieter; Mavromatis, Vasileios; Dietzel, Martin


    Carbonate shells of marine organisms record by their chemical and isotopic composition environmental conditions like temperature, salinity and pH during their formation. However, primary signals can be overprinted by diagenesis, which has to be considered for the interpretation of environmental proxy data and on the other side may provide additional information about distinct reaction pathways throughout diagenesis (e.g. Allison et al, 2007). Aragonitic Arctica islandica shells widely used as proxy archives (e.g. Schöne et al, 2005) were chosen for hydrothermal alteration experiments in order to get a more detailed insight into diagenetic effects. Here we present results of experiments in which Arctica islandica shell fragments were exposed to North Sea seawater at temperatures of 100r{ }C and 175r{ }C at distinct reaction times. Strontium isotope composition of the experimental medium was adjusted from an original composition of δ 88/86SrSRM987= 0.391(1)‰ and 87Sr/86Sr= 0.70921(1) to δ 88/86SrSRM987= 0.179(1)‰ and 87Sr/86Sr= 0.70789(1) by sulfate extraction and Sr replacement procedures. The artificially altered shell material (six sub-samples of six shell fragments) and the corresponding solutions were prepared and analyzed. Results show that at 100r{ }C aragonite is still the predominant phase, but show lower peak intensities with Raman and XRD near the surface of the shell fragments. At 175r{ }C the aragonitic shell material recrystallized almost completely to calcite. In addition a rim of weakly ordered dolomite (10μ m) was found around these samples. Analysis of element concentrations of initial and final solutions show that at 175r{ }C Sr and Ca concentrations increase (Sr: 79 to 183 μ mol/l; Ca: 8 to 30 mmol/l), while Mg concentration decreases (Mg: 42 to 22 mmol/l). A corresponding Sr and Ca depletion along with an increase of Mg occurred in the samples, especially in the dolomite rim. At 100r{ }C only minor increase of Sr, Ca and Mg

  16. IODP Expedition 345: Characterizing Hydrothermal Alteration of Fast-Spreading EPR Lower Crust using O, Sr and Nd isotopics

    Marks, N.; Gillis, K. M.; Lindvall, R. E.; Schorzman, K.


    The Integrated Ocean Drilling Program (IODP) Expedition 345 sampled lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) and are exposed at the Hess Deep Rift. The metamorphic mineral assemblages in the rocks recovered at Site U1415 record the cooling of primitive gabbroic lithologies from magmatic (>1000°C) to zeolite facies conditions (exposure onto the seafloor. The dominant alteration assemblage is characterized by lower grade greenschist (talc, serpentine, or clay minerals, and is commonly accompanied by prehnite microveins in plagioclase. The intensity of alteration varies with igneous lithology, in particular, the modal abundance of olivine, as well as proximity to zones of brittle fracturing and cataclasis. We have attempted to characterize the nature and extent of isotopic exchange associated alteration and cooling and present a record of variations in O, Sr, and Nd isotopic compositions in altered rocks from the lower plutonic crust at Hess Deep. The Rb-Sr and 18O/16O systems exhibit sensitivity to hydrothermal interactions with seawater; whereas the Sm-Nd system appears essentially undisturbed by the minimal alteration experienced by the rocks drilled at Site U1415. The 87Sr/86Sr isotopic compositions of olivine gabbros (Mg# 0.81-0.89) range from 0.702536-0.703950 (±0.000008). Higher 87Sr/86Sr ratios are strongly correlated with percentage of hydrous minerals, and are higher in samples with a greater modal abundance of olivine. These rocks have somewhat higher 87Sr/86Sr ratios than upper plutonic rocks from the Northern Escarpment at Hess Deep (Kirchner and Gillis, 2012), although their percentage of hydrous phases is apparently similar. The d18O in these rocks ranges from 0.23‰ to 4.65‰ (±0.67); troctolites have systematically lower d18O than the gabbro and gabbronorites. Preliminary Nd isotopic data appears to be consistent with previous measurements from the Site 894 gabbros, implying derivation from

  17. Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia

    Bagard, Marie-Laure; Schmitt, Anne-Désirée; Chabaux, François; Pokrovsky, Oleg S.; Viers, Jérôme; Stille, Peter; Labolle, François; Prokushkin, Anatoly S.


    Stable Ca and radiogenic Sr isotope compositions were measured in different compartments (stream water, soil solutions, rocks, soils and soil leachates and vegetation) of a small permafrost-dominated watershed in the Central Siberian Plateau. The Sr and Ca in the area are supplied by basalt weathering and atmospheric depositions, which significantly impact the Sr isotopic compositions. Only vegetation significantly fractionates the calcium isotopes within the watershed. These fractionations occur during Ca uptake by roots and along the transpiration stream within the larch trees and are hypothesised to be the result of chromatographic processes and Ca oxalate crystallisations during Ca circulation or storage within plant organs. Biomass degradation significantly influences the Ca isotopic compositions of soil solutions and soil leachates via the release of light Ca, and organic and organo-mineral colloids are thought to affect the Ca isotopic compositions of soil solutions by preferential scavenging of 40Ca. The imprint of organic matter degradation on the δ44/40Ca of soil solutions is much more significant for the warmer south-facing slope of the watershed than for the shallow and cold soil active layer of the north-facing slope. As a result, the available stock of biomass and the decomposition rates appear to be critical parameters that regulate the impact of vegetation on the soil-water system in permafrost areas. Finally, the obtained δ44/40Ca patterns contrast with those described for permafrost-free environments with a much lower δ44/40Ca fractionation factor between soils and plants, suggesting specific features of organic matter decomposition in permafrost environments. The biologically induced Ca isotopic fractionation observed at the soil profile scale is not pronounced at the scale of the streams and large rivers in which the δ44/40Ca signature may be controlled by the heterogeneity of lithological sources.

  18. A Robust and Fully-Automated Chromatographic Method for the Quantitative Purification of Ca and Sr for Isotopic Analysis

    Smith, H. B.; Kim, H.; Romaniello, S. J.; Field, P.; Anbar, A. D.


    High throughput methods for sample purification are required to effectively exploit new opportunities in the study of non-traditional stable isotopes. Many geochemical isotopic studies would benefit from larger data sets, but these are often impractical with manual drip chromatography techniques, which can be time-consuming and demand the attention of skilled laboratory staff. Here we present a new, fully-automated single-column method suitable for the purification of both Ca and Sr for stable and radiogenic isotopic analysis. The method can accommodate a wide variety of sample types, including carbonates, bones, and teeth; silicate rocks and sediments; fresh and marine waters; and biological samples such as blood and urine. Protocols for these isotopic analyses are being developed for use on the new prepFAST-MCTM system from Elemental Scientific (ESI). The system is highly adaptable and processes up to 24-60 samples per day by reusing a single chromatographic column. Efficient column cleaning between samples and an all Teflon flow path ensures that sample carryover is maintained at the level of background laboratory blanks typical for manual drip chromatography. This method is part of a family of new fully-automated chromatographic methods being developed to address many different isotopic systems including B, Ca, Fe, Cu, Zn, Sr, Cd, Pb, and U. These methods are designed to be rugged and transferrable, and to allow the preparation of large, diverse sample sets via a highly repeatable process with minimal effort.

  19. Rb-Sr Isotopic Systematics of Alkali-Rich Fragments in the Yamato-74442 LL-Chondritic Breccia

    Yokoyama, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simo, J. I.; Tappa, M. J.; Yoneda, S.


    Alkali-rich igneous fragments were identified in the brecciated LL-chondrites, Kr henberg (LL5)], Bhola (LL3-6) and Yamato (Y)-74442 (LL4), and show characteristic fractionation patterns of alkaline elements. The K-Rb-Cs-rich fragments in Kr henberg, Bhola, and Y-74442 are very similar in mineralogy and petrography (olivine + pyroxene + glass), suggesting that they could have come from related precursor materials. We have undertaken Rb-Sr isotopic studies on alkali-rich fragments in Y-74442 to precisely determine their crystallization ages and the isotopic signatures of their precursor material(s).

  20. Nd and Sr isotopes: implications of provenance and geological mapping; Isotopos de Nd e Sr: implicacoes de proveniencia e mapeamento geologico

    Albuquerque, Marcio Fernando dos Santos; Horbe, Adriana Maria Coimbra; Dantas, Elton Luiz, E-mail:, E-mail:, E-mail: [Universidade de Brasilia (UnB), DF (Brazil). Instituto de Geociencias


    XRD, Nd and Sr isotopes, major, minor and traces elements quantification were applied to rocks, lateritic crusts and soils from Sumauma Supergroup and Alto Tapajos Group, in order to indicate provenance of the rocks and using lateritic products as geologic mapping tool. For the rocks, the results showed sources related to provinces Tapajos Parima, Rondonia Juruena, Sunsas, Carajas and Amazonia Central. However, the incision of Cachimbo graben allowed which the Sumauma Supergroup erosion also were source for the Alto Tapajos Group, allied to contribution of volcanics from Colider Group. Lateritic crusts and soils are correlates to bedrocks, allowing the use as geologic mapping tool. (author)

  1. Upper Paleozoic oceanic crust in the Polish Sudetes: NdSr isotope and trace element evidence

    Pin, C.; Majerowicz, A.; Wojciechowska, I.


    The two main mafic-ultramafic complexes outcropping in the Polish Sudetes around the Sowie Góry high-grade massif (Mt. Sleza and Nowa Ruda) have been studied for trace elements and NdSr isotopes. Upper Paleozoic SmNd whole-rock isochron ages are obtained for both massifs: 353 ± 21 Ma (2σ) with ɛi = + 8.8 ± 0.1 (Mt. Sleza) and 351 ± 16 Ma with ɛi = 8.5 ± 0.1 (Nowa Ruda). The high initial ɛNd point to a source characterized by a strong time-integrated LREE depletion and, along with incompatible trace-element patterns, they substantiate the oceanic derivation of these massifs. Although a subduction-related marginal basin setting cannot be totally precluded, trace-element and isotopic data rather suggest a normal mid-ocean ridge origin for the Sudetic ophiolites. While these results are in marked contrast with previously inferred Precambrian or early Paleozoic ages, remnants of oceanic crust as young as the Early Carboniferous are consistent with the local sedimentary record of pelagic facies from the Frasnian to the Tournaisian, and they may provide a suitable explanation for the contrasted evolution displayed by different domains of the Sudetes. The Sudetic ophiolites might tentatively be correlated with the upper Paleozoic "prasinites" of the Saxon Lineament if a Late Hercynian ca. 150 km dextral offset is assumed along the Elbe Fracture. In that case, they might represent the latest-stage remnants of an oceanic suture zone between the Saxo-Thuringian and Moldanubian zones. Together with several other examples throughout Europe, these ophiolites provide compelling evidence for the involvement of oceanic crust and plate-tectonic processes in the Variscan belt.

  2. Sr isotope characterization of atmospheric inputs to soils along a climate gradient of the Chilean Coastal Range

    Oeser, Ralf; Schuessler, Jan A.; Floor, Geerke H.; von Blanckenburg, Friedhelm


    The rate and degree of rock weathering controls the release, distribution, and cycling of mineral nutrients at the Earth's surface, being essential for developing and sustaining of ecosystems. Climate plays an important role as water flow and temperature determine both the biological community and activity, and also set the speed of weathering. Because of this double control by climate, the impact of biological activity on rock weathering and the feedbacks between the geosphere and the biosphere under different climatic conditions are not well understood. We explore the impact of biota on rock weathering in the four EarthShape primary study areas which are situated along the Chilean Coastal Range, featuring an outstanding vegetation gradient controlled by climate, ranging over 2000 km from hyper-arid, to temperate, to humid conditions. The study sites are within 80 km of the Pacific coast and are located in granitic lithology. Moreover, the sites were unglaciated during the last glacial maximum. However, as substrates get depleted in mineral nutrients, ecosystems are increasingly nourished by atmospheric inputs, sources, such as solutes contained in rain, dust, and volcanic ash. We aim to quantify the primary nutrient inputs to the ecosystem from these different potential sources. Radiogenic strontium (Sr) isotope ratios are a powerful tool to trace chemical weathering, soil formation, as well as cation provenance and mobility [1]. We determined 87Sr/86Sr ratios on bulk bedrock, saprolite, and soil and performed sequential extractions of the the easily bioavailable soil phases up to 2 m depth on two soil depth profiles in each of the four study sites. Our first results from the La Campana study site indicate that the radiogenic Sr isotope ratios of saprolite samples decrease from 0.70571 (n = 4) at the base of the profile to lower values of 0.70520 (n = 4) at the top of the immobile saprolite, indicating increasing biotite weathering. 87Sr/86Sr increases in the

  3. Tracking seasonal subglacial drainage evolution of alpine glaciers using radiogenic Nd and Sr isotope systematics: Lemon Creek Glacier, Alaska

    Clinger, A. E.; Aciego, S.; Stevenson, E. I.; Arendt, C. A.


    The transport pathways of water beneath a glacier are subject to change as melt seasons progress due to variability in the balance between basal water pressure and water flux. Subglacial hydrology has been well studied, but the understanding of spatial distribution is less well constrained. Whereas radiogenic isotopic tracers have been traditionally used as proxies to track spatial variability and weathering rates in fluvial and riverine systems, these techniques have yet to be applied extensively to the subglacial environment and may help resolve ambiguity in subglacial hydrology. Research has shown the 143Nd/144Nd values can reflect variation in source provenance processes due to variations in the age of the continental crust. Correlating the 143Nd/144Nd with other radiogenic isotope systematics such as strontium (87Sr/86Sr) provides important constraints on the role of congruent and incongruent weathering processes. Our study presents the application of Nd and Sr systematics using isotopic ratios to the suspended load of subglacial meltwater collected over a single melt season at Lemon Creek Glacier, USA (LCG). The time-series data show an average ɛNd ~ -6.83, indicating a young bedrock (~60 MYA). Isotopic variation helps track the seasonal expansion of the subglacial meltwater channels and subsequent return to early season conditions due to the parabolic trend towards less radiogenic Nd in June and towards more radiogenic Nd beginning in mid-August. However, the high variability in July and early August may reflect a mixture of source as the channels diverge and derive sediment from differently aged lithologies. We find a poor correlation between 143Nd/144Nd and 87Sr/86Sr (R2= 0.38) along with a slight trend towards more radiogenic 87Sr/86Sr values with time ((R2= 0.49). This may indicate that, even as the residence time decreases over the melt season, the LCG subglacial system is relatively stable and that the bedrock is congruently weathered. Our study

  4. Accurate Modeling of the Cubic and Antiferrodistortive Phases of SrTiO3 with Screened Hybrid Density Functional Theory

    El-Mellouhi, Fadwa; Lucero, Melissa J; Scuseria, Gustavo E


    We have calculated the properties of SrTiO3 (STO) using a wide array of density functionals ranging from standard semi-local functionals to modern range-separated hybrids, combined with several basis sets of varying size/quality. We show how these combination's predictive ability varies signi?cantly, both for STO's cubic and antiferrodistortive (AFD) phases, with the greatest variation in functional/basis set e?cacy seen in modeling the AFD phase. The screened hybrid functionals we utilized predict the structural properties of both phases in very good agreement with experiment, especially if used with large (but still computationally tractable) basis sets. The most accurate results presented in this study, namely those from HSE06/modi?ed-def2-TZVP, stand as the most accurate modeling of STO to date when compared to the literature; these results agree well with experimental structural and electronic properties as well as providing insight into the band structure alteration during the phase transition.

  5. Isotopic evidence for the retention of Sr-90 inferred from excess Zr-90 in the Oklo natural fission reactors: Implication for geochemical behaviour of fissiogenic Rb, Sr, Cs and Ba

    Hidaka, Hiroshi; Sugiyama, Takeshi; Ebihara, Mitsuru; Holliger, Philippe


    In order to investigate the mobility of fissiogenic Sr-90 in the geological environment, the Zr isotopic compositions of seven samples from one of the newly formed Oklo natural reactor zones (i.e., reactor core and adjacent rocks (10, SF84)) in the Republic of Gabon were determined with an inductively coupled plasma mass spectrometer (ICP-MS). Zr isotopes in uraninite grains from different reactor zones were also measured by secondary ion mass spectrometry (SIMS). Fissiogenic Zr isotopic abundances of three samples from the reactor core have excess Zr-90, which has never before been formed in previous Oklo samples. In this paper, the geochemical behaviour of Zr-90 is discussed by making use of the relative retentivity inferred from the isotopic abundance of Sr. The excess in Zr-90 suggests dependence on the degree of retention/migration of Sr-90, the precursor of Zr-90 in the fission chain. In the aqueous phase, chemical fractionation between Sr and Zr could have occurred before radioactive Sr-90 decayed. Considering the halflife of Sr-90 (t(sub 1/2) = 29.1 y), considerable amounts of the latter have been produced during criticality. Sr and Zr (including Zr-90) could have been redistributed between the reactor core and its vicinity. The retentivity of fissiogenic Zr-90 in reactor core 10 is not homogeneous. In addition, the distributions of Rb, Cs and Ba is also heterogeneous.

  6. Source and magmatic evolution inferred from geochemical and Sr-O-isotope data on hybrid lavas of Arso, the last eruption at Ischia island (Italy; 1302 AD)

    Iovine, Raffaella Silvia; Mazzeo, Fabio Carmine; Arienzo, Ilenia; D'Antonio, Massimo; Wörner, Gerhard; Civetta, Lucia; Pastore, Zeudia; Orsi, Giovanni


    Geochemical and isotopic (87Sr/86Sr and 18O/16O) data have been acquired on whole rock and separated mineral samples from volcanic products of the 1302 AD Arso eruption, Ischia volcanic island (Gulf of Naples, Southern Italy), to investigate magmatic processes. Our results highlight petrographic and isotopic disequilibria between phenocrysts and their host rocks. Similar disequilibria are observed also for more mafic volcanic rocks from Ischia and in the Phlegraean Volcanic District in general. Moreover, 87Sr/86Sr and 18O/16O values suggest mixing between chemically and isotopically distinct batches of magma, and crystals cargo from an earlier magmatic phase. The radiogenic Sr isotope composition suggests that the mantle source was enriched by subduction-derived sediments. Furthermore, magmas extruded during the Arso eruption were affected by crustal contamination as suggested by high oxygen isotope ratios. Assimilation and fractional crystallization modelling of the Sr-O isotope compositions indicates that not more than 7% of granodioritic rocks from the continental crust have been assimilated by a mantle-derived mafic magma. Hence the recent volcanic activity of Ischia has been fed by distinct batches of magma, variably contaminated by continental crust, that mixed during their ascent towards the surface and remobilized phenocrysts left from earlier magmatic phases.

  7. Sr Isotopic Variation in Shallow Water Carbonate Sequences: Stratigraphic, Chronostratigraphic, and Eustatic Implications of the Record at Enewetak Atoll

    Quinn, Terrence M.; Lohmann, K. C.; Halliday, A. N.


    Sr isotope data from two boreholes within the lagoon at Enewetak Atoll have been used to evaluate the use of such data to correlate, date, and monitor sea level change in shallow water carbonate sequences. Correlative stratigraphic intervals of relatively invariant δ87Sr, separated by abrupt transitions to lower δ87Sr with increasing depth, are recognized in both boreholes. Conversion of δ87Sr values to age via calibration with the seawater δ87Sr trend with age indicates that correlative and synchronous deposition of atoll sediments occurred at ˜ 0.4, 1.2, and 2.1 Ma. In contrast, a ˜5 m.y. hiatus is recognized in one borehole but not the other. Sr isotope stratigraphy (SIS) is a powerful stratigraphic and chronostratigraphic tool in shallow water carbonate sequences only when significant secular variation of δ87Sr occurs and retention of depositional δ87Sr values is demonstrated. The latter is best demonstrated when δ87Sr data, are integrated with δ18O, δ13C, Sr content data and petrographic observations. Several diagenetically altered intervals have greater δ87Sr values, low δ13C values, and low Sr/Ca ratios relative to adjacent intervals, a combination that is consistent with open-system meteoric diagenesis. Calcite cements from these intervals have early Pleistocene (˜1.2 Ma) δ87Sr values despite their occurrence well within the late Pliocene (˜2.1 Ma) sequence. Thus local sedimentological and diagenetic processes have produced intralagoon variability in the SIS of the two boreholes, complicating subsurface stratigraphic correlations. The occurrence of anomalously young calcite cement relative to adjacent limestone is a direct response of the interaction of sea level change and meteoric phreatic diagenesis whereby overlying metastable carbonates, with greater δ87Sr values, are dissolved during periods of atoll emergence and sea level lowstand liberating Sr and soil-gas CO2 to the pore fluid, which is then incorporated into downflow meteoric

  8. Characterizing multiple sources and interaction in the critical zone through Sr-isotope tracing of surface and groundwater

    Negrel, Philippe; Pauwels, Hélène


    The Critical Zone (CZ) is the lithosphere-atmosphere boundary where complex physical, chemical and biological processes occurs and control the transfer and storage of water and chemical elements. This is the place where life-sustaining resources are, where nutrients are being released from the rocks. Because it is the place where we are living, this is a fragile zone, a critical zone as a perturbed natural ecosystem. Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Here, we first report on Sr isotope data as well as major ions, from shallow and deep groundwater in several granite and schist areas over France with intensive agriculture covering large parts of these catchments. In three granite and Brioverian 'schist' areas of the Armorican Massif, the range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are partly related to agricultural practices and water rock interaction. The relationship between Sr- isotope and Mg/Sr ratios allow defining the different end-members, mainly rain, agricultural practice and water-rock interaction. The data from the Armorican Massif and other surface and groundwater for catchment draining silicate bedrocks (300-450Ma) like the Hérault, Seine, Moselle, Garonne, Morvan, Margeride, Cantal, Pyrénées and Vosges are scattered between at least three geochemical signatures. These include fertilizer and

  9. Plume-Lithosphere Interaction beneath the Snake River Plain, Idaho: Constraints from Pb, Sr, Nd, and Hf Isotopes

    Jean, M. M.; Hanan, B. B.; Shervais, J. W.


    The Yellowstone-Snake River Plain (YSRP) volcanic province links 17 million years of volcanic activity that extends from the Owyhee Plateau in western Idaho/eastern Oregon to its current terminus underlying the Yellowstone Plateau. This investigation presents new Strontium, Neodymium, Lead, and Hafnium isotopic compositions of 25 basalts that represent four distinct areas of the YSRP (i.e., eastern province, central province, western province, Owyhee Plateau), which transect the ancient cratonic boundary of North America. The purpose of this study is to test and refine models for plume-lithosphere interaction and determines the mantle origin for YSRP basalts. New results shows: (1) low-K tholeiites from the eastern, central, and western SRP have ɛNd (-2 to -5.5), 87Sr/86Sr (0.7060-0.7071) and similar Pb-isotopes [206Pb/204Pb (17.8-18.6), 207Pb/204Pb (15.5-15.66), 208Pb/204Pb (38.4-39.1)]; (2) central SRP tholeiites are enriched in 208Pb/204Pb (~38.5-38.9), relative to eastern SRP basalts and define a 208Pb/204Pb trend, intermediate between the eastern SRP and Craters of the Moon lavas; (3) western SRP high-K basalts are depleted in ɛNd (> -1) and 87Sr/86Sr (0.7050-0.7057), relative to low-K tholeiites, and plot closer to "bulk silicate earth," but are enriched in 206Pb/204Pb (18.66-18.71), and have 207Pb/204Pb (15.62-15.65) and 208Pb/204Pb (39.1-39.2) isotope ratios similar to high-K basalts of Smith Prairie (Boise River Group 2); (4) Silver City basalt (>16.6 Ma) overlaps in Pb-isotope space with Imnaha basalt compositions (Columbia River Basalt Group); (5) new 177Hf/176Hf isotopic data lie above and parallel to the Mantle array in Nd and Hf isotope space and define a linear trend between Leucite Hills lavas and OIB basalts (i.e., Steens and Hawaii); (6) these basalts follow a systematic geographic pattern: eastern and central plain low-K tholeiites have low ɛNd (-3 to -5) and intermediate 206Pb/204Pb (~17.7-18.5), while western plain low-K tholeiites are

  10. Geochemical proxies of ocean circulation and weathering inputs: Radiogenic isotopes of Nd, Pb, Sr, Hf, and Os

    Frank, Martin, E-mail: [IFM-GEOMAR, Leibniz Institute of Marine Sciences at the University of Kiel, Wischhofstrasse 1-3, 24148 Kiel (Germany)


    Marine records of the radiogenic isotope composition of the elements neodymium (Nd), lead (Pb), hafnium (Hf), strontium (Sr), and osmium (Os) allow the reconstruction of past continental weathering inputs on different time scales as a function of their respective oceanic residence times. Sr and Os have oceanic residence times significantly longer than the global mixing time of the ocean and are efficiently mixed on a global scale. Their isotope composition changes on long time scales as a function of plate tectonics and major orogenies, which allows their use as precise stratigraphic tools for the entire Phanerozoic. In contrast, Hf, Pb, and in particular Nd, have residence times on the order of or shorter than the global mixing time of the ocean, which results in distinct isotopic signatures of water masses and allows the reconstruction of past water mass mixing and weathering inputs on both long and short time scales. Here applications of these isotopes systems with a focus on the shorter residence time tracers are reviewed (without claiming to be comprehensive) and problems and potential solutions are discussed.

  11. Major, trace element and isotope geochemistry (Sr-Nd-Pb) of interplinian magmas from Mt. Somma-Vesuvius (Southern Italy)

    Somma, R.; Ayuso, R.A.; de Vivo, B.; Rolandi, G.


    Major, trace element and isotopic (Sr, Nd, Pb) data are reported for representative samples of interplinian (Protohistoric, Ancient Historic and Medieval Formations) activity of Mt. Somma-Vesuvius volcano during the last 3500 years. Tephra and lavas exhibit significant major, trace element and isotopic variations. Integration of these data with those obtained by previous studies on the older Somma suites and on the latest activity, allows to better trace a complete petrological and geochemical evolution of the Mt. Somma-Vesuvius magmatism. Three main groups of rocks are recognized. A first group is older than 12.000 yrs, and includes effusive-explosive activity of Mt. Somma. The second group (8000-2700 yrs B.P.) includes the products emitted by the Ottaviano (8000 yrs. B.P.) and Avellino (3550 yrs B.P.) plinian eruptions and the interplinian activity associated with the Protohistoric Formation. Ancient Historic Formation (79-472 A.D.), Medieval Formation (472-1139 A.D.) and Recent interplinian activity (1631-1944 A.D.) belong to the third group of activity (79-1944 A.D.). The three groups of rocks display distinct positive trends of alkalis vs. silica, which become increasingly steeper with age. In the first group there is an increase in silica and alkalis with time, whereas an opposite tendency is observed in the two younger groups. Systematic variations are also evident among the incompatible (Pb, Zr, Hf, Ta, Th, U, Nb, Rb, Cs, Ba) and compatible elements (Sr, Co, Cr). REE document variable degrees of fractionation, with recent activity displaying higher La/Yb ratios than Medieval and Ancient Historic products with the same degree of evolution. N-MORB normalized multi-element diagrams for interplinian rocks show enrichment in Rb, Th, Nb, Zr and Sm (> *10 N-MORB). Sr isotope ratios are variable, with Protohistoric rocks displaying 87Sr/86Sr= 0.70711-0.70810, Ancient Historic 87Sr/86Sr=0.70665-0.70729, and Medieval 87Sr/86Sr=0.70685-0.70803. Neodymium isotopic

  12. A preliminary study for the development of reference material using oyster for determination of (137)Cs, (90)Sr and plutonium isotopes.

    Lee, Sang-Han; Oh, Jung-Suk; Lee, Jong-Man; Lee, Kyung-Bum; Park, Tae-Soon; Lee, Min-Kie; Kim, Seung-Hwan; Choi, Jong-Ki


    A new reference material for the determination of (137)Cs, (90)Sr and Pu isotopes ((238)Pu and (239,240)Pu) is being developed using dried oyster matrix by Korea Research Institute of Standards and Science (KRISS). The oyster was collected from Tongyoung harbour, southern part of Korea and the artificial radionuclides ((137)Cs, (90)Sr, (238)Pu and (239,240)Pu) were spiked into the material. After pretreatment and processing, the material was tested for homogeneity and massic activities were determined by measuring (137)Cs, (90)Sr, (238)Pu and (239,240)Pu. The reference value and extended uncertainty for those isotopes will be reported later.

  13. Comparative behavior of Sr, Nd and Hf isotopic systems during fluid-related deformation at middle crust levels

    Luais, Béatrice; Le Carlier de Veslud, Christian; Géraud, Yves; Gauthier-Lafaye, François


    We have carried out a comparative Rb-Sr, Sm-Nd and Lu-Hf isotopic study of a progressively deformed hercynian leucogranite from the French Massif Central, belonging to the La Marche ductile shear zone, in order to investigate the respective perturbation of these geochronometers with fluid induced deformation. The one-meter wide outcrop presents a strongly deformed and mylonitized zone at the center, and an asymmetric deformation pattern with a higher deformation gradient on the northern side of the zone. Ten samples have been carefully collected every 10 cm North and South away from the strongest deformed mylonitic zone. They have been analyzed for a complete major, trace element data set, oxygen isotopes, Rb-Sr, Sm-Nd and Lu-Hf isotopic systematics. We show that most of major and trace elements except SiO 2, alkaline elements (K 2O, Rb), and some metal transition elements (Cu), are progressively depleted with increasing deformation. This depletion includes REE + Y, but also HFS elements (Ti, Hf, Zr, Nb) which are commonly considered as immobile elements during upper level processes. Variations in elemental ratios with deformation, e.g. decrease in LREE/MREE- HREE, Nd/Hf, Th/Sr, increase in Rb/Sr, U/Th and constant Sr/Nd, lead to propose the following order of element mobility: U ≫ Th > Sr = Nd ≫ Hf + HREE. We conclude in agreement with previous tectonic and metallogenic studies that trace element patterns across the shear zone result from circulation of oxidizing F-rich hydrothermal fluids associated with deformation. A temperature of the fluid of 470-480 °C can be deduced from the δ 18O equilibrium between quartz-muscovite pairs. Elemental fractionation induces perturbation of the Rb-Sr geochronometer. The well-defined 87Rb/ 86Sr- 87Sr/ 86Sr correlation gives an apparent age of 294 ± 19 Ma, slightly younger than the 323 ± 4 Ma age of leucogranites in this area. This apparent age is interpreted as dating event of intense deformation and fluid circulation

  14. Rb-Sr and Sm-Nd isotope geochemistry and chronology of cherts from the Onverwacht Group (3.5 AE), South Africa

    Weis, D.; Wasserburg, G. J.


    An Rb-Sr and Sm-Nd isotopic analysis of Archean chert samples from the Onverwacht Group, South Africa is presented, showing the same characteristic Rb and Sr concentrations as Phanerozoic cherts, with a very large range of Rb-87/Sr-86 ratios. A good correlation line in the Rb-87 to Sr-87 evolution diagram, corresponding to an age of about 2119 My and an initial Sr-87/Sr-86 ratio of about 0.72246, is derived which may be interpreted as reflecting the age of rehomogenization of the Sr in the protolith and the recrystallization of these cherts due to circulating hydrothermal fluids during regional metamorphism about 1.4 AE after deposition of the Onverwacht Group. The Sm-Nd systematics reflect an ancient source age of about 3.5 AE.

  15. The New England Batholith: constraints on its derivation from Nd and Sr isotopic studies of granitoids and country rocks

    Mensel, H. D.; McCulloch, M. T.; Chappell, B. W.


    Nd and Sr isotopic compositions are reported for the granitic suites which comprise the late Palaeozoic to earliest Mesozoic New England Batholith of eastern Australia. Some of the granitic suites are typically I-type in their mineralogy, chemistry and isotopic compositions, implying a derivation from igneous (infracrustal) source rocks, whereas other suites have characteristics consistent with a derivation from a protolith which was predominantly sedimentary and relatively felsic (S-types). The I-type granitoids of the Nundle Suite have ɛNd values (+3.3 to +6.1) that are amongst the most primitive yet documented for a relatively felsic (SiO 2 ~ 65%) plutonic suite and these values imply a derivation from either a depleted upper mantle source or, more probably, a complex source region involving both volcanic-arc rocks and detrital material. Their compositions are distinctly more primitive than those of the New England Super-Suite which constitutes the Permian 'core' of the batholith. This extensive Super-Suite (comprising granitoids traditionally designated as I-type) has an overall range in initial Nd and Sr isotopic compositions of -1.7 to +4.6 and 0.70458 to 0.70624 respectively, although the majority of plutons have initial Nd isotopic compositions which fall into a very narrow range (+1.0 ±1.5 ɛunits). This limited range is remarkable considering the extreme lithological diversity and range in chemical composition of the analysed samples (SiO 2 47%-74%) and implies a source region of considerable volume having reasonably uniform isotopic compositions but variation in chemistry. A similarly uniform source isotopically is also indicated for the S-type granitoids of the Carboniferous Hillgrove Suite and Carboniferous-Permian Bundarra Suite with initial ɛNd values of +0.8 to +2.3 and initial 87Sr /86Sr compositions of 0.70474 to 0.70577 showing only limited ranges. Five pelites, three 'felsic' and four 'mafic' greywackes, representing typical country rocks


    Riccardo Petrini


    Full Text Available O, H, B and Sr isotopes were identified from surface-waters, ground-waters and waters percolating in soils at the Pialassa Baiona lagoon and nearby inland areas. The preliminary data demonstrate the occurrence of both conservative mixtures between seawater and freshwaters and cation exchange at the salt/fresh water interface during the intrusion. The O and H isotopes indicate that the freshwater component in the binary mixing had the isotopic features of the rainwater from Apennine catchments. Coupled O-H-B isotopes also show that the major contribution of the moving seawater was confined to the deeper aquifers and some of the soil waters. The Sr isotopes highlight the role of cation exchanges when seawater flushes freshwater aquifers, and allow the recognition of the different components of the solute. Deviations from these processes as revealed by B isotopes are interpreted as the evidence of possible anthropogenic inputs.

  17. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic

    Song, Haijun; Wignall, Paul B.; Tong, Jinnan; Song, Huyue; Chen, Jing; Chu, Daoliang; Tian, Li; Luo, Mao; Zong, Keqing; Chen, Yanlong; Lai, Xulong; Zhang, Kexin; Wang, Hongmei


    New 87Sr/86Sr data based on 127 well-preserved and well-dated conodont samples from South China were measured using a new technique (LA-MC-ICPMS) based on single conodont albid crown analysis. These reveal a spectacular climb in seawater 87Sr/86Sr ratios during the Early Triassic that was the most rapid of the Phanerozoic. The rapid increase began in Bed 25 of the Meishan section (GSSP of the Permian-Triassic boundary, PTB), and coincided closely with the latest Permian extinction. Modeling results indicate that the accelerated rise of 87Sr/86Sr ratios can be ascribed to a rapid increase (>2.8×) of riverine flux of Sr caused by intensified weathering. This phenomenon could in turn be related to an intensification of warming-driven runoff and vegetation die-off. Continued rise of 87Sr/86Sr ratios in the Early Triassic indicates that continental weathering rates were enhanced >1.9 times compared to those of the Late Permian. Continental weathering rates began to decline in the middle-late Spathian, which may have played a role in the decrease of oceanic anoxia and recovery of marine benthos. The 87Sr/86Sr values decline gradually into the Middle Triassic to an equilibrium values around 1.2 times those of the Late Permian level, suggesting that vegetation coverage did not attain pre-extinction levels thereby allowing higher runoff.

  18. Rb, Sr and strontium isotopic composition, K/Ar age and large ion lithophile trace element abundances in rocks and glasses from the Wanapitei Lake impact structure

    Winzer, S. R.; Lum, R. K. L.; Schuhmann, S.


    Shock metamorphosed rocks and shock-produced melt glasses from the Wanapitei Lake impact structure have been examined petrographically and by electron microprobe. Eleven clasts exhibiting varying degrees of shock metamorphism and eight impact-produced glasses have been analyzed for Rb, Sr and Sr isotopic composition. Five clasts and one glass have also been analyzed for large ion lithophile (LIL) trace element abundances including Li, Rb, Sr, and Ba and the REE's. The impact event forming the Wanapitei Lake structure occurred 37 m.y. ago based on K/Ar dating of glass and glassy whole-rock samples. Rb/Sr isotopic dating failed to provide a meaningful whole-rock or internal isochron. The isotopic composition of the glasses can be explained by impact-produced mixing and melting of metasediments.

  19. C- and Sr-isotope stratigraphy of the São Caetano complex, Northeastern Brazil: a contribution to the study of the Meso-Neoproterozoic seawater geochemistry

    Juan C. Silva


    Full Text Available C-isotope and 87Sr/86Sr values for five carbonate successions from the São Caetano Complex, northeastern Brazil, were used to constrain their depositional age and to determine large variations in the C- and Sr-isotopic composition of seawater under the framework of global tectonic events. Three C-isotope stages were identified from base to top in a composed chemostratigraphic section: (1 stage in which delta13C values vary from +2 to +3.7‰ PDB and average 3‰ PDB, (2 stage with delta13C values displaying stronger oscillations (from -2‰ to +‰ PDB, and (3 stage with an isotopic plateau with values around +3.7‰ PDB. Constant 87Sr/86Sr values (~ 0.70600 characterize C-isotope stage 1, whereas slightly fluctuating values (from 0.70600 to 0.70700 characterize C-isotope stage 2. Finally, 87Sr/86Sr values averaging 0.70600 characterize C-isotope stage 3. The C- and Sr- chemostratigraphic pathways permit to state: (a the C- and Sr-isotope secular curves registered primary fluctuations of the isotope composition of seawater during late Mesoproterozoic- early Neoproterozoic transition in the Borborema Province, and (b onset of the Cariris Velhos/Greenville cycle, widespread oceanic rifting, continental magmatic arc formation and onset of the agglutination of Rodinia supercontinent, mostly controlled the C- and Sr-isotope composition of seawater during the C-isotope stages 1, 2 and 3.Valores de isótopos de C e 87Sr/86Sr de cinco seqüências de carbonatos do Complexo São Caetano, nordeste do Brasil; foram usados para estimar a sua idade de deposição e relacionar variações da composição isotópica na água do mar com eventos tectônicos globais. Três estágios de variação de isótopos de carbono foram identificados de base para o topo numa seção quimioestratigráfica composta: (1 estágio em que delta13C varia de +2 a +3.7‰PDB (media 3‰PDB, (2 estágio no qual delta13C varia consideravelmente (de -2 a +3‰PDB e (3 est

  20. Experimental study of the Mg and Sr isotopic evolution of seawater interacting with basalt between 150 and 300 ° C.

    Voigt, Martin; Pearce, Christopher R.; Oelkers, Eric H.


    The chemical exchange of material between seawater and the oceanic crust plays a major role in marine geochemical cycles [1]. Isotopic signatures provide an important means of tracing elemental transfer in hydrothermal environments, yet only a limited amount of experimental data on the extent of isotopic fractionation under these conditions is currently available. This study consequently investigated the extent of δ26/24Mg and 87Sr/86Sr isotopic variation during a seawater-basalt interaction experiments at 150, 250 and 290 ° C. A suite of closed system experiments were run for several months at each temperature under saturated water pressure, using either crystalline or glassy basalt as the starting material and a water/rock ratio of 10 or 25. Our results demonstrate that the dissolution of basaltic material in hydrothermal environments occurs at the same time as the precipitation of alteration minerals (mainly smectite and anhydrite), which is consistent with results from similar studies in the past (e.g. [2]). As expected, the rate of reaction using crystalline basalt was slower than with basaltic glass, and both sample types reacted faster at higher temperatures. The 87Sr/86Sr composition of the experimental fluids decreased from the initial seawater value (0.70916) towards the lower basaltic signature during the experiments (0.70317), demonstrating the progressive release of Sr during basalt dissolution. Magnesium was steadily removed from the fluid via the precipitation of clay minerals, with the residual fluids having progressively lighter δ26/24Mg compositions. The mean Mg isotope fractionation factor (αsolid-solution) observed at 250 oC was 1.0005±0.0002, supporting low-temperature evidence that clay minerals preferentially incorporate isotopically heavy magnesium [3]. These experiments provide quantitative information on the extent of Mg isotopic fractionation between fluids and secondary silicate minerals in hydrothermal systems, and demonstrate the

  1. Chemical and U-Sr isotopic variations in stream and source waters of the Strengbach watershed (Vosges mountains, France)

    Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.


    This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca / Na, Mg / Na, and Sr / Na ratios, but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals, and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system, and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured bedrock depleted in 234U), implying (234U/238U) AR below 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the - over time - homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs, depending on the hydrological

  2. Artificial (Pu {sup 90}Sr, {sup 241}Am) and natural (U) isotopes in human bones from Poland

    Mietelski, J.W.; Tomankiewicz, E. [Institute of Nuclear Phyics (Poland); Golec, E.; Golec, J.; Nowak, S.; Szczygiel, E. [The 5th Military Clinical Hospital and Polyclinic (Poland); Kuzma, K. [General Hospital (Poland)


    In two papers we have presented results if analyses of artificial isotopes ({sup 238,239,240}Pu, {sup 241}Am and {sup 90}Sr) content in human bones, using samples collected during hip joint replacement surgery. Since the patients were members of general population (not exposed in any particular form to artificial radionuclides) results can be treated as current background level for Poland and perhaps also whole central Europe. During this project the open question appeared - what is the level in human bones of natural alpha emitters like {sup 238}U-, {sup 234}U, for instance. Therefore about 30 human hip joint bone samples are being now analysed for the presence of uranium along with mentioned above artificial radionuclides. Samples are ashen and sequential radiochemical analyse is applied for separation of Pu, Sr and Am isotopes followed by separation of uranium using anion exchange resin. Measurements of plutonium, americium and uranium are performed using alpha spectrometry. That for {sup 90}Sr is done by LSC. Results will be presented during conference. Document available in abstract form only. (authors)

  3. Uranium-Lead Zircon Ages and Sr, Nd, and Pb Isotope Geochemistry of Selected Plutonic Rocks from Western Idaho

    Unruh, Daniel M.; Lund, Karen; Kuntz, Mel A.; Snee, Lawrence W.


    Across the Salmon River suture in western Idaho, where allochthonous Permian to Cretaceous oceanic rocks are juxtaposed against Proterozoic North American rocks, a wide variety of plutonic rocks are exposed. Available data indicate much variation in composition, source, and structural state of these plutons. The plutonic rocks were long described as the western border zone of the Cretaceous Idaho batholith but limited pre-existing age data indicate more complicated origins. Because the affinity and age of the plutonic rocks cannot be reliably determined from field relations, TIMS U-Pb dating in conjunction with Sr, Nd, and Pb isotopic studies of selected plutons across the suture in western Idaho were undertaken. The data indicate three general groups of plutons including (1) those that intruded the island arc terranes during the Triassic and Jurassic, those that intruded near the western edge of oceanic rocks along the suture in the Early Cretaceous, and the plutons of the Idaho batholith that intruded Proterozoic North American rocks in the Late Cretaceous. Plutons that intruded Proterozoic North American rocks commonly include xenocrystic zircons and in several cases, ages could not be determined. The least radiogenic Sr and most radiogenic Nd are found among the Blue Mountains superterrane island arc samples. Suture-zone plutons have isotopic characteristics that span the range between Idaho batholith and island arc samples but mostly follow island arc signatures. Plutons of the Idaho batholith have the most radiogenic initial Pb and Sr ratios and the least radiogenic Nd of the samples analyzed.

  4. Sr and O isotopes in western Aleutian seafloor lavas: Implications for the source of fluids and trace element character of arc volcanic rocks

    Yogodzinski, Gene M.; Kelemen, Peter B.; Hoernle, Kaj; Brown, Shaun T.; Bindeman, Ilya; Vervoort, Jeffrey D.; Sims, Kenneth W. W.; Portnyagin, Maxim; Werner, Reinhard


    High Mg# andesites and dacites (Mg# = molar Mg/Mg + Fe) from western Aleutian seafloor volcanoes carry high concentrations of Sr (>1000 ppm) that is unradiogenic (87Sr/86Sr 0.7030). Data patterns in plots of 87Sr/86Sr vs Y/Sr and Nd/Sr imply the existence of an eclogite-melt source component - formed by partial melting of MORB eclogite in the subducting Pacific Plate - which is most clearly expressed in the compositions of western Aleutian andesites and dacites (Nd/Sr and Y/Sr viewed in combination with inversely correlated εNd and 87Sr/86Sr, these patterns rule out aqueous fluids as an important source of Sr because mixtures of fluids from altered oceanic crust with depleted mantle and sediment produce compositions with 87Sr/86Sr higher than in common Aleutian rocks. The unradiogenic nature of Sr in the western Aleutian andesite-dacite end-member may be understood if H2O required to drive melting of the subducting oceanic crust is transported in fluids containing little Sr. Mass balance demonstrates that such fluids may be produced by dewatering of serpentinite in the mantle section of the subducting plate. If the eclogite-melt source component is present throughout the Aleutian arc, melting of the subducting plate must extend into minimally altered parts of the sheeted dike section or upper gabbros, at depths >2 km below the paleo-seafloor. Oxygen isotopes in western Aleutian seafloor lavas, which fall within a narrow range of MORB-like values (δ18 O = 5.1- 5.7), are also consistent with this model. These results indicate that the subducting Pacific lithosphere beneath the Aleutian arc is significantly hotter than indicated my most thermal models.

  5. Carbonate verse silicate Sr isotope in lake sediments and its response to Little Ice Age


    The 87Sr/86Sr ratios of silicate (acid-insoluble, AI) and carbonate (acid-soluble, AS) of the lake sediments from the Daihai Lake, Inner Mongolia, since the last 500 years are measured respectively, indicating that chemical weathering of silicate minerals was in an early stage since the Little Ice Age within the Daihai watershed by combination with mineral constitute, Rb/Sr ratio and CaCO3 content in the sediments. During the Little Ice Age maximum, an evident peak in the 87Sr/86Sr ratios of both silicate and carbonate in sediments suggests that a cold climate condition is unfavorable to dissolving radiogenic strontium from silicate minerals. Meanwhile, the variation of 87Sr/86Sr ratios of silicate and carbonate also reflects a projected warming climate favorable to intensifying chemical weathering after the Little Ice Age. Consequently, the 87Sr/86Sr ratio of both silicate and carbonate in inland lake sediments can be used as an effective proxy of the past climate in single watershed.

  6. Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer

    Sikler, G. [MPI fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany) and TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 (Canada)]. E-mail:; Audi, G. [CSNSM-IN2P3-CNRS, Batiment 108, 91405 Orsay-Campus (France); Beck, D. [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Blaum, K. [Johannes Gutenberg-Universitaet Mainz, Staudingerweg 7, 55128 Mainz (Germany); Bollen, G. [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Herfurth, F. [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Kellerbauer, A. [CERN, 1211 Geneva 23 (Switzerland); Kluge, H.-J. [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Lunney, D. [CSNSM-IN2P3-CNRS, Batiment 108, 91405 Orsay-Campus (France); Oinonen, M. [Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki (Finland); Scheidenberger, C. [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Schwarz, S. [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Szerypo, J. [LMU Muenchen, Am Coulombwall 1, 85748 Garching (Germany)


    The atomic masses of {sup 76,77,80,81,86,88}Sr and {sup 124,129,130,131,132}Sn were measured by means of the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. {sup 76}Sr is now the heaviest N=Z nucleus for which the mass is measured to a precision better than 35 keV. For the tin isotopes in the close vicinity of the doubly magic nucleus {sup 132}Sn, mass uncertainties below 20 keV were achieved. An atomic mass evaluation was carried out taking other experimental mass values into account by performing a least-squares adjustment. Some discrepancies between older experimental values and the ones reported here emerged and were resolved. The results of the new adjustment and their impact will be presented.

  7. Segmentation of the Cascade Arc Based on Compositional and Sr and Nd Isotopic Variations in Primitive Volcanic Rocks

    Schmidt, M. E.; Grunder, A. L.


    We define four segments in the Cascade Volcanic Arc based on 87Sr/86Sr and 143Nd/144Nd of primitive volcanic rocks: 1) The North segment extends 450 km from Mt. Meager to Glacier Peak; 2) the 350-km Columbia segment includes volcanoes from Mt. Rainier to Mt. Jefferson; 3) the 250 km Central segment comprises the portion of the arc between the Three Sisters and Crater Lake; and 4) the 350-km South segment includes Mt. Shasta to Mt. Lassen. Isotopic data were compiled for primitive bulk composition (MgO concentrations >8 wt.% MgO) as a fingerprint mantle sources. The North segment has a range in 87Sr/86Sr of 0.7030-0.7037 and is distinguished by the predominance of calcalkaline basalts (CAB) and few low K tholeiites (LKT). The North segment lies on the North Cascade craton where convergence is near orthogonal. Oblique subduction occurs beneath the Columbia, Central, and South segments. The Columbia segment (87Sr/86Sr of 0.7028-0.7037) has both LKT and CABs as well as enriched ocean island-like basalts (OIB) that are found both on the arc axis and, especially at the Simcoe Volcanic Field, behind the arc. This segment lies primarily on the accreted Tertiary oceanic plateau terrane of the Columbia Embayment. The Central segment is dominated by LKT with lesser CAB and has the most restricted Sr isotopic range (0.7034- 0.7038). Like the South segment, the Central segment mainly overlies accreted terranes stitched by Mesozoic plutons and has Basin and Range (B&R) extension behind as well as locally within the arc. Medicine Lake Volcano, on the margin of the B&R behind Mt. Shasta is also dominated by LKT and has a narrow isotopic range like the Central segment. This suggests that the LKT's are related to extension in the arc. The South segment is distinguished by the widest Sr isotopic range (0.7028-0.7042) and the presence of high Mg basaltic andesite and andesite compositions in addition to LKT and CABs. These arc segments broadly correspond to physical segments that were

  8. Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer

    Sikler, G; Beck, D; Blaum, K; Bollen, G; Herfurth, F; Kellerbauer, A G; Kluge, H J; Lunney, M D; Oinonen, M; Scheidenberger, C; Schwarz, S; Szerypo, J


    The atomic masses of $^{76,77,80,81,86,88}$Sr and $^{124,129,130,131,132}$Sn were measured by means of the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. $^{76}$Sr is now the heaviest N=Z nucleus for which the mass is measured to a precision better than 35 keV. For the tin isotopes in the close vicinity of the doubly magic nucleus $^{132}$Sn, mass uncertainties below 20 keV were achieved. An atomic mass evaluation was carried out taking other experimental mass values into account by performing a least-squares adjustment. Some discrepancies between older experimental values and the ones reported here emerged and were resolved. The results of the new adjustment and their impact will be presented.

  9. B, Sr, O and H Isotopic Compositions of Formation Waters from the Bachu Bulge in the Tarim Basin

    CAI Chunfang; PENG Licai; MEI Bowen; XIAO Yingkai


    In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters together with the XRD of clay minerals from the Paleozoic strata. The waters show Ca, B, Li and Sr enrichment and SO4 depletion in the Carboniferous and Ordovician and K enrichment in part of the Ordovician relative to seawater. The relationship between δD and δ18O shows that all the data of the waters decline towards the Global Meteoric Water Line with the intersection of them close to the present-day local meteoric water, suggesting that modern meteoric water has mixed with evaporated seawater. The 87Sr/86Sr ratios range from 0.7090 to 0.7011, significantly higher than those of the contemporary seawater. The δ11B values range from +19.7 to +32.3‰, showing a decrease with the depth and B concentrations. The results suggest that isotopically distinct B and Sr were derived from external sources. However, since the percentages of illite are shown to increase with depth among clay minerals in the study area, i.e., illite is due to precipitation rather than leaching during deeper burial, it is unlikely for illite to have contributed a significant amount of B to the waters. Thus, B with low δ11B values is interpreted to have been added mainly from thermal degradation of kerogen or the basalts in the Cambrian and Lower Ordovician.

  10. Petrology, geochemistry, and Sr-isotope characteristics of lavas from the area of Commenda, Mts. Vulsini, Italy

    Civetta, L.; Del Carmine, P.; Manetti, P.; Peccerillo, A.; Poli, G.


    Major, trace element and Sr-isotope compositions are reported for a suite of lavas. The analyzed samples have all low silica contents and variable but generally high CaO, MgO and FeO/sub t/. Based on K/sub 2/O/sup 5/ and K/sub 2/O/Na/sub 2/O ratio, the rocks from Commenda can be classified as belonging to the Potassic Series (KS) and the High-potassium Series (HKS). The HKS rocks appear to have derived by crystal/liquid fractionation from the most mafic types with separation olivine and clinopyroxene and then of clinopyroxene + leucite. The most primitive HKS rocks have aphyric texture and high Mg-values, Cr and Ni contents which are close or within the range of values of magmas formed by partial melting of periodotitic mantle sources. The KS rocks have lower incompatible element contents as the HKS rocks with similar degree of evolution. The variations of Sr-isotopic ratios of the analyzed rocks and of other Vulsinian lavas, indicate that the basic HKS Vulsinian rocks did not interact significantly with the continental crust. Instead, the KS appears to have evolved by combined crystal fractionation and assimilation processes, starting from parental magmas which had /sup 87/Sr//sup 86/Sr ratio not significantly lower than that found in the less evolved rocks of the suite. The most primitive HKS rocks from Commenda have hygromagmatophile element distribution pattern characterized by high ratio of LILE/HFSE with negative anomalies of Ta and Ti.

  11. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea

    YAN QuanShu; SHI XueFa; WANG KunShan; BU WenRui; XIAO Long


    The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh basaltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions.Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cumulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.

  12. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie seamount chain, northeast Pacific

    Hegner, E.; Tatsumoto, M.


    Pb, Sr, and Nd isotopic ratios and their parent/daughter element concentrations for 28 basalts from 10 hotspot and nonhotspot seamounts are reported. Nd and Sr isotopic compositions (143Nd/144Nd = 0.51325-0.51304; 87Sr/86Sr = 0.70237-0.70275) plot in the envelope for Juan de Fuca-Gorda ridge basalts with tholeiitic basalts showing more depleted sources and a better negative correlation than transitional to alkalic basalts. Pb isotopic ratios in tholeiitic and alkalic basalts overlap (206Pb/204Pb = 18.29-19.44) and display a trend toward more radiogenic Pb in alkalic basalts. The isotopic data for hotspot and nonhotspot basalts are indistinguishable and correlate broadly with rock composition, implying that they are controlled by partial melting. The isotopic variation in the seamount basalts is about 60% (Nd-Sr) to 100% (Pb) of that in East Pacific Rise basalts and is interpreted as a lower limit for the magnitude of mantle heterogeneity in the northeast Pacific. The data indicate absence of a chemically distinct plume component in the linear seamount chains and strongly suggest an origin from mid-ocean ridge basalt-like east Pacific mantle. -Authors

  13. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics

    Chen, Daizhao; Qing, Hairuo; Li, Renwei


    A severe biotic crisis occurred during the Late Devonian Frasnian-Famennian (F/F) transition (± 367 Myr). Here we present δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics, from identical samples of two sections across F/F boundary in South China, which directly demonstrate large and frequent climatic fluctuations (˜200 kyr) from warming to cooling during the F/F transition. These climate fluctuations are interpreted to have been induced initially by increased volcanic outgassing, and subsequent enhanced chemical weathering linked to the rapid expansion of vascular plants on land, which would have increased riverine delivery to oceans and primary bioproductivity, and subsequent burial of organic matter, thereby resulting in climate cooling. Such large and frequent climatic fluctuations, together with volcanic-induced increases in nutrient (e.g., biolimiting Fe), toxin (sulfide) and anoxic water supply, and subsequent enhanced riverine fluxes and microbial bloom, were likely responsible for the stepwise faunal demise of F/F biotic crisis.

  14. Elemental and Sr-Nd-Pb isotope geochemistry of the Cenozoic basalts in Southeast China: Insights into their mantle sources and melting processes

    Sun, Pu; Niu, Yaoling; Guo, Pengyuan; Ye, Lei; Liu, Jinju; Feng, Yuexing


    We analyzed whole-rock major and trace elements and Sr-Nd-Pb isotopes of the Cenozoic basalts in Southeast China to investigate their mantle source characteristics and melting process. These basalts are spatially associated with three extensional fault systems parallel to the coast line. After correction for the effect of olivine microlites on bulk-rock compositions and the effect of crystal fractionation, we obtained primitive melt compositions for these samples. These primitive melts show increasing SiO2, Al2O3 but decreasing FeO, MgO, TiO2, P2O5, CaO and CaO/Al2O3 from the interior to the coast. Such spatial variations of major element abundances and ratios are consistent with a combined effect of fertile source compositional variation and increasing extent and decreasing pressure of decompression melting from beneath the thick lithosphere in the interior to beneath the thin lithosphere in the coast. These basalts are characterized by incompatible element enrichment but varying extent of isotopic depletion. This element-isotope decoupling is most consistent with recent mantle source enrichment by means of low-degree melt metasomatism that elevated incompatible element abundances without yet having adequate time for isotopic ingrowth in the mantle source regions. Furthermore, Sr and Nd isotope ratios show significant correlations with Nb/Th, Nb/La, Sr/Sr* and Eu/Eu*, which substantiates the presence of recycled upper continental crustal material in the mantle sources of these basalts. Pb isotope ratios also exhibit spatial variation, increasing from the interior to the coastal area. The significant correlations of major element abundances with Pb isotope ratios indicate that the Pb isotope variations also result from varied extent and pressure of decompression melting. We conclude that the elevated Pb isotope ratios from the interior to coast are consistent with increasing extent of decompression melting of the incompatible element depleted mantle matrix, which

  15. Monitoring the interaction of hydraulic fracturing fluid with Marcellus Shale using Sr isotopes: a comparison of laboratory experiments with field scale observations (Invited)

    Wall, A. J.; Hakala, A.; Marcon, V.; Joseph, C.


    Strontium isotopes have the potential to be an effective tool for differentiating Marcellus Shale derived-fluids from other sources in surface and ground waters (Chapman et al. 2012, doi: 10.1021/es204005g). Water that is co-produced during gas extraction is likely influenced by fluid/rock interactions during hydraulic fracturing (HF) and monitoring changes in Sr isotope ratios can provide insight into reactions occurring within the shale formation. However, questions persist as to what controls the Sr isotopic composition of Marcellus Shale fluids, especially during HF. Here we compare laboratory experiments, simulating the dissolution of the Marcellus Shale during HF, with a time-series of water samples taken from a Marcellus Shale gas wells after HF has occurred. For the laboratory experiments, a core sample of Marcellus Shale from Greene County, PA was crushed and placed into a high P and T reaction vessel. Solutions were added in two different experiments: one with synthetic brine, and another using brine+HF fluid. The HF fluid was made up of components listed on Experiments were run for ~16 days at 27.5 MPa and 130oC. Aqueous samples were periodically removed for analysis and Sr isotope ratios were measured by MC-ICP-MS. Using just brine, the pH of the solution decreased from 7.6 to 5.3 after 24 hrs, then reached a steady state at ~6.1. Sr/Ca molar ratios in the fluid started at 2.3 after 24 hours and decreased to 1.8 over ~16 days. During this time only 6% of the total inorganic carbon (TIC) dissolved from the shale. The ɛSr values started at +43.2 and decreased to +42.4. In the experiment using brine+HF fluid, the pH started at 1.8 and rose slowly to a steady value of 5.6 by day 6. The Sr and Ca concentrations were higher than the brine experiment, but the Sr/Ca ratios remained lower at ~0.3 through the experiment. The increased Ca release, as well as the dissolution of over 60% of the TIC, suggests the dissolution of a carbonate mineral

  16. Chemical and isotopical characterisation of atmospheric pollution from urban and rural environments of the Rhine Valley (PCBs, trace elements and Sr-, Nd- and Pb- isotope determinations)

    Guéguen, F.; Stille, P.; Millet, M.; Dietze, V.; Gieré, R.


    Atmosheric samples (gas and particulate matter (PM)) have been collected in the urban environment of the cities of Strasbourg and Kehl and in the rural environment of the Vosges mountains. For sampling of gas phase pollutants and particles two different passive sampler devices have been applied (PAS and Sigma-2, respectively). The PAS has been used for gas phase Polychlorinated Biphenyls (PCBs) sampling and is based on the passive adsorption of gas phase pollutants onto XAD-2 resin. The Sigma-2 sampler is based on the sedimentation principle (Stoke's law), collects particles in the size range 2.5-100 μm and allows the calculation of ambient air concentration. The sampler is mainly used for routine air quality measurements in German health and recreation resorts and in this field study the first time for collection of samples for subsequent trace element and isotope analysis. The collection time for the Sigma-2 and PAS are four and two weeks, respectively. Major and trace elements have been analyzed by ICP-MS and the Sr, Nd and Pb isotope ratios by a sector field MC-ICP-MS (Neptune) while PCBs were ASE extracted and analysed by GC-ECD. The aerosol data are compared with those from tree barks which have previously been used successfully as biomonitors of atmospheric pollution (Lahd Geagea et al. 2008)1. The outer 1 mm thick part of the bark has been analyzed corresponding to about 2 to 8 years of accumulation. Some of the trace elements (Cr, Ni and Mo) of the aerosol samples are strongly (up to 1000 times) enriched compared to average 'upper continental crust (UCC)'. Normalization to a « natural » sample with an atmospheric baseline composition allows to identify industrial contributions: transition metals (Cr, Mn, Fe, Co, Ni, Zn, Mo, Cd), Ba and Pb appear to be important elements in steel plant and incinerator (chemical waste) emissions. Similarly enrichment in light rare earth elements (La, Pr, Nd) is observable. The enrichments increase with decreasing distance

  17. Sr-Isotope Composition of Feldspar: Implication for age and Evolution of Gabbros from Uralian-Alaskan Type Complexes in the Ural Mountains, Russia

    Bruegmann, G. E.; Krause, J.; Pushkarev, E.


    Compared to whole-rock or bulk mineral analyses single mineral composition could reveal disequilibrium features between crystals or within individual crystals which provide important information on magma chamber processes. We applied a LA-ICPMS technique to determine Sr isotopes in plagioclase and K-feldspar of gabbroic rocks from the Nizhnii Tagil and Kytlym complexes in the Ural Mountains in Russia. These complexes are Uralian-Alaskan-type zoned mafic-ultramafic complexes, consisting of dunite, clinopyroxenite and gabbro bodies. The rock association is considered to represent a cumulate sequence of a single parental melt feeding a magma chamber system. The instruments used were a NU Plasma MC-ICPMS and a solid-state 193 and 213 nm Nd:YAG laser ablation system from New Wave. The data of the present study includes up to five spot analyses (100-120 μm spot size) of each mineral in a thin section. Baselines for analyses were measured on-peak for 20 s while flushing the sample chamber with He. About 300 to 500 isotope ratios were measured during the ablation time of 80-100 s. Raw data were exported to an external data reduction spreadsheet and corrected for interferences (Kr, Rb) and mass bias using 87Sr/^{88}Sr=0.1194. During the time of analyses we measured the Sr isotope composition of an in-house marine carbonate reference material. Its 87Sr/86Sr of 0.70923±6 (2SD) agrees within error limits with our TIMS measurements. The gabbros have porphyric textures with clinopyroxene phenocrysts in a matrix of olivine, clinopyroxene and spinel. Two gabbro types can be distinguished based on additional matrix minerals. One type of gabbro is silica saturated, contains plagioclase (An57-88) and in places orthopyroxene as matrix phases. The second gabbro type is silica undersaturated and contains in the matrix plagioclase (An29-56) and pseudoleucite, a fine grained intergrowth of nepheline and K-feldspar (Or30-81). In this gabbro plagioclase has generally higher Sr

  18. Pb-Sr-Nd isotopes in surficial materials at the Pebble Porphyry Cu-Au-Mo Deposit, Southwestern Alaska: can the mineralizing fingerprint be detected through cover?

    Ayuso, Robert A.; Kelley, Karen D.; Eppinger, Robert G.; Forni, Francesca


    The Cretaceous Pebble porphyry Cu-Au-Mo deposit is covered by tundra and glacigenic sediments. Pb-Sr-Nd measurements were done on sediments and soils to establish baseline conditions prior to the onset of mining operations and contribute to the development of exploration methods for concealed base metal deposits of this type. Pebble rocks have a moderate range for 206Pb/204Pb = 18.574 to 18.874, 207Pb/204Pb = 15.484 to 15.526, and 208,Pb/204Pb = 38.053 to 38.266. Mineralized granodiorite shows a modest spread in 87Sr/86Sr (0.704354–0.707621) and 143Nd/144Nd (0.512639–0.512750). Age-corrected (89 Ma) values for the granodiorite yield relatively unradiogenic Pb (e.g., 207Pb/204Pb 87Sr/86Sr, and positive values of ɛNd (1.00–4.52) that attest to a major contribution of mantle-derived source rocks. Pond sediments and soils have similar Pb isotope signatures and 87Sr/86Sr and 143Nd/144Nd values that resemble the mineralized granodiorites. Glacial events have obscured the recognition of isotope signatures of mineralized rocks in the sediments and soils. Baseline radiogenic isotope compositions, prior to the onset of mining operations, reflect natural erosion, transport and deposition of heterogeneous till sheets that included debris from barren rocks, mineralized granodiorite and sulfides from the Pebble deposit, and other country rocks that pre- and postdate the mineralization events. Isotopic variations suggest that natural weathering of the deposit is generally reflected in these surficial materials. The isotope data provide geochemical constraints to glimpse through the extensive cover and together with other geochemical observations provide a vector to concealed mineralized rocks genetically linked with the Pebble deposit.

  19. Trace element and Sr and Nd isotope geochemistry of peridotite xenoliths from the Eifel (West Germany) and their bearing on the evolution of the subcontinental lithosphere

    Stosch, H.G.; Lugmair, G.W.


    Peridotite xenoliths from the Eifel can be divided into incompatible element-depleted and -enriched members. The depleted group is restricted to dry lherzolites whereas the enriched group encompasses dry harzburgites, dry websterite and amphibole and/or phlogopite-bearing peridotites. Isotopically the depleted group is very diverse with /sup 143/Nd//sup 144/Nd ranging from proportional to 0.51302 to 0.51355 and /sup 87/Sr//sup 86/Sr from proportional to 0.7041 to 0.7019, thus occupying a field larger than expected for oceanic-type subcontinental mantle. These xenoliths are derived from a mantle which appears to have diverged from a bulk-earth Nd and Sr isotopic evolution path proportional to 2 Ga ago as a consequence of partial melting. The combination of high /sup 143/Nd//sup 144/Nd with high /sup 87/Sr//sup 86/Sr in some members of depleted-xenoliths suite is likely to be the result of incipient reaction with incompatible element-enriched fluids in the mantle. In the enriched group such reactions have proceeded further and erased any pre-enriched isotope memory resulting in a smaller isotopic diversity (/sup 143/Nd//sup 144/Nd proportional to 0.51256-0.51273, /sup 87/Sr//sup 86/Sr proportional to 0.7044-0.7032). An evaluation of Sm-Hf and Yb-Hf relationships suggests that the amphibole-bearing lherzolites and harzburgites acquired their high enrichment of light rare earth elements by fluid infiltration into previously depleted peridotite rather than by silicate melt-induced metasomatism. Upper mantle composed of such metasomatized peridotites does not represent a potential source for the basanites and nephelinites from the Eifel. The isotopic and chemcial diversity of the subcontinental lithospheric part of the mantle may result from it having remained isolated from the convecting mantle for times >1 Ga.

  20. Crossing the peninsula: the role of Noh Bec, Yucatán, in ancient Maya Classic Period population dynamics from an analysis of dental morphology and Sr isotopes.

    Cucina, Andrea; Price, T Douglas; Magaña Peralta, Evelia; Sierra Sosa, Thelma


    This article aims to infer population dynamics in the Noh Bec region (Yucatán Peninsula, México) during the Maya Classic period (AD 350-800), based on a combined analysis of dental morphology and (87) Sr/(86) Sr isotopes, and on a comparison of the dental evidence together with archaeological signs of trade and relationships with other regions in the Maya world. Twenty-three dental morphological variables were used to estimate affinities between dental collections from Noh Bec and 10 more sites from the region. (87) Sr/(86) Sr isotopes were recorded from the enamel of permanent teeth of 32 individuals from Noh Bec, and compared to the site's local chemical signature. Dental morphology reveals a strong affinity with Kohunlich, in the central Maya lowlands, while some diversity can be noted with the Petén sites (such as Calakmul) as well as sites on the northern coast of the peninsula. The local extent of (87) Sr/(86) Sr variation ranges between 0.7086 and 0.7088. Eight of the 32 Noh Bec individuals analyzed were born elsewhere. Isotopic values indicate different places of origin although apparently none were from the northern coast of the peninsula; instead, the range of variability reflects many locations along the western coast of the peninsula as well as inland sites in the Chenes region in Campeche. Dental morphology and (87) Sr/(86) Sr ratios indicate intense population dynamics in the peninsula during the Maya Classic period. Despite the different nature of the dental and isotopic indicators, results agree with archaeological evidence and with proposed trade routes in the peninsula. © 2015 Wiley Periodicals, Inc.

  1. Development of an Isotope-Dilution Liquid Chromatography/Mass Spectrometric Method for the Accurate Determination of Acetaminophen in Tablets

    Shin, Hyun Ju; Kim, Byung Joo; Lee, Joon Hee; Hwang, Eui Jin [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)


    Acetaminophen (N-acetyl-p-aminophenol) is one of the most popular analgesic and antipyretic drugs. An isotope dilution mass spectrometric method based on LC/MS was developed as a candidate reference method for the accurate determination of acetaminophen in pharmaceutical product. After spiking an isotope labeled acetaminophen (acetyl-{sup 13}C{sub 2}, {sup 15}Nacetaminophen) as an internal standard, tablet extracts were analyzed by LC/MS in a selected reaction monitoring (SRM) mode to detect ions at m/z 152→110 and m/z 155→111 for acetaminophen and acetyl-{sup 13}C{sub 2}, {sup 15}N-acetaminophen, respectively. The repeatability and reproducibility of the developed ID/LC-MS method were tested for the validation and assessment of metrological quality of the method.

  2. Accurate measurement of neodymium isotopic composition using Neptune MC-ICP-MS

    Yueheng YANG; Hongfu ZHANG; Liewen XIE; Fuyuan WU


    This paper reports the measurement of the Neodymium isotopic composition by Neptune Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) over the last two years. Although there is concomitant Cerium in the chemical separation process, this has no significant influence on the Neodymium analysis. As for the sample containing small amounts of Samarium (Sm/Nd<0.04), direct calibration for isobaric interference and mass discrimina-tion by the exponential law can be obtained by assuming that Samarium mass discrimination is the same as that of Neodymium. Geological samples after traditional chemi-cal separation were measured by Neptune MC-ICP-MS and Thermal Ionization Mass Spectrometry (TIMS) respectively. The results show that Neptune MC-ICP-MS can measure Neodymium isotopic composition as precisely the TIMS does and is even more effective and less time-consuming than the TIMS Method.

  3. Ca, Sr, Mo and U isotopes evidence ocean acidification and deoxygenation during the Late Permian mass extinction

    Silva-Tamayo, Juan Carlos; Payne, Jon; Wignall, Paul; Newton, Rob; Eisenhauer, Anton; Weyer, Stenfan; Neubert, Nadja; Lau, Kim; Maher, Kate; Paytan, Adina; Lehrmann, Dan; Altiner, Demir; Yu, Meiyi


    The most catastrophic extinction event in the history of animal life occurred at the end of the Permian Period, ca. 252 Mya. Ocean acidification and global oceanic euxinia have each been proposed as causes of this biotic crisis, but the magnitude and timing of change in global ocean chemistry remains poorly constrained. Here we use multiple isotope systems - Ca, Sr, Mo and U - measured from well dated Upper Permian- Lower Triassic sedimentary sections to better constrain the magnitude and timing of change in ocean chemistry and the effects of ocean acidification and de-oxygenation through this interval. All the investigated carbonate successions (Turkey, Italy and China) exhibit decreasing δ44/40Ca compositions, from ~-1.4‰ to -2.0‰ in the interval preceding the main extinction. These values remain low during most of the Griesbachian, to finally return to -1.4‰ in the middle Dienerian. The limestone succession from southern Turkey also displays a major decrease in the δ88/86Sr values from 0.45‰ to 0.3‰ before the extinction. These values remain low during the Griesbachian and finally increase to 0.55‰ by the middle Dienerian. The paired negative anomalies on the carbonate δ44/40Ca and δ88/86Sr suggest a decrease in the carbonate precipitation and thus an episode of ocean acidification coincident with the major biotic crisis. The Mo and U isotope records also exhibit significant rapid negative anomalies at the onset of the main extinction interval, suggesting rapid expansion of anoxic and euxinic marine bottom waters during the extinction interval. The rapidity of the isotope excursions in Mo and U suggests substantially reduced residence times of these elements in seawater relative to the modern, consistent with expectations for a time of widespread anoxia. The large C-isotope variability within Lower Triassic rocks, which is similar to that of the Lower-Middle Cambrian, may reflect biologically controlled perturbations of the oceanic carbon cycle

  4. Alkaline magmatism of the Vitim province, West Transbaikalia, Russia: Age, mineralogical, geochemical and isotope (О, C, D, Sr and Nd) data

    Doroshkevich, Anna G.; Ripp, German S.; Izbrodin, Ivan A.; Savatenkov, Valery M.


    In this paper, we study the geochronology, mineral chemistry, and whole-rock elemental, stable (O, C, D) and Sr-Nd isotopic data for alkaline ultrabasic-basic massifs of the Vitim alkaline province (Sayzhenski complex) in the Central Asian Orogenic Belt, near the boundary with the Siberian craton, to evaluate their petrogenesis and geodynamic significance. U-Pb zircon dating results in Early Paleozoic (520-486 Ma) and Late Paleozoic (306-294 Ma) stages of alkaline rock formation. The mineralogy and geochemistry exhibit a wide range of SiO2 (38-73 wt.%), enrichment in Sr, Ba, LREE and Ta and, most significantly, in Na and Al. The rocks crystallized from a parental CO2- and H2O-rich silica-undersaturated melt. Isotopically, the rocks are highly variable, with (87Sr/86Sr)i - 0.705595-0.707729 and (143Nd/144Nd)i - 0.512237-0.512643. The geochemical and isotope data suggest that the rocks were derived from a source composed of three distinct components: PREMA, EM II and marine carbonate. Additionally, stable (O, C, D) isotope data display the shifting influence of assimilated organic sediments in the source of melts and a partial secondary isotope exchange between the late-magmatic fluids and minerals.

  5. Generation of high-silica rhyolite: A Nd, Sr, and O isotopic study of Sierra La Primavera, Mexican Neovolcanic Belt

    Mahood, Gail A.; Halliday, Alex N.


    High-silica rhyolites of the Sierra La Primavera, a late Pleistocene center near Guadalajara, are extremely Sr-poor (0.3 1.3 ppm), yet (with one exception) values of 87Sr/86Sri are relatively low at 0.7041 0.7048. Values of 143Nd/144Nd for all the rhyolites are (within errors) identical to a basalt at 0.5129. These surprisingly primitive values, along with feldspar ∂18O of +6.6‰, are consistent with an origin by fractional crystallization of mantle-derived basalt. However, absence of the large volume of associated intermediate rocks that would be expected if the 40 km3 of erupted rhyolite were produced mainly by fractional crystallization suggests alternative processes involving partial melting of Mesozoic or Tertiary mafic intrusive rocks (or lower-crustal metamorphic equivalents). The latter interpretation is preferred, especially in light of comparative data for other North American, Cenozoic, high-silica rhyolites. Isotopic compositions correlate with basement age, but generally lie between values for associated basalts and the underlying crust. Nearly all can be interpreted as containing both a young mantle-derived component and a crustal component, probably derived by partial melting at intermediate to deep levels of the crust. No matter what the proportions of mantle- and crust-derived material in parental magmas, the extremely low concentrations of Sr and Ba in the high-silica rhyolites require extensive fractional crystallization of feldspar-rich assemblages after parental liquids attain rhyolitic compositions. At La Primavera, contamination by shallow roof rocks probably led to the 0.708 87Sr/86Sri ratio of the earliest postcaldera lava dome, which is thought to have erupted through the same vent as the caldera-forming pyroclastic flows. Contamination associated with collapse apparently affected only a small volume of magma in contact with brecciated wall rocks close to the vent, as nearby lavas that erupted during the same episode about 95 ky ago are

  6. Multi-isotope tracers to investigate processes in the Elbe, Weser and Ems river catchment using B, Mo, Sr, and Pb isotope ratios assessed by MC ICP-MS

    Irrgeher, Johanna; Reese, Anna; Zimmermann, Tristan; Prohaska, Thomas; Retzmann, Anika; Wieser, Michael E.; Zitek, Andreas; Proefrock, Daniel


    Environmental monitoring of complex ecosystems requires reliable sensitive techniques based on sound analytical strategies to identify the source, fate and sink of elements and matter. Isotopic signatures can serve to trace pathways by making use of specific isotopic fingermarks or to distinguish between natural and anthropogenic sources. The presented work shows the potential of using the isotopic variation of Sr, Pb (as well-established isotopic systems), Mo and B (as novel isotopic system) assessed by MC ICP-MS in water and sediment samples to study aquatic ecosystem transport processes. The isotopic variation of Sr, Pb, Mo and B was determined in different marine and estuarine compartments covering the catchment of the German Wadden Sea and its main tributaries, the Elbe, Weser and Ems River. The varying elemental concentrations, the complex matrix and the expected small variations in the isotopic composition required the development and application of reliable analytical measurement approaches as well as suited metrological data evaluation strategies. Aquatic isoscapes were created using ArcGIS® by relating spatial isotopic data with geographical and geological maps. The elemental and isotopic distribution maps show large variation for different parameters and also reflect the numerous impact factors (e.g. geology, anthropogenic sources) influencing the catchment area.

  7. Improvements in Precise and Accurate Isotope Ratio Determination via LA-MC-ICP-MS by Application of an Alternative Data Reduction Protocol

    Fietzke, J.; Liebetrau, V.; Guenther, D.; Frische, M.; Zumholz, K.; Hansteen, T. H.; Eisenhauer, A.


    An alternative approach for the evaluation of isotope ratio data using LA-MC-ICP-MS will be presented. In contrast to previously applied methods it is based on the simultaneous responses of all analyte isotopes of interest and the relevant interferences without performing a conventional background correction. Significant improvements in precision and accuracy can be achieved when applying this new method and will be discussed based on the results of two first methodical applications: a) radiogenic and stable Sr isotopes in carbonates b) stable chlorine isotopes of pyrohydrolytic extracts. In carbonates an external reproducibility of the 87Sr/86Sr ratios of about 19 ppm (RSD) was achieved, an improvement of about a factor of 5. For recent and sub-recent marine carbonates a mean radiogenic strontium isotope ratio 87Sr/86Sr of 0.709170±0.000007 (2SE) was determined, which agrees well with the value of 0.7091741±0.0000024 (2SE) reported for modern sea water [1,2]. Stable chlorine isotope ratios were determined ablating pyrohydrolytic extracts with a reproducibility of about 0.05‰ (RSD). For basaltic reference material JB1a and JB2 chlorine isotope ratios were determined relative to SMOC (standard mean ocean chlorinity) δ37ClJB-1a = (-0.99±0.06) ‰ and δ37ClJB-1a = (-0.60±0.03) ‰ (SD), respectively, in accordance with published data [3]. The described strategies for data reduction are considered to be generally applicable for all isotope ratio measurements using LA-MC-ICP-MS. [1] J.M. McArthur, D. Rio, F. Massari, D. Castradori, T.R. Bailey, M. Thirlwall, S. Houghton, Palaeogeo. Palaeoclim. Palaeoeco., 2006, 242 (126), doi: 10.1016/j.palaeo.2006.06.004 [2] J. Fietzke, V. Liebetrau, D. Guenther, K. Guers, K. Hametner, K. Zumholz, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 955-961, doi:10.1039/B717706B [3] J. Fietzke, M. Frische, T.H. Hansteen and A. Eisenhauer, J. Anal. At. Spectrom., 2008, 23, 769-772, doi:10.1039/B718597A

  8. Geochemical and Sr Nd Pb isotopic evidence for a combined assimilation and fractional crystallisation process for volcanic rocks from the Huichapan caldera, Hidalgo, Mexico

    Verma, Surendra P.


    This study reports new geochemical and Sr-Nd-Pb isotopic data for Miocene to Quaternary basaltic to andesitic, dacitic, and rhyolitic volcanic rocks from the Huichapan caldera, located in the central part of the Mexican Volcanic Belt (MVB). The initial Sr and Nd isotopic ratios, except for one rhyolite, range as follows: 87Sr/ 86Sr 0.70357-0.70498 and 143Nd/ 144Nd 0.51265-0.51282. The Sr-Nd-Pb isotopic ratios are generally similar to those for volcanic rocks from other areas of the central and eastern parts of the MVB. The isotopic ratios of one older pre-caldera rhyolite (HP30) from the Huichapan area, particularly its high 87Sr/ 86Sr, are significantly different from rhyolitic rocks from this and other areas of the MVB, but are isotopically similar to some felsic rocks from the neighbouring geological province of Sierra Madre Occidental (SMO), implying an origin as a partial melt of the underlying crust. The evolved andesitic to rhyolitic magmas could have originated from a basaltic magma through a combined assimilation and fractional crystallisation (AFC) process. Different compositions, representing lower crust (LC) and upper crust (UC) as well as a hypothetical crust similar to the source of high 87Sr/ 86Sr rhyolite HP30, were tested as plausible assimilants for the AFC process. The results show that the UC represented by granitic rocks from a nearby Los Humeros area or by Cretaceous limestone (L) rocks outcropping in the northern part of the study area, and the LC represented by granulitic xenoliths from a nearby San Luis Potosı´ (SLP) area are not possible assimilants for Huichapan magmas, whereas a hypothetical crust (HA) similar in isotopic compositions to rhyolite HP30 could be considered a possible assimilant for the AFC process. Chemical composition of assimilant HA, although not well constrained at present, was inferred under the assumption that HP30 type partial melts could be generated from its partial melting. These data were then used to evaluate

  9. Geochemistry, geology, and isotopic (Sr, S, and B) composition of evaporites in the Lake St. Martin impact structure: New constraints on the age of melt rock formation

    Leybourne, Matthew I.; Denison, Rodger E.; Cousens, Brian L.; Bezys, Ruth K.; Gregoire, D. Conrad; Boyle, Dan R.; Dobrzanski, Ed


    We report new Sr, S, and B isotopic data for evaporites (gypsum, anhydrite), carbonates, melt rocks, gneisses, and groundwaters recovered in and around the Lake St. Martin (LSM) impact structure, Interlake Region, Manitoba, Canada. The LSM meteorite impacted Devonian to Ordovician carbonates and sandstones of the eastern Williston Basin, resulting in partial melting of underlying Superior Province (~2.5 Ga) gneisses of the Canadian Shield. Overlying the LSM melt rocks are red beds and evaporites (anhydrite/gypsum/glauberite) previously inferred to have been deposited during the Jurassic. The 87Sr/86Sr (lowest values cluster at 0.70836) and δ 34SCDT (+23.7 +/- 0.9‰) of the evaporites, combined with B isotope compositions of associated groundwaters (δ 11BNBS951 = +25 to +28‰), are consistent with evaporite deposition within the impact structure near the edge of an ocean-connected salina. The establishment of a marine origin for the evaporites offers a method of age assignment using the secular variation of S and Sr isotopes in seawater. Comparison of Sr and S isotope results with the seawater curves precludes Jurassic deposition for the evaporites or correlation with Watrous and Amaranth formation evaporites, previously considered correlative with those at LSM. The lowest Sr and mean of S isotope values from the LSM evaporites are similar to seawater in the latest Devonian, consistent with conodonts recovered from carbonate breccia overlying melt rocks, and we suggest this as an alternative age of the evaporites. Data presented here preclude a Jurassic age for the evaporites and therefore for the impact event.

  10. The use of O, H and Sr isotopes and carbamazepine to identify the origin of water bodies supplying a shallow alluvial aquifer

    Sassine, Lara; Le Gal La Salle, Corinne; Lancelot, Joël; Verdoux, Patrick


    Alluvial aquifers are of great socio-economic importance in France since they supply 82% of drinking water production, though they reveal to be very vulnerable to pesticides and emerging organic contaminants. The aim of this work is to identify the origin of water bodies which contribute to the recharge of an alluvial aquifer for a better understanding of its hydrochemistry and transfer of contaminants therein. The study is based on an isotopic and geochemical tracers approach, including major elements, trace elements (Br, Sr),and isotopes (δ18O, δ2H, 87Sr/86Sr), as well as organic molecules. Indeed, organic molecules such as pharmaceutical compounds, more precisely carbamazepine and caffeine, have shown their use as indicators of surface water in groundwater. The study area is a partially-confined shallow alluvial aquifer, the so-called Vistrenque aquifer, located at 15 km from the Mediterranean Sea, in the Quaternary alluviums deposited by an ancient arm of the Rhône River, in Southern France. This aquifer constitutes a shallow alluvial layer in a NE-SW graben structure. It is situated between a karst aquifer in lower Cretaceous limestones, on the NW border, and the Costières Plateau, on the SE border, having a similar geology as the Vistrenque. The alluvial plain is crossed by a surface water network with the Vistre as the main stream, and a canal used for irrigation essentially, the BRL canal, which is fed by the Rhône River. δ18O and δ2H allowed to differentiate the BRL canal water, depleted in heavy isotopes (δ2H = -71.5o vs V-SMOW), and the more enriched local rainwater (δ2H = -35.5o vs V-SMOW). In the Vistre surface water a binary mixing were evidenced with the BRL canal water and the rainwater, as end members. Then, in the Vistrenque groundwater both the BRL and the Vistre contributions could be identified, as they still show contrasting signature with local recharge. This allows to highlight the surface water contribution to a heavily exploited

  11. Accurate mass measurements of short-lived isotopes with the MISTRAL rf spectrometer

    Toader, C F; Borcea, C; Doubre, H; Duma, M; Jacotin, M; Henry, S; Képinski, J F; Lebée, G; Le Scornet, G; Lunney, M D; Monsanglant, C; De Saint-Simon, M; Thibault, C


    The MISTRAL experiment has measured its first masses at ISOLDE. Installed in May 1997, this radiofrequency transmission spectrometer is to concentrate on nuclides with particularly short half-lives. MISTRAL received its first stable beam in October and first radioactive beam in November 1997. These first tests, with a plasma ion source, resulted in excellent isobaric separation and reasonable transmission. Further testing and development enabled first data taking in July 1998 on neutron-rich Na isotopes having half-lives as short as 31 ms.

  12. S- and Sr-isotopic compositions in barite-silica chimney from the Franklin Seamount, Woodlark Basin, Papua New Guinea: constraints on genesis and temporal variability of hydrothermal fluid

    Ray, Durbar; Banerjee, Ranadip; Balakrishnan, S.; Paropkari, Anil L.; Mukhopadhyay, Subir


    Isotopic ratios of strontium and sulfur in six layers across a horizontal section of a hydrothermal barite-silica chimney from Franklin Seamount of western Woodlark Basin have been investigated. Sr-isotopic ratios in barite samples (87Sr/86Sr = 0.70478-0.70493) are less radiogenic than seawater (87Sr/86Sr = 0.70917) indicating that substantial leaching of sub-seafloor magma was involved in the genesis of hydrothermal fluid. The SO2 of magma likely contributed a considerable amount of lighter S-isotope in fluid and responsible for the formation of barite, which is isotopically lighter (δ34S = 19.4-20.5 ‰) than modern seawater (δ34S ~ 21 ‰). The systematic changes in isotopic compositions across the chimney wall suggest temporal changes in the mode of mineral formation during the growth of the chimney. Enrichment of heavy S- and Sr-isotopes (δ34S = 20.58 ‰; 87Sr/86Sr = 0.70493) in the outermost periphery of the chimney indicates that, at the initial stage of chimney development, there was a significant contribution of seawater sulfate during barite mineralization. Thereafter, thickening of chimney wall occurred due to precipitation of fluid carrying more magmatic components relative to seawater. This led to a gradual enrichment of lighter isotopes (δ34S = 20.42-19.48 ‰; 87Sr/86Sr = 0.70491-0.704787) toward the inner portion of the chimney wall. In contrast, the innermost layer surrounding the fluid conduit is characterized by heavier and more radiogenic isotopes (δ34S = 20.3 ‰; 87Sr/86Sr = 0.7049). This suggests there was increasing influence of percolating seawater on the mineral paragenesis at the waning phase of the chimney development.

  13. Rare earth elements and (87)Sr/(86)Sr isotopic characterization of Indian Basmati rice as potential tool for its geographical authenticity.

    Lagad, Rupali A; Singh, Sunil K; Rai, Vinai K


    The increasing demand for premium priced Indian Basmati rice (Oryza sativa) in world commodity market causing fraudulent activities like adulteration, mislabelling. In order to develop authentication method for Indian Basmati rice, (87)Sr/(86)Sr ratios and REEs composition of Basmati rice, soil and water samples were determined and evaluated their ability as geographical tracer in the present study. In addition, the possible source of Sr in rice plant has also been examined. Basmati rice samples (n=82) showed (87)Sr/(86)Sr ratios in the range 0.71143-0.73448 and concentrations of 10 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb) in ppb levels. Statistical analysis showed strong correlation between (87)Sr/(86)Sr ratios of rice, silicate and carbonate fractions of soil. Good correlation and closeness of (87)Sr/(86)Sr of rice with water indicate its uptake in rice from water. Rice grown in southern Uttar Pradesh contains higher (87)Sr/(86)Sr compared to other region of Indo-Gangetic Plain due to higher (87)Sr/(86)Sr of the Ganga compared to other rivers. (87)Sr/(86)Sr ratios can be used as a tracer for differentiating Indian Basmati rice from the other country originated rice samples.

  14. Sm-Nd and Rb-Sr isotopic data on the sanukitoid intrusions of the Karelia, Baltic Shield

    Kovalenko, A. V.; Savatenkov, V. M.


    Sanukitoid intrusions from the Baltic Shield form post-tectonic differentiated intrusions 2.74-2.72 Ga old (Chekulaev, 1999, Lobach-Zhuchenko et al., 2000). They are represented by alkaline and calc-alkaline types which have high mg# (up to 0.6), strong LREE enrichment (Ce(N)=80-150, Yb(N)=4-7, Ce(N)/Yb(N)>20), high Sr, Ba (>1000 ppm), P2O5 (up to 1.5%) and Cr, Ni concentrations. Some intrusions contain rocks varying from ultramafite to quartz syenite. All sanukitoids are intruded by lamprophyre dykes having similar geochemical signatures. In this study we focus on the Karelian greenstone terrain within the Baltic Shield, in which sanukitoids are restricted to the younger western and central domains (2.7-2.9 Ga). Sanukitoids appear to be absent from the older Vodlozero domain (>3.0 Ga) in eastern Karelia (Lobach-Zhuchenko et al., 2000, Lobach-Zhuchenko et al., in press). About 70 Sm-Nd isotopic data on the sanukitoids of the Karelia were obtained. There is the regional distinction of the isotope composition of the rocks between the Central and West Karelian domains. The initial Epsilon Nd values and TDM range from +1.1 to +2.0 and 2.70-2.85 Ga accordingly in the youngest Central Karelian domain. The West Karelian intrusions yield an initial Epsilon Nd of -0.3- +0.7 and give the older TDM of about 2.82-2.92 Ga. It is to be noted that some intrusions of the Central Karelia domain, occurred closely to the ancient Vodlozero domain, also exhibit a similar range of initial Epsilon Nd and TDM to the intrusions of the West Karelia. There are narrow Nd isotopic compositional ranges within the individual intrusions. Rb-Sr isotopic system was studied in sanukitoids and lamprophyres of differentiated Panozero intrusion, Central Karelia. The initial 87Sr/86Sr isotope ratios range from 0.7000 to 0.7021 in these rocks indicating the derivation of these magmas from depleted mantle. Very low initial 87Sr/86Sr isotope ratios of the sanukitoids confirm the Nd isotopic characteristics

  15. Determination of seasonal and regional variation in the provenance of dissolved cations in rain in Japan based on Sr and Pb isotopes

    Nakano, Takanori; Morohashi, Satomi; Yasuda, Hiroshi; Sakai, Masaharu; Aizawa, Shuhei; Shichi, Koji; Morisawa, Takeshi; Takahashi, Masamichi; Sanada, Masaru; Matsuura, Yojiro; Sakai, Hisao; Akama, Akio; Okada, Naoki

    We determined the elemental and Pb and Sr isotopic compositions of monthly wet precipitation at five sites in Japan (Sapporo, Morioka, Toyama, Tsukuba, and Kumamoto) to elucidate the seasonal and regional variation in the provenance of water-soluble materials. The concentrations of As, Cd, and Pb in the precipitation became high in winter to spring when the prevailing winds are westerly, but those of some metals (Mn, Cu, Ni) did not show distinct seasonal variations. Comparison of Pb isotopic ratios of the precipitation with those of aerosols from the Asian region showed (1) a geographical trend such that precipitation at Sapporo and Morioka in northeastern Japan contained Pb from aerosols from Russia and Mongolia, whereas that at Kumamoto in southwestern Japan contained Pb from aerosols from southern China, and (2) a seasonal variation in that precipitation in winter and spring became enriched in the airborne Pb from northern China, but the degree of the enrichment differed geographically. The sea-salt component (Cl, Na, and Mg) was high in winter and low in summer, particularly at Sapporo and Toyama, which face the Sea of Japan, whereas the non-sea-salt content of Ca and Sr and the 87Sr/ 86Sr tended to become high in spring and low in summer to autumn. The pH was low in winter and became high in spring and summer, except at Tsukuba, which faces the Pacific Ocean. These results show that spring precipitation was partly neutralized by the dissolution of calcium carbonate in the Asian dust with high 87Sr/ 86Sr and Ca/Sr. Summer and autumn precipitation, which was less affected by the Asian aerosols, had distinct Pb and Sr isotopic ratios depending on the site, suggesting that there are several Japanese sources of the base cations and heavy metals in the atmosphere over Japan.

  16. Isotopic Systematics (U, nitrate and Sr) of the F-Area Acidic Contamination Plume at the Savannah River Site: Clues to Contaminant History and Mobility

    Christensen, J. N.; Conrad, M. E.; Bill, M.; Denham, M.; Wan, J.; Rakshit, S.; Stringfellow, W. T.; Spycher, N.


    Seepage basins in the F-Area of the Savannah River Site were used from 1955 to 1989 for the disposal of low-level radioactive acidic (ave. pH ˜2.9) waste solutions from site operations involving irradiated uranium billets and other materials used in the production of radionuclides. These disposal activities resulted in a persistent acidic groundwater plume (pH as low as 3.2) beneath the F-Area including contaminants such as tritium, nitrate, 90Sr, 129I and uranium and that has impinged on surface water (Four Mile Branch) about 600 m from the basins. After cessation of disposal in 1989, the basins were capped in 1991. Since that time, remediation has consisted of a pump-and-treat system that has recently been replaced with in situ treatment using a funnel-and-gate system with injection of alkaline solutions in the gates to neutralize pH. In order to delineate the history of contamination and the current mobility and fate of contaminants in F-Area groundwater, we have undertaken a study of variations in the isotopic compositions of U (234U/238U, 235U/238U, 236U/238U), Sr (87Sr/86Sr) and nitrate (δ15N, δ18O) within the contaminant plume. This data can be used to trace U transport within the plume, evaluate chemical changes of nitrate, and potentially track plume/sediment chemical interaction and trace the migration of 90Sr. We have analyzed a suite of groundwater samples from monitoring wells, as well as pore-water samples extracted from aquifer sediment cores to map out the isotopic variation within the plume. The isotopic compositions of U from well samples and porewater samples are all consistent with the variable burn-up of depleted U. The variation in U isotopic composition requires at least three different endmembers, without any significant influence of background natural U. The δ15N and δ18O of nitrate from F-Area plume groundwater are distinct both from natural and unaltered synthetic nitrate, and likely represents fractionation due to waste volume

  17. Geochemical and Isotopic (Sr, U) Tracing of Weathering Processes Controlling the Recent Geochemical Evolution of Soil Solutions in the Strengbach Catchment (Vosges, France)

    Chabaux, F. J.; Prunier, J.; Pierret, M.; Stille, P.


    The characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems is an important issue to predict and to model the response of ecosystems to recent environmental changes. It is proposed here to highlight the interest of a multi-tracer geochemical approach combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to progress in this topic. This approach has been applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, as well as the analysis of soil samples and vegetation samples from these two plots The depth variation of elemental concentration of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling.

  18. Comprehensive analysis for major, minor and trace element contents and Sr-Nd-Pb-Hf isotope ratios in sediment reference materials, JSd-1 and MAG-1

    Nath, B.N.; Makishima, A.; Noordmann, J.; Tanaka, R.; Nakamura, E.

    In view of the requirement of a well-characterized and easily available aquatic sediment reference material, a comprehensive analysis comprising of fifty major, minor and trace elements as well as Sr–Nd–Pb–Hf isotopes were carried out...

  19. New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC-ICP-MS and TIMS

    Makishima, A.; Nath, B.N.; Nakamura, E.

    A new 3-step sequential separation chemistry for Sr, Nd and Pb from silicate samples, which is suitable for isotope analysis by MC-ICP-MS as well as TIMS, has been developed. The chemistry is designed to minimize the number of evaporation steps...

  20. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain Evidence for an oceanic impact site

    Depaolo, D.J.; Kyte, F.T.; Marshall, B.D.


    The results of isotopic and trace-element-abundance analyses of Ir-enriched Cretaceous-Tertiary-boundary clay sediments from Caravaca, Spain, and of adjacent carbonate and marl layers, are presented. Acetic-acid and HCl leachates and residues were analyzed by isotope dilution to determine K, Rb, Sr, Sm, and Nd concentrations and Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The stable isotope ratios delta-D, delta-(C-13), and delta-(0-18) were also determined. The results are presented in tables and graphs and compared with published data on the Caravaca sediments and on samples from other locations. The boundary clay is found to be distinguished from the adjacent layers by its isotopic ratios and to be of mainly terrestrial, lithospheric (deeper than 3-km) origin. Although submarine-weathering effects are evident and difficult to quantify, the degree of variation in Ni, Ir, Sr, and REE concentrations is considered too large to be attributed to postdepositional processes alone. These findings are seen as evidence for the ocean impact of a large single asteroid producing a worldwide blanket of ejecta, a large injection of water vapor into the atmosphere, and perhaps a gigantic tsunami, at the end of the Cretaceous period.

  1. Cluster emission in superdeformed Sr isotopes in the ground state and formed in heavy-ion reaction

    K P Santhosh; Antony Joseph


    Cluster decay of superdeformed 76,78,80Sr isotopes in their ground state are studied taking the Coulomb and proximity potential as the interacting barrier for the post-scission region. The predicted 1/2 values are found to be in close agreement with those values reported by the preformed cluster model (PCM). Our calculation shows that these nuclei are stable against both light and heavy cluster emissions. We studied the decay of these nuclei produced as an excited compound system in heavy-ion reaction. It is found that inclusion of excitation energy increases the decay rate (decreases 1/2 value) considerably and these nuclei become unstable against decay. These findings support earlier observation of Gupta et al based on PCM.

  2. Sm-Nd dating and Nd-Sr isotopic characteristics of the Shimian ophiolite suite, Sichuan Province


    By measuring the Sm-Nd and Rb-Sr isotopic compositions of harzburgite and gabbro from Shimian ophiolite suite, we got the whole rock Sm-Nd isochron age of (938±30) Ma (2?), and the ??Nd of 7.6±0.8 (2?), which shows that the ophiolite was formed at the Early Neoproterozoic. The obvious change (0.70209-0.70708) of ISr values of the ophiolite is caused by the meteoric hydrothermal alteration. The high ? Nd values indicate that the primitive magma was derived from the intense depleted mantle reservoir. It is suggested that this area was in a back-arc basin environment during the Early Neoproterozic.

  3. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain: Evidence for an oceanic impact site

    DePaolo, D.J.; Kyte, F.T.; Marshall, B.D.; O' Neil, J.R.; Smit, J.


    Isotopic ratios and trace element abundances were measured on samples of IR-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low /sup 87/Sr//sup 86/Sr and high /sup 143/Nd//sup 144/Nd ratios. The delta/sup 18/O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact sites was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (> 3 km). This would probably require a single large impactor. 60 references.

  4. Ca, Sr, O and D isotope approach to defining the chemical evolution of hydrothermal fluids: Example from Long Valley, CA, USA

    Brown, Shaun T.; Kennedy, B. Mack; DePaolo, Donald J.; Hurwitz, Shaul; Evans, William C.


    We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ∼16 km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150-180 °C is fractionated by ca. -0.3‰ to -0.5‰ relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100 °C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.

  5. 40Ar/39Ar ages and Sr-Nd-Pb isotopic compositions of alkaline and tholeiitic rocks from the northern Deccan Traps

    Marzoli, A.; Parisio, L.; Jourdan, F.; Melluso, L.; Sethna, S. F.; Bellieni, G.


    The Deccan large igneous province in India was emplaced close to the Cretaceous-Paleogene boundary (K-Pg; 66.0 Ma) and is formed by tholeiitic and alkaline rocks. Definition of the origin of Deccan magmatism and of its environmental impact relies on precise and accurate geochronological analyses. We present new 40Ar/39Ar ages from the northern sector of the province. In this area, tholeiitic and alkaline rocks were contemporaneously emplaced at 66.60±0.35 to 65.25±0.29 Ma in the Phenai Mata area, while rocks from Rajpipla and Mt. Pavagadh yielded ages ranging from 66.40±2.80 to 64.90±0.80 Ma. Indistinguishable ages for alkaline and tholeiitic magmatism, coupled with distinct major and trace element and Sr-Nd-Pb isotopic compositions suggest that distinct mantle sources, necessary for the two magmatic series were synchronously active. The new ages are compared with previous ages, which were carefully screened and filtered and then recalculated in order to be comparable. The entire data set of geochronological data does not support a time-related migration of the magmatism related to the northward Indian Plate movement relative to the Reunion mantle plume. The main phase of magmatism, including the newly dated rocks from the Northern Deccan occurred across the K-Pg boundary, confirming a causal link between the emplacement of the province and the K-Pg mass extinction.

  6. Toward complete isotopic analysis of individual presolar silicon carbide grains : C, N, Si, Sr, Zr, Mo, and Ba in single grains of type X.

    Pellin, M. J.; Calaway, W. F.; Davis, A. M.; Lewis, R. S.; Amari, S.; Clayton, R. N.


    Presolar silicon carbide grains form in a variety of types of stars, including asymptotic giant branch red giant stars and supernovae. The dominant mechanisms of heavy element nucleosynthesis, the s-process and r-process, are thought to occur mainly in AGB stars and supernovae, respectively [1]. We have previously reported that mainstream SiC grains have strong enrichments in the s-process isotopes of Sr, Zr and Mo [2-4] and initial results for X-type SiC grains showing enrichments in the r-process isotopes of Mo[5]. We report here the first measurements of Zr, Sr, and Ba isotopes along with expanded studies of Mo in individual X-type SiC grains, which have previously been identified as having formed from supernova ejects.

  7. A method for combined Sr-Nd-Hf isotopic analysis of <10 mg dust samples: implication for ice core science

    Ujvari, Gabor; Wegner, Wencke; Klötzli, Urs


    Aeolian mineral dust particles below the size of 10-20 μm often experience longer distance transport in the atmosphere, and thus Aeolian dust is considered an important tracer of large-scale atmospheric circulation. Since ice core dust is purely Aeolian in origin, discrimination of its potential source region(s) can contribute to a better understanding of past dust activity and climatic/environmental causes. Furthermore, ice core dust source information provides critical experimental constraints for model simulations of past atmospheric circulation patterns [1,2]. However, to identify dust sources in past dust archives such as ice cores, the mineralogy and geochemistry of the wind-blown dust material must be characterized. While the amount of dust in marine cores or common terrestrial archives is sufficient for different types of analyses and even for multiple repeat measurements, dust content in ice cores is usually extremely low even for the peak dusty periods such as the Last Glacial Maximum (LGM) (5-8 mg dust/kg ice; [3]). Since the most powerful dust fingerprinting methods, such as REE composition and Sr-Nd-Pb isotopic analyses are destructive there is a clear need to establish sequential separation techniques of Sr, Nd, Pb and other REEs to get the most information out of small (5-10 mg) dust samples recovered from ice cores. Although Hf isotopes have recently been added as a robust tool of aerosol/dust source discrimination (e.g. [4,5,6,7]), precise Hf isotopic measurements of small (Central Europe (NUS), China (BEI) and the US (JUD) were processed (all acetic acid treated for carbonate removal, i.e. aluminosilicate fractions were analysed). Sr isotopic compositions varied between the aliquots within a range of ˜0.00007 for the three samples. Comparison of these values with previously obtained 87Sr/86Sr isotopic ratios from the same samples (different acid/sample amounts) reveals that these values are very sensitive to the acetic acid treatment (acid

  8. U and sr isotopes in ground water and calcite, yucca mountain, nevada: evidence against upwelling water.

    Stuckless, J S; Peterman, Z E; Muhs, D R


    Hydrogenic calcite and opaline silica deposits in fault zones at Yucca Mountain, Nevada, have created considerable public and scientific controversy because of the possible development of a high-level nuclear waste repository at this location. Strontium and uranium isotopic compositions of hydrogenic materials were used to test whether the veins could have formed by upwelling of deep-seated waters. The vein deposits are isotopically distinct from ground water in the two aquifers that underlie Yucca Mountain, indicating that the calcite could not have precipitated from ground water. The data are consistent with a surficial origin for the hydrogenic deposits.

  9. Geochemical and Sr-Nd-Pb isotopic evidence for ancient lower continental crust beneath the Xi Ujimqin area of NE China

    Gao, Xiaofeng; Guo, Feng; Xiao, Peixi; Kang, Lei; Xi, Rengang


    The Central Asian Orogenic Belt (CAOB) is the largest Phanerozoic accretionary orogen on Earth. The role that Precambrian continental microblocks played in its formation, however, remains a highly controversial topic. New zircon U-Pb age data and whole-rock geochemical and Sr-Nd-Pb isotopic studies on Permian (253-251 Ma) andesites from the Xi Ujimqin area provide the first evidence for the existence of a continental lower mafic crust in the eastern segment of the CAOB. These Permian lavas generally have chemical compositions similar to experimental melts of garnet pyroxenites. Based on Sr-Nd-Pb isotopic compositional differences, they can be further subdivided into two groups. Group 1 has moderately radiogenic Sr (87Sr/86Sr(i) = 0.7060-0.7062) and nonradiogenic Nd (εNd(t) = - 9.0-8.3) and Pb (e.g., 206Pb/204Pb = 17.18-17.23) isotopic compositions similar to the ancient lower mafic crust beneath the North China Craton (NCC). Compared with Group 1, Group 2 has less radiogenic Sr (87Sr/86Sr(i) = 0.7051-0.7055), and more radiogenic Nd (εNd(t) = - 0.2-+1.4) and Pb (e.g., 206Pb/204Pb = 18.04-18.20) isotopic compositions as observed in the Phanerozoic granitoids and felsic lavas of the CAOB. The combined geochemical and isotopic data indicate that Group 1 was derived from ancient lower mafic crust of the NCC affinity, with a residual assemblage of pyroxene + plagioclase + amphibole. The source for Group 2 was a mixture of ancient lower mafic crust and a juvenile crustal component, and melting left a residue of orthopyroxene + clinopyroxene + plagioclase + garnet + amphibole. Generation of these two types of late Permian andesites favors a model whereby breakoff of a subducted slab and subsequent lithospheric extension triggered extensive asthenospheric upwelling and melting of the continental mafic lower crust of the eastern CAOB. The discovery of ancient lower continental crust of the NCC affinity in the CAOB implies that the NCC experienced continental breakup during

  10. Chemical and U-Sr isotopic variations of stream and source waters at a small catchment scale (the Strengbach case; Vosges mountains; France)

    Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.


    This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U) implying (234U/238U) AR < 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the over time homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs depending on the hydrological conditions

  11. Petrology, Geochemistry and Nd-Sr-Pb Isotopic Properties of Volcanic Rocks in Daheishan Island, Penglai, Shandong Province

    Fu Yongtao; Li Anchun


    The major elements, trace elements, K-Ar age and Sr-Nd-Pb isotopic systems of the Cenozoic volcanic rocks in Daheishan Island and Cishan, Penglai, Shandong Province are measured. The volcanic rocks ( olivine-nephelinite and nepheline-basanite ) in Daheishan Island erupted periodically in an interval of 0.32 Ma, from 8.72 Ma, 8.39 Ma, 8.08 Ma to 7.73 Ma. The volcanic rocks are all rich in light REEs. They are similar to the OIB-type alkali basalt in the trace elements normalized model by primordial mantle: rich in high field elements such as Nb and Ta, and imcompatible elements such as Cs, Rb, Ba, Th, U. The volcanic rocks show a depletion of K and Rb elements. It is suggested by the trace elements that the olivine-nephelinite in Daheishan Island is originated from deep resources under the continental mantle. ε Nd (0) values of the volcanic rocks in Daheishan Island and Cisban are 5.31 ~ 8.51 and 7.33 respectively, suggesting that the volcanic rocks are from the depleted mantle resources, which have higher Sm/Nd ratios than the CHUR. 143Nd /144Nd ratios of Daheishan Island olivine-nephelinite and Cishan alkali basalts are 0.512 910 ~ 0.513 074 and 0.513 014 respectively. The 87Sr /86Sr of Daheishan Island volcanic rocks are lower than that of Cishan, 0.703 427 ~ 0.703 482 and 0.703 895 respectively. The Daheishan Island olivinenephelinite has the Pb isotopic values as follows: 206Pb /204pb = 18.028 9 ~ 17.972 8, 207Pb /204pb= 15.435 8 ~ 15.402 2 and 208Pb /204Pb = 38.087 6 ~ 37.997 5, lower than those of Cishan basanite. The Cishan basanite has 206Pb /204pb = 18.240 1, 207Pb /204Pb = 15.564 5 and 208Pb /204pb = 38.535. The authors suggest that the olivine-nephelinite in Daheishan Island is similar to the E-type MORB or Hawaii OIB, and the alkali basalts in Cishan similar to the Kerguelen OIB. The dominant mantle components of DM+PREMA and perhaps DM ( Dupal type ) are the dominant mantle components for volcanic rocks in Daheishan Island and Cishan. The

  12. Cretaceous seamounts along the continent ocean transition of the Iberian margin: U Pb ages and Pb Sr Hf isotopes

    Merle, Renaud; Schärer, Urs; Girardeau, Jacques; Cornen, Guy


    To elucidate the age and origin of seamounts in the eastern North Atlantic, 54 titanite and 10 zircon fractions were dated by the U-Pb chronometer, and initial Pb, Sr, and Hf isotope ratios were measured in feldspars and zircon, respectively. Rocks analyzed are essentially trachy-andesites and trachytes dredged during the "Tore Madeira" cruise of the Atalante in 2001. The ages reveal different pulses of alkaline magmatism occurring at 104.4 ± 1.4 (2 σ) Ma and 102.8 ± 0.7 Ma on the Sponge Bob seamount, at 96.3 ± 1.0 Ma on Ashton seamount, at 92.3 ± 3.8 Ma on the Gago Coutinho seamount, at 89.3 ± 2.3 Ma and 86.5 ± 3.4 Ma on the Jo Sister volcanic complex, and at 88.3 ± 3.3 Ma, 88.2 ± 3.9, and 80.5 ± 0.9 Ma on the Tore locality. No space-time correlation is observed for alkaline volcanism in the northern section of the Tore-Madeira Rise, which occurred 20-30 m.y. after opening of the eastern North Atlantic. Initial isotope signatures are: 19.139-19.620 for 206Pb/ 204Pb, 15.544-15.828 for 207Pb/ 204Pb, 38.750-39.936 for 208Pb/ 204Pb, 0.70231-0.70340 for 87Sr/ 86Sr, and +6.9 to +12.9 for initial epsilon Hf. These signatures are different from Atlantic MORB, the Madeira Archipelago and the Azores, but they lie in the field of worldwide OIB. The Cretaceous seamounts therefore seem to be generated by melts from a OIB-type source that interact with continental lithospheric mantle lying formerly beneath Iberia and presently within the ocean-continent transition zone. Inheritance in zircon and high 207Pb of initial Pb substantiate the presence of very minor amounts of continental material in the lithospheric mantle. A long-lived thermal anomaly is the most plausible explanation for alkaline magmatism since 104 Ma and it could well be that the same anomaly is still the driving force for tertiary and quaternary alkaline magmatism in the eastern North Atlantic region. This hypothesis is agreement with the plate-tectonic position of the region since Cretaceous time

  13. A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA Resin for the isotopic analysis of marine sediments.

    Retzmann, A; Zimmermann, T; Pröfrock, D; Prohaska, T; Irrgeher, J


    A novel, fast and reliable sample preparation procedure for the simultaneous separation of Sr, Pb, and Nd has been developed for subsequent isotope ratio analysis of sediment digests. The method applying a fully automated, low-pressure chromatographic system separates all three analytes in a single-stage extraction step using self-packed columns filled with DGA Resin. The fully automated set-up allows the unattended processing of three isotopic systems from one sediment digest every 2 h, offering high sample throughput of up to 12 samples per day and reducing substantially laboratory manpower as compared to conventional manual methods. The developed separation method was validated using the marine sediment GBW-07313 as matrix-matched certified reference material and combines quantitative recoveries (>90% for Sr, >93% for Pb, and >91% for Nd) with low procedural blank levels following the sample separation (0.07 μg L(-1) Sr, 0.03 μg L(-1) Pb, and 0.57 μg L(-1) Nd). The average δ values for Sr, Pb, and Nd of the separated reference standards were within the certified ranges (δ ((87)Sr/(86)Sr)NIST SRM 987 of -0.05(28) ‰, δ((208)Pb/(206)Pb)NIST SRM 981 of -0.21(14) ‰, and δ((143)Nd/(144)Nd)JNdi-1 of 0.00(7) ‰). The DGA Resin proved to be reusable for the separation of >10 sediment digests with no significant carry-over or memory effects, as well as no significant on-column fractionation of Sr, Pb, and Nd isotope ratios. Additional spike experiments of NIST SRM 987 with Pb, NIST SRM 981 with Sr, and JNdi-1 with Ce revealed no significant impact on the measured isotopic ratios, caused by potential small analyte peak overlaps during the separation of Sr and Pb, as well as Ce and Nd.

  14. Accurate measurements of {sup 129}I concentration by isotope dilution using MC-ICPMS for half-life determination

    Isnard, Helene; Nonell, Anthony; Marie, Mylene [Commissariat a l' Energie Atomique et aux Energies alternatives (CEA), Gif Sur Yvette (France). DEN, DPC, SEARS, LANIE; Chartier, Frederic [Commissariat a l' Energie Atomique et aux Energies alternatives (CEA), Gif Sur Yvette (France). DEN, DPC


    Determining the {sup 129}I concentration, a long-lived radionuclide present in spent nuclear fuel, is a major issue for nuclear waste disposal purpose. {sup 129}I also has to be measured in numerous environmental, nuclear and biological samples. To be able to accurately determine the {sup 129}I concentration, an analytical method based on the use of a multicollector-inductively coupled plasma mass spectrometer (MC-ICPMS) combined with an isotope dilution technique using an {sup 127}I spike, was developed. First, the influence of different media (HNO{sub 3}, NaOH and TMAH) on natural {sup 127}I signal intensity and stability and on memory effects was studied. Then an analytical procedure was developed by taking into account the correction of blanks and interferences. Tellurium was chosen for instrumental mass bias correction, as no certified standards with suitable {sup 127}I/{sup 129}I ratio are available. Finally, the results, reproducibility and uncertainties obtained for the {sup 129}I concentration determined by isotope dilution with a {sup 127}I spike are presented and discussed. The final expanded relative uncertainty obtained for the iodine-129 concentration was lower than 0.7% (k = 1). This precise {sup 129}I determination in association with further activity measurements of this nuclide on the same sample will render it possible to determine a new value of the {sup 129}I half-life with a reduced uncertainty (0.76%, k = 1).

  15. Rare earth elements, S and Sr isotopes and origin of barite from Bahariya Oasis, Egypt: Implication for the origin of host iron ores

    Baioumy, Hassan M.


    Based on their occurrences and relation to the host iron ores, barites are classified into: (1) fragmented barite occurs as pebble to sand-size white to yellowish white barite along the unconformity between the Bahariya Formation and iron ores, (2) interstitial barite is present as pockets and lenses of large and pure crystals inside the iron ores interstitial barite inside the iron ores, and (3) disseminated barite occurs at the top of the iron ores of relatively large crystals of barite embedded in hematite and goethite matrix. In the current study, these barites have been analyzed for their rare earth elements (REE) as well as strontium and sulfur isotopes to assess their source and origin as well as the origin of host iron ores. Barite samples from the three types are characterized by low ΣREE contents ranging between 12 and 21 ppm. Disseminated barite shows relatively lower ΣREE contents (12 ppm) compared to the fragmented (19 ppm) and interstitial (21 ppm) barites. This is probably due to the relatively higher Fe2O3 in the disseminated barite that might dilute its ΣREE content. Chondrite-normalized REE patterns for the three barite mineralizations exhibit enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) as shown by the high (La/Yb)N ratios that range between 14 and 45 as well as pronounced negative Ce anomalies varying between 0.03 and 0.18. The 87Sr/86Sr ratios in the analyzed samples vary between 0.707422 and 0.712237. These 87Sr/86Sr values are higher than the 87Sr/86Sr ratios of the seawater at the time of barite formation (Middle Eocene with 87Sr/86Sr ratios of 0.70773 to 0.70778) suggesting a contribution of hydrothermal fluid of high Sr isotope ratios. The δ34S values in the analyzed barites range between 14.39‰ and 18.92‰. The lower δ34S ratios in the studied barites compared with those of the seawater at the time of barite formation (Middle Eocene with δ34S ratios of 20-22‰) is attributed to a

  16. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M


    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the

  17. Innovations in Mass Spectrometry for Precise and Accurate Isotope Ratio Determination from Very Small Analyte Quantities (Invited)

    Lloyd, N. S.; Bouman, C.; Horstwood, M. S.; Parrish, R. R.; Schwieters, J. B.


    This presentation describes progress in mass spectrometry for analysing very small analyte quantities, illustrated by example applications from nuclear forensics. In this challenging application, precise and accurate (‰) uranium isotope ratios are required from 1 - 2 µm diameter uranium oxide particles, which comprise less than 40 pg of uranium. Traditionally these are analysed using thermal ionisation mass spectrometry (TIMS), and more recently using secondary ionisation mass spectrometry (SIMS). Multicollector inductively-coupled plasma mass spectrometry (MC-ICP-MS) can offer higher productivity compared to these techniques, but is traditionally limited by low efficiency of analyte utilisation (sample through to ion detection). Samples can either be introduced as a solution, or sampled directly from solid using laser ablation. Large multi-isotope ratio datasets can help identify provenance and intended use of anthropogenic uranium and other nuclear materials [1]. The Thermo Scientific NEPTUNE Plus (Bremen, Germany) with ‘Jet Interface’ option offers unparalleled MC-ICP-MS sensitivity. An analyte utilisation of c. 4% has previously been reported for uranium [2]. This high-sensitivity configuration utilises a dry high-capacity (100 m3/h) interface pump, special skimmer and sampler cones and a desolvating nebuliser system. Coupled with new acquisition methodologies, this sensitivity enhancement makes possible the analysis of micro-particles and small sample volumes at higher precision levels than previously achieved. New, high-performance, full-size and compact discrete dynode secondary electron multipliers (SEM) exhibit excellent stability and linearity over a large dynamic range and can be configured to simultaneously measure all of the uranium isotopes. Options for high abundance-sensitivity filters on two ion beams are also available, e.g. for 236U and 234U. Additionally, amplifiers with high ohm (1012 - 1013) feedback resistors have been developed to

  18. Sr- and Nd- isotope variations along the Pleistocene San Pedro - Linzor volcanic chain, N. Chile: Tracking the influence of the upper crustal Altiplano-Puna Magma Body

    Godoy, Benigno; Wörner, Gerhard; Le Roux, Petrus; de Silva, Shanaka; Parada, Miguel Ángel; Kojima, Shoji; González-Maurel, Osvaldo; Morata, Diego; Polanco, Edmundo; Martínez, Paula


    Subduction-related magmas that erupted in the Central Andes during the past 10 Ma are strongly affected by crustal assimilation as revealed by an increase in 87Sr/86Sr isotope ratios with time that in turn are correlated with increased crustal thickening during the Andean orogeny. However, contamination is not uniform and can be strongly influenced locally by crustal composition, structure and thermal condition. This appears to be the case along the NW-SE San Pedro - Linzor volcanic chain (SPLVC) in northern Chile, which straddles the boundary of a major zone of partial melt, the Altiplano_Puna Magma Body (APMB). Herein we report 40Ar/39Ar ages, compositional and isotope data on lavas from the SPLVC that track the influence of this zone of partial melting on erupted lavas with geochronological and geochemical data. Ages reported here indicate that SPLVC has evolved in the last 2 M.y., similar to other volcanoes of the Western Cordillera (e.g. Lascar, Uturuncu, Putana). 87Sr/86Sr ratios increase systematically along the chain from a minimum value of 0.7057 in San Pedro dacites to a maximum of 0.7093-0.7095 for the Toconce and Cerro de Leon dacites in the SE. These changes are interpreted to reflect the increasing interaction of SPLVC parental magmas with partial melt within the APMB eastwards across the chain. The 87Sr/86Sr ratio and an antithetic trend in 143Nd/144Nd is therefore a proxy for the contribution of melt from the APMB beneath this volcanic chain. Similar 87Sr/86Sr increases and 143Nd/144Nd decreases are observed in other transects crossing the boundary of the APMB. Such trends can be recognized from NW to SE between Aucanquilcha, Ollagüe, and Uturuncu volcanoes, and from Lascar volcano to the N-S-trending Putana-Sairecabur-Licancabur volcanic chain to the north. We interpret these isotopic trends as reflecting different degrees of interaction of mafic parental melts with the APMB. High 87Sr/86Sr, and low 143Nd/144Nd reveal zones where the APMB is

  19. A Study of REE and Pb,Sr and Nd Isotopes in Garnet—Lherzolite Xenoliths from Mingxi,Fujian Province

    黄婉康; BASU,A.R.; 等


    The REE and Pb ,Sr,Nd isotopes in three xenoliths from limburgite and scoria-breccias,including spinel-lherzolite,spinel-gamet-1herzolite and phlogopite-gamet-1herzolite,were analysed.The REE contentso of the xenoliths are 1.3 to 3.3 times those of the chondrites with their REE pattems characterized by weak LREE depletion.The 143Nd/144Nd values of whole rocks and minerals range from 0.51306 to 0.51345 with εNd=+8.2-+15.8,206Pb/204Pb<18.673,and 207Pb/204Pb<15.574,All this goes to show that the upper mantle in Mingxi at the depth of 67-82km is a depleted mantle of MORB type,with 87Sr/86Sr ratios 0.70237-0.70390.In Nd-Sr diagram the data points of whole rocks are all out of the mantle array,implying that the xenoliths from Mingxi have more radiogenic Sr isotopes than those of the mantle array.

  20. Genesis and open-system evolution of Quaternary magmas beneath southeastern margin of Tibet: Constraints from Sr-Nd-Pb-Hf isotope systematics

    Zou, Haibo; Ma, Mingjia; Fan, Qicheng; Xu, Bei; Li, Shuang-Qing; Zhao, Yongwei; King, David T.


    Post-collisional volcanic rocks on the Tibetan Plateau and its margins contain valuable information about the geodynamic processes associated with this Cenozoic continent-continent collision. The Quaternary Tengchong volcanic field at the southeastern margin of the Tibetan Plateau formed high-potassium calc-alkaline volcanic rocks. Herein, we present comprehensive Nd-Sr-Pb-Hf isotopic and elemental data for trachybasalts, basaltic trachyandesites, and trachyandesites from four Quaternary Tengchong volcanoes (Maanshan, Dayingshan, Heikongshan, and Laoguipo) in order to understand their magma genesis and evolution as well as tectonic significance. Good correlations between SiO2 content and the ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 177Hf/176Hf for these Quaternary volcanics strongly suggest that the combined assimilation and fractional crystallization (AFC) was an important process in the origin of basaltic trachyandesites and trachyandesites. High Y and Yb contents and low Sr/Y ratios of these basaltic trachyandesites and trachyandesites are uncharacteristic of adakites that formed by partial melting of eclogitic lower crust or partial melting of basaltic oceanic crust with eclogite as a restite. A combined assimilation-fractional crystallization model is proposed for these basaltic trachyandesites and trachyandesites. Nd-Sr-Pb-Hf isotopes for the uncontaminated Tengchong magma (trachybasalts with SiO2 5.5% wt.%) reflect a heterogeneous enriched mantle source. High Th/U, Th/Ta, and Rb/Nb ratios and Nd-Sr-Pb-Hf isotope characteristics of the uncontaminated magmas suggest that the enriched mantle beneath Tengchong formed as a result of subduction of clay-rich sediments, which probably came from the Indian continental plate. Partial melting of the enriched mantle was generated by deep continental subduction coupled with recent regional extension in the Tengchong area.

  1. Saturation of Deformation and Identical Bands in Very-Neutron Rich Sr Isotopes


    The present proposal aims at establishing nuclear properties in an isotopic chain showing unique features. These features include the saturation of ground state deformation at its onset and the existence of ground state identical bands in neighbouring nuclei with the same deformation. The measurements should help to elucidate the role played by the proton-neutron residual interaction between orbitals with large spatial overlap, i.e. $\\pi g _{9/2} \

  2. Zircon U-Pb geochronology, Sr-Nd-Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in West Qinling Orogen

    Duan, Meng; Niu, Yaoling; Kong, Juanjuan; Sun, Pu; Hu, Yan; Zhang, Yu; Chen, Shuo; Li, Jiyong


    The Qinling Orogen was a consequence of continental collision of the South China Craton with the North China Craton in the Triassic and caused widespread granitoid magmatism. However, the petrogenesis of these granitoids remains controversial. In this paper, we choose the Baijiazhuang (BJZ) and Lvjing (LJ) plutons in the West Qinling Orogen for a combined study of the zircon U-Pb geochronology, whole-rock major and trace element compositions and Sr-Nd-Hf isotopic characteristics. We obtained zircon crystallization ages of 216 Ma and 212 Ma for the BJZ and the LJ plutons, respectively. The granitoid samples from both plutons have high K2O metaluminous to peraluminous compositions. They are enriched in large ion lithophile elements (LILEs), light rare earth elements (LREEs) and depleted in high field-strength elements (HFSEs) with significant negative Eu anomalies. The BJZ samples have initial Sr isotopic ratios of 0.7032 to 0.7078, εNd(t) of - 10.99 to - 8.54 and εHf (t) of - 10.22 to - 6.41. The LJ granitoids have initial Sr isotopic ratios of 0.7070 to 0.7080, εNd(t) of - 5.37 to - 4.58 and εHf(t) of - 3.64 to - 1.78. The enriched isotopic characteristics of the two plutons are consistent with their source being dominated by ancient continental crust. However, two BJZ samples show depleted Sr isotope compositions, which may infer possible involvement of mantle materials. Mantle-derived melt, which formed from partial melting of mantle wedge peridotite facilitated by dehydration of the subducted/subducting Mianlue ocean crust, provide the required heat for the crustal melting while also contributing to the compositions of these granitoids. That is, the two granitic plutons are magmatic responses to the closure of the Mianlue ocean basin and the continental collision between the Yangtze and South Qinling crustal terranes.

  3. Chemical and U-Sr isotopic variations of stream and source waters at a small catchment scale (the Strengbach case; Vosges mountains; France

    M. C. Pierret


    Full Text Available This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U activity ratios (AR determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U implying (234U/238U AR It appears that the (234U/238U AR is an appropriate very important tracer for studying and deciphering the contribution of the different source fluxes at the catchment scale because this unique geochemical parameter is different for each individual spring and at the same time remains unchanged for each of the springs with changing discharge and fluctuating

  4. Direct High-Precision Measurements of the (87)Sr/(86)Sr Isotope Ratio in Natural Water without Chemical Separation Using Thermal Ionization Mass Spectrometry Equipped with 10(12) Ω Resistors.

    Li, Chao-Feng; Guo, Jing-Hui; Chu, Zhu-Yin; Feng, Lian-Jun; Wang, Xuan-Ce


    Thermal ionization mass spectrometry (TIMS) allows excellent precision for determining Sr isotope ratios in natural water samples. Traditionally, a chemical separation procedure using cation exchange resin has been employed to obtain a high purity Sr fraction from natural water, which makes sample preparation time-consuming. In this study, we present a rapid and precise method for the direct determination of the Sr isotope ratio of natural water using TIMS equipped with amplifiers with two 10(12) Ω resistors. To eliminate the (87)Rb isobaric interference, Re ribbons are used as filaments, providing a significant advantage over W ribbons in the inhibition of Rb(+) emission, based on systematically examining a series of NIST SRM987 standard doping with various amounts of Rb using Re and W ribbons. To validate the applicability of our method, twenty-two natural water samples, including different water types (rain, snow, river, lake and drinking water), that show a large range in Sr content variations (2.54-922.8 ppb), were collected and analyzed from North and South China. Analytical results show good precision (0.003-0.005%, 2 RSE) and the method was further validated by comparative analysis of the same water with and without chemical separation. The method is simple and rapid, eliminates sample preparation time, and prevents potential contamination during complicated sample-preparation procedures. Therefore, a high sample throughput inherent to the TIMS can be fully utilized.

  5. Origin of the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: Evidence from regional Pb and Sr isotope sources

    Ayuso, R.A.; Kelley, K.D.; Leach, D.L.; Young, L.E.; Slack, J.F.; Wandless, G.; Lyon, A.M.; Dillingham, J.L.


    Pb and Sr isotope data were obtained on the shale-hosted Zn-Pb-Ag Red Dog deposits (Qanaiyaq, Main, Aqqaluk, and Paalaaq), other shale-hosted deposits near Red Dog, and Zn-Pb-Ag sulfide and barite deposits in the western and central Brooks Range. The Red Dog deposits and other shale-hosted Zn-Pb-Ag deposits near Red Dog are hosted in the Mississippian Kuna Formation, which is underlain by a sequence of marine-deltaic clastic rocks of the Upper Devonian to Lower Mississippian Endicott Group. Ag-Pb-Zn vein-breccias are found in the Endicott Group. Galena formed during the main mineralization stages in the Red Dog deposits and from the Anarraaq and Wulik deposits have overlapping Pb isotope compositions in the range 206Pb/204Pb = 18.364 to 18.428, 207Pb/204Pb = 15.553 to 15.621, and 208Pb/204Pb = 38.083 to 38.323. Galena and sphalerite formed during the main ore-forming stages in the Red Dog deposits define a narrow field on standard uranogenic and thorogenic Pb isotope diagrams. Lead in sulfides of the Red Dog district is less radiogenic (238U/204Pb: ?? = 9.51-9.77) than is indicated by the average crustal lead evolution model (?? = 9.74), a difference consistent with a long history of evolution at low ratios of ?? before the Carboniferous. The homogeneous regional isotopic reservoir of Pb may indicate large-scale transport and leaching of minerals with various ?? ratios and Th/Pb ratios. Younger and genetically unrelated fluids did not significantly disturb the isotopic compositions of galena and sphalerite after the main mineralization event in the Red Dog district. Some pyrite shows evidence of minor Pb remobilization. The overall lead isotope homogeneity in the shale-hosted massive sulfide deposits is consistent with three types of control: a homogeneous regional source, mixing of lead during leaching of a thick sedimentary section and fluid transport, or mixing at the site of deposition. Isotopic variability of the hydrothermal fluids, as represented by galena

  6. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere

    Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X.


    The UThPb, SmNd, and RbSr isotopic systematics of mafic and ultramafic xenolithic rocks and associated megacrystic inclusions of aluminous augite and garnet, that occur in three alkalic volcanic suites: Kuandian in eastern Liaoning Province, Hanluoba in Hebei Province, and Minxi in western Fujian Province, China are described. In various isotopic data plots, the inclusion data invariably fall outside the isotopic ranges displayed by the host volcanic rocks, testifying to the true xenolithic nature of the inclusions. The major element partitioning data on Ca, Mg, Fe, and Al among the coexisting silicate minerals of the xenoliths establish their growth at ambient mantle temperatures of 1000-1100??C and possible depths of 70-80 km in the subcontinental lithosphere. Although the partitioning of these elements reflects equilibrium between coexisting minerals, equilibria of the Pb, Nd, and Sr isotopic systems among the minerals were not preserved. The disequilibria are most notable with respect to the 206Pb 204Pb ratios of the minerals. On a NdSr isotopic diagram, the inclusion data plot in a wider area than that for oceanic basalts from a distinctly more depleted component than MORB with higher 143Nd 144Nd and a much broader range of 87Sr 86Sr values, paralleling the theoretical trajectory of a sea-water altered lithosphere in NdSr space. The garnets consistently show lower ?? and ?? values than the pyroxenes and pyroxenites, whereas a phlogopite shows the highest ?? and ?? values among all the minerals and rocks studied. In a plot of ??207 and ??208, the host basalts for all three areas show lower ??207 and higher ??208 values than do the xenoliths, indicating derivation of basalts from Th-rich (relative to U) sources and xenoliths from U-rich sources. The xenolith data trends toward the enriched mantle components, EMI and EMII-like, characterized by high 87Sr 86Sr and ??207 values but with slightly higher 143Nd 144Nd. The EMI trend is shown more distinctly by the host

  7. Kinetics of the reaction of the heaviest hydrogen atom with H2, the 4Heμ + H2 → 4HeμH + H reaction: experiments, accurate quantal calculations, and variational transition state theory, including kinetic isotope effects for a factor of 36.1 in isotopic mass.

    Fleming, Donald G; Arseneau, Donald J; Sukhorukov, Oleksandr; Brewer, Jess H; Mielke, Steven L; Truhlar, Donald G; Schatz, George C; Garrett, Bruce C; Peterson, Kirk A


    The neutral muonic helium atom (4)Heμ, in which one of the electrons of He is replaced by a negative muon, may be effectively regarded as the heaviest isotope of the hydrogen atom, with a mass of 4.115 amu. We report details of the first muon spin rotation (μSR) measurements of the chemical reaction rate constant of (4)Heμ with molecular hydrogen, (4)Heμ + H(2) → (4)HeμH + H, at temperatures of 295.5, 405, and 500 K, as well as a μSR measurement of the hyperfine coupling constant of muonic He at high pressures. The experimental rate constants, k(Heμ), are compared with the predictions of accurate quantum mechanical (QM) dynamics calculations carried out on a well converged Born-Huang (BH) potential energy surface, based on complete configuration interaction calculations and including a Born-Oppenheimer diagonal correction. At the two highest measured temperatures the agreement between the quantum theory and experiment is good to excellent, well within experimental uncertainties that include an estimate of possible systematic error, but at 295.5 K the quantum calculations for k(Heμ) are below the experimental value by 2.1 times the experimental uncertainty estimates. Possible reasons for this discrepancy are discussed. Variational transition state theory calculations with multidimensional tunneling have also been carried out for k(Heμ) on the BH surface, and they agree with the accurate QM rate constants to within 30% over a wider temperature range of 200-1000 K. Comparisons between theory and experiment are also presented for the rate constants for both the D + H(2) and Mu + H(2) reactions in a novel study of kinetic isotope effects for the H + H(2) reactions over a factor of 36.1 in isotopic mass of the atomic reactant. © 2011 American Institute of Physics

  8. Response of the Nile and its catchment to millennial-scale climatic change since the LGM from Sr isotopes and major elements of East Mediterranean sediments

    Box, M. R.; Krom, M. D.; Cliff, R. A.; Bar-Matthews, M.; Almogi-Labin, A.; Ayalon, A.; Paterne, M.


    Changes in 87Sr/ 86Sr and major element geochemistry, from two sediment cores (9509 and 9501) in the Eastern Mediterranean (EM), were used to resolve changes in sediment provenance and, hence, determine climate changes in the Nile catchment and Eastern Sahara desert over the past 25 ka. The sediment was described by a three end-member system comprising Blue Nile (BN; 87Sr/ 86Sr = 0.7506; Sr = 210 ppm), White Nile (WN; 87Sr/ 86Sr = 0.7094; Sr = 72.5 ppm) and Saharan dust (SD; 87Sr/ 86Sr = 0.7183; Sr = 99 ppm). The sedimentary record of these cores represents the suspended load carried down the Nile river and discharged into the S.E. Levantine basin and thus records palaeoclimatically controlled changes in erosion and transport in the catchment. During arid periods (0-5 ka BP) and prior to 11 ka BP, fluxes of BN sediment at 9509 (˜6 g/cm 2/yr & 10-12 g/cm 2/yr, respectively) were greater than during the peak of the African Humid Period (AHP) from 5 to 11 ka BP (15 g/cm 2/yr. In the Ethiopian Highlands (BN catchment) increases in the amount and duration of the monsoon during the AHP caused more vegetation to grow resulting in less soil erosion. In the WN catchment increased rainfall caused more catchment erosion and higher sediment flux through the Sudd marshes. The sedimentation rate in core 9509 increased during the AHP because of the greater importance of the WN sediment flux relative to the BN sediment flux. Saharan dust flux also decreased during the AHP reaching a minimum at ˜6 ka BP (core 9509) due to 'greening' of the Sahara desert. At the onset of S-1, the changes in Nile flow as determined by 87Sr/ 86Sr and climatic changes in the EM basin determined by δ 18O of planktonic foraminifera were simultaneous, confirming that such isotopic tracers cannot be used directly to determine the cause of the circulation changes in the EM at this time. The increase in the proportion of BN sediment at 9509 with a somewhat higher grain size during the H-1 period (15-17 ka

  9. Mafic dyke swarms of the Bastar Craton, central India: geochemistry, Sr-Nd isotopes and tectonic implications

    Liao, Chien-Yi; Shellnutt, J. Gregory; Raghvan Hari, Kosiyathu; Viswakarma, Neeraj


    is suggested to be derived from a spinel peridotite mantle source. Group 2 has initial 87Sr/86Sr ratios range from 0.7036 to 0.7106 and the ɛNd(t) values range from -5.6 to -11.4. The enriched Nd isotope and trace element ratio indicate the rocks were contaminated by continental crust. Strontium isotope modelling using the sialic Bastar crust and a Group 1 sample as endmembers, suggest that 20% crustal contamination may have affected the Group 2 parental magmas. We think that a high thermal regime is responsible for such high amount of contamination. It is possible that the dykes were emplaced during the rifting of the Columbia supercontinent.

  10. Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA

    Ingram, B.L.; De Deckker, P.; Chivas, A.R.; Conrad, M.E.; Byrne, A.R.


    Stable isotope ({sup 18}O/{sup 16}O and {sup 13}C/{sup 12}C) and minor-element compositions (Sr/Ca and Mg/Ca ratios) of ostracodes and gastropods separated from marsh sediments from San Francisco Bay, Northern California, were used to reconstruct paleoenvironmental changes in Petaluma Marsh over the past 700 yr. The value of {delta}{sup 18}O in the marsh carbonates reflects changes in freshwater inflow, evaporation, and temperature. Mg/Ca and Sr/Ca in ostracode calcite reflect changes in both freshwater inflow and temperature, although primarily reflect temperature changes in the salinity range of about 10-35 {per_thousand}. Ostracode {delta}{sup 18}O values show a gradual increase by 5 {per_thousand} between 500 yr BR and the present, probably reflecting rising sea level and increased evaporation in the marsh. Superimposed on this trend are higher frequency Mg/Ca and {delta}{sup 18}O variations (3-4 {per_thousand}), probably reflecting changes in freshwater inflow and evaporation. A period of low Mg/Ca occurred between about 100-300 cal yr BP, suggesting wetter and cooler conditions during the Little Ice Age. Higher Mg/Ca ratios occurred 600-700 cal yr BP, indicating drier and warmer conditions during the end of the Medieval Warm Period. Both ostracode and gastropod {delta}{sup 13}C values decrease up-core, reflecting decomposition of marsh vegetation, which changes from C{sub 4} ({delta}{sup 13}C {approx} -12{per_thousand}) to CAM ({delta}{sup 13}C = -26 {per_thousand})-type vegetation over time.

  11. Arsenic and other oxyanion-forming trace elements in an alluvial basin aquifer: Evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra)

    Vinson, David S., E-mail: [Duke University, Division of Earth and Ocean Sciences, Box 90227, Durham, NC 27708 (United States); McIntosh, Jennifer C. [University of Arizona, Department of Hydrology and Water Resources, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Dwyer, Gary S.; Vengosh, Avner [Duke University, Division of Earth and Ocean Sciences, Box 90227, Durham, NC 27708 (United States)


    Highlights: > Elevated natural As and F occur in the Willcox Basin aquifer of Arizona. > Oxyanion-forming elements are derived from volcanic-source aquifer sediments. > Sr isotopes trace sediment sources linked to oxyanion-forming trace elements. > {sup 87}Sr/{sup 86}Sr > 0.720 indicates Proterozoic crystalline-source sediment contributing low As. > Both sediment source and hydrogeochemical evolution (Ca/Na) affect As levels. - Abstract: The Willcox Basin is a hydrologically closed basin in semi-arid southeastern Arizona (USA) and, like many other alluvial basins in the southwestern USA, is characterized by oxic, near-neutral to slightly basic groundwater containing naturally elevated levels of oxyanion-forming trace elements such as As. This study evaluates the sources and mobilization of these oxyanionic trace elements of health significance by using several isotopic tracers of water-rock interaction and groundwater sources ({sup 87}Sr/{sup 86}Sr, {delta}{sup 34}S{sub SO4}, {delta}{sup 11}B, {delta}{sup 2}H, {delta}{sup 18}O, {sup 3}H). Values of {delta}{sup 2}H (-85 per mille to -64 per mille) and {delta}{sup 18}O (-11.8 per mille to -8.6 per mille) are consistent with precipitation and groundwater in adjacent alluvial basins, and low to non-detectable {sup 3}H activities further imply that modern recharge is slow in this semi-arid environment. Large variations in {sup 87}Sr/{sup 86}Sr ratios imply that groundwater has interacted with multiple sediment sources that constitute the basin-fill aquifer, including Tertiary felsic volcanic rocks, Paleozoic sedimentary rocks, and Proterozoic crystalline rocks. In general, low concentrations of oxyanion-forming trace elements and F{sup -} are associated with a group of waters exhibiting highly radiogenic values of {sup 87}Sr/{sup 86}Sr (0.72064-0.73336) consistent with waters in Proterozoic crystalline rocks in the mountain blocks (0.73247-0.75010). Generally higher As concentrations (2-29 {mu}g L{sup -1}), other

  12. A Sr-Nd-Hf isotope characterization of dust source areas in Victoria Land and the McMurdo Sound sector of Antarctica

    Blakowski, Molly A.; Aciego, Sarah M.; Delmonte, Barbara; Baroni, Carlo; Salvatore, Maria Cristina; Sims, Kenneth W. W.


    Determining the geographical provenance of dust provides crucial insight into the global dust cycle. For the East Antarctic Ice Sheet (EAIS), the importance of Southern hemisphere potential dust sources has been thoroughly investigated using radiogenic isotopes, whereas proximal dust source areas located on the periphery of the ice sheet remain poorly documented from a geochemical standpoint. In this work, we expand the existing isotopic (Srsbnd Nd) catalogue of dust and sand-sized sediments from Victoria Land and the McMurdo Sound sector, and incorporate Hf isotopic data to place additional constraints on dust source identification. The isotopic field for materials considered in this study is characterized by 87Sr/86Sr ratios ranging from 0.703 to 0.783, εNd between -12.01 and 6.36, and εHf from -16.77 to 6.89. As reported in previous works, the data reveal close relationships between Antarctic sediments and distinct parent lithologies; in addition, our findings emphasize the background presence of very fine dusts originating from dominant global sources and regional volcanic activity as barriers to direct source-to-sink comparison of isotopic signatures. Thus, geochemical characterizations of dust sources to the Antarctic ice sheet involving multiple size fractions, including coarser-grained particles more susceptible to short-range transport, can help us to rule out global sources of dust when examining local sediment cores and ice cores.

  13. Oxygen isotope effect on the superconductivity and stripe phase in La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$

    Wang, G. Y.; Zhang, J D; Yang, R. L.; Chen, X. H.


    The oxygen isotope effect on the superconductivity, stripe phase and structure transition is systematically investigated in La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_4$ with static stripe phase. Substitution of $^{16}$O by $^{18}$O leads to a decrease in superconducting transition temperature T$_C$, while enhances the temperature of the structural transition from low-temperature-orthorhombic (LTO) phase to low-temperature-tetragonal (LTT) phase. Compared to the Nd free sample, a larger isotope effec...

  14. Origin of enormous trace metal enrichments in weathering mantles of Jurassic carbonates: evidence from Sr, Nd and Pb isotopes

    Hissler, C.; Stille, P.; Juilleret, J.; Iffly, J.; Perrone, T.; Morvan, G.


    Weathering mantels are widespread worldwide and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved carbonate rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual content of associated trace elements in this type of weathering mantle. For instance, these enrichments can represent about five times the content of the underlying Bajocian to Oxfordian limestone/marl complexes, which have been relatively poorly studied compared to weathering mantle developed on magmatic bedrocks. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources (saprolite, Bajocian silty marls and limestones, atmospheric particles deposition...). Of special interest has also been the origin of trace metals and the processes causing their enrichments. Especially Rare Earth Element (REE) distribution patterns and Sr, Nd and Pb isotope ratios are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments shall help to identify mobile phases in the soil system. This may inform on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. Trace metal migration and enrichments were studied on a cambisol developing on an underlying Jurassic limestone. The base is strongly enriched among others in rare earth elements (ΣREE: 2640ppm) or redox-sensitive elements such as Fe (44 wt.%), V (920ppm), Cr (700ppm), Zn (550ppm), As (260ppm), Co (45ppm

  15. Combined in-situ Trace Element, Pb, Sr Isotope Analysis and U-Th Dating of Speleothems and Ostracods

    Jochum, K. P.; Scholz, D.; Mertz-Kraus, R.; Gleixner, G.; Guenther, F.; Schwalb, A.; Kuzmin, D.; Stoll, B.; Weis, U.; Izmer, A. V.; Andreae, M. O.


    Terrestrial and marine calcium carbonate deposits, such as speleothems and corals, can be used as high-resolution paleoclimate archives. A promising new application is the investigation of ostracod shells. We have developed a LA-ICP-MS technique for combined in-situ trace element, isotope (208Pb/206Pb, 207Pb/206Pb, 87Sr/86Sr) and 230Th-232Th-234U-238U analysis in carbonates. High spatial resolution is obtained by using small spot sizes of 12 - 100 µm. The technique has been applied to a stalagmite from Hüttenbläserschachthöhle, western Germany, and ostracod shells found in lake sediments from Lake Nam Co, Tibet. We focused on a 4 mm long section of the stalagmite that grew continuously for 400 years at 106,000 years B.P. The section includes a transition from aragonite to calcite. Spatial resolution of the trace element analyses is 12 µm corresponding to a temporal resolution of about 1 year. The speleothem calcite is characterized by high Mg (~ 2,000 µg g-1), low Sr (~ 30 µg g-1), Ba (~ 4 µg g-1) and U (~0.04 µg g-1), whereas aragonite has low Mg (~10 µg g-1), high Sr (~ 700 µg g-1), Ba (~ 50 µg g-1) and U (~ 8 µg g-1). Thorium and REE abundances are very low in the ng g-1 range. Calcitic sections probably reflect periods of high recharge, whereas aragonitic sections correspond to dry climate. Remarkable in this context is the steady increase of U, Ba, Sr, Y, Pb, Cd and 208Pb/206Pb in aragonite towards the transition. This may reflect progressively more humid conditions, finally leading to precipitation of calcite. In the U-rich section of the stalagmite, in-situ U-Th-dating by LA-ICP-MS was performed, however, with significantly larger uncertainties of the activity ratios (ca. 3 %) compared to high-precision MC-ICP-MS data (ca. 0.2 %). We also analyzed very small (ca. 0.5 - 1 mm) and thin (about 0.05 mm) ostracod shells from eight levels of a Holocene lake sediment core. 34 major and trace element concentrations could be determined by EPMA and LA

  16. Nd and Sr isotopic compositions of sediments from the Yellow and Yangtze Rivers: Implications for partitioning tectonic terranes and crust weathering of the Central and Southeast China

    Xianwei MENG; Yanguang LIU; Xuefa SHI; Dewen DU


    New Nd and Sr isotope data are presented in this paper for sediments from the Yellow and Yangtze River drainage basins. The average 143Nd/144Nd isotope compositions of fine-grained sediments from two drain-age basins seem similar. The TNdDMages of sediments from the two drainage basins are relatively uniform but exhibit subtle differences. This reflects the different underlying bedrocks, in association with the unique tectonic terranes that comprise central and southeastern China, including the North China Block, the Yangtze Block, the South China Block, the Tibet Plateau and the Qinling-Dabie Orogenic Belt. In contrast, there is an obvious difference in the 878r/86Sr ratios between fine-grained sediments of the Yellow and Yangtze Rivers, which actually reflects an increase in chemical weathering intensity from northwes-tern to southeastern China.

  17. Petrogenesis of synorogenic diorite-granodiorite-granite complexes in the Damara Belt, Namibia: Constraints from U-Pb zircon ages and Sr-Nd-Pb isotopes

    Jung, S.; Kröner, A.; Hauff, F.; Masberg, P.


    The synorogenic Palmental complex (central Damara Belt, Nambia) consists of ca. 545 Ma old quartz diorites and rare granodiorites and ca. 520 Ma-old leucogranites, representing one of the earliest and most primitive phase of crustal plutonism predating the main high-T regional metamorphism. Most quartz diorites and one granodiorite evolved through multistage, polybaric evolutionary processes involving fractionation from a lithospheric mantle-derived melt, followed by fractional crystallization of mainly hornblende, plagioclase and apatite which is shown by decreasing MgO, FeO, CaO, TiO2 and P2O5 with increasing SiO2. Assimilation of felsic basement gneisses was also important during formation of these granitoids. Although their chemical characteristics (high LILE, low HFSE) resemble those of quartz diorites and granodiorites with calc-alkaline affinity, they differ in their enriched Sr (initial 87Sr/86Sr: 0.7061-0.7098) and Nd (initial εNd: -2.7 to -9.9) isotopic composition. Neodymium depleted mantle mean crustal residence ages range from 1.3 to 1.9 Ga for the quartz diorites including the granodiorite. These model ages correlate with major and trace element abundances, further substantiating that AFC processes modified the initial isotopic systematics. Lead (206Pb/204Pb: 17.43-17.68, 207Pb/204Pb: 15.61-15.66, 208Pb/204Pb: 38.19-38.49) isotopic composition are unradiogenic relative to other Damaran intrusive rocks but plot above the Stacey and Kramers (1975) reference line, indicating that the source underwent an ancient (pre Pan-African) increase in U/Pb and Th/U, followed by more recent U-depletion. Some variation in 206Pb/204Pb at high 207Pb/204Pb further indicates involvement of ancient crustal material, most likely through AFC processes. A cross-cutting leucogranite dyke has also evolved isotopic compositions (initial 87Sr/86Sr: 0.7326; initial εNd: -15.6; 206Pb/204Pb: 17.42, 207Pb/204Pb: 15.62, 208Pb/204Pb: 38.16) but in view of the apparent younger age of

  18. Sm-Nd and Rb-Sr Isotopic Studies of Meteorite Kalahari 009: An Old VLT Mare Basalt

    Shih, C.-Y.; Nyquist, L. E.; Reese, Y.; Bischoff, A.


    Lunar meteorite Kalahari 009 is a fragmental basaltic breccia contain ing various very-low-Ti (VLT) mare basalt clasts embedded in a fine-g rained matrix of similar composition. This meteorite and lunar meteorite Kalahari 008, an anorthositic breccia, were suggested to be paired mainly due to the presence of similar fayalitic olivines in fragment s found in both meteorites. Thus, Kalahari 009 probably represents a VLT basalt that came from a locality near a mare-highland boundary r egion of the Moon, as compared to the typical VLT mare basalt samples collected at Mare Crisium during the Luna-24 mission. The concordant Sm-Nd and Ar-Ar ages of such a VLT basalt (24170) suggest that the extrusion of VLT basalts at Mare Crisium occurred 3.30 +/- 0.05 Ga ag o. Previous age results for Kalahari 009 range from approximately 4.2 Ga by its Lu-Hf isochron age to 1.70?0.04 Ga of its Ar-Ar plateau ag e. However, recent in-situ U-Pb dating of phosphates in Kalahari 009 defined an old crystallization age of 4.35+/- 0.15 Ga. The authors su ggested that Kalahari 009 represents a cryptomaria basalt. In this r eport, we present Sm-Nd and Rb-Sr isotopic results for Kalahari 009, discuss the relationship of its age and isotopic characteristics to t hose of other L-24 VLT mare basalts and other probable cryptomaria ba salts represented by Apollo 14 aluminous mare basalts, and discuss it s petrogenesis.

  19. Sr isotopic composition of gypsic paleosols as a proxy for Neogene forearc uplift in the South America - Nazca plate system at latitudes 19 to 22° S

    Cosentino, N. J.; Jordan, T. E.


    Quantification of uplift of a continental surface relative to sea level is challenging. The study area comprises the forearc associated with the South America - Nazca plate margin in northern Chile. The Coastal Cordillera (CdlC) is a mountain range 800 to 2300 m in elevation that ends abruptly to the west at the Pacific Ocean, terminated at a 400 m to 1700 m high scarp. The CdlC is formed mainly of Jurassic - Early Cretaceous igneous rocks, the remnants of a Mesozoic magmatic arc. To the east, the Central Depression (CD) is a forearc basin filled with Cenozoic sediments derived from the arc to the east. Arid to hyperarid climate conditions dominated throughout the Neogene. Profiles from rivers draining the CD and cutting through the CdlC are strongly suggestive that at least 1 km of relative surface uplift occurred since 10 Ma. Paleogeographic reconstructions of continental deposits, marine terraces and tilted originally horizontal depositional surfaces in the CdlC constrain surface uplift histories. However, we seek quantitative information about the magnitude as well as ages of uplift, so that numerical models of forearc geodynamics can be tested against uplift history. We are testing a new paleoaltimetry proxy based on the 87Sr/86Sr ratio of gypsum-rich paleosols. Published studies show that modern pedogenic gypsum in the study area is derived from two sources of distinguishable Sr isotopic values; salts precipitate from aerosols in persistent winter marine fogs and dust comes from the weathering of Andean rocks. It has been shown for modern soils that a transect from the coast to the Andes reveals a progressive decline in 87Sr/86Sr, corresponding to the mixing of marine aerosols and weathered dust. Below 1.5 km altitude, the marine signal diminishes as altitude rises. The low mass difference between 87Sr and 86Sr leads to little fractionation by environmental processes, which is ideal for studying the primary marine vs. Andean signal. Because the Neogene strata

  20. U-Pb zircon geochronology, petrochemical and Sr-Nd isotopic characteristic of Late Neoproterozoic granitoid of the Bornaward Complex (Bardaskan-NE Iran)

    Bagherzadeh, R. Monazzami; Karimpour, M. H.; Farmer, G. Lang; Stern, C. R.; Santos, J. F.; Rahimi, B.; Heidarian Shahri, M. R.


    The Bornaward Granitoid Complex (BGC) in the Taknar Zone is located in the northeast of Central Iranian Block. The BGC consists of granite, alkaligranite, syenogranite, leucogranite, granophyre, monzogranite, granodiorite, tonalite and diorite that have intruded into the center of Taknar Zone. These intrusive rocks affected by low grade metamorphism. Because of there are no reliable isotope dating data, for the Bornaward Granitoid Complex rocks have been proposed discordant ages (Jurassic, Cretaceous or even younger ages) by many studies. In the present study, new isotopic information based on zircon U-Pb dating has revealed the origin and time of the formation of the BGC. These new results do not confirm previously proposed ages. The results obtained from zircon U-Pb dating of the BGC rocks suggest late-Neoproterozoic (Precambrian) age (540-550 Ma). The Bornaward Granitoid Complex is middle-high metaluminous to lower-middle peraluminous and belongs to tholeiite, calc-alkaline to high-K calc-alkaline rock series with enrichment in LIL (Cs, Rb and Ba, U, K, Zr, Y, Th) and depletion in HIL (Sr and Nb, Ta, Ti) elements. Chondrite-normalized Rare Earth Elements (REE) plots indicate minor enrichment of LREE compared to HREE, and strong negative anomaly of Eu compared to other Rare Earth Elements. Furthermore, initial 87Sr/86Sr and 143Nd/144Nd range from 0.70351 to 0.71689 and 0.511585 to 0.512061, respectively, and initial εNd isotope values for granite, granodiorite and diorite range from -6.73 to 2.52. These all indicate that the BGC has derived from partial melting of distinct basement source regions with very high initial 87Sr/86Sr and undergoing extensive crustal contamination (S-type granite).

  1. Characteristics of Sr, Nd and Pb isotopic compositions of hydrothermal Si-Fe-Mn-oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin

    YANG Baoju; ZENG Zhigang; WANG Xiaoyuan


    Si-Fe-Mn-oxyhydroxides dredged at the PACMANUS (Papua New Guinea–Australia–Canada–Manus) hydrothermal field, Eastern Manus Basin, have87Sr/86Sr=0.708 079–0.708 581;εNd=5.149 833–6.534 826;208Pb/204Pb=38.245–38.440;207Pb/204Pb=15.503–15.560;206Pb/204Pb=18.682–18.783.87Sr/86Sr isotope ratios are relatively homogeneous and close to the value of the surrounding seawater (0.709 16). The content of Sr in the samples contributed by seawater was estimated to be 76.7%–83.1% of total amount. The mixing temperature of hydrothermal fluids and seawater were ranging from 53.2°C to 72.2°C and the hydrothermal activities were unstable when the samples precipitated. TheεNd values of all the samples are positive, which differ from the values of ferromanganese nodules (crusts) with hydrogenic origin. Nd was mainly derived from substrate rocks leached by hydrothermal circulation and preserved the hydrothermal signature. Pb isotopic compositions of most samples show minor variability except Sample #9–2 that has relatively high values of Pb isotopes. The Pb may be derived from the Eastern Manus Basin rocks leached by the hydrothermal fluid. The slightly lower208Pb/204Pb and 207Pb/204Pb values of the samples indicated that the hydrothermal circulation in PACMANUS was not entire and sufficient, or that hydrothermal circulation had transient changes in the past. Si-Fe-Mn-oxyhydroxides in the samples preserved the heterogeneities of local rocks.

  2. Anharmonic phonons and the anomalous isotope effect in La sub 2 minus x Sr sub x CuO sub 4 (US)

    Crespi, V.H.; Cohen, M.L. (Department of Physics, University of California at Berkeley, Berkeley, California 94720 and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California (USA))


    A model for the variation of an interionic potential near the orthorhombic to low-temperature-tetragonal structural phase transition in La-Sr-Cu-O can explain variations both above and below 0.5 in the superconducting isotope-effect parameter {alpha}. In particular, we posit a quadrupolar potential in which the four outer wells deepen as the phase transition is approached. This model can reproduce the experimentally observed variations in both {ital T}{sub {ital c}} and {alpha}.

  3. Nd isotopic disequilibrium be- tween minerals and Rb-Sr age of the secondary phengite in eclogite from the Yangkou area, Qingdao, eastern China


    There are two generations of white micas in retrograded coesite-bearing eclogite from the Yangkou area near Qingdao, eastern China. The secondary phengite developed along the folliations in eclogite is the majority of the white micas. Nd and Sr isotopic disequilibriums between garnet and retrograded omphacite as well as secondary phengite have been observed. Consequently, the Rb-Sr ages ((193 ± 4) Ma―(195 ± 4) Ma) given by the tie lines of the secondary phengite + garnet or whole rock may predate the formation time of the phengite. The Rb-Sr age of (183 ± 4) Ma given by the secondary phengite + retrograde omphacite is much closer to the formation time of the phengite indicating the retrograde age of eclogite instead of a cooling age of eclogite at 500℃.

  4. The use of electrolysis for accurate delta O-17 and delta O-18 isotope measurements in water

    Meijer, HAJ; Li, WJ


    We present a new system to measure the relative isotopic abundances of both rare isotopes of oxygen in water. Using electrolysis with CuSO4 as electrolyte, water is transformed into oxygen gas. This gas is subsequently analyzed with a standard Isotope Ratio Mass Spectrometer. We investigated the fea

  5. The use of electrolysis for accurate delta O-17 and delta O-18 isotope measurements in water

    Meijer, HAJ; Li, WJ


    We present a new system to measure the relative isotopic abundances of both rare isotopes of oxygen in water. Using electrolysis with CuSO4 as electrolyte, water is transformed into oxygen gas. This gas is subsequently analyzed with a standard Isotope Ratio Mass Spectrometer. We investigated the

  6. The use of electrolysis for accurate delta O-17 and delta O-18 isotope measurements in water

    Meijer, HAJ; Li, WJ


    We present a new system to measure the relative isotopic abundances of both rare isotopes of oxygen in water. Using electrolysis with CuSO4 as electrolyte, water is transformed into oxygen gas. This gas is subsequently analyzed with a standard Isotope Ratio Mass Spectrometer. We investigated the fea

  7. Provenance of late Oligocene to quaternary sediments of the Ecuadorian Amazonian foreland basin as inferred from major and trace element geochemistry and Nd-Sr isotopic composition

    Roddaz, Martin; Christophoul, Frédéric; Burgos Zambrano, José David; Soula, Jean-Claude; Baby, Patrice


    Oligocene to Quaternary deposits from the Oriente Amazonian foreland basin (Ecuador and Peru) were analyzed for major and trace element geochemistry (46 and 32 samples respectively) and Nd-Sr isotopic systematics (n = 10). Chemical Index of Alteration values lower than those of other Amazonian foreland basin sediments and scattering along the AK join in the A-CN-K diagram indicate that the Oriente foreland basin has been continuously fed by poorly to moderately weathered sediments having an overall Andesitic composition since the Oligocene. Chemical ratios such as Cr/Th and Th/Sc as well as Eu anomaly and Nd-Sr isotopic compositions indicate that most of the analyzed sediments contained a greater proportion of volcanic arc rock material than the other Amazonian foreland basin sediments. When compared with the older sediments The Quaternary sediments are characterized by a greater contribution of the volcanic arc source. The composition of the sediments deposited in the Ecuadorian Amazonian foreland basin is mainly controlled by geodynamic processes. We suspect the Late Pliocene-Pleistocene subduction of the Carnegie ridge to be responsible for the back arc volcanism feeding the Amazonian foreland with more basic materials. Input of young Ecuadorian volcanic rocks may explain the difference in Sr and Nd isotopic ratios of suspended sediments between the Solimoes and the Madeira rivers.

  8. Multi-Isotopic (o, H, Sr, Li) Tracing of the Fluxes Involved in the Water Status of a Peatland (la Sauvetat, Massif Central, France)

    Agnès, B.; Negrel, P. J.; Millot, R.; Clotilde, B.


    The bio-diversity (vegetation and fauna) of peatlands, like all wetlands ecosystems, are strongly fragile as they are requiring very specific wet conditions. In the past 20 years, increasing efforts were engaged to restore degraded wetlands, to create new wetlands where they have been totally lost and to manage wetlands sustainably in order to assess their multiple benefits. However, engaging specific actions to restore and preserve wetlands require an important knowledge on the water cycle in such systems. In this study, we propose to use chemical and multi-isotopic approaches combined with hydrological measurements (piezometric level and stream flow measurements) to trace the fluxes of water and dissolved element involved in the “Narces de la Sauvetat” peatland (France) and for the stream draining the area. Aims are to evaluate the water status of this ecosystem as well as the origin of dissolved elements and possible anthropogenic impacts. These approaches clearly demonstrated their effectiveness to improve the knowledge on the hydrological functioning of wetlands ecosystems. Main results are (1) at least three fluxes with distinct chemical and isotopic signatures are providing water supplies to peatland (Sr and stable isotopes), (2) water flow that comes out of the peatland through the stream is certainly negligible (Li isotopes) and 3) water within the peat land exhibits Sr and Li -isotopes values consistent with carbonate amendments inputs used in local agriculture. The outcomes of this study are that peatland ecosystem water balance is poorly affected by its outlet but are strongly controlled by groundwater replenishment. This could lead to a better adjustment of decision maker choices to maintain the water balance of the peatland, which is essential for the preservation of this fragile ecosystem. This study also opens a new field for Li isotope investigations in hydro-systems and highlights the possibility of using Li isotopes as environmental tracers.

  9. Melt extraction and enrichment processes in the New Caledonia lherzolites: Evidence from geochemical and Sr-Nd isotope data

    Secchiari, Arianna; Montanini, Alessandra; Bosch, Delphine; Macera, Patrizia; Cluzel, Dominique


    The New Caledonia ophiolite (Peridotite Nappe) is dominated by mantle lithologies, composed of forearc-related refractory harzburgites and minor lherzolites in both the spinel and plagioclase facies. In this study, a comprehensive geochemical data set (major, trace elements and Sr-Nd isotopes) is used to constrain the mantle evolution of the lherzolites and their relationships with the basalts from the Poya Terrane, which tectonically underlies the mantle rocks. The majority of the lherzolites are low-strain porphyroclastic tectonites. They likely record an asthenospheric origin followed by re-equilibration at lithospheric conditions, as supported by geothermometric estimates (T = 1100-940 °C and 920-890 °C for porphyroclastic and neoblastic spinel-facies assemblages, respectively). Olivine composition (Fo = 88.5-90.0 mol%), spinel Cr# ([molar 100 • Cr/(Cr + Al)] = 13-17) and relatively high amounts (7-8 vol%) of Al2O3- and Na2O-rich clinopyroxene (up to 0.5 and 6.5 wt.%, respectively) indicate a moderately depleted geochemical signature for the spinel lherzolites. Bulk rock and clinopyroxene rare earth elements (REE) patterns display a typical abyssal-type signature, i.e. steeply plunging LREE accompanied by nearly flat HREE to MREE. Clinopyroxene REE compositions of the spinel lherzolites may be reproduced by small amounts of fractional melting of a garnet lherzolite precursor (~ 4%), followed by 4%-5% melting in the spinel peridotite field. The plagioclase lherzolites show melt impregnation microstructures, Cr- and Ti-rich spinels and incompatible trace element enrichments (REE, Ti, Y, and Zr) in bulk rocks and clinopyroxenes. Impregnation modelling for these elements suggests that the plagioclase lherzolites originated from residual spinel lherzolites by entrapment of highly depleted (non-aggregated) MORB melt fractions in the shallow oceanic lithosphere. Nd isotope compositions of the investigated peridotites are consistent with derivation from an

  10. Accurate first-principles calculations for {sup 12}CH{sub 3}D infrared spectra from isotopic and symmetry transformations

    Rey, Michaël, E-mail:; Tyuterev, Vladimir G. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089, BP 1039, F-51687, Reims Cedex 2 (France); Nikitin, Andrei V. [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, SB RAS, 634055 Tomsk (Russian Federation); Tomsk State University, 36 Lenin Avenue, 634050 Tomsk (Russian Federation)


    Accurate variational high-resolution spectra calculations in the range 0-8000 cm{sup −1} are reported for the first time for the monodeutered methane ({sup 12}CH{sub 3}D). Global calculations were performed by using recent ab initio surfaces for line positions and line intensities derived from the main isotopologue {sup 12}CH{sub 4}. Calculation of excited vibrational levels and high-J rovibrational states is described by using the normal mode Eckart-Watson Hamiltonian combined with irreducible tensor formalism and appropriate numerical procedures for solving the quantum nuclear motion problem. The isotopic H→D substitution is studied in details by means of symmetry and nonlinear normal mode coordinate transformations. Theoretical spectra predictions are given up to J = 25 and compared with the HITRAN 2012 database representing a compilation of line lists derived from analyses of experimental spectra. The results are in very good agreement with available empirical data suggesting that a large number of yet unassigned lines in observed spectra could be identified and modeled using the present approach.

  11. Geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) constraints on Quaternary bimodal volcanism of the Nigde Volcanic Complex (Central Anatolia, Turkey)

    Aydin, F.; Siebel, W.; Uysal, I.; Ersoy, E. Y.; Schmitt, A. K.; Sönmez, M.; Duncan, R.


    The Nigde Volcanic Complex (NVC) is a major Late Neogene-Quaternary volcanic centre within the Cappadocian Volcanic Province of Central Anatolia. The Late Neogene evolution of the NVC generally initiated with the eruption of extensive andesitic-dacitic lavas and pyroclastic flow deposits, and minor basaltic lavas. This stage was followed by a Quaternary bimodal magma suite which forms Na-alkaline/transitional basaltic and high-K calc-alkaline to alkaline silicic volcanic rocks. In this study, we present new geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) data for the bimodal volcanic suite within the NVC. Recent data suggest that the eruption of this suite took place ranges between ~650 and ~220 ka (Middle-Late Pleistocene). Silicic rocks consisting of rhyolite and associated pumice-rich pyroclastic fall out and surge deposits define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5127), and show virtually no difference in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of the silicic (0.704-0.705) and basaltic rocks (0.703-0.705) are rather similar reflecting a common source. The most mafic sample from basaltic rocks related to monogenetic cones is characterized by 87Sr/86Sr = 0.704, 143Nd/144Nd = 0.5127, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68. These values suggest a moderately depleted signature of the mantle source. The geochronological and geochemical data suggest that NVC silicic and basaltic rocks are genetically closely related to each other. Mantle derived differentiated basaltic melts which experienced low degree of crustal assimilation are suggested to be the parent melt of the rhyolites. Further investigations will focus on the spatial and temporal evolution of Quaternary bimodal magma suite in the NVC and the genetic relation between silicic and basaltic rocks through detailed oxygen isotope analysis and (U

  12. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China

    Duan, Jun; Li, Chusi; Qian, Zhuangzhi; Jiao, Jiangang; Ripley, Edward M.; Feng, Yanqing


    Previous geochemical data for the Jinchuan Ni-Cu-(platinum-group elements, PGE) deposit, the single largest magmatic sulfide deposit in the world, are derived primarily from the upper parts of the deposit. This paper reports new PGE and S-Hf-Sr-Nd isotope data for the lower parts of the deposit that have become accessible for sampling by ongoing underground mining activity. New PGE data from this study, together with previous results, indicate that PGE tenors in the bulk sulfide ores of the deposit increase eastward, except for two fault-offset ore zones which occur together within the western part of the deposit. Generally, these two ore zones show depletions in IPGE (Ir, Ru, Rh) but not in PPGE (Pt, Pd) and Cu, and more fractionated olivine and Cr-spinel compositions than the rest of the deposit. These differences can be explained by a more evolved parental magma for the IPGE-depleted ore zones. The eastward increase of PGE tenors in the rest of the deposit can be explained by upgrading of preexisting sulfide liquid in a subhorizontal conduit by a new surge of magma moving through the conduit from west to east, which took place before the formation of the IPGE-depleted ore zones. The Jinchuan ultramafic rocks are characterized by elevated initial 87Sr/86Sr ratios from 0.7077 to 0.7093, negative ɛ Nd values from -9.2 to -10.5, and zircon ɛ Hf values from -4 to -7. These data indicate up to 20 % of crustal contamination in the Jinchuan magma. Four of nine multiple sulfur isotope analyses for the Jinchuan deposit show anomalous ∆33S values varying from 0.12 to 2.67 ‰. These results, together with elevated δ34S values (>2 ‰) for some of the samples analyzed previously by other researchers, indicate the involvement of external sulfur from Archean and Proterozoic sedimentary rocks. Modeling results based on our olivine data and magma compositions estimated previously by other researchers indicate that fractional crystallization did not play a major role in

  13. Grain-scale Sr isotope heterogeneity in amphibolite (retrograded UHP eclogite, Dabie terrane): Implications for the origin and flow behavior of retrograde fluids during slab exhumation

    Guo, Shun; Yang, Yueheng; Chen, Yi; Su, Bin; Gao, Yijie; Zhang, Lingmin; Liu, Jingbo; Mao, Qian


    To constrain the origin and flow behavior of amphibolite-facies retrograde fluids during slab exhumation, we investigate the textures, trace element contents, and in situ strontium (Sr) isotopic compositions (using LA-MC-ICP-MS) of multiple types of epidote and apatite in the UHP eclogite and amphibolites from the Hualiangting area (Dabie terrane, China). The UHP epidote porphyroblasts in the eclogite (Ep-E), which formed at 28-30 kbar and 660-720 °C, contain high amounts of Sr, Pb, Th, Ba, and light rare earth elements (LREEs) and have a narrow range of initial 87Sr/86Sr ratios (0.70431 ± 0.00012 to 0.70454 ± 0.00010). Two types of amphibolite-facies epidote were recognized in the amphibolites. The first type of epidote (Ep-AI) developed in all the amphibolites and has slightly lower trace element contents than Ep-E. The Ep-AI has a same initial 87Sr/86Sr ratio range as the Ep-E and represents the primary amphibolite-facies retrograde product that is associated with an internally buffered fluid at 8.0-10.3 kbar and 646-674 °C. The other type of epidote (Ep-AII) occurs as irregular fragments, veins/veinlets, or reaction rims on the Ep-AI in certain amphibolites. Elemental X-ray maps reveal the presence of Ep-AI relics in the Ep-AII domains (appearing as a patchy texture), which indicates that Ep-AII most likely formed by the partial replacement of the Ep-AI in the presence of an infiltrating fluid. The distinctly lower trace element contents of Ep-AII are ascribed to element scavenging by a mechanism of dissolution-transport-precipitation during replacement. The Ep-AII in an individual amphibolite exhibits large intra- and inter-grain variations in the initial 87Sr/86Sr ratios (0.70493 ± 0.00030 to 0.70907 ± 0.00022), which are between those of the Ep-AI and granitic gneisses (wall rock of the amphibolites, 0.7097-0.7108). These results verify that the infiltrating fluid was externally derived from granitic gneisses. The matrix apatite in the amphibolites has

  14. In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China

    Zhao, Xin-Fu; Zhou, Mei-Fu; Gao, Jian-Feng; Li, Xiao-Chun; Li, Jian-Wei


    Apatite is a ubiquitous accessory mineral in a variety of rocks and hydrothermal ores. Strontium isotopes of apatite are well known to retain petrogenetic information and have been widely used to investigate the origin of igneous rocks, but such attempts have rarely been made to constrain ore-forming processes of hydrothermal systems. We here report in situ LA-MC-ICPMS Sr isotope data of apatite from the ~1660-Ma Yinachang Fe-Cu-REE deposit, Southwest China. The formation of this deposit was coeval to the emplacement of regionally distributed doleritic intrusions within a continental-rift setting. The deposit has a paragenetic sequence consisting of sodic alteration (stage I), magnetite mineralization (stage II), Cu sulfide and REE mineralization (stage III), and final barren calcite veining (stage IV). The stage II and III assemblages contain abundant apatite, allowing to investigate the temporal evolution of the Sr isotopic composition of the ore fluids. Apatite of stage II (Apt II) is associated with fluorite, magnetite, and siderite, whereas apatite from stage III (Apt III) occurs intimately intergrown with ankerite and Cu sulfides. Apt II has 87Sr/86Sr ratios varying from 0.70377 to 0.71074, broadly compatible with the coeval doleritic intrusions (0.70592 to 0.70692), indicating that ore-forming fluids responsible for stage II magnetite mineralization were largely equilibrated with mantle-derived mafic rocks. In contrast, Apt III has distinctly higher 87Sr/86Sr ratios from 0.71021 to 0.72114, which are interpreted to reflect external radiogenic Sr, likely derived from the Paleoproterozoic strata. Some Apt III crystals have undergone extensive metasomatism indicated by abundant monazite inclusions. The metasomatized apatite has much higher 87Sr/86Sr ratios up to 0.73721, which is consistent with bulk-rock Rb-Sr isotope analyses of Cu ores with 87Sr/86Sri from 0.71906 to 0.74632. The elevated 87Sr/86Sr values of metasomatized apatite and bulk Cu ores indicate

  15. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs

    Basu, A.R.; Wang, Junwen; Huang, Wankang; Xie, Guanghong; Tatsumoto, M.


    Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China. The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb Sr and Nd Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb 204Pb vs 206Pb 204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb 204Pb vs 206Pb 204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components-a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle

  16. Calcium biogeochemical cycle at the beech tree-soil solution interface from the Strengbach CZO (NE France): insights from stable Ca and radiogenic Sr isotopes

    Schmitt, Anne-Désirée; Gangloff, Sophie; Labolle, François; Chabaux, François; Stille, Peter


    Calcium (Ca) is the fourth most abundant element in mineral nutrition and plays key physiological and structural roles in plant metabolism. At the soil-water-plant scale, stable Ca isotopes are a powerful tool for the identification of plant-mineral interactions and recycling via vegetation. Radiogenic Sr isotopes are often used as tracers of Ca sources and mixtures of different reservoirs. In this study, stable Ca and radiogenic Sr are combined and analysed in several organs from two beech trees that were collected in June and September in the Strengbach critical zone observatory (CZO) (NE France) and in corresponding soil solutions. At the beech-tree scale, this study confirms the field Ca adsorption (i.e., physico-chemical mechanism and not vital effects) on carboxyl acid groups of pectin in the apoplasm of small roots. The analysis of the xylem sap and corresponding organs shows that although the Strengbach CZO is nutrient-poor, Ca seems to be non-limiting for tree-growth. Different viscosities of xylem sap between the stemwood and branches or leaves can explain δ44/40Ca values in different tree-organs. The bark and phloem 40Ca-enrichments could be due to Ca-oxalate precipitation in the bark tissues and in the phloem. The results from this study regarding the combination of these two isotopic systems show that the isotopic signatures of the roots are dominated by Ca fractionation mechanisms and Sr, and thus Ca, source variations. In contrast, translocation mechanisms are only governed by Ca fractionation processes. This study showed that at the root-soil solution interface, litter degradation was not the main source of Ca and Sr and that the soil solutions are not the complement of uptake by roots for samples from the 2011/2013 period. The opposite is observed for older samples. These observations indicate the decreasing contribution of low radiogenic Sr fluxes, such as recycling, alimenting the soil solutions. Such reduced importance of nutrient uptake and

  17. Sources of granite magmatism in the Embu Terrane (Ribeira Belt, Brazil): Neoproterozoic crust recycling constrained by elemental and isotope (Sr-Nd-Pb) geochemistry

    Alves, Adriana; Janasi, Valdecir de Assis; Campos Neto, Mario da Costa


    Whole rock elemental and Sr-Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810-580 Ma), and is dominated by crust-derived relatively low-T (850-750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (-8 to -10) and highest mg# (30-40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96-1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595-580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (-12 to -18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0-2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714-0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd-Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The

  18. Dust provenance in NEEM deep ice core from Greenland over the past 30,000 years using Pb and Sr isotopic composition

    Han, C.; Han, Y.; Lee, K.; Lee, S.; Hong, S.; Hur, S. D.


    Pb and Sr isotopic compositions and Pb and Ba concentrations are reported in 71 sections of the 2,540-m-long deep ice core drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland (77.45o N, 51.06 oW, surface elevation 2,450 m). The depth of the section ranged from 1,215 m to 1,671 m, corresponding to the period of 8,000 yr BP (Holocene) to 30,800 yr BP (Marine Isotopic Stage 2.2). Samples were decontaminated and analyzed using a thermal ionization mass spectrometry (TIMS) (TRITON, Thermo Scientific) under class 10 clean conditions. Concentrations of Pb and 206Pb/207Pb ratios are observed to have strongly varied with changing climate. Pb concentrations were low ( -40‰) and much higher up to 250 pg/g during cold climatic phases (δ18O < -40‰). Pronounced variation in 206Pb/207Pb ratios is observed during warm climatic phases, while a relatively small variation in 206Pb/207Pb ratios is observed during cold climatic phases. The variation in 206Pb/207Pb isotopic ratios (also 87Sr/86Sr) linked to climatic conditions reflects changes in the source areas of dust deposited in Greenland. The combination of Pb and Sr isotopic ratios suggest that Asia (the Northern Chinese and Gobi deserts) is identified as the primary contributor to the Greenland dust during the period from 30,000 yr BP to 20,000 yr BP. Interestingly, our data represent that the Saharan desert was an important source of dust in Greenland between 21,000 yr BP and 16,000 yr BP, probably due to an increase in northward Saharan dust transport during this period of intensified atmospheric circulation in high northern latitudes. After the last deglaciation, a wide range of the isotopic compositions is observed, suggesting the exposure of other potential source areas in the high latitudes of the Northern Hemisphere such as Canada and Spitsbergen.

  19. Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge (3.7°N): constrains from elemental and isotopic (Sr, Nd, Pb) data

    Chen, Ling; Tang, Limei; Yu, Xing; Dong, Yanhui


    We present new major element, ICP-MS trace element, and Sr-Nd-Pb isotope data of basalts from four locations along the Carlsberg Ridge (CR), northern Indian Ocean. The basalts are low-K tholeiites with 7.52-9.51 wt% MgO, 49.40-50.60 wt% SiO2, 0.09-0.27 wt% K2O, 2.55-2.90 wt% Na2O, and 0.60-0.68 Mg#. Trace element contents of the basalts show characteristics similar to those of average normal MORB, such as LREE depleted patterns with (La/Sm)N ratio of 0.55-0.69; however, some samples are enriched in large-ion lithophile elements such as K and Rb, suggesting probable modification of the mantle source. Poor correlations between the compatible elements [e.g. Ni, Cr, and Sr (related to olivine, clinopyroxene and plagioclase, respectively)] and the incompatible elements (e.g. Zr and Y), and positive correlations in the Zr versus Zr/Y and Nb versus Nb/Y plots suggest a magmatic evolution controlled mainly by mantle melting rather than fractional crystallization. Our results extend the CR basalt range to higher radiogenic Pb isotopes and lower 143Nd/144Nd. These basalts and basalts from the northern Indian Ocean Ridge show lower 143Nd/144Nd and higher 87Sr/86Sr values than those of the depleted mantle (DM), defining a trend towards pelagic sediment composition. The Pb isotopic ratios of basalts from CR 3-4°N lie along the compositional mixing lines between the DM and the upper continental crust. However, the low radiogenic Pb of basalts from CR 9-10°N lie on the mixing line between the DM and lower continental crust. Since the Pb isotopic ratio of MORB would decrease if the source mantle was contaminated by continental lithospheric mantle, we suggest that CR contains continental lithospheric material, resulting in heterogeneous mantle beneath different ridge segments. The continental lithospheric material was introduced into the asthenosphere before or during the breakup of the Gondwana. These results support the long-term preservation of continental material in the

  20. Zircon LA-ICP-MS U-Pb dating and Sr-Nd isotope study of the Guposhan granite complex, Guangxi, China

    GU Shengyan; HUA Renmin; QI Huawen


    Zircon U-Pb dating by the LA-ICP-MS method was applied to determining the ages of different units of the Guposhan granite complex, among which the East Guposhan unit is 160.8±1.6 Ma, the West Guposhan unit is 165.0±1.9 Ma, and the Lisong unit is 163.0±1.3 Ma in age. Much similarity in ages of the three units has thus proved that the whole Guposhan granite complex was formed in the same period of time. They were the products of large-scale granitic magmatism through crust-remelting in the first stage of the Middle Yanshanian in South China. However, the three units have differences both in petrology and in geochemistry. Besides the differences in major, trace and rare-earth elements, they are distinct in their Rb-Sr and Sm-Nd isotopic compositions. The East Guposhan unit and Lisong unit and its enclaves have a similar (87Sr/86Sr)i value of 0.7064 with an average of εNd(t)=-3.03, indicating that more mantle material was evolved in the magma derivation; whereas the West Guposhan unit has a higher (87Sr/86Sr)i value of 0.7173 but a lower εNd(t) value of -5.00, and is characterized by strong negative Eu anomalies and higher Rb/Sr ratios, suggesting that its source materials were composed of relatively old crust components and new mantle-derived components. In addition, an inherited zircon grain in the East Guposhan unit (GP-1) yielded a 206Pb/238U age of 806.4 Ma, which is similar to the ages of the Jiulin cordierite granite in northern Jiangxi and of the Yinqiao migmatic granite in Guangxi in the HZH granite zone. All this may provide new evidence for Late Proterozoic magmatism in the HZH granite zone.

  1. A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon

    Edmunson, J; E.Borg, L; Nyquist, L E; Asmerom, Y


    Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 {+-} 37 Ma and an initial {var_epsilon}{sub Nd}{sup 143} value of -0.27 {+-} 0.74. The age-initial {var_epsilon}{sub Nd}{sup 143} (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiation was completed by 4492 {+-} 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 {+-} 53 Ma. The other is 4003 {+-} 95 Ma and is concordant with an Ar-Ar age for 78236. The {sup 207}Pb-{sup 206}Pb age of 4333 {+-} 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged {mu} ({sup 238}U/{sup 204}Pb) value of the source can be estimated at 27 {+-} 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low {mu} value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high {mu} value.

  2. Syn-orogenic high-temperature crustal melting: Geochronological and Nd-Sr-Pb isotope constraints from basement-derived granites (Central Damara Orogen, Namibia)

    Ostendorf, Jörg; Jung, Stefan; Berndt-Gerdes, Jasper; Hauff, Folkmar


    Major and trace element and Nd, Sr and Pb isotope data from c. 550 Ma-old gray granites and c. 510 Ma-old red leucogranites of the high-grade central part of the Damara orogen (Namibia) indicate a dominantly deep crustal origin. Moderately peraluminous gray granites are isotopically evolved (initial ɛNd: c. - 17) and were likely derived from meta-igneous sources with late Archean to Paleoproterozoic crustal residence ages. Based on a comparison with experimental results, the granites were derived by partial melting of a granodioritic biotite gneiss at c. 900-950 °C and less than 10 kbar. Slightly peraluminous red leucogranites are also isotopically evolved (initial ɛNd: - 15 to - 18) but have undergone extensive crystal fractionation coupled with minor contamination of mid crustal meta-pelitic material. Major and trace element data do not support closed-system fractional crystallization processes for all samples, however, some chemical features underline the importance of crystal fractionation processes especially for the leucogranites. Isotope data do not support mixing of different crust-derived melts or assimilation of crustal rocks by a mafic magma on a large scale. For the gray granites, unradiogenic Pb isotope compositions with substantial variation in 207Pb/204Pb at almost constant 206Pb/204Pb, strongly negative ɛNd values and moderately radiogenic Sr isotope compositions argue for an undepleted nature of the source. High Rb/Sr ratios of the red leucogranites permit a comparison with the gray granites but similar initial ɛNd values indicate that the source of these granites is not fundamentally different to the source of the gray granites. The most acceptable model for both granite types involves partial melting of meta-igneous basement rocks of Archean to Proterozoic age. The consistency of the chemical data with a crustal anatectic origin and the observation that the gray granites intruded before the first peak of high-grade regional metamorphism

  3. Sr-Nd-Pb isotopes of the Early Paleozoic mafic-ultramafic dykes and basalts from South Qinling belt and their implications for mantle composition


    Late Early Paleozoic mafic-ultramafic dykes and volcanic rocks from the South Qinling belt are characterized by eNd( t ) = +3.28―+5.02, (87Sr/86Sr)i=0.70341―0.70555, (206Pb/204Pb)i = 17.256―18.993, (207Pb/204Pb)i= 15.505―15.642, (208Pb/204Pb)i=37.125―38.968, △8/4=21.18―774.43, △7/4=8.11―18.82. These charac- teristics suggest that they derived from a Middle Neoproterozoic mantle with isotopic compositions of mixed HIMU, EMII and minor EMI components. We interpret that these rocks were melting products of depleted mantle modified by subducted ancient oceanic crust and continental margin sediments along the northern margin of Yangtze block during Early Neoproterozoic.

  4. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Craton

    Niu, Xiaolu; Chen, Bin; Liu, Ankun; Suzuki, K.; Ma, Xu


    The Fanshan ultramafic-syenitic complex is located on the northern margin of North China Craton, with zircon U-Pb ages of 220 Ma. It is a concentrically zoned complex, with syenite in the core, surrounded by ultramafic rocks (clinopyroxenite, glimmerite) and garnet-clinopyroxene syenite, respectively, towards the rim. Diopside, biotite, orthoclase, melanite, magnetite and apatite are the major minerals, with subordinate sphene and calcite. Mineralogy, petrology and geochemical studies point to the formation of the complex through fractional crystallization and accumulation from a SiO2-undersaturated ultrapotassic alkaline-peralkaline parent magma that is characterized by high CaO, Fe2O3, K2O and fluid compositions (P2O5, CO2, H2O, F), and by high temperature and high oxygen fugacity. Rocks from the complex are highly enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE; e.g., Rb, Ba, Sr), depleted in high field strength elements (HFSE; e.g., Nb, Ta, Ti), and show relatively homogeneous Sr-Nd isotopic compositions with initial 87Sr/86Sr = 0.70513-0.70597 and ɛNd(t) = - 5.8 to - 5.3. The data suggest that the Fanshan complex originated from a phlogopite-clinopyroxenite-rich lithosphere mantle source that had previously been metasomatized by melts from carbonated oceanic crust above a subduction zone. Highly radiogenic Os isotope compositions (initial 187Os/188Os = 0.299-2.449) suggest that the parent magma to the Fanshan complex has been contaminated by Precambrian mafic crustal rocks during magma emplacement in crustal levels. The occurrence of the Fanshan complex, together with many other ultramafic/alkaline plutons of similar ages, on the northern margin of the North China Craton suggests that the northern margin of the craton entered into a large-scale extensional regime in late Triassic after the final amalgamation between Mongolian microcontinent and the craton.

  5. Major element,trace element,and Sr,Nd and Pb iso-tope studies of Cenozoic basalts from the South China Sea


    The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh ba-saltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions. Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cu-mulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.

  6. Sr-Nd-Pb isotopic compositions of the lower crust beneath northern Tarim: insights from igneous rocks in the Kuluketage area, NW China

    Zhang, Yan; Wei, Xun; Xu, Yi-Gang; Long, Xiao-Ping; Shi, Xue-Fa; Zhao, Jian-Xin; Feng, Yue-Xing


    The composition of lower crust of the Tarim Craton in NW China is essential to understand the petrogenesis of the ~290-275 Ma Tarim basalts and associated intermediate-felsic rocks. However, it remains poorly constrained because extremely sparse granulite terrains or granulite xenoliths have been found in the Tarim Craton. New trace element and Sr-Nd-Pb isotopic data are reported for the Neoarchean and Neoproterozoic igneous rocks widely distributed in the northern margin of the Tarim Craton. The Neoarchean granitic gneisses show fractionated REE (rare earth element) patterns [(La/Yb) N = 12-58, YbN = 10.6-36] with pronounced negative Nb-Ta and Ti anomalies. These features, together with negative ɛNdi (-0.7 to -3.2) suggest that they were derived from melting of mafic lower crust. The Neoproterozoic biotite granodiorites are strongly depleted in HREE with (La/Yb) N up to 55. They are characterized by high Sr (671-789 ppm) but very low Y (7.10-8.06 ppm) and Yb contents (0.47-0.58 ppm), showing typical features of adakitic rocks. The samples with different SiO2 contents display identical 87Sr/86Sri (0.7101-0.7103), ɛNdi (-14.1 to -15.7) and Pb isotopes (208Pb/204Pbi = 36.94-37.07). These features together with arc-like trace element patterns suggest that they were derived from melting of thickened lower crust. In comparison, the Neoproterozoic hornblende-biotite granodiorites have similar trace element compositions except for weaker depletion in HREE and have lower 87Sr/86Sri (0.7078) and initial Pb isotopes, and higher ɛNdi (-12.3 to -12.7). This suggests that they were formed by melting of old lower continental crust at a shallower depth than the biotite granodiorites. These rocks were derived from the lower crust, thus providing valuable information on the nature of the lower crust beneath northern Tarim. Combined with published data, the 87Sr/86Sri, ɛNdi, 206Pb/204Pbi and ɛHfi of the northern Tarim lower crust ranges from 0.7055 to 0.7103, from -12 to -17

  7. Geochemical and Sr, Ca, U Isotopic Evidence of Recent changes of Weathering Reactions in a Forested Granitic Catchment (Strengbach Watershed, France)

    Chabaux, F. J.; Pierret, M.; Stille, P.; Prunier, J.


    The characterization of the present-day weathering processes controlling the chemical composition of waters and soils and of their past evolution in natural ecosystems is important to predict and hence to model the response of the ecosystem to recent environmental changes. The geochemical analysis of the various hydro-geochemical compartments of experimental watersheds is well adapted to answer such questions. Here, we present the elemental and isotopic composition of soil solutions collected within two soil profiles located in the small granitic watershed of the Strengbach creek in the Vosges Mountain (France). The depth variation of elemental concentration confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, Ca and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones. In the deeper part (>60cm) of the soil profile, dissolution of alumino-silicates is the main parameter accounting for the Sr budget of the soil solutions. The comparison of elemental concentrations and Sr isotope ratios in recent soil solutions with data obtained for soil solutions over the last 15 years, demonstrate that the source of elements in soil solutions has changed over this time period. Such a variation cannot be related to diminution of dissolution processes nor to declining of atmospheric input. It is related to a modification of the weathering reactions occurring within the weathering profile, including, most probably, an increasing dissolution of alumino-silicate minerals over 15 yrs. All our results demonstrate that the Strengbach watershed is in a transient state of weathering - with an important loss of nutriments such as Ca in soils solutions since at least 15yrs, associated

  8. Sr and U isotope ratios in soil waters as tracers of weathering dynamic in soils (Strengbach catchment - Vosges-mountains; France).

    Chabaux, François; Prunier, Jonathan; Pierret, Marie-Claire; Stille, Peter


    It is proposed in this study to highlight the interest of multi-tracer geochemical approaches combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to constrain the characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems. This is important if we want to predict and to model correctly the response of ecosystems to recent environmental changes. The approach is applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-geochemical observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, along with the analysis of soil samples and vegetation samples from these two plots. The depth variation of elemental concentrations of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling. From the obtained data, it can be therefore proposed a scheme where in addition to the external flux associated to the decomposition of organic matter and throughfall, occurs a double lithogenic flux: a surface flux which can be associated to dissolution of secondary minerals contained in fine silt fractions and a deeper one, controlled by water-rock interactions which can mobilize elements from primary minerals like plagioclases or orthose

  9. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ18O, δD, δ13C and 87Sr/86Sr

    Pinti, D. L.; Castro, M. C.; Shouakar-Stash, O.; Tremblay, A.; Garduño, V. H.; Hall, C. M.; Hélie, J.-F.; Ghaleb, B.


    Isotopes of noble gases, CO2, H2O and Sr were measured in 10 geothermal wells and 8 hot springs, fumaroles and mud volcanoes at Los Azufres, the second most important geothermal field in Mexico. The aim of this study is to provide additional information on fluid circulation in the field and surrounding areas (Araró hot springs), as well as on physical processes such as boiling, steam separation and invasion of re-injected brines following over 25 years of geothermal fluid exploitation. Mantle helium dominates in fluids from the northern production zone of Marítaro, with measured 3He/4He ratios up to 7 Ra (where Ra is the atmospheric ratio of 1.386 × 10- 6). 3He/4He ratios are positively correlated with 87Sr/86Sr ratios and with δD and δ18O. These relationships suggest that Los Azufres fluids represent a mixing between primary magmatic 3He-rich fluids and groundwater currently discharging at Araró hot springs and enriched in radiogenic 4He acquired from Miocene andesites. Unusually high He ratios together with radiogenic Sr isotopic ratios suggest that thermal waters acquired mantle He from deep-seated parent magmas and radiogenic Sr possibly during their uprising through the metamorphic basement. 40Ar/36Ar ratios of 366 to 429 measured in two wells indicate either mantle-derived argon or a radiogenic 40Ar in situ component, suggesting the local presence of an older crustal fluid component in the northern part of the field. Ne, Kr and Xe are entirely of atmospheric origin, but processes of boiling, steam separation and re-injection of used brines have led to fractionation of their elemental abundances. Comparison with previous studies suggests that the boiling zone in the northern production zone is currently extending further north (Marítaro hot springs). In the southwestern productive zone, re-injected brines might account for more than 90% of the exploited fluids.

  10. Geochemistry, water dynamics and metals: Major, trace elements, Pb and Sr isotope constraints on their origins and movements in a small anthropized catchment over a flood

    Luck, J.M.; Othman, D.B. [University Montpellier II, Laboratoire Geofluides, Bassins, Eaux, Montpellier (France)


    Major, trace elements and Sr-Pb isotope data on the dissolved and particulate phases are reported for water samples taken regularly over the September flood of a Mediterranean river (S France). This river drains runoff from a small, carbonate, karstified watershed with Miocene and Jurassic lithologies, and characterized by agricultural, urban and road network activities. The objective is to combine all the data into a dynamic model for constraining the origin(s) and movements of waters and of their loads. Furthermore, for metals, it becomes then feasible to know their fate and bioavailability downstream 18 refs., 4 figs.

  11. Geochemical and H-O-Sr-Nd isotope evidence for magmatic processes and meteoric-water interactions in the basal complex of La Gomera, Canary Islands

    Demény, A.; Casillas, R.; Hegner, E.; Vennemann, T. W.; Nagy, G.; Sipos, P.


    The plutonic rocks of the Basal Complex of La Gomera, Canary Islands, Spain, were studied by means of major and trace element contents and by H-O-Sr-Nd isotope compositions in order to distinguish primary magmatic characteristics and late-stage alteration products. Deciphering the effects of alteration allowed us to determine primary, plume-related compositions that indicated D- and 18O-depletion relative to normal upper mantle, supporting the conclusions of earlier studies on the plutonic rocks of Fuerteventura and La Palma. Late-stage alteration took place during the formation of the intrusive series induced by interaction with meteoric water. Inferred isotopic compositions of the meteoric water indicate that the water infiltrated into the rock edifice at a height of about 1500 m above sea level, suggesting the existence of a subaerial volcano which was active during the intrusive activity and that it has been either distroyed or remain buried by later volcanic and landslide events.

  12. Origin of the deep fluids in the paleosubduction zones in western Tianshan: Evidence from Pb- and Sr-isotope compositions of high-pressure veins and host rocks

    HUANG; Dezhi; GAO; Jun; DAI; Tageng; ZOU; Haiyang; XIONG; X


    Fluids in the deep subduction zones play an important role in crust-mantle exchange related to the subduction process. Identification of fluids origin, internal or external, can help us to evaluate the contribution of crust materials to mantle during this process. High-pressure veins, which developed in the western Tianshan HP-metamorphic belt extensively, are the direct products of the fluids in subduction zones. In western Tianshan, high-pressure veins and host rocks have overall Pb- and Sr-isotope compositions. At t = 340 Ma, the high-pressure metamorphic time, the ratios of 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb and 87Sr/86Sr of high pressure veins are 17.122―18.431, 15.477―15.611, 37.432―38.689 and 0.70529―0.70705, and are 17.605―17.834, 15.508―15.564, 37.080―38.145 and 0.70522―0.70685 for host rocks. However, high-pressure veins show a much larger variation in Pb-isotope compositions than host rocks. Plots of samples are distributed roughly along a line parallel to and far away from the Northern Hemisphere reference line (NHRL) on the plot of 206Pb/204Pb vs 207Pb/204Pb. On the plot of 206Pb/204Pb vs 208Pb/204Pb, plots of data are distributed nearby mid-ocean-ridge basalts (MORB) area or along a line parallel to and not far away from NHRL, which shows that the data plots are farther away from MORB and ocean island basalts (OIB) areas on the plot of 206Pb/204Pb vs 207Pb/204Pb than on the plot of 206Pb/204Pb vs 208Pb/204Pb. The compositions of Pb- and Sr-isotopes of these high-pressure metamorphic rocks are between that of enriched mantle 1(EMI) and of sediments or upper crust. A notable characteristic can be seen from plots of Pb-isotope ratio vs Pb-isotope ratio and 206Pb/204Pb vs 87Sr/86Sr that array of plots shows an evident tendency of mixture of two end members. Ratios of Rb/Ba, Ce/Pb, Nb/U and Ta/U of high-pressure veins and host rocks are between that of OIB or MORB and that of continental crust, which indicates that continental crust

  13. Contamination in mafic mineral-rich calc-alkaline granites: a geochemical and Sr-Nd isotope study of the Neoproterozoic Piedade Granite, SE Brazil

    Leite Renato J.


    Full Text Available The Piedade Granite (~600 Ma was emplaced shortly after the main phase of granite magmatism in the Agudos Grandes batholith, Apiaí-Guaxupé Terrane, SE Brazil. Its main units are: mafic mineral-rich porphyritic granites forming the border (peraluminous muscovite-biotite granodiorite-monzogranite MBmg unit and core (metaluminous titanite-bearing biotite monzogranite BmgT unit and felsic pink inequigranular granite (Bmg unit between them. Bmg has high LaN/YbN (up to 100, Th/U (>10 and low Rb, Nb and Ta, and can be a crustal melt derived from deep-seated sources with residual garnet and biotite. The core BmgT unit derived from oxidized magmas with high Mg# (~45, Ba and Sr, fractionated REE patterns (LaN/YbN= 45, 87Sr/86Sr(t~ 0.710, epsilonNd(t ~ -12 to -14, interpreted as being high-K calc-alkaline magmas contaminated with metasedimentary rocks that had upper-crust signature (high U, Cs, Ta. The mafic-rich peraluminous granites show a more evolved isotope signature (87Sr/86Sr(t = 0.713-0.714; epsilonNd(t= -14 to -16, similar to Bmg, and Mg# and incompatible trace-element concentrations intermediate between Bmg and BmgT. A model is presented in whichMBmgis envisaged as the product of contamination between a mafic mineral-rich magma consanguineous with BmgT and pure crustal melts akin to Bmg.

  14. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance

    Wu, Guang; Chen, Yuchuan; Sun, Fengyue; Liu, Jun; Wang, Guorui; Xu, Bei


    The Duobaoshan area of northwestern Heilongjiang Province is the most important copper resource concentration region in NE China. To date, the Duobaoshan superlarge Cu-Mo deposit and the Tongshan large Cu-Mo deposit have been discovered in the Duobaoshan area. Both the deposits are hosted by granodiorites and volcanic rocks. Zircon LA-ICP-MS U-Pb dating indicates that these granodiorites emplaced approximately 479 Ma ago and that those volcanic rocks erupted between 447 and 450 Ma. The early Ordovicain granodiorites belong to the high-K to medium-K calc-alkaline series and are characterized by high Al2O3 and Sr contents, low Yb and Y contents, and relatively low Mg# values and Na2O/K2O ratios, with positive Eu or slight negative Eu anomalies (averaging 1.18). All of these geochemical characters are similar to those of the adakites generated by partial melting of a thickened lower crust in the world. Moreover, the granodiorites have low initial 87Sr/86Sr ratios (varying from 0.703474 to 0.704436), very high zircon εHf(t) and whole-rock εNd(t) values (varying from 13.0 to 16.8 and 5.27 to 5.46, respectively), and young zircon Hf and whole-rock Nd single-stage and two-stage model ages. Taking these geochemical characteristics and Sr-Nd-Hf isotope compositions together, we suggest that the early Ordovician granodiorites in the Duobaoshan area occurred in a post-collision environment and were formed by partial melting of a juvenile thickened lower crust dominated by depleted mantle-derived material. These late Ordovician volcanic rocks, which are composed of basalt, basaltic andesite, and andesite, belong to the tholeiitic or calc-alkaline series. They are generally enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, Zr, Hf, P, and Ti), consistent with the geochemistry of igneous rocks from island arcs or active continental margins. Compared with the early Ordovician granodiorites, these volcanic rocks

  15. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics

    Ong, S.E.; Blagoev, B.; Kratchmarova, I.


    . Here we describe a method, termed SILAC, for stable isotope labeling by amino acids in cell culture, for the in vivo incorporation of specific amino acids into all mammalian proteins. Mammalian cell lines are grown in media lacking a standard essential amino acid but supplemented with a non......-radioactive, isotopically labeled form of that amino acid, in this case deuterated leucine (Leu-d3). We find that growth of cells maintained in these media is no different from growth in normal media as evidenced by cell morphology, doubling time, and ability to differentiate. Complete incorporation of Leu-d3 occurred...

  16. Precise and accurate measurement of U and Th isotopes via ICP-MS using a single solution

    Mertz-Kraus, R.; Sharp, W. D.; Ludwig, K. R.


    U-series isotope measurements by ICP-MS commonly utilize separate runs for U and Th and standard-sample bracketing to determine correction factors for mass fractionation and ion counter yields. Here we present an approach where all information necessary to calculate an age (aside from background/baseline levels) is determined while analyzing a single solution containing both U and Th. This internally calibrated procedure should reduce any bias caused by distinct behavior of sample versus standard solutions during analysis and offers advantages including simplicity of operation, calculation of preliminary ages in real time, and simplified analysis of errors and their sources. Hellstrom (2003) developed a single-solution, internally-calibrated technique for an ICP-MS with multiple ion counters, but to our knowledge no such technique is available for an ICP-MS with a single ion counter. We use a Thermo Neptune Plus multi-collector ICP-MS with eight movable Faraday cups and a fixed center cup/ion counter equipped with a high abundance-sensitivity filter (RPQ). We use Faraday cups to measure all masses except 230 and 234, which are measured on the ion counter with the RPQ detuned (i.e., Suppressor voltage = 9950 V). 238U is maintained in a cup throughout the analysis to avoid reflections and is used to normalize signal instabilities related to sample introduction. Each analysis has a three-part structure, i.e. 1) background/baseline levels, 2) sample composition, and 3) peak-tails are sequentially determined. In step 1, multiplier dark noise/Faraday baselines plus background intensities at each mass are determined while aspirating running solution. During sample measurement in step 2, ion counter yields for Th and U are determined using signals of 300-400 kcps for 229Th and 233U by measuring 229Th/238U and 233U/238U ratios first with the minor masses on the ion counter and then with both masses in cups. Mass bias can be determined using the 233U/236U ratio of the spike

  17. Rb-Sr and Sm-Nd Studies of Olivine-Phyric Shergottites RBT 04262 and LAR 06319: Isotopic Evidence for Relationship to Enriched Basaltic Shergottites

    Nyquist, L.E.; Shih, C.-Y.; Reese, Y.


    RBT 04262 and LAR 06319 are two Martian meteorites recently discovered in Antarctica. Both contain abundant olivines, and were classified as olivine-phyric shergottites. A detailed petrographic study of RBT 04262 suggested it should be reclassified as a lherzolitic shergottite. However, the moderately LREE-depleted REE distribution pattern indicated that it is closely related to enriched basaltic shergottites like Shergotty, Zagami, Los Angeles, etc. In earlier studies of a similarly olivinephyric shergottite NWA 1068 which contains 21% modal olivine, it was shown that it probably was produced from an enriched basaltic shergottite magma by olivine accumulation . As for LAR 06319, recent petrographic studies suggested that it is different from either lherzolitic shergottites or the highly LREE-depleted olivine-phyric shergottites. We performed Rb-Sr and Sm-Nd isotopic analyses on RBT 04262 and LAR 06319 to determine their crystallization ages and Sr and Nd isotopic signatures, and to better understand the petrogenetic relationships between them and other basaltic, lherzolitic and depleted olivine-phyric shergottites.

  18. Petrogenesis and significance of the Hongshan syenitic pluton,South Taihang: zircon SHRIMP U-Pb age, chemical compositions and Sr-Nd isotopes


    The Hongshan syenitic pluton (South Taihang) is mainly made up of hornblende syenite and minor granite. SHRIMP zircon dating yields a U-Pb age of 135 ± 2.7 Ma for the emplacement of the pluton, while biotite Rb-Sr isotopic data give an isochron of 120.3 ± 2.4 Ma. Hongshan syenites show low silica, high alkalis and LILE such as Sr, and exhibit negligible Eu anomalies or slightly positive anomalies in the REE patterns. The syenites show quite enriched isotopic compositions with Isr from 0. 7052 to 0. 7102 and εNd( t ) from - 7.5 to - 11. 1. Petrogenesis of the pluton can be that partial melting of an enriched lithospheric mantle gave birth to an alkali basaltic magma, which subsequently underplated in the lower crust and experienced a coupled fractionation of ferromagnesian phases like pyroxene and hornblende and minor ( < 10 % ) contamination of lower continental crust, producing the Hongshan syenites that partially evolved into granite through combined fractionation of hornblende and feldspar. Our data are not in agreement with a previous model that the syenites originated from melting of lower crust in a thickened crust circumstance, and thus do not support the speculation of "East China Plateau" in the Mesozoic.

  19. Sr and Nd isotopic characteristics of 1.77-1.58 Ga rift-related granites and volcanics of the Goias tin province, Central Brazil

    Pimentel, Marcio M.; Botelho, Nilson F. [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail:


    Supracrustal rocks of the Arai Group, together with coeval A-type granites represent a ca. 1.77-1.58 Ga old continental rift in Brazil. Two granite families are identified: the older (1.77 Ga) group forms small undeformed plutons, and the younger granites (ca. 1.58 Ga) constitute larger, deformed plutons. Sr-Nd isotopic data for these rocks indicate that the magmatism is mostly produced of re-melting of Paleoproterozoic sialic crust. Initial Sr ratios for both granite families are ca 0.276 and 0.720. Most TDM model ages are between 2.58 and 1.80 Ga. {epsilon}{sub Nd} (T) values are between +3.6 and -11.9. Arai volcanics are bimodal, with basalts and dacites/rhyolites interlayered with continental sediments. The felsic volcanics show Nd isotopic characteristics which are very similar to the granites, and are also interpreted as reworking of Paleoproterozoic crust. Detrital sediments of the Arai Group revealed T{sub DM} model ages between 2.4 and 2.16 Ga., indicating that they are the product of erosion of Paleoproterozoic crust. The data indicate that the Arai rift system was established on crust that had just become stable after the Paleoproterozoic orogeny. (author)

  20. U-Pb zircon geochronology and Sr-Nd isotopic composition of the Inchope orthogneiss in Mozambique: Age constraints and petrogenetic implications

    Manjate, Vicente Albino


    The Inchope orthogneiss comprises a mesoproterozoic group of variously deformed and migmatised orthogneisses in the Chimoio group. This area is well known for its numerous, small pegmatite deposits with cassiterite and columbite. Zircon U-Pb geochronological and whole rock Sr-Nd isotope data are reported for five Inchope orthogneiss samples. The zircon U-Pb data exhibit one period of crystallization between 1065 and 1053 Ma and two metamorphic ages of 956 Ma and 484 Ma. The Inchope orthogneiss displays evolved Nd isotopic compositions with ɛNdi between -11.7 and -13.3, 87Sr/86Sri between 0.7117 and 0.7209 and TDM values of between 2.3 and 2.4 Ga. Therefore, the Inchope orthogneiss crystallized in Mesoproterozoic from the paleoproterozoic metapelites along the eastern margin of the archaen Zimbabwean craton. This was followed by pegmatite veins intrusions and Pan-African tectonometamorphic reworking. These features are typical of S-type and calc-alkaline granites in continental margin arcs.

  1. Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies

    Gourgiotis, A.; Isnard, H.; Aubert, M.; Dupont, E.; AlMahamid, I.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.; Tian, G.; Rao, L.; Lukens, W.


    The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm ({approx}97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

  2. Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in Cm-{sup 248} samples for transmutation studies

    Gourgiotis, A.; Isnard, H.; Aubert, M. [CEA Saclay, DEN DPC SECR LANIE, F-91191 Gif Sur Yvette (France); Dupont, E.; Panebianco, S.; Letourneau, A. [CEA Saclay, DSM IRFU SPhN, F-91191 Gif Sur Yvette, (France); AlMahamid, I. [New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 (United States); AlMahamid, I. [SUNY Albany, Sch Publ Hlth, Albany, NY 12222 (United States); Cassette, P. [CEA Saclay, LIST, Lab Natl Henri Becquerel LNE LNHB, F-91191 Gif Sur Yvette (France); Chartier, F. [CEA Saclay, DEN DPC, F-91191 Gif Sur Yvette (France); Tiang, G.; Rao, L.; Lukens, W. [Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 (United States)


    The French Atomic Energy Commission has carried out several experiments including the mini-INCA (Incineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm (similar to 97%) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides' formations ranged from 0. 3% to 1. 3%. This uncertainties' range is quite acceptable for the nuclear data to be used in transmutation studies. (authors)

  3. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai-Tibet plateau, China

    Zhang, Zhaowei; Tang, Qingyan; Li, Chusi; Wang, Yalei; Ripley, Edward M.


    The newly discovered Xiarihamu Ni-Cu deposit is located in the Eastern Kunlun orogenic belt in the northern part of the Qinghai-Tibet plateau, western China. It is the largest magmatic Ni-Cu sulfide deposit found thus far in an arc setting worldwide and ranks second in China in terms of total Ni resources. Fe-Ni-Cu sulfide mineralization occurs in a small ultramafic body that is part of a larger mafic-ultramafic complex formed by protracted Silurian-Early Devonian basaltic magmatism. The mineralized ultramafic body is composed predominantly of lherzolite and olivine websterite, with minor dunite, websterite and orthopyroxenite. Here we report new PGE (platinum group element) data and the results of a new, integrated Sr-Nd-Os-S isotope study. The initial concentrations of Rh and Pd in the parental magma are estimated to be 0.014 ppb and 0.24 ppb, respectively, which are more than one order of magnitude lower than those in undepleted mantle-derived magmas such as many continental picrites. The observed PGE depletions in the Xiarihamu parental magma are attributed to sulfide retention in the source mantle, because the degree of partial melting required to generate the Xiarihamu primary magma was not high enough for a magma of that composition to dissolve all sulfides in the source. The (87Sr/86Sr) i ratios and ɛNd (t) of the Xiarihamu host rocks range from 0.7062 to 0.7105 and from -1.97 to -5.74, respectively, indicating 5-30 wt% crustal contamination in the Xiarihamu magma. These data also reveal that the source mantle for the Xiarihamu magma is isotopically (Sr-Nd) more enriched than that for the average Cenozoic arc basalt. The γOs(t) and δ34S values of sulfide ores from the Xiarihamu deposit range from 78 to 1393 and from 2 to 6‰, respectively. These values clearly indicate addition of crustal Os and S to the Xiarihamu parental magma. Metal tenors such as Ni and Rh are inversely correlated with γOs(t) and δ34S values. This indicates that mixing between

  4. Geochemical and Sr-Nd-Pb isotopic characteristics of Late Cenozoic leucite lamproites from the East European Alpine belt (Macedonia and Yugoslavia)

    Altherr, R.; Meyer, H.-P.; Holl, A.; Volker, F.; Alibert, C.; McCulloch, M. T.; Majer, V.

    In the East European Alpine belt, leucite-sanidine-phlogopite-olivine-bearing volcanic rocks of Late Cenozoic age occur at eight localities within the Vardar suture zone and at one locality in the Southern Carpathian fold-and-thrust belt. Most of these volcanics are characterized by high Mg# (66.6-78.6), high abundances of Ni (117-373 ppm) and Cr (144-445 ppm) as well as high primary K2O contents (5.63-7.01 %) and K2O/Na2O values (1.93-4.91). Rocks with more differentiated compositions are rare. A lamproite affinity of these rocks is apparent from their relatively low contents of Al2O3 (9.9-14.3 wt%) and CaO (6.2-8.3 wt%) in combination with high abundances of Rb (85-967 ppm), Ba (1,027-4,189 ppm), Th (18.9-76.5 ppm), Pb (19-54 ppm), Sr (774-1,712 ppm) and F (0.16-0.52 wt%), and the general lack of plagioclase. Although eruption of the magmas took place in post-collisional extensional settings, significant depletions of Nb and Ta relative to Th and La, low TiO2 contents (0.92-2.17 %), low ratios of Rb/Cs, K/Rb and Ce/Pb as well as high ratios of Ba/La and Ba/Th suggest close genetic relationships to subduction zone processes. Whereas Sr and Nd isotope ratios show relatively large variations (87Sr/86Sr = 0.7078-0.7105, 143Nd/144Nd = 0.51242-0.51215), Pb isotope ratios display a very restricted range with 206Pb/204Pb = 18.68-18.88 and variable but generally high Δ7/4 (11-18) and Δ8/4 (65-95) values. The observed petrographic, geochemical and isotopic characteristics are best explained by a genetic model involving preferential melting of phlogopite-rich veins in an originally depleted lithospheric mantle source, whereby the metasomatic enrichment of the mantle source is tentatively related to the addition of components from subducted sediments during consumption of Tethyan oceanic lithosphere.

  5. Dating and source determination of volcanic rocks from Khunik area (South of Birjand, South Khorasan using Rb-Sr and Sm-Nd isotopes

    Somayeh Samiee


    Full Text Available The Khunik area is located in the south of Birjand, Khorasan province, in the eastern margin of Lut block. Tertiary volcanic rocks have andesite to trachy-andesite composition. Dating analyzing by Rb-Sr method on plagioclase and hornblende as well as whole-rock isochron method was performed on pyroxene-hornblende andesite rock unit. On this basis the emplacement age is Upper Paleocene (58±11 Ma. These rocks have initial 87Sr/86Sr and εNd 0.7046-0.7049 and 2.16-3.12, respectively. According to isotopic data, volcanic rocks originated from depleted mantle and have the least crust contamination while it was fractionated. Geochemically, Khunik volcanic rocks have features typical of calk-alkaline to shoshonite and are metaluminous. Enrichment in LILEs and typical negative anomalies of Nb and Ti are evidences that the volcanic rocks formed in a subduction zone and active continental margin. Modeling suggests that these rocks were derived dominantly from 1–5% partial melting of a mainly spinel garnet lherzolite mantle source that is metasomatized by slab-derived fluid.

  6. Pre-metamorphic melt infiltration in metasediments: geochemical, isotopic (Sr, Nd, and Pb), and field evidence from Serie dei Laghi (Southern Alps, Italy)

    Pinarelli, L.; Bergomi, M. A.; Boriani, A.; Giobbi, E.


    Gradual transitions from K-feldspar free gneisses to K-feldspar bearing augengneisses are sometimes observed in metamorphic terranes. They have been explained with metasomatic porphyroblastic growth connected with regional metamorphism, or with pre-metamorphic presence of magmatic megacrysts. A transition of this kind can be observed in the Serie dei Laghi (Southern Alps, Italy), where coarse-grained meta-arenites ( Cenerigneiss) grade into Ceneri augengneisses with large K-feldspar porphyroclasts, and banded amphibolites of the “Strona Ceneri Border Zone” grade into Hbl augengneisses rich in K-feldspar. The Ceneri augengneisses are chemically indistinguishable from the Cenerigneiss, but have higher 87Sr/86Sr (0.7256 0.7258 vs. 0.7215 0.7233), similar to those of the Ordovician granites that were intruded, before the regional metamorphism, into the protoliths of both Cenerigneiss and amphibolites. The Cenerigneiss contains two types of zircons: (1) highly luminescent, rounded grains or fragments, yielding U Pb SHRIMP ages from 0.43 to 1.0 Ga; (2) euhedral grains with oscillatory zoning (magmatic), with U Pb SHRIMP concordant ages of 466 ± 13 Ma. This age coincides with the Rb Sr whole rock emplacement age of the Ordovician granitoids (466 ± 5 Ma). The Hbl augengneisses form three groups with distinct geochemical patterns, whose distributions on inter-element diagrams trend towards the Ordovician metagranites and meta-aplites. In addition, the Hbl augengneisses have higher 87Sr/86Sr (0.7132 0.7147 vs. 0.7031 0.7046) and lower 143Nd/144Nd (0.51214 0.51219 vs. 0.51273 0.51297) than the amphibolites, suggesting the addition of an isotopically evolved component. The observed chemical and isotope patterns, as well as the vicinity of the augen gneisses to the Ordovician intrusions, lead us to conclude that the Ceneri augengneisses and Hbl augengneisses are the result of infiltration of residual hydrous magmas into the protolith of both the Cenerigneiss and the

  7. Zircon U-Pb geochronology, geochemistry, and Sr-Nd-Hf isotopes of granitoids in the Yulekenhalasu copper ore district, northern Junggar, China: Petrogenesis and tectonic implications

    Yang, Fuquan; Chai, Fengmei; Zhang, Zhixin; Geng, Xinxia; Li, Qiang


    The Yulekenhalasu porphyry copper deposit is located in the Kalaxiange'er metallogenic belt in northern Junggar, China. We present the results from zircon U-Pb geochronology, and geochemical and Sr-Nd-Hf isotope analyses of the granitoids associated with the ore deposits with a view to constrain their petrogenesis and tectonic setting. The granitoids consist of quartz diorite, diorite porphyry, porphyritic monzonite, and quartz porphyry, emplaced at 382, 379, 375-374, and 348 Ma, respectively, which span Late Devonian to early Carboniferous ages. The ore-bearing intrusion is mainly diorite porphyry, with subordinate porphyritic monzonite. The Late Devonian intrusions are characterized by SiO2 contents of 54.5-64.79 wt.%, Na2O contents of 3.82-8.24 wt.%, enrichment in Na, light rare-earth elements (LREEs), and large ion lithophile elements. They also display relative depletion in Y, Ba, P, Nb, Ta, and Ti, and weak negative Eu anomalies (δEu = 0.6-0.87). The early Carboniferous quartz porphyry is characterized by high SiO2 content (72.26-73.35 wt.%), enrichment in LREEs, K, and Sr, and relative depletion in Y (10.82-12.52 ppm) and Yb (1.06-1.15 ppm). The Late Devonian and early Carboniferous granitoids are characterized by positive ɛNd(t) values (5.2-10.1, one sample at - 1.9), positive ɛHf(t) values (7.46-18.45), low (87Sr/86Sr)i values (0.70363-0.70476), and young crustal residence ages. These data indicate that the sources of the granitoids were mainly mantle-derived juvenile rocks. Geochemical and Nd-Sr-Hf isotopic data demonstrate that the Late Devonian granitoids formed in an oceanic island arc, and they were formed from different sources, among which the mineralized diorite porphyry might have originated from a mixed slab-derived and mantle wedge melt source. The early Carboniferous quartz porphyry was likely emplaced in a mature island arc environment, and was probably derived from juvenile crust.

  8. Coral Sr-U Thermometry

    DeCarlo, T. M.; Gaetani, G. A.; Cohen, A. L.; Foster, G. L.; Alpert, A.; Stewart, J.


    Coral skeletons archive the past two millennia of climate variability in the oceans with unrivaled temporal resolution. However, extracting accurate temperature information from coral skeletons is confounded by "vital effects", which often override the temperature dependence of geochemical proxies. Here, we present a new approach to coral paleothermometry based on results of abiogenic precipitation experiments interpreted within a framework provided by a quantitative model of the coral biomineralization process. We conducted laboratory experiments to test the temperature and carbonate chemistry controls on abiogenic partitioning of Sr/Ca and U/Ca between aragonite and seawater, and we modeled the sensitivity of skeletal composition to processes occurring at the site of calcification. The model predicts that temperature can be accurately reconstructed from coral skeleton by combining Sr/Ca and U/Ca ratios into a new proxy, Sr-U. We tested the model predictions with measured Sr/Ca and U/Ca ratios of fourteen Porites sp. corals collected from the tropical Pacific Ocean and the Red Sea, with a subset also analyzed using the boron isotope (δ11B) pH proxy. Observed relationships among Sr/Ca, U/Ca, and δ11B agree with model predictions, indicating that the model accounts for the key features of the coral biomineralization process. We calibrated Sr-U to instrumental temperature records and found that it captures 93% of mean annual variability (26-30 °C) and predicts temperature within 0.5 °C (1 σ). Conversely, Sr/Ca alone has an error of prediction of 1 °C and often diverges from observed temperature by 3 °C or more. Many of the problems afflicting Sr/Ca - including offsets among neighboring corals and decouplings from temperature during coral stress events - are reconciled by Sr-U. By accounting for the influence of the coral biomineralization process, the Sr-U thermometer may offer significantly improved reliability for reconstructing ocean temperatures from coral

  9. Late Archaean mantle metasomatism below eastern Indian craton: Evidence from trace elements, REE geochemistry and Sr-Nd-O isotope systematics of ultramafic dykes

    Abhijit Roy; A Sarkar; S Jeyakumar; S K Aggrawal; M Ebihara; H Satoh


    Trace, rare earth elements (REE), Rb-Sr, Sm-Nd and O isotope studies have been carried out on ultramafic (harzburgite and lherzolite) dykes belonging to the newer dolerite dyke swarms of eastern Indian craton. The dyke swarms were earlier considered to be the youngest mafic magmatic activity in this region having ages not older than middle to late Proterozoic. The study indicates that the ultramafic members of these swarms are in fact of late Archaean age (Rb-Sr isochron age 2613 ± 177 Ma, Sri ∼0.702 ± 0.004) which attests that out of all the cratonic blocks of India, eastern Indian craton experienced earliest stabilization event. Primitive mantle normalized trace element plots of these dykes display enrichment in large ion lithophile elements (LILE), pronounced Ba, Nb and Sr depletions but very high concentrations of Cr and Ni. Chondrite normalised REE plots exhibit light REE (LREE) enrichment with nearly flat heavy REE (HREE; ( HREE)N ∼ 2-3 times chondrite, (Gd/Yb)N∼1). The Nd(t) values vary from +1.23 to −3.27 whereas 18O values vary from +3.16‰ to +5.29‰ (average +3.97‰ ± 0.75‰) which is lighter than the average mantle value. Isotopic, trace and REE data together indicate that during 2.6 Ga the nearly primitive mantle below the eastern Indian Craton was metasomatised by the fluid (±silicate melt) coming out from the subducting early crust resulting in LILE and LREE enriched, Nb depleted, variable Nd, low Sri(0.702) and low 18O bearing EMI type mantle. Magmatic blobs of this metasomatised mantle were subsequently emplaced in deeper levels of the granitic crust which possibly originated due to the same thermal pulse.

  10. The significance of PGE variations with Sr-Nd isotopes and lithophile elements in the Emeishan flood basalt province from SW China to northern Vietnam

    Li, Chusi; Ripley, Edward M.; Tao, Yan; Hu, Ruizhong


    New analyses of siderophile-lithophile elements and Sr-Nd isotopes in the Permian basalts and picrites from northern Vietnam, the southernmost occurrence of the Emeishan flood basalt province, together with previously published data, are used to address the question of whether any meaningful correlation between these elements and isotopes exists at a province scale. The available data show that negative correlations between εNd, (87Sr/86Sr)i and mantle-normalized (Nb/Th)n are present in the basalts but not in the associated picrites. This indicates that crustal contamination is negligible in the picrites but significant in some of the basalts. The picrites and basalts from the entire province show negative correlations between (Rh/Ru)n, (Pt/Ru)n, (Pd/Ru)n and Mg-number. This indicates that Ru behaves compatibly whereas Rh, Pt and Pd behave incompatibly during magma differentiation. The incompatible behavior of Rh in natural basaltic systems is also supported by the fact that (Pt/Rh)n remains constant with decreasing Mg-number in the lavas. Depletions of Pd and Pt, and to a lesser degree Cu, in some basaltic samples characterized by relatively low εNd and (Nb/Th)n support the notion that sulfide saturation in the magmas was triggered by a combination of siliceous crustal contamination and addition of external sulfur. Within the entire flood basalt province only the picrites from Song Da, northern Vietnam show clear depletion in Ir relative to Ru. These picrites are also characterized higher Al2O3/TiO2 and lower mantle-normalized La/Yb (0.2-2.4) than those from elsewhere in the province, possibly due to the involvement of an Ir-depleted, fertile mantle component in magma generation at this location.

  11. Simple and accurate measurement of carbamazepine in surface water by use of porous membrane-protected micro-solid-phase extraction coupled with isotope dilution mass spectrometry

    Teo, Hui Ling [Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore 117528 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Wong, Lingkai [Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore 117528 (Singapore); Liu, Qinde, E-mail: [Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore 117528 (Singapore); Teo, Tang Lin; Lee, Tong Kooi [Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore 117528 (Singapore); Lee, Hian Kee, E-mail: [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore)


    To achieve fast and accurate analysis of carbamazepine in surface water, we developed a novel porous membrane-protected micro-solid-phase extraction (μ-SPE) method, followed by liquid chromatography-isotope dilution tandem mass spectrometry (LC-IDMS/MS) analysis. The μ-SPE device (∼0.8 × 1 cm) was fabricated by heat-sealing edges of a polypropylene membrane sheet to devise a bag enclosing the sorbent. The analytes (both carbamazepine and isotope-labelled carbamazepine) were first extracted by μ-SPE device in the sample (10 mL) via agitation, then desorbed in an organic solvent (1 mL) via ultrasonication. Several parameters such as organic solvent for pre-conditioning of μ-SPE device, amount of sorbent, adsorption time, and desorption solvent and time were investigated to optimize the μ-SPE efficiency. The optimized method has limits of detection and quantitation estimated to be 0.5 ng L{sup −1} and 1.6 ng L{sup −1}, respectively. Surface water samples spiked with different amounts of carbamazepine (close to 20, 500, and 1600 ng L{sup −1}, respectively) were analysed for the validation of method precision and accuracy. Good precision was obtained as demonstrated by relative standard deviations of 0.7% for the samples with concentrations of 500 and 1600 ng kg{sup −1}, and 5.8% for the sample with concentration of 20 ng kg{sup −1}. Good accuracy was also demonstrated by the relative recoveries in the range of 96.7%–103.5% for all samples with uncertainties of 1.1%–5.4%. Owing to the same chemical properties of carbamazepine and isotope-labelled carbamazepine, the isotope ratio in the μ-SPE procedure was accurately controlled. The use of μ-SPE coupled with IDMS analysis significantly facilitated the fast and accurate measurement of carbamazepine in surface water. - Highlights: • μ-SPE coupled with IDMS for the measurement of carbamazepine. • The method is the first report of coupling μ-SPE with IDMS. • μ-SPE is fast, time

  12. 黔东松桃南华系大塘坡组锰矿层物源:来自 Sr 同位素的证据%Provenance of Nanhuan Datangpo Formation Manganese Mn Deposit in Songtao Area,East Guizhou Province:Evidence from Sr Isotope

    余文超; 齐靓; 杜远生; 周琦; 彭头平; 王萍; 袁良军; 徐源; 潘文; 谢小峰


    锰矿床的物质来源是锰矿床研究的难点问题之一.辨别黔东松桃地区南华系大塘坡组锰矿沉积的物质来源有助于加深对锰矿成矿过程的理解.对黔东松桃地区南华系大塘坡组锰矿沉积的 Sr 同位素研究显示,15个锰矿石、锰质页岩及炭质页岩样品87 Sr/86 Sr 同位素比值变化范围为0.705727~0.732536,其中炭质页岩样品具有最高的 Sr 同位素比值0.732536,含锰岩系样品87 Sr/86 Sr 同位素比值平均值为0.711128.样品中87 Sr/86 Sr 比值随着 Al 含量的上升,分别出现87 Sr/86 Sr 比值上升与下降的两个分异趋势.87 Sr/86 Sr 比值随 Mn 含量的上升总体呈现下降的趋势,但该趋势无显著相关性,残差分析显示这主要是由于样品中87 Sr/86 Sr 比值随着 Mn 含量上升出现收敛性波动造成.上述现象是由于陆源碎屑成分和海底热液成分混合输入造成.通过与大塘坡组同时代(约660 Ma)古海水 Sr 同位素组成,世界范围内不同时代锰矿沉积以及现代红海沉积物的 Sr 同位素结果对比,发现黔东松桃地区南华系锰矿层中 Sr 同位素比值分布范围较宽,部分锰矿样品87 Sr/86 Sr 比值低于古海水87 Sr/86 Sr比值,与典型大洋成因的锰矿层或铁锰结核具有不同的 Sr 同位素特征.联系黔东南华系大塘坡组锰矿层形成时期的特殊地质背景,认为锰质积累过程与沉淀过程为不同阶段产物———锰质的积累过程在 Sturtian 冰期盆地缺氧水体中完成,可能主要以海底热液喷溢系统完成;而锰矿的沉淀过程则是在间冰期伊始古海洋化学条件动荡的水体中完成.%Provenance of manganese deposit is a key problem in the manganese metallogenic study.For a better understanding on the metallogenic process of the Nanhuan manganese deposit in Songtao area,East Guizhou Province,we need to gain a clear idea of the provenance of this manganese deposit.The Sr isotope study on the Mn deposit

  13. Mixing and melt sources in the Miocene Aztec Wash pluton (Nevada, USA) as revealed by zircon Hf and O and whole rock Sr, Nd, and Hf isotopes

    Ryan, M.; Miller, J. S.; Miller, C. F.; Bromley, S.; Davies, G. R.; Schmitt, A. K.


    The 15.6 Ma Aztec Wash Pluton (AWP) is one of several Miocene intrusions located within the northern Colorado River extensional corridor. Extensive E-W tilting of fault blocks has exposed the pluton from the roof to 5 km structural depth. Earlier field and petrologic studies subdivided the AWP into two distinct zones: (1) a Granite Zone (GZ) comprised of relatively homogeneous granite with subtle differences in textures and mineralogy; (2) a Heterogeneous Zone (HZ), which interfingers the GZ, contains evidence for mafic and felsic magma input with a wide compositional range (42-78 wt% SiO2), and abundant field evidence for hybridization. Previous whole rock geochemistry and zircon trace element analyses indicated that compositional variation was produced by multi-component mixing between mafic and felsic melts within the HZ. New whole rock Sr, Nd, and Hf isotope data from the HZ show that all rocks (including high-silica granites) formed by mixing Precambrian crust and enriched mantle, with mixtures having a large mantle fraction (≥50%). New Hf (n=189) and O (n=241) isotope analyses of zircon from samples in the HZ confirm these melt sources and provide a broader perspective on hybridization processes within the AWP. Zircon grains from all samples show heterogeneous Hf and O isotopic compositions (-5 to -18 ɛHf; 4.5-7.5% δ18O), but despite the clear signature of Precambrian crust in the whole rock data, obvious Precambrian zircons (or cores) were mostly absent; only one zircon was clearly Precambrian (ɛHf = -25). Resolvable intragrain variability is relatively limited (including the Precambrian grain, which is unzoned). Zircons from hand samples and from compositional groups also show heterogeneous ɛHf and δ18O values, although the spreads are more restricted than in the whole data set (6-10 ɛHf in granites, 5-7 ɛHf in intermediate "hybrids", 5-6 ɛHf in gabbro/diorite sheets). Oxygen isotope values for the zircons also show intra-handsample heterogeneity

  14. Study of recent changes of weathering dynamic in soils based on Sr and U isotope ratios in soil solutions (Strengbach catchment- Vosges, France)

    Prunier, Jonathan; Chabaux, François; Stille, Peter; Pierret, Marie-Claire; Viville, Daniel; Gangloff, Sophie


    Major and trace element concentrations along with U and Sr isotopic ratios of the main components of the water-soil-plant system of two experimental plots in a forested silicate catchment were determined to characterize the day-present weathering processes within the surface soil levels and to identify the nature of minerals which control the lithogenic flux of the soil solutions. This study allows recognition of a lithogenic origin of the dissolved U in the surface soil solutions, even in the most superficial ones, implying that the colloidal U is a U secondarily associated with organic matter or organo-metallic complexes. This flux significantly varies in the upper meter of the soil and between the two sites, due to their slightly different bedrock lithologies and likely also to their different vegetation covers. A long-time monitoring during the past 15 years was achieved to evaluate the response of this ecosystem to recent environmental changes. A clear decrease of the Ca and K fluxes exported by the soil solutions between 1992 and 2006 at the spruce site was observed, while this decrease is much smaller for the beech plot. In addition, the Sr isotope ratios of soil solutions vary significantly between 1998 and 2004, with once again a much more important change for the spruce site than for the beech site. It demonstrates that the source of elements in soil solutions has changed over this time period due to a modification of the weathering reactions occurring within the weathering profile. The origin of the weathering modification could be the consequence of the acid rains on weathering granitic bedrock or a consequence of forest exploitation incompatible with the nutriment reserve of soils with recent plantations of conifer, which impoverish soils. All together, these data suggest that the forest ecosystem at the spruce plot is in a transient state of functioning marked by a possible recent modification of weathering reactions. This study shows the potential of

  15. Rb-Sr isotopic composition of granites in the Western Krušné hory/Erzgebirge pluton, Central Europe: record of variations in source lithologies, mafic magma input and postmagmatic hydrothermal events

    Dolejš, David; Bendl, Jiří; Štemprok, Miroslav


    The late Variscan (327-318 Ma) Western Krušné hory/Erzgebirge pluton (Czech Republic and Germany) represents a multiply emplaced intrusive sequence ranging from low-F biotite monzogranites (with rare minor bodies of gabbrodiorites and granodiorites) to high-F topaz-zinnwaldite alkali-feldspar granites. This granite suite is characterized by progressively increasing concentrations of incompatible elements (Li, Rb, F), monotonous decrease in mafic components and compatible elements (FeOtot, MgO, TiO2, CaO, Sr) with increasing silica. Consequently, this leads to extreme variations in the Rb/Sr ratios (0.52 to 59), which impose highly variable 87Rb/86Sr and 87Sr/86Sr signatures. The low-F biotite monzogranites represent isotopically heterogeneous mixture with (87Sr/86Sr)323 = 0.707-0.709 between partial melts from the Saxothuringian metasediments and mantle-derived mafic precursors. The medium-F two-mica microgranites show variable (87Sr/86Sr)323 = 0.708-0.714, indicating involvement of multiple precursors and more mature crustal protoliths. The evolved high-F topaz-zinnwaldite alkali-feldspar granites were derived from a precursor with (87Sr/86Sr)320 = 0.707-0.708 at 324-317 Ma by differentiation, which produced the extreme Rb/Sr enrichment and variations. The Li/Rb ratios remain nearly constant (~0.5), thus insensitive to the degree of geochemical differentiation. In comparison to terrestrial variations, the high Li/Rb values indicate derivation of granitic magmas from predominantly sedimentary precursors, in accord with 7Li-6Li and 143Nd-144Nd isotope composition reported previously. The Rb-Sr element variations in each granite unit are sligthly different and indicate ascent and emplacement of separate magma batches, which do not form a single liquid line of descent. We consider the enrichment of granites in incompatible elements (Li, Rb, F) and compatible depletion of ferromagnesian components, CaO and Sr as a combined effect of multiple precursors, changes in

  16. Stages of weathering mantle formation from carbonate rocks in the light of rare earth elements (REE) and Sr-Nd-Pb isotopes

    Hissler, Christophe; Stille, Peter


    Weathering mantles are widespread and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual high content of associated trace elements in weathering mantles originating from carbonate rocks, which have been poorly studied, compared to those developing on magmatic bedrocks. For instance, these enrichments can be up to five times the content of the underlying carbonate rocks. However, these studies also showed that the carbonate bedrock content only partially explains the soil enrichment for all the considered major and trace elements. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources. REE distribution patterns and Sr-Nd-Pb isotope ratios have been used because they are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments have been applied to identify mobile phases in the soil system and to yield information on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. All these geochemical informations indicate that the cambisol developing on such a typical weathering mantle ("terra fusca") has been formed through weathering of a condensed Bajocian limestone-marl facies. This facies shows compared to average world carbonates important trace element enrichments. Their trace element distribution patterns are similar to those of the soil

  17. Important role of magma mixing in generating the Mesozoic monzodioritic-granodioritic intrusions related to Cu mineralization, Tongling, East China: Evidence from petrological and in situ Sr-Hf isotopic data

    Chen, C. J.; Chen, B.; Li, Z.; Wang, Z. Q.


    The Mesozoic ore-bearing high-Mg monzodioritic-granodioritic rocks in the Tongling mining district (East China) have been described as having adakitic affinities, and their origin has been attributed to partial melting of delaminated eclogite at depth in the mantle, followed by interaction of the resultant granitic magma with mantle peridotite. Here we present petrological data and in situ Sr isotopic data for zoned plagioclase that are inconsistent with the eclogite-derived model and instead propose a model that involves magma mixing of siliceous crustal melts and basaltic magma that was derived from metasomatized mantle in a back-arc extensional regime. The principal geochemical signatures of these Mesozoic rocks include a high-K calc-alkaline affinity, high values of Mg#, high Sr-Ba abundances, high Sr/Y and La/Yb ratios, εNd(t) = - 13.1 to - 9.0, and ISr = 0.70707-0.70824. The magma mixing model is supported by (1) the common existence of mafic microgranular enclaves (MMEs) and the disequilibrium textures of plagioclase and amphibole, (2) the 87Sr/86Sr ratios of embayed high-Ca cores of plagioclase that are distinctly lower than in the euhedral low-Ca overgrowth rims, (3) the negative correlations between whole-rock Nd and Sr isotopic ratios, and (4) the significant differences in the values of εHf(t) (- 9.5 to - 26) within different zircons from the same intrusion.

  18. Geology, mineralization, U-Pb dating and Sr-Nd isotope geochemistry of intrusive bodies in northeast of Kashmar

    Alireza Almasi


    Full Text Available Alireza Almasi1, Mohammad Hassan Karimpour1*, Khosrow Ebrahimi Nasrabadi1, Behnam Rahimi1, Urs KlÖtzli2 and Jose Francisco Santos3 Introduction The study area is located in central part of the Khaf- Kashmar-Bardeskan belt which is volcano-plutonic belt at the north of the Dorouneh fault in the north of Lut block. The north of the Lut block is affected by tectonic rotation and subduction processes which occur in the east of Iran (Tirrul et al., 1983. The magmatism of Lut block begins in Jurassic and continues in Tertiary (Aghanabati, 1995. Karimpour (Karimpour, 2006 pointed out the Khaf-Kashmar-Bardeskan belt has significant potential for IOCG type mineralization such as Kuh-e-Zar, Tannurjeh, and Sangan (Karimpour, 2006; Mazloumi, 2009. The data gathered on the I-type intrusive rocks include their field geology, petrography, U–Pb zircon dating and Sr–Nd isotope and also alteration and mineralization in the study area. Materials and methods - Preparation of 150 thin sections of rock samples for study of petrography and alteration of the intrusive rocks. - Magnetic susceptibility measuring of intrusive rocks. - U-Pb dating in zircon of I-type intrusive rocks by Laser-Ablation Multi Collector ICP-MS method. - Sr-Nd analysis on 5 samples of I-type intrusive rocks by Multi-Collector Thermal Ionization Mass Spectrometer (TIMS VG Sector 54 instrument. - Mineralography and paragenetic studies of ore-bearing quartz veins and geochemical analysis for 28 samples. - Production of the geology, alteration and mineralization maps by scale: 1:20000 in GIS. Results Oblique subduction in southern America initiated an arc-parallel fault and shear zones in the back of continental magmatic arc (Sillitoe, 2003. Because of this event, pull-apart basins were formed and high-K to shoshonitic calc-alkalineI- and A-type magmatism occur (Sillitoe, 2003. Most important deposits accompany with this magmatism are Au-Cu deposits types and Fe-Skarns (Sillitoe, 2003. We have

  19. Dating the Indo-Asia collision in NW Himalaya: constraints from Sr-Nd isotopes and detrital zircon (U-Pb) and Hf isotopes of Paleogene-Neogene rocks in the Katawaz basin, NW Pakistan

    Zhuang, Guangsheng; Najman, Yani; Millar, Ian; Chauvel, Catherine; Guillot, Stephane; Carter, Andrew


    The time of collision between the Indian and Asian plates is key for understanding the convergence history and the impact on climatic systems and marine geochemistry. Despite much active research, the fundamental questions still remain elusive regarding when and where the Indian plate collided with the Asian plate. Especially in the west Himalaya, the questions become more complex due to disputes on the amalgamation history of interoceanic Kohistan-Ladakh arcs (KLA) with Karakoram of the Asian plate and the Indian plate. Here, we present a result of multiple-isotopic geochemistry and geochronology study in the Katawaz Basin in NW Pakistan, a remnant oceanic basin on the western Indian plate which was the repository for the sediments eroded from the west Himalaya ( Qayyum et al., 1996, 1997a, 1997b, 2001; Carter et al., 2010), to evaluate the time and character of collision in this region. In this study, we analyzed 22 bulk mudstone samples for Sr-Nd isotopes and 11 medium-grained sandstones for detrital zircon (U-Pb) geochronology and Hf isotopes. We constructed the Cenozoic chronology in the Katawaz Basin based on our newly collected detrital zircon U-Pb ages and fission track ages. We present the first record of Katawaz chronology that constrained the Khojak Formation to be current study revealed that the Katawaz sedimentary sequence ranges in age from Eocene to the earliest Miocene. The samples from the Nisai Formation show the 87Sr/86Sr - ɛNd values overlapping those of the end member of the Karakoram of Asian origin, revealing the arrival of Asian detritus on the Indian plate prior to 50 Ma. There are two parallel lines of evidence supporting this conclusion: (1) young zircon grains (Journal of the Geological Society 154, 753-756. Qayyum, M., Lawrence, R.D., Niem, A.R., 1997b. Molasse-Delta-flysch continuum of the Himalayan orogeny and closure of the Paleogene Katawaz Remnant Ocean, Pakistan. International geology review 39, 861-875. Qayyum, M., Niem, A

  20. Chemical and Sr isotopic characteristics of rainwater on the Alxa Desert Plateau, North China: Implication for air quality and ion sources

    Rao, Wenbo; Han, Guilin; Tan, Hongbing; Jin, Ke; Wang, Shuai; Chen, Tangqing


    The major ions and Sr isotopes in rainwater have been studied during 2013-2015 on the Alxa Desert Plateau in order to identify the source of rainwater chemistry and to assess air quality in the desert area of northern China. The pH and EC values of rainwater vary from 6.7 to 8.1 and from 35 to 1237 μS cm- 1, respectively, at the two meteorological stations (AYQ and YBL) in the Alxa Desert Plateau. Ca2 +, SO42 -, Na+ and Cl- are the dominant ions in rainwater, possessing > 85% of total ions. The mean daily wet deposition fluxes of soluble ions are 8709 μeq/m2/d at YBL and 5459 μeq/m2/d at AYQ, approaching the values at Xi'an, Beijing, Guangzhou, and Chengdu. Statistical analysis shows that SO42 - and NO3- in rainwater were mainly from anthropogenic sources while Ca2 + and K+ originated from terrestrial sources. Cl- was mainly from seawater sources, and Na+ was partly from mineral weathering. Major ions are well correlated with each other in rainwater, revealing that substances of various origins were synchronously carried into the atmosphere by wind. By using Sr isotope techniques, three main end-members controlling base cations of rainwater are identified: silicates, carbonates and seawater. Based on the analyses of acid-soluble fractions of desert soils, local soil dust could be the most important source of base cations in rainwater whereas the effect of the anthropogenic sources could be neglected.

  1. Geochronological, elemental and Sr-Nd-Hf-O isotopic constraints on the petrogenesis of the Triassic post-collisional granitic rocks in NW Thailand and its Paleotethyan implications

    Wang, Yuejun; He, Huiying; Cawood, Peter A.; Srithai, Boontarika; Feng, Qinglai; Fan, Weiming; Zhang, Yuzhi; Qian, Xin


    New U-Pb geochronological, petrologic, elemental and Sr-Nd-Hf-O isotopic data for the granites from the Inthanon and Sukhothai zones in NW Thailand in conjunction with correlations with SW China are presented to constrain the age and position of the Paleotethys Ocean in this region and the associated assembly of Southeast Asia. The geochronological data show that the granitic rocks in the Inthanon and Sukhothai zones, herein named Group 1 and Group 2 granites, respectively, yield similar crystallization ages of 230-200 Ma. Group 1 samples are characterized by monzogranite and granite with I- and S-type geochemical affinity and Group 2 samples by I-type monzogranite and granodiorite. They have generally similar chondrite-normalized REE and PM-normalized multi-element patterns but distinct Sr-Nd-Hf-O isotopic compositions. Group 1 samples have slightly higher initial 87Sr/86Sr ratios (0.7111-0.7293) but lower εNd(t) values (- 11.1 to - 14.1) than those of Group 2 samples (87Sr/86Sr(i) = 0.7073-0.7278 and εNd(t) = - 8.3 to - 11.0). Group 1 samples show the lower εHf(t) values (- 5.4 to - 18.2), older TDM (1.62-2.40 Ga) and higher δ18O values (+ 7.95 to + 9.94) than those of Group 2 samples (εHf(t) of - 11.1 to + 4.80, TDM of 0.96-1.95 Ga and δ18O of + 4.95 to + 7.98) for the Triassic crystallization zircons. These geochemical signatures are similar to the Kwangsian and Indosinian granites in the South China and Indochina blocks but distinct from those of the Gangdese I-type granite and Sibumasu Paleozoic granite. Our data suggest that Group 1 samples mainly originated from the early Paleozoic supracrustal rocks containing metapelite and metavolcanic components, which had previously experienced the surface weathering. Group 2 samples were derived from a hybridized source of an old metamorphic and a newly underplated mafic component. Synthesis of our data with available regional observations indicates that the Inthanon zone represents the main suture zone of the

  2. Chemical and isotopic ( 87Sr/ 86Sr, δ 18O, δD) constraints to the formation processes of Red-Sea brines

    Pierret, M. C.; Clauer, N.; Bosch, D.; Blanc, G.; France-Lanord, C.


    About twenty deeps filled with hot brines and/or metalliferous sediments, are located along the Red-Sea axis. These brines present a well-suited framework to study the hydrothermal activity in such a young ocean. The present study outlines the results of a geochemical approach combining major-, trace-element and isotopic (oxygen, hydrogen, strontium) analyses of brines in six of the deeps, to evaluate different processes of brine formation and to compare the evolution of each deep. Important heterogeneities in temperature, salinity, hydrographic structure and chemistry are recorded, each brine having its own characteristics. The intensity of hydrothermal circulation varies among the deeps and ranges from being strong (Atlantis II and Nereus) to weak (Port-Soudan) and even to negligible (Valdivia and Suakin) and it varies along the entire Red-Sea axis. These observations do not favour a unique formational model for all of the brines. For example, the brines of the Suakin deep appear to have been formed by an old sea water which dissolved evaporite beds, without significant fluid circulation and hydrothermal input, while others such as Atlantis II or Nereus Deeps appear to be dominated by hydrothermal influences. A striking feature is the absence of a relationship between the position of the deeps along the axis and their evolutionary maturity.

  3. Petrogenesis of Granitoids, U-Pb zircon geochronology, Sr-Nd Petrogenesis of granitoids, U-Pb zircon geochronology, Sr-Nd isotopic characteristics, and important occurrence of Tertiary mineralization within the Lut block, eastern Iran

    M.H. Karimpour


    Full Text Available Tertiary intrusive granitoids within the Lut block in the Khorasan Razavi and South Khorasan provinces are mainly sub-volcanic with porphyry texture and their composition varies from granite to diorite but monzonite is dominant. With the exception of Hired, these are classified as belonging to the magnetite-series of I-type granitoids. Chemically, these rocks are meta-aluminous. Those with mineralization are K-rich and those without mineralization such as Najmabad are Na-rich. All intrusive rocks plot in the field of calc-alkaline to adakite except Najmabad that plot in the adakite field. Based on low content of Nb (30, low initial 87Sr/86Sr (17 ppm, low ratio of Zr/Nb (0.707 and low initial εNd value (-3, magmas in the Kaybar-Kuh were more contaminated in the continental crust. Based on depletion in HREE and high ratio of (La/YbN (17-23, magma in Najmabad originated in the deep region in which garnet was present. Based on REE pattern and ration of Eu/Eu* (0.8-1, intrusive rocks within Maherabad, Khoopik, Chah-Shaljami, Kuh Shah and Dehsalm are calc-alkaline and their magma formed in an oxidant condition whereas Kaybar Kuh magma with low ratio of Eu/Eu* (<0.8 was contaminated in the continental crust under reduced conditions. The age of these granitoids is between Middle Eocene and Lower Oligocene. Kaybar-Kuh (43.3 Ma is situated in the north and Chah-Shaljami (33.3 Ma in the south. The initial 87Sr/86Sr ratios decrease from north (0.7077 to south (0.7047 as the age decreases. εNd of Maherabad, Khoopik, Dehsalm, and Chah-Shaljami granitoids is between +0.5 and +2.49 and the initial 87Sr/86Sr ratio is less than 0.7055. The age of the source rock (TDM, which was calculated based on Sm-Nd isotopes indicates that these magma originated from oceanic crust with different ages. Kaybar-Kuh originated from the oldest oceanic crust (840 Ma and was contaminated more in continental crust, but Najmabad originated from a younger oceanic crust (360 Ma with

  4. Devonian alkaline magmatism in the northern North China Craton: Geochemistry, SHRIMP zircon U-Pb geochronology and Sr-Nd-Hf isotopes

    Dingling Huang


    Full Text Available The Wulanhada pluton is among the rare suite of Devonian alkaline plutons occurring along the northern margin of the North China Craton (NCC. The intrusion is mainly composed of quartz-monzonite. Here we report zircon SHRIMP U-Pb data from this intrusion which shows emplacement age of ca. 381.5 Ma. The rock is metaluminous with high (Na2O + K2O values ranging from 8.46 to 9.66 wt.%. The REE patterns of the rocks do not show any Eu anomaly whereas the primitive-mantle-normalized spider diagram shows strong positive Sr and Ba anomalies. The Wulanhada rocks exhibit high initial values of (87Sr/86Srt = 0.70762–0.70809, low ɛNd(t = −12.76 to −12.15 values and negative values of ɛHf(t = −23.49 to −17.02 with small variations in (176Hf/177Hft (0.281873–0.282049. These geochemical features and quantitative isotopic modeling results suggest that the rocks might have been formed through the partial melting of Neoarchean basic rocks in the lower crust of the NCC. The Wulanhada rocks, together with the Devonian alkaline rocks and mafic-ultramafic complex from neighboring regions, constitute a post-collisional magmatic belt along the northern NCC.

  5. C, O and Sr isotopic stratigraphy of carbonates pre and pos Jequitai glaciation: Bezerra-Formosa area, Goias, BR;Variacoes dos isotopos de C e Sr em carbonatos pre e pos-glaciacao Jequitai (Esturtiano) na regiao de Bezerra-Formosa, Goias

    Alvarenga, Carlos Jose Souza de; Della Giustina, Maria Emilia Schuteski; Silva, Nivea Goulart Carramal; Santos, Roberto Ventura; Gioia, Simone Maria Costa Lima; Guimaraes, Edi Mendes; Dardenne, Marcel Auguste, E-mail: alva1@unb.b [Universidade de Brasilia (IG/UnB), DF (Brazil). Inst. de Geociencias; Sial, Alcides Nobrega; Ferreira, Valderez Pinto [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Lab. de Isotopos Estaveis (LABISE)


    Carbonate rocks of the upper Paranoa Group and lower Bambui Group (Sete Lagoas Formation) have been founded at the occidental border of the Sao Francisco craton. These units have been separated by the Sturtian glaciation, identified by Jequitai Formation, but in some localities the glacial record is absent and is difficult to separate these two carbonates units. In this paper two sections with a good stratigraphic control have been chosen to find C, O and Sr isotopic values to have tools for the correlations. Carbonates of the Paranoa Group present a trend of positive {delta}{sup 13}C{sub PDB} varying between +0.8 e +2.7 %o, of {delta}{sup 18}O{sub PDB} varying between -9.0 e -4.7 %o and {sup 87}Sr/{sup 86}Sr ranging from 0.7063 to 0.7068. The diamictite sample of Jequitai Formation has {delta}{sup 13}C{sub PDB} values of -1.8%o and {delta}{sup 18}O{sub PDB} values of -5.1%o. The cap dolomites of the Sete Lagoas Formation are associated with an extremely negative {delta}{sup 13}C{sub PDB} values between -6.0 e -3.2 %o, {delta}{sup 18}O{sub PDB} values between -9.1 e -5.3%o and high {sup 87}Sr/{sup 86}Sr ratios suggesting a radiogenic Sr isotope anomaly. Limestone and muddy-limestone above the cap dolomite still starts with extremely negative {delta}{sup 13}C{sub PDB} values (-6.0%o) and are followed by an upward trend of increasing carbon isotope values up to +9.2 %o. In the same interval the {delta}{sup 18}O{sub PDB} values ranging from -10.1%o at the base to -5.5%o in direction to the top of formation and primary {sup 87}Sr/{sup 86}Sr ratios between 0.70745 and 0.70758. The Carbon and Sr isotope data presented here reveal significant differences between carbonates from the Paranoa Group and the Bambui Group. These data developed here provides the framework for a new regional isotopic correlation model to the carbonates units of the Paranoa and Bambui groups. (author)

  6. Accurate determination of ochratoxin A in Korean fermented soybean paste by isotope dilution-liquid chromatography tandem mass spectrometry.

    Ahn, Seonghee; Lee, Suyoung; Lee, Joonhee; Kim, Byungjoo


    Ochratoxin A (OTA), a naturally occurring mycotoxin, has been frequently detected in doenjang, a traditional fermented soybean paste, when it is fermented under improper conditions. Reliable screening of OTA in traditional fermented soybean paste (doenjang) is a special food-safety issue in Korea. Our laboratory, the National Metrology Institute of Korea, established an isotope dilution-liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method as a higher-order reference method to be used for SI-traceable value-assignment of OTA in certified reference materials (CRMs). (13)C20-OTA was used as an internal standard. Sample preparation conditions and LC/MS measurement parameters were optimised for this purpose. The analytical method was validated by measuring samples fortified with OTA at various levels. Repeatability and reproducibility studies showed that the ID-LC/MS/MS method is reliable and reproducible within 2% relative standard deviation. The analytical method was applied to determine OTA in various commercial doenjang products and home-made doenjang products.

  7. Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-orbitrap mass spectrometer for further metabolomics database building.

    Xu, Ying; Heilier, Jean-François; Madalinski, Geoffrey; Genin, Eric; Ezan, Eric; Tabet, Jean-Claude; Junot, Christophe


    Recently, high-resolution mass spectrometry has been largely employed for compound identification, thanks to accurate mass measurements. As additional information, relative isotope abundance (RIA) is often needed to reduce the number of candidates prior to tandem MS(n). Here, we report on the evaluation of the LTQ-Orbitrap, in terms of accurate mass and RIA measurements for building further metabolomics spectral databases. Accurate mass measurements were achieved in the ppm range, using external calibration within 24 h, and remained at evaluated in different data sets. First of all, 137 solutions of commercial compounds were analyzed by flow injection analysis in both the positive and negative ion modes. It was found that the ion abundance was the main factor impacting the accuracy of RIA measurements. It was possible to define some intensity thresholds above which errors were systematically transmission between the LTQ ion trap and the Orbitrap analyzer on RIA measurement errors was found, whereas the reliability of RIA measurements was dramatically improved by reducing the mass detection window. It was also observed that the signal integration method had a significant impact on RIA measurement errors, with the most-reliable results being obtained with peak height integrations. Finally, automatic integrations using the data preprocessing software XCMS and MZmine gave results similar to those obtained by manual integration, suggesting that it is relevant to use the RIA information in automatic elemental composition determination software from metabolomic peak tables.

  8. Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern Myanmar, SE Asia

    Jiang, Hai; Li, Wen-Qian; Jiang, Shao-Yong; Wang, He; Wei, Xiao-Peng


    The Late Cretaceous to Paleogene granitoids occur widespread in the Sibumasu block within Myanmar (SE Asia), which show a close association with tin-tungsten mineralization. However, the precise timing, petrogenesis and tectonic significance of these granitoids are poorly constrained so far. In this study, we present a detailed study on geochronology, elemental and Sr-Nd-Hf isotopic geochemistry for the Hermyingyi and Taungphila granites in southern Myanmar, with the aim of determining their petrogenesis and tectonic implications. LA-ICP-MS U-Pb dating of zircon grains from the two granites yield ages of 69-70 Ma, indicating a Late Cretaceous magmatic event. These granitic rocks are weakly peraluminous and belong to the high-K calc-alkaline series. They are both characterized by high SiO2, K2O + Na2O, FeOT/(FeOT + MgO) and Ga/Al ratios and low Al2O3, CaO, MgO, P2O5 and TiO2 contents, enriched in Rb, Th, U and Y, but depleted in Ba, Sr, P, and Eu, suggesting an A-type granite affinity. Moreover, they display prominent tetrad REE patterns and non-CHARAC trace element behavior, which are common in late magmatic differentiates with strong hydrothermal interaction or deuteric alteration. The granites belong to A2-type and probably formed at a high temperature and anhydrous condition. They have zircon εHf(t) values from - 12.4 to - 10.0 and whole-rock εNd(t) values from - 11.3 to - 10.6, with Paleoproterozoic TDM2 ages (1741-1922 Ma) for both Hf and Nd isotopes. Geochemical and isotopic data suggest that these A-type granites were derived from partial melting of the Paleoproterozoic continental crust dominated by metaigneous rocks with tonalitic to granodioritic compositions, without significant input of mantle-derived magma and followed by subsequent fractional crystallization. By integrating all available data for the regional tectonic evolution in SE Asia and adjacent regions, we attribute the formation of the Late Cretaceous A-type granites to a back-arc extension

  9. Hybrid genesis of Jurassic fayalite-bearing felsic subvolcanic rocks in South China: Inspired by petrography, geochronology, and Sr-Nd-O-Hf isotopes

    Guo, Chunli; Zeng, Lingsen; Li, Qiuli; Fu, Jianming; Ding, Tiping


    Fayalite-bearing felsic (FBF) magmatic rocks are a special type of granitic rocks with controversial origins. A suite of fayalite- and ferrosilite-bearing subvolcanic rocks, namely, the Xishan FBF rocks in South China, is investigated in this study. The Xishan FBF rocks have high SiO2 contents of 69-70 wt.%, high K2O/Na2O ratios of 1.71-1.95, and high FeOt/(FeOt + MgO) ratios of 0.88-0.89. Fayalite (Fo = 7.3-9.6) and ferrosilite (Fs = 74.1-76.5) minerals are found in the Xishan FBF rocks. According to the Unmix function of Isoplot, the zircon U-Pb ages and initial Hf isotope compositions are categorized into two groups with ages of 156.6 Ma and 151.5 Ma and εHf(t) values of - 7.1 and - 5.2, respectively. The minerals show δ18O values of 8.8-9.8‰ for zircon, 6.0-8.1‰ for fayalite, and 7.0-8.2‰ for ferrosilite. The oxygen isotope fractionations between ferrosilite and fayalite (ΔOpx-Ol) vary from - 0.8‰ to + 1.5‰, which indicates disequilibrium crystallization. Whole-rock analyses show high initial 87Sr/86Sr ratios of 0.7169 to 0.7180 and negative εNd(t) values of - 7.3 to - 6.8; zircon analyses show εHf(t) values of - 9.1 to - 3.8 and δ18O values of 8.8-9.8‰. So whole rock and zircon isotopes indicate a crustal signature. Based on these mineralogical and geochemical data, the Xishan FBF rocks were attributed to A-type granites and derived from the mixing of two batches of crustal magmas, which were all derived from the partial melting of ancient igneous protolith under the conditions of high temperature (683-893 °C), moderate water (3-5 wt.%), and low oxygen fugacity (lg fO2 = - 1.21). Such rigorous physical conditions may be common for the FBF igneous rocks all over the world, which may be the primary factors controlling occurrence of the FBF rocks in limited volume and quantity.

  10. Sr and Nd isotopic characteristics of 1.77-1.58 Ga rift-related granites and volcanics of the Goiás tin province, central Brazil



    Full Text Available Supracrustal rocks of the Araí Group, together with coeval A-type granites represent a ca. 1.77-1.58 Ga old continental rift in Brazil. Two granite families are identified: the older (1.77 Ga group forms small undeformed plutons, and the younger granites (ca. 1.58 Ga constitute larger, deformed plutons. Sr-Nd isotopic data for these rocks indicate that the magmatism is mostly product of re-melting of Paleoproterozoic sialic crust. Initial Sr ratios for both granite families are ca 0.726 and 0.720. Most TDM model ages are between 2.58 and 1.80 Ga. epsilonND(T values are between +3.6 and -11.9. Araí volcanics are bimodal, with basalts and dacites/rhyolites interlayered with continental sediments. The felsic volcanics show Nd isotopic characteristics which are very similar to the granites, and are also interpreted as reworking of Paleoproterozoic crust. Detrital sediments of the Araí Group revealed T DM model ages between 2.4 and 2.16 Ga, indicating that they are the product of erosion of Paleoproterozoic crust. The data indicate that the Araí rift system was established on crust that had just become stable after the Paleoproterozoic orogeny.As rochas supracrustais do Grupo Araí, e os granitos tipo-A associados, representam um rift continental paleo-mesoproterozóico. Duas famílias de granitos são identificadas: a mais antiga (ca. 1,77 Ga forma pequenos plutons circulares enquanto a mais jovem (ca. 1,58 Ga, constitui corpos maiores e deformados. Dados isotópicos Sr-Nd indicam que o magmatismo félsico é predominantemente o produto de re-fusão de crosta de idade paleoproterozóica. Razões 87Sr/86Sr iniciais das duas famílias são ca. 0,726 e 0,720. A maioria das idades modelo T DM caem no intervalo entre 2,58 e 1,80 Ga e os valores de épsilonND(T se distribuem entre +3.6 e -11.9. Rochas vulcânicas do Grupo Araí são bimodais, com basaltos e dacitos/riolitos intercalados em sedimentos continentais. As vulcânicas félsicas mostram

  11. Nd, Sr and Pb isotopic composition of metasomatised xenoliths from the backarc Patagonian Mantle Wedge: Insights into the origin of the uprising melts

    Zanetti, Alberto; Mazzucchelli, Maurizio; Hemond, Christope; Cipriani, Anna; Bertotto, Gustavo W.; Cingolani, Carlos; Vannucci, Riccardo


    Information about the geochemical composition of metasomatic melts migrating through the Patagonian mantle wedge is provided by the ultramafic xenoliths occurrence of Tres Lagos (TL; lat. 49.13°S, long. 71.18°W), Argentina. Such a locality is placed at the eastern border of the Meseta de la Muerte backarc basaltic plateau, where a post-plateau volcanic diatreme contains mantle xenoliths in both pyroclastites and lavas. Its latitude corresponds with the Northern limit of the Austral Volcanic Arc (AVZ), which is separated from the Southern Volcanic Zone (SVZ) by a gap in the arc magmatism ranging between 49° and 46°30' latitude S. The analysed xenoliths have been distinguished into two groups (Group 1 & 2). Group 1 consists of lherzolites and harzburgites, whereas Group 2 is formed by harzburgites. The texture of the Group 1 lherzolites varies from protogranular to granoblastic to porphyroblastic, whereas Group 1 harzburgites have always granoblastic texture. Group 2 harzburgites have granular texture, which may change to porphyroblastic owing to the random concentration of large olivine and orthopyroxene crystals. The clinopyroxenes (Cpx) from Group 1 lherzolites have PM-normalised REE patterns ranging from LREE-depleted (LaN/SmN= 0.24-0.37), to LREE-enriched (LaN/YbN up to 4.08) and spoon-shaped: the latter have minimum at Pr and Pr-Yb concentrations similar to those shown by the LREE-depleted Cpx. The Cpx from Group 1 harzburgites have lower REE concentrations with respect to the lherzolite ones and their REE patterns vary from HREE-enriched, steadily fractionated, (LaN/YbN = 0.21-0.35, Ybn ~ 1-2) to spoon-shaped (LaN/SmN = 2.81; SmN/YbN = 0.89; YbN ~ 3. The Cpx from the Group 2 harzburgites have convex-upward (LaN/SmN = 0.31; SmN/YbN = 1.50) to LREE-enriched (LaN/YbN = 2.94) patterns. The Sr, Nd and Pb isotopic compositions of the Group 1 clinopyroxenes form arrays spanning from DM to the field delimited by the TL basaltic lavas, pointing to EMI end

  12. Paleoproterozoic crustal evolution in the East Sarmatian Orogen: Petrology, geochemistry, Sr-Nd isotopes and zircon U-Pb geochronology of andesites from the Voronezh massif, Western Russia

    Terentiev, R. A.; Savko, K. A.; Santosh, M.


    Andesites and related plutonic rocks are major contributors to continental growth and provide insights into the interaction between the mantle and crust. Paleoproterozoic volcanic rocks are important components of the East Sarmatian Orogen (ESO) belonging to the East European Craton, although their petrogenesis and tectonic setting remain controversial. Here we present petrology, mineral chemistry, bulk chemistry, Sr-Nd isotopes, and zircon U-Pb geochronological data from andesites and related rocks in the Losevo and Vorontsovka blocks of the ESO. Clinopyroxene phenocrysts in the andesites are depleted in LREE, and enriched in HFSE (Th, Nb, Zr, Hf, Ti) and LILE (Ba, Sr). Based on the chemistry of pyroxenes and whole rocks, as well as Fe-Ti oxides, we estimate a temperature range of 1179 to 1262 °C, pressures of 11.3 to 13.0 kbar, H2O content of 1-5 wt.%, and oxygen fu gacity close to the MH buffer for the melts of the Kalach graben (KG) and the Baygora area (BA) andesites. Our zircon U-Pb geochronological data indicate new zircon growth during the middle Paleoproterozoic as displayed by weighted mean 207Pb/206Pb ages of 2047 ± 17 Ma and 2040 ± 16 Ma for andesite and dacite-porphyry of the BA, and 2050 ± 16 Ma from high-Mg basaltic andesite of the KG. The andesites and related rocks of the KG and BA are characterized by high magnesium contents (Mg # up to 0.68). All these volcanic rocks are depleted in LREE and HFSE, and display negative Nb and Ti anomalies relative to primitive mantle. The high-Mg bulk composition, and the presence of clinopyroxene phenocrysts suggests that the parent melts of the KG and BA suite were in equilibrium with the mantle rocks. The rocks show positive εNd(T) values and low initial 87Sr/86Sr, suggesting that the magmas were mostly derived from metasomatized mantle source. The geochemical differences between the two andesite types are attributed to: the predominance of fractional crystallization, and minor role of contamination in the

  13. Insights into the late-stage differentiation processes of the Catalão I carbonatite complex in Brazil: New Sr-Nd and C-O isotopic data in minerals from niobium ores

    Oliveira, Ítalo L.; Brod, José A.; Cordeiro, Pedro F. O.; Dantas, Elton L.; Mancini, Luis H.


    The Late Cretaceous Catalão I carbonatite complex consists of ultramafic silicate rocks, phoscorites, nelsonites and carbonatites. The latest stages of the evolution of the complex are characterized by several nelsonite (magnetite-apatite rock) and carbonatite dykes, plugs and veins crosscutting earlier alkaline rocks. The interaction between the latter and late-stage carbonatites and/or carbo-hydrothermal fluids, converted the original dunites and bebedourites to metasomatic phlogopitites. Late-stage nelsonites (N1), pseudonelsonites (N2) and various types of dolomite carbonatites (DC) including norsethite-, magnesite- and/or monazite-bearing varieties show significant whole-rock Nd and Sr isotopic variations. To elucidate whether magmatic or metasomatic processes, or both, were responsible for these isotope variations we characterized the Nd and Sr isotope compositions of major mineral phases (i.e. apatite, dolomite, norsethite, pyrochlore and tetraferriphlogopite) in these late-stage rocks. Mineral isotope data recorded the same differences observed between N1 and N2 whole-rocks with N2 minerals showing more enriched isotopic signatures than minerals from N1. Sr isotopic disequilibrium among minerals from N2 pseudonelsonites and spatially related dolomite carbonatite pockets implies formation from batches of carbonate melts with distinct isotopic compositions. A detailed investigation of Nd and Sr isotopes from whole-rocks and minerals suggests that the most evolved rocks of the Catalão I complex probably derive from two different evolution paths. We propose that an earlier magmatic trend (path A) could be explained by several batches of immiscible and/or residual melts derived from carbonated-silicate parental magma (e.g. phlogopite picrite) contaminated with continental crust to a variable extent, in an AFCLI-like process. A second trend (path B) comprises highly variable 143Nd/144Ndi at nearly constant 87Sr/86Sri coupled with high δ18O in carbonates. This

  14. Mantle and crustal processes in the magmatism of the Campania region: inferences from mineralogy, geochemistry, and Sr-Nd-O isotopes of young hybrid volcanics of the Ischia island (South Italy)

    D'Antonio, Massimo; Tonarini, Sonia; Arienzo, Ilenia; Civetta, Lucia; Dallai, Luigi; Moretti, Roberto; Orsi, Giovanni; Andria, Mariachiara; Trecalli, Alberto


    Ischia, one active volcano of the Phlegraean Volcanic District, prone to very high risk, is dominated by a caldera formed 55 ka BP, followed by resurgence of the collapsed area. Over the past 3 ka, the activity extruded evolved potassic magmas; only a few low-energy explosive events were fed by less evolved magmas. A geochemical and Sr-Nd-O isotope investigation has been performed on minerals and glass from products of three of such eruptions, Molara, Vateliero, and Cava Nocelle (Ischia volcanism in the past. Detailed study on the most mafic magma has permitted to investigate its origin. The mantle sector below Ischia underwent subduction processes that modified its pristine chemical, isotopic, and redox conditions by addition of ≤1 % of sediment fluids/melts. Similar processes occurred from Southeast to Northwest along the Apennine compressive margin, with addition of up to 2.5 % of sediment-derived material. This is shown by volcanics with poorly variable, typical δ18O mantle values, and 87Sr/86Sr progressively increasing toward typical continental crust values. Multiple partial melting of this modified mantle generated distinct primary magmas that occasionally assimilated continental crust, acquiring more 18O than 87Sr. At Ischia, 7 % of Hercynian granodiorite assimilation produced isotopically distinct, K-basaltic to latitic magmas. A SW-NE regional tectonic structure gave these magmas coming from large depth the opportunity to mingle/mix with felsic magmas stagnating in shallower reservoirs, eventually triggering explosive eruptions.

  15. Rb-Sr whole-rock and mineral ages, K-Ar, 40Ar/39Ar, and U-Pb mineral ages, and strontium, lead, neodymium, and oxygen isotopic compositions for granitic rocks from the Salinian Composite Terrane, California:

    Kistler, R.W.; Champion, D.E.


    This report summarizes new and published age and isotopic data for whole-rocks and minerals from granitic rocks in the Salinian composite terrane, California. Rubidium-strontium whole-rock ages of plutons are in two groups, Early Cretaceous (122 to 100 Ma) and Late Cretaceous (95 to 82 Ma). Early Cretaceous plutons occur in all granitic rock exposures from Bodega Head in the north to those from the Santa Lucia and Gabilan Ranges in the central part of the terrane. Late Cretaceous plutons have been identified in the Point Reyes Peninsula, the Santa Lucia and the Gabilan Ranges, and in the La Panza Range in the southern part of the terrane. Ranges of initial values of isotopic compositions are 87Sr/86Sr, 0.7046-0.7147, δ18O, +8.5 to +12.5 per mil, 206Pb/204Pb, 18.901-19.860, 207Pb/204Pb, 15.618-15.814, 208Pb/204Pb, 38.569- 39.493, and εNd, +0.9 to -8.6. The initial 87Sr/86Sr=0.706 isopleth is identified in the northern Gabilan Range and in the Ben Lomond area of the Santa Cruz Mountains, in Montara Mountain, in Bodega Head, and to the west of the Farallon Islands on the Cordell Bank. This isotopic boundary is offset about 95 miles (160km) by right-lateral displacements along the San Gregorio-Hosgri and San Andreas fault systems.

  16. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues.

    Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa


    In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2)  > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus.

  17. Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching.

    Pluskal, Tomáš; Uehara, Taisuke; Yanagida, Mitsuhiro


    Mass spectrometry is commonly applied to qualitatively and quantitatively profile small molecules, such as peptides, metabolites, or lipids. Modern mass spectrometers provide accurate measurements of mass-to-charge ratios of ions, with errors as low as 1 ppm. Even such high mass accuracy, however, is not sufficient to determine the unique chemical formula of each ion, and additional algorithms are necessary. Here we present a universal software tool for predicting chemical formulas from high-resolution mass spectrometry data, developed within the MZmine 2 framework. The tool is based on the use of a combination of heuristic techniques, including MS/MS fragmentation analysis and isotope pattern matching. The performance of the tool was evaluated using a real metabolomic data set obtained with the Orbitrap MS detector. The true formula was correctly determined as the highest-ranking candidate for 79% of the tested compounds. The novel isotope pattern-scoring algorithm outperformed a previously published method in 64% of the tested Orbitrap spectra. The software described in this manuscript is freely available and its source code can be accessed within the MZmine 2 source code repository.

  18. Isotopic Ratio Outlier Analysis of the S. cerevisiae Metabolome Using Accurate Mass Gas Chromatography/Time-of-Flight Mass Spectrometry: A New Method for Discovery.

    Qiu, Yunping; Moir, Robyn; Willis, Ian; Beecher, Chris; Tsai, Yu-Hsuan; Garrett, Timothy J; Yost, Richard A; Kurland, Irwin J


    Isotopic ratio outlier analysis (IROA) is a (13)C metabolomics profiling method that eliminates sample to sample variance, discriminates against noise and artifacts, and improves identification of compounds, previously done with accurate mass liquid chromatography/mass spectrometry (LC/MS). This is the first report using IROA technology in combination with accurate mass gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS), here used to examine the S. cerevisiae metabolome. S. cerevisiae was grown in YNB media, containing randomized 95% (13)C, or 5%(13)C glucose as the single carbon source, in order that the isotopomer pattern of all metabolites would mirror the labeled glucose. When these IROA experiments are combined, the abundance of the heavy isotopologues in the 5%(13)C extracts, or light isotopologues in the 95%(13)C extracts, follows the binomial distribution, showing mirrored peak pairs for the molecular ion. The mass difference between the (12)C monoisotopic and the (13)C monoisotopic equals the number of carbons in the molecules. The IROA-GC/MS protocol developed, using both chemical and electron ionization, extends the information acquired from the isotopic peak patterns for formulas generation. The process that can be formulated as an algorithm, in which the number of carbons, as well as the number of methoximations and silylations are used as search constraints. In electron impact (EI/IROA) spectra, the artifactual peaks are identified and easily removed, which has the potential to generate "clean" EI libraries. The combination of chemical ionization (CI) IROA and EI/IROA affords a metabolite identification procedure that enables the identification of coeluting metabolites, and allowed us to characterize 126 metabolites in the current study.

  19. Geochemical and Nd-Sr-Pb isotope characteristics of synorogenic lower crust-derived granodiorites (Central Damara orogen, Namibia)

    Simon, I.; Jung, S.; Romer, R. L.; Garbe-Schönberg, D.; Berndt, J.


    The 547 ± 7 Ma old Achas intrusion (Damara orogen, Namibia) includes magnesian, metaluminous to slightly peraluminous, calcic to calc-alkalic granodiorites and ferroan, metaluminous to slightly peraluminous, calc-alkalic to alkali-calcic leucogranites. For the granodiorites, major and trace element variations show weak if any evidence for fractional crystallization whereas some leucogranites are highly fractionated. Both, granodiorites and leucogranites are isotopically evolved (granodiorites: εNdinit: - 12.4 to - 20.5; TDM: 2.4-1.9; leucogranites: εNdinit: - 12.1 to - 20.6, TDM: 2.5-2.0), show similar Pb isotopic compositions, and may be derived from late Archean to Paleoproterozoic crustal source rocks. Comparison with melting experiments and simple partial melting modeling indicate that the granodiorites may be derived by extensive melting (> 40%) at 900-950 °C under water-undersaturated conditions (produce anhydrous granodioritic melts.

  20. Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition

    Mickelson, P. G.; Martinez de Escobar, Y. N.; Anzel, P.; De Salvo, B. J.; Nagel, S. B.; Traverso, A. J.; Yan, M.; Killian, T. C.


    We describe repumping and spectroscopy of laser-cooled strontium (Sr) atoms using the (5s5p)3P2-(5s4d)3D2 transition. Atom number in a magneto-optical trap is enhanced by driving this transition because Sr atoms that have decayed into the (5s5p)3P2 dark state are repumped back into the (5s2)1S0 ground state. Spectroscopy of 84Sr, 86Sr, 87Sr and 88Sr improves the value of the (5s5p)3P2-(5s4d)3D2 transition frequency and determines the isotope shifts for the transition accurately enough to guide laser-cooling experiments with less abundant isotopes.

  1. Sr, C and O isotopes as markers of alkaline disturbances in the Toarcian argillites of the Tournemire experimental platform (France). Case of a 15-years old engineered analogue.

    Techer, I.; Boulvais, P.; Bartier, D.; Tinseau, E.


    argillites close to the cement-concrete contact. These data are detailed in another session of this meeting (Techer et al., ERE6 session). In order to precise the spatial extent of the disturbances and to discuss the nature of the responsible fluids, a systematic chemical and isotopic study was performed focusing on the Sr, C and O isotopes known to be very good markers of alkaline fluids percolation (Fourcade et al. 2006). Four studied levels were selected according to their location on the DM overcore and the nature of the cementitious material in contact to the argillites: -155 cm level (DM155) and -180 cm level (DM180) where argillites were in contact with a 1.5 to 3 cm thick concrete; -245 cm level (DM245) and -300 cm level (DM300) where the cementitious material was represented by a fine grained Portland cement 2 to 5 cm thick. Samples of the cementitious materials were collected at each level. Argillites were sampled perpendicularly to the cement-concrete contact with a continuous sampling every 2 to 5 mm millimeters (P1). Micro-fissures developed perpendicularly to the cement-concrete contact were opened and infilling secondary minerals were collected by scrap as a function of the distance to the cement-concrete (P3). Along P1 and P3, no significant variation of the carbonates d18O isotopic values was observed in the argillites. On the opposite d13C and 87Sr/86Sr values of these minerals changed significantly in the direct contact with the cement-concrete over a distance of 15 to 25 mm. Beyond this distance, argillites were again well bedded and showed values similar to those measured in a reference sample. Negative d13C values measured in the disturbed zone and close to those encountered in the cement and the concrete argued for a perturbation induced by an alkaline solution. 87Sr/86Sr isotopic ratios showed a progressive evolution in the disturbed zone, with increasing trends towards the cementitious material. Thanks to complementary Sr elementary contents

  2. 人牙齿中锶的特效树脂分离及其同位素测定%Separation and Isotopic Measurement of Sr in Tooth Samples Using Selective Specific Resins

    贺茂勇; 逯海; 金章东; 王军


    采用锶特效树脂(Sr-Spec)建立了快速分离富集人牙齿中微量元素锶,并测定87Sr/86 Sr的有效方法.采用HNO3 -HClO4体系消解牙齿样品,以8 mol/L HNO3为介质上柱,8 mol/L HNO3淋洗,0.05 mol/L HNO3洗脱,收集淋洗液,蒸干;采用正热电离质谱法进行87Sr/86Sr的测定.结果表明,利用Sr-Spec树脂,不仅能将锶与基质中大量钙分离,并能有效分离同位素测定中干扰元素铷,本方法可以缩短分离时间,提高分离效率,减少试剂用量,降低实验空白.采用本方法对陕南地区人牙齿牙釉质中锶进行分离,测得的87Sr/86Sr值在0.710948~0.711037之间.%Strontium isotope of ancient human teeth provides an important scientific basis for ancient population migration, and Palaeodietary analysis. A fast and effective method for separation, precon-centration and isotopic determination of strontium with low content and rich calcium of tooth samples by Sr-Spec selective specific resin was established. The samples were completed dissolved with mixed acid of HNO3-HCIO4. Sr was increasingly well retained by Sr resin for mobile phases with nitric acid concentrations of 8 mol/L, However, potential interferences, like Ca, Rb will elute within the 8 mol/L nitric acid. Once adsorped, Sr can be eluted from the column by changing the mobile phase to weak nitric acid of 0. 05 mol/L. In comparison with the conventional separation procedures, the method has the advantages of fewer steps of separation, less usage of elution solutions and lower reagent blanks. The proposed method was used for the determination of 10 none carious teeth of enamel collected in southern of shaanxi. Giving values of 87Sr/86Sr were in the range of 0. 710948~0. 711037.

  3. REE and Sr-Nd isotope characteristics of hydrothermal chimney at Jade area in the Okinawa Trough

    LIU Yanguang; MENG Xianwei; FU Yunxia


    Hydrothermal chimney is a product of hydrothermal activity on the seabed. Chimney samples dredged from Jade hydrothermal area in Izena depression of the Okinawa Trough, are characterized by relatively enriched light rare earth elements (LREE) and strongly positive Eu anomalies. 87Sr/86Sr and 143Nd/144Nd of these samples are exactly between those of seawater and of acidic pumice, averaged at 0.708928 and 0.512292, respectively. These characteristics imply that the main source of hydrothermal sulfide at Jade area is possibly the undersurface acidic rocks. The mineralizing mechanism can be summarized as follows: Large amount of mineralized material would be leached out and LREEenriched hydrothermal solution would be subsequently produced as a result of thermo-chemical exchange reaction between acidic volcanic rocks and heated seawater that penetrated in advance from upper water mass. The spurting out from the seabed and quickly crystallizing in the seawater of hydrothermal solution are responsible for the formation of Cu-Zn sulfide and barite-amorphous SiO2 minerals that are characterized by enriched LREE and positively strong Eu anomalies.

  4. Accurate and precise quantification of atmospheric nitrate in streams draining land of various uses by using triple oxygen isotopes as tracers

    Tsunogai, Urumu; Miyauchi, Takanori; Ohyama, Takuya; Komatsu, Daisuke D.; Nakagawa, Fumiko; Obata, Yusuke; Sato, Keiichi; Ohizumi, Tsuyoshi


    Land use in a catchment area has significant impacts on nitrate eluted from the catchment, including atmospheric nitrate deposited onto the catchment area and remineralised nitrate produced within the catchment area. Although the stable isotopic compositions of nitrate eluted from a catchment can be a useful tracer to quantify the land use influences on the sources and behaviour of the nitrate, it is best to determine these for the remineralised portion of the nitrate separately from the unprocessed atmospheric nitrate to obtain a more accurate and precise quantification of the land use influences. In this study, we determined the spatial distribution and seasonal variation of stable isotopic compositions of nitrate for more than 30 streams within the same watershed, the Lake Biwa watershed in Japan, in order to use 17O excess (Δ17O) of nitrate as an additional tracer to quantify the mole fraction of atmospheric nitrate accurately and precisely. The stable isotopic compositions, including Δ17O of nitrate, in precipitation (wet deposition; n = 196) sampled at the Sado-seki monitoring station were also determined for 3 years. The deposited nitrate showed large 17O excesses similar to those already reported for midlatitudes: Δ17O values ranged from +18.6 to +32.4 ‰ with a 3-year average of +26.3 ‰. However, nitrate in each inflow stream showed small annual average Δ17O values ranging from +0.5 to +3.1 ‰, which corresponds to mole fractions of unprocessed atmospheric nitrate to total nitrate from (1.8 ± 0.3) to (11.8 ± 1.8) % respectively, with an average for all inflow streams of (5.1 ± 0.5) %. Although the annual average Δ17O values tended to be smaller in accordance with the increase in annual average stream nitrate concentration from 12.7 to 106.2 µmol L-1, the absolute concentrations of unprocessed atmospheric nitrate were almost stable at (2.3 ± 1.1) µmol L-1 irrespective of the changes in population density and land use in each catchment area

  5. Radiogenic and stable isotopes of mid-Miocene silicic volcanism in eastern Oregon: Evidence for variable and high Sr / low δ18O domains west of the terrane-cratonic lithosphere transition

    Jenkins, E. N.; Streck, M. J.; Ramos, F. C.; Bindeman, I. N.


    Widespread mid-Miocene rhyolite volcanism of eastern Oregon mostly coeval with flood basalts of the Columbia River Basalt Province allows for mapping crustal domains using radiogenic and stable isotopes. Rhyolites are thought to be derived in large part by partial melting of the crust and thus yield direct information on the composition of the crust. Silicic volcanism is expressed in the form of numerous domes and tuffs exposed over a wide area (~300 km in N-S dimension and ~100 km in E-W dimension) west of the craton boundary, which runs parallel but mostly east of the Oregon-Idaho state border as delineated by geophysical characteristics and isotopic transitions. Here, we mainly focus on initial 87Sr/86Sr ratios and δ18O obtained from mid-Miocene silicic volcanic centers in eastern Oregon. Our data, in combination with data from the literature, indicate variable 87Sr/86Sr mostly along longitudinal sections, yet more similar ratios in latitudinal directions. Except for rare examples on the west side, dispersion of 87Sr/86Sr ratios among both silicic and basaltic rocks occurs eastward of 118.6°W. For example, rhyolites in the Owyhee region between 117.10°W and 117.25°W retain 87Sr/86Sr ratios ranging from 0.70413 to 0.70566. The most radiogenic Sri ratio of 0.70787 in our study is obtained on a plagioclase separate from Buchanan Dome complex located near the western boundary of our study area. Feldspar separates and fresh groundmass of samples from adjacent centers yield similar 87Sr/86Sr ratios. δ18O values for feldspars range from below 2‰ to above 9‰. In addition, there is a crude trend of rhyolites having lower δ18O and more radiogenic 87Sr/86Sr ratios. With one exception, all samples with 87Sr/86Sr above 0.7050 are depleted in 18O (δ18O 6‰). The most depleted oxygen ratios (<2‰) come from rhyolites ~80 km west of the cratonic margin reflecting remelting or assimilation of hydrothermally altered crust. Yet, some compositionally similar rhyolites

  6. Geochemical and Sr-Nd-Pb-O isotope composition of granitoids of the Early Cretaceous Copiapó plutonic complex (27°30'S), Chile

    Marschik, Robert; Fontignie, Denis; Chiaradia, Massimo; Voldet, Pia


    Early Cretaceous plutonic rocks exposed south of Copiapó form part of the Coastal Batholith of northern Chile. These rocks intrude arc-derived volcanic and volcaniclastic rocks and marine limestones that were deposited in the Early Cretaceous Atacama backarc basin. The Copiapó plutonic complex consists mainly of calc-alkaline, medium- to coarse-grained diorite, granodiorite, tonalite, monzodiorite, and quartz monzonite. The plutonic rocks are subalkaline to alkaline, metaluminous, magnetite-series, volcanic arc, I-type granitoids. Batholithic magmas are a heat, potential fluid, metal, and sulphur source for the hydrothermal iron oxide-rich Cu-Au mineralization in the Candelaria-Punta del Cobre district. Ore-related hydrothermal alteration affected large portions of the Copiapó complex. The least altered batholithic rocks have initial 87Sr/ 86Sr of 0.703070-0.703231; initial 143Nd/ 144Nd of 0.512733-0.512781; and 206Pb/ 204Pb, 207Pb/ 204Pb, and 208Pb/ 204Pb of 18.428-18.772, 15.550-15.603, and 38.127-38.401, respectively. The δ18O values for these rocks range from +6.9 to +8.6‰. Isotope signatures and trace element distributions suggest that the magmas are mantle derived. A subduction fluid-modified mantle source may explain the geochemical characteristics of the Copiapó complex. The ascent of magmas occurred along deep-rooted structures without significant crustal contamination, though minor contamination by relatively young (e.g. Jurassic) igneous rocks during ascent is possible. Intrusive rocks with high-K to shoshonitic characteristics probably represent residual liquids of less evolved magmas. The regional geologic context suggests that the plutons of the Copiapó complex were emplaced at a relatively shallow crustal level of 2-3 km.

  7. Geochemical and Sr-Pb-Nd isotopic characteristics of the Shakhtama porphyry Mo-Cu system (Eastern Transbaikalia, Russia)

    Berzina, A. P.; Berzina, A. N.; Gimon, V. O.


    The Shakhtama Mo-Cu porphyry deposit is located within the eastern segment of the Central Asian Orogenic Belt, bordering the southern margin of the Mongol-Okhotsk suture zone. The deposit includes rocks of two magmatic complexes: the precursor plutonic (J2) and ore-bearing porphyry (J3) complexes. The plutonic complex was emplaced at the final stages of the collisional regime in the region; the formation of the porphyry complex may have overlapped with a transition to extension. The Shakhtama rocks are predominantly metaluminous, I-type high K calc-alkaline to shoshonitic in composition, with relatively high Mg#, Ni, Cr and V. They are characterized by crustal-like ISr (0.70741-0.70782), relatively radiogenic Pb isotopic compositions, ɛNd(T) values close to CHUR (-2.7 to +2.1) and Nd model ages from 0.8 to 1.2 Ga. Both complexes are composed of rocks with K-adakitic features and rocks without adakite trace element signatures. The regional geological setting together with geochemical and isotopic data indicate that both juvenile and old continental crust contributed to their origin. High-Mg# K-adakitic Shakhtama magmas were most likely generated by partial melting of thickened lower crust during delamination and interaction with mantle material, while magmas lacking adakite-like signatures were probably generated at shallower levels of lower crust. The derivation of melts, related to the formation of plutonic and porphyry complexes involved variable amounts of old Precambrian lower crust and juvenile Phanerozoic crust. Isotopic data imply stronger contribution of juvenile mantle-derived material to the fertile magmas of the porphyry complex. Juvenile crust is proposed as an important source of fluids and metals for the Shakhtama ore-magmatic system.

  8. Geological, geochronological, geochemical, and Sr-Nd-O-Hf isotopic constraints on origins of intrusions associated with the Baishan porphyry Mo deposit in eastern Tianshan, NW China

    Wang, Yinhong; Xue, Chunji; Liu, Jiajun; Zhang, Fangfang


    The Baishan porphyry Mo deposit (0.72 Mt; 0.06 % Mo) is located in the interior of the eastern Tianshan orogenic belt in Xinjiang, NW China. The deposit comprises 15 orebodies that are associated with monzogranite and granite porphyry stocks and are structurally controlled by roughly EW-trending faults. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating of the monzogranite and granite porphyry yielded the Middle Triassic age (228 ± 2 to 227 ± 2 Ma), which coincide with the molybdenite Re-Os model ages ranging from 226 ± 3 to 228 ± 3 Ma. The Triassic monzogranite and granite porphyry belong to high-K calc-alkaline series and are characterized by high SiO2 and Al2O3 and low MgO, TiO2, and P2O5 concentrations, with negative Eu anomalies (δEu = 0.55-0.91). The least-altered monzogranite and granite porphyry yield uniform ɛ Nd( t) values from +1.6 to +3.6, and wide (87Sr/86Sr) i ratios ranging between 0.7035 and 0.7071, indicating that they were derived from the lower crust. In situ O-Hf isotopic analyses on zircon using SIMS and laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) indicate that the δ18O and ɛ Hf( t) values of zircon from a monzogranite sample vary from 6.1 to 7.3 ‰ and +8.0 to +11.7, respectively, whereas zircon from a granite porphyry sample vary from 6.2 to 6.9 ‰ and +7.3 to +11.2, respectively. The geochemical and isotopic data imply that the primary magmas of the Baishan granite were likely derived from partial melts from the lower crust involving some mantle components. The Baishan Mo deposit and granitic emplacement were proposed to be most likely related to post-orogenic lithospheric extension and magmatic underplating. An extensional event coupled with the rising of hot mantle-derived melts triggered partial melting of the lower crust, as well as provided metals (Mo).

  9. Origin of Meso-Proterozoic post-collisional leucogranite suites (Kaokoveld, Namibia): constraints from geochronology and Nd, Sr, Hf, and Pb isotopes

    Jung, S.; Mezger, K.; Nebel, O.; Kooijman, E.; Berndt, J.; Hauff, F.; Münker, C.


    Leucocratic granites of the Proterozoic Kaoko Belt, northern Namibia, now preserved as meta-granites, define a rock suite that is distinct from the surrounding granitoids based on their chemical and isotopic characteristics. Least evolved members of this ~1.5-1.6-Ga-old leucogranite suite can be distinguished from ordinary calc-alkaline granites that occur elsewhere in the Kaoko Belt by higher abundances of Zr, Y, and REE, more radiogenic initial ɛNd values and unradiogenic initial 87Sr/86Sr. The leucogranites have high calculated zircon saturation temperatures (mostly > 920°C for least fractionated samples), suggesting that they represent high-temperature melts originating from deep crustal levels. Isotope data (i.e., ɛNdi: +2.3 to -4.2) demonstrate that the granites formed from different sources and differentiated by a variety of processes including partial melting of mantle-derived meta-igneous rocks followed by crystal fractionation and interaction with older crustal material. Most fractionation-corrected Nd model ages (TDM) are between 1.7 and 1.8 Ga and only slightly older than the inferred intrusion age of ca. 1.6 Ga, indicating that the precursor rocks must have been dominated by juvenile material. Epsilon Hf values of zircon separated from two granite samples are positive (+11 and +13), and Hf model ages (1.5 and 1.6 Ga) are similar to the U-Pb zircon ages, again supporting the dominance of juvenile material. In contrast, the Hf model ages of the respective whole rock samples are 2.3 and 2.4 Ga, demonstrating the involvement of older material in the generation of the granites. The last major tectonothermal event in the Kaoko Belt in the Proterozoic occurred at ca. 2.0 Ga and led to reworking of mostly 2.6-Ga-old rocks. However, the presence of 1.6 Ga "post-collisional" granites reflects addition of some juvenile mantle-derived material after the last major tectonic event. The results suggest that similar A-type leucogranites are potentially more

  10. Trace element and Sr-Nd-Pb isotope geochemistry of Rungwe Volcanic Province, Tanzania: Implications for a superplume source for East Africa Rift magmatism

    Paterno R Castillo


    Full Text Available The recently discovered high, plume-like 3He/4He ratios at Rungwe Volcanic Province (RVP in southern Tanzania, similar to those at the Main Ethiopian Rift in Ethiopia, strongly suggest that magmatism associated with continental rifting along the entire East African Rift System (EARS has a deep mantle contribution (Hilton et al., 2011. New trace element and Sr-Nd-Pb isotopic data for high 3He/4He lavas and tephras from RVP can be explained by binary mixing relationships involving Early Proterozoic (+/- Archaean lithospheric mantle, present beneath the southern EARS, and a volatile-rich carbonatitic plume with a limited range of compositions and best represented by recent Nyiragongo lavas from the Virunga Volcanic Province also in the Western Rift. Other lavas from the Western Rift and from the southern Kenya Rift can also be explained through mixing between the same endmember components. In contrast, lavas from the northern Kenya and Main Ethiopian rifts can be explained through variable mixing between the same mantle plume material and the Middle to Late Proterozoic lithospheric mantle, present beneath the northern EARS. Thus, we propose that the bulk of EARS magmatism is sourced from mixing among three endmember sources: Early Proterozoic (+/- Archaean lithospheric mantle, Middle to Late Proterozoic lithospheric mantle and a volatile-rich carbonatitic plume with a limited range of compositions. We propose further that the African Superplume, a large, seismically anomalous feature originating in the lower mantle beneath southern Africa, influences magmatism throughout eastern Africa with magmatism at RVP and Main Ethiopian Rift representing two different heads of a single mantle plume source. This is consistent with a single mantle plume origin of the coupled He-Ne isotopic signatures of mantle-derived xenoliths and/or lavas from all segments of the EARS (Halldorsson et al., 2014.

  11. Target rocks, impact glasses, and melt rocks from the Lonar crater, India: Highly siderophile element systematics and Sr-Nd-Os isotopic signatures

    Schulz, Toni; Luguet, Ambre; Wegner, Wencke; Acken, David; Koeberl, Christian


    The Lonar crater is a ~0.57-Myr-old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best-preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr-Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact-related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re-Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re-Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near-chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12-20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.

  12. The provenance of Cretaceous to Quaternary sediments in the Tarfaya basin, SW Morocco: Evidence from trace element geochemistry and radiogenic Nd-Sr isotopes

    Ali, Sajid; Stattegger, Karl; Garbe-Schönberg, Dieter; Frank, Martin; Kraft, Steffanie; Kuhnt, Wolfgang


    We present trace element compositions, rare earth elements (REEs) and radiogenic Nd-Sr isotope analyses of Cretaceous to recent sediments of the Tarfaya basin, SW Morocco, in order to identify tectonic setting, source rocks composition and sediments provenance. The results suggest that the sediments originate from heterogeneous source areas of the Reguibat Shield and the Mauritanides (West African Craton), as well as the western Anti-Atlas, which probably form the basement in this area. For interpreting the analyzed trace element results, we assume that elemental ratios such as La/Sc, Th/Sc, Cr/Th, Th/Co, La/Co and Eu/Eu∗ in the detrital silicate fraction of the sedimentary rocks behaved as a closed system during transport and cementation, which is justified by the consistency of all obtained results. The La/Y-Sc/Cr binary and La-Th-Sc ternary relationships suggest that the Tarfaya basin sediments were deposited in a passive margin setting. The trace element ratios of La/Sc, Th/Sc, Cr/Th and Th/Co indicate a felsic source. Moreover, chondrite-normalized REE patterns with light rare earth elements (LREE) enrichment, a flat heavy rare earth elements (HREE) and negative Eu anomalies can also be attributed to a felsic source for the Tarfaya basin sediments. The Nd isotope model ages (TDM = 2.0-2.2 Ga) of the Early Cretaceous sediments suggest that sediments were derived from the Eburnean terrain (Reguibat Shield). On the other hand, Late Cretaceous to Miocene--Pliocene sediments show younger model ages (TDM = 1.8 Ga, on average) indicating an origin from both the Reguibat Shield and the western Anti-Atlas. In contrast, the southernmost studied Sebkha Aridal section (Oligocene to Miocene-Pliocene) yields older provenance ages (TDM = 2.5-2.6 Ga) indicating that these sediments were dominantly derived from the Archean terrain of the Reguibat Shield.

  13. Sm-Nd and Rb-Sr Isotopic Systematics of a Heavily Shocked Martian Meteorite Tissint and Petrogenesis of Depleted Shergottites

    Shih, C.-Y.; Nyquist, L. E.; Park, J.; Agee, Carl B.


    Tissint is a very fresh Martian meteorite that fell near the town of Tissint in Morocco on July 18, 2011. It contains abundant olivine megacrysts (23%) in a fine-grained matrix of pyroxene (55%), maskelynitized plagioclase (15%), opaques (4%) and melt pockets (3%) and is petrographically similar to lithologies A and C of picritic shergottite EETA 79001 [1,2]. The presence of 2 types of shock-induced glasses and all 7 high-pressure mineral phases that were ever found in melt pockets of Martian meteorites suggests it underwent an intensive shock metamorphism of 25 GPa and 2000 C localized in melt pockets [2]. Mineral textures suggest that olivines, pyroxenes and plagioclases probably did not experience such hightemperature. Earlier determinations of its age yielded 596+/-23 Ma [3] and 616+/-67 Ma [4], respectively, for the Sm-Nd system and 583+/-86 Ma for the Lu-Hf system [4], in agreement with the 575+/-18 Ma age of the oldest olivine-phyric depleted shergottite Dho 019 [5]. However, the exposure ages of Tissint (1 Ma [1, 6, 7]) and Dho 019 (20 Ma [8]) are very different requiring two separate ejection events. These previously determined Sm-Nd and Lu-Hf ages are older than the Ar-Ar maskelynite plateau age of 524+/-15 Ma [9], reversing the pattern usually observed for Martian meteorites. In order to clarify these age issues and place models for Tissint's petrogenesis on a firm basis, we present new Rb-Sr and Sm- Nd isotopic results for Tissint, and discuss (a) the shock effects on them and the Ar-Ar chronometer, (b) correlation of the determined ages with those of other depleted shergottites, and (c) the petrogenesis of depleted shergottites. Since the meteorite is a recent fall, terrestrial contamination is expected to be minimal, but, the strong shock metamorphism might be expected to compromise the equilibrium of the isotopic systems.

  14. Chapter 9 The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data

    Piochi, M.; de Vivo, B.; Ayuso, R.A.


    A large database of major, trace and isotope (Sr, Nd, Pb, O) data exists for rocks produced by the volcanic activity of Somma-Vesuvius volcano. Variation diagrams strongly suggest a major role for evolutionary processes such as fractional crystallization, contamination, crystal trapping and magma maxing, occurring after magma genesis in the mantle. Most mafic magmas are enriched in LILE (Light Ion Lithophile Elements; K. Rb, Ba), REE (Ce, Sm) and Y, show small Nb-Ta negative anomalies, and have values of Nb/Zr at about 0.15. Enrichments in LILE, REE, Nb and Ta do not correlate with Sr isotope values or degree of both K enrichment and silica undersaturation. The results indicate mantle source heterogeneity produced by slab-derived components beneath the volcano. However, the Sr isotope values of Somma-Vesuvius increase from 0.7071 up to 0.7081 with transport through the uppermost 11-12 km of the crust. The Sr isotope variation suggests that the crustal component affected the magmas during ascent through the lithosphere to the surface. Our new geochemical assessment based on chemical, isotopic and fluid inclusion data points to the existence of three main levels of magma storage. Two of the levels are deep and may represent long-lived reservoirs; the uppermost crustal level probably coincides with the volcanic conduit. The deeper level of magma storage is deeper than 12 km and fed the 1944 AD eruption. The intermediate level coincides with the seismic discontinuity detected by Zollo et al. (1996) at about 8 km. This intermediate level supplies magmas with 87Sr/86Sr values between 0.7071 and 0.7074, and ??O18<8% that typically erupted both during interplinian (i.e. 1906 AD) and sub-plinian (472 AD, 1631 AD) events. The shallowest level of magma storage at about 5 km was the site of magma chambers for the Pompei and Avellino plinian eruptions. New investigations are necessary to verify the proposed magma feeding system. ?? 2006 Elsevier B.V. All rights reserved.

  15. Sr, Nd, Pb and Li isotope geochemistry and Ar-Ar dating of alkaline lavas from northern James Ross Island (Antarctic Peninsula) - implications for back-arc magma formation

    Kosler, J.; Magna, T.; Mlcoch, B.; Mixa, P.; Hendriks, B. W. H.; Holub, F. V.; Nyvlt, D.


    The elemental and isotopic (Sr, Nd, Pb and Li) composition of Cenozoic back-arc alkaline basalts emplaced east of the Antarctic Peninsula in James Ross Island Volcanic Group (JRIVG) is different from the compositions of the fore-arc alkaline volcanic rocks in Southern Shetlands and nearby Bransfield Strait. The variability in elemental and isotopic composition is not consistent with the JRIVG derivation from a single mantle source but rather it suggests that the magma was mainly derived from a depleted mantle with subordinate OIB-like enriched mantle component (EM II). The isotopic data are consistent with mantle melting during extension and possible roll-back of the subducted lithosphere of the Antarctic plate in Miocene to Pliocene times, as indicated by the existing geochronological data and the new Ar-Ar age determinations. Magma contamination by Triassic - Early Tertiary clastic sediments deposited in the back-arc basin was only localized and affected Li isotopic composition in two of the samples, while most of the basalts show very little variation in delta 7Li values, as anticipated for "mantle-driven" Li isotopic composition. These variations are difficult to resolve with radiogenic isotope systematics but Li isotopes may prove sensitive in tracking complex geochemical processes acting through the oceanic crust pile, including hydrothermal leaching and seawater equilibration.

  16. The Magma feeding system of Somma-Vesuvius (Italy)strato-volcano:new inferences from a review of geochemical and Sr,Nd,Pb and O isotope data. Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites

    Piochi, M.; De Vivo, B.; Ayuso, R. A.


    A large database of major, trace and isotope (Sr, Nd, Pb, O) data exists for rocks produced by the volcanic activity of Somma-Vesuvius volcano. Variation diagrams strongly suggest a major role for evolutionary processes such as fractional crystallization, contamination, crystal trapping and magma mixing, occurring after magma genesis in the mantle. Most mafic magmas are enriched in LILE (K, Rb, Ba), REE (Ce, Sm) and Y, show small Nb–Ta negative anomalies, and have values of Nb/Zr ...

  17. Accurate determination of sulfur in gasoline and related fuel samples using isotope dilution ICP-MS with direct sample injection and microwave-assisted digestion.

    Heilmann, Jens; Boulyga, Sergei F; Heumann, Klaus G


    Inductively coupled plasma isotope-dilution mass spectrometry (ICP-IDMS) with direct injection of isotope-diluted samples into the plasma, using a direct injection high-efficiency nebulizer (DIHEN), was applied for accurate sulfur determinations in sulfur-free premium gasoline, gas oil, diesel fuel, and heating oil. For direct injection a micro-emulsion consisting of the corresponding organic sample and an aqueous 34S-enriched spike solution with additions of tetrahydronaphthalene and Triton X-100, was prepared. The ICP-MS parameters were optimized with respect to high sulfur ion intensities, low mass-bias values, and high precision of 32S/34S ratio measurements. For validation of the DIHEN-ICP-IDMS method two certified gas oil reference materials (BCR 107 and BCR 672) were analyzed. For comparison a wet-chemical ICP-IDMS method was applied with microwave-assisted digestion using decomposition of samples in a closed quartz vessel inserted into a normal microwave system. The results from both ICP-IDMS methods agree well with the certified values of the reference materials and also with each other for analyses of other samples. However, the standard deviation of DIHEN-ICP-IDMS was about a factor of two higher (5-6% RSD at concentration levels above 100 mircog g(-1)) compared with those of wet-chemical ICP-IDMS, mainly due to inhomogeneities of the micro-emulsion, which causes additional plasma instabilities. Detection limits of 4 and 18 microg g(-1) were obtained for ICP-IDMS in connection with microwave-assisted digestion and DIHEN-ICP-IDMS, respectively, with a sulfur background of the used Milli-Q water as the main limiting factor for both methods.

  18. Accurate determination of sulfur in gasoline and related fuel samples using isotope dilution ICP-MS with direct sample injection and microwave-assisted digestion

    Heilmann, Jens; Boulyga, Sergei F.; Heumann, Klaus G. [Johannes Gutenberg-University, Institute of Inorganic Chemistry and Analytical Chemistry, Mainz (Germany)


    Inductively coupled plasma isotope-dilution mass spectrometry (ICP-IDMS) with direct injection of isotope-diluted samples into the plasma, using a direct injection high-efficiency nebulizer (DIHEN), was applied for accurate sulfur determinations in sulfur-free premium gasoline, gas oil, diesel fuel, and heating oil. For direct injection a micro-emulsion consisting of the corresponding organic sample and an aqueous {sup 34}S-enriched spike solution with additions of tetrahydronaphthalene and Triton X-100, was prepared. The ICP-MS parameters were optimized with respect to high sulfur ion intensities, low mass-bias values, and high precision of {sup 32}S/{sup 34}S ratio measurements. For validation of the DIHEN-ICP-IDMS method two certified gas oil reference materials (BCR 107 and BCR 672) were analyzed. For comparison a wet-chemical ICP-IDMS method was applied with microwave-assisted digestion using decomposition of samples in a closed quartz vessel inserted into a normal microwave system. The results from both ICP-IDMS methods agree well with the certified values of the reference materials and also with each other for analyses of other samples. However, the standard deviation of DIHEN-ICP-IDMS was about a factor of two higher (5-6% RSD at concentration levels above 100 {mu}g g{sup -1}) compared with those of wet-chemical ICP-IDMS, mainly due to inhomogeneities of the micro-emulsion, which causes additional plasma instabilities. Detection limits of 4 and 18 {mu}g g{sup -1} were obtained for ICP-IDMS in connection with microwave-assisted digestion and DIHEN-ICP-IDMS, respectively, with a sulfur background of the used Milli-Q water as the main limiting factor for both methods. (orig.)

  19. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico

    Martínez-Serrano, Raymundo G.; Schaaf, Peter; Solís-Pichardo, Gabriela; Hernández-Bernal, Ma. del Sol; Hernández-Treviño, Teodoro; Julio Morales-Contreras, Juan; Macías, José Luis


    Volcanic activity at Nevado de Toluca (NT) volcano began 2.6 Ma ago with the emission of andesitic lavas, but over the past 40 ka, eruptions have produced mainly lava flows and pyroclastic deposits of predominantly orthopyroxene-hornblende dacitic composition. In the nearby Tenango Volcanic Field (TVF) pyroclastic products and lava flows ranging in composition from basaltic andesite to andesite were erupted at most of 40 monogenetic volcanic centers and were coeval with the last stages of NT. All volcanic rocks in the study area are characterized by a calc-alkaline affinity that is consistent with a subduction setting. Relatively high concentrations of Sr (>460 ppm) coupled with low Y (45 km) that underlies the volcanoes of the study area, the geochemical and isotopic patterns of these rocks indicate low interaction with this crust. NT volcano was constructed at the intersection of three fault systems, and it seems that the Plio-Quaternary E-W system played an important role in the ascent and storage of magmas during the recent volcanic activity in the two regions. Chemical and textural features of orthopyroxene, amphibole and Fe-Ti oxides from NT suggest that crystallization of magmas occurred at polybaric conditions, confirming the rapid upwelling of magmas.

  20. Bayesian Integration of Isotope Ratios for Geographic Sourcing of Castor Beans

    Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Hart, Garret L.; Ehleringer, James; West, Jason B.; Gill, Gary A.; Duckworth, Douglas C.


    Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 6 0 . 9 {+-} 2 . 1 % versus 5 5 . 9 {+-} 2 . 1 % and 4 0 . 2 {+-} 1 . 8 % for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.

  1. Zircon U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics of the Jintonghu monzonitic rocks in western Fujian Province, South China: Implication for Cretaceous crust-mantle interactions and lithospheric extension

    Li, Bin; Jiang, Shao-Yong; Lu, An-Huai; Zhao, Hai-Xiang; Yang, Tang-Li; Hou, Ming-Lan


    Comprehensive petrological, in situ zircon U-Pb dating, Ti-in-zircon temperature and Hf isotopic compositions, whole rock geochemical and Sr-Nd isotopic data are reported for the Jintonghu monzonitic intrusions in the western Fujian Province (Interior Cathaysia Block), South China. The Jintonghu monzonitic intrusions were intruded at 95-96 Ma. Their Sr-Nd-Hf isotopic compositions are similar to the coeval and nearby enriched lithospheric mantle-derived mafic and syenitic rocks, indicating that the Jintonghu monzonitic rocks were likely derived from partial melting of the enriched mantle sources. Their high Nb/Ta ratios (average 21.6) suggest that the metasomatically enriched mantle components were involved, which was attributed to the modification of slab-derived fluid and melt by the subduction of the paleo-Pacific Plate. The presence of mafic xenoliths, together with geochemical and isotopic features indicates a mafic-felsic magma mixing. Furthermore, the Jintonghu intrusions may have experienced orthopyroxene-, biotite- and plagioclase-dominated crystallization. Crust-mantle interaction can be identified as two stages, including that the Early Cretaceous mantle metasomatism and lithospheric extension resulted from the paleo-Pacific slab subduction coupled with slab rollback, and the Late Cretaceous crustal activation and enhanced extension induced by dip-angle subduction and the underplating of mantle-derived mafic magma.

  2. Rb–Sr and Sm–Nd isotope systematics and geochemical studies on metavolcanic rocks from Peddavura greenstone belt: Evidence for presence of Mesoarchean continental crust in easternmost part of Dharwar Craton, India

    M Rajamanickam; S Balakrishnan; R Bhutani


    Linear, north–south trending Peddavura greenstone belt occurs in easternmost part of the Dharwar Craton. It consists of pillowed basalts, basaltic andesites, andesites (BBA) and rhyolites interlayered with ferruginous chert that were formed under submarine condition. Rhyolites were divided into type-I and II based on their REE abundances and HREE fractionation. Rb–Sr and Sm–Nd isotope studies were carried out on the rock types to understand the evolution of the Dharwar Craton. Due to source heterogeneity Sm–Nd isotope system has not yielded any precise age. Rb–Sr whole-rock isochron age of 2551 ± 19 (MSWD = 1.16) Ma for BBA group could represent time of seafloor metamorphism after the formation of basaltic rocks. Magmas representing BBA group of samples do not show evidence for crustal contamination while magmas representing type-II rhyolites had undergone variable extents of assimilation of Mesoarchean continental crust (< 3.3 Ga) as evident from their initial Nd isotope values. Trace element and Nd isotope characteristics of type I rhyolites are consistent with model of generation of their magmas by partial melting of mixed sources consisting of basalt and oceanic sediments with continental crustal components. Thus this study shows evidence for presence of Mesoarchean continental crust in Peddavura area in eastern part of Dharwar Craton.

  3. /sup 87/Sr//sup 86/Sr ratios for basalt from Loihi Seamount, Hawaii

    Lanphere, M. (Geological Survey, Menlo Park, CA (USA))


    /sup 87/Sr//sup 86/Sr ratios of 15 samples of basalt dredged from Loihi Seamount range from 0.70334 to 0.70368. The basalt types range from tholeiite to basanite in composition and can be divided into six groups on the basis of abundances of K/sub 2/O, Na/sub 2/O, Rb and Sr and /sup 87/Sr//sup 86/Sr ratio. The isotopic data require that the various basalt types be derived from source regions differing in Sr isotopic composition. The Loihi basalts may be produced by mixing of isotopically distinct sources, but the tholeiites and alkalic basalts from Loihi do not show a well-developed inverse trend between Rb/Sr and /sup 87/Sr//sup 86/Sr that is characteristic of the later stages of Hawaiian volcanoes such as Haleakala and Koolau.

  4. Single crystal U-Pb zircon age and Sr-Nd isotopic composition of impactites from the Bosumtwi impact structure, Ghana: Comparison with country rocks and Ivory Coast tektites.

    Ferrière, Ludovic; Koeberl, Christian; Thöni, Martin; Liang, Chen


    The 1.07 Myr old Bosumtwi impact structure (Ghana), excavated in 2.1-2.2 Gyr old supracrustal rocks of the Birimian Supergroup, was drilled in 2004. Here, we present single crystal U-Pb zircon ages from a suevite and two meta-graywacke samples recovered from the central uplift (drill core LB-08A), which yield an upper Concordia intercept age of ca. 2145 ± 82 Ma, in very good agreement with previous geochronological data for the West African Craton rocks in Ghana. Whole rock Rb-Sr and Sm-Nd isotope data of six suevites (five from inside the crater and one from outside the northern crater rim), three meta-graywacke, and two phyllite samples from core LB-08A are also presented, providing further insights into the timing of the metamorphism and a possibly related isotopic redistribution of the Bosumtwi crater rocks. Our Rb-Sr and Sm-Nd data show also that the suevites are mixtures of meta-greywacke and phyllite (and possibly a very low amount of granite). A comparison of our new isotopic data with literature data for the Ivory Coast tektites allows to better constrain the parent material of the Ivory Coast tektites (i.e., distal impactites), which is thought to consist of a mixture of metasedimentary rocks (and possibly granite), but with a higher proportion of phyllite (and shale) than the suevites (i.e., proximal impactites). When plotted in a Rb/Sr isochron diagram, the sample data points (n = 29, including literature data) scatter along a regression line, whose slope corresponds to an age of 1846 ± 160 Ma, with an initial Sr isotope ratio of 0.703 ± 0.002. However, due to the extensive alteration of some of the investigated samples and the lithological diversity of the source material, this age, which is in close agreement with a possible "metamorphic age" of ∼ 1.8-1.9 Ga tentatively derived from our U-Pb dating of zircons, is difficult to consider as a reliable metamorphic age. It may perhaps reflect a common ancient source whose Rb-Sr isotope

  5. Origin, growth history and glacial-interglacial responses of a cold-water coral mound in NE Atlantic: Results from O-isotope and Sr-isotope stratigraphy in IODP Expedition 307

    Sakai, S.; Kano, A.; Abe, K.; Browning, E.; Scientific Party, I.


    Cold-water corals may cover as a large area as the better-known warm-water corals forming shallow reefs, and they occur in a variety of forms and settings, from small isolated colonies or patch reefs to giant mound structures such as those found west of Ireland. In May 2005, IODP Expedition 307 sailed to Challenger Mound, which is one of thousands of cold-water coral mounds in Porcupine Seabight, 150 km offshore of southwestern Ireland, and recovered the first complete section through to the base of a modern cold-water coral mound which is composed of up to 155 m of unlithified coral-bearing (Lophelia pertusa) sediments. The coral-bearing sediments lie on an angular unconformable surface above the lower-middle Miocene glauconitic siltstones and sandstones. Mound growth could have been continuous, and the repeated 10-m-scale alternations in lithology between lighter- colored calcareous layers (interglacials) and darker-colored clayey layers (glacials) could be essentially related to the glacial-interglacial cycles, which supported by correspondence of the two curves of O-isotopes of planktic foraminifers and natural Gamma radiation. O-isotope results of planktic foraminifers show cold-water coral L. pertusa, which are organisms sensitive to environmental change, were able to maintain a cold-water coral mound community (e.g. temperature remained above 4°C) under the latest Pliocene-Pleistocene glacial- interglacial changes. Sr-isotopic stratigraphy revealed that the section is divided into two growth stages at 23.6 mbsf, and mound of the first stage started growing on the mid-Miocene basement around 2.6 Ma, when Northern Hemisphere glaciation was intensified. The mound growth reached a maximum rate (24 cm/ky) around 2.0Ma, and ceased at 1.7Ma. The second stage (1.0-0.5 Ma) shows a lower growth rate (5 cm/ky). Corals require zooplanktons that tend to condense in density gradient of ~800 m deep developed between Eastern North Atlantic Water (ENAW) and the underlying

  6. 87Sr/86Sr Concentrations in the Appalachian Basin: A Review

    Mordensky, Stanley P. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Lieuallen, A. Erin [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Hakala, Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)


    This document reviews 87Sr/86Sr isotope data across the Appalachian Basin from existing literature to show spatial and temporal variation. Isotope geochemistry presents a means of understanding the geochemical effects hydraulic fracturing may have on shallow ground substrates. Isotope fractionation is a naturally occurring phenomenon brought about by physical, chemical, and biological processes that partition isotopes between substances; therefore, stable isotope geochemistry allows geoscientists to understand several processes that shape the natural world. Strontium isotopes can be used as a tool to answer an array of geological and environmental inquiries. In some cases, strontium isotopes are sensitive to the introduction of a non-native fluid into a system. This ability allows strontium isotopes to serve as tracers in certain systems. Recently, it has been demonstrated that strontium isotopes can serve as a monitoring tool for groundwater and surface water systems that may be affected by hydraulic fracturing fluids (Chapman et al., 2013; Kolesar Kohl et al., 2014). These studies demonstrated that 87Sr/86Sr values have the potential to monitor subsurface fluid migration in regions where extraction of Marcellus Shale gas is occurring. This document reviews publicly available strontium isotope data from 39 sample locations in the Appalachian Basin (Hamel et al., 2010; Chapman et al., 2012; Osborn et al., 2012; Chapman et al., 2013; Capo et al., 2014; Kolesar Kohl et al., 2014). The data is divided into two sets: stratigraphic (Upper Devonian/Lower Mississippi, Middle Devonian, and Silurian) and groundwater. ArcMap™ (ESRI, Inc.) was used to complete inverse distance weighting (IDW) analyses for each dataset to create interpolated surfaces in an attempt to find regional trends or variations in strontium isotopic values across the Appalachian Basin. 87Sr/86Sr varies up to ~ 0.011 across the

  7. 东天山白石泉镁铁-超镁铁杂岩体的Nd-Sr-Os同位素成分及其对岩浆演化的意义%Nd-Sr-Os isotopic data of the Baishiquan mafic-ultramafic complex from East Tianshan, and implications for petrogenesis

    陈斌; 贺敬博; 陈长健; 木合塔尔·扎日


    本文报道东天山有铜镍硫化物矿化的白石泉镁铁-超镁铁杂岩体(分布在中天山地块北部)的微量元素和Nd-Sr-Os同位素成分,以探讨其地幔源区性质和壳幔相互作用过程.白石泉杂岩体的地球化学特征是富集大离子亲石元素和轻稀土元素,但亏损高场强元素.全岩Sr和Nd同位素初始比值变化较大,分别是(87Sr/86Sr)i =0.7032~0.7066和εNd(t)=5.6~-0.9,两者呈反相关关系.全岩Os含量在80×10-12~29×10-12之间,富含放射性成因Os(187 Os/188 Os=0.295~ 1.18).据此,得出结论:(1)白石泉杂岩体的母岩浆在上升侵位过程中,受到地壳物质的强烈混染,导致各岩石类型的Nd-Sr同位素成分变化很大和Os同位素成分富集放射性成因Os的特征,这与前人认为的白石泉岩体侵位过程中没有地壳混染作用的模式明显不同;(2)白石泉杂岩体的母岩浆来自被古生代俯冲带熔/流体交代过的年轻岩石圈地幔,这要求我们重新认识中天山前寒武地块的性质和规模.%We report trace elements and Nd-Sr-Os isotopic data for the Baishiquan mafic-ultramafic complex that occurs in the East Tianshan Mountains (in the northern part of the Mid-Tianshan Precambrian block) and is accompanied by Cu-Ni deposits, to understand its mantle source characteristics and processes of mantle-crustal interaction. Geochemically, the complex is characterized by enrichment of LILEs and depletion of HFSEs. The whole-rock Sr-Nd isotopic compositions of the Baishiquan complex vary significantly, with (87Sr/ 86Sr)i =0. 7032 ~0. 7066 and εNd(t) =5. 6 ~ -0. 9, and the Nd-Sr isotopic ratios are negatively correlated. The complex shows very radiogenic Os isotopic compositions, with (187Os/188Os)i =0.295~1. 18 and Os=80 ×l0-12 ~29 ×l0-12. Based on these data, we conclude that (1) the parent magma of the Baishiquan complex experienced significant crustal contamination during magma emplacement, as is revealed by the negatively

  8. Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p){sup 3}P{sub 2}-(5s4d){sup 3}D{sub 2} transition

    Mickelson, P G; De Escobar, Y N Martinez; Anzel, P; DeSalvo, B J; Nagel, S B; Traverso, A J; Yan, M; Killian, T C, E-mail: killian@rice.ed [Department of Physics and Astronomy, Rice University, Houston, TX 77251 (United States)


    We describe repumping and spectroscopy of laser-cooled strontium (Sr) atoms using the (5s5p){sup 3}P{sub 2}-(5s4d){sup 3}D{sub 2} transition. Atom number in a magneto-optical trap is enhanced by driving this transition because Sr atoms that have decayed into the (5s5p){sup 3}P{sub 2} dark state are repumped back into the (5s{sup 2}){sup 1}S{sub 0} ground state. Spectroscopy of {sup 84}Sr, {sup 86}Sr, {sup 87}Sr and {sup 88}Sr improves the value of the (5s5p){sup 3}P{sub 2}-(5s4d){sup 3}D{sub 2} transition frequency and determines the isotope shifts for the transition accurately enough to guide laser-cooling experiments with less abundant isotopes.

  9. A record of Late Quaternary continental weathering in the sediment of the Caspian Sea: evidence from U-Th, Sr isotopes, trace element and palynological data

    Pierret, M. C.; Chabaux, F.; Leroy, S. A. G.; Causse, C.


    This study presents combined mineralogical, chemical, isotopic (87Sr/86Sr and U-Th disequilibria series) and palynological analyses on bulk sediments and on distinct mineral phases (carbonates and clays) from a 10-m-long core drilled in the southern Caspian Sea and containing a Late Pleistocene and Early Holocene record. The data allowed identifying 1) the main variations in sedimentation, 2) the processes causing these variations, 3) the modification of erosion vs weathering, and 4) the influence of climatic and/or Caspian Sea level changes in the region since the Late Pleistocene. The chemical and mineralogical results allowed the division of the sedimentary sequence into three main units and a transition zone. The lower unit (unit U1) primarily consists of silicate and carbonate-rich detritus. Sedimentation characteristics, including observation of detritus in secular equilibrium, are relatively constant within this unit and reflect mechanical erosion in a cold climate. Unit U1 probably corresponds to a glacial period when the vegetation cover was sparse and wind and river transport of pollen were strong. Subsequently, global increase in temperatures has greatly modified the sedimentation in the Caspian Sea south basin. Biogenic sedimentation is higher in units U2 and U3, and detrital inputs varied from unit U1. Variations in detrital input are likely to be caused by decreasing aeolian contribution and by relative changes in river volumes and origins. The study of the bulk sediments, clays and carbonates reflects an increase in chemical weathering since about 10 14C ka BP ago (base of unit U2), in line with an increase in the vegetation cover. Our results suggest an evolution of continental weathering conditions in the catchment area of the Caspian Sea, from dominantly mechanical/physical erosion during the cold period to a continuous increase in weathering since the Lateglacial period, as climate improved, which illustrates the strong relation between climate

  10. Important role of magma mixing in generating the Mesozoic monzodioritic-granodioritic intrusions related to Cu mineralization, Tongling, East China: evidence from petrological and in situ Sr-Hf isotopic data

    Chen, Bin; Chen, ChangJian


    The Mesozoic ore-bearing high-Mg monzodioritic-granodioritic rocks in the Tongling mining district (East China) have been described as having adakitic affinities, and their origin has been attributed to partial melting of delaminated eclogite at depth in the mantle, followed by interaction of the resultant granitic magma with mantle peridotite. Here we present petrological data and in situ Sr isotopic data for zoned plagioclase that are inconsistent with the eclogite-derived model, and instead propose a model that involves magma mixing of siliceous crustal melts and basaltic magma that was derived from metasomatized mantle by subduction zone fluids in an extensional regime. The principal geochemical signatures of these Mesozoic rocks include a hydrous and high-K calc-alkaline affinity, high values of Mg#, high Sr abundances, high Sr/Y and La/Yb ratios, ɛNd(t)=-13.1 to -9.0, and ISr=0.70707-0.70824. The magma mixing model is supported by (1) the common existence of mafic microgranular enclaves (MMEs) and the disequilibrium textures of plagioclase and hornblende, (2) the increase in Ti and Al(IV) from hornblende cores to rims, and the overgrowths of high-Ca pyroxene around hornblende grains as well, indicative of episode of heating and rejuvenation of the magma chamber as a result of recharge of mafic magma, (3) the 87Sr/86Sr ratios of embayed high-Ca cores of plagioclase that are distinctly lower than in the euhedral low-Ca overgrowth rims, (4) negative correlations between whole-rock Nd and Sr isotopic ratios, and (5) the significant differences in the values of ɛHf(t) (-9.5 to -26) within different zircons from the same intrusion. We propose that underplating of hydrous basaltic magma from the metasomatized lithospheric mantle in the lower crust resulted in partial melting of the lower crustal rocks (Precambrian TTG gneisses and amphibolite/granulite) under water-saturated conditions, during which plagioclase decomposed, leaving hornblende-rich restites and

  11. Sr-Nd-Pb-C-O isotope systematics of carbonated ultramafic xenoliths from Mafu, Taiwan: Evidence for an extremely enriched lithospheric mantle source beneath the extended margin of the South China block

    Smith, A. D.; Wen, D.; Chung, S.; Wang, K.; Chiang, H.; Tsai, C.


    Deep-seated carbonate melt is widely proposed as an effective agent to metasomatize the lithospheric mantle. However, such carbonate melts may have a great diversity of composition and a mantle or recycled origin remains unclear. Here we present the evidence for unique carbonate metasomatism of the continental lithospheric mantle (CLM) beneath the extended southeast margin of the South China block from severely replaced spinel peridotite xenoliths from Mafu, northwestern Taiwan. The metasomatic calcitic carbonates and whole carbonated xenoliths from Mafu have unusually low trace element abundances (total REE abundance residue (86Sr/87Sr = 0.7041; ɛ Nd = +4.9, one residual sample up to +12; 206Pb/204Pb = 18.3), the Sr-Nd-Pb-C-O isotope systematics of the carbonates (86Sr/87Sr = 0.7044-0.7045; ɛ Nd = -6.9 to -7.7; 206Pb/204Pb = 18.5; δ13C = -4.5 to -5.7; δ18O = +21.8 to +22.9) reveal an extremely enriched and heterogeneous CLM. According to the Nd model age, the enriched component evolved for at least 1 Gyrs after isolation from the depleted CLM, before the Late Miocene entrapment. Coupled with high Sr/Nd, Ba/Th, La/Yb, Zr/Hf, and low Nb/U, Ce/Pb, Th/U, Ti/Eu ratios, this EM1-like metasomatic agent may be one of the most efficient percolating melt to cause disequlibrium interaction or Sr-Nd isotope decoupling. To a broader interpretation, it offers an alternative to account for some enriched signatures in mantle lithosphere, such as the extreme components of the Hawaiian plume. Instead of the "ghost plagioclase" (Sobolev et al., 2000), melting of depleted lithosphere which was metasomatized by this kind of enriched carbonate melt with high Sr, Ba, Pb but low Al and REE contents, may even better explain the geochemical features observed from the melt inclusions in Mauna Loa olivines.

  12. U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions of mafic intrusive rocks in the Motuo, SE Tibet constrain on their petrogenesis and tectonic implication

    Pan, Fa-Bin; Zhang, Hong-Fei; Xu, Wang-Chun; Guo, Liang; Luo, Bi-Ji; Wang, Shuai


    Mafic intrusive rocks are widely exposed in the Motuo tectono-magmatic belt, southeast Lhasa terrane. LA-ICP-MS U-Pb zircon dating shows that they have magma crystallization ages of 69 and ca. 50 Ma. These mafic intrusive rocks are characterized by variable SiO2 (44.60-57.60 wt.%), high Al2O3 (17.19-20.86 wt.%), and low MgO (1.85-5.38 wt.%) with Mg# of 31-55. Their chemical composition is comparable with low-MgO high-Al basalts to basaltic andesites. They are enriched in LILEs (Rb, Ba, K) and LREE and depleted in HFSEs (Nb, Ta, Zr, Hf, Ti), with weakly evolved Sr-Nd-Hf compositions (whole-rock (87Sr/86Sr)0 = 0.7064 to 0.7086, εNd(t) = - 3.41 to + 1.22, and zircon εHf(t) = - 3.8 to + 6.4). The mafic rocks were derived from partial melting of metasomatized lithospheric mantle. Geochemical and Sr-Nd-Hf isotopic data show that they were insignificantly modified during magma emplacement. We provide a different secular evolution of the lithospheric mantle beneath the eastern part relative to the central part of the southern Lhasa terrane. Sr-Nd isotopic composition of the Motuo Late Cretaceous-Eocene mafic rocks argues that they were derived from partial melting of a relatively homogeneous and depleted lithospheric mantle. We propose that the Late Cretaceous delamination resulted in the replacement of ancient lithospheric mantle by the juvenile homogeneous lithospheric mantle in the eastern Lhasa terrane. The foundered ancient materials may subsequently re-fertilize the lithospheric mantle not only in the eastern Lhasa terrane but also in the surrounding areas.

  13. A multi-isotope ({delta}D, {delta}{sup 18}O, {sup 87}Sr/{sup 86}Sr, and {delta}{sup 11}B) approach for identifying saltwater intrusion and resolving groundwater evolution along the Western Caprock Escarpment of the Southern High Plains, New Mexico

    Langman, Jeff B., E-mail: [University of Texas at El Paso, Geological Sciences, El Paso, TX 79968-0555 (United States); Ellis, Andre S. [University of Texas at El Paso, Geological Sciences, El Paso, TX 79968-0555 (United States)


    Declining water levels in arid and semi-arid regions increase an aquifer's vulnerability to natural and anthropogenic influences. A multi-isotope ({delta}D, {delta}{sup 18}O, {sup 87}Sr/{sup 86}Sr, and {delta}{sup 11}B) approach was used to resolve the geochemical evolution of groundwater in a declining aquifer in a semi-arid region of the southwestern USA as groundwater composition reacts to source-water mixing, cross-formational flow including saltwater intrusion, water-rock interaction, and likely agricultural recharge. Sub-aquifers or local flow systems are present in the Southern High Plains aquifer along the Western Caprock Escarpment in New Mexico, and the study site's local flow system contains a Na-Cl, high dissolved-solids groundwater that flows from the escarpment until it mixes with a high quality regional aquifer or regional flow system. The local flow system contains water that is similar in composition to the underlying, upper Dockum Group aquifer. Saltwater found in the upper Dockum Group aquifer likely originates in the adjacent Pecos River Basin and crosses beneath or possibly through the hydrologic divide of the Western Caprock Escarpment. Strontium concentrations of 0.9-31 mg/L and a {sup 87}Sr/{sup 86}Sr range of 0.70845-0.70906 were sufficient to estimate source-water fractions, mixing patterns, and contributions from chemical weathering through mass balance inverse calculations. Boron concentrations (59-1740 mg/L) and {delta}{sup 11}B values (+6.0-+46.0 per mille) were used to confirm source-water mixing, further evaluate water-rock interaction, and examine the influence of possible agricultural recharge. Alteration of B concentrations and {delta}{sup 11}B values in an area of likely agricultural recharge indicated the loss of B and decrease in {delta}{sup 11}B values likely from plant uptake, adsorption, and weathering contributions in the soil/vadose zone prior to recharge. The effectiveness of {sup 87}Sr/{sup 86}Sr and {delta

  14. Development of Accurate Chemical Equilibrium Models for Oxalate Species to High Ionic Strength in the System: Na-Ba-Ca-Mn-Sr-Cl-NO3-PO4-SO4-H2O at 25°C

    Qafoku, Odeta; Felmy, Andrew R.


    The development of an accurate aqueous thermodynamic model is described for oxalate species in the Na-Ba-Ca-Mn-Sr-Cl-NO3-PO4-SO4-H2O system at 25°C. The model is valid to high ionic strength (as high as 10m) and from very acid (10m H2SO4) to neutral and basic conditions. The model is based upon the equations of Pitzer and co-workers. The necessary ion-interaction parameters are determined by comparison with experimental data taken from the literature or determined in this study. The proposed aqueous activity and solubility model is valid for a range of applications from interpretation of studies on mineral dissolution at circumneutral pH to the dissolution of high-level waste tank sludges under acidic conditions.

  15. Isotope-geochemical Nd-Sr evidence of Palaeoproterozoic plume magmatism in Fennoscandia and mantle-crust interaction on stages of layered intrusions formation

    Serov, Pavel; Bayanova, Tamara; Kunakkuzin, Evgeniy; Steshenko, Ekaterina


    Palaeoproterozoic Fennoscandian layered intrusions belong to the pyroxenite-gabbronorite-anorthosite formation and spread on a vast area within the Baltic Shield. Based on isotope U-Pb, Sm-Nd, Rb-Sr and Re-Os data the duration of this formation can be to 100-130 Ma (2.53-2.40 Ga) [Serov et. al., 2008; Bayanova et. al., 2009]. We have studied rocks of layered PGE-bearing Fedorovo-Pansky, Monchetundra, Burakovsky, Olanga group intrusions and Penikat intrusion. According to recent and new complex Nd-Sr-REE data magma source of the vast majority of these intrusions was a mantle reservoir with unusual characteristics: negative values of ɛNd (from 0 to -4) and ISr = 0.702-0.706, flat spectra of REE (value of (La/Yb)N ~ 1.0-5.8) with positive Eu-anomalies [Bayanova et. al., 2009; Bayanova et. al., 2014]. However, the distribution of REE for ore-bearing gabbronorite intrusions Penikat (Sm-Nd age is 2426 ± 38 Ma [Ekimova et. al., 2011]) has a negative Eu-anomalies. This may be due to the formation of plagioclase and its removal from the magma chamber. One of the aims of isotope geochemical investigations is to establish the contribution of mantle components in the formation of layered intrusions rocks and the degrees of contamination of the magma source by crustal material. To calculate the proportion of mantle component model binary mixture was used [Jahn et. al., 2000]. As the mantle components we used data for CHUR: ɛNd = 0, [Nd] = 1.324 [Palm, O'Neil, 2003] and for crustal components were used host-rocks Nd-data. The proportion of mantle component for the studied intrusions was 77-99%. Also, data were obtained for the Monchetundra dike complex and amphibolized gabbro, for which the proportion of mantle material was 20-40%. For these rocks a significant crustal contamination is most likely. This process resulted in low values of ɛNd, a direct relationship between ɛNd and Nd concentration, and significant differences between the U-Pb and Sm-Nd model ages. A

  16. Petrogenesis of Late Mesozoic granitoids and coeval mafic rocks from the Jiurui district in the Middle-Lower Yangtze metallogenic belt of Eastern China: Geochemical and Sr-Nd-Pb-Hf isotopic evidence

    Xu, Yao-Ming; Jiang, Shao-Yong; Zhu, Zhi-Yong; Yang, Shui-Yuan; Zhou, Wei


    Large-scale Cu-Au mineralization is associated with the Late Mesozoic granitoids in the Jiurui district of the Middle-Lower Yangtze Mineralization Belt in Eastern China. To constrain the petrogenesis of these granitoids and coeval mafic rocks, a detailed geochemical and Sr-Nd-Pb-Hf isotopic study was performed. The Jiurui granitoids are made up primarily of granodiorite porphyry and quartz diorite porphyry. These granitoids are characterized by SiO2 and K2O contents of 58.8 wt.% to 68.6 wt.% and 1.9 wt.% to 5.7 wt.%, respectively. These granitoids show relatively high MgO contents (1.0 wt.% to 3.1 wt.%, average 2.1 wt.%) and high Mg# values (39 to 70, average 54). The Jiurui granitoids are enriched in light rare earth elements (LREE), large ion lithophile elements (LILE), and compatible trace elements (Cr, Ni and V) but are relatively depleted in Nb, Ta, Y and Yb. These rocks show a negligible negative Eu anomaly (Eu/Eu* = 0.76-1.13, average 0.91) and nearly no negative Sr anomaly. The whole-rock initial 87Sr/86Sr ratios range from 0.7060 to 0.7092, and the ɛNd(t) values vary from - 5.4 to - 2.0. The granitoids show radiogenic Pb isotopic ratios with values of 206Pb/204Pb (17.93-18.21), 207Pb/204Pb (15.55-15.58), and 208Pb/204Pb (38.16-38.56) for the plagioclases. The zircon Hf isotopic compositions show ɛHf(t) values from - 11.8 to 2.4. The coeval mafic rocks consist of lamprophyre, diabase and fine-grained mafic dyke. These rocks are characterized by SiO2 contents ranging from 47.6 wt.% to 54.8 wt.%, with a negative Eu anomaly and a positive to negative Sr anomaly. The whole-rock initial 87Sr/86Sr ratios range from 0.7059 to 0.7071, and the ɛNd(t) values vary from - 3.8 to - 1.4. By comparing the geochemical and isotopic compositions of the Jiurui granitoids and the coeval mafic rocks, we conclude that the granitoids are similar to adakites that were likely related to the delamination processes, and the coeval mafic rocks may have originated directly from

  17. A Multi-Isotope (B, Sr, O, H, C) and Age Dating (3H-3He, 14C) Study of Ground Water From Salinas Valley, California: Hydrochemistry, Dynamics, and Contamination Processes

    Vengosh, A; Gill, J; Davisson, M L; Hudson, B G


    The chemical and isotopic ({sup 11}B/{sup 10}B, {sup 87}Sr/{sup 86}Sr, {sup 18}O/{sup 16}O, {sup 2}H/H, {sup 13}C/{sup 12}C, {sup 14}C, {sup 3}He/{sup 3}H) compositions of groundwater from the upper aquifer system of the Salinas Valley in coastal central California were investigated in order to delineate the origin and processes of groundwater contamination in this complex system. The Salinas Valley has a relatively deep, confined ''400-foot'' aquifer, overlain by a ''180-foot'' aquifer, and a shallower perched aquifer, all made up of alluvial sand, gravel, and clay deposits. Groundwater from the aquifers have different {sup 14}C ages; fossil ({sup 14}C = 21.3 pmc) for the 400-foot, and modern ({sup 14}C = 72.2 to 98.2 pmc) for the 180-foot. Fresh groundwater in all aquifers is recharged naturally and artificially and through the Salinas River. The two modes of recharge can be distinguished chemically. We identified several different saline components with distinguishable chemical and isotopic fingerprints. (1) Salt-water intrusion in the northern basin has Cl concentrations up to 1700 mg/l, a Na/Cl ratio seawater, {delta}{sup 11}B between +17 and +38 per mil, and {sup 87}Sr/{sup 86}Sr between 0.7088 and 0.7096. Excess dissolved Ca, relative to the expected concentration for simple dilution of seawater, correlates with {sup 87}Sr/{sup 86}Sr ratios, suggesting base exchange reaction with clay minerals. (2) Agriculture return flow is high in NO{sub 3} and SO{sub 4}, with a {sup 87}Sr/{sup 86}Sr = 0.7082, {delta}{sup 11}B = 19 per mil; and {delta}{sup 13}C between -23 and -17 per mil. The {sup 3}H-{sup 3}He ages (5-17 years) and {sup 14}C data suggest vertical infiltration rates of irrigation water of 3 to 10 m/yr. (3) Non-marine saline water in the southern part of the valley has high TDS up to 3800 mg/l, high SO{sub 4}, Na/Cl ratio >1, {delta}{sup 11}B between +24 and +30 per

  18. Pb-Sr isotopic and geochemical constraints on sources and processes of lead contamination in well waters and soil from former fruit orchards, Pennsylvania, USA: A legacy of anthropogenic activities

    Ayuso, Robert A.; Foley, Nora K.


    Isotopic discrimination can be an effective tool in establishing a direct link between sources of Pb contamination and the presence of anomalously high concentrations of Pb in waters, soils, and organisms. Residential wells supplying water containing up to 1600 ppb Pb to houses built on the former Mohr orchards commercial site, near Allentown, PA, were evaluated to discern anthropogenic from geogenic sources. Pb (n = 144) and Sr (n = 40) isotopic data and REE (n = 29) data were determined for waters from residential wells, test wells (drilled for this study), and surface waters from pond and creeks. Local soils, sediments, bedrock, Zn-Pb mineralization and coal were also analyzed (n = 94), together with locally used Pb-As pesticide (n = 5). Waters from residential and test wells show overlapping values of 206Pb/207Pb, 208Pb/207Pb and 87Sr/86Sr. Larger negative Ce anomalies (Ce/Ce*) distinguish residential wells from test wells. Results show that residential and test well waters, sediments from residential water filters in water tanks, and surface waters display broad linear trends in Pb isotope plots. Pb isotope data for soils, bedrock, and pesticides have contrasting ranges and overlapping trends. Contributions of Pb from soils to residential well waters are limited and implicated primarily in wells having shallow water-bearing zones and carrying high sediment contents. Pb isotope data for residential wells, test wells, and surface waters show substantial overlap with Pb data reflecting anthropogenic actions (e.g., burning fossil fuels, industrial and urban processing activities). Limited contributions of Pb from bedrock, soils, and pesticides are evident. High Pb concentrations in the residential waters are likely related to sediment build up in residential water tanks. Redox reactions, triggered by influx of groundwater via wells into the residential water systems and leading to subtle changes in pH, are implicated in precipitation of Fe oxyhydroxides

  19. Evaluating crustal contributions to enriched shergottites from the petrology, trace elements, and Rb-Sr and Sm-Nd isotope systematics of Northwest Africa 856

    Ferdous, J.; Brandon, A. D.; Peslier, A. H.; Pirotte, Z.


    The origin of the incompatible trace element (ITE) characteristics of enriched shergottites has been critical for examining two contradicting scenarios to explain how these Martian meteorites form. The first scenario is that it reflects ITE enrichment in an early-formed mantle reservoir whereas the second scenario attributes it to assimilation of ancient Martian crust (∼4-4.5 Ga) by ITE-depleted magmas. Strongly differentiated shergottite magmas may yield added constraints for determining which scenario can best explain this signature in enriched shergottites. The meteorite Northwest Africa (NWA) 856 is a basaltic shergottite that, unlike many enriched shergottites, lacks olivine and has undergone extensive differentiation from more primitive parent magma. In similarity to other basaltic shergottites, NWA 856 is comprised primarily of compositionally zoned clinopyroxenes (45% pigeonite and 23% augite), maskelynite (23%) and accessory minerals such as ulvöspinel, merrillite, Cl-apatite, ilmenite, pyrrhotite, baddeleyite and silica polymorph. The CI-chondrite normalized rare earth element (REE) abundance patterns for its maskelynite, phosphates, and its whole rock are flat with corresponding light-REE depletions in clinopyroxenes. The 87Rb-87Sr and 147Sm-143Nd internal isochron ages are 162 ± 14 (all errors are ±2σ) Ma and 162.7 ± 5.5 Ma, respectively, with an initial εNdI = -6.6 ± 0.2. The Rb-Sr isotope systematics are affected by terrestrial alteration resulting in larger scatter and a less precise internal isochron age. The whole rock composition is used in MELTS simulations to model equilibrium and fractional crystallization sequences to compare with the crystallization sequence from textural observations and to the mineral compositions. These models constrain the depth of initial crystallization to a pressure range of 0.4-0.5 GPa (equivalent to 34-42 km) in anhydrous conditions at the Fayalite-Magnetite-Quartz buffer, and consistently reproduce the

  20. Geochemistry and Sr-Nd isotopes of the subvolcanic sill complex and sandstone geochronology from María Magdalena island, Nayarit, Mexico

    Villanueva, D.; Schaaf, P. E.; Hernandez, T.; Solis, G.; Weber, B.; Pompa, V.


    María Magdalena island is part of the Islas Marías archipielago, located at the mouth of the Gulf of California. Understanding the nature and origin of the archipelago is very important for reconstructing the paleoposition of Baja California Peninsula prior to the opening of the Gulf of California. We present the first geochemical, isotopic and geochronologic data from María Magdalena, a lithologically different island compared to the rest of the archipelago. María Magdalena island is located southeast of María Madre and northeast of María Cleofas islands and is composed by a sedimentary sequence of sandstones and minor shale, which is intruded by gabbroic sills. The sedimentary sequence dips approximately 20 degrees to the NW. The thickness of sills range from 1 to 3 meters with mineralogical variations of plagioclase +/- orthopyroxene +/- clinopyroxene +/- hornblende and some altered olivine crystals. Textures are mostly porphyritic with plagioclase crystals sizes up to 5 cm and olivines up to 5 mm. The gabbroic sills show SiO2 contents from 42.7 to 47.5 wt. %; TiO2 from 0.8 to 2 wt. %; Fe2O3t from 7.7 to 11.9 wt. %; MgO from 6.2 to 19.8 wt. % and of CaO from 6 to 11.6 wt. %, indicating mafic to ultramafic compositions. A multielement spider diagram as well as REE patterns show compositions very similar to N-MORB or even peridotites, which is confirmed by 87Sr/86Sr values from 0.70273 to 0.70497, and 143Nd/144Nd values from 0.513003 to 0.513100. U-Pb single zircon geochronology of the intruded sandstones display the following age distribution: eight crystals show ages from 80 to 86 Ma, three crystals have ages from 61 to 72 Ma, and three are around 21 Ma which constrains a maximum sandstone deposition age. Consequently, the sills must be younger than 21 Ma. There is not much lithological similarity with neighboring María Madre island to the NW (containing a metamorphic complex, granitoids and acid volcanic roks) and with María Cleofas island to the SE

  1. Persistence of fertile and hydrous lithospheric mantle beneath the northwestern Ethiopian plateau: Evidence from modal, trace element and Sr-Nd-Hf isotopic compositions of amphibole-bearing mantle xenoliths

    Alemayehu, Melesse; Zhang, Hong-Fu; Aulbach, Sonja


    We present new trace element compositions of amphiboles, Sr-Nd-Hf isotope compositions of clinopyroxenes and mineral modes for spinel peridotite xenoliths that were entrained in a Miocene alkali basalt (Gundeweyn, northwestern Ethiopian plateau), in order to understand the geochemical evolution and variation occurring within the continental lithospheric mantle (CLM) in close proximity to the East African Rift system, and its dynamic implications. With the exception of a single amphibole-bearing sample that is depleted in LREE (La/YbN = 0.45 × Cl), amphiboles in lherzolites and in one harzburgite show variable degrees of LREE enrichment (La/YbN = 2.5-12.1 × Cl) with flat HREE (Dy/YbN = 1.5-2.1 × Cl). Lherzolitic clinoyroxenes have 87Sr/86Sr (0.70227 to 0.70357), 143Nd/144Nd (0.51285 to 0.51346), and 176Hf/177Hf (0.28297 to 0.28360) ranging between depleted lithosphere and enriched mantle. LREE-enriched clinopyroxenes generally have more enriched isotope compositions than depleted ones. While lherzolites with isotope compositions similar to those of the Afar plume result from the most recent metasomatic overprint, isotope compositions more depleted than present-day MORB can be explained by an older melt extraction and/or isotopic rehomogenisation event, possibly related to the Pan-African orogeny. Several generations of amphibole are recognized in accord with this multi-stage evolution. Texturally unequilibrated amphibole occurring within the peridotite matrix and in melt pockets attest to continued hydration and refertilization of the lithospheric mantle subsequent to Oligocene flood basalt magmatism, during which an earlier-emplaced inventory of amphibole was likely largely consumed. However, a single harzburgite contains amphibole with the highest Mg# and lowest TiO2 content, which is interpreted as sampling a volumetrically subordinate mantle region beneath the Ethiopian plateau that was not tapped during flood basalt magmatism. Strikingly, both trace

  2. 88Sr/86Sr fractionation in inorganic aragonite and in corals

    Fruchter, Noa; Eisenhauer, Anton; Dietzel, Martin; Fietzke, Jan; Böhm, Florian; Montagna, Paolo; Stein, Moti; Lazar, Boaz; Rodolfo-Metalpa, Riccardo; Erez, Jonathan


    Conflicting results have been reported for the stable Sr isotope fractionation, specifically with respect to the influence of temperature. In an experimental study we have investigated the stable Sr isotope systematics for inorganically precipitated and biogenic (coral) aragonite (natural and laboratory-cultured). Inorganic aragonite precipitation experiments were performed from natural seawater using the CO2 diffusion technique. The experiments were performed at different temperatures and different carbonate ion concentrations. 88Sr/86Sr of the inorganic aragonite precipitated in the experiments are 0.2‰ lighter than seawater, but showed no correlation to the water temperature or to CO32- concentration. Similar observations are made in different coral species (Cladocora caespitosa, Porites sp. and Acropora sp.), with identical fractionation from the bulk solution and no correlation to temperature or CO32- concentration. The lack of 88Sr/86Sr variability in corals at different environmental parameters and the similarity to the 88Sr/86Sr fractionation in inorganic aragonite may indicate a similar Sr incorporation mechanism in corals skeleton and inorganic aragonite, and therefore the previously proposed Rayleigh-based multi element model (Gaetani et al., 2011) cannot explain the process of Sr incorporation in the coral skeletal material. It is proposed that the relatively constant 88Sr/86Sr fractionation in aragonite can be used for paleo reconstruction of seawater 88Sr/86Sr composition. The seawater 88Sr/86Sr ratio reconstruction can be further used in calcite samples to reconstruct paleo precipitation rates.

  3. Erosion of the Alps: use of Rb-Sr isotopic data from molassic sediments to identify the ages of the metamorphism recorded by the eroded rocks; Erosion des Alpes: histoire metamorphique des roches erodees par l`analyse du couple Rb-Sr des sediments molassiques

    Henry, P.; Deloule, E. [Centre National de la Recherche Scientifique (CNRS), 54 - Nancy (France). Centre de Recherches Petrographiques et Geochimiques; Michard, A. [Aix-Marseille-3 Univ., 13 - Marseille (France)


    Rb-Sr isotopic data from Oligocene and Miocene peri-alpine molassic sediments allow us to identify the different periods for which the eroded rocks have or have not recorded an alpine metamorphism. The Chattian and the Burdigalian sediments result from the erosion of rocks for which the latest metamorphic event was variscan, while the Stampian, Aquitanian and ``Helvetian`` sediments show evidence for the erosion of rocks which have recorded alpine metamorphic events. The application of this method to old detrital sediments could permit determination of the ages of the tectonic events which occurred in the sediment source regions. (authors). 18 refs., 6 figs.

  4. Influx of Different Galapagos Plume Components to the Galapagos Spreading Center: Evidence From Sr-Nd-Pb-Hf Isotope Variations in Axial Lavas Between 86W and 92.5W

    Hauff, F.; Hanan, B.; Hoernle, K. A.; Kokfelt, T. F.; Christie, D.; Werner, R.


    We present new Sr-Nd-Pb-Hf isotope data of basaltic glasses from the GSC between 86W and 92.5W. In this part of the ridge the main structural inventory includes an overlapping spreading center (OSC) at 87.3W, a transform fault (TF) at 91W and a series of seamount chains intersecting the GSC West of the 91W TF. The systematic transition from an axial-valley and rift morphology at axial depths of 2450 m.b.s.l. in the 86W area to an axial-high morphology at progressively shallower depths of 1500 m.b.s.l in the 90.5W area together with gradational changes in major and trace element chemistry of the axial lavas is believed to reflect increasing mantle temperature and compositional changes related to the Galapagos plume [1]. Previous work from 83W to 105W revealed a broad symmetric gradational pattern at around 91W and lead to the conclusion that this region is the main point of plume influx on the GSC [2]. Based on published isotope data Christie et al. (2005) inferred the probable existence of two enrichment peaks immediately East and West of the 91TF. Indeed, along axis variations of our new Sr-Nd-Pb-Hf isotope data map two distinct peaks of enrichment at 92W and 90.5W, suggesting that mantle from the Galapagos hotspot enters the GSC melting zone on both sides of the 91W transform fault. Lavas from within the 91W TF are isotopically intermediate and show a distinct depletion in incompatible trace elements, which may reflect repeated melting at shallow depth of passively upwelling mantle in this unique extensional regime. At least three different components are required to generate the observed isotope correlations. When compared to the geographically distinct isotopic domains of the Galapagos islands; GSC lavas East of the 91W TF form tight correlations from the rim of the Central Galapagos domain through the Eastern Galapagos domain towards DMM. Most axial lavas and corresponding off axis seamounts West of the 91W TF have higher 87Sr/86Sr, 207Pb/204Pb, 208Pb/204Pb

  5. How do granitoid magmas mix with each other? Insights from textures, trace element and Sr-Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa)

    Laurent, Oscar; Zeh, Armin; Gerdes, Axel; Villaros, Arnaud; Gros, Katarzyna; Słaby, Ewa


    In plutonic systems, magma mixing is often modelled by mass balance based on whole-rock geochemistry. However, magma mixing is a chaotic process and chemical equilibration is controlled by non-linear diffusive-advective processes unresolved by the study of bulk samples. Here we present textural observations, LA-(MC-)ICP-MS trace element and Sr-Nd isotopic data of accessory apatites and titanites from a hybrid granodiorite of the Neoarchean Matok pluton (South Africa), collected in a zone of conspicuous mixing between mafic and felsic magmas. Apatite grains mostly show a pronounced zoning in CL images, corresponding to abrupt changes in REE and HFSE concentrations recording their transfer through compositionally different melt domains during mixing. These grains crystallized early, at temperatures of 950-1000 °C. Titanite grains crystallized at temperatures of 820-900 °C (Zr-in-sphene thermometry). They show limited intra-grain chemical variations but huge inter-grain compositional scatter in REE and HFSE, pinpointing crystallization within a crystal mush, from isolated melt pockets having different composition from one another owing to incomplete chemical homogenization and variable Rayleigh fractionation. These chemical-textural characteristics, in combination with partitioning models and Polytopic Vector Analysis, point to "self-mixing" between co-genetic dioritic and granodioritic/granitic magmas. Both resulted from differentiation of mantle-derived mafic melts, showing that mixing does not necessarily involve magmas from contrasted (crust vs. mantle) sources. Systematic variations in ɛNd t (-4.5 to -2.5) and 87Sr/86Sr(i) (0.703-0.707) of titanite and apatite grains/domains crystallized from the two magmas point to an isotopically inhomogeneous mantle source, which is not resolved by bulk-rock isotopic data. Interaction between the two magmas must have occurred at relatively high temperatures (ca. 900°C) so that their viscosity contrast remained low

  6. Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence

    Aouad, Georges [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France); Stille, Peter [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France)]. E-mail:; Crovisier, Jean-Louis [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France); Geoffroy, Valerie A. [UMR 7156 Universite Louis-Pasteur/CNRS, Genetique Moleculaire, Genomique Microbiologie, Departement Micro-organisme, Genomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex (France); Meyer, Jean-Marie [UMR 7156 Universite Louis-Pasteur/CNRS, Genetique Moleculaire, Genomique Microbiologie, Departement Micro-organisme, Genomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex (France); Lahd-Geagea, Majdi [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France)


    Experiments have been performed to test the stability of vitrified municipal solid waste (MSW) incinerator bottom ash under the presence of bacteria (Pseudomonas aeruginosa) and plants (corn). The substratum used for the plant growth was a humus-rich soil mixed with vitrified waste. For the first time, information on the stability of waste glasses in the presence of bacteria and plants is given. Results show that inoculated plant samples contained always about two times higher lanthanide and actinide element concentrations. Bacteria support the element transfer since plants growing in inoculated environment developed a smaller root system but have higher trace element concentrations. Compared with the substratum, plants are light rare earth element (LREE) enriched. The vitrified bottom ash has to some extent been corroded by bacteria and plant activities as indicated by the presence of Nd (REE) and Sr from the vitrified waste in the plants. {sup 87}Sr/{sup 86}Sr and {sup 143}Nd/{sup 144}Nd isotope ratios of plants and soil components allow the identification of the corroded soil components and confirm that bacteria accelerate the assimilation of elements from the vitrified bottom ash. These findings are of importance for landfill disposal scenarios, and similar experiments should be performed in order to better constrain the processes of microbially mediated alteration of the MSW glasses in the biosphere.

  7. Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence.

    Aouad, Georges; Stille, Peter; Crovisier, Jean-Louis; Geoffroy, Valérie A; Meyer, Jean-Marie; Lahd-Geagea, Majdi


    Experiments have been performed to test the stability of vitrified municipal solid waste (MSW) incinerator bottom ash under the presence of bacteria (Pseudomonas aeruginosa) and plants (corn). The substratum used for the plant growth was a humus-rich soil mixed with vitrified waste. For the first time, information on the stability of waste glasses in the presence of bacteria and plants is given. Results show that inoculated plant samples contained always about two times higher lanthanide and actinide element concentrations. Bacteria support the element transfer since plants growing in inoculated environment developed a smaller root system but have higher trace element concentrations. Compared with the substratum, plants are light rare earth element (LREE) enriched. The vitrified bottom ash has to some extent been corroded by bacteria and plant activities as indicated by the presence of Nd (REE) and Sr from the vitrified waste in the plants. (87)Sr/(86)Sr and (143)Nd/(144)Nd isotope ratios of plants and soil components allow the identification of the corroded soil components and confirm that bacteria accelerate the assimilation of elements from the vitrified bottom ash. These findings are of importance for landfill disposal scenarios, and similar experiments should be performed in order to better constrain the processes of microbially mediated alteration of the MSW glasses in the biosphere.

  8. High-Precision Tungsten Isotopic Analysis by Multicollection Negative Thermal Ionization Mass Spectrometry Based on Simultaneous Measurement of W and (18)O/(16)O Isotope Ratios for Accurate Fractionation Correction.

    Trinquier, Anne; Touboul, Mathieu; Walker, Richard J


    Determination of the (182)W/(184)W ratio to a precision of ± 5 ppm (2σ) is desirable for constraining the timing of core formation and other early planetary differentiation processes. However, WO3(-) analysis by negative thermal ionization mass spectrometry normally results in a residual correlation between the instrumental-mass-fractionation-corrected (182)W/(184)W and (183)W/(184)W ratios that is attributed to mass-dependent variability of O isotopes over the course of an analysis and between different analyses. A second-order correction using the (183)W/(184)W ratio relies on the assumption that this ratio is constant in nature. This may prove invalid, as has already been realized for other isotope systems. The present study utilizes simultaneous monitoring of the (18)O/(16)O and W isotope ratios to correct oxide interferences on a per-integration basis and thus avoid the need for a double normalization of W isotopes. After normalization of W isotope ratios to a pair of W isotopes, following the exponential law, no residual W-O isotope correlation is observed. However, there is a nonideal mass bias residual correlation between (182)W/(i)W and (183)W/(i)W with time. Without double normalization of W isotopes and on the basis of three or four duplicate analyses, the external reproducibility per session of (182)W/(184)W and (183)W/(184)W normalized to (186)W/(183)W is 5-6 ppm (2σ, 1-3 μg loads). The combined uncertainty per session is less than 4 ppm for (183)W/(184)W and less than 6 ppm for (182)W/(184)W (2σm) for loads between 3000 and 50 ng.

  9. U-Pb zircon, geochemical and Sr-Nd-Hf-O isotopic constraints on age and origin of the ore-bearing intrusions from the Nurkazgan porphyry Cu-Au deposit in Kazakhstan

    Shen, Ping; Pan, Hongdi; Seitmuratova, Eleonora; Jakupova, Sholpan


    Nurkazgan, located in northeastern Kazakhstan, is a super-large porphyry Cu-Au deposit with 3.9 Mt metal copper and 229 tonnage gold. We report in situ zircon U-Pb age and Hf-O isotope data, whole rock geochemical and Sr-Nd isotopic data for the ore-bearing intrusions from the Nurkazgan deposit. The ore-bearing intrusions include the granodiorite porphyry, quartz diorite porphyry, quartz diorite, and diorite. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating indicates that the granodiorite porphyry and quartz diorite porphyry emplaced at 440 ± 3 Ma and 437 ± 3 Ma, respectively. All host rocks have low initial 87Sr/86Sr ratios (0.70338-0.70439), high whole-rock εNd(t) values (+5.9 to +6.3) and very high zircon εHf(t) values (+13.4 to +16.5), young whole-rock Nd and zircon Hf model ages, and consistent and slightly high zircon O values (+5.7 to +6.7), indicating that the ore-bearing magmas derived from the mantle without old continental crust involvement and without marked sediment contamination during magma emplacement. The granodiorite porphyry and quartz diorite porphyry are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) and depleted in high-field strength elements (HFSE), Eu, Ba, Nb, Sr, P and Ti. The diorite and quartz diorite have also LILE and LREE enrichment and HFSE, Nb and Ti depletion, but have not negative Eu, Ba, Sr, and P anomalies. These features suggest that the parental magma of the granodiorite porphyry and quartz diorite porphyry originated from melting of a lithospheric mantle and experienced fractional crystallization, whereas the diorite and quartz diorite has a relatively deeper lithospheric mantle source region and has not experienced strong fractional crystallization. Based on these, together with the coeval ophiolites in the area, we propose that a subduction of the Balkhash-Junggar oceanic plate took place during the Early Silurian and the ore-bearing intrusions and associated Nurkazgan

  10. Effect of mycorrhizal infection on root uptake by pine seedlings and redistribution of three contrasting radio-isotopes: {sup 85}Sr, {sup 95m}Tc and {sup 137}Cs

    Plassard, C.; Ladeyn, I.; Staunton, S. [Institut National de Recherches Agronomiques (INRA), UMR Rhizosphere and Symbiose 34 - Montpellier (France)


    Mycorrhizal infection is known to improve phosphate nutrition and water supply of higher plants. It has been reported to both increase the uptake of potentially toxic pollutant elements and to protect plants against toxic effects. Little is known about the effect of mycorrhizal infection on the dynamics of radioactive pollutants in soil-plant systems. The aim of this study was to compare the root uptake and root-shoot transfer of three radio-isotopes with contrasting chemical properties ({sup 85}Sr, {sup 95m}Tc and {sup 137}Cs) in mycorrhizal and control, non mycorrhizal plants. The plant studied was Pinus pinaster and the associated ecto-mycorrhizal fungus was Rhizopogon roseolus (strain R18-2). Plants were grown under anoxic conditions for 3 months then transferred to thin layers of autoclaved soil and allowed to grow for four months. After this period, the rhizotrons were dismantled, and plant tissue analysed. Biomass, nutrient content (K, P, N, Ca) and activities of each isotope in roots, shoots and stems were measured, and the degree of mycorrhizal infection assessed. The transfer factors decreased in the order Tc>Sr>Cs as expected from the degree of immobilisation by soil. No effect of mycorrhizal infection on root uptake was observed for Sr. Shoot activity concentration of Tc was decreased by mycorrhizal infection but root uptake correlated well with mycelial soil surface area. In contrast, Cs shoot activity was greater in mycorrhizal than control plants. The uptake and root to shoot distribution shall be discussed in relation to nutrient dynamics. (author)

  11. Petrogenesis and tectonic setting of the early Mesozoic Xitian granitic pluton in the middle Qin-Hang Belt, South China: Constraints from zircon U-Pb ages and bulk-rock trace element and Sr-Nd-Pb isotopic compositions

    Wu, Qianhong; Cao, Jingya; Kong, Hua; Shao, Yongjun; Li, Huan; Xi, Xiaoshuang; Deng, Xuantong


    The Xitian pluton in southeast Hunan province is one of the early Mesozoic (Indosinian) granitic plutons in the South China Block. It is composed of biotite adamellite with K-feldspar megacrysts, biotite adamellite, and biotite granite that have U-Pb zircon ages of 229.9 ± 1.4 Ma, 223.6 ± 1.3 Ma, and 224.0 ± 1.4 Ma, respectively. The Indosinian granitoids in the Xitian pluton belong to S-type granites, with highly radiogenic initial 87Sr/86Sr ratios (0.71397-0.71910), negative εNd(t) values ranging from -10.1 to -9.4, and old Nd model ages (1858-1764 Ma). They are enriched in radiogenic Pb isotopes, with (206Pb/204Pb)t ranging from 18.130 to 18.903, (207Pb/204Pb)t from 15.652 to 15.722, and (208Pb/204Pb)t from 38.436 to 39.037, respectively. These features indicate that the granitoidswithin the Xitian pluton were formed from magmas generated by remelting of metapelite and metapsammite of the Paleoproterozoic metamorphic basement at temperatures of ca. 800 °C, with low oxygen fugacity. The Sr-Nd isotopic compositions of the rocks from Xitian pluton indicate that the granitic magmas were mixed with less than 10% mantle-derived magmas. We suggest that the Xitian pluton was emplaced in an extensional tectonic setting related to release of compressional stresses within the thickened crust during the early Mesozoic.

  12. OIB signatures in basin-related lithosphere-derived alkaline basalts from the Batain basin (Oman) - Constraints from 40Ar/39Ar ages and Nd-Sr-Pb-Hf isotopes

    Witte, M.; Jung, S.; Pfänder, J. A.; Romer, R. L.; Mayer, B.; Garbe-Schönberg, D.


    Tertiary rift-related intraplate basanites from the Batain basin of northeastern Oman have low SiO2 ( 9.73 wt.%) and moderate to high Cr and Ni contents (Cr > 261 ppm, Ni > 181 ppm), representing near primary magmas that have undergone fractionation of mainly olivine and magnetite. Rare earth element systematics and p-T estimates suggest that the alkaline rocks are generated by different degrees of partial melting (4-13%) of a spinel-peridotite lithospheric mantle containing residual amphibole. The alkaline rocks show restricted variations of 87Sr/86Sr and 143Nd/144Nd ranging from 0.70340 to 0.70405 and 0.51275 to 0.51284, respectively. Variations in Pb isotopes (206Pb/204Pb: 18.59-18.82, 207Pb/204Pb: 15.54-15.56, 208Pb/204Pb: 38.65-38.98) of the alkaline rocks fall in the range of most OIB. Trace element constraints together with Sr-Nd-Pb isotope composition indicate that assimilation through crustal material did not affect the lavas. Instead, trace element variations can be explained by melting of a lithospheric mantle source that was metasomatized by an OIB-type magma that was accumulated at the base of the lithosphere sometimes in the past. Although only an area of less than 1000 km2 was sampled, magmatic activity lasted for about 5.5 Ma with a virtually continuous activity from 40.7 ± 0.7 to 35.3 ± 0.6 Ma. During this period magma composition was nearly constant, i.e. the degree of melting and the nature of the tapped source did not change significantly over time.

  13. Pb, Nd and Sr isotopic compositions of feldspar, apatite and sphene as a guide to the nature of the sub-Andean mantle and crust-mantle interaction in the coastal batholith, Peru

    Mukasa, S.B.; Barreiro, B.A.


    Common Pb isotopic compositions for 65 feldspar samples from the 188-37 Ma gabbroic to monzogranitic plutons of the Peruvian Coastal batholith (PCB) show changes along strike that can be related to variable contamination of mantle-derived magmas by Precambrian basement (PB). The dominant Pb component in mafic plutons of the Lima segment (LS) is similar to the isotopically homogeneous reservoir (IHR) identified by others for rocks in central and southern Chile. It has been suggested that the IHR is enriched subcontinental mantle. More siliceous rocks in the LS have considerably higher Pb ratios, suggesting that they have a component of supracrustal materials. Feldspars from plutons in the Arequipa and Toquepala segments (ATS) of the PCB have low PB ratios. The data plot between the PB and IHR fields on Pb correlation diagrams, indicating that these end members were the principal magma sources in southern Peru. /sup 143/Nd//sup 144/Nd and /sup 87/Sr//sup 86/Sr compositions for a small group of apatite and sphene samples selected on the basis of extreme PB ratios in coexisting feldspars are negatively correlated and support the magmagenetic models proposed using the more thorough Pb analyses. Also, mass balance considerations using Nd and Sr concentrations suggest that contamination of IHR magmas by PB was magmatic and not the result of subsolidus diffusion. Contamination of plutons in the ATS by PB and lack of it in the LS supports crustal models by Couch et al. (1981) and Jones (1981) which show a thick PB layer in southern Peru and an extremely thin layer beneath the LS.

  14. Application of exogenous mixture of glutathione and stable isotope labeled glutathione for trapping reactive metabolites in cryopreserved human hepatocytes. Detection of the glutathione conjugates using high resolution accurate mass spectrometry.

    Mezine, Igor; Bode, Chris; Raughley, Bethany; Bhoopathy, Sid; Roberts, Kenneth J; Owen, Albert J; Hidalgo, Ismael J


    Metabolites (including reactive metabolites) of troglitazone were generated by incubation with cryopreserved human hepatocytes and trapped in the presence of an exogenous mixture of unlabeled and stable isotope labeled (SIL: [1,2-(13)C, (15)N]-glycine) glutathione (GSH/SIL-GSH). The incubation samples were analyzed using liquid chromatography-high resolution accurate mass spectrometry (LC-HRAMS) implemented on a LTQ Orbitrap mass spectrometer. The GSH conjugates of the reactive metabolites were detected via a characteristic mono-isotopic pattern (peaks separated by 3.0037u). Analysis of the incubation samples led to detection of a number of previously described GSH conjugates, as well as two novel methylated GSH conjugates, which were partially characterized based on accurate mass measurements and MS/MS data. The addition of exogenous GSH led to an increase in the apparent level of detected GSH conjugates. Kinetic isotopic measurements showed that the rates of incorporation of exogenous GSH are conjugate-specific. In conclusion, this approach, based on the use of a mixture of GSH/SIL-GSH, allows facile capture and detection of reactive metabolites in human hepatocytes. Moreover, the data suggest that routine addition of glutathione to the assay medium may be advisable for experiments with cryopreserved hepatocytes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Mesozoic shoshonitic intrusives in the Yangchun Basin, western Guangdong,and their tectonic significance: Ⅱ. Trace elements and Sr-Nd isotopes%粤西阳春中生代钾玄质侵入岩及其构造意义:

    李献华; 周汉文; 刘颖; 于津生; 桂训唐; 李寄嵎; 陈正宏


    粤西阳春地区马山二长闪长岩强烈富集K、Sr和LREE,(87Sr/86Sr);≈0.7046,εNd(t)≈+1;岗尾-轮水岩体较富集K、Rb、Th和LREE,(87Sr/86Sr):≈0.7063,εNd(t)≈-2;石岩体较富集Sr,K、Rb、Th和LREE相对较低,(87Sr/86Sr);=0.7084~0.7089,εNd(t)≈-6。马山岩体来源于大离子亲石元素(ULE)和LREE富集的交代地幔;岗尾-轮水岩体来自于放射成因Sr、Nd同位素组成略高或交代时间略早的富集交代地幔,并且经历了明显的结晶分异作用;石岩体则很可能是前存下地壳底垫基性岩重熔形成的。从早侏罗世到早白垩世,南岭西部的岩浆成分和源区的规律性变化反映了区域软流圈地幔上涌和岩石圈伸展-拉张-减薄的演化过程。%Trace elements and Sr-Nd isotopic data are presented for theMesozoic intrusives in the Yangchun Basin, western Guangdong. The Mashan monzo-diorites are characterized by strong enrichment of K, Sr and LREE, and nearly chondritic isotopic compositions with (87Sr/86Sr)i ≈ 0. 704 6 and εNd(t) ≈ 1. The Gangwei-Lunshui quartz monzonites and granodiorites are moderately enriched in K, Sr, Rb and LREE, but strongly enriched in Th. They have enriched Sr-Nd isotopic compositions with (87Sr/86Sr)i ≈ 0. 706 3 and εNa(t) ≈ - 2. The Shilu granodiorites are enriched in Sr, but less enriched in K, Rb, Th and LREE. They are characterized by more radiogenic Sr-Nd isotopic compositions with (87Sr/86Sr)i = 0. 708 4 ~ 0. 708 9 and εNa(t) ≈ -6. It is concluded, in terms of geochemical and Sr-Nd isotopic features, that the Mashan monzo-diorites were generated from a metasomatism mantle source strongly enriched in LILE and LREE, while the Gangwei-Lunshui plutons were derived from a metasomatism mantle source with more radiogenic Sr-Nd isotopic compositions followed by extensive crystal fractionation. The Shilu pluton was formed by re-melting of pre-existing underplating mafic rocks at the lower

  16. Origin of Mesozoic and Tertiary granite in the western United States and implications for Pre-Mesozoic crustal structure: 2. Nd and Sr isotopic studies of unmineralized and Cu- and Mo-mineralized granite in the Precambrian Craton

    Farmer, G. Lang; Depaolo, Donald J.


    In the Cordilleran region of the western United States, Mesozoic and Tertiary peraluminous granitic rocks display regional variations in initial 143Nd/144Nd (ɛNd); ɛNd = -10 to -12 in southern Arizona, - 17 to -19 in the northern Great Basin (NGB), and -30 in the northern Rocky Mountains. Initial 87Sr/86Sr values are between 0.710 and 0.721 and show no regional pattern. Metaluminous granitic rocks have a wider range of ɛNd values extending from values similar to those of the peraluminous granites to much higher values. The 87Sr/86Sr values are mostly fairly low, between 0.705 and 0.710 except in the NGB where values as high as 0.7157 are observed. No systematic differences between the ɛNd or 87Sr/86Sr values of Cu- or Mo-mineralized and Unmineralized granite were discerned, except for Cu-mineralized granite in eastern Nevada and Mo-mineralized granite in Colorado, which have ɛNd values higher (˜0) and lower ( ˜-10.0), respectively, than Unmineralized granite in the same region. Comparison to ɛNd values of exposed Precambrian rock suggests that the peraluminous granite, and the Mo granite in Colorado, were derived exclusively from felsic Precambrian basement rocks and that the regional variations in the ɛNd values reflect the regional variation in the average crustal age. The Nd data confirm that the Precambrian basement underlying the NGB and eastern California is isotopically distinct from Precambrian crust in the remainder of the western United States. The similarity between the ɛNd values of peraluminous granite and Precambrian crust also suggests that the high 147Sm/144Nd (>0.13) and the low total light rare earth element (LREE) abundances characteristic of peraluminous granite in southern Arizona were imposed during the chemical evolution of the magmas. Metaluminous granite are interpreted to have formed via mixing of mantle-derived magma and large proportions of low 87Sr/86Sr (granulite facies) lower crust, except in the eastern NGB where the mantle

  17. Sr-Nd isotopic variations in the 4,965 yr BP "Ochre Pumice" plinian fallout of Popocatépetl: Preliminary results and interpretation

    Orsi, G.; Arana-Salinas, L.; Civetta, L.; Siebe, C.


    becomes more silicic towards the top (SiO2 = 63 wt.%). Pumice clasts have a crystallinity index that ranges between 10 and 25 Vol.% and display a seriate texture. Phenocrysts of plagioclase are the most abundant phase and typically display labradoritic cores (An54-59) and andesine rims (An41-46). Augites (En40-44 Wo41-45) and hypersthenes (En66-40) are less common, occur either isolated or in clusters with plagioclase and/or olivine. Ol-crystals are slightly zoned with forsteritic core compositions (Fo65-Fo84). Apatite and opaques occur subordinately. This study aims to determine systematically the Sr-Nd isotopic ratios in the different layers that compose the plinian "Ochre pumice" fallout sequence in order to make inferences regarding magmatic processes (mafic injection, mixing, mingling, etc.) prior to eruption. Preliminary results and interpretations will be presented.

  18. Zircon U-Pb geochronology, geochemistry and Sr-Nd-Pb isotopes from the metamorphic basement in the Wuhe Complex: Implications for Neoarchean active continental margin along the southeastern North China Craton and constraints on the petrogenesis of Mesozoic granitoids

    Andong Wang


    Full Text Available We report zircon U-Pb geochronology, geochemistry and Sr-Nd-Pb isotope data from mafic granulites and garnet amphibolites of the Wuhe Complex in the southeastern margin of the North China Craton (NCC. In combination with previous data, our results demonstrate that these rocks represent fragments of the ancient lower crust, and have features similar to those of the granulite basement in the northern margin of the NCC. A detailed evaluation of the Pb isotope data shows that Pb isotopes cannot effectively distinguish the role of the Yangtze Craton basement from that of the NCC basement with regard to the source and generation of magmas, at least for southeastern NCC. The age data suggest that the protoliths of the granulites or amphibolites in the Wuhe Complex were most likely generated in Neoarchean and that these rocks were subjected to Paleoproterozoic (1.8–1.9 Ga high-pressure granulite facies metamorphism. This study also shows that the Precambrian metamorphic basement in the southeastern margin of the NCC might have formed in a tectonic setting characterized by a late Neoarchean active continental margin.

  19. 90Sr liquid scintillation urine analysis utilizing different approaches for tracer recovery.

    Piraner, Olga; Preston, Rose T.; Shanks, Sonoya Toyoko; Jones, Robert


    90Sr is one of the isotopes most commonly produced by nuclear fission. This medium lived isotope presents serious challenges to radiation workers, the environment, and following a nuclear event, the general public. Methods of identifying this nuclide have been in existence for a number of years (e.g. Horwitz, E.P. [1], Maxwell, S.L.[2], EPA 905.0 [3]) which are time consuming, requiring a month or more for full analysis. This time frame is unacceptable in the present security environment. It is therefore important to have a dependable and rapid method for the determination of Sr. The purposes of this study are to reduce analysis time to less than half a day by utilizing a single method of radiation measurement while continuing to yield precise results. This paper presents findings on three methods that can meet this criteria; (1) stable Sr carrier, (2) 85Sr by gamma spectroscopy, and (3) 85Sr by LSC. Two methods of analyzing and calculating the 85Sr tracer recovery were investigated (gamma spectroscopy and a low energy window-Sr85LEBAB by LSC) as well as the use of two different types of Sr tracer (85Sr and stable Sr carrier). Three separate stock blank urine samples were spiked with various activity levels of 239Pu, 137Cs, 90Sr /90Y to determine the effectiveness of the Eichrome Sr-spec resin 2mL extractive columns. The objective was to compare the recoveries of 85Sr versus a stable strontium carrier, attempt to compare the rate at which samples can be processed by evaluating evaporation, neutralization, and removing the use of another instrument (gamma spectrometer) by using the LSC spectrometer to obtain 85Sr recovery. It was found that when using a calibration curve comprised of a different cocktail and a non-optimum discriminator setting reasonable results (bias of « 25%) were achieved. The results from spiked samples containing 85Sr demonstrated that a higher recovery is obtained when using gamma spectroscopy (89-95%) than when using the LEB window

  20. Eocene Granitoids of the Okhotsk Complex in Sakhalin Island, Russian Far East: Petrogenesis and tectonic implications from zircon U-Pb ages, geochemical and Sr-Nd isotopic characteristics

    Liao, Jia Ping; Alexandrov, Igor; Jahn, Bor-ming


    Sakhalin Island represents an important part of the Western Pacific Orogenic Belt (or "Nipponides"). The island comprises several accreted terrains that have recorded strike-slip displacements and block rotations from Cretaceous to Tertiary. These terrains include fore-arc basins, accretionary complexes and island arc assemblages. The stratigraphic features of most terrains can be correlated to those of Hokkaido Island of Japan. However, little research has been undertaken on the magmatic activities on Sakhalin, so a direct comparison of crustal development and tectonic activities with Hokkaido has not been fulfilled. We intend to study the petrogenesis of granitic complexes of Sakhalin to resolve this problem. In this work, we present new results of age determination and geochemical analyses of the Okhotsk Complex and discuss the tectonic implications. The Okhotsk complex is one of the three main granitoid complexes in Sakhalin Island. It intruded into the Ozersk accretionary terrain that is composed of island arc assemblages and marine sediments and has traveled northward and accreted to Sakhalin Island in Eocene. Eleven samples from the Okhotsk Complex, including 7 granitoids, 1 enclave, 2 rhyolites, and 1 dacite, were subject to zircon U-Pb dating, whole-rock geochemical and Sr-Nd isotopic analyses. The results show that the entire complex was emplaced within 42 to 44 Ma. The 7 granitoids are slightly peraluminous, ferroan, and alkali-calcic. The REE abundances of granitoids show consistent patterns with weak LREE enrichment and negative Eu anomaly. The spidergrams show negative Ta-Nb-Ti anomaly as expected in most granitoids. They possess transitional characteristics between I- and A-type granites. For isotopic signatures, the granitoids have ɛNd(t) values of +2.8 to +3.7, initial 87Sr/86Sr ratios of 0.7047 to 0.7050, and Sm-Nd model ages (TDM-1) of 700-1100 Ma. The middle Eocene magmatic episode (42-44 Ma) of the Okhotsk Complex can find its counterpart in

  1. In situ Sr/Sr investigation of igneous apatites and carbonates using laser-ablation MC-ICP-MS

    Bizzarro, Martin; Simonetti, A.; Stevenson, R.K.;


    In situ Sr isotopic compositions of coexisting apatite and carbonate for carbonatites from the Sarfartoq alkaline complex, Greenland, have been determined by laser-ablation multicollector inductively coupled plasma mass spectrometry. This study is the first to examine the extent of Sr isotopic...... spectrometry but in a much shorter interval of time (100 s vs.>1 h, respectively). The combined total analyses (n = 107) of apatite and carbonate yield Sr/Sr compositions ranging from ~ 0.7025 to ~ 0.7031. This relatively large variation in Sr isotopic compositions (~ 0.0006) is ~ 1 order of magnitude larger...... than the estimated external reproducibility (~ 0.00005,2s) of the method. The large range in Sr/Sr values suggests that apatite and carbonate precipitated predominantly under nonequilibrium conditions. The isotopic variations observed within individual hand specimens may therefore reflect larger...

  2. U-Pb Zircon Ages,Geochemical and Sr-Nd-Hf Isotopic Compositions of Granitoids in Western Songpan-Garze Fold Belt: Petrogenesis and Implication for Tectonic Evolution

    Cai Hongming; Zhang Hongfei; Xu Wangchun


    Granitoids are widespread in the Songpan-Garze (松潘-甘孜) fold belt,western China.These granitoids provide insight into regional tectono-magmatic events,basement nature and tectonic evolution.However,previous studies mainly focused on the eastern Songpan-Garze fold belt In this article,five granitoid intrusions from the western Songpan-Garze fold belt have been studied.These intrusions are composed of quartz-diorite and granodiorite.Using LA-ICP-MS zircon dating method,the obtained magma crystallization ages are 219±2 Ma for the quartz-diorite and 216±5 Ma for the granodiorite.The ages,combined with regional geological analyses,show that they formed in a post-collisional tectonic setting.The quartz-diorite and granodiorite display co-linear variation in their chemical compositions.REE compositions for both the quartz-diorite and granodiorite show strongly fractionated patterns with (La/Yb)N=5.02-18.34 and Eu/Eu*=0.44-0.89.The quartz-diorites have initial 87Sr/86Sr ratios (7Sr) of 0.709 29-0.711 97 and εNd(t) values of -8.6 to -6.1 and the granodiorites have Isr values of 0.705 49-0.709 97 and εNd(t) values of -8.3 to -4.3.Zircon Hf isotopic data show εHr(t) values of -3.8 to +1.6 for the quartz-diorites and -1.2 to +3.0 for the granodiorites.Geochemical and Sr-Nd-Hf isotopic compositions indicate that the quartz-diorites and granodiorites have similar petrogenesis.We suggest that the magmas for the quartz-diorites and granodiorites were derived from partial melting of lower crustal mafic source,resulting from amphibole dehydration melting reaction.The probing of the magma source reveals that the western Songpan-Garze fold belt contains an unexposed continental basement,which is similar to the eastern Songpan-Garze fold belt.Geodynamically,it is proposed that a lithospheric delamination model can account for the magma generation for the quartz-diorites and granodiorites in the western Songpan-Garze fold belt.

  3. Geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Zhunsujihua granitoid intrusions associated with the molybdenum deposit, northern Inner Mongolia, China: implications for petrogenesis and tectonic setting

    Zhang, Xiaojun; Lentz, David R.; Yao, Chunliang; Liu, Rui; Yang, Zhen; Mei, Yanxiong; Fan, Xianwang; Huang, Fei; Qin, Ying; Zhang, Kun; Zhang, Zhenfei


    The Zhunsujihua porphyry molybdenum deposit, located in northern Inner Mongolia of China that belongs to Central-Asian Orogenic Belt (CAOB), is the only Mo deposit formed in the late Carboniferous in this area so far. Its mineralization is mainly restricted to the Zhunsujihua granitoid intrusions, which are composed of the main granodiorite (GD) and crosscutting, virtually coeval minor syn-ore leucogranite (LG) and diorite porphyry (DP) dykes. LA-ICP-MS zircon U-Pb dating yields crystallization ages of 300.0 ± 2.0, 299.3 ± 2.0, and 299.0 ± 2.6 Ma for the GD, LG, and DP, respectively. The major and trace element lithogeochemical data show that the GD and LG are metaluminous to weakly peraluminous, high-K calc-alkaline series with I-type granite characteristics, strongly oxidized, with low concentrations of Ba, Nb, Sr, P, and Ti and elevated K and Rb contents, indicating typical arc magmatic features. The LG is a product derived by extensive fractional crystallization of a parental magma similar to the GD as evident from the lower Eu/Eu*, Nb/Ta, Zr/Hf, and T Zr. The moderately altered DP exhibits high concentrations of K, Rb, Cs, LREE, Y, and low Sr/Y, with a positive ɛ Nd (300 Ma), which indicates a mantle or juvenile source associated with an arc setting. The Sr-Nd-Hf isotope data show low I Sr (0.70406-0.70461) and moderate ɛ Nd (300 Ma) (-0.9 to 1.5) for the GD and LG, and relatively high ɛ Hf (300 Ma) values (-3.6 to +11.2) for the GD, suggesting the magma mainly originated from the juvenile lower crust that was derived from depleted mantle, with a minor component of ancient continental crust. Lead isotope data have characteristics of a lower crust source with minor contamination by upper crustal material. Combined with previous research, the Zhunsujihua granitoid intrusions developed in an intracontinental volcanic arc (Uliastai) associated with northward subduction of the Paleo-Asian Ocean plate during late Carboniferous to early Permian; this suggests

  4. Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr-Nd-Hf-O isotopic study from the Paleozoic Tongbai orogen, central China

    Wang, Hao; Wu, Yuan-Bao; Yang, Jin-Hui; Qin, Zheng-Wei; Duan, Rui-Chun; Zhou, Lian; Yang, Sai-Hong


    Ascertaining the petrogenesis of granitoid rocks in subduction zones holds the key for understanding the processes of how continental crust is produced. The synchronous Taoyuan and Huanggang plutons occur in two different geological units of the Paleozoic Tongbai orogen of central China. They provide an optimal opportunity for a study to address the role of the crustal basement in generating voluminous granitoid magmatism in subduction zones. The Taoyuan and Huanggang plutons have identical U-Pb zircon crystallization ages of 440-444 Ma, which are temporally related to northward subduction of the Paleotethyan Ocean. The Taoyuan samples show high SiO2 (73.36-79.16%) and low Al2O3 (12.00-13.45%) contents, Mg numbers (20.6-38.2), and Sr/Y (2.04-10.1) and (La/Yb)N (2.34-7.32) ratios with negative Eu anomalies (Eu/Eu* = 0.33-0.93). They yielded positive εNd(t) (+ 3.0 to + 6.7) and εHf(t) (+ 11.8 to + 13.2) values, elevated initial Sr isotopic ratios (0.7040-0.7057) and relatively low zircon δ18O values of 4.62-5.39‰. These suggest that they were produced through partial melting of hydrothermally altered lower crust of the accreted Erlangping oceanic arc. In contrast, the Huanggang samples exhibit variable whole-rock geochemical and isotopic compositions with SiO2 contents of 57.01-64.42 wt.%, initial Sr isotopic ratios of 0.7065-0.7078, and εNd(t) values of - 5.7 to - 9.4. Additionally, they have high zircon δ18O values of 7.57-8.45‰ and strongly negative zircon εHf(t) values of - 14.4 to - 10.5. They were suggested to have been mainly derived from ancient continental crust of the Kuanping crustal unit with the addition of 20-40% juvenile, mantle-derived material. Accordingly, the granitoids in both oceanic and continental arcs are likely to be mainly derived from intracrustal melting of their crustal basement. It is revealed by the Huanggang pluton that little net continental crust growth occurs in continental arcs, and addition of new volume of continental

  5. Rb-Sr and Sm-Nd Isotope Systematics of Shergottite NWA 856: Crystallization Age and Implications for Alteration of Hot Desert SNC Meteorites

    Brandon, A. D.; Nyquist, L. E.; Shih, C.-Y.; Wiesmann, H.


    Nakhlite NWA 998 was discovered in Algeria in 2001, and is unique among the six known members of this group of Martian meteorites in containing significant modal orthopyroxene. Initial petrologic and isotopic data were reported by Irving et al. This 456 gram stone consists mainly of sub-calcic augite with subordinate olivine and minor orthopyroxene, titanomagnetite, pyrrhotite, chlorapatite, and intercumulus An(sub 35) plagioclase. We report here preliminary results of radiogenic isotopic analyses conducted on fragmental material from the main mass.

  6. Behaviour of the Sm-Nd and Rb-Sr systems of the mafic-ultramafic layered sequence from Ribeirao dos Motas (Archaean), meridional craton Sao Francisco: evidences of mantle source enrichment and isotopic fractionation; Comportamento dos sistemas Sm-Nd e Rb-Sr da sequencia acamadada mafico-ultramafico Ribeirao dos Motas (Arqueano), craton Sao Francisco Meridional: evidencias de enriquecimento mantelico e fracionamento isotopico

    Carneiro, Mauricio Antonio; Carvalho Junior, Irneu Mendes de; Oliveira, Arildo Henrique de [Ouro Preto Univ., (UFOP), MG (Brazil). Dept. de Geologia]. E-mail:; Teixeira, Wilson [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica; Pimentel, Marcio Martins [Brasilia Univ., DF (Brazil). Inst. de Geociencias. Lab. de Geocronologia


    The Ribeirao dos Motas layered sequence (SARM) crops out in the southern part of the Sao Francisco Craton, Brazil. This sequence comprises phaneritic meta ultramafic and metamafic rocks, which, although slightly deformed and metamorphosed, retain primary igneous layers. Porphyritic rocks with idiomorphic pyroxene crystals and heteradcumulate and adcumulate textures are also present. Eighteen isotopic analyses were performed in the SARM, comprising rocks with primary (relict) textures, as well as rocks in amphibolite facies and retro-metamorphosed to green-schist facies. Seven samples yield a Sm/Nd isochron age of 2.79 +- 0.30 Ga (MSWD=1.2 e epsilon {sub Ndt}=+0.48), constraining the accretion time of the SARM rocks. The positive epsilon {sub Ndt} value coupled with the Rb/Sr evidence is consistent with mantle source relatively enriched in Nd and Sr isotopes. Nevertheless, some SARM samples display isotopic fractionation and disturbance, which can be ascribed to the following processes or their combinations: a) mobilization of the incompatible elements due to regional high grade metamorphism; b) isotopic changes during upper amphibolite facies overprint; c) isotopic resetting by low-grade fluids associated to the Claudio Shear zone, which is located nearby the SARM. (author)

  7. Draft Genome Sequence of Uncultivated Toluene-Degrading Desulfobulbaceae Bacterium Tol-SR, Obtained by Stable Isotope Probing Using [13C6]Toluene.

    Abu Laban, Nidal; Tan, BoonFei; Dao, Anh; Foght, Julia


    The draft genome of a member of the bacterial family Desulfobulbaceae (phylum Deltaproteobacteria) was assembled from the metagenome of a sulfidogenic [(13)C6]toluene-degrading enrichment culture. The "Desulfobulbaceae bacterium Tol-SR" genome is distinguished from related, previously sequenced genomes by suites of genes associated with anaerobic toluene metabolism, including bss, bbs, and bam.

  8. Evaluation of the effects of microscale chemical and isotopic heterogeneity of coral skeleton on conventional Sr/Ca and 18O paleothermometers

    Takehiro Mitsuguchi


    Recent studies using secondary ion mass spectrometry revealed microscale heterogeneity of Sr/Ca and 18O in shallow-water coral skeletons, i.e., Sr/Ca and 18O differ significantly between two basic microfeatures of the skeleton: the center of calcification (COC) and surrounding fibrous skeleton (SFS). The COC, in contrast with the SFS, consists of highly irregular crystals intermingled with significant amount of organic matter; therefore, analyzing the SFS only would probably be favourable for paleotemperature reconstruction. Conventional Sr/Ca and 18O paleothermometers are, however, based on the analysis of the mixture of the COC and SFS, and thus may be significantly affected by the above-mentioned heterogeneity. In this study, I have evaluated the heterogeneity-induced effects on the conventional paleothermometers of Porites skeletons using published Sr/Ca, 18O and volume-fraction data of the COC and SFS and published observations of seasonal variability of bulk skeletal density. Results indicate that the effects may yield significant or serious errors in paleotemperature reconstruction.

  9. Magnetic rotation phenomenon in the dipole (ΔI = 1) bands of transitional strontium (Sr) isotopes near N = 50 shell closure

    Kumar, Naveen; Kumar, S.; Mandal, S.K. [University of Delhi, Department of Physics and Astrophysics, Delhi (India); Saha, S.; Sethi, J.; Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Mumbai (India)


    The lifetime measurements were done for the transitions of the dipole (ΔI = 1) bands in {sup 85,86}Sr nuclei using the Doppler Shift Attenuation Method (DSAM). The high-spin states in these nuclei were populated in the {sup 76}Ge({sup 13}C, 4n){sup 85}Sr and {sup 76}Ge({sup 13}C, 3n){sup 86}Sr reactions. The B(M1) transition rates have been obtained for the states of two positive-parity dipole (Δ I = 1) bands in the {sup 85}Sr nucleus and one positive-parity dipole (ΔI = 1) band in the {sup 86} Sr nucleus. The present results on the transition rates are important to know whether these dipole (ΔI = 1) bands have the signatures of Magnetic Rotation (MR). In order to investigate their magnetic character, the experimental results have been compared with the calculations within the framework of hybrid Tilted-Axis-Cranking (TAC) model. On the basis of the TAC calculations, band 2 of the {sup 85}Sr nucleus is assigned the π(g{sub 9/2}){sup 2} x ν(g{sub 9/2}){sup -1} configuration and shows the MR character, while for band 3, the π[(g{sub 9/2}){sup 2}(f{sub 5/2}){sup 2}] x ν(g{sub 9/2}){sup -1} configuration is suggested. In the case of {sup 86}Sr nucleus, band 3 has the π(g{sub 9/2}){sup 2} x ν(g{sub 9/2}){sup -2} configuration below the spin I{sup π} = 16{sup +} and above this spin the π[(g{sub 9/2}){sup 2}(f{sub 5/2}){sup 1}(p{sub 1/2}/p{sub 3/2}){sup 1}] x ν(g{sub 9/2}){sup -2} configuration plays an important role. The experimental B(M1) transition rates show a decreasing trend with the increase in spin and are comparable with the TAC calculations before the I{sup π} = 16{sup +}. (orig.)

  10. Rapid Environmental Fluctuations Recorded over the Last Glacial/Interglacial Cycle in the Sediments from Borehole PRGL1-4 (Gulf of Lions; Western Mediterranean) using Radiogenic Isotopes (Sr & Nd)

    Nizou, J.


    The study of sediments deposited and preserved in oceanic basins unable us to examine how terrigenous sediment supply varied through time in relation to paleoenvironmental and climatic changes on land. The geochemical and isotopic compositions of marine sediment are used to unravel its provenance, and provide information about its formation. Providing that the paleoclimatic frame is known, such data give an insight into the rock-source location and allow us to decipher between genetic processes of mechanical erosion and chemical alteration. Borehole PRGL1-4 (European project PROMESS), located in the Gulf of Lions (W Mediterranean) at 300 mwd, was investigated geochemically at high-temporal resolution over the last glacial/interglacial cycle (i.e. 130 ka) to study sediment-source variations during rapid climate changes. Besides, sediments originating from the Rhône's and the Pyreneo-Languedocian's catchment areas have been analyzed to measure the isotopic composition of five source end-members that are the Alps, the Higher Rhône valley, the Lower Rhône valley, the Languedoc and the Pyrenees. Epsilon Nd and 87Sr/86Sr were measured on 60 samples encompassing 4 marine isotopic stages with an emphasis on Heinrich events. The epsilon Nd values of PRGL1-4 lean towards the Lower Rhône valley unradiogenic end-member during cold stadial intervals, and towards the Alpine radiogenic end-member during warm interstadials. The presence of an ice cap over the crystalline Alpine watershed during cold phases could prevent the sediments originating from this region from reaching the Gulf of Lions. The same pattern is observed during the time of Heinrich events. An influence of the sea level variations on the sedimentation at the borehole site during the Heinrich events is unlikely since they are only 10 to 15 m in amplitude. Furthermore, a major isotopic shift in epsilon Nd mean values is displayed around 40 ka that coincides with the connection of the Durance to the Rhône River

  11. Reconstruction of Pliocene-Pleistocene sediment sources and weathering intensity in the paleo-life rich Olduvai and Laetoli basins of northern Tanzania using major and trace element geochemistry and Sr isotopic data

    Kasanzu, Charles H.; Maboko, Makenya A. H.; Manya, Shukrani


    Major and trace elements and Sr isotopic compositions were analyzed for samples from the Pliocene-Pleistocene to Recent Olduvai and Laetoli basins of northern Tanzania with the aim of constraining their provenance and paleo-climatic conditions. The Olduvai samples are characterised by La/Cr ratios of 0.69-3.73, Th/Sc = 1.12-24.6 and 87Sr/86Sr = 0.70448-0.70563; features which suggest the volcanic facies of the nearby Olmoti as their possible source. The relatively lower values for the Laetoli basin (Th/Sc = 0.4-0.9 and 87Sr/86Sr = 0.70412-0.70508) coupled with Zr/Nb, Nb/Ta ans Zr/Hf ratios are suggestive of a mafic protolith inferred to be the Sadiman lavas. The calculated Chemical Index of Alteration (CIA) values for the Laetoli samples are 58-78% (mean = 65%) indicating higher weathering intensities of the source compared to 45% in the Olduvai samples. The calculated Mean Annual Precipitation (MAP) values are higher at Laetoli (mean = 950 ± 181 mm/yr) relative to Olduvai (mean = 694 ± 181 mm/yr) consistent with increased rainfall in the Pliocene during the deposition of Laetoli strata when compared to the Pleistocene times when the Olduvai sediments were deposited. The CIA and MAP patterns observed at Laetoli and Olduvai can be related to temporal changes in weather conditions during the Pliocene and Pleistocene, respectively. The Lower CIA and MAP values at Olduvai imply the prevalence of arid to semi-arid climatic conditions during the Pleistocene whereas the higher values at Laetoli correspond with wetter conditions during the Pliocene times. This could have the potential for improved eutrophication at Laetoli. The climatic inferences drawn from CIA and MAP data may point to a more favourable habitat for life proliferation in the wetter environment of Laetoli compared to the drier Olduvai. This inference is consistent with archaeological evidence which indicates a greater abundance of hominin fossils including the well preserved footprints in Laetoli.

  12. Petrology of the shoshonitic Çambaşı pluton in NE Turkey and implications for the closure of the Neo-Tethys Ocean: Insights from geochemistry, geochronology and Sr-Nd isotopes

    Özdamar, Şenel; Roden, Michael F.; Billor, Mehmet Z.


    The Eastern Pontide Orogenic Belt (EPOB) is one of the well-preserved continental magmatic arcs in the Alpine-Himalayan Belt and consists of Paleozoic to Miocene plutonic bodies. This paper presents new geological, bulk-rock major and trace element analyses, biotite Ar-Ar ages and Sr-Nd isotope data on representative samples from the Çambaşı granitic body exposed in the northwestern part of the EPOB. Although the majority of the plutons in the EPOB show calc-alkaline affinity and I-type character, the Çambaşı pluton has a shoshonitic affinity and an I-type, metaluminous signature. The pluton is composed of mainly monzonite, quartz monzonite and granite bodies including monzo-dioritic mafic microgranular enclaves (MMEs). Excluding the MMEs, these rocks have 57.7-70.2 wt.% SiO2, 13.1-17.5 wt.% Al2O3, 3.06-3.64 wt.% Na2O, 3.66-5.92 wt.% K2O, 0.33-3.3 wt.% MgO and Mg# earth element (LREE)-enrichment, relatively flat heavy rare earth element (HREE) patterns with small negative Eu anomalies and moderately fractioned REE patterns [average (La/Yb)N = 11.32]. Decreasing Fe2O3T, MgO, CaO, TiO2, Ba, Eu, and Sr with increasing SiO2 contents are consistent with fractional crystallization and can be related to fractionation of plagioclase, clinopyroxene, hornblende, apatite and Fe-Ti oxides. Initial 87Sr/86Sr ratios vary between 0.70470 and 0.70478, while those of 143Nd/144Nd lie between 0.51262 and 0.51263. Major, trace element and initial Sr-Nd homogeneity show that fractional crystallization played a key role in the evolution of the pluton. 40Ar/39Ar dating of four biotite samples from the pluton gave plateau ages of between 44.62 ± 0.1 Ma and 44.10 ± 0.0 Ma, which are interpreted as cooling ages of the plutonic rocks. We suggest that the Çambaşı pluton formed in a post-collisional extensional setting where partial melting of chemically enriched lithospheric mantle was controlled by lithospheric thinning and upwelling of asthenosphere that followed the closure of

  13. Sulfide mineralization associated with arc magmatism in the Qilian Block, western China: zircon U-Pb age and Sr-Nd-Os-S isotope constraints from the Yulonggou and Yaqu gabbroic intrusions

    Zhang, Zhao-Wei; Li, Wen-Yuan; Gao, Yong-Bao; Li, Chusi; Ripley, Edward M.; Kamo, Sandra


    The sulfide-bearing Yulonggou and Yaqu mafic intrusions are located in the southern margin of the Qilian Block, Qinghai Province, western China. They are small dike-like bodies mainly composed of gabbros and diorites. Disseminated sulfides (pyrrhotite, pentlandite, and chalcopyrite) are present as concordant lenses within the intrusions. Precise CA-ID-TIMS zircon U-Pb dating yields the crystallization ages of 443.39 ± 0.42 and 440.74 ± 0.33 Ma for the Yulonggou and Yaqu intrusions, respectively. Whole rock samples from both intrusions show light rare earth element (REE) enrichments relative to heavy REE and pronounced negative Nb-Ta anomalies relative to Th and La, which are consistent with the products of arc basaltic magmatism. The Yulonggou intrusion has negative ɛ Nd values from -5.7 to -7.7 and elevated (87Sr/86Sr) i ratios from 0.711 to 0.714. In contrast, the Yaqu intrusion has higher ɛ Nd values from -4.1 to +8.4 and lower (87Sr/86Sr) i ratios from 0.705 to 0.710. The δ34S values of sulfide separates from the Yulonggou and Yaqu deposits vary from 0.8 to 2.4 ‰ and from 2 to 4.3 ‰, respectively. The γ Os values of sulfide separates from the Yulonggou and Yaqu deposits vary between 80 and 123 and between 963 and 1,191, respectively. Higher γ Os values coupled with higher δ34S values for the Yaqu deposit relative to the Yulonggou deposit indicate that external sulfur played a bigger role in sulfide mineralization in the Yaqu intrusion than in the Yulonggou intrusion. Mixing calculations using Sr-Nd isotope data show that contamination with siliceous crustal materials is more pronounced in the Yulonggou intrusion (up to 20 wt%) than in the Yaqu intrusion (market condition due to small sizes and low Ni grades, which can be explained by late-stage sulfide saturation after extensive olivine fractional crystallization from the magmas. Based on these observations, we suggest a shift of focus for Ni exploration in the region from mafic/gabbroic intrusions

  14. Molar-tooth Carbonate Sequences and Sr Isotopes in the Neoproterozoic for Stratigraphic Correlation:Research in the Jilin-Liaoning-Xuzhou-Huaiyang Area of the Sino-Korean Plate and Its Correlation with the Yangtze Plate

    MENG Xianghua; GE Ming; LIU Yanxue; KUANG Hongwei; LIU Weifu; Francoise G. BOURROUILH-LE JAN; Robert BOURROUILH


    Based on a study of Neoproterozoic carbonates in the Jilin-Liaoning-Xuzhou-Huaiyang area, especially its cyclic sequence stratigraphy and Sr isotopes, two maximum sea flooding events (at 820 Ma and 835 Ma) have been identified. The resulting isochronous stratigraphic correlation proves that these Precambrian strata were connected between the Qingbaikou and the Nanhuan systems with a time range from 750 Ma to 850 Ma. The disappearance of microsparite carbonate and coming of a glacial stage offer important evidence for worldwide stratigraphic correlation and open a window for further correlation of the stratigraphic successions across the Sino-Korean and Yangtze Plates. A new correlation scheme is therefore provided based on our work.

  15. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes

    Xu, Bin; Jiang, Shao-Yong; Luo, Lan; Zhao, Kui-Dong; Ma, Liang


    The Pengshan Sn and Pb-Zn polymetallic deposits are located in the south margin of the Jiujiang-Ruichang (Jiurui) district of the Middle-Lower Yangtze River Metallogenic Belt in South China. Four large deposits include Huangjinwa, Zengjialong, Jianfengpo, and Zhangshiba, the former three are Sn-dominant deposits which occur as stratiform orebodies in the contact zones of the Pengshan granites and within the country rock strata, whereas Zhangshiba consists of stratiform Pb-Zn orebodies within the Precambrian metasedimentary strata. In this study, we present results on zircon U-Pb ages, major and trace elements, and mineral chemistry as well as Sr-Nd-Hf isotope data of the granites, Pb and S isotopes of both the Sn-dominant and Pb-Zn dominant deposits, and U-Pb dating of cassiterite from the Pengshan district. SHRIMP and LA-ICP-MS zircon U-Pb dating shows that the Pengshan granites were emplaced in the Early Cretaceous (129-128 Ma), which is in good agreement with the U-Pb dating (130-128 Ma) of cassiterite from the Jianfengpo Sn deposit. The Pengshan granites consist mainly of weakly peraluminous highly fractionated I-type affinity granitic rocks. Detailed elemental and isotopic data suggest that the granites formed by partial melting of Mesoproterozoic metamorphic basement materials with minor input of mantle-derived melts. The mineral chemistry of biotite demonstrates that the Pengshan granitic magma had a low oxygen fugacity, thereby precluding the tin dominantly partitioning into the rock-forming silicate minerals and favoring accumulation in the exsolved residual liquid during magma crystallization stages. Sulfur isotopes show a relatively heavy sulfur isotopic composition from 5.8 to 17.6 ‰, and no difference for sulfur isotopes between the Sn deposits (5.8-13.4 ‰, Huangjinwa, Zengjialong, Jianfengpo) and the Pb-Zn deposit (mostly 7.1-13.0 ‰, except for one 17.6 ‰, Zhangshiba). The sulfur isotope data of pyrite from the host sedimentary rocks show

  16. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes

    Xu, Bin; Jiang, Shao-Yong; Luo, Lan; Zhao, Kui-Dong; Ma, Liang


    The Pengshan Sn and Pb-Zn polymetallic deposits are located in the south margin of the Jiujiang-Ruichang (Jiurui) district of the Middle-Lower Yangtze River Metallogenic Belt in South China. Four large deposits include Huangjinwa, Zengjialong, Jianfengpo, and Zhangshiba, the former three are Sn-dominant deposits which occur as stratiform orebodies in the contact zones of the Pengshan granites and within the country rock strata, whereas Zhangshiba consists of stratiform Pb-Zn orebodies within the Precambrian metasedimentary strata. In this study, we present results on zircon U-Pb ages, major and trace elements, and mineral chemistry as well as Sr-Nd-Hf isotope data of the granites, Pb and S isotopes of both the Sn-dominant and Pb-Zn dominant deposits, and U-Pb dating of cassiterite from the Pengshan district. SHRIMP and LA-ICP-MS zircon U-Pb dating shows that the Pengshan granites were emplaced in the Early Cretaceous (129-128 Ma), which is in good agreement with the U-Pb dating (130-128 Ma) of cassiterite from the Jianfengpo Sn deposit. The Pengshan granites consist mainly of weakly peraluminous highly fractionated I-type affinity granitic rocks. Detailed elemental and isotopic data suggest that the granites formed by partial melting of Mesoproterozoic metamorphic basement materials with minor input of mantle-derived melts. The mineral chemistry of biotite demonstrates that the Pengshan granitic magma had a low oxygen fugacity, thereby precluding the tin dominantly partitioning into the rock-forming silicate minerals and favoring accumulation in the exsolved residual liquid during magma crystallization stages. Sulfur isotopes show a relatively heavy sulfur isotopic composition from 5.8 to 17.6 ‰, and no difference for sulfur isotopes between the Sn deposits (5.8-13.4 ‰, Huangjinwa, Zengjialong, Jianfengpo) and the Pb-Zn deposit (mostly 7.1-13.0 ‰, except for one 17.6 ‰, Zhangshiba). The sulfur isotope data of pyrite from the host sedimentary rocks show

  17. Emplacement ages, geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal growth and regional tectonic evolution

    Jahn, Bor-ming; Valui, Galina; Kruk, Nikolai; Gonevchuk, V.; Usuki, Masako; Wu, Jeremy T. J.


    The Sikhote-Alin Range of the Russian Far East is an important accretionary orogen of the Western Pacific Orogenic Belt. In order to study the formation and tectonic evolution of the orogen, we performed zircon U-Pb dating, as well as geochemical and Sr-Nd-Hf isotopic analyses on 24 granitoid samples from various massifs in the Primorye and Khabarovsk regions. The zircon dating revealed that the granitoids were emplaced from 131 to 56 Ma (Cretaceous to Paleogene). In the Primorye Region, granitoids in the coastal Sikhote-Alin intruded the Cretaceous Taukha Accretionary Terrane from ca. 90 to 56 Ma, whereas those along the Central Sikhote-Alin Fault zone intruded the Jurassic Samarka Accretionary Terrane during ca. 110-75 Ma. The "oldest" monzogranite (131 Ma) was emplaced in the Lermontovka area of the NW Primorye Region. Granitoid massifs along the Central Sikhote-Alin Fault zone in the Khabarovsk Region formed from 109 to 58 Ma. Thus, the most important tectonothermal events in the Sikhote-Alin orogen took place in the Cretaceous. Geochemical analysis indicates that most samples are I-type granitoids. They have initial 87Sr/86Sr ratios ranging from 0.7040 to 0.7083, and initial Nd isotopic ratios, expressed as εNd(t) values, from +3.0 to -5.0 (mostly 0 to -5). The data suggest that the granitoid magmas were generated by partial melting of sources with mixed lithologies, including the subducted accretionary complex ± hidden Paleozoic-Proterozoic basement rocks. Based on whole-rock Nd isotopic data, we estimated variable proportions (36-77%) of juvenile component (=mantle-derived basaltic rocks) in the generation of the granitic magmas. Furthermore, zircon Hf isotopic data (εHf(t) = 0 to +15) indicate that the zircon grains crystallized from melts of mixed sources and that crustal assimilation occurred during magmatic differentiation. The quasi-continuous magmatism in the Sikhote-Alin orogen suggests that the Paleo-Pacific plate subduction was very active in the

  18. Overview of the geochemistry and Rb/Sr, Sm/Nd isotopes of Middle Jurassic and Tertiary granitoid intrusions: a new insight on tectono-magmatism and mineralization of this period in Iran

    Mohammad Ali Jazi


    Full Text Available One of the most intensive occurrences of magmatism in Iran was in the middle Jurassic period. Among the granitoid intrusions in this period as discrete bodies or complexes can be pointed to Aligoodarz, Alvand, Astaneh, Boroujerd, Malayer, and Chah-Dozdan in the Sanandaj-Sirjan zone; Shir-kuh and Ayrakan in the Central Iran zone; Shah-kuh, Sorkh-kuh and Kalateh-Ahani in the Lut Block. These granitoids are mostly peraluminous and belong to high-K calc-alkaline series. CaO/Na2O ratios (0.12 to 8.37 mostly suggest a clay-free source for formation of the intrusive rocks magma. Chondrite-normalized Rare Earth Elements (REEs diagram do not display high enrichment of Light Rare Earth Elements (LREEs than Heavy Rare Earth Elements (HREEs and general pattern is relatively flat. In addition, diagram shows Eu negative anomaly, which can be attributed to indicate reducing conditions in formation of magma and/or magma derived from plagioclase depth as source. The lower continental crust-normalized spider diagram indicates enrichment in LILE (Rb, Cs, and K and LREE (La and Ce and depletion in Ba, Nb, Ta, Sr, and Ti. Initial 87Sr/86Sr ratios are 0.70609 to 0.71938 and initial εNd values are negative (from -6.51 to -1.1 indicating that magma derived from continental crust. Geochemical and isotopic evidence of the intrusive rocks shows continental crust origin (S-type granitoid and due to continental collision. Geological findings such as stop in sedimentation, regional metamorphism, ophiolite displacement, and continental collision-related mineralization confirm continental collision between Iranian and Arabian plates in the Middle Jurassic period.

  19. Accurate fast method with high chemical yield for determination of uranium isotopes ({sup 234}U, {sup 235}U, {sup 238}U) in granitic samples using alpha spectroscopy

    Guirguis, Laila A., E-mail:; Farag, Nagdy M.; Salim, Adham K.


    The present study aims to use the α-spectroscopy at Nuclear Materials Authority (NMA) of Egypt. A radiochemical technique for analysis uranium isotopes was carried out for ten mineralized granitic samples together with the International standards RGU-1 (IAEA) and St{sub 4} (NMA). Several steps of sample preparation, radiochemical separation and source preparation were performed before analysis. Uranium was separated from sample matrix with 0.2 M TOPO in cyclohexane as an extracting agent with a chemical yield 98.95% then uranium was purified from lanthanides and actinides present with 0.2 M TOA in xylene as an extracting agent. The pure fraction was electrodeposited on a mirror-polished copper disc from buffer solution (NaHSO{sub 4}+H{sub 2}SO{sub 4}+NH{sub 4}OH). Rectangle pt-electrode with an anode-cathode distance of 2 cm was used. Current was 900 mA and the electrodeposition time reach up to 120 min. The achieved results show that the chemical yield ranged between 87.9±6.8 and 98±8.6. - Highlights: • Radiochemical technique for analysis uranium isotopes. • Alpha-particle spectrometry is performed after a radiochemical procedure. • Electrodeposition conditions for preparation of alpha uranium source. • Using {sup 232}U (t{sub 1/2}=70.6a, E{sub α}=5320.24 keV, intensity=69.1%) as an internal tracer makes it a highly reliable technique.

  20. An ultra-clean technique for accurately analysing Pb isotopes and heavy metals at high spatial resolution in ice cores with sub-pg g(-1) Pb concentrations.

    Burn, Laurie J; Rosman, Kevin J R; Candelone, Jean-Pierre; Vallelonga, Paul; Burton, Graeme R; Smith, Andrew M; Morgan, Vin I; Barbante, Carlo; Hong, Sungmin; Boutron, Claude F


    Measurements of Pb isotope ratios in ice containing sub-pg g(-1) concentrations are easily compromised by contamination, particularly where limited sample is available. Improved techniques are essential if Antarctic ice cores are to be analysed with sufficient spatial resolution to reveal seasonal variations due to climate. This was achieved here by using stainless steel chisels and saws and strict protocols in an ultra-clean cold room to decontaminate and section ice cores. Artificial ice cores, prepared from high purity water were used to develop and refine the procedures and quantify blanks. Ba and In, two other important elements present at pg g(-1) and fg g(-1) concentrations in Polar ice, were also measured. The final blank amounted to 0.2+/-0.2 pg of Pb with (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios of 1.16+/-0.12 and 2.35+/-0.16, respectively, 1.5+/-0.4 pg of Ba and 0.6+/-2.0 fg of In, most of which probably originates from abrasion of the steel saws by the ice. The procedure was demonstrated on a Holocene Antarctic ice core section and was shown to contribute blanks of only approximately 5%, approximately 14% and approximately 0.8% to monthly resolved samples with respective Pb, Ba and In concentrations of 0.12 pg g(-1), 0.3 pg g(-1) and 2.3 fg g(-1). Uncertainties in the Pb isotopic ratio measurements were degraded by only approximately 0.2%.

  1. Evaluation of strontium isotope abundance ratios in combination with multi-elemental analysis as a possible tool to study the geographical origin of ciders

    Garcia-Ruiz, Silvia [Department of Physical and Analytical Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Moldovan, Mariella [Department of Physical and Analytical Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Fortunato, Giuseppino [Swiss Federal Laboratories for Materials Testing and Research EMPA, 9014 St. Gallen (Switzerland); Wunderli, Samuel [Swiss Federal Laboratories for Materials Testing and Research EMPA, 9014 St. Gallen (Switzerland); Garcia Alonso, J. Ignacio [Department of Physical and Analytical Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)]. E-mail:


    In order to evaluate alternative analytical methodologies to study the geographical origin of ciders, both multi-elemental analysis and Sr isotope abundance ratios in combination with multivariate statistical analysis were estimated in 67 samples from England, Switzerland, France and two Spanish regions (Asturias and the Basque Country). A methodology for the precise and accurate determination of the {sup 87}Sr/{sup 86}Sr isotope abundance ratio in ciders by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) was developed. Major elements (Na, K, Ca and Mg) were measured by ICP-AES and minor and trace elements (Li, Be, B, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, Sn, Sb, Cs, Ba, La, Ce, W, Tl, Pb, Bi, Th and U) were measured by ICP-MS using a collision cell instrument operated in multitune mode. An analysis of variance (ANOVA test) indicated that group means for B, Cr, Fe, Ni, Cu, Se, Cd, Cs, Ce, W, Pb, Bi and U did not show any significant differences at the 95% confidence level, so these elements were rejected for further statistical analysis. Another group of elements (Li, Be, Sc, Co, Ga, Y, Sn, Sb, La, Tl, Th) was removed from the data set because concentrations were close to the limits of detection for many samples. Therefore, the remaining elements (Na, Mg, Al, K, Ca, Ti, V, Mn, Zn, As, Rb, Sr, Mo, Ba) together with {sup 87}Sr/{sup 86}Sr isotope abundance ratio were considered for principal component analysis (PCA) and linear discriminant analysis (LDA). Finally, LDA was able to classify correctly 100% of cider samples coming from different Spanish regions, France, England and Switzerland when considering Na, Mg, Al, K, Ca, Ti, V, Mn, Zn, As, Rb, Sr, Mo, Ba and {sup 87}Sr/{sup 86}Sr isotope abundance ratio as original variables.

  2. High-precision 87Sr/86Sr analyses in wines and their use as a geological fingerprint for tracing geographic provenance.

    Marchionni, Sara; Braschi, Eleonora; Tommasini, Simone; Bollati, Andrea; Cifelli, Francesca; Mulinacci, Nadia; Mattei, Massimo; Conticelli, Sandro


    The radiogenic isotopic compositions of inorganic heavy elements such as Sr, Nd, and Pb of the food chain may constitute a reliable geographic fingerprint, their isotopic ratios being inherited by the geological substratum of the territory of production. The Sr isotope composition of geomaterials (i.e., rocks and soils) is largely variable, and it depends upon the age of the rocks and their nature (e.g., genesis, composition). In this study we developed a high-precision analytical procedure for determining Sr isotopes in wines at comparable uncertainty levels of geological data. With the aim of verifying the possibility of using Sr isotope in wine as a reliable tracer for geographic provenance, we performed Sr isotope analyses of 45 bottled wines from four different geographical localities of the Italian peninsula. Their Sr isotope composition has been compared with that of rocks from the substrata (i.e., rocks) of their vineyards. In addition wines from the same winemaker but different vintage years have been analyzed to verify the constancy with time of the (87)Sr/(86)Sr. Sr isotope compositions have been determined by solid source thermal ionization mass spectrometry following purification of Sr in a clean laboratory. (87)Sr/(86)Sr of the analyzed wines is correlated with the isotopic values of the geological substratum of the vineyards, showing little or no variation within the same vineyard and among different vintages. Large (87)Sr/(86)Sr variation is observed among wines from the different geographical areas, reinforcing the link with the geological substratum of the production territory. This makes Sr isotopes a robust geochemical tool for tracing the geographic authenticity and provenance of wine.

  3. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes


    The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper reports bulk-rock major element, trace element and Sr-Nd isotopic data, zircon U-Pb age data, and zircon Hf isotopic data on the Zayu pluton in eastern Gangdese, Tibet. These data shed new light on the petrogenesis of the pluton. Our SHRIMP zircon U-Pb age dates, along with LA-ICPMS zircon U-Pb age dates recently reported in the literature, indicate that the Zayu pluton was emplaced at about 130 Ma, coeval with Early Cretaceous magmatic rocks in other areas of eastern Gangdese (e.g., Rawu, Baxoi areas) and the Middle Gangdese. The Zayu pluton samples lack amphibole and muscovite, and are compositionally characterized by high SiO2 (69.9%―76.8%), K2O (4.4%―5.7%), and low P2O5 (0.05%―0.12%). These samples also have A/CNK values of 1.00-1.05, and are enriched in Rb, Th, U, and Pb, and depleted in Ba, Nb, Ta, Sr, P, Ti, and Eu. These geochemical features suggest that the Zayu pluton samples are metaluminous to slightly peraluminous and are of highly fractionated I-type granite. The Zayu pluton samples have high εNd(t) values (-10.9--7.6) and low initial 87Sr/86Sr ratios (0.7120- 0.7179) relative to melts derived from mature continental crust in the Gangdese (e.g., Ningzhong Early Jurassic strongly peraluminous granite). The Zayu pluton samples are heterogeneous in zircon εHf(t) values (-12.8--2.9), yielding ancient zircon Hf crustal model ages of 1.4―2.0 Ga. The data obtained in this study together with the data in the recent literature suggest that the Early Cretaceous granitoids in eastern Gangdese represent the eastward extension of the Early Cretaceous magmatism in the middle Gangdese, and that the Lhasa micro-continent block with ancient basement may extend for ~2000 km from east to west. Zircon Hf isotopic data and bulk-rock zircon

  4. Petrogenesis of highly fractionated Ⅰ-type granites in the Zayu area of eastern Gangdese,Tibet:Constraints from zircon U-Pb geochronology,geochemistry and Sr-Nd-Hf isotopes

    ZHU DiCheng; MO XuanXue; WANG LiQuan; ZHAO ZhiDan; NIU Yaoling; ZHOU ChangYong; YANG YueHeng


    The Cretaceous granitoids in the middle and northern Gangdese,Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision.This paper reports bulk-rock major element,trace element and Sr-Nd isotopic data,zircon U-Pb age data,and zircon Hf isotopic data on the Zayu pluton in eastern Gangdese,Tibet.These data shed new light on the petrogenesis of the pluton.Our SHRIMP zircon U-Pb age dates,along with LA-ICPMS zircon U-Pb age dates recently reported in the literature,indicate that the Zayu pluton was emplaced at about 130 Ma,coeval with Early Cretaceous magmatic rocks in other areas of eastern Gangdese (e.g.,Rawu,Baxoi areas) and the Middle Gangdese.The Zayu pluton samples lack amphibole and muscovite,and are compositionally characterized by high SiO2 (69.9%-76.8%),K20 (4.4%-5.7%),and low P2O5 (0.05%-0.12%).These samples also have A/CNK values of 1.00-1.05,and are enriched in Rb,Th,U,and Pb,and depleted in Ba,Nb,Ta,Sr,P,Ti,and Eu.These geochemical features suggest that the Zayu pluton samples ere metaluminous to slightly peraluminous and are of highly fractionated Ⅰ-type granite.The Zayu pluton samples have high εNd(t) values (-10.9-7.6) and low initial 87Sr/86Sr ratios (0.7120-0.7179) relative to melts derived from mature continental crust in the Gangdese (e.g.,Ningzhong Early Jurassic strongly peraluminous granite).The Zayu pluton samples are heterogeneous in zircon εHf(t) values (-12.8-2.9),yielding ancient zircon Hf crustal model ages of 1.4-2.0 Ga.The data obtained in this study together with the data in the recent literature suggest that the Early Cretaceous granitoids in eastern Gangdese represent the eastward extension of the Early Cretaceous magmatism in the middle Gangdese,and that the Lhasa micro-continent block with ancient basement may extend for ~2000 km from east to west.Zircon Hf isotopic data and bulk-rock zircon saturation temperature (789-821℃) indicate that

  5. Zircon U-Pb ages, Hf-O isotopes and trace elements of Mesozoic high Sr/Y porphyries from Ningzhen, eastern China: Constraints on their petrogenesis, tectonic implications and Cu mineralization

    Wang, Fangyue; Liu, Sheng-Ao; Li, Shuguang; Akhtar, Shamim; He, Yongsheng


    The relationship between high Sr/Y (adakitic) rocks and Cu mineralization has been long recognized but the mechanism remains unclear. The Cretaceous high Sr/Y porphyries in the Ningzhen area host major Cu polymetallic deposits in the Lower Yangtze River Belt (LYRB) of eastern China. These rocks exhibit some geochemical characteristics (e.g., non-radiogenic Pb isotope ratios) that differ from adakitic rocks from adjacent locations in the LYRB. In this study, we present a study of the zircon U-Pb-Hf-O isotope and trace element compositions for five porphyries from Ningzhen to reveal their petrogenesis and how that correlates with Cu-Fe-Mo mineralization. Zircon U-Pb ages of Anjishan (Cu deposit), Tongshan (Cu-Mo deposit) and Xiangshan (Fe deposit) plutons in the Ningzhen area are 108.8 ± 1.5 Ma, 105-107 Ma and 100-105 Ma, respectively, which are significantly younger than the ore-bearing adakites (140 ± 5 Ma) in the western part of the LYRB. Zircon εHf(t) and δ18O values range from - 23.4 to - 10.6 and from 5.7 to 7.0‰, respectively, falling between subduction-related adakites from the other regions in the LYRB and delamination-related adakitic rocks from the adjacent South Tan-Lu Fault Zone. The similarities of Ce4 +/Ce3 + and Eu/Eu* ratios in zircons from Ningzhen and those from the western LYRB indicate higher oxygen fugacity in their magma sources. Ti-in-zircon thermometer yields magma temperatures of 550 to 700 °C (with an average of ~ 650 °C) for the Ningzhen porphyries, which are significantly lower than those of the South Tan-Lu Fault adakites (> 750 °C), but similar to those for the LYRB adakites ( 50), non-radiogenic Pb, enriched Sr-Nd isotopic compositions, negative zircon εHf(t), mantle-like δ18O values, high oxygen fugacities and low magma temperatures. Mafic rocks that co-exist with ore-bearing porphyries or occur as xenoliths in porphyries are widespread. We proposed that the Ningzhen high Sr/Y porphyries originated from mixing of magmas

  6. Zircon LA-ICP MS U-Pb Age, Sr-Nd-Pb Isotopic Compositions and Geochemistry of the Triassic Post-collisional Wulong Adakitic Granodiorite in the South Qinling, Central China, and Its Petrogenesis

    QIN Jiangfeng; LAI Shaocong; WANG Juan; LI Yongfei


    The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33-0.96 10-6 and Y = 4.77-11.19×10-6), enrichment of Ba (775-1386×10-6) and Sr (643-1115×10-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (δEu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31×10-6), Ni (20.00-224.24×10-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a 20.6Pb/238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (≤242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays 87Sr/86Sr = 0.7059-0.7062, Isr = 0.7044-0.7050,143Nd/144Nd = 0.51236-0.51238, εNd(t)=-2.26 to-2.66,2.6Pb/2.4pb=18.099-18.209,207Pb/2.4pb=15.873-15.979 and 2.8Pb/204pb=38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age(~1.02 Ga) is consistent with the age (~1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous

  7. Melt evolution beneath a rifted craton edge: 40Ar/39Ar geochronology and Sr-Nd-Hf-Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic Shield

    Tappe, Sebastian; Smart, Katie A.; Stracke, Andreas; Romer, Rolf L.; Prelević, Dejan; van den Bogaard, Paul


    A new high-precision 40Ar/39Ar anorthoclase feldspar age of 176.7 ± 0.5 Ma (2-sigma) reveals that small-volume alkaline basaltic magmatism occurred at the rifted SW margin of the Baltic Shield in Scania (southern Sweden), at a time of global plate reorganization associated with the inception of Pangea supercontinent break-up. Our combined elemental and Sr-Nd-Hf-Pb isotope dataset for representative basanite and nephelinite samples (>8 wt.% MgO) from 16 subvolcanic necks of the 30 by 40 km large Jurassic volcanic field suggests magma derivation from a moderately depleted mantle source (87Sr/86Sri = 0.7034-0.7048; εNdi = +4.4 to +5.2; εHfi = +4.7 to +8.1; 206Pb/204Pbi = 18.8-19.5). The mafic alkaline melts segregated from mixed peridotite-pyroxenite mantle with a potential temperature of ∼1400 °C at 2.7-4.2 GPa (∼90-120 km depths), which places ultimate melt generation within the convecting upper mantle, provided that the lithosphere-asthenosphere boundary beneath the southern Baltic Shield margin was at ⩽100 km depth during Mesozoic-Cenozoic rifting. Isotopic shifts and incompatible element enrichment relative to Depleted Mantle reflect involvement of at least 20% recycled oceanic lithosphere component (i.e., pyroxenite) with some minor continent-derived sediment during partial melting of well-stirred convecting upper mantle peridotite. Although pargasitic amphibole-rich metasomatized lithospheric mantle is excluded as the main source of the Jurassic magmas from Scania, hydrous ultramafic veins (i.e., hornblendite) may have caused subtle modifications to the compositions of passing sublithospheric melts. For example, modeling suggests that the more radiogenic Hf (εHfi = +6.3 to +8.1) and Pb (206Pb/204Pbi = 18.9-19.5) isotopic compositions of the more sodic and H2O-rich nephelinites, compared with relatively homogenous basanites (εHfi = +4.7 to +6.1; 206Pb/204Pbi = 18.8-18.9), originate from minor interactions between rising asthenospheric melts and

  8. Accurate fast method with high chemical yield for determination of uranium isotopes (234U, 235U, 238U) in granitic samples using alpha spectroscopy

    Guirguis, Laila A.; Farag, Nagdy M.; Salim, Adham K.


    The present study aims to use the α-spectroscopy at Nuclear Materials Authority (NMA) of Egypt. A radiochemical technique for analysis uranium isotopes was carried out for ten mineralized granitic samples together with the International standards RGU-1 (IAEA) and St4 (NMA). Several steps of sample preparation, radiochemical separation and source preparation were performed before analysis. Uranium was separated from sample matrix with 0.2 M TOPO in cyclohexane as an extracting agent with a chemical yield 98.95% then uranium was purified from lanthanides and actinides present with 0.2 M TOA in xylene as an extracting agent. The pure fraction was electrodeposited on a mirror-polished copper disc from buffer solution (NaHSO4+H2SO4+NH4OH). Rectangle pt-electrode with an anode-cathode distance of 2 cm was used. Current was 900 mA and the electrodeposition time reach up to 120 min. The achieved results show that the chemical yield ranged between 87.9±6.8 and 98±8.6.

  9. Geochemistry and Sr-Nd-Pb isotopic characteristics of the Mugouriwang Cenozoic volcanic rocks from Tibetan Plateau:Constraints on mantle source of the underplated basic magma


    The Mugouriwang Cenozoic volcanic rocks exposed in the north Qiangtang Block of Tibetan Plateau are mainly composed of basalt and andesitic-basalt,both characterized by the lower SiO2 (51%―54%),high refractory elements (i.e. Mg,Cr,Ni) as well as the moderate enrichment in light rare earth elements (LREE) relative to a slight depleted in Eu and high strength field elements (HFSE,i.e. Nb,Ta,Ti). Be-sides,the fairly low Sm/Yb value (3.07―4.35) could signify that the rocks should be derived directly from partial melting of the spinel lherzolite at the upper part of the asthenosphere. These rocks have radiogenic Sr and Pb (87Sr/86Sr = 0.705339 to 0.705667; 208Pb/204Pb = 38.8192 to 38.8937; 207Pb/204Pb = 15.6093 to 15.6245; 206Pb/204Pb = 18.6246 to 18.6383),and non-radiogenic Nd (143Nd/144Nd = 0.512604 to 0.512639; εNd = +0.02 to -0.66) in agreement with those values of the BSE mantle reservoir. The DUPAL anomaly of the rocks can be evidently attested by the △8/4Pb = 66.82 to 74.53 ,△7/4Pb = 9.88 to 11.42,△Sr>50,implying that the Mugouriwang volcanic rock is likely to be generated by partial melting of a Gondwana-bearing asthenospheric mantle ever matasomatised by the fluid from subduction zone. Depending on the previous study on the high-K calc-alkaline intermediate-felsic volcanics in the study area,this paper proposed that the fluids derived from the subducted Lhasa Block metasomatised the asthenosphere beneath the Qiangtang Block,and induced its partial melting,and then the melt under-plated the thickened Qiangtang lithosphere and caused the generation of the Cenozoic adakite-like felsic magmas in the Qiangtang region.

  10. 蒙西斑岩铜钼矿含矿岩体地球化学和Sr-Nd-Pb同位素特征%Geochemical and Sr-Nd-Pb Isotopic Characteristics of the Ore-bearing Rock in Mengxi Porphyry Cu-Mo Deposit

    刘建朝; 王瑞美; 程建新; 彭素霞; 张海东; 王得权; 郑利宏


    Ore-bearing porphyry in Mengxi porphyry Copper-Molybdenum deposit is plagiogranite porphyry.The geo-chemical and Sr-Nd-Pb isotope research of porphyry bodies show that rocks are peraluminous calc-alkaline,enriched in large-ion lithophile elements Rb,Ba,U,K,Pb,Sr and depleted in high field strength elements Th,Ta,Nb,Nd,Ti.Through the studies on porphyry bodies,it is identified for rock bodies characterized with low (87Sr/86Sr) ⅰ ratio (0.7046 5~0.7053 7) and high εNd(t) value (-2.2~6.6).(206Pb/204Pb)i ratio of the rock bodies range from 17.13 to 17.33,(207Pb/204Pb)i ratio from 15.47 to 15.54,and (208Pb/204Pb)i ratio from 37.11 to 37.33.These characteristics indicate that the porphyry bodies possibly formed in arc environment, and the magmatic materials were derived from the mantle,involved some portions of crustal rocks,which may related with partial melting of subducted oceanic crust.Qiongheba in eastern Junggar is a potential area for prospecting the phyry Cu deposit.%蒙西斑岩铜钼矿含矿斑岩体主要为斜长花岗斑岩。通过对含矿斑岩体地球化学和Sr-Nd-Pb同位素特征的研究,确立斑岩体为过铝质钙碱性系列岩石,富集Rb,Ba,U,K,Pb,Sr等大离子亲石元素,亏损Th,Ta,Nb,Nd,Ti等高场强元素;具低的(87Sr/86Sr)ⅰ值(0.70465~0.70537)和相对较高的εNd(t)值(-2.2~6.6),且有较低的初始铅同位素比值(206Pb/204Pb)i=17.13~17.33,(207Pb/204Pb)i=15.47~15.54,(208Pb/204Pb)i=37.11~37.33。上述特征表明其形成于岛弧环境,岩浆物质来源以幔源为主,但也有少量壳源组分参与,岩浆的形成可能与洋壳的俯冲作用有关。东准噶尔琼河坝地区是形成和寻找斑岩型铜矿的有利地区。

  11. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type

    陈衍景; 李超; 张静; 李震; 王海华


    A great deal of Mesozoic hypobatholithic granites and hypabyssal porphyries develop in the Qinling Mountains. The former has long been regarded as transformation type (or S-type), and the latter associated with Mo-mineralization regarded as syntexis type (or l-type) granitoids. Statistics show that Sr, andδ18O of hypabyssal porphyries respectively range from 0.705 to 0.714, and from 7.2‰ to 12.1‰, agreeing with those of hypobatholithes (Sr1=0.705-0.710, δ18O = 6.1‰-10.4‰), which indicates that they share similar material sources and petrogenic mechanism. Based on analysis of lithological, mineralogical and geochemical characteristics of these granitoids and on study of their petrogenic tectonic background and regional geophysical data, we argue that both the shallow-seated porphyries and deep-seated batholithes were the products of Mesozoic collision between South China and North China paleocontinents. Subsequently, all these granti-toids should be attributed to collision type.

  12. Integrating isotopic fingerprinting with petrology: how do igneous rocks evolve?

    Davidson, J. P.


    In the title of his seminal work, N.L. Bowen recognized the fundamental importance of magmatic evolution in producing the spectrum of igneous rocks. Indeed it is difficult to imagine a hot highly reactive fluid passing through c. 100 km of a chemically distinct medium (lithosphere) without evolving through cooling, crystallization and interaction with the wall rocks. The fact that magmas evolve - almost invariably through open system processes - has been largely marginalized in the past 30 years by the desire to use them as probes of mantle source regions. This perspective has been driven principally by advances offered by isotope geochemistry, through which components and sources can be effectively fingerprinted. Two fundamental observations urge caution in ignoring differentiation effects; 1) the scarcity of truly primary magmas according to geochemical criteria (recognized long ago by petrologists), and 2) the common occurrence of petrographic criteria attesting to open system evolution. Recent advances in multicollector mass spectrometry permit integration of the powerful diagnostic tools of isotope geochemistry with petrographic observations through accurate and precise analysis of small samples. Laser ablation and microdrilling enable sampling within and between mineral phases. The results of our microsampling investigations give widespread support for open system evolution of magmas, and provide insights into the mechanisms and timescales over which this occurs. For example; 1) core-rim decreases in 87Sr/86Sr in zoned plagioclase crystals from 1982 lavas of El Chichon volcano, Mexico, argue that the zoning and isotopic changes are in response to magma recharge mixing with an originally contaminated resident magma; 2) Single grain and intra-grain isotopic analyses of mineral phases from Ngauruhoe andesites (New Zealand) are highly variable, arguing that bulk rock data reflect mechanical aggregations of components which have evolved in discrete domains of the

  13. Towards high-resolution and accurate calendar chronologies of long-term records of Pleistocene lacustrine-formations by integration of U-series and oxygen isotopes data (Invited)

    Stein, M.; Torfstein, A.; Waldmann, N.; Kolodny, Y.


    The establishment of accurate and high-resolution calendar chronologies of long-term lacustrine records of the Quaternary time, represents a central and in many cases formidable task in the reconstruction of paleohydrological and paleoenvironmental histories of various geographical environments. Lake carbonates that comprise a potential target for U-series dating for mid to late Pleistocene time intervals typically suffer from contamination by detrital material and presence of initial Th that hamper the direct analysis of U-Th ages and require correction procedures. It turned out, however, that oxygen isotopes in primary lake carbonates are sensitive recorders of the δ18O ratios in contemporaneously foraminifera recovered from deep sea cores in marine sources of regional rain and eventually lake waters. This allows the application of oxygen isotopes in the lacustrine carbonates as floating chronometers that can be combined with U-series data to establish the desired accurate and high-resolution chronology. We tried this approach for the establishment of the chronology of the lacustrine formations that were deposited in the tectonic basin of the Dead Sea (the Pleistocene Amora and Lisan Fms.) covering the past ~ 800 ka. Our study also demonstrated that while the long-term δ18O of the primary carbonates reflect mainly the marine source of the humidity, the short-term, fluctuations in δ18O are sensitive recorders of floods or abrupt arid intervals (in the decade to annual scale). This information combined with lake level reconstruction and integrated with other regional paleohydrological inventories (e.g. corals, travertines, speleothems) revealed changes in the sources of the Levant region humidity; whereas winter precipitation during glacial times reflect Atlantic-Polar cold fronts and Mediterranean cyclones, the relatively arid interglacials were characterized by flood regime and southern intrusions of Red Sea lows and tropical storms.

  14. C, O, Sr and Nd isotope systematics of carbonates of Papaghni sub-basin, Andhra Pradesh, India: Implications for genesis of carbonate-hosted stratiform uranium mineralisation and geodynamic evolution of the Cuddapah basin

    Absar, Nurul; Nizamudheen, B. M.; Augustine, Sminto; Managave, Shreyas; Balakrishnan, S.


    The Cuddapah basin (CB) is one of a series of Proterozoic basins that overlie the Archaean cratons of India, and contains a unique stratiform carbonate-hosted uranium mineralisation. In the present work, we discuss stable (C, O) and radiogenic (Nd, Sr) isotope systematics of carbonates of the Papaghni sub-basin in order to understand uranium ore forming processes and geodynamic evolution of the CB. Uranium mineralised dolomites (UMDs) of the basal Vempalle Formation show a significantly lighter (~ 1.5‰) C-isotope signature compared to that of open-marine stromatolitic sub-tidal facies, suggesting input of isotopically lighter carbon through in situ remineralisation of organic matter (OM). This implies deposition in a hydrologically-restricted, redox-stratified lagoonal basin wherein exchange with open oceanic dissolved inorganic carbon (DIC) was limited. Persistent bottom water anoxia was created and maintained through consumption of dissolved oxygen (DO) by decaying OM produced in oxidised surface water zone. Significantly more radiogenic εNd(t) of UMD (- 6.31 ± 0.54) compared to that of Dharwar upper crust (- 8.64 ± 3.11) indicates that dissolved constituents did not originate from the Dharwar craton, rather were derived from more juvenile exotic sources - possibly from a continental arc. Dissolved uranyl ions (U+ 6) were introduced to the basin through fluvial run-off and were reduced to immobile uranous ions (U+ 4) at the redox interface resulting in precipitation of pitchblende and coffinite. Carbonate horizons of upper Vempalle Formation and Tadpatri Formation show progressively more radiogenic Nd isotope compositions signifying increased juvenile arc contribution to the Papaghni sub-basin through time, which is also corroborated by the presence of younger zircons (1923 ± 22 Ma) in Pulivendla quartzites. We propose that the Papaghni sub-basin opened as a back-arc extensional basin at ~ 2 Ga as a result of westerly-directed subduction of oceanic crust

  15. Cenozoic seawater Sr/Ca evolution

    Sosdian, Sindia M.; Lear, Caroline H.; Tao, Kai; Grossman, Ethan L.; O'Dea, Aaron; Rosenthal, Yair


    Records of seawater chemistry help constrain temporal variations in geochemical processes that impact the global carbon cycle and climate through Earth's history. Here we reconstruct Cenozoic seawater Sr/Ca (Sr/Casw) using fossil Conus and turritellid gastropod Sr/Ca. Combined with an oxygen isotope paleotemperature record from the same samples, the gastropod record suggests that Sr/Caswwas slightly higher in the Eocene (˜11.4 ± 3 mmol/mol) than today (˜8.54 mmol/mol) and remained relatively stable from the mid- to late Cenozoic. We compare our gastropod Cenozoic Sr/Casw record with a published turritellid gastropod Sr/Casw record and other published biogenic (benthic foraminifera, fossil fish teeth) and inorganic precipitate (calcite veins) Sr/Caswrecords. Once the uncertainties with our gastropod-derived Sr/Casw are taken into account the Sr/Casw record agrees reasonably well with biogenic Sr/Caswrecords. Assuming a seawater [Ca] history derived from marine evaporite inclusions, all biogenic-based Sr/Casw reconstructions imply decreasing seawater [Sr] through the Cenozoic, whereas the calcite vein Sr/Casw reconstruction implies increasing [Sr] through the Cenozoic. We apply a simple geochemical model to examine the implications of divergence among these seawater [Sr] reconstructions and suggest that the interpretation and uncertainties associated with the gastropod and calcite vein proxies need to be revisited. Used in conjunction with records of carbonate depositional fluxes, our favored seawater Sr/Ca scenarios point to a significant increase in the proportion of aragonite versus calcite deposition in shelf sediments from the Middle Miocene, coincident with the proliferation of coral reefs. We propose that this occurred at least 10 million years after the seawater Mg/Ca threshold was passed, and was instead aided by declining levels of atmospheric carbon dioxide.

  16. Two stage mantle-derived granitic rocks and the onset of the Brasiliano orogeny: Evidence from Sr, Nd, and O isotopes

    Silva, Thyego R.; Ferreira, Valderez P.; Lima, Mariucha Maria C.; Sial, Alcides N.


    The elongate Monteirópolis batholith (270 km2) is composed of alkali feldspar granite to granodiorite, it is part of the Águas Belas-Canindé composite batholith and it intruded rocks of the Pernambuco-Alagoas Domain, northeastern Brazil. This batholith is bounded by the NNE-SSW-trending Jacaré dos Homens transpressional shear zone on its southwestern margin, and displays low-angle foliation, coeval to the development of a regional flat-lying foliation. Microgranular dioritic enclaves and amphibole-rich clots are abundant. The mineralogy of this pluton comprises biotite and amphibole as major accessory phases, and titanite and magmatic epidote as trace minerals. Major and trace element chemistry shows high SiO2, total alkalis, Ba and Sr, low Fe# and Nb contents, all of these conferring a high-K calc-alkaline character. The rocks are enriched in LREE and LILE and depleted in HFSE, and show fractionated chondrite-normalized REE patterns with Eu/Eu* = 0.67 to 1.25. Chondrite-normalized spidergrams show marked negative Nb-Ta and Ti anomalies, typical of subduction-related magmas. U-Pb SHRIMP zircon data yielded a crystallization age of 626 ± 4 Ma. Regional structures and U-Pb geochronological data for the Jacaré dos Homens transpressional shear zone suggest that shearing was initiated at ca. 640 Ma. Dilatational movements along this shear zone opened space for magma emplacement. The rocks in this batholith are characterized by slightly negative to slightly positive εNd values (- 0.78 to + 1.06), average Nd-model age of 1.0 Ga, low initial 87Sr/86Sr(626 Ma) values of 0.7050 to 0.7052, and low δ18O values (zircon) of + 5.00 to + 5.94‰ V-SMOW. A possible protolith, Tonian mantle-derived rocks in the lower continental crust, could have been partially melted by underplating of mantle-derived mafic magma during collision of the São Francisco Craton and the Pernambuco-Alagoas Domain during onset of the Brasiliano orogeny.

  17. Geochemistry and Sr-Nd-Pb isotopic characteristics of the Mugouriwang Cenozoic volcanic rocks from Tibetan Plateau: Constraints on mantle source of the underplated basic magma

    LAI ShaoCong; QIN JiangFeng; LI YongFei; LONG Ping


    The Mugouriwang Cenozoic volcanic rocks exposed in the north Qiangtang Block of Tibetan Plateau are mainly composed of basalt and andesitic-basalt, both characterized by the lower SiO2 (51%-54%), high refractory elements (i.e. Mg, Cr, Ni) as well as the moderate enrichment in light rare earth elements (LREE) relative to a slight depleted in Eu and high strength field elements (HFSE, i.e. Nb, Ta, Ti). Besides, the fairly low Sm/Yb value (3.07-4.35) could signify that the rocks should be derived directly from partial melting of the spinel lherzolite at the upper part of the asthenosphere. These rocks have radiogenic Sr and Pb (87Sr/86Sr = 0.705339 to 0.705667; 208Pb/204Pb = 38.8192 to 38.8937; 207Pb/204Pb = 15.6093 to 15.6245; 206Pb/204Pb = 18.6246 to 18.6383), and non-radiogenic Nd (143Nd/144Nd = 0.512604 to 0.512639; εNd = +0.02 to-0.66) in agreement with those values of the BSE mantle reservoir. The DUPAL anomaly of the rocks can be evidently attested by the △8/4Pb = 66.82 to 74.53 , △7/4Pb = 9.88 to 11.42, △Sr>50, implying that the Mugouriwang volcanic rock is likely to be generated by partial melting of a Gondwana-bearing asthenospheric mantle ever matasomatised by the fluid from subduction zone. Depending on the previous study on the high-K calc-alkaline intermediate-felsic volcanics in the study area, this paper proposed that the fluids derived from the subducted Lhasa Block metasomatised the asthenosphere beneath the Qiangtang Block, and induced its partial melting, and then the melt underplated the thickened Qiangtang lithosphere and caused the generation of the Cenozoic adakite-like felsic magmas in the Qiangtang region.

  18. K-Ar dating, whole-rock and Sr-Nd isotope geochemistry of calc-alkaline volcanic rocks around the Gümüşhane area: implications for post-collisional volcanism in the Eastern Pontides, Northeast Turkey

    Aslan, Zafer; Arslan, Mehmet; Temizel, İrfan; Kaygusuz, Abdullah


    Volcanic rocks from the Gümüşhane area in the southern part of the Eastern Pontides (NE Turkey) consist mainly of andesitic lava flows associated with tuffs, and rare basaltic dykes. The K-Ar whole-rock dating of these rocks range from 37.62 ± 3.33 Ma (Middle Eocene) to 30.02 ± 2.84 Ma (Early Oligocene) for the andesitic lava flows, but are 15.80 ± 1.71 Ma (Middle Miocene) for the basaltic dykes. Petrochemically, the volcanic rocks are dominantly medium-K calc-alkaline in composition and show enrichment of large ion lithophile elements, as well as depletion of high field strength elements, thus revealing that volcanic rocks evolved from a parental magmas derived from an enriched mantle source. Chondrite-normalized rare-earth element patterns of the volcanic rocks are concave upwards with low- to-medium enrichment (LaCN/LuCN = 3.39 to 12.56), thereby revealing clinopyroxene- and hornblende-dominated fractionations for andesitic-basaltic rocks and tuffs, respectively. The volcanic rocks have low initial 87Sr/86Sr ratios (0.70464 to 0.70494) and ɛNd(i) values (+1.11 to +3.08), with Nd-model ages (TDM) of 0.68 to 1.02 Ga, suggesting an enriched lithospheric mantle source of Proterozoic age. Trace element and isotopic data, as well as the modelling results, show that fractional crystallization and minor assimilation played an important role in the evolution of the volcanic rocks studied. The Eocene to Miocene volcanism in the region has resulted from lithospheric delamination and the associated convective thinning of the mantle, which led to the partial melting of the subduction-metasomatized lithospheric mantle.

  19. Experiences with the determination of Sr-89 and Sr-90 using fast methods; Erfahrungen bei der Bestimmung von {sup 89}Sr und {sup 90}Sr mittels Schnellmethoden

    Kowalik, C.; Fueger, J. [Thueringer Landesanstalt fuer Umwelt und Geologie, Jena (Germany). Landesmessstelle fuer Umweltradioaktivaet


    Quick methods of the measurement of {sup 89}Sr and {sup 90}Sr have a great importance in the supervision of the environmental radioactivity. It is necessary to receive in short time dependable analytical data to be able to carry out suitable assessments or to give recommendations. The aim of the investigations was to be guaranteed the demands for these methods (test preparation, measurement and evaluation). The use of the solid phase extraction by means of commercial Sr Resin trademark columns (4.4' (5')-Di-tert-butylcyclohexanol-18-kronen-6-aether) (Triskem) to the radiochemical separation of the Sr isotopes was suitable. The measurements occurred to the FHT 770 T12 - Multi Low Level Alpha/Beta Sample Counter (Thermo Scientific). The results contain the summary activities of all available Sr isotopes, as for example {sup 89}Sr and {sup 90}Sr. The calculations of the single activities occur about the mathematical algorithm of the linear development on the basis of the works of G. Kanisch. The first results show, this method is suitable for the analysis of {sup 89}Sr and {sup 90}Sr and is used therefore in future in Thuringia.

  20. Penning-trap mass spectrometry of highly charged, neutron-rich Rb and Sr isotopes in the vicinity of $A\\approx100$

    Simon, V V; Chowdhury, U; Eberhardt, B; Ettenauer, S; Gallant, A T; Mané, E; Simon, M C; Delheij, P; Pearson, M R; Audi, G; Gwinner, G; Lunney, D; Schatz, H; Dilling, J


    The neutron-rich mass region around $A\\approx100$ presents challenges for modeling the astrophysical $r$-process because of rapid shape transitions. We report on mass measurements using the TITAN Penning trap at TRIUMF-ISAC to attain more reliable theoretical predictions of $r$-process nucleosynthesis paths in this region. A new approach using highly charged ($q=15+$) ions has been applied which considerably saves measurement time and preserves accuracy. New mass measurements of neutron-rich $^{94,97,98}$Rb and $^{94,97-99}$Sr have uncertainties of less than 4 keV and show deviations of up to 11$\\sigma$ to previous measurements. An analysis using a parameterized $r$-process model is performed and shows that mass uncertainties for the A=90 abundance region are eliminated.

  1. Sr/Ca and stable isotopes in a coral from the Venezuelan coast: A record of 20th-century changes in SST, SSS and cloud cover?

    Hetzinger, S.; Pfeiffer, M.; Dullo, W.; Zinke, J.; Garbe-Schoenberg, C.


    We present a record of monthly δ18O and Sr/Ca variations in coral aragonite from a massive Diploria strigosa colony retrieved from a coastal NW-Venezuelan reef site (10.55°N, 67.24°W; 1940-2004). Linear regression of coral proxies to high resolution satellite sea surface temperature (SST) data (NASA OBPG MODIS-Aqua, 9-km resolution) demonstrates that both geochemical proxies record seasonal temperature variability in ambient seawater (Sr/Ca: r=-0.68 monthly, r=-0.60 annual; δ18O: r=-0.57 monthly, r=-0.46 annual; 1985-2004). On longer time scales both proxies record local as well as regional SST dynamics in the southeastern Caribbean and northern North Tropical Atlantic. A statistically significant relationship is observed between coral δ18O and local air temperature (r=-0.56; 1951-2002), while correspondence of δ18O to SST products (e.g. ERSST, SODA reanalysis) is lower than for Sr/Ca ratios. However, coral δ18O is a function of both temperature and δ18Oseawater and δ18Oseawater in turn is dependent on salinity. A comparison of δ18O to sea surface salinity (SSS) data confirms the existence of a strong salinity component in coral δ18O on annual and longer time scales (SODA reanalysis, r=0.65 for annual means, r=0.84 for 3-year average; 1958-2001). A decreasing trend from the mid-1980s onwards is evident in both SSS and coral δ18O, corresponding to trends seen in other Caribbean studies. Further, both geochemical proxies show a significant negative correlation to cloud cover averaged over a regional box (r=-0.66 for Sr/Ca; r=-0.48 for δ18O; 1941-2003). A significant drop in cloud cover is seen around the year 1947, which is displayed in both proxies as a distinct positive peak and coincides with a drop in instrumental SST. Interestingly, a marked decrease in annual coral growth rate is observed in the uppermost years of the core (1999 to 2004), as well as a reduced seasonal amplitude in δ18O variability and a trend to more negative δ18O-values at the

  2. Petrogenesis of subvolcanic rocks from the Khunik prospecting area, south of Birjand, Iran: Geochemical, Sr-Nd isotopic and U-Pb zircon constraints

    Samiee, Somayeh; Karimpour, Mohammad Hassan; Ghaderi, Majid; Haidarian Shahri, Mohammad Reza; Klöetzli, Urs; Santos, José Francisco


    The Khunik prospecting area is located 106 km south of Birjand in eastern Iran, and is considered as an epithermal gold prospecting area. The mineralization is related to subvolcanic rocks. There are several outcrops of subvolcanic intrusions in the area which intruded into Paleocene-Eocene volcanic rocks (andesite, trachy-andesite and pyroclastic rocks). Petrographic studies indicate that subvolcanic rocks consist mainly of diorite, monzonite, quartz-monzonite, monzodiorite and quartz-monzodiorite. Mineralogically, these rocks contain plagioclase, K-feldspar, amphibole, pyroxene, biotite and quartz. Geochemically, they have features typical of high-K calk-alkaline to shoshonitic and are metaluminous, and also belong to magnetite granitoid series (I-type). Primitive mantle normalized trace element spider diagrams display enrichment in LILE, such as Rb, Ba, and Cs, compared to HFSE. Chondrite-normalized REE plots show moderately LREE enriched patterns (7.45 < LaN/YbN < 10.54), and no significant Eu anomalies. Tectonic discrimination diagrams also show affinities with modern convergent margin magmas, suggesting that magmas of Khunik area formed in volcanic arc setting related to subduction of the oceanic crust under the Lut Block plate. The initial 87Sr/86Sr ratios (0.704196-0.704772) and εNdi values (+1.3 to +3.3) are compatible with an origin of the parental melts in a supra-subduction mantle wedge. Zircon U-Pb dating by LA-ICP-MS indicates the age of 38 ± 1 Ma (late Eocene) for subvolcanic units that are related to mineralization. A biotite granodiorite porphyry is the testimony of the youngest magmatic activity in the area, with an age of 31 ± 1 Ma (early Oligocene). The represented dates are interpreted as magmatic crystallization ages of subvolcanic intrusions.

  3. A Study of Sr, Nd and O Isotopes of the K-rich Melanocratic Dykes in the Late Mesozoic Gold Field in the Jiaodong Peninsula


    Geologic, petrographic and petrochemical studies of the lateMesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, China, have shown that these dykes are characterized by rich potassium and alkali but poor titanium. They belong to an ultra-high potassic, shoshonitic and high potassic calc-alkaline rock series. The parental magma has relatively high initial strontium ratios ((87Sr/86Sr)i-0.70895-0.71140) and low (143Nd/144Nd)i ratios (varying from 0.51135 to 0.51231); and its δ18OsMow. whole rock values vary from +5.8‰ to +10.6‰ with a mean of +7.1‰. These features suggest that the source region of the magma is an enriched mantle wedge transformed from a continental lithosphere mantle which has experienced me tasomatism by mantle-derived fluids with H2O-dominated fluids that were provided during the underthrusting of an ocean crust. The initial magma was generated by low-degree partial melting of the enriched mantle in its mature stage in the back-arc spreading environment. The evolution of magmas is associated with two trends, i.e., fractional crystallization and mixing with or intensive contamination by palaeo-crust materials or metamorphic rocks. The former process is evident in the gold field system of quartz-vein type, whereas the latter is dominated in the gold field system of the altered-rock type. This conclusion is very important for more detailed study of petrogenesis and mineralization through the crust-mantle interaction (exchange) in the Mesozoic in this region.

  4. 40Ar/39Ar Geochronology, Isotope Geochemistry (Sr, Nd, Pb), and petrology of alkaline lavas near Yampa, Colorado: migration of alkaline volcanism and evolution of the northern Rio Grande rift

    Cosca, Michael A.; Thompson, Ren A.; Lee, John P.; Turner, Kenzie J.; Neymark, Leonid A.; Premo, Wayne R.


    Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been

  5. Isotopic Constraints (U, Th, Pb, Sr, Ar) on the Timing of Magma Generation, Storage and Eruption of a Late-Pleistocene Subvolcanic Granite, Alid Volcanic Center, Eritrea

    Lowenstern, J. B.; Charlier, B. L.; Wooden, J. L.; Lanphere, M. A.; Clynne, M. A.; Bullen, T. D.


    Isotopic analyses demonstrate that a shallow granophyric intrusion from the Alid volcanic center (AVC) was generated, intruded and crystallized over a 20,000-year period in the latest Pleistocene. The granophyre is not exposed, but was ejected as unmelted blocks within a ~1 km3 pyroclastic flow deposit around 15 ka and is a subvolcanic equivalent of the erupted rhyolitic pumice (Lowenstern et al., 1997: J Petrol 12, p. 1707-1721). The rock contains 2.59) is 15.2+/- 5.8 ka (all errors are 2 σ ). Two other splits with lower density (thus higher in Na) yielded ages older than 24 ka, and may retain some excess Ar. Thus, the time between intrusion and complete crystallization for the granophyre was Danakil Depression and are found as unmelted lithic xenoliths in lavas and tuffs of the AVC. Pb isotopes also rule out significant assimilation of Precambrian basement during genesis of the young granophyre. Similarly zircon grains, analyzed with the Stanford-USGS SHRIMP-RG, show little evidence for inheritance, with only a single 760 Ma zircon (U-Pb age) that was also petrographically different from the 130 other zircons in the mount. The other zircons yielded SHRIMP 238U230Th disequilibrium ages of Alidpage.html

  6. Determination of the geographic origin of rice by chemometrics with strontium and lead isotope ratios and multielement concentrations.

    Ariyama, Kaoru; Shinozaki, Miyuki; Kawasaki, Akira


    The objective of this study was to develop a technique for determining the country of origin of rice in the Japanese market. The rice samples included a total of 350 products grown in Japan (n = 200), the United States (n = 50), China (n = 50), and Thailand (n = 50). In this study, (87)Sr/(86)Sr and Pb isotope ((204)Pb, (206)Pb, (207)Pb, and (208)Pb) ratios and multielement concentrations (Al, Fe, Co, Ni, Cu, Rb, Sr, and Ba) were determined by high-resolution inductively coupled plasma mass spectrometry. By combining three chemometric techniques based on different principles and determination criteria, the countries of origin of rice were determined. The predictions made by 10-fold cross-validation were around 97% accurate. The presented method demonstrated the effectiveness of determining the geographic origin of an agricultural product by combining several chemometric techniques using heavy element isotope ratios and multielement concentrations.

  7. The role of recycled oceanic crust in magmatism and metallogeny: Os-Sr-Nd isotopes, U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit, central Emeishan large igneous province, SW China

    Hou, Tong; Zhang, Zhaochong; Encarnacion, John; Santosh, M.; Sun, Yali


    The picritic dykes occurring within fine-grained gabbro in the marginal zone and in the surrounding Proterozoic wall-rock marbles of the Panzhihua Fe-Ti oxide deposit closely correspond in bulk composition with the nearby Panzhihua intrusion. These dykes offer important constraints on the nature of the mantle source of the Panzhihua ore-bearing intrusion and its possible link to the Emeishan plume. U-Pb zircon dating of the picritic dyke yields a crystallization age of 261.4 ± 4.6 Ma, coeval with the timing of the main Panzhihua gabbroic intrusion and Late Permian Emeishan flood basalts. The Panzhihua picritic dykes contain 37.63-43.41 wt% SiO2, 1.15-1.56 wt% TiO2, 11.43-13.25 wt% TFe2O3, and 20.96-28.87 wt% MgO. Primitive-mantle-normalized patterns of the rocks are comparable to those of ocean island basalt. The rocks define a relatively small range of Os isotopic compositions and a low Os signature of -0.13 to +2.76 for γOs (261 Ma). In combination with their Sr-Nd-Os isotopic compositions, we interpret that these rocks were derived from the Emeishan plume sources as well as the interactions of plume melts with the overlying lithosphere which had been extensively affected by eclogite-derived melts from the deep-subducted oceanic slab. Partial melting induced by an upwelling mantle plume that involved an eclogite or pyroxenite component in the lithospheric mantle could have produced the parental Fe-rich magma. Our study suggests that plume-lithosphere interaction might have played a key role in generating many world-class Fe-Ti oxide deposits clustered in the Panxi area.

  8. Accurate quantification of the mercapturic acids of acrylonitrile and its genotoxic metabolite cyanoethylene-epoxide in human urine by isotope-dilution LC-ESI/MS/MS.

    Schettgen, T; Bertram, J; Kraus, T


    Acrylonitrile is a highly important industrial chemical with a high production volume worldwide, especially in the plastics industry. It is classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC group 2B). During metabolism of acrylonitrile, the genotoxic metabolite cyanoethylene-epoxide is formed. The urinary mercapturic acids of acrylonitrile, namely N-acetyl-S-(2-cyanoethyl)-L-cysteine (CEMA) and cyanoethylene-epoxide, namely N-acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine (CHEMA) are specific biomarkers for the determination of individual internal exposure to acrylonitrile and its highly reactive metabolite. We have developed and validated a sensitive method for the accurate determination of CEMA and CHEMA in human urine with a multidimensional LC/MS/MS-method using deuterium-labelled analogues for both analytes as internal standards. Analytes were stripped from urinary matrix by online extracti