WorldWideScience

Sample records for accurate size determination

  1. Fast and accurate determination of modularity and its effect size

    International Nuclear Information System (INIS)

    Treviño, Santiago III; Nyberg, Amy; Bassler, Kevin E; Del Genio, Charo I

    2015-01-01

    We present a fast spectral algorithm for community detection in complex networks. Our method searches for the partition with the maximum value of the modularity via the interplay of several refinement steps that include both agglomeration and division. We validate the accuracy of the algorithm by applying it to several real-world benchmark networks. On all these, our algorithm performs as well or better than any other known polynomial scheme. This allows us to extensively study the modularity distribution in ensembles of Erdős–Rényi networks, producing theoretical predictions for means and variances inclusive of finite-size corrections. Our work provides a way to accurately estimate the effect size of modularity, providing a z-score measure of it and enabling a more informative comparison of networks with different numbers of nodes and links. (paper)

  2. Determining Sample Size for Accurate Estimation of the Squared Multiple Correlation Coefficient.

    Science.gov (United States)

    Algina, James; Olejnik, Stephen

    2000-01-01

    Discusses determining sample size for estimation of the squared multiple correlation coefficient and presents regression equations that permit determination of the sample size for estimating this parameter for up to 20 predictor variables. (SLD)

  3. Accuracy of computed tomography in determining pancreatic cancer tumor size

    International Nuclear Information System (INIS)

    Aoki, Kazunori; Okada, Shuichi; Moriyama, Noriyuki

    1994-01-01

    We compared tumor sizes determined by computed tomography (CT) with those of the resected specimens in 26 patients with pancreatic cancer in order to clarify whether or not the size of a pancreatic tumor can be accurately determined by CT. From the precontrast, postcontrast and arterial dominant phases of dynamic CT, the arterial dominant phase was found to yield the highest correlation between CT measured tumor size and that of the resected specimens (p<0.01). The correlation coefficient was, however, not high (r=0.67). CT alone may therefore be insufficient to determine tumor size in pancreatic cancer accurately. (author)

  4. Can blind persons accurately assess body size from the voice?

    Science.gov (United States)

    Pisanski, Katarzyna; Oleszkiewicz, Anna; Sorokowska, Agnieszka

    2016-04-01

    Vocal tract resonances provide reliable information about a speaker's body size that human listeners use for biosocial judgements as well as speech recognition. Although humans can accurately assess men's relative body size from the voice alone, how this ability is acquired remains unknown. In this study, we test the prediction that accurate voice-based size estimation is possible without prior audiovisual experience linking low frequencies to large bodies. Ninety-one healthy congenitally or early blind, late blind and sighted adults (aged 20-65) participated in the study. On the basis of vowel sounds alone, participants assessed the relative body sizes of male pairs of varying heights. Accuracy of voice-based body size assessments significantly exceeded chance and did not differ among participants who were sighted, or congenitally blind or who had lost their sight later in life. Accuracy increased significantly with relative differences in physical height between men, suggesting that both blind and sighted participants used reliable vocal cues to size (i.e. vocal tract resonances). Our findings demonstrate that prior visual experience is not necessary for accurate body size estimation. This capacity, integral to both nonverbal communication and speech perception, may be present at birth or may generalize from broader cross-modal correspondences. © 2016 The Author(s).

  5. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.

    Science.gov (United States)

    Wen, Chenyu; Zhang, Zhen; Zhang, Shi-Li

    2017-10-27

    Nanopores have been explored for various biochemical and nanoparticle analyses, primarily via characterizing the ionic current through the pores. At present, however, size determination for solid-state nanopores is experimentally tedious and theoretically unaccountable. Here, we establish a physical model by introducing an effective transport length, L eff , that measures, for a symmetric nanopore, twice the distance from the center of the nanopore where the electric field is the highest to the point along the nanopore axis where the electric field falls to e -1 of this maximum. By [Formula: see text], a simple expression S 0 = f (G, σ, h, β) is derived to algebraically correlate minimum nanopore cross-section area S 0 to nanopore conductance G, electrolyte conductivity σ, and membrane thickness h with β to denote pore shape that is determined by the pore fabrication technique. The model agrees excellently with experimental results for nanopores in graphene, single-layer MoS 2 , and ultrathin SiN x films. The generality of the model is verified by applying it to micrometer-size pores.

  6. Determining wood chip size: image analysis and clustering methods

    Directory of Open Access Journals (Sweden)

    Paolo Febbi

    2013-09-01

    Full Text Available One of the standard methods for the determination of the size distribution of wood chips is the oscillating screen method (EN 15149- 1:2010. Recent literature demonstrated how image analysis could return highly accurate measure of the dimensions defined for each individual particle, and could promote a new method depending on the geometrical shape to determine the chip size in a more accurate way. A sample of wood chips (8 litres was sieved through horizontally oscillating sieves, using five different screen hole diameters (3.15, 8, 16, 45, 63 mm; the wood chips were sorted in decreasing size classes and the mass of all fractions was used to determine the size distribution of the particles. Since the chip shape and size influence the sieving results, Wang’s theory, which concerns the geometric forms, was considered. A cluster analysis on the shape descriptors (Fourier descriptors and size descriptors (area, perimeter, Feret diameters, eccentricity was applied to observe the chips distribution. The UPGMA algorithm was applied on Euclidean distance. The obtained dendrogram shows a group separation according with the original three sieving fractions. A comparison has been made between the traditional sieve and clustering results. This preliminary result shows how the image analysis-based method has a high potential for the characterization of wood chip size distribution and could be further investigated. Moreover, this method could be implemented in an online detection machine for chips size characterization. An improvement of the results is expected by using supervised multivariate methods that utilize known class memberships. The main objective of the future activities will be to shift the analysis from a 2-dimensional method to a 3- dimensional acquisition process.

  7. Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers

    International Nuclear Information System (INIS)

    Mullen, R.; Thompson, J.M.; Moussa, O.; Vinnicombe, S.; Evans, A.

    2014-01-01

    Aim: To assess whether the size of peritumoural stiffness (PTS) on shear-wave elastography (SWE) for small primary breast cancers (≤15 mm) was associated with size discrepancies between grey-scale ultrasound (GSUS) and final histological size and whether the addition of PTS size to GSUS size might result in more accurate tumour size estimation when compared to final histological size. Materials and methods: A retrospective analysis of 86 consecutive patients between August 2011 and February 2013 who underwent breast-conserving surgery for tumours of size ≤15 mm at ultrasound was carried out. The size of PTS stiffness was compared to mean GSUS size, mean histological size, and the extent of size discrepancy between GSUS and histology. PTS size and GSUS were combined and compared to the final histological size. Results: PTS of >3 mm was associated with a larger mean final histological size (16 versus 11.3 mm, p < 0.001). PTS size of >3 mm was associated with a higher frequency of underestimation of final histological size by GSUS of >5 mm (63% versus 18%, p < 0.001). The combination of PTS and GSUS size led to accurate estimation of the final histological size (p = 0.03). The size of PTS was not associated with margin involvement (p = 0.27). Conclusion: PTS extending beyond 3 mm from the grey-scale abnormality is significantly associated with underestimation of tumour size of >5 mm for small invasive breast cancers. Taking into account the size of PTS also led to accurate estimation of the final histological size. Further studies are required to assess the relationship of the extent of SWE stiffness and margin status. - Highlights: • Peritumoural stiffness of greater than 3 mm was associated with larger tumour size. • Underestimation of tumour size by ultrasound was associated with peri-tumoural stiffness size. • Combining peri-tumoural stiffness size to ultrasound produced accurate tumour size estimation

  8. Pore size determination from charged particle energy loss measurement

    International Nuclear Information System (INIS)

    Brady, F.P.; Armitage, B.H.

    1977-01-01

    A new method aimed at measuring porosity and mean pore size in materials has been developed at Harwell. The energy width or variance of a transmitted or backscattered charged particle beam is measured and related to the mean pore size via the assumption that the variance in total path length in the porous material is given by (Δx 2 )=na 2 , where n is the mean number of pores and a the mean pore size. It is shown on the basis of a general and rigorous theory of total path length distribution that this approximation can give rise to large errors in the mean pore size determination particularly in the case of large porosities (epsilon>0.5). In practice it is found that it is not easy to utilize fully the general theory because accurate measurements of the first four moments are required to determine the means and variances of the pore and inter-pore length distributions. Several models for these distributions are proposed. When these are incorporated in the general theory the determinations of mean pore size from experimental measurements on powder samples are in good agreement with values determined by other methods. (Auth.)

  9. Study of the size effect by accurately determining the crystal parameters

    International Nuclear Information System (INIS)

    Seguin, Remy

    1973-01-01

    The size factor η = da/adC was measured by comparing the variations in the crystal parameter as a function of the concentration, samples of Al of various degrees of purity and Al - V and Al - Cu alloys with concentrations of less than 1 000 ppm being used. The results confirm the experimental results obtained with alloys supersaturated by ultra-rapid tempering but are not consistent with theoretical values, which appear to be too large for the case of transition elements in solution in Al. The parameter was determined from Kossel diagrams obtained using an electron probe microanalyzer. The measurement methods were developed and generalized by plotting curves representing the variation of the parameter as a function of temperature between 20 and 60 deg. C. Values were obtained for the parameter at given temperatures (± 0.1 deg. C) with an accuracy of Δa/a ≅ 8.10 -6 . (author) [fr

  10. Improved Patient Size Estimates for Accurate Dose Calculations in Abdomen Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Lae [Yonsei University, Wonju (Korea, Republic of)

    2017-07-15

    The radiation dose of CT (computed tomography) is generally represented by the CTDI (CT dose index). CTDI, however, does not accurately predict the actual patient doses for different human body sizes because it relies on a cylinder-shaped head (diameter : 16 cm) and body (diameter : 32 cm) phantom. The purpose of this study was to eliminate the drawbacks of the conventional CTDI and to provide more accurate radiation dose information. Projection radiographs were obtained from water cylinder phantoms of various sizes, and the sizes of the water cylinder phantoms were calculated and verified using attenuation profiles. The effective diameter was also calculated using the attenuation of the abdominal projection radiographs of 10 patients. When the results of the attenuation-based method and the geometry-based method shown were compared with the results of the reconstructed-axial-CT-image-based method, the effective diameter of the attenuation-based method was found to be similar to the effective diameter of the reconstructed-axial-CT-image-based method, with a difference of less than 3.8%, but the geometry-based method showed a difference of less than 11.4%. This paper proposes a new method of accurately computing the radiation dose of CT based on the patient sizes. This method computes and provides the exact patient dose before the CT scan, and can therefore be effectively used for imaging and dose control.

  11. Accurate determination of light elements by charged particle activation analysis

    International Nuclear Information System (INIS)

    Shikano, K.; Shigematsu, T.

    1989-01-01

    To develop accurate determination of light elements by CPAA, accurate and practical standardization methods and uniform chemical etching are studied based on determination of carbon in gallium arsenide using the 12 C(d,n) 13 N reaction and the following results are obtained: (1)Average stopping power method with thick target yield is useful as an accurate and practical standardization method. (2)Front surface of sample has to be etched for accurate estimate of incident energy. (3)CPAA is utilized for calibration of light element analysis by physical method. (4)Calibration factor of carbon analysis in gallium arsenide using the IR method is determined to be (9.2±0.3) x 10 15 cm -1 . (author)

  12. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  13. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations

    International Nuclear Information System (INIS)

    Dinpajooh, Mohammadhasan; Bai, Peng; Allan, Douglas A.; Siepmann, J. Ilja

    2015-01-01

    Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor–liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields T c = 1.3128 ± 0.0016, ρ c = 0.316 ± 0.004, and p c = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρ t ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using r cut = 3.5σ yield T c and p c that are higher by 0.2% and 1.4% than simulations with r cut = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that r cut = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard-core square-well particles with various

  14. Influence of cervical preflaring on apical file size determination.

    Science.gov (United States)

    Pecora, J D; Capelli, A; Guerisoli, D M Z; Spanó, J C E; Estrela, C

    2005-07-01

    To investigate the influence of cervical preflaring with different instruments (Gates-Glidden drills, Quantec Flare series instruments and LA Axxess burs) on the first file that binds at working length (WL) in maxillary central incisors. Forty human maxillary central incisors with complete root formation were used. After standard access cavities, a size 06 K-file was inserted into each canal until the apical foramen was reached. The WL was set 1 mm short of the apical foramen. Group 1 received the initial apical instrument without previous preflaring of the cervical and middle thirds of the root canal. Group 2 had the cervical and middle portion of the root canals enlarged with Gates-Glidden drills sizes 90, 110 and 130. Group 3 had the cervical and middle thirds of the root canals enlarged with nickel-titanium Quantec Flare series instruments. Titanium-nitrite treated, stainless steel LA Axxess burs were used for preflaring the cervical and middle portions of root canals from group 4. Each canal was sized using manual K-files, starting with size 08 files with passive movements until the WL was reached. File sizes were increased until a binding sensation was felt at the WL, and the instrument size was recorded for each tooth. The apical region was then observed under a stereoscopic magnifier, images were recorded digitally and the differences between root canal and maximum file diameters were evaluated for each sample. Significant differences were found between experimental groups regarding anatomical diameter at the WL and the first file to bind in the canal (P Flare instruments were ranked in an intermediary position, with no statistically significant differences between them (0.093 mm average). The instrument binding technique for determining anatomical diameter at WL is not precise. Preflaring of the cervical and middle thirds of the root canal improved anatomical diameter determination; the instrument used for preflaring played a major role in determining the

  15. Size matters. The width and location of a ureteral stone accurately predict the chance of spontaneous passage

    Energy Technology Data Exchange (ETDEWEB)

    Jendeberg, Johan; Geijer, Haakan; Alshamari, Muhammed; Liden, Mats [Oerebro University Hospital, Department of Radiology, Faculty of Medicine and Health, Oerebro (Sweden); Cierzniak, Bartosz [Oerebro University, Department of Surgery, Faculty of Medicine and Health, Oerebro (Sweden)

    2017-11-15

    To determine how to most accurately predict the chance of spontaneous passage of a ureteral stone using information in the diagnostic non-enhanced computed tomography (NECT) and to create predictive models with smaller stone size intervals than previously possible. Retrospectively 392 consecutive patients with ureteric stone on NECT were included. Three radiologists independently measured the stone size. Stone location, side, hydronephrosis, CRP, medical expulsion therapy (MET) and all follow-up radiology until stone expulsion or 26 weeks were recorded. Logistic regressions were performed with spontaneous stone passage in 4 weeks and 20 weeks as the dependent variable. The spontaneous passage rate in 20 weeks was 312 out of 392 stones, 98% in 0-2 mm, 98% in 3 mm, 81% in 4 mm, 65% in 5 mm, 33% in 6 mm and 9% in ≥6.5 mm wide stones. The stone size and location predicted spontaneous ureteric stone passage. The side and the grade of hydronephrosis only predicted stone passage in specific subgroups. Spontaneous passage of a ureteral stone can be predicted with high accuracy with the information available in the NECT. We present a prediction method based on stone size and location. (orig.)

  16. Accurate relations between pore size and the pressure of capillary condensation and the evaporation of nitrogen in cylindrical pores.

    Science.gov (United States)

    Morishige, Kunimitsu; Tateishi, Masayoshi

    2006-04-25

    To examine the theoretical and semiempirical relations between pore size and the pressure of capillary condensation or evaporation proposed so far, we constructed an accurate relation between the pore radius and the capillary condensation and evaporation pressure of nitrogen at 77 K for the cylindrical pores of the ordered mesoporous MCM-41 and SBA-15 silicas. Here, the pore size was determined from a comparison between the experimental and calculated X-ray diffraction patterns due to X-ray structural modeling recently developed. Among the many theoretical relations that differ from each other in the degree of theoretical improvements, a macroscopic thermodynamic approach based on Broekhoff-de Boer equations was found to be in fair agreement with the experimental relation obtained in the present study.

  17. SpotCaliper: fast wavelet-based spot detection with accurate size estimation.

    Science.gov (United States)

    Püspöki, Zsuzsanna; Sage, Daniel; Ward, John Paul; Unser, Michael

    2016-04-15

    SpotCaliper is a novel wavelet-based image-analysis software providing a fast automatic detection scheme for circular patterns (spots), combined with the precise estimation of their size. It is implemented as an ImageJ plugin with a friendly user interface. The user is allowed to edit the results by modifying the measurements (in a semi-automated way), extract data for further analysis. The fine tuning of the detections includes the possibility of adjusting or removing the original detections, as well as adding further spots. The main advantage of the software is its ability to capture the size of spots in a fast and accurate way. http://bigwww.epfl.ch/algorithms/spotcaliper/ zsuzsanna.puspoki@epfl.ch Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Recommendations for plutonium colloid size determination

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.

    1984-02-01

    This report presents recommendations for plutonium colloid size determination and summarizes a literature review, discussions with other researchers, and comments from equipment manufacturers. Four techniques suitable for plutonium colloid size characterization are filtration and ultrafiltration, gel permeation chromatography, diffusion methods, and high-pressure liquid chromatography (conditionally). Our findings include the following: (1) Filtration and ultrafiltration should be the first methods used for plutonium colloid size determination because they can provide the most rapid results with the least complicated experimental arrangement. (2) After expertise has been obtained with filtering, gel permeation chromatography should be incorporated into the colloid size determination program. (3) Diffusion methods can be used next. (4) High-pressure liquid chromatography will be suitable after appropriate columns are available. A plutonium colloid size characterization program with filtration/ultrafiltration and gel permeation chromatography has been initiated

  19. Accurate modeling and maximum power point detection of ...

    African Journals Online (AJOL)

    Accurate modeling and maximum power point detection of photovoltaic ... Determination of MPP enables the PV system to deliver maximum available power. ..... adaptive artificial neural network: Proposition for a new sizing procedure.

  20. Toward Accurate On-Ground Attitude Determination for the Gaia Spacecraft

    Science.gov (United States)

    Samaan, Malak A.

    2010-03-01

    The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and of control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real-time attitude, which is of order of several arcsec. This raw attitude is the starting point for the further attitude reconstruction. The OGA will use the inputs from the field coordinates of known stars (attitude stars) and also the field coordinate differences of objects on the Sky Mapper (SM) and Astrometric Field (AF) payload instruments to improve this raw attitude. The on-board attitude determination uses a Kalman Filter (KF) to minimize the attitude errors and produce a more accurate attitude estimation than the pure star tracker measurement. Therefore the first approach for the OGA will be an adapted version of KF. Furthermore, we will design a batch least squares algorithm to investigate how to obtain a more accurate OGA estimation. Finally, a comparison between these different attitude determination techniques in terms of accuracy, robustness, speed and memory required will be evaluated in order to choose the best attitude algorithm for the OGA. The expected resulting accuracy for the OGA determination will be on the order of milli-arcsec.

  1. Technique for determining training staff size

    International Nuclear Information System (INIS)

    Frye, S.R.

    1985-01-01

    Determining an adequate training staff size is a vital function of a training manager. Today's training requirements and standards have dictated a more stringent work load than ever before. A trainer's role is more than just providing classroom lectures. In most organizations the instructor must develop programs, lesson plans, exercise guides, objectives, test questions, etc. The tasks of a training organization are never ending and the appropriate resources must be determined and allotted to do the total job. A simple method exists for determining an adequate staff. Although not perfect, this method will provide a realistic approach for determining the needed training staff size. This method considers three major factors: instructional man-hours; non-instructional man-hours; and instructor availability. By determining and adding instructional man-hours and non-instructional man-hours a total man-hour distribution can be obtained. By dividing this by instructor availability a staff size can be determined

  2. Particle size determination

    International Nuclear Information System (INIS)

    Burr, K.J.

    1979-01-01

    A specification is given for an apparatus to provide a completely automatic testing cycle to determine the proportion of particles of less than a predetermined size in one of a number of fluid suspensions. Monitoring of the particle concentration during part of the process can be carried out by an x-ray source and detector. (U.K.)

  3. Experimental determination of size distributions: analyzing proper sample sizes

    International Nuclear Information System (INIS)

    Buffo, A; Alopaeus, V

    2016-01-01

    The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used. (paper)

  4. Automatic determination of the size of elliptical nanoparticles from AFM images

    International Nuclear Information System (INIS)

    Sedlář, Jiří; Zitová, Barbara; Kopeček, Jaromír; Flusser, Jan; Todorciuc, Tatiana; Kratochvílová, Irena

    2013-01-01

    The objective of this work was to develop an accurate method for automatic determination of the size of elliptical nanoparticles from atomic force microscopy (AFM) images that would yield results consistent with results of manual measurements by experts. The proposed method was applied on phenylpyridyldiketopyrrolopyrrole (PPDP), a granular organic material with a wide scale of application and highly sensitive particle-size properties. A PPDP layer consists of similarly sized elliptical particles (c. 100 nm × 50 nm) and its properties can be estimated from the average length and width of the particles. The developed method is based on segmentation of salient particles by the watershed transform and approximation of their shapes by ellipses computed by image moments; it estimates the lengths and widths of the particles by the major and minor axes, respectively, of the corresponding ellipses. Its results proved to be consistent with results of manual measurements by a trained expert. The comparison showed that the developed method could be used in practice for precise automatic measurement of PPDP particles in AFM images

  5. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    Science.gov (United States)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  6. Sample size determination for disease prevalence studies with partially validated data.

    Science.gov (United States)

    Qiu, Shi-Fang; Poon, Wai-Yin; Tang, Man-Lai

    2016-02-01

    Disease prevalence is an important topic in medical research, and its study is based on data that are obtained by classifying subjects according to whether a disease has been contracted. Classification can be conducted with high-cost gold standard tests or low-cost screening tests, but the latter are subject to the misclassification of subjects. As a compromise between the two, many research studies use partially validated datasets in which all data points are classified by fallible tests, and some of the data points are validated in the sense that they are also classified by the completely accurate gold-standard test. In this article, we investigate the determination of sample sizes for disease prevalence studies with partially validated data. We use two approaches. The first is to find sample sizes that can achieve a pre-specified power of a statistical test at a chosen significance level, and the second is to find sample sizes that can control the width of a confidence interval with a pre-specified confidence level. Empirical studies have been conducted to demonstrate the performance of various testing procedures with the proposed sample sizes. The applicability of the proposed methods are illustrated by a real-data example. © The Author(s) 2012.

  7. Neuromuscular dose-response studies: determining sample size.

    Science.gov (United States)

    Kopman, A F; Lien, C A; Naguib, M

    2011-02-01

    Investigators planning dose-response studies of neuromuscular blockers have rarely used a priori power analysis to determine the minimal sample size their protocols require. Institutional Review Boards and peer-reviewed journals now generally ask for this information. This study outlines a proposed method for meeting these requirements. The slopes of the dose-response relationships of eight neuromuscular blocking agents were determined using regression analysis. These values were substituted for γ in the Hill equation. When this is done, the coefficient of variation (COV) around the mean value of the ED₅₀ for each drug is easily calculated. Using these values, we performed an a priori one-sample two-tailed t-test of the means to determine the required sample size when the allowable error in the ED₅₀ was varied from ±10-20%. The COV averaged 22% (range 15-27%). We used a COV value of 25% in determining the sample size. If the allowable error in finding the mean ED₅₀ is ±15%, a sample size of 24 is needed to achieve a power of 80%. Increasing 'accuracy' beyond this point requires increasing greater sample sizes (e.g. an 'n' of 37 for a ±12% error). On the basis of the results of this retrospective analysis, a total sample size of not less than 24 subjects should be adequate for determining a neuromuscular blocking drug's clinical potency with a reasonable degree of assurance.

  8. Accurate characterisation of hole size and location by projected fringe profilometry

    Science.gov (United States)

    Wu, Yuxiang; Dantanarayana, Harshana G.; Yue, Huimin; Huntley, Jonathan M.

    2018-06-01

    The ability to accurately estimate the location and geometry of holes is often required in the field of quality control and automated assembly. Projected fringe profilometry is a potentially attractive technique on account of being non-contacting, of lower cost, and orders of magnitude faster than the traditional coordinate measuring machine. However, we demonstrate in this paper that fringe projection is susceptible to significant (hundreds of µm) measurement artefacts in the neighbourhood of hole edges, which give rise to errors of a similar magnitude in the estimated hole geometry. A mechanism for the phenomenon is identified based on the finite size of the imaging system’s point spread function and the resulting bias produced near to sample discontinuities in geometry and reflectivity. A mathematical model is proposed, from which a post-processing compensation algorithm is developed to suppress such errors around the holes. The algorithm includes a robust and accurate sub-pixel edge detection method based on a Fourier descriptor of the hole contour. The proposed algorithm was found to reduce significantly the measurement artefacts near the hole edges. As a result, the errors in estimated hole radius were reduced by up to one order of magnitude, to a few tens of µm for hole radii in the range 2–15 mm, compared to those from the uncompensated measurements.

  9. The relationship between UT reported size and actual size of the defects in rotor forgings

    International Nuclear Information System (INIS)

    Seong, Un Hak; Kim, Jeong Tae; Park, Yun Sik

    2003-01-01

    In order to evaluate the reliability of rotor forgings, it is very important to know the actual size of the defects in the rotor forgings. The determination of the defect size requires the accurate non-destructive measurement. However, there may be some differences between the reported size with the ultrasonic non-destructive testing method and the actual size of defects. These differences may be a severe cause of errors in evaluation of rotor forgings. So, the calculated size with 'Master Curve' considering safety factor, which is usually larger than the reported size, has been used in evaluation of rotor forgings. The relation between the EFBH (Equivalent Flat Bottom Hole) size measured by non-destructive method and the actual size by destructive method in many rotors manufactured at Doosan was investigated. In this investigation 'Master Curve' compensating the differences between UT reported size and actual size of defects in our rotor forgings was obtainable. The applicability of this 'Master Curve' as a way of calculating the actual defect size was also investigated. For the evaluation of rotor forgings, it is expected that this 'Master Curve' may be used to determine the accurate actual size of defects.

  10. The relationship between UT reported size and actual size of the defects in rotor forgings

    International Nuclear Information System (INIS)

    Seong, Un Hak; Kim, Jeong Tae; Park, Yun Sik

    2003-01-01

    In order to evaluate the reliability of rotor forgings, it is very important to know the actual size of the defects in the rotor forgings. The determination of the defect size requires the accurate non-destructive measurement. However, there may be some difference between the reported size with ultrasonic non-destructive testing method and the actual size of defects. These differences may be a severe cause of errors in evaluation of rotor forgings. So, the calculated size with 'Master Curve' considering safety factor, which is usually larger than the reported size, has been used in evaluation of rotor forgings. The relation between the EFBH (Equivalent Flat Bottom Hole) size measured by non-destructive method and the actual size by destructive method in many rotors manufactured at Doosan was investigated. In this investigation, 'Master Curve' compensating the differences between UT reported size and actual size of defects in our rotor forgings was obtainable. The applicability of this 'Master Curve' as a way of calculating the actual defect size was also investigated. For the evaluation of rotor forgings, it is expected that this 'Master Curve' may be used to determine the accurate actual size of defects.

  11. Concepts in sample size determination

    Directory of Open Access Journals (Sweden)

    Umadevi K Rao

    2012-01-01

    Full Text Available Investigators involved in clinical, epidemiological or translational research, have the drive to publish their results so that they can extrapolate their findings to the population. This begins with the preliminary step of deciding the topic to be studied, the subjects and the type of study design. In this context, the researcher must determine how many subjects would be required for the proposed study. Thus, the number of individuals to be included in the study, i.e., the sample size is an important consideration in the design of many clinical studies. The sample size determination should be based on the difference in the outcome between the two groups studied as in an analytical study, as well as on the accepted p value for statistical significance and the required statistical power to test a hypothesis. The accepted risk of type I error or alpha value, which by convention is set at the 0.05 level in biomedical research defines the cutoff point at which the p value obtained in the study is judged as significant or not. The power in clinical research is the likelihood of finding a statistically significant result when it exists and is typically set to >80%. This is necessary since the most rigorously executed studies may fail to answer the research question if the sample size is too small. Alternatively, a study with too large a sample size will be difficult and will result in waste of time and resources. Thus, the goal of sample size planning is to estimate an appropriate number of subjects for a given study design. This article describes the concepts in estimating the sample size.

  12. A highly accurate method for determination of dissolved oxygen: Gravimetric Winkler method

    International Nuclear Information System (INIS)

    Helm, Irja; Jalukse, Lauri; Leito, Ivo

    2012-01-01

    Highlights: ► Probably the most accurate method available for dissolved oxygen concentration measurement was developed. ► Careful analysis of uncertainty sources was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. ► This development enables more accurate calibration of dissolved oxygen sensors for routine analysis than has been possible before. - Abstract: A high-accuracy Winkler titration method has been developed for determination of dissolved oxygen concentration. Careful analysis of uncertainty sources relevant to the Winkler method was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. The most important improvements were: gravimetric measurement of all solutions, pre-titration to minimize the effect of iodine volatilization, accurate amperometric end point detection and careful accounting for dissolved oxygen in the reagents. As a result, the developed method is possibly the most accurate method of determination of dissolved oxygen available. Depending on measurement conditions and on the dissolved oxygen concentration the combined standard uncertainties of the method are in the range of 0.012–0.018 mg dm −3 corresponding to the k = 2 expanded uncertainty in the range of 0.023–0.035 mg dm −3 (0.27–0.38%, relative). This development enables more accurate calibration of electrochemical and optical dissolved oxygen sensors for routine analysis than has been possible before.

  13. Sample size determination and power

    CERN Document Server

    Ryan, Thomas P, Jr

    2013-01-01

    THOMAS P. RYAN, PhD, teaches online advanced statistics courses for Northwestern University and The Institute for Statistics Education in sample size determination, design of experiments, engineering statistics, and regression analysis.

  14. Accurate and precise determination of small quantity uranium by means of automatic potentiometric titration

    International Nuclear Information System (INIS)

    Liu Quanwei; Luo Zhongyan; Zhu Haiqiao; Wu Jizong

    2007-01-01

    For high radioactivity level of dissolved solution of spent fuel and the solution of uranium product, radioactive hazard must be considered and reduced as low as possible during accurate determination of uranium. In this work automatic potentiometric titration was applied and the sample only 10 mg of uranium contained was taken in order to reduce the harm of analyzer suffered from the radioactivity. RSD<0.06%, at the same time the result can be corrected for more reliable and accurate measurement. The determination method can effectively reduce the harm of analyzer suffered from the radioactivity, and meets the requirement of reliable accurate measurement of uranium. (authors)

  15. Multi-Criteria Model for Determining Order Size

    Directory of Open Access Journals (Sweden)

    Katarzyna Jakowska-Suwalska

    2013-01-01

    Full Text Available A multi-criteria model for determining the order size for materials used in production has been presented. It was assumed that the consumption rate of each material is a random variable with a known probability distribution. Using such a model, in which the purchase cost of materials ordered is limited, three criteria were considered: order size, probability of a lack of materials in the production process, and deviations in the order size from the consumption rate in past periods. Based on an example, it has been shown how to use the model to determine the order sizes for polyurethane adhesive and wood in a hard-coal mine. (original abstract

  16. Accurate determination of process variables in a solid-state fermentation system

    NARCIS (Netherlands)

    Smits, J.P.; Rinzema, A.; Tramper, J.; Schlösser, E.E.; Knol, W.

    1996-01-01

    The solid-state fermentation (SSF) method described enabled accurate determination of variables related to biological activity. Growth, respiratory activity and production of carboxymethyl-cellulose-hydrolysing enzyme (CMC-ase) activity by Trichoderma reesei QM9414 on wheat bran was used as a model

  17. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  18. Atomic spectroscopy and highly accurate measurement: determination of fundamental constants

    International Nuclear Information System (INIS)

    Schwob, C.

    2006-12-01

    This document reviews the theoretical and experimental achievements of the author concerning highly accurate atomic spectroscopy applied for the determination of fundamental constants. A pure optical frequency measurement of the 2S-12D 2-photon transitions in atomic hydrogen and deuterium has been performed. The experimental setting-up is described as well as the data analysis. Optimized values for the Rydberg constant and Lamb shifts have been deduced (R = 109737.31568516 (84) cm -1 ). An experiment devoted to the determination of the fine structure constant with an aimed relative uncertainty of 10 -9 began in 1999. This experiment is based on the fact that Bloch oscillations in a frequency chirped optical lattice are a powerful tool to transfer coherently many photon momenta to the atoms. We have used this method to measure accurately the ratio h/m(Rb). The measured value of the fine structure constant is α -1 = 137.03599884 (91) with a relative uncertainty of 6.7*10 -9 . The future and perspectives of this experiment are presented. This document presented before an academic board will allow his author to manage research work and particularly to tutor thesis students. (A.C.)

  19. Analytical method comparisons for the accurate determination of PCBs in sediments

    Energy Technology Data Exchange (ETDEWEB)

    Numata, M.; Yarita, T.; Aoyagi, Y.; Yamazaki, M.; Takatsu, A. [National Metrology Institute of Japan, Tsukuba (Japan)

    2004-09-15

    National Metrology Institute of Japan in National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) has been developing several matrix reference materials, for example, sediments, water and biological tissues, for the determinations of heavy metals and organometallic compounds. The matrix compositions of those certified reference materials (CRMs) are similar to compositions of actual samples, and those are useful for validating analytical procedures. ''Primary methods of measurements'' are essential to obtain accurate and SI-traceable certified values in the reference materials, because the methods have the highest quality of measurement. However, inappropriate analytical operations, such as incomplete extraction of analytes or crosscontamination during analytical procedures, will cause error of analytical results, even if one of the primary methods, isotope-dilution, is utilized. To avoid possible procedural bias for the certification of reference materials, we employ more than two analytical methods which have been optimized beforehand. Because the accurate determination of trace POPs in the environment is important to evaluate their risk, reliable CRMs are required by environmental chemists. Therefore, we have also been preparing matrix CRMs for the determination of POPs. To establish accurate analytical procedures for the certification of POPs, extraction is one of the critical steps as described above. In general, conventional extraction techniques for the determination of POPs, such as Soxhlet extraction (SOX) and saponification (SAP), have been characterized well, and introduced as official methods for environmental analysis. On the other hand, emerging techniques, such as microwave-assisted extraction (MAE), pressurized fluid extraction (PFE) and supercritical fluid extraction (SFE), give higher recovery yields of analytes with relatively short extraction time and small amount of solvent, by reasons of the high

  20. Value of adenosine infusion for infarct size determination using real-time myocardial contrast echocardiography

    Directory of Open Access Journals (Sweden)

    da Luz Protásio

    2006-02-01

    Full Text Available Abstract Background Myocardial contrast echocardiography has been used for determination of infarct size (IS in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE. Methods Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC staining. Results IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004, with good correlation between measurements (r = 0.91; p 2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p Conclusion RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.

  1. Accurate determination of the oxidative phosphorylation affinity for ADP in isolated mitochondria.

    Directory of Open Access Journals (Sweden)

    Gilles Gouspillou

    Full Text Available BACKGROUND: Mitochondrial dysfunctions appear strongly implicated in a wide range of pathologies. Therefore, there is a growing need in the determination of the normal and pathological integrated response of oxidative phosphorylation to cellular ATP demand. The present study intends to address this issue by providing a method to investigate mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria. METHODOLOGY/PRINCIPAL FINDINGS: The proposed method is based on the simultaneous monitoring of substrate oxidation (determined polarographically and phosphorylation (determined using the glucose-hexokinase glucose-6-phosphate dehydrogenase-NADP(+ enzymatic system rates, coupled to the determination of actual ADP and ATP concentrations by bioluminescent assay. This enzymatic system allows the study of oxidative phosphorylation during true steady states in a wide range of ADP concentrations. We demonstrate how the application of this method allows an accurate determination of mitochondrial affinity for ADP from both oxidation (K(mVox and phosphorylation (K(mVp rates. We also demonstrate that determination of K(mVox leads to an important overestimation of the mitochondrial affinity for ADP, indicating that mitochondrial affinity for ADP should be determined using phosphorylation rate. Finally, we show how this method allows the direct and precise determination of the mitochondrial coupling efficiency. Data obtained from rat skeletal muscle and liver mitochondria illustrate the discriminating capabilities of this method. CONCLUSIONS/SIGNIFICANCE: Because the proposed method allows the accurate determination of mitochondrial oxidative phosphorylation affinity for ADP in isolated mitochondria, it also opens the route to a better understanding of functional consequences of mitochondrial adaptations/dysfunctions arising in various physiological/pathophysiological conditions.

  2. Accurate determination of rates from non-uniformly sampled relaxation data

    Energy Technology Data Exchange (ETDEWEB)

    Stetz, Matthew A.; Wand, A. Joshua, E-mail: wand@upenn.edu [University of Pennsylvania Perelman School of Medicine, Johnson Research Foundation and Department of Biochemistry and Biophysics (United States)

    2016-08-15

    The application of non-uniform sampling (NUS) to relaxation experiments traditionally used to characterize the fast internal motion of proteins is quantitatively examined. Experimentally acquired Poisson-gap sampled data reconstructed with iterative soft thresholding are compared to regular sequentially sampled (RSS) data. Using ubiquitin as a model system, it is shown that 25 % sampling is sufficient for the determination of quantitatively accurate relaxation rates. When the sampling density is fixed at 25 %, the accuracy of rates is shown to increase sharply with the total number of sampled points until eventually converging near the inherent reproducibility of the experiment. Perhaps contrary to some expectations, it is found that accurate peak height reconstruction is not required for the determination of accurate rates. Instead, inaccuracies in rates arise from inconsistencies in reconstruction across the relaxation series that primarily manifest as a non-linearity in the recovered peak height. This indicates that the performance of an NUS relaxation experiment cannot be predicted from comparison of peak heights using a single RSS reference spectrum. The generality of these findings was assessed using three alternative reconstruction algorithms, eight different relaxation measurements, and three additional proteins that exhibit varying degrees of spectral complexity. From these data, it is revealed that non-linearity in peak height reconstruction across the relaxation series is strongly correlated with errors in NUS-derived relaxation rates. Importantly, it is shown that this correlation can be exploited to reliably predict the performance of an NUS-relaxation experiment by using three or more RSS reference planes from the relaxation series. The RSS reference time points can also serve to provide estimates of the uncertainty of the sampled intensity, which for a typical relaxation times series incurs no penalty in total acquisition time.

  3. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.

    Science.gov (United States)

    Silva, Susana F; Domingues, José Paulo; Morgado, António Miguel

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed.

  4. Size determinations of plutonium colloids using autocorrelation photon spectroscopy

    International Nuclear Information System (INIS)

    Triay, I.R.; Rundberg, R.S.; Mitchell, A.J.; Ott, M.A.; Hobart, D.E.; Palmer, P.D.; Newton, T.W.; Thompson, J.L.

    1989-01-01

    Autocorrelation Photon Spectroscopy (APS) is a light-scattering technique utilized to determine the size distribution of colloidal suspensions. The capabilities of the APS methodology have been assessed by analyzing colloids of known sizes. Plutonium(IV) colloid samples were prepared by a variety of methods including: dilution; peptization; and alpha-induced auto-oxidation of Pu(III). The size of theses Pu colloids was analyzed using APS. The sizes determined for the Pu colloids studied varied from 1 to 370 nanometers. 7 refs., 5 figs., 3 tabs

  5. Determination of the growth restriction factor and grain size for aluminum alloys by a quasi-binary equivalent method

    International Nuclear Information System (INIS)

    Mitrašinović, A.M.; Robles Hernández, F.C.

    2012-01-01

    Highlights: ► A new method to determine the growth restricting factor. (Q) is proposed ► The proposed method is highly accurate (R 2 = 0.99) and simple. ► A major novelty of this method is the determination of Q for non-dilute samples. ► The method proposed herein is based on quasi-binary phase diagrams and composition. ► This method can be easily implemented industrially or as a research tool. - Abstract: In the present research paper is suggested a new methodology to determine the growth restricting factor (Q) and grain size (GS) for various Al-alloys. The present method combines a thermodynamical component based on the liquidus behavior of each alloying element that is later incorporated into the well known growth restricting models for multi-component alloys. This approach that can be used to determine Q and/or GS based on the chemical composition and the slope of the liquidus temperature of any Al-alloy solidified in close to equilibrium conditions. This method can be modified further in order to assess the effect of cooling rate or thermomechanical processing on growth restricting factor and grain size. In the present paper is proposed a highly accurate (R 2 = 0.99) and validated model for Al–Si alloys, but it can be modified for any other Al–X alloying system. The present method can be used for alloys with relatively high solute content and due to the use of the thermodynamics of liquidus this system considers the poisoning effects of single and multi-component alloying elements.

  6. How accurate are adolescents in portion-size estimation using the computer tool young adolescents' nutrition assessment on computer (YANA-C)?

    OpenAIRE

    Vereecken, Carine; Dohogne, Sophie; Covents, Marc; Maes, Lea

    2010-01-01

    Computer-administered questionnaires have received increased attention for large-scale population research on nutrition. In Belgium-Flanders, Young Adolescents' Nutrition Assessment on Computer (YANA-C) has been developed. In this tool, standardised photographs are available to assist in portion-size estimation. The purpose of the present study is to assess how accurate adolescents are in estimating portion sizes of food using YANA-C. A convenience sample, aged 11-17 years, estimated the amou...

  7. Intravascular ultrasound is a critical tool for accurate endograft sizing in the management of blunt thoracic aortic injury.

    Science.gov (United States)

    Wallace, Gabriel A; Starnes, Benjamin W; Hatsukami, Thomas S; Sobel, Michael; Singh, Niten; Tran, Nam T

    2015-03-01

    Accurate measurement of true aortic luminal diameter (ALD) is critical for endograft sizing in endovascular treatment of blunt thoracic aortic injury (BTAI), but ALD is dynamic and changes with respect to patients' hemodynamic status. This study aimed to characterize how ALD at the time of diagnosis of BTAI compares with ALD at the time of endovascular repair and later at follow-up. This is an Institutional Review Board-approved, single-institution retrospective analysis of prospectively obtained data. Patients were included who presented between July 2007 and December 2012 with computed tomography angiography (CTA)-diagnosed BTAI; who underwent thoracic endovascular aortic repair (TEVAR); and who underwent preoperative CTA, intraoperative intravascular ultrasound (IVUS), and postimplantation CTA. Comparison measurements of the ALD were made among CTA and IVUS images at the level of the left subclavian artery (LSCA) and between initial CTA and postimplantation CTA at 10, 15, and 20 cm distal to the LSCA. Theoretical endograft sizes were determined and compared for each ALD at the LSCA. Twenty-two patients were included in the analysis. Mean age was 38 ± 14 years (range, 17-61 years), with 82% men and mean Injury Severity Score of 43 ± 11 (range, 24-66). Mean time from emergency department admission to initial CTA was -1.2 ± 5 hours (range, -13 to 11.5 hours; negative time implies imaging at an outside facility before admission). Mean time from initial CTA to IVUS was 1.2 ± 1.4 days (range, 2.5 hours-5.7 days) and from IVUS to postimplantation CTA 33 ± 45 days (range, 17 hours-169 days). Overall, ALD measured by IVUS was significantly larger than that by initial CTA (Δ2.5 ± 3.1 mm; P < .05). ALD was also larger at 10, 15, and 20 cm distal to the LSCA in comparing the postimplantation CTA with the initial CTA (Δ2.4, 2.0, and 2.0 mm, respectively; all P < .05). More than half the devices would be sized differently with ALD measured by IVUS at the time of TEVAR

  8. Improvement of Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size.

    Science.gov (United States)

    Ma, Haotong; Liu, Zejin; Jiang, Pengzhi; Xu, Xiaojun; Du, Shaojun

    2011-07-04

    We propose and demonstrate the improvement of conventional Galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size. Based on the detailed study of the refractive beam shaping system, we found that the conventional Galilean beam shaper can only work well for the magnifying beam shaping. Taking the transformation of input beam with Gaussian irradiance distribution into target beam with high order Fermi-Dirac flattop profile as an example, the shaper can only work well at the condition that the size of input and target beam meets R(0) ≥ 1.3 w(0). For the improvement, the shaper is regarded as the combination of magnifying and demagnifying beam shaping system. The surface and phase distributions of the improved Galilean beam shaping system are derived based on Geometric and Fourier Optics. By using the improved Galilean beam shaper, the accurate transformation of input beam with Gaussian irradiance distribution into target beam with flattop irradiance distribution is realized. The irradiance distribution of the output beam is coincident with that of the target beam and the corresponding phase distribution is maintained. The propagation performance of the output beam is greatly improved. Studies of the influences of beam size and beam order on the improved Galilean beam shaping system show that restriction of beam size has been greatly reduced. This improvement can also be used to redistribute the input beam with complicated irradiance distribution into output beam with complicated irradiance distribution.

  9. A method of accurate determination of voltage stability margin

    Energy Technology Data Exchange (ETDEWEB)

    Wiszniewski, A.; Rebizant, W. [Wroclaw Univ. of Technology, Wroclaw (Poland); Klimek, A. [AREVA Transmission and Distribution, Stafford (United Kingdom)

    2008-07-01

    In the process of developing power system disturbance, voltage instability at the receiving substations often contributes to deteriorating system stability, which eventually may lead to severe blackouts. The voltage stability margin at receiving substations may be used to determine measures to prevent voltage collapse, primarily by operating or blocking the transformer tap changing device, or by load shedding. The best measure of the stability margin is the actual load to source impedance ratio and its critical value, which is unity. This paper presented an accurate method of calculating the load to source impedance ratio, derived from the Thevenin's equivalent circuit of the system, which led to calculation of the stability margin. The paper described the calculation of the load to source impedance ratio including the supporting equations. The calculation was based on the very definition of voltage stability, which says that system stability is maintained as long as the change of power, which follows the increase of admittance is positive. The testing of the stability margin assessment method was performed in a simulative way for a number of power network structures and simulation scenarios. Results of the simulations revealed that this method is accurate and stable for all possible events occurring downstream of the device location. 3 refs., 8 figs.

  10. Determination of Flaw Size from Thermographic Data

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.

  11. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Science.gov (United States)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  12. Platelet size and age determine platelet function independently

    International Nuclear Information System (INIS)

    Thompson, C.B.; Jakubowski, J.A.; Quinn, P.G.; Deykin, D.; Valeri, C.R.

    1984-01-01

    A study was undertaken to examine the interaction of platelet size and age in determining in vitro platelet function. Baboon megakaryocytes were labeled in vivo by the injection of 75Se-methionine. Blood was collected when the label was predominantly associated with younger platelets (day 2) and with older platelets (day 9). Size-dependent platelet subpopulations were prepared on both days by counterflow centrifugation. The reactivity of each platelet subpopulation was determined on both days by measuring thrombin-induced aggregation. Platelets were fixed after partial aggregation had occurred by the addition of EDTA/formalin. After removal of the aggregated platelets by differential centrifugation, the supernatant medium was assayed for remaining platelets and 75Se radioactivity. Comparing day 2 and day 9, no significant difference was seen in the rate of aggregation of a given subpopulation. However, aggregation was more rapid in the larger platelet fractions than in the smaller ones on both days. A greater percentage of the 75Se radioactivity appeared in the platelet aggregates on day 2 than on day 9. This effect was independent of platelet size, as it occurred to a similar extent in the unfractionated platelets and in each of the size-dependent platelet subpopulations. The data indicate that young platelets are more active than older platelets. This study demonstrates that size and age are both determinants of platelet function, but by independent mechanisms

  13. Sample size determination in clinical trials with multiple endpoints

    CERN Document Server

    Sozu, Takashi; Hamasaki, Toshimitsu; Evans, Scott R

    2015-01-01

    This book integrates recent methodological developments for calculating the sample size and power in trials with more than one endpoint considered as multiple primary or co-primary, offering an important reference work for statisticians working in this area. The determination of sample size and the evaluation of power are fundamental and critical elements in the design of clinical trials. If the sample size is too small, important effects may go unnoticed; if the sample size is too large, it represents a waste of resources and unethically puts more participants at risk than necessary. Recently many clinical trials have been designed with more than one endpoint considered as multiple primary or co-primary, creating a need for new approaches to the design and analysis of these clinical trials. The book focuses on the evaluation of power and sample size determination when comparing the effects of two interventions in superiority clinical trials with multiple endpoints. Methods for sample size calculation in clin...

  14. Lipoplex size determines lipofection efficiency with or without serum.

    Science.gov (United States)

    Almofti, Mohamad Radwan; Harashima, Hideyoshi; Shinohara, Yasuo; Almofti, Ammar; Li, Wenhao; Kiwada, Hiroshi

    2003-01-01

    In order to identify factors affecting cationic liposome-mediated gene transfer, the relationships were examined among cationic liposome/DNA complex (lipoplex)-cell interactions, lipoplex size and lipoplex-mediated transfection (lipofection) efficiency. It was found that lipofection efficiency was determined mainly by lipoplex size, but not by the extent of lipoplex-cell interactions including binding, uptake or fusion. In addition, it was found that serum affected mainly lipoplex size, but not lipoplex-cell interactions, which effect was the major reason behind the inhibitory effect of serum on lipofection efficiency. It was concluded that, in the presence or absence of serum, lipoplex size is a major factor determining lipofection efficiency. Moreover, in the presence or absence of serum, lipoplex size was found to affect lipofection efficiency by controlling the size of the intracellular vesicles containing lipoplexes after internalization, but not by affecting lipoplex-cell interactions. In addition, large lipoplex particles showed, in general, higher lipofection efficiency than small particles. These results imply that, by controlling lipoplex size, an efficient lipid delivery system may be achieved for in vitro and in vivo gene therapy.

  15. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan

    2015-01-01

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α 2 ≃ 2α 1

  16. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Zhang, Shuzeng; Li, Xiongbing [School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075 (China); Barnard, Dan [Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50010 (United States)

    2015-09-15

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α{sub 2} ≃ 2α{sub 1}.

  17. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    Science.gov (United States)

    Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing

    2015-09-01

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α2 ≃ 2α1.

  18. A method for the accurate determination of the polarization of a neutron beam using a polarized 3He spin filter

    International Nuclear Information System (INIS)

    Greene, G.L.; Thompson, A.K.; Dewey, M.S.

    1995-01-01

    A new method for the accurate determination of the degree of polarization of a neutron beam which has been polarized by transmission through a spin polarized 3 He cell is given. The method does not require the use of an analyzer or spin flipper nor does it require an accurate independent determination of the 3 He polarization. The method provides a continuous on-line determination of the neutron polarization. The method may be of use in the accurate determination of correlation coefficients in neutron beta decay which provide a test of the standard model for the electroweak interaction. The method may also provide an accurate procedure for the calibration of polarized 3 He targets used in medium and high energy scattering experiments. ((orig.))

  19. On canonical cylinder sections for accurate determination of contact angle in microgravity

    Science.gov (United States)

    Concus, Paul; Finn, Robert; Zabihi, Farhad

    1992-01-01

    Large shifts of liquid arising from small changes in certain container shapes in zero gravity can be used as a basis for accurately determining contact angle. Canonical geometries for this purpose, recently developed mathematically, are investigated here computationally. It is found that the desired nearly-discontinuous behavior can be obtained and that the shifts of liquid have sufficient volume to be readily observed.

  20. Kinetic determinations of accurate relative oxidation potentials of amines with reactive radical cations.

    Science.gov (United States)

    Gould, Ian R; Wosinska, Zofia M; Farid, Samir

    2006-01-01

    Accurate oxidation potentials for organic compounds are critical for the evaluation of thermodynamic and kinetic properties of their radical cations. Except when using a specialized apparatus, electrochemical oxidation of molecules with reactive radical cations is usually an irreversible process, providing peak potentials, E(p), rather than thermodynamically meaningful oxidation potentials, E(ox). In a previous study on amines with radical cations that underwent rapid decarboxylation, we estimated E(ox) by correcting the E(p) from cyclic voltammetry with rate constants for decarboxylation obtained using laser flash photolysis. Here we use redox equilibration experiments to determine accurate relative oxidation potentials for the same amines. We also describe an extension of these experiments to show how relative oxidation potentials can be obtained in the absence of equilibrium, from a complete kinetic analysis of the reversible redox kinetics. The results provide support for the previous cyclic voltammetry/laser flash photolysis method for determining oxidation potentials.

  1. Vessel size measurements in angiograms: A comparison of techniques

    International Nuclear Information System (INIS)

    Hoffmann, Kenneth R.; Nazareth, Daryl P.; Miskolczi, Laszlo; Gopal, Anant; Wang Zhou; Rudin, Stephen; Bednarek, Daniel R.

    2002-01-01

    As interventional procedures become more complicated, the need for accurate quantitative vascular information increases. In response to this need, many commercial vendors provide techniques for measurement of vessel sizes, usually based on derivative techniques. In this study, we investigate the accuracy of several techniques used in the measurement of vessel size. Simulated images of vessels having circular cross sections were generated and convolved with various focal spot distributions taking into account the magnification. These vessel images were then convolved with Gaussian image detector line spread functions (LSFs). Additionally, images of a phantom containing vessels with a range of diameters were acquired for the 4.5'', 6'', 9'', and 12'' modes of an image intensifier-TV (II-TV) system. Vessel sizes in the images were determined using a first-derivative technique, a second-derivative technique, a linear combination of these two measured sizes, a thresholding technique, a densitometric technique, and a model-based technique. For the same focal spot size, the shape of the focal spot distribution does not affect measured vessel sizes except at large magnifications. For vessels with diameters larger than the full-width-at-half-maximum (FWHM) of the LSF, accurate vessel sizes (errors ∼0.1 mm) could be obtained by using an average of sizes determined by the first and second derivatives. For vessels with diameters smaller than the FWHM of the LSF, the densitometric and model-based techniques can provide accurate vessel sizes when these techniques are properly calibrated

  2. A new approach to determine accurately minority-carrier lifetime

    International Nuclear Information System (INIS)

    Idali Oumhand, M.; Mir, Y.; Zazoui, M.

    2009-01-01

    Electron or proton irradiations introduce recombination centers, which tend to affect solar cell parameters by reducing the minority-carrier lifetime (MCLT). Because this MCLT plays a fundamental role in the performance degradation of solar cells, in this work we present a new approach that allows us to get accurate values of MCLT. The relationship between MCLT in p-region and n-region both before and after irradiation has been determined by the new method. The validity and accuracy of this approach are justified by the fact that the degradation parameters that fit the experimental data are the same for both short-circuit current and the open-circuit voltages. This method is applied to the p + /n-InGaP solar cell under 1 MeV electron irradiation

  3. Determination of accurate metal silicide layer thickness by RBS

    International Nuclear Information System (INIS)

    Kirchhoff, J.F.; Baumann, S.M.; Evans, C.; Ward, I.; Coveney, P.

    1995-01-01

    Rutherford Backscattering Spectrometry (RBS) is a proven useful analytical tool for determining compositional information of a wide variety of materials. One of the most widely utilized applications of RBS is the study of the composition of metal silicides (MSi x ), also referred to as polycides. A key quantity obtained from an analysis of a metal silicide is the ratio of silicon to metal (Si/M). Although compositional information is very reliable in these applications, determination of metal silicide layer thickness by RBS techniques can differ from true layer thicknesses by more than 40%. The cause of these differences lies in how the densities utilized in the RBS analysis are calculated. The standard RBS analysis software packages calculate layer densities by assuming each element's bulk densities weighted by the fractional atomic presence. This calculation causes large thickness discrepancies in metal silicide thicknesses because most films form into crystal structures with distinct densities. Assuming a constant layer density for a full spectrum of Si/M values for metal silicide samples improves layer thickness determination but ignores the underlying physics of the films. We will present results of RBS determination of the thickness various metal silicide films with a range of Si/M values using a physically accurate model for the calculation of layer densities. The thicknesses are compared to scanning electron microscopy (SEM) cross-section micrographs. We have also developed supporting software that incorporates these calculations into routine analyses. (orig.)

  4. OSM-Classic : An optical imaging technique for accurately determining strain

    Science.gov (United States)

    Aldrich, Daniel R.; Ayranci, Cagri; Nobes, David S.

    OSM-Classic is a program designed in MATLAB® to provide a method of accurately determining strain in a test sample using an optical imaging technique. Measuring strain for the mechanical characterization of materials is most commonly performed with extensometers, LVDT (linear variable differential transistors), and strain gauges; however, these strain measurement methods suffer from their fragile nature and it is not particularly easy to attach these devices to the material for testing. To alleviate these potential problems, an optical approach that does not require contact with the specimen can be implemented to measure the strain. OSM-Classic is a software that interrogates a series of images to determine elongation in a test sample and hence, strain of the specimen. It was designed to provide a graphical user interface that includes image processing with a dynamic region of interest. Additionally, the stain is calculated directly while providing active feedback during the processing.

  5. Ultrasonic determination of the size of defects

    International Nuclear Information System (INIS)

    Zetterwall, T.

    1989-01-01

    The paper presents results from a study of ultrasonic testing of materials. The main topic has been the determination of the size, length and deep, of cracks or defects in stainless steel plates. (K.A.E)

  6. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    International Nuclear Information System (INIS)

    Jonathan D Buttram

    2005-01-01

    Described is a manual, portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary cooling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification

  7. Technical developments for accurate determination of amount of samples used for TOF measurements

    Directory of Open Access Journals (Sweden)

    Terada Kazushi

    2017-01-01

    Full Text Available Activity determination of 241,243Am samples has been performed with two separate methods of calorimetry and gamma-ray spectroscopy. Decay heat measurements of the samples were carried out by using a calorimeter, and activities of the samples were accurately determined with uncertainties less than 0.45%. The primary source of uncertainty in the calorimetric method is the accuracy of available half-life data. Gamma-ray detection efficiencies of a HPGe detector were determined with uncertainties of 1.5% by combining measured efficiencies and Monte Carlo simulation. Activities of the samples were determined with uncertainties less than 2.0% by gamma-ray spectroscopy and were concordant with those of the calorimetry.

  8. Perceived face size in healthy adults.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2017-01-01

    Perceptual body size distortions have traditionally been studied using subjective, qualitative measures that assess only one type of body representation-the conscious body image. Previous research on perceived body size has typically focused on measuring distortions of the entire body and has tended to overlook the face. Here, we present a novel psychophysical method for determining perceived body size that taps into implicit body representation. Using a two-alternative forced choice (2AFC), participants were sequentially shown two life-size images of their own face, viewed upright, upside down, or tilted 90°. In one interval, the width or length dimension was varied, while the other interval contained an undistorted image. Participants reported which image most closely matched their own face. An adaptive staircase adjusted the distorted image to hone in on the image that was equally likely to be judged as matching their perceived face as the accurate image. When viewed upright or upside down, face width was overestimated and length underestimated, whereas perception was accurate for the on-side views. These results provide the first psychophysically robust measurements of how accurately healthy participants perceive the size of their face, revealing distortions of the implicit body representation independent of the conscious body image.

  9. Accurate determination of renal function in patients with intestinal urinary diversions

    International Nuclear Information System (INIS)

    McDougal, W.S.; Koch, M.O.

    1986-01-01

    The regular determination of renal function is a critical part of the management of patients who have had the urinary tract reconstructed with intestinal segments. These intestinal segments reabsorb urinary solutes and, thereby, complicate the determination of renal function by conventional methods. Urinary clearances of urea, creatinine and inulin were performed in patients with intestinal segments in the urinary tract and controls under varying diuretic conditions. Patients with intestinal diversions also underwent radioisotopic determination of renal function. The urinary clearances of urea, creatinine and inulin are highly dependent on the rate of urine flow in patients with intestinal segments in the urinary tract. Diuresis maximizes the urinary clearances of these solutes by minimizing intestinal reabsorption. Creatinine clearance prediction from the serum creatinine underestimates true glomerular filtration rate. Radioisotopic determination of renal function correlates poorly with true glomerular filtration rate. Only creatinine clearance measured under diuretic conditions correlates well with true renal function. Urine concentrating ability cannot be assessed accurately in patients with intestinal segments in the urinary tract, since osmolality rapidly equilibrates across the segments

  10. On accurate determination of contact angle

    Science.gov (United States)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  11. Derivative load voltage and particle swarm optimization to determine optimum sizing and placement of shunt capacitor in improving line losses

    Directory of Open Access Journals (Sweden)

    Mohamed Milad Baiek

    2016-12-01

    Full Text Available The purpose of this research is to study optimal size and placement of shunt capacitor in order to minimize line loss. Derivative load bus voltage was calculated to determine the sensitive load buses which further being optimum with the placement of shunt capacitor. Particle swarm optimization (PSO was demonstrated on the IEEE 14 bus power system to find optimum size of shunt capacitor in reducing line loss. The objective function was applied to determine the proper placement of capacitor and get satisfied solutions towards constraints. The simulation was run over Matlab under two scenarios namely base case and increasing 100% load. Derivative load bus voltage was simulated to determine the most sensitive load bus. PSO was carried out to determine the optimum sizing of shunt capacitor at the most sensitive bus. The results have been determined that the most sensitive bus was bus number 14 for the base case and increasing 100% load. The optimum sizing was 8.17 Mvar for the base case and 23.98 Mvar for increasing load about 100%. Line losses were able to reduce approximately 0.98% for the base case and increasing 100% load reduced about 3.16%. The proposed method was also proven as a better result compared with harmony search algorithm (HSA method. HSA method recorded loss reduction ratio about 0.44% for the base case and 2.67% when the load was increased by 100% while PSO calculated loss reduction ratio about 1.12% and 4.02% for the base case and increasing 100% load respectively. The result of this study will support the previous study and it is concluded that PSO was successfully able to solve some engineering problems as well as to find a solution in determining shunt capacitor sizing on the power system simply and accurately compared with other evolutionary optimization methods.

  12. Sample size determination for mediation analysis of longitudinal data.

    Science.gov (United States)

    Pan, Haitao; Liu, Suyu; Miao, Danmin; Yuan, Ying

    2018-03-27

    Sample size planning for longitudinal data is crucial when designing mediation studies because sufficient statistical power is not only required in grant applications and peer-reviewed publications, but is essential to reliable research results. However, sample size determination is not straightforward for mediation analysis of longitudinal design. To facilitate planning the sample size for longitudinal mediation studies with a multilevel mediation model, this article provides the sample size required to achieve 80% power by simulations under various sizes of the mediation effect, within-subject correlations and numbers of repeated measures. The sample size calculation is based on three commonly used mediation tests: Sobel's method, distribution of product method and the bootstrap method. Among the three methods of testing the mediation effects, Sobel's method required the largest sample size to achieve 80% power. Bootstrapping and the distribution of the product method performed similarly and were more powerful than Sobel's method, as reflected by the relatively smaller sample sizes. For all three methods, the sample size required to achieve 80% power depended on the value of the ICC (i.e., within-subject correlation). A larger value of ICC typically required a larger sample size to achieve 80% power. Simulation results also illustrated the advantage of the longitudinal study design. The sample size tables for most encountered scenarios in practice have also been published for convenient use. Extensive simulations study showed that the distribution of the product method and bootstrapping method have superior performance to the Sobel's method, but the product method was recommended to use in practice in terms of less computation time load compared to the bootstrapping method. A R package has been developed for the product method of sample size determination in mediation longitudinal study design.

  13. Development of the advanced phased array UT technique for accurate sizing of cracks in the nozzle welding

    International Nuclear Information System (INIS)

    Nishida, Jun-ichiro; Kawanami, Seiichi; Ideo, Mitsushi; Matsuura, Takayuki; Chigusa, Naoki; Hirano, Shinro; Sera, Takehiko

    2010-01-01

    Recently, preventive maintenance tasks for welding of safe-end nozzles of reactor vessels and steam generators of PWRs in Japan had been carried out sequentially. Before the maintenance tasks, inspection services were carried out and several crack indications were found by eddy current testing (ECT). These indications were found in the welding which made by 600 series nickel base alloy and evaluated as stress corrosion cracks which were oriented to the axial direction of the nozzle. Then investigations to evaluate the depth of cracks were carried out by ultrasonic testing (UT) from inner surface of the nozzles. However they were difficult to evaluate the depth of cracks due to the high attenuation of the ultrasonic propagation caused by large grain structure of welding. And also it was required high resolution near surface region for accurate sizing. Therefore development of advanced phased array UT techniques specialized for the sizing at this portion was carried out. This paper reports the development status and verification test results. Firstly simulations of the ultrasonic propagation in the welding were carried out to optimize beam profiles of phased array probes. Next prototype probes were manufactured and verification tests were conducted to evaluate the accuracy of depth sizing. It is shown that the developed techniques have high sizing accuracy for artificial stress corrosion cracks in the welding. (author)

  14. Quantitative determination of grain sizes by means of scattered ultrasound

    International Nuclear Information System (INIS)

    Goebbels, K.; Hoeller, P.

    1976-01-01

    The scattering of ultrasounds makes possible the quantitative determination of grain sizes in metallic materials. Examples of measurements on steels with grain sizes between ASTM 1 and ASTM 12 are given

  15. Sample size determination for equivalence assessment with multiple endpoints.

    Science.gov (United States)

    Sun, Anna; Dong, Xiaoyu; Tsong, Yi

    2014-01-01

    Equivalence assessment between a reference and test treatment is often conducted by two one-sided tests (TOST). The corresponding power function and sample size determination can be derived from a joint distribution of the sample mean and sample variance. When an equivalence trial is designed with multiple endpoints, it often involves several sets of two one-sided tests. A naive approach for sample size determination in this case would select the largest sample size required for each endpoint. However, such a method ignores the correlation among endpoints. With the objective to reject all endpoints and when the endpoints are uncorrelated, the power function is the production of all power functions for individual endpoints. With correlated endpoints, the sample size and power should be adjusted for such a correlation. In this article, we propose the exact power function for the equivalence test with multiple endpoints adjusted for correlation under both crossover and parallel designs. We further discuss the differences in sample size for the naive method without and with correlation adjusted methods and illustrate with an in vivo bioequivalence crossover study with area under the curve (AUC) and maximum concentration (Cmax) as the two endpoints.

  16. Determination of size distribution of small DNA fragments by polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Lau How Mooi

    1998-01-01

    Size distribution determination of DNA fragments can be normally determined by the agarose gel electrophoresis, including the normal DNA banding pattern analysis. However this method is only good for large DNA, such as the DNA of the size of kilo base pairs to mega base pairs range. DNA of size less than kilo base pairs is difficult to be quantified by the agarose gel method. Polyacrylamide gel electrophoresis however can be used to measure the quantity of DNA fragments of size less than kilo base pairs in length, down to less than ten base pairs. This method is good for determining the quantity of the smaller size DNA, single stranded polymers or even some proteins, if the known standards are available. In this report detail description of the method of preparing the polyacrylamide gel, and the experimental set up is discussed. Possible uses of this method, and the comparison with the standard sizes of DNA is also shown. This method is used to determine the distribution of the amount of the fragmented DNA after the Calf-thymus DNA has been exposed to various types of radiation and of different doses. The standards were used to determine the sizes of the fragmented Calf-thymus DNA. The higher the dose the higher is the amount of the smaller size DNA measured

  17. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting.

    Science.gov (United States)

    Klotz, Dino; Grave, Daniel A; Rothschild, Avner

    2017-08-09

    The oxygen evolution reaction (OER) at the surface of semiconductor photoanodes is critical for photoelectrochemical water splitting. This reaction involves photo-generated holes that oxidize water via charge transfer at the photoanode/electrolyte interface. However, a certain fraction of the holes that reach the surface recombine with electrons from the conduction band, giving rise to the surface recombination loss. The charge transfer efficiency, η t , defined as the ratio between the flux of holes that contribute to the water oxidation reaction and the total flux of holes that reach the surface, is an important parameter that helps to distinguish between bulk and surface recombination losses. However, accurate determination of η t by conventional voltammetry measurements is complicated because only the total current is measured and it is difficult to discern between different contributions to the current. Chopped light measurement (CLM) and hole scavenger measurement (HSM) techniques are widely employed to determine η t , but they often lead to errors resulting from instrumental as well as fundamental limitations. Intensity modulated photocurrent spectroscopy (IMPS) is better suited for accurate determination of η t because it provides direct information on both the total photocurrent and the surface recombination current. However, careful analysis of IMPS measurements at different light intensities is required to account for nonlinear effects. This work compares the η t values obtained by these methods using heteroepitaxial thin-film hematite photoanodes as a case study. We show that a wide spread of η t values is obtained by different analysis methods, and even within the same method different values may be obtained depending on instrumental and experimental conditions such as the light source and light intensity. Statistical analysis of the results obtained for our model hematite photoanode show good correlation between different methods for

  18. Rapid and accurate determination of radiochemical purity of sup(99m)Tc compounds

    International Nuclear Information System (INIS)

    Tamat, S.R.

    1977-01-01

    The wide spread use of sup(99m)Tc-labelled radiopharmaceuticals and limitation of the short half-life of the isotope, is associated with an urgent need for a rapid, simple but accurate method for determining the radiochemical purity of the compound. A short paper chromatographic (KK) or thin layer chromatographic (KLT) method using 95% methanol or 0.9% saline solution as solvents, has solved the problem. With these methods, the amount of free sup(99m)Tc pertechnetate in a compound, can be determined in only a few minutes. These methods compare satisfactorily with lengtheir procedures. (author)

  19. LumenRECON Guidewire: Pilot Study of a Novel, Nonimaging Technology for Accurate Vessel Sizing and Delivery of Therapy in Femoropopliteal Disease.

    Science.gov (United States)

    Nair, Pradeep K; Carr, Jeffrey G; Bigelow, Brian; Bhatt, Deepak L; Berwick, Zachary C; Adams, George

    2018-01-01

    Proper vessel sizing during endovascular interventions is crucial to avoid adverse procedural and clinical outcomes. LumenRECON (LR) is a novel, nonimaging, 0.035-inch wire-based technology that uses the physics-based principle of Ohm's law to provide a simple, real-time luminal size while also providing a platform for therapy delivery. This study evaluated the accuracy, reliability, and safety of the LR system in patients presenting for a femoropopliteal artery intervention. This multicenter, prospective pilot study of 24 patients presenting for peripheral intervention compared LR measurements of femoropopliteal artery size to angiographic visual estimation, duplex ultrasound, quantitative angiography, and intravascular ultrasound. The primary effectiveness and safety end point was comparison against core laboratory adjudicated intravascular ultrasound values and major adverse events, respectively. Additional preclinical studies were also performed in vitro and in vivo in swine to determine the accuracy of the LR guidewire system. No intra- or postprocedure device-related adverse events occurred. A balloon or stent was successfully delivered in 12 patients (50%) over the LR wire. Differences in repeatability between successive LR measurements was 2.5±0.40% ( R 2 =0.96) with no significant bias. Differences in measurements of LR to other modalities were 0.5±1.7%, 5.0±1.8%, -1.5±2.0%, and 6.8±3.4% for intravascular ultrasound core laboratory, quantitative angiography, angiographic, and duplex ultrasound, respectively. This study demonstrates that through a physics-based principle, LR provides a real-time, safe, reproducible, and accurate vessel size of the femoropopliteal artery during intervention and can additionally serve as a conduit for therapy delivery over its wire-based platform. © 2018 American Heart Association, Inc.

  20. Sample Size Determination for One- and Two-Sample Trimmed Mean Tests

    Science.gov (United States)

    Luh, Wei-Ming; Olejnik, Stephen; Guo, Jiin-Huarng

    2008-01-01

    Formulas to determine the necessary sample sizes for parametric tests of group comparisons are available from several sources and appropriate when population distributions are normal. However, in the context of nonnormal population distributions, researchers recommend Yuen's trimmed mean test, but formulas to determine sample sizes have not been…

  1. Determination of a novel size proxy in comparative morphometrics

    Directory of Open Access Journals (Sweden)

    Andrew Gallagher

    2015-09-01

    Full Text Available Absolute size is a critical determinant of organismal biology, yet there exists no real consensus as to what particular metric of ‘size’ is empirically valid in assessments of extinct mammalian taxa. The methodological approach of JE Mosimann has found extensive favour in ‘size correction’ in comparative morphometrics, but not ‘size prediction’ in palaeontology and palaeobiology. Analyses of five distinct mammalian data sets confirm that a novel size variate (GMSize derived from k=8 dimensions of the postcranial skeleton effectively satisfies all expectations of the Jolicoeur–Mosimann theorem of univariate and multivariate size. On the basis of strong parametric correlations between the k=8 variates and between scores derived from the first principal component and geometric mean size (GMSize in all series, this novel size variable has considerable utility in comparative vertebrate morphometrics and palaeobiology as an appropriate descriptor of individual size in extant and extinct taxa.

  2. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches†

    Directory of Open Access Journals (Sweden)

    Alexandre Presas

    2017-03-01

    Full Text Available To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs, which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the

  3. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches†.

    Science.gov (United States)

    Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme; Egusquiza, Mònica; Bossio, Matias

    2017-03-22

    To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF) for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs), which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force) has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the structure vibrating

  4. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper

    DEFF Research Database (Denmark)

    Jensen, Mette Munk; Jørgensen, Jesper Tranekjaer; Binderup, Tina

    2008-01-01

    BACKGROUND: In animal studies tumor size is used to assess responses to anticancer therapy. Current standard for volumetric measurement of xenografted tumors is by external caliper, a method often affected by error. The aim of the present study was to evaluate if microCT gives more accurate...... (n = 20) was determined in vivo by external caliper, microCT and 18F-FDG-PET and subsequently reference volume was determined ex vivo. Intra-observer reproducibility of the microCT and caliper methods were determined by acquiring 10 repeated volume measurements. Volumes of a group of tumors (n = 10......) were determined independently by two observers to assess inter-observer variation. RESULTS: Tumor volume measured by microCT, PET and caliper all correlated with reference volume. No significant bias of microCT measurements compared with the reference was found, whereas both PET and caliper had...

  5. Volumetric determination of tumor size abdominal masses. Problems -feasabilities

    International Nuclear Information System (INIS)

    Helmberger, H.; Bautz, W.; Sendler, A.; Fink, U.; Gerhardt, P.

    1995-01-01

    The most important indication for clinically reliable volumetric determination of tumor size in the abdominal region is monitoring liver metastases during chemotherapy. Determination of volume can be effectively realized using 3D reconstruction. Therefore, the primary data set must be complete and contiguous. The mass should be depicted strongly enhanced and free of artifacts. At present, this prerequisite can only be complied with using thin-slice spiral CT. Phantom studies have proven that a semiautomatic reconstruction algorithm is recommendable. The basic difficulties involved in volumetric determination of tumor size are the problems in differentiating active malignant mass and changes in the surrounding tissue, as well as the lack of histomorphological correlation. Possible indications for volumetry of gastrointestinal masses in the assessment of neoadjuvant therapeutic concepts are under scientific evaluation. (orig./MG) [de

  6. A miniature shoe-mounted orientation determination system for accurate indoor heading and trajectory tracking.

    Science.gov (United States)

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng

    2016-06-01

    Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.

  7. Accurate Determination of Tunneling-Affected Rate Coefficients: Theory Assessing Experiment.

    Science.gov (United States)

    Zuo, Junxiang; Xie, Changjian; Guo, Hua; Xie, Daiqian

    2017-07-20

    The thermal rate coefficients of a prototypical bimolecular reaction are determined on an accurate ab initio potential energy surface (PES) using ring polymer molecular dynamics (RPMD). It is shown that quantum effects such as tunneling and zero-point energy (ZPE) are of critical importance for the HCl + OH reaction at low temperatures, while the heavier deuterium substitution renders tunneling less facile in the DCl + OH reaction. The calculated RPMD rate coefficients are in excellent agreement with experimental data for the HCl + OH reaction in the entire temperature range of 200-1000 K, confirming the accuracy of the PES. On the other hand, the RPMD rate coefficients for the DCl + OH reaction agree with some, but not all, experimental values. The self-consistency of the theoretical results thus allows a quality assessment of the experimental data.

  8. Fast and accurate automated cell boundary determination for fluorescence microscopy

    Science.gov (United States)

    Arce, Stephen Hugo; Wu, Pei-Hsun; Tseng, Yiider

    2013-07-01

    Detailed measurement of cell phenotype information from digital fluorescence images has the potential to greatly advance biomedicine in various disciplines such as patient diagnostics or drug screening. Yet, the complexity of cell conformations presents a major barrier preventing effective determination of cell boundaries, and introduces measurement error that propagates throughout subsequent assessment of cellular parameters and statistical analysis. State-of-the-art image segmentation techniques that require user-interaction, prolonged computation time and specialized training cannot adequately provide the support for high content platforms, which often sacrifice resolution to foster the speedy collection of massive amounts of cellular data. This work introduces a strategy that allows us to rapidly obtain accurate cell boundaries from digital fluorescent images in an automated format. Hence, this new method has broad applicability to promote biotechnology.

  9. Sample size determination for logistic regression on a logit-normal distribution.

    Science.gov (United States)

    Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance

    2017-06-01

    Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.

  10. Methods for obtaining true particle size distributions from cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Kristina Alyse [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  11. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique

    DEFF Research Database (Denmark)

    Cernuschi, Federico; Rothleitner, Christian; Clausen, Sønnik

    2017-01-01

    Accurate particle mass and velocity measurement is needed for interpreting test results in erosion tests of materials and coatings. The impact and damage of a surface is influenced by the kinetic energy of a particle, i.e. particle mass and velocity. Particle mass is usually determined with optic...

  12. The determination of the pressure-viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements : part 2 : high L values

    NARCIS (Netherlands)

    Leeuwen, van H.J.

    2011-01-01

    The pressure-viscosity coefficient of a traction fluid is determined by fitting calculation results on accurate film thickness measurements, obtained at different speeds, loads, and temperatures. Through experiments, covering a range of 5.6

  13. Test of methods for retrospective activity size distribution determination from filter samples

    International Nuclear Information System (INIS)

    Meisenberg, Oliver; Tschiersch, Jochen

    2015-01-01

    Determining the activity size distribution of radioactive aerosol particles requires sophisticated and heavy equipment, which makes measurements at large number of sites difficult and expensive. Therefore three methods for a retrospective determination of size distributions from aerosol filter samples in the laboratory were tested for their applicability. Extraction into a carrier liquid with subsequent nebulisation showed size distributions with a slight but correctable bias towards larger diameters compared with the original size distribution. Yields in the order of magnitude of 1% could be achieved. Sonication-assisted extraction into a carrier liquid caused a coagulation mode to appear in the size distribution. Sonication-assisted extraction into the air did not show acceptable results due to small yields. The method of extraction into a carrier liquid without sonication was applied to aerosol samples from Chernobyl in order to calculate inhalation dose coefficients for 137 Cs based on the individual size distribution. The effective dose coefficient is about half of that calculated with a default reference size distribution. - Highlights: • Activity size distributions can be recovered after aerosol sampling on filters. • Extraction into a carrier liquid and subsequent nebulisation is appropriate. • This facilitates the determination of activity size distributions for individuals. • Size distributions from this method can be used for individual dose coefficients. • Dose coefficients were calculated for the workers at the new Chernobyl shelter

  14. Cytoplasmic streaming velocity as a plant size determinant.

    Science.gov (United States)

    Tominaga, Motoki; Kimura, Atsushi; Yokota, Etsuo; Haraguchi, Takeshi; Shimmen, Teruo; Yamamoto, Keiichi; Nakano, Akihiko; Ito, Kohji

    2013-11-11

    Cytoplasmic streaming is active transport widely occurring in plant cells ranging from algae to angiosperms. Although it has been revealed that cytoplasmic streaming is generated by organelle-associated myosin XI moving along actin bundles, the fundamental function in plants remains unclear. We generated high- and low-speed chimeric myosin XI by replacing the motor domains of Arabidopsis thaliana myosin XI-2 with those of Chara corallina myosin XI and Homo sapiens myosin Vb, respectively. Surprisingly, the plant sizes of the transgenic Arabidopsis expressing high- and low-speed chimeric myosin XI-2 were larger and smaller, respectively, than that of the wild-type plant. This size change correlated with acceleration and deceleration, respectively, of cytoplasmic streaming. Our results strongly suggest that cytoplasmic streaming is a key determinant of plant size. Furthermore, because cytoplasmic streaming is a common system for intracellular transport in plants, our system could have applications in artificial size control in plants. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Ulysses: accurate detection of low-frequency structural variations in large insert-size sequencing libraries.

    Science.gov (United States)

    Gillet-Markowska, Alexandre; Richard, Hugues; Fischer, Gilles; Lafontaine, Ingrid

    2015-03-15

    The detection of structural variations (SVs) in short-range Paired-End (PE) libraries remains challenging because SV breakpoints can involve large dispersed repeated sequences, or carry inherent complexity, hardly resolvable with classical PE sequencing data. In contrast, large insert-size sequencing libraries (Mate-Pair libraries) provide higher physical coverage of the genome and give access to repeat-containing regions. They can thus theoretically overcome previous limitations as they are becoming routinely accessible. Nevertheless, broad insert size distributions and high rates of chimerical sequences are usually associated to this type of libraries, which makes the accurate annotation of SV challenging. Here, we present Ulysses, a tool that achieves drastically higher detection accuracy than existing tools, both on simulated and real mate-pair sequencing datasets from the 1000 Human Genome project. Ulysses achieves high specificity over the complete spectrum of variants by assessing, in a principled manner, the statistical significance of each possible variant (duplications, deletions, translocations, insertions and inversions) against an explicit model for the generation of experimental noise. This statistical model proves particularly useful for the detection of low frequency variants. SV detection performed on a large insert Mate-Pair library from a breast cancer sample revealed a high level of somatic duplications in the tumor and, to a lesser extent, in the blood sample as well. Altogether, these results show that Ulysses is a valuable tool for the characterization of somatic mosaicism in human tissues and in cancer genomes. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Can axial-based nodal size criteria be used in other imaging planes to accurately determine "enlarged" head and neck lymph nodes?

    Science.gov (United States)

    Bartlett, Eric S; Walters, Thomas D; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as "enlarged" if equal to or exceeding size criteria. Results. 222 lymph nodes were "enlarged" in one imaging plane; however, 53.2% (118/222) of these were "enlarged" in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = -0.09 and -0.07, resp., P planes. Conclusion. Classification of "enlarged" lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data.

  17. 13 CFR 121.1009 - What are the procedures for making the size determination?

    Science.gov (United States)

    2010-01-01

    ... small for purposes of a particular procurement, the concern cannot later become eligible for the.... (b) Basis for determination. The size determination will be based primarily on the information... whose size status is at issue. The determination, however, may also be based on grounds not raised in...

  18. Preparation of gold nanoparticles and determination of their particles size via different methods

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar; Fessi, Hatem; Zine, Nadia; Agusti, Géraldine; Errachid, El-Salhi; Elaissari, Abdelhamid

    2016-01-01

    Graphical abstract: Preparation of gold nanoparticles via NaBH_4 reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH_4 reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH_4) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  19. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.

    Science.gov (United States)

    O'Dell, Walter G; Gormaley, Anne K; Prida, David A

    2017-12-01

    , representing vessel diameters ranging from 1.2 to 7 mm. The linear regression fit gave a slope of 1.056 and an R 2 value of 0.989. These three metrics reflect superior agreement of the radii estimates relative to previously published results over all sizes tested. Sizing via matched Gaussian filters resulted in size underestimates of >33% over all three test vessels, while the tubularity-metric matching exhibited a sizing uncertainty of >50%. In the human chest CT data set, the vessel voxel intensity profiles with and without branch model optimization showed excellent agreement and improvement in the objective measure of image similarity. Gatortail has been demonstrated to be an automated, objective, accurate and robust method for sizing of vessels in 3D non-invasively from chest CT scans. We anticipate that Gatortail, an image-based approach to automatically compute estimates of blood vessel radii and trajectories from 3D medical images, will facilitate future quantitative evaluation of vascular response to disease and environmental insult and improve understanding of the biological mechanisms underlying vascular disease processes. © 2017 American Association of Physicists in Medicine.

  20. What big size you have! Using effect sizes to determine the impact of public health nursing interventions.

    Science.gov (United States)

    Johnson, K E; McMorris, B J; Raynor, L A; Monsen, K A

    2013-01-01

    The Omaha System is a standardized interface terminology that is used extensively by public health nurses in community settings to document interventions and client outcomes. Researchers using Omaha System data to analyze the effectiveness of interventions have typically calculated p-values to determine whether significant client changes occurred between admission and discharge. However, p-values are highly dependent on sample size, making it difficult to distinguish statistically significant changes from clinically meaningful changes. Effect sizes can help identify practical differences but have not yet been applied to Omaha System data. We compared p-values and effect sizes (Cohen's d) for mean differences between admission and discharge for 13 client problems documented in the electronic health records of 1,016 young low-income parents. Client problems were documented anywhere from 6 (Health Care Supervision) to 906 (Caretaking/parenting) times. On a scale from 1 to 5, the mean change needed to yield a large effect size (Cohen's d ≥ 0.80) was approximately 0.60 (range = 0.50 - 1.03) regardless of p-value or sample size (i.e., the number of times a client problem was documented in the electronic health record). Researchers using the Omaha System should report effect sizes to help readers determine which differences are practical and meaningful. Such disclosures will allow for increased recognition of effective interventions.

  1. In situ droplet size and speed determination in a fluid-bed granulator.

    Science.gov (United States)

    Ehlers, Henrik; Larjo, Jussi; Antikainen, Osmo; Räikkönen, Heikki; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-05-31

    The droplet size affects the final product in fluid-bed granulation and coating. In the present study, spray characteristics of aqueous granulation liquid (purified water) were determined in situ in a fluid-bed granulator. Droplets were produced by a pneumatic nozzle. Diode laser stroboscopy (DLS) was used for droplet detection and particle tracking velocimetry (PTV) was used for determination of droplet size and speed. Increased atomization pressure decreased the droplet size and the effect was most strongly visible in the 90% size fractile. The droplets seemed to undergo coalescence after which only slight evaporation occurred. Furthermore, the droplets were subjected to a strong turbulence at the event of atomization, after which the turbulence reached a minimum value in the lower halve of the chamber. The turbulence increased as speed and droplet size decreased due to the effects of the fluidizing air. The DLS and PTV system used was found to be a useful and rapid tool in determining spray characteristics and in monitoring and predicting nozzle performance. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  2. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  3. Determining sample size for assessing species composition in ...

    African Journals Online (AJOL)

    Species composition is measured in grasslands for a variety of reasons. Commonly, observations are made using the wheel-point apparatus, but the problem of determining optimum sample size has not yet been satisfactorily resolved. In this study the wheel-point apparatus was used to record 2 000 observations in each of ...

  4. One at a time: counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions

    International Nuclear Information System (INIS)

    Qiu, Danfeng; Wang, Song; Zheng, Yuanqin; Deng, Zhaoxiang

    2013-01-01

    In response to an increasing demand for understanding electrochemical processes on the nanometer scale, it now becomes possible to monitor electron transfer reactions at the single-nanoparticle level, namely particle collision electrochemistry. This technique has great potential in the development of research tools towards single-particle electrocatalysis and selective and multiplexed particle sizing. However, one existing problem that may discourage these applications is the relatively weak colloidal stability of nanoparticles in an electrolytic solution. Here we report on a facile but efficient way to achieve a good stability of gold nanoparticles in an acidic media so that ‘zero-aggregation’ collisions can be achieved at a carbon ultramicroelectrode. This allows us to obtain anodic dissolution currents from individual nanoparticles in a ‘one particle at a time’ manner, based on which accurate particle sizing with a resolution of 1–2 nm can be achieved. Our work strongly suggests that to maintain a well dispersed nanoparticle solution during a particle impact electrochemical experiment is critically important for accurate particle sizing, as well as other applications that require information to be extracted from individual nanoparticles (not their aggregates). (paper)

  5. Atomic spectroscopy and highly accurate measurement: determination of fundamental constants; Spectroscopie atomique et mesures de grande precision: determination de constantes fonfamentales

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, C

    2006-12-15

    This document reviews the theoretical and experimental achievements of the author concerning highly accurate atomic spectroscopy applied for the determination of fundamental constants. A pure optical frequency measurement of the 2S-12D 2-photon transitions in atomic hydrogen and deuterium has been performed. The experimental setting-up is described as well as the data analysis. Optimized values for the Rydberg constant and Lamb shifts have been deduced (R = 109737.31568516 (84) cm{sup -1}). An experiment devoted to the determination of the fine structure constant with an aimed relative uncertainty of 10{sup -9} began in 1999. This experiment is based on the fact that Bloch oscillations in a frequency chirped optical lattice are a powerful tool to transfer coherently many photon momenta to the atoms. We have used this method to measure accurately the ratio h/m(Rb). The measured value of the fine structure constant is {alpha}{sub -1} = 137.03599884 (91) with a relative uncertainty of 6.7*10{sup -9}. The future and perspectives of this experiment are presented. This document presented before an academic board will allow his author to manage research work and particularly to tutor thesis students. (A.C.)

  6. Determination of size and shape distributions of metal and ceramic powders

    International Nuclear Information System (INIS)

    Jovanovic, DI.

    1961-01-01

    For testing the size and shape distributions of metal and ceramic uranium oxide powders the following method for analysing the grain size of powders were developed and implemented: microscopic analysis and sedimentation method. A gravimetry absorption device was constructed for determining the specific surfaces of powders

  7. An accurate method for the determination of unlike potential parameters from thermal diffusion data

    International Nuclear Information System (INIS)

    El-Geubeily, S.

    1997-01-01

    A new method is introduced by means of which the unlike intermolecular potential parameters can be determined from the experimental measurements of the thermal diffusion factor as a function of temperature. The method proved to be easy, accurate, and applicable two-, three-, and four-parameter potential functions whose collision integrals are available. The potential parameters computed by this method are found to provide a faith full representation of the thermal diffusion data under consideration. 3 figs., 4 tabs

  8. Conservative Sample Size Determination for Repeated Measures Analysis of Covariance.

    Science.gov (United States)

    Morgan, Timothy M; Case, L Douglas

    2013-07-05

    In the design of a randomized clinical trial with one pre and multiple post randomized assessments of the outcome variable, one needs to account for the repeated measures in determining the appropriate sample size. Unfortunately, one seldom has a good estimate of the variance of the outcome measure, let alone the correlations among the measurements over time. We show how sample sizes can be calculated by making conservative assumptions regarding the correlations for a variety of covariance structures. The most conservative choice for the correlation depends on the covariance structure and the number of repeated measures. In the absence of good estimates of the correlations, the sample size is often based on a two-sample t-test, making the 'ultra' conservative and unrealistic assumption that there are zero correlations between the baseline and follow-up measures while at the same time assuming there are perfect correlations between the follow-up measures. Compared to the case of taking a single measurement, substantial savings in sample size can be realized by accounting for the repeated measures, even with very conservative assumptions regarding the parameters of the assumed correlation matrix. Assuming compound symmetry, the sample size from the two-sample t-test calculation can be reduced at least 44%, 56%, and 61% for repeated measures analysis of covariance by taking 2, 3, and 4 follow-up measures, respectively. The results offer a rational basis for determining a fairly conservative, yet efficient, sample size for clinical trials with repeated measures and a baseline value.

  9. Size determination of an equilibrium enzymic system by radiation inactivation

    International Nuclear Information System (INIS)

    Simon, P.; Swillens, S.; Dumont, J.E.

    1982-01-01

    Radiation inactivation of complex enzymic systems is currently used to determine the enzyme size and the molecular organization of the components in the system. An equilibrium model was simulated describing the regulation of enzyme activity by association of the enzyme with a regulatory unit. It is assumed that, after irradiation, the system equilibrates before the enzyme activity is assayed. The theoretical results show that the target-size analysis of these numerical data leads to a bad estimate of the enzyme size. Moreover, some implicit assumptions such as the transfer of radiation energy between non-covalently bound molecules should be verified before interpretation of target-size analysis. It is demonstrated that the apparent target size depends on the parameters of the system, namely the size and the concentration of the components, the equilibrium constant, the relative activities of free enzyme and enzymic complex, the existence of energy transfer, and the distribution of the components between free and bound forms during the irradiation. (author)

  10. Accuracy of endoscopic intraoperative assessment of urologic stone size.

    Science.gov (United States)

    Patel, Nishant; Chew, Ben; Knudsen, Bodo; Lipkin, Michael; Wenzler, David; Sur, Roger L

    2014-05-01

    Endoscopic treatment of renal calculi relies on surgeon assessment of residual stone fragment size for either basket removal or for the passage of fragments postoperatively. We therefore sought to determine the accuracy of endoscopic assessment of renal calculi size. Between January and May 2013, five board-certified endourologists participated in an ex vivo artificial endoscopic simulation. A total of 10 stones (pebbles) were measured (mm) by nonparticipating urologist (N.D.P.) with electronic calibers and placed into separate labeled opaque test tubes to prevent visualization of the stones through the side of the tube. Endourologists were blinded to the actual size of the stones. A flexible digital ureteroscope with a 200-μm core sized laser fiber in the working channel as a size reference was placed through the ureteroscope into the test tube to estimate the stone size (mm). Accuracy was determined by obtaining the correlation coefficient (r) and constructing an Altman-Bland plot. Endourologists tended to overestimate actual stone size by a margin of 0.05 mm. The Pearson correlation coefficient was r=0.924, with a p-valuestones (stones (≥4 mm), r=0.911 vs r=0.666. Altman-bland plot analysis suggests that surgeons are able to accurately estimate stone size within a range of -1.8 to +1.9 mm. This ex vivo simulation study demonstrates that endoscopic assessment is reliable when assessing stone size. On average, there was a slight tendency to overestimate stone size by 0.05 mm. Most endourologists could visually estimate stone size within 2 mm of the actual size. These findings could be generalized to state that endourologists are accurately able to intraoperatively assess residual stone fragment size to guide decision making.

  11. Pore Size Distribution in Chicken Eggs as Determined by Mercury Porosimetry

    Directory of Open Access Journals (Sweden)

    La Scala Jr N

    2000-01-01

    Full Text Available In this study we investigated the application of mercury porosimetry technique into the determination of porosity features in 28 week old hen eggshells. Our results have shown that the majority of the pores have sizes between 1 to 10 mu m in the eggshells studied. By applying mercury porosimetry technique we were able to describe the porosity features better, by determining a pore size distribution in the eggshells. Here, we introduce mercury porosimetry technique as a new routine technique applied into the study of eggshells.

  12. Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer

    International Nuclear Information System (INIS)

    Gruber, Ines V; Rueckert, Miriam; Kagan, Karl O; Staebler, Annette; Siegmann, Katja C; Hartkopf, Andreas; Wallwiener, Diethelm; Hahn, Markus

    2013-01-01

    Tumour size in breast cancer influences therapeutic decisions. The purpose of this study was to evaluate sizing of primary breast cancer using mammography, sonography and magnetic resonance imaging (MRI) and thereby establish which imaging method most accurately corresponds with the size of the histological result. Data from 121 patients with primary breast cancer were analysed in a retrospective study. The results were divided into the groups “ductal carcinoma in situ (DCIS)”, invasive ductal carcinoma (IDC) + ductal carcinoma in situ (DCIS)”, “invasive ductal carcinoma (IDC)”, “invasive lobular carcinoma (ILC)” and “other tumours” (tubular, medullary, mucinous and papillary breast cancer). The largest tumour diameter was chosen as the sizing reference in each case. Bland-Altman analysis was used to determine to what extent the imaging tumour size correlated with the histopathological tumour sizes. Tumour size was found to be significantly underestimated with sonography, especially for the tumour groups IDC + DCIS, IDC and ILC. The greatest difference between sonographic sizing and actual histological tumour size was found with invasive lobular breast cancer. There was no significant difference between mammographic and histological sizing. MRI overestimated non-significantly the tumour size and is superior to the other imaging techniques in sizing of IDC + DCIS and ILC. The histological subtype should be included in imaging interpretation for planning surgery in order to estimate the histological tumour size as accurately as possible

  13. Can Axial-Based Nodal Size Criteria Be Used in Other Imaging Planes to Accurately Determine “Enlarged” Head and Neck Lymph Nodes?

    Science.gov (United States)

    Bartlett, Eric S.; Walters, Thomas D.; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as “enlarged” if equal to or exceeding size criteria. Results. 222 lymph nodes were “enlarged” in one imaging plane; however, 53.2% (118/222) of these were “enlarged” in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = −0.09 and −0.07, resp., P planes. Conclusion. Classification of “enlarged” lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data. PMID:23984099

  14. Can cancer researchers accurately judge whether preclinical reports will reproduce?

    Directory of Open Access Journals (Sweden)

    Daniel Benjamin

    2017-06-01

    Full Text Available There is vigorous debate about the reproducibility of research findings in cancer biology. Whether scientists can accurately assess which experiments will reproduce original findings is important to determining the pace at which science self-corrects. We collected forecasts from basic and preclinical cancer researchers on the first 6 replication studies conducted by the Reproducibility Project: Cancer Biology (RP:CB to assess the accuracy of expert judgments on specific replication outcomes. On average, researchers forecasted a 75% probability of replicating the statistical significance and a 50% probability of replicating the effect size, yet none of these studies successfully replicated on either criterion (for the 5 studies with results reported. Accuracy was related to expertise: experts with higher h-indices were more accurate, whereas experts with more topic-specific expertise were less accurate. Our findings suggest that experts, especially those with specialized knowledge, were overconfident about the RP:CB replicating individual experiments within published reports; researcher optimism likely reflects a combination of overestimating the validity of original studies and underestimating the difficulties of repeating their methodologies.

  15. An accurate determination of the flux within a slab

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Lapenta, G.

    1993-01-01

    During the past decade, several articles have been written concerning accurate solutions to the monoenergetic neutron transport equation in infinite and semi-infinite geometries. The numerical formulations found in these articles were based primarily on the extensive theoretical investigations performed by the open-quotes transport greatsclose quotes such as Chandrasekhar, Busbridge, Sobolev, and Ivanov, to name a few. The development of numerical solutions in infinite and semi-infinite geometries represents an example of how mathematical transport theory can be utilized to provide highly accurate and efficient numerical transport solutions. These solutions, or analytical benchmarks, are useful as open-quotes industry standards,close quotes which provide guidance to code developers and promote learning in the classroom. The high accuracy of these benchmarks is directly attributable to the rapid advancement of the state of computing and computational methods. Transport calculations that were beyond the capability of the open-quotes supercomputersclose quotes of just a few years ago are now possible at one's desk. In this paper, we again build upon the past to tackle the slab problem, which is of the next level of difficulty in comparison to infinite media problems. The formulation is based on the monoenergetic Green's function, which is the most fundamental transport solution. This method of solution requires a fast and accurate evaluation of the Green's function, which, with today's computational power, is now readily available

  16. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    Science.gov (United States)

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-10-01

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may

  17. Ultrasonic defect-sizing using decibel drop methods. I

    International Nuclear Information System (INIS)

    Murphy, R.V.

    1987-03-01

    Results are reported of a study performed to investigate the accuracy and repeatability of various ultrasonic decibel (dB) drop sizing methods in determining the length, vertical extent and orientation of artificial and real weld flaws in thin steel sections. Seven artificial flaws and nine real weld flaws were examined; over 200 data plots were produced. The general findings are: a) length and vertical extent are assessed most accurately when using a 14 dB drop from the maximum indication amplitude; b) decibel drops less that 14 dB generally undersize flaws while decibel drops greater than 14 dB generally oversize flaws; c) flaws which are smaller than the width of the sound beam cannot be assessed accurately using dB drop methods; d) large flaws are assessed most accurately when the sound beam strikes the flaws at near normal incidence; e) the vertical extent and orientation of large flaws are plotted most accurately using the beam centre line method as opposed to the beam profile method; and, f) the limitations of dB-drop-sizing methods have considerable ramifications for CAN3-N285.4-M83 and ASME XI evaluation criteria

  18. System for determining sizes of biological macromolecules

    International Nuclear Information System (INIS)

    Nelson, R.M.; Danby, P.C.

    1987-01-01

    An electrophoresis system for determining the sizes of radiolabelled biological macromolecules is described. It comprises a cell containing an electrophoresis gel and having at least one lane, a voltage source connected across the gel for effecting the movement of macromolecules in the lane, a detector fixed relative to the moving molecules for generating electrical pulses responsive to signals emitted by the radiolabelled molecules; a pulse processor for counting the pulse rate, and a computational device for comparing the pulse rate to a predetermined value. (author)

  19. Polydisperse-particle-size-distribution function determined from intensity profile of angularly scattered light

    International Nuclear Information System (INIS)

    Alger, T.W.

    1979-01-01

    A new method for determining the particle-size-distribution function of a polydispersion of spherical particles is presented. The inversion technique for the particle-size-distribution function is based upon matching the measured intensity profile of angularly scattered light with a summation of the intensity contributions of a series of appropriately spaced, narrowband, size-distribution functions. A numerical optimization technique is used to determine the strengths of the individual bands that yield the best agreement with the measured scattered-light-intensity profile. Because Mie theory is used, the method is applicable to spherical particles of all sizes. Several numerical examples demonstrate the application of this inversion method

  20. A Heuristic Approach for Determining Lot Sizes and Schedules Using Power-of-Two Policy

    Directory of Open Access Journals (Sweden)

    Esra Ekinci

    2007-01-01

    Full Text Available We consider the problem of determining realistic and easy-to-schedule lot sizes in a multiproduct, multistage manufacturing environment. We concentrate on a specific type of production, namely, flow shop type production. The model developed consists of two parts, lot sizing problem and scheduling problem. In lot sizing problem, we employ binary integer programming and determine reorder intervals for each product using power-of-two policy. In the second part, using the results obtained of the lot sizing problem, we employ mixed integer programming to determine schedules for a multiproduct, multistage case with multiple machines in each stage. Finally, we provide a numerical example and compare the results with similar methods found in practice.

  1. Determination of Size Distributions in Nanocrystalline Powders by TEM, XRD and SAXS

    DEFF Research Database (Denmark)

    Jensen, Henrik; Pedersen, Jørgen Houe; Jørgensen, Jens Erik

    2006-01-01

    Crystallite size distributions and particle size distributions were determined by TEM, XRD, and SAXS for three commercially available TiO2 samples and one homemade. The theoretical Guinier Model was fitted to the experimental data and compared to analytical expressions. Modeling of the XRD spectra...... the size distribution obtained from the XRD experiments; however, a good agreement was obtained between the two techniques. Electron microscopy, SEM and TEM, confirmed the primary particle sizes, the size distributions, and the shapes obtained by XRD and SAXS. The SSEC78 powder and the commercially...

  2. Surgical planning of total hip arthroplasty: accuracy of computer-assisted EndoMap software in predicting component size

    International Nuclear Information System (INIS)

    Davila, Jesse A.; Kransdorf, Mark J.; Duffy, Gavan P.

    2006-01-01

    The purpose of our study was to assess the accuracy of a computer-assisted templating in the surgical planning of patients undergoing total hip arthroplasty utilizing EndoMap software (Siemans AG, Medical Solutions, Erlangen, Germany). Endomap Software is an electronic program that uses DICOM images to analyze standard anteroposterior radiographs for determination of optimal prosthesis component size. We retrospectively reviewed the preoperative radiographs of 36 patients undergoing uncomplicated primary total hip arthroplasty, utilizing EndoMap software, Version VA20. DICOM anteroposterior radiographs were analyzed using standard manufacturer supplied electronic templates to determine acetabular and femoral component sizes. No additional clinical information was reviewed. Acetabular and femoral component sizes were assessed by an orthopedic surgeon and two radiologists. Mean and estimated component size was compared with component size as documented in operative reports. The mean estimated acetabular component size was 53 mm (range 48-60 mm), 1 mm larger than the mean implanted size of 52 mm (range 48-62 mm). Thirty-one of 36 acetabular component sizes (86%) were accurate within one size. The mean calculated femoral component size was 4 (range 2-7), 1 size smaller than the actual mean component size of 5 (range 2-9). Twenty-six of 36 femoral component sizes (72%) were accurate within one size, and accurate within two sizes in all but four cases (94%). EndoMap Software predicted femoral component size well, with 72% within one component size of that used, and 94% within two sizes. Acetabular component size was predicted slightly better with 86% within one component size and 94% within two component sizes. (orig.)

  3. Size Determination of Au Aerosol Nanoparticles by Off-Line TEM/STEM Observations

    Science.gov (United States)

    Karlsson, Lisa S.; Deppert, Knut; Malm, Jan-Olle

    2006-12-01

    Determination of particle size distributions of Au aerosol nanoparticles has been performed by a TEM/STEM investigation. The particles are generated by an evaporation/condensation method and are size-selected by differential mobility analyzers (DMA) based on their electrical mobility. Off-line TEM measurements resulted in equivalent projected area diameters assuming that the particles are spherical in shape. In this paper critical factors such as magnification calibration, sampling, image analysis, beam exposure and, particle shape are treated. The study shows that the measures of central tendency; mean, median and mode, are equal as expected from a narrow size distribution. Moreover, the correlation between TEM/STEM and DMA are good, in practice 1:1. Also, STEM has the advantage over TEM due to enhanced contrast and is proposed as an alternative route for determination of particle size distributions of nanoparticles with lower contrast.

  4. Size Determination of Au Aerosol Nanoparticles by Off-Line TEM/STEM Observations

    International Nuclear Information System (INIS)

    Karlsson, Lisa S.; Deppert, Knut; Malm, Jan-Olle

    2006-01-01

    Determination of particle size distributions of Au aerosol nanoparticles has been performed by a TEM/STEM investigation. The particles are generated by an evaporation/condensation method and are size-selected by differential mobility analyzers (DMA) based on their electrical mobility. Off-line TEM measurements resulted in equivalent projected area diameters assuming that the particles are spherical in shape. In this paper critical factors such as magnification calibration, sampling, image analysis, beam exposure and, particle shape are treated. The study shows that the measures of central tendency; mean, median and mode, are equal as expected from a narrow size distribution. Moreover, the correlation between TEM/STEM and DMA are good, in practice 1:1. Also, STEM has the advantage over TEM due to enhanced contrast and is proposed as an alternative route for determination of particle size distributions of nanoparticles with lower contrast

  5. Nuclear Criticality Calculation for Determining the Bach Size in a Pyroprocessing Facility

    International Nuclear Information System (INIS)

    Ko, Won Il; Lee, Ho Hee; Chang, Hong Rae; Song, Dae Yong; Kwon, Eun Ha; Jung, Chang Jun; Yoon, Suk Kyun

    2009-01-01

    The criticality analysis in a pyroprocessing facility is very important element for the R and D and the facility design in terms of the determination of batch size of the sub-processes as well as facility safety. Particularly, the determining the batch size is essential at the beginning stage of the R and D. In this report, the criticality analysis was carried out for the subprocesses such as voloxidation, electrolytic reduction, electrorefining and electrowinning process in order to estimate the maximum batch size of each process by using Monte Carlo code (MCNP4/C2). On the whole, the criticality problem could not give a big effect on the batch sizes in the voloxidation, electrolytic reduction and electrorefining. However, it was resulted that permissible amount of nuclear material to prevent the criticality accident in the electrowinning process was about 10kgHM

  6. Nuclear Criticality Calculation for Determining the Bach Size in a Pyroprocessing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Lee, Ho Hee; Chang, Hong Rae; Song, Dae Yong; Kwon, Eun Ha; Jung, Chang Jun; Yoon, Suk Kyun [KAERI, Daejeon (Korea, Republic of)

    2009-01-15

    The criticality analysis in a pyroprocessing facility is very important element for the R and D and the facility design in terms of the determination of batch size of the sub-processes as well as facility safety. Particularly, the determining the batch size is essential at the beginning stage of the R and D. In this report, the criticality analysis was carried out for the subprocesses such as voloxidation, electrolytic reduction, electrorefining and electrowinning process in order to estimate the maximum batch size of each process by using Monte Carlo code (MCNP4/C2). On the whole, the criticality problem could not give a big effect on the batch sizes in the voloxidation, electrolytic reduction and electrorefining. However, it was resulted that permissible amount of nuclear material to prevent the criticality accident in the electrowinning process was about 10kgHM

  7. Determinants of polyp Size in patients undergoing screening colonoscopy

    Directory of Open Access Journals (Sweden)

    Maisonneuve Patrick

    2011-09-01

    Full Text Available Abstract Background Pre-existing polyps, especially large polyps, are known to be the major source for colorectal cancer, but there is limited available information about factors that are associated with polyp size and polyp growth. We aim to determine factors associated with polyp size in different age groups. Methods Colonoscopy data were prospectively collected from 67 adult gastrointestinal practice sites in the United States between 2002 and 2007 using a computer-generated endoscopic report form. Data were transmitted to and stored in a central data repository, where all asymptomatic white (n = 78352 and black (n = 4289 patients who had a polyp finding on screening colonoscopy were identified. Univariate and multivariate analysis of age, gender, performance site, race, polyp location, number of polyps, and family history as risk factors associated with the size of the largest polyp detected at colonoscopy. Results In both genders, size of the largest polyp increased progressively with age in all age groups (P P Conclusions In both genders there is a significant increase in polyp size detected during screening colonoscopy with increasing age. Important additional risk factors associated with increasing polyp size are gender, race, polyp location, and number of polyps, with polyp multiplicity being the strongest risk factor. Previous family history of bowel cancer was not a risk factor.

  8. A flexible method for multi-level sample size determination

    International Nuclear Information System (INIS)

    Lu, Ming-Shih; Sanborn, J.B.; Teichmann, T.

    1997-01-01

    This paper gives a flexible method to determine sample sizes for both systematic and random error models (this pertains to sampling problems in nuclear safeguard questions). In addition, the method allows different attribute rejection limits. The new method could assist achieving a higher detection probability and enhance inspection effectiveness

  9. Asymptotic size determines species abundance in the marine size spectrum

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2006-01-01

    The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size-spectrum theory......, where population structure is derived from physiology and simple arguments regarding the predator-prey interaction. Using a hypothesis of constant satiation, which states that the average degree of satiation is independent of the size of an organism, the number of individuals with a given size is found...... to be proportional to the weight raised to the power -2.05, independent of the predator/prey size ratio. This is the first time the spectrum exponent has been derived solely on the basis of processes at the individual level. The theory furthermore predicts that the parameters in the von Bertalanffy growth function...

  10. Using ab initio 'data' to accurately determine the fourth density virial coefficient of helium

    International Nuclear Information System (INIS)

    Moldover, Michael R.; McLinden, Mark O.

    2010-01-01

    We combine accurate ab initio calculations of the second and third density virial coefficients, B(T) and C(T), of 4 He with measurements of its (p-ρ-T) behavior to determine the fourth density virial coefficient D(T). The measurements were made with a two-sinker, magnetic-suspension densimeter at pressures up to 38 MPa. The measurements on isotherms from T = 223 K to T = 323 K were previously published; new measurements from T = 323 K to T = 500 K are presented here. On each isotherm, a regression of the virial expansion was constrained to the ab initio values of B(T) and C(T); the regression determined D(T) as well as two apparatus-dependent parameters that compensated for systematic errors in the measurements. The percentage uncertainties of D(T) ranged from 2.6% at T = 223 K to 9.5% at T = 400 K to 24.7% at T = 500 K, where these uncertainties are expanded uncertainties with coverage factor of k = 2 corresponding to a 95% confidence interval. These uncertainties are 1/6th of the uncertainty obtained without the ab initio values of B(T) and C(T). The apparatus-dependent parameters can be used to calibrate the densimeter, and this will reduce the uncertainty of other measurements made with this two-sinker densimeter. The new values of D(T) will find applications in accurate gas metrology, such as a primary pressure standard based on the refractive index of helium.

  11. Size determinations of colloidal fat emulsions

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Klaus, Katrin; Steiniger, Frank

    2009-01-01

    Size and size distributions of colloidal dispersions are of crucial importance for their performance and safety. In the present study, commercially available fat emulsions (Lipofundin N, Lipofundin MCT and Lipidem) were analyzed by photon correlation spectroscopy, laser diffraction with adequate...... was checked with mixtures of monodisperse polystyrene nanospheres. In addition, the ultrastructure of Lipofundin N and Lipofundin MCT was investigated by cryo-electron microscopy. All different particle sizing methods gave different mean sizes and size distributions but overall, results were in reasonable...... agreement. By all methods, a larger mean droplet size (between 350 and 400 nm) as well as a broader distribution was measured for Lipofundin N compared to Lipofundin MCT and Lipidem (mean droplet size between about 280 and 320 nm). Size distributions of Lipofundin MCT and Lipidem were very similar...

  12. Preoperative core needle biopsy is accurate in determining molecular subtypes in invasive breast cancer

    International Nuclear Information System (INIS)

    Chen, Xiaosong; Yuan, Ying; Fei, Xiaochun; Jin, Xiaolong; Shen, Kunwei; Sun, Long; Mao, Yan; Zhu, Siji; Wu, Jiayi; Huang, Ou; Li, Yafen; Chen, Weiguo; Wang, Jianhua

    2013-01-01

    Estrogen receptor (ER), progesterone receptor (PgR), HER2, and Ki67 have been increasingly evaluated by core needle biopsy (CNB) and are recommended for classifying breast cancer into molecular subtypes. However, the concordance rate between CNB and open excision biopsy (OEB) has not been well documented. Patients with paired CNB and OEB samples from Oct. 2009 to Feb. 2012 in Ruijin Hospital were included. ER, PgR, HER2, and Ki67 were determined by immunohistochemistry (IHC). Patients with HER2 IHC 2+ were further examined by FISH. Cutoff value for Ki67 high expression was 14%. Molecular subtypes were constructed as follows: Luminal A, Luminal B, Triple Negative, and HER2 positive. There were 298 invasive breast cancer patients analyzed. Concordance rates for ER, PgR, and HER2 were 93.6%, 85.9%, and 96.3%, respectively. Ki67 expression was slightly higher in OEB than in CNB samples (29.3% vs. 26.8%, P = 0.046). Good agreement (κ = 0.658) was demonstrated in evaluating molecular subtypes between CNB and OEB, with a concordance rate of 77.2%. We also used a different Ki67 cutoff value (20%) for determining Luminal A and B subtypes in HR (hormone receptor) +/HER2- diseases and the overall concordance rate was 79.2%. However, using a cut-point of Ki67 either 14% or 20% for both specimens, there will be about 14% of HR+/HER2- specimens that are called Luminal A on CNB and Luminal B on OEB. CNB was accurate in determining ER, PgR, and HER2 status as well as non-Luminal molecular subtypes in invasive breast cancer. Ki67 should be retested on OEB samples in HR+/HER2- patients to accurately distinguish Luminal A from B tumors

  13. Bayesian sample size determination for cost-effectiveness studies with censored data.

    Directory of Open Access Journals (Sweden)

    Daniel P Beavers

    Full Text Available Cost-effectiveness models are commonly utilized to determine the combined clinical and economic impact of one treatment compared to another. However, most methods for sample size determination of cost-effectiveness studies assume fully observed costs and effectiveness outcomes, which presents challenges for survival-based studies in which censoring exists. We propose a Bayesian method for the design and analysis of cost-effectiveness data in which costs and effectiveness may be censored, and the sample size is approximated for both power and assurance. We explore two parametric models and demonstrate the flexibility of the approach to accommodate a variety of modifications to study assumptions.

  14. Validation of a new noniterative method for accurate position determination of a scanning laser vibrometer

    Science.gov (United States)

    Pauwels, Steven; Boucart, Nick; Dierckx, Benoit; Van Vlierberghe, Pieter

    2000-05-01

    The use of a scanning laser Doppler vibrometer for vibration testing is becoming a popular instrument. The scanning laser Doppler vibrometer is a non-contacting transducer that can measure many points at a high spatial resolution in a short time. Manually aiming the laser beam at the points that need to be measured is very time consuming. In order to use it effectively, the position of the laser Doppler vibrometer needs to be determined relative to the structure. If the position of the laser Doppler vibrometer is known, any visible point on the structure can be hit and measured automatically. A new algorithm for this position determination is developed, based on a geometry model of the structure. After manually aiming the laser beam at 4 or more known points, the laser position and orientation relative to the structure is determined. Using this calculated position and orientation a list with the mirror angles for every measurement point is generated, which is used during the measurement. The algorithm is validated using 3 practical cases. In the first case a plate is used of which the points are measured very accurately, so the geometry model is assumed to be perfect. The second case is a brake disc. Here the geometry points are measured with a ruler, thus not so accurate. The final validation is done on a body in white of a car. A reduced finite element model is used as geometry model. This calibration shows that the new algorithm is very effective and practically usable.

  15. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    Science.gov (United States)

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  16. Mesh size in Lichtenstein repair: a systematic review and meta-analysis to determine the importance of mesh size.

    Science.gov (United States)

    Seker, D; Oztuna, D; Kulacoglu, H; Genc, Y; Akcil, M

    2013-04-01

    Small mesh size has been recognized as one of the factors responsible for recurrence after Lichtenstein hernia repair due to insufficient coverage or mesh shrinkage. The Lichtenstein Hernia Institute recommends a 7 × 15 cm mesh that can be trimmed up to 2 cm from the lateral side. We performed a systematic review to determine surgeons' mesh size preference for the Lichtenstein hernia repair and made a meta-analysis to determine the effect of mesh size, mesh type, and length of follow-up time on recurrence. Two medical databases, PubMed and ISI Web of Science, were systematically searched using the key word "Lichtenstein repair." All full text papers were selected. Publications mentioning mesh size were brought for further analysis. A mesh surface area of 90 cm(2) was accepted as the threshold for defining the mesh as small or large. Also, a subgroup analysis for recurrence pooled proportion according to the mesh size, mesh type, and follow-up period was done. In total, 514 papers were obtained. There were no prospective or retrospective clinical studies comparing mesh size and clinical outcome. A total of 141 papers were duplicated in both databases. As a result, 373 papers were obtained. The full text was available in over 95 % of papers. Only 41 (11.2 %) papers discussed mesh size. In 29 studies, a mesh larger than 90 cm(2) was used. The most frequently preferred commercial mesh size was 7.5 × 15 cm. No papers mentioned the size of the mesh after trimming. There was no information about the relationship between mesh size and patient BMI. The pooled proportion in recurrence for small meshes was 0.0019 (95 % confidence interval: 0.007-0.0036), favoring large meshes to decrease the chance of recurrence. Recurrence becomes more marked when follow-up period is longer than 1 year (p < 0.001). Heavy meshes also decreased recurrence (p = 0.015). This systematic review demonstrates that the size of the mesh used in Lichtenstein hernia repair is rarely

  17. A hybrid solution using computational prediction and measured data to accurately determine process corrections with reduced overlay sampling

    Science.gov (United States)

    Noyes, Ben F.; Mokaberi, Babak; Mandoy, Ram; Pate, Alex; Huijgen, Ralph; McBurney, Mike; Chen, Owen

    2017-03-01

    Reducing overlay error via an accurate APC feedback system is one of the main challenges in high volume production of the current and future nodes in the semiconductor industry. The overlay feedback system directly affects the number of dies meeting overlay specification and the number of layers requiring dedicated exposure tools through the fabrication flow. Increasing the former number and reducing the latter number is beneficial for the overall efficiency and yield of the fabrication process. An overlay feedback system requires accurate determination of the overlay error, or fingerprint, on exposed wafers in order to determine corrections to be automatically and dynamically applied to the exposure of future wafers. Since current and future nodes require correction per exposure (CPE), the resolution of the overlay fingerprint must be high enough to accommodate CPE in the overlay feedback system, or overlay control module (OCM). Determining a high resolution fingerprint from measured data requires extremely dense overlay sampling that takes a significant amount of measurement time. For static corrections this is acceptable, but in an automated dynamic correction system this method creates extreme bottlenecks for the throughput of said system as new lots have to wait until the previous lot is measured. One solution is using a less dense overlay sampling scheme and employing computationally up-sampled data to a dense fingerprint. That method uses a global fingerprint model over the entire wafer; measured localized overlay errors are therefore not always represented in its up-sampled output. This paper will discuss a hybrid system shown in Fig. 1 that combines a computationally up-sampled fingerprint with the measured data to more accurately capture the actual fingerprint, including local overlay errors. Such a hybrid system is shown to result in reduced modelled residuals while determining the fingerprint, and better on-product overlay performance.

  18. Pool size measurements facilitate the determination of fluxes at branching points in nonstationary metabolic flux analysis: The case of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Robert eHeise

    2015-06-01

    Full Text Available Pool size measurements are important for the estimation of absolute intracellular fluxes in particular scenarios based on data from heavy carbon isotope experiments. Recently, steady-state fluxes estimates were obtained for central carbon metabolism in an intact illuminated rosette of Arabidopsis thaliana grown photoautotrophically (Szecowka et al., 2013; Heise et al., 2014. Fluxes were estimated therein by integrating mass-spectrometric data of the dynamics of the unlabeled metabolic fraction, data on metabolic pool sizes, partitioning of metabolic pools between cellular compartments and estimates of photosynthetically inactive pools, with a simplified model of plant central carbon metabolism. However, the fluxes were determined by treating the pool sizes as fixed parameters. Here we investigated whether and, if so, to what extent the treatment of pool sizes as parameters to be optimized in three scenarios may affect the flux estimates. The results are discussed in terms of benchmark values for canonical pathways and reactions, including starch and sucrose synthesis as well as the ribulose-1,5-bisphosphate carboxylation and oxygenation reactions. In addition, we discuss pathways emerging from a divergent branch point for which pool sizes are required for flux estimation, irrespective of the computational approach used for the simulation of the observable labelling pattern. Therefore, our findings indicate the necessity for development of techniques for accurate pool size measurements to improve the quality of flux estimates from nonstationary flux estimates in intact plant cells in the absence of alternative flux measurements.

  19. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    Science.gov (United States)

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  20. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Rideout

    2015-12-01

    Full Text Available Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  1. Determination of the particle size distribution of aerosols by means of a diffusion battery

    International Nuclear Information System (INIS)

    Maigne, J.P.

    1978-09-01

    The different methods allowing to determine the particle size distribution of aerosols by means of diffusion batteries are described. To that purpose, a new method for the processing of experimental data (percentages of particles trapped by the battery vs flow rate) was developed on the basis of calculation principles which are described and assessed. This method was first tested by numerical simulation from a priori particle size distributions and then verified experimentally using a fine uranine aerosol whose particle size distribution as determined by our method was compared with the distribution previously obtained by electron microscopy. The method can be applied to the determination of particle size distribution spectra of fine aerosols produced by 'radiolysis' of atmospheric gaseous impurities. Two other applications concern the detection threshold of the condensation nuclei counter and the 'critical' radii of 'radiolysis' particles [fr

  2. Pore size determination using normalized J-function for different hydraulic flow units

    Directory of Open Access Journals (Sweden)

    Ali Abedini

    2015-06-01

    Full Text Available Pore size determination of hydrocarbon reservoirs is one of the main challenging areas in reservoir studies. Precise estimation of this parameter leads to enhance the reservoir simulation, process evaluation, and further forecasting of reservoir behavior. Hence, it is of great importance to estimate the pore size of reservoir rocks with an appropriate accuracy. In the present study, a modified J-function was developed and applied to determine the pore radius in one of the hydrocarbon reservoir rocks located in the Middle East. The capillary pressure data vs. water saturation (Pc–Sw as well as routine reservoir core analysis include porosity (φ and permeability (k were used to develop the J-function. First, the normalized porosity (φz, the rock quality index (RQI, and the flow zone indicator (FZI concepts were used to categorize all data into discrete hydraulic flow units (HFU containing unique pore geometry and bedding characteristics. Thereafter, the modified J-function was used to normalize all capillary pressure curves corresponding to each of predetermined HFU. The results showed that the reservoir rock was classified into five separate rock types with the definite HFU and reservoir pore geometry. Eventually, the pore radius for each of these HFUs was determined using a developed equation obtained by normalized J-function corresponding to each HFU. The proposed equation is a function of reservoir rock characteristics including φz, FZI, lithology index (J*, and pore size distribution index (ɛ. This methodology used, the reservoir under study was classified into five discrete HFU with unique equations for permeability, normalized J-function and pore size. The proposed technique is able to apply on any reservoir to determine the pore size of the reservoir rock, specially the one with high range of heterogeneity in the reservoir rock properties.

  3. 49 CFR 26.65 - What rules govern business size determinations?

    Science.gov (United States)

    2010-10-01

    ... (including its affiliates) must be an existing small business, as defined by Small Business Administration... 49 Transportation 1 2010-10-01 2010-10-01 false What rules govern business size determinations? 26... DISADVANTAGED BUSINESS ENTERPRISES IN DEPARTMENT OF TRANSPORTATION FINANCIAL ASSISTANCE PROGRAMS Certification...

  4. Accurate Determination of the Values of Fundamental Physical Constants: The Basis of the New "Quantum" SI Units

    Science.gov (United States)

    Karshenboim, S. G.

    2018-03-01

    The metric system appeared as the system of units designed for macroscopic (laboratory scale) measurements. The progress in accurate determination of the values of quantum constants (such as the Planck constant) in SI units shows that the capabilities in high-precision measurement of microscopic and macroscopic quantities in terms of the same units have increased substantially recently. At the same time, relative microscopic measurements (for example, the comparison of atomic transition frequencies or atomic masses) are often much more accurate than relative measurements of macroscopic quantities. This is the basis for the strategy to define units in microscopic phenomena and then use them on the laboratory scale, which plays a crucial role in practical methodological applications determined by everyday life and technologies. The international CODATA task group on fundamental constants regularly performs an overall analysis of the precision world data (the so-called Adjustment of the Fundamental Constants) and publishes their recommended values. The most recent evaluation was based on the data published by the end of 2014; here, we review the corresponding data and results. The accuracy in determination of the Boltzmann constant has increased, the consistency of the data on determination of the Planck constant has improved; it is these two dimensional constants that will be used in near future as the basis for the new definition of the kelvin and kilogram, respectively. The contradictions in determination of the Rydberg constant and the proton charge radius remain. The accuracy of determination of the fine structure constant and relative atomic weight of the electron has improved. Overall, we give a detailed review of the state of the art in precision determination of the values of fundamental constants. The mathematical procedure of the Adjustment, the new data and results are considered in detail. The limitations due to macroscopic properties of material

  5. Determination of subcellular compartment sizes for estimating dose variations in radiotherapy

    International Nuclear Information System (INIS)

    Poole, Christopher M.; Ahnesjo, Anders; Enger, Shirin A.

    2015-01-01

    The variation in specific energy absorbed to different cell compartments caused by variations in size and chemical composition is poorly investigated in radiotherapy. The aim of this study was to develop an algorithm to derive cell and cell nuclei size distributions from 2D histology samples, and build 3D cellular geometries to provide Monte Carlo (MC)-based dose calculation engines with a morphologically relevant input geometry. Stained and unstained regions of the histology samples are segmented using a Gaussian mixture model, and individual cell nuclei are identified via thresholding. Delaunay triangulation is applied to determine the distribution of distances between the centroids of nearest neighbour cells. A pouring simulation is used to build a 3D virtual tissue sample, with cell radii randomised according to the cell size distribution determined from the histology samples. A slice with the same thickness as the histology sample is cut through the 3D data and characterised in the same way as the measured histology. The comparison between this virtual slice and the measured histology is used to adjust the initial cell size distribution into the pouring simulation. This iterative approach of a pouring simulation with adjustments guided by comparison is continued until an input cell size distribution is found that yields a distribution in the sliced geometry that agrees with the measured histology samples. The thus obtained morphologically realistic 3D cellular geometry can be used as input to MC-based dose calculation programs for studies of dose response due to variations in morphology and size of tumour/healthy tissue cells/nuclei, and extracellular material. (authors)

  6. A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments.

    Science.gov (United States)

    Heskes, Tom; Eisinga, Rob; Breitling, Rainer

    2014-11-21

    The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution. We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood. We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip .

  7. Determination of the lateral size and thickness of solution-processed graphene flakes

    Science.gov (United States)

    Lin, Li-Shang; Bin-Tay, Wei; Aslam, Zabeada; Westwood, A. V. K.; Brydson, R.

    2017-09-01

    We present a method to determine the lateral size distribution of solution…processed graphene via direct image analysis techniques. Initially transmission electron microscopy (TEM) and optical microscopy (OM) were correlated and used to provide a reliable benchmark. A rapid, automated OM method was then developed to obtain the distribution from thousands of flakes, avoiding statistical uncertainties and providing high accuracy. Dynamic light scattering (DLS) was further employed to develop an in-situ method to derive the number particle size distribution (PSD) for a dispersion, with a deviation lower than 22% in the sub-micron regime. Methods for determining flake thickness are also discussed.

  8. [Particle size determination by radioisotope x-ray absorptiometry with sedimentation method].

    Science.gov (United States)

    Matsui, Y; Furuta, T; Miyagawa, S

    1976-09-01

    The possibility of radioisotope X-ray absorptiometry to determine the particle size of powder in conjunction with sedimentation was investigated. The experimental accuracy was primarily determined by Cow and X-ray intensity. where Co'=weight concentration of the particle in the suspension w'=(micron/rho)l/(mu/rho)s-rhol/rhos rho; density micron/rho; mass absorption coefficient, suffix l and s indicate dispersion and particle, respectively. The radiosiotopes, Fe-55, Pu-238 and Cd-109 have high w-values over the wide range of the atomic number. However, a source of high micron value such as Fe-55 is not suitable because the optimal X-ray transmission length, Lopt is decided by the expression, micronlLopt approximately 2/(1+C'ow') by using Cd-109 AgKX-ray source, the weight size distribution of particles from the heavy elements such as PbO2 to light elements such as Al2O3 or flyash was determined.

  9. Determinants of Profitability of Food Industry in India: A Size-Wise Analysis

    Directory of Open Access Journals (Sweden)

    Ramachandran Azhagaiah

    2012-01-01

    Full Text Available Profitability is the profit earning capacity, which is a crucial factorin contributing to the survival of firms. This paper is a maidenattempt at estimating the impact of size on profitability, consideringthe ‘size’ as the control variable. For this purpose, the selectedfirms are classified into three size categories as ‘small,’ ‘medium,’and ‘large’ based on the sales turnover. The results show that volatilityand growth are the major predictors in determining profitabilityin case of small size firms while growth is important in determiningthe profitability of medium size firms. Capital intensityhas a significant positive coefficient with the profitability of largesize firms. The overall result shows that the larger the size of thefirm, the more the investment in long lived assets has helped toincrease the profitability of the firm unlike the trend in cases ofsmall size and medium size firms.

  10. Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films

    KAUST Repository

    Rivnay, Jonathan

    2011-07-07

    The crystallite size and cumulative lattice disorder of three prototypical, high-performing organic semiconducting materials are investigated using a Fourier-transform peak shape analysis routine based on the method of Warren and Averbach (WA). A thorough incorporation of error propagation throughout the multistep analysis and a weighted fitting of Fourier-transformed data to the WA model allows for more accurate results than typically obtained and for determination of confidence bounds. We compare results obtained when assuming two types of column-length distributions, and discuss the benefits of each model in terms of simplicity and accuracy. For strongly disordered materials, the determination of a crystallite size is greatly hindered because disorder dominates the coherence length, not finite size. A simple analysis based on trends of peak widths and Lorentzian components of pseudo-Voigt line shapes as a function of diffraction order is also discussed as an approach to more easily and qualitatively assess the amount and type of disorder present in a sample. While applied directly to organic systems, this methodology is general for the accurate deconvolution of crystalline size and lattice disorder for any material investigated with diffraction techniques. © 2011 American Physical Society.

  11. Lipoplex size is a major determinant of in vitro lipofection efficiency.

    Science.gov (United States)

    Ross, P C; Hui, S W

    1999-04-01

    The inhibition effect of serum on the transfection efficiency of cationic liposome-DNA complexes (lipoplexes) is a major obstacle to the application of this gene delivery vector both in vitro and in vivo. The size of the lipoplexes, as they are presented to targeted cells, is found to be the major determinant of their effectiveness in transfection. The transfection efficiency and the cell association and uptake of lipoplexes with CHO cells was found to increase with increasing lipoplex size. The influence on the transfection efficiency of lipoplexes by their cationic lipid:DNA ratios, types of liposomes, incubation time in polyanion containing media, and time of serum addition, are mediated mainly through size. Lipoplexes at a 2:1 charge ratio grow in size in media containing polyanions. The size growth may be arrested by adding serum to the incubation media. By using large lipoplexes, especially those made from multilamellar vesicles, the serum inhibition effect may be overcome.

  12. SCOPING STUDIES TO DEVELOP A METHOD TO DETERMINE PARTICLE SIZE IN SIMULANT SLUDGE SLURRIES BY SIEVING

    International Nuclear Information System (INIS)

    DAMON, CLICK

    2005-01-01

    A physical separation method (i.e. sieving) was investigated to determine particle size distribution in non-radioactive sludge slurry simulants with the goal of implementation into the SRNL (Savannah River National Laboratory) shielded cells for use with radioactive sludge slurries. The investigation included obtaining the necessary experimental equipment, developing accessory equipment for use with the sieve shaker (to be able to sieve simulant slurries with aqueous solutions), sieving three different simulant slurries through a number of sieves and determining the particle size distribution gravimetrically, and developing a sufficient cleaning protocol of the sieves for re-use. The experimental protocol involved successive sieving of a NIST standard (to check the particle size retention of the sieves) and three non-radioactive slurry simulants (Batch 3 Tank 40 Test 3, Tank 40 Drum 3 and CETL Sludge Batch 2, which had been previously characterized by Microtrac analysis) through smaller and smaller sieves (150 microns x 5 microns) via use of the wet sieving system or by hand. For each of the three slurries, duplicate experiments were carried out using filtered supernate and DI water (to check the accuracy of the method versus Microtrac data) to sieve the slurry. Particle size determinations using the wet sieving system with DI water agree well with Microtrac data on a volume basis and in some cases the sieving data may be more accurate particularly if the material sieved had large particles. A correction factor had to be applied to data obtained from experiments done with supernate due to the dissolved solids which dried upon the sieves in the drying stage of the experiments. Upon subtraction of the correction factors, the experimental results were very similar to those obtained with DI water. It should be noted that approximately 250 mL of each of three simulant slurries was necessary to have enough filtered supernate available to carry out the experiments. The

  13. Determinants of the Size of Public Expenditure in Nigeria

    Directory of Open Access Journals (Sweden)

    Ezebuilo Romanus Ukwueze

    2015-12-01

    Full Text Available Analysis of public expenditure constitutes a central issue in public sector economics and public finance literature. Understanding the reasons for government spending growth has been a central concern of public sector economists. This is due to the fact that most economies of the world have consistently had increased government expenditures. Nigeria is not an exception. There is need to ascertain the determinants of size of government expenditure in Nigeria. Short-Run Error Correction Model and long-run static equation were used for comparing the influence of those variables on the size of government spending. The long-run static equation served as a test to compare short-run dynamics with the long-run relationships. Ordinary least squares (OLS estimation technique was used. The stationarity tests showed that none of the variables was stationary at level form, but only after their first difference. The results of this study show that the size of revenue and growth rate of national income (output and private investment significantly influence the size of public expenditure both in the short run and long run. External and domestic debts significantly influence the size of government expenditure only in the short run. It is recommended that the revenue base should be expanded; conducive environment should be created for private investment to thrive, and debt accumulation should be reduced and used for stabilization only in the short run. The conclusion to draw from this study is that revenue, private investment, and income boost public spending while public debts might be counterproductive.

  14. Chemical preparation of biological materials for accurate chromium determination by isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Dunstan, L.P.; Garner, E.L.

    1977-01-01

    The current interest in trace elements in biological materials has created a need for accurate methods of analysis. The source of discrepancies and variations in chromium concentration determinations is often traceable to inadequate methods of sample preparation. Any method of Cr analysis that requires acid digestion of a biological matrix must take into consideration the existence or formation of a volatile Cr component. In addition, because Cr is often present at concentrations less than 1 μg/g, the analytical blank becomes a potential source of error. Chemical procedures have been developed for the digestion of the biological matrix and the separation of Cr without either large analytical blanks or significant losses by volatilization. These procedures have been used for the analysis of NBS Standard Reference Material (SRM) 1569 Brewers Yeast; SRM 1577 Bovine Liver; SRM 1570 Spinach and other biological materials including human hair and nails. At this time, samples containing 1 μg of Cr can be determined with an estimated accuracy of 2 percent

  15. Accurate determination of the Boltzmann constant by Doppler spectroscopy: Towards a new definition of the kelvin

    International Nuclear Information System (INIS)

    Darquie, B.; Mejri, S.; Sow, P. L. T.; Lemarchand, C.; Triki, M.; Tokunaga, S. K.; Borde, C. J.; Chardonnet, C.; Daussy, C.

    2013-01-01

    Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 μm enables a determination of the Boltzmann constant k B . We report on our latest measurements. By fitting this lineshape to several models which include Dicke narrowing or speed-dependent collisional effects, we find that a determination of k B with an uncertainty of a few ppm is reachable. This is comparable to the best current uncertainty obtained using acoustic methods and would make a significant contribution to any new value of k B determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens the possibility of defining the kelvin by fixing k B , an exciting prospect considering the upcoming redefinition of the International System of Units. (authors)

  16. Comparison of known food weights with image-based portion-size automated estimation and adolescents' self-reported portion size.

    Science.gov (United States)

    Lee, Christina D; Chae, Junghoon; Schap, TusaRebecca E; Kerr, Deborah A; Delp, Edward J; Ebert, David S; Boushey, Carol J

    2012-03-01

    Diet is a critical element of diabetes self-management. An emerging area of research is the use of images for dietary records using mobile telephones with embedded cameras. These tools are being designed to reduce user burden and to improve accuracy of portion-size estimation through automation. The objectives of this study were to (1) assess the error of automatically determined portion weights compared to known portion weights of foods and (2) to compare the error between automation and human. Adolescents (n = 15) captured images of their eating occasions over a 24 h period. All foods and beverages served were weighed. Adolescents self-reported portion sizes for one meal. Image analysis was used to estimate portion weights. Data analysis compared known weights, automated weights, and self-reported portions. For the 19 foods, the mean ratio of automated weight estimate to known weight ranged from 0.89 to 4.61, and 9 foods were within 0.80 to 1.20. The largest error was for lettuce and the most accurate was strawberry jam. The children were fairly accurate with portion estimates for two foods (sausage links, toast) using one type of estimation aid and two foods (sausage links, scrambled eggs) using another aid. The automated method was fairly accurate for two foods (sausage links, jam); however, the 95% confidence intervals for the automated estimates were consistently narrower than human estimates. The ability of humans to estimate portion sizes of foods remains a problem and a perceived burden. Errors in automated portion-size estimation can be systematically addressed while minimizing the burden on people. Future applications that take over the burden of these processes may translate to better diabetes self-management. © 2012 Diabetes Technology Society.

  17. Determination of size-specific exposure settings in dental cone-beam CT

    International Nuclear Information System (INIS)

    Pauwels, Ruben; Jacobs, Reinhilde; Bogaerts, Ria; Bosmans, Hilde; Panmekiate, Soontra

    2017-01-01

    To estimate the possible reduction of tube output as a function of head size in dental cone-beam computed tomography (CBCT). A 16 cm PMMA phantom, containing a central and six peripheral columns filled with PMMA, was used to represent an average adult male head. The phantom was scanned using CBCT, with 0-6 peripheral columns having been removed in order to simulate varying head sizes. For five kV settings (70-90 kV), the mAs required to reach a predetermined image noise level was determined, and corresponding radiation doses were derived. Results were expressed as a function of head size, age, and gender, based on growth reference charts. The use of 90 kV consistently resulted in the largest relative dose reduction. A potential mAs reduction ranging from 7 % to 50 % was seen for the different simulated head sizes, showing an exponential relation between head size and mAs. An optimized exposure protocol based on head circumference or age/gender is proposed. A considerable dose reduction, through reduction of the mAs rather than the kV, is possible for small-sized patients in CBCT, including children and females. Size-specific exposure protocols should be clinically implemented. (orig.)

  18. Determination of size-specific exposure settings in dental cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, Ruben [Chulalongkorn University, Department of Radiology, Faculty of Dentistry, Patumwan, Bangkok (Thailand); University of Leuven, OMFS-IMPATH Research Group, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Jacobs, Reinhilde [University of Leuven, OMFS-IMPATH Research Group, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Bogaerts, Ria [University of Leuven, Laboratory of Experimental Radiotherapy, Department of Oncology, Biomedical Sciences Group, Leuven (Belgium); Bosmans, Hilde [University of Leuven, Medical Physics and Quality Assessment, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Panmekiate, Soontra [Chulalongkorn University, Department of Radiology, Faculty of Dentistry, Patumwan, Bangkok (Thailand)

    2017-01-15

    To estimate the possible reduction of tube output as a function of head size in dental cone-beam computed tomography (CBCT). A 16 cm PMMA phantom, containing a central and six peripheral columns filled with PMMA, was used to represent an average adult male head. The phantom was scanned using CBCT, with 0-6 peripheral columns having been removed in order to simulate varying head sizes. For five kV settings (70-90 kV), the mAs required to reach a predetermined image noise level was determined, and corresponding radiation doses were derived. Results were expressed as a function of head size, age, and gender, based on growth reference charts. The use of 90 kV consistently resulted in the largest relative dose reduction. A potential mAs reduction ranging from 7 % to 50 % was seen for the different simulated head sizes, showing an exponential relation between head size and mAs. An optimized exposure protocol based on head circumference or age/gender is proposed. A considerable dose reduction, through reduction of the mAs rather than the kV, is possible for small-sized patients in CBCT, including children and females. Size-specific exposure protocols should be clinically implemented. (orig.)

  19. Accurate determination of the composition of Y-Ba-Cu-O superconductor by spectrophotometry, gravimetry and flame AAS

    International Nuclear Information System (INIS)

    Bruneel, E; Verbauwhede, D; Vyver, D Van de; Schaubroeck, J; Hoste, S; Driessche, I Van

    2005-01-01

    A procedure for the accurate analytical determination of yttrium, barium and copper in an YBa 2 Cu 3 O x superconductor is described. After dissolution of the material the concentration of Y and Cu was spectrophotometrically determined as an Y-Arsenazo III and a Cu-Nitroso-R-salt complex, respectively. Ba was determined either gravimetrically as BaCrO 4 , after precipitation using a K 2 CrO 4 solution or using flame atomic absorption spectroscopy (AAS). An accuracy better than 0.7% and a coefficient of variation better then 1.2% are obtained. It is illustrated that this analytical procedure can be used to determine the composition of a bulk superconducting YBa 2 Cu 3 O x sample. For determination of Ba in thin films we suggest the use of flame AAS, with an accuracy of 0.03% and a coefficient of variation of 1.7%

  20. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    International Nuclear Information System (INIS)

    Vourna, P

    2016-01-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones. (paper)

  1. A simple technique to determine the size distribution of nuclear crater fallback and ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, II, Brooks D [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    This report describes the results of an investigation to find an economic method for determining the block size distribution of nuclear crater fallback and ejecta. It is shown that the modal analysis method of determining relative proportions can be applied with the use of a special sampling technique, to provide a size distribution curve for clastic materials similar to one obtainable by sieving and weighing the same materials.

  2. A simple technique to determine the size distribution of nuclear crater fallback and ejecta

    International Nuclear Information System (INIS)

    Anderson, Brooks D. II

    1970-01-01

    This report describes the results of an investigation to find an economic method for determining the block size distribution of nuclear crater fallback and ejecta. It is shown that the modal analysis method of determining relative proportions can be applied with the use of a special sampling technique, to provide a size distribution curve for clastic materials similar to one obtainable by sieving and weighing the same materials

  3. Synthesis of Uncarbonised Coconut Shell Nanoparticles: Characterisation and Particle Size Determination

    Directory of Open Access Journals (Sweden)

    S.A. Bello

    2015-06-01

    Full Text Available The possibility of using mechanical milling for the synthesis of uncarbonised coconut shell nanoparticles (UCSNPs has been investigated. UCSNPs were synthesized from discarded coconut shells (CSs using top down approach. The sundried CSs were crushed, ground and then sieved using hammer crusher, a two disc grinder and set of sieves with shine shaker respectively. The CS powders retained in the pan below 37 µm sized sieve were milled for 70 hours to obtain UCSNPS. Samples for analysis were taken at 16 and 70 hours. UCSNPs were analyzed using transmission electron microscope (TEM, scanning electron microscope (SEM with attached EDS and Gwyddion software. Samples of UCSNPs obtained at 16 and 70hours show that the deep brown colour of the initial CS powder became fading as the milling hour increased. The size determination from TEM image revealed spherical particles with an average size of 18.23 nm for UCSNPs obtained at 70 hour milling. The EDS spectrographs revealed an increase in the carbon counts with increased milling hours. This is attributable to dryness of the CS powders by the heat generated during the milling process due to absorption of kinetic energy by the CS powders from the milling balls. SEM micrographs revealed UCSNPs in agglomerated networks. The SEM micrograph/Gyweddion particles size determination showed average particles of 170.5 ±3 and 104.9 ±4.1 nm for UCSNPs obtained at 16 and 70 hours respectively. Therefore, production of UCSNPs through mechanical milling using mixture of ceramic balls of different sizes has been established especially when the particles of the sourced/initial CS powders falls below 37 µm.

  4. Tumour size measurement in a mouse model using high resolution MRI

    International Nuclear Information System (INIS)

    Montelius, Mikael; Ljungberg, Maria; Horn, Michael; Forssell-Aronsson, Eva

    2012-01-01

    Animal models are frequently used to assess new treatment methods in cancer research. MRI offers a non-invasive in vivo monitoring of tumour tissue and thus allows longitudinal measurements of treatment effects, without the need for large cohorts of animals. Tumour size is an important biomarker of the disease development, but to our knowledge, MRI based size measurements have not yet been verified for small tumours (10 −2 –10 −1 g). The aim of this study was to assess the accuracy of MRI based tumour size measurements of small tumours on mice. 2D and 3D T2-weighted RARE images of tumour bearing mice were acquired in vivo using a 7 T dedicated animal MR system. For the 3D images the acquired image resolution was varied. The images were exported to a PC workstation where the tumour mass was determined assuming a density of 1 g/cm 3 , using an in-house developed tool for segmentation and delineation. The resulting data were compared to the weight of the resected tumours after sacrifice of the animal using regression analysis. Strong correlations were demonstrated between MRI- and necropsy determined masses. In general, 3D acquisition was not a prerequisite for high accuracy. However, it was slightly more accurate than 2D when small (<0.2 g) tumours were assessed for inter- and intraobserver variation. In 3D images, the voxel sizes could be increased from 160 3 μm 3 to 240 3 μm 3 without affecting the results significantly, thus reducing acquisition time substantially. 2D MRI was sufficient for accurate tumour size measurement, except for small tumours (<0.2 g) where 3D acquisition was necessary to reduce interobserver variation. Acquisition times between 15 and 50 minutes, depending on tumour size, were sufficient for accurate tumour volume measurement. Hence, it is possible to include further MR investigations of the tumour, such as tissue perfusion, diffusion or metabolic composition in the same MR session

  5. Algorithm of Data Reduce in Determination of Aerosol Particle Size Distribution at Damps/C

    International Nuclear Information System (INIS)

    Muhammad-Priyatna; Otto-Pribadi-Ruslanto

    2001-01-01

    The analysis had to do for algorithm of data reduction on Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system, this is for determine aerosol particle size distribution with range 0,01 μm to 1 μm in diameter. Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system contents are software and hardware. The hardware used determine of mobilities of aerosol particle and so the software used determine aerosol particle size distribution in diameter. The mobilities and diameter particle had connection in the electricity field. That is basic program for reduction of data and particle size conversion from particle mobility become particle diameter. The analysis to get transfer function value, Ω, is 0.5. The data reduction program to do conversation mobility basis become diameter basis with number efficiency correction, transfer function value, and poly charge particle. (author)

  6. Accurate determination of the composition of Y-Ba-Cu-O superconductor by spectrophotometry, gravimetry and flame AAS

    Energy Technology Data Exchange (ETDEWEB)

    Bruneel, E [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281(S3), 9000 Ghent (Belgium); Verbauwhede, D [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281(S3), 9000 Ghent (Belgium); Vyver, D Van de [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281(S3), 9000 Ghent (Belgium); Schaubroeck, J [Departement Industriele Wetenschappen, Hogeschool Gent, Schoonmeerstraat 52 9000 Ghent (Belgium); Hoste, S [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281(S3), 9000 Ghent (Belgium); Driessche, I Van [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281(S3), 9000 Ghent (Belgium)

    2005-06-01

    A procedure for the accurate analytical determination of yttrium, barium and copper in an YBa{sub 2}Cu{sub 3}O{sub x} superconductor is described. After dissolution of the material the concentration of Y and Cu was spectrophotometrically determined as an Y-Arsenazo III and a Cu-Nitroso-R-salt complex, respectively. Ba was determined either gravimetrically as BaCrO{sub 4}, after precipitation using a K{sub 2}CrO{sub 4} solution or using flame atomic absorption spectroscopy (AAS). An accuracy better than 0.7% and a coefficient of variation better then 1.2% are obtained. It is illustrated that this analytical procedure can be used to determine the composition of a bulk superconducting YBa{sub 2}Cu{sub 3}O{sub x} sample. For determination of Ba in thin films we suggest the use of flame AAS, with an accuracy of 0.03% and a coefficient of variation of 1.7%.

  7. Habitat structure and body size distributions: Cross-ecosystem comparison for taxa with determinate and indeterminate growth

    Science.gov (United States)

    Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.

    2014-01-01

    Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions

  8. Towards accurate performance prediction of a vertical axis wind turbine operating at different tip speed ratios

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    Accurate prediction of the performance of a vertical-axis wind turbine (VAWT) using CFD simulation requires the employment of a sufficiently fine azimuthal increment (dθ) combined with a mesh size at which essential flow characteristics can be accurately resolved. Furthermore, the domain size needs

  9. Functional size of photosynthetic electron transport chain determined by radiation inactivation

    International Nuclear Information System (INIS)

    Pan, R.S.; Chen, L.F.; Wang, M.Y.; Tsal, M.Y.; Pan, R.L.; Hsu, B.D.

    1987-01-01

    Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II(H 2 O to methylviologen) was 623 +/- 37 kilodaltons; for photosystem II (H 2 O to dimethylquinone/ferricyanide), 174 +/- 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 +/- 11 kilodaltons. The difference between 364 +/- 22 (the sum of 174 +/- 11 and 190 +/- 11) kilodaltons and 623 +/- 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b 6 /f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed

  10. Study on Factors for Accurate Open Circuit Voltage Characterizations in Mn-Type Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Natthawuth Somakettarin

    2017-03-01

    Full Text Available Open circuit voltage (OCV of lithium batteries has been of interest since the battery management system (BMS requires an accurate knowledge of the voltage characteristics of any Li-ion batteries. This article presents an OCV characteristic for lithium manganese oxide (LMO batteries under several experimental operating conditions, and discusses factors for accurate OCV determination. A test system is developed for OCV characterization based on the OCV pulse test method. Various factors for the OCV behavior, such as resting period, step-size of the pulse test, testing current amplitude, hysteresis phenomena, and terminal voltage relationship, are investigated and evaluated. To this end, a general OCV model based on state of charge (SOC tracking is developed and validated with satisfactory results.

  11. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    OpenAIRE

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)?spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulat...

  12. Determination of size distribution function

    International Nuclear Information System (INIS)

    Teshome, A.; Spartakove, A.

    1987-05-01

    The theory of a method is outlined which gives the size distribution function (SDF) of a polydispersed system of non-interacting colloidal and microscopic spherical particles, having sizes in the range 0-10 -5 cm., from a gedanken experimental scheme. It is assumed that the SDF is differentiable and the result is obtained for rotational frequency in the order of 10 3 (sec) -1 . The method may be used independently, but is particularly useful in conjunction with an alternate method described in a preceding paper. (author). 8 refs, 2 figs

  13. External Determinants of the Development of Small and Medium-Sized Enterprises – Empirical Analysis

    Directory of Open Access Journals (Sweden)

    Renata Lisowska

    2015-01-01

    Full Text Available The paper aims to identify external determinants of the development of small and medium-sized enterprises and assess their impact on the functioning of these entities in Poland. Meeting this objective required: identifying determinants of the development of SMEs, determining the current development situation of the surveyed enterprises and examining the impact of external determinants on the development of SMEs. The implementation of the above-presented goals was based on the following assumptions: (i the current situation of the surveyed enterprises is determined with the use of quantitative indicators (turnover volume, number of employees, market share, profit levels (ii the analysis of external determinants encompasses three components of the environment: the macro-environment, the meso-environment and the micro-environment, (iii in each analysed area there are separate analyses conducted for micro, small and medium-sized enterprises, enabling greater precision in the identification of external determinants of development for each category of businesses.

  14. Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu

    International Nuclear Information System (INIS)

    Zhong Yong; Ping Dehai; Song Xiaoyan; Yin Fuxing

    2009-01-01

    In this work, a serial of pure copper sample with different grain sizes from nano- to micro-scale were prepared by sparkle plasma sintering (SPS) and following anneal treatment at 873 K and 1073 K, respectively. The grain size distributions of these samples were determined by both X-ray diffraction (XRD) profile analysis and transmission electronic microscope (TEM) micrograph counting. Although these two methods give similar distributions of grain size in the case of as-SPS sample with nano-scale grain size (around 10 nm), there are apparent discrepancies between the grain size distributions of the annealed samples obtained from XRD and TEM, especially for the sample annealed at 1073 K after SPS with micro-scale grain size (around 2 μm), which TEM counting provides much higher values of grain sizes than XRD analysis does. It indicates that for large grain-sized material, XRD analysis lost its validity for determination of grain size. It might be due to some small sized substructures possibly existed in even annealed (large grain-sized) samples, whereas there is no substructures in as-SPS (nanocrystalline) sample. Moreover, it has been found that the effective outer cut-off radius R e derived from XRD analysis coincides with the grain sizes given by TEM counting. The potential relationship between grain size and R e was discussed in the present work. These results might provide some new hints for deeper understanding of the physical meaning of XRD analysis and the parameters derived.

  15. Determinants of Urban Poverty: The Case of Medium Sized City in Pakistan

    OpenAIRE

    Masood Sarwar Awan; Nasir Iqbal

    2010-01-01

    Urban poverty, which is distinct from rural poverty due to demographic, economic and political aspects remain hitherto unexplored, at the city level in Pakistan. We have examined the determinants of urban poverty in Sargodha, a medium-size city of Pakistan. The analysis is based on the survey of 330 households. Results suggest that employment in public sector, investment in human capital and access to public amenities reduce poverty while employment in informal sector, greater household size ...

  16. Sonographic determination of normal spleen size in an adult African population

    Energy Technology Data Exchange (ETDEWEB)

    Mustapha, Zainab; Tahir, Abdulrahman [Department of Radiology, University of Maiduguri Teaching Hospital, Maiduguri, Borno State (Nigeria); Tukur, Maisaratu [Department of Human Physiology, University of Maiduguri, Maiduguri, Borno State (Nigeria); Bukar, Mohammed [Department of Obstetrics and Gynaecology, University of Maiduguri Teaching Hospital, Maiduguri, Borno State (Nigeria); Lee, Wai-Kit, E-mail: leewk33@hotmail.co [Department of Medical Imaging, St. Vincent' s Hospital, University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia)

    2010-07-15

    Objective: The purpose of this study was to determine the normal range of spleen size in an adult African population, and compare the findings to published data to determine any correlation with ethnicity. Materials and methods: Three hundred and seventy-four African adults without conditions that can affect the spleen or splenic abnormalities were evaluated with ultrasonography. Spleen length, width and thickness were measured and spleen volume calculated. Spleen size was correlated with age, gender, height, weight, and body mass index. Results: The mean spleen volume was 120 cm{sup 3}. Spleen volume correlated with spleen width (r = 0.85), thickness (r = 0.83) and length (r = 0.80). Men had a larger mean spleen volume than women. No correlation was found between spleen volume and age, weight, height, or body mass index. Conclusion: Mean spleen volume in African adults is smaller than data from Western sources, and cannot be explained by difference in body habitus.

  17. Comparison of different methods for determining the size of a focal spot of microfocus X-ray tubes

    International Nuclear Information System (INIS)

    Salamon, M.; Hanke, R.; Krueger, P.; Sukowski, F.; Uhlmann, N.; Voland, V.

    2008-01-01

    The EN 12543-5 describes a method for determining the focal spot size of microfocus X-ray tubes up to a minimum spot size of 5 μm. The wide application of X-ray tubes with even smaller focal spot sizes in computed tomography and radioscopy applications requires the evaluation of existing methods for focal spot sizes below 5 μm. In addition, new methods and conditions for determining submicron focal spot sizes have to be developed. For the evaluation and extension of the present methods to smaller focal spot sizes, different procedures in comparison with the existing EN 12543-5 were analyzed and applied, and the results are presented

  18. 13 CFR 121.303 - What size procedures are used by SBA before it makes a formal size determination?

    Science.gov (United States)

    2010-01-01

    ... source. (b) A small business investment company, a development company, a surety bond company, or a... area in which the headquarters of the applicant is located, regardless of the location of the parent company or affiliates. For disaster loan assistance, the request for a size determination must be made to...

  19. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.

    Science.gov (United States)

    Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F

    2017-11-01

    In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Fundamental study on laser manipulation of contamination particles with determining shape, size and species

    International Nuclear Information System (INIS)

    Shimizu, Isao; Fujii, Taketsugu

    1995-01-01

    It has been desired to eliminate or collect the contamination particles of radioisotope in each sort of species or shape and size non-invasively. The shape and size of particle can be determined from the shape and distribution of diffraction pattern of particle in the parallel laser beam, the species of particle can be discriminated by the fluorescence from resonance of laser beam, or by the laser Raman scattering, and the particle suspended in the air or falling down in a vacuum can be levitated against the gravity and trapped by the radiation force and the trapping force of the focussed laser beam in the atmosphere or in a vacuum. For the purpose of the non-invasive manipulation of contamination particles, the laser manipulation technique, image processing technique with Multiplexed Matched Spatial Filter and the determination technique of laser Raman scattering or fluorescence from resonance of laser light were combined in the experiments. The shape, size and species of particles trapped in the focal plane of focused Ar laser beam can be determined simultaneously and instantaneously from the shape and intensity distributions of diffraction patterns of the particles in the irradiation of parallel coherent beam of He-Ne laser, and fluorescence from the resonance of YAG laser beam with variable wave length. In this research, a new technique is proposed to manipulate non-invasively the contamination particles determined with the shape, size and species in the atmosphere or in a vacuum, by laser beam. (author)

  1. Neighborhood size and local geographic variation of health and social determinants

    Directory of Open Access Journals (Sweden)

    Emch Michael

    2005-06-01

    Full Text Available Abstract Background Spatial filtering using a geographic information system (GIS is often used to smooth health and ecological data. Smoothing disease data can help us understand local (neighborhood geographic variation and ecological risk of diseases. Analyses that use small neighborhood sizes yield individualistic patterns and large sizes reveal the global structure of data where local variation is obscured. Therefore, choosing an optimal neighborhood size is important for understanding ecological associations with diseases. This paper uses Hartley's test of homogeneity of variance (Fmax as a methodological solution for selecting optimal neighborhood sizes. The data from a study area in Vietnam are used to test the suitability of this method. Results The Hartley's Fmax test was applied to spatial variables for two enteric diseases and two socioeconomic determinants. Various neighbourhood sizes were tested by using a two step process to implement the Fmaxtest. First the variance of each neighborhood was compared to the highest neighborhood variance (upper, Fmax1 and then they were compared with the lowest neighborhood variance (lower, Fmax2. A significant value of Fmax1 indicates that the neighborhood does not reveal the global structure of data, and in contrast, a significant value in Fmax2 implies that the neighborhood data are not individualistic. The neighborhoods that are between the lower and the upper limits are the optimal neighbourhood sizes. Conclusion The results of tests provide different neighbourhood sizes for different variables suggesting that optimal neighbourhood size is data dependent. In ecology, it is well known that observation scales may influence ecological inference. Therefore, selecting optimal neigborhood size is essential for understanding disease ecologies. The optimal neighbourhood selection method that is tested in this paper can be useful in health and ecological studies.

  2. Is patient size important in dose determination and optimization in cardiology?

    International Nuclear Information System (INIS)

    Reay, J; Chapple, C L; Kotre, C J

    2003-01-01

    Patient dose determination and optimization have become more topical in recent years with the implementation of the Medical Exposures Directive into national legislation, the Ionising Radiation (Medical Exposure) Regulations. This legislation incorporates a requirement for new equipment to provide a means of displaying a measure of patient exposure and introduces the concept of diagnostic reference levels. It is normally assumed that patient dose is governed largely by patient size; however, in cardiology, where procedures are often very complex, the significance of patient size is less well understood. This study considers over 9000 cardiology procedures, undertaken throughout the north of England, and investigates the relationship between patient size and dose. It uses simple linear regression to calculate both correlation coefficients and significance levels for data sorted by both room and individual clinician for the four most common examinations, left ventrical and/or coronary angiography, single vessel stent insertion and single vessel angioplasty. This paper concludes that the correlation between patient size and dose is weak for the procedures considered. It also illustrates the use of an existing method for removing the effect of patient size from dose survey data. This allows typical doses and, therefore, reference levels to be defined for the purposes of dose optimization

  3. Determination of particle size distribution of salt crystals in aqueous slurries

    International Nuclear Information System (INIS)

    Miller, A.G.

    1977-10-01

    A method for determining particle size distribution of water-soluble crystals in aqueous slurries is described. The salt slurries, containing sodium salts of predominantly nitrate, but also nitrite, sulfate, phosphate, aluminates, carbonate, and hydroxide, occur in radioactive, concentrated chemical waste from the reprocessing of nuclear fuel elements. The method involves separating the crystals from the aqueous phase, drying them, and then dispersing the crystals in a nonaqueous medium based on nitroethane. Ultrasonic treatment is important in dispersing the sample into its fundamental crystals. The dispersed crystals are sieved into appropriate size ranges for counting with a HIAC brand particle counter. A preponderance of very fine particles in a slurry was found to increase the difficulty of effecting complete dispersion of the crystals because of the tendency to retain traces of aqueous mother liquor. Traces of moisture produce agglomerates of crystals, the extent of agglomeration being dependent on the amount of moisture present. The procedure is applicable to particles within the 2 to 600 μm size range of the HIAC particle counter. The procedure provides an effective means for measuring particle size distribution of crystals in aqueous salt slurries even when most crystals are less than 10 μm in size. 19 figures

  4. Association between lymph node size and metastasis in dogs with oral malignant melanoma: 100 cases (1987-2001).

    Science.gov (United States)

    Williams, Laurel E; Packer, Rebecca A

    2003-05-01

    To determine the association between lymph node size and metastasis and to assess measurement of lymph node size as an accurate and reliable means of tumor staging in dogs with oral malignant melanoma. Retrospective study. 100 dogs with histologically confirmed oral malignant melanoma. Clinical records for dogs with oral malignant melanoma were reviewed. Data regarding size and results of cytologic or histologic examination of lymph nodes were evaluated. The association between lymph node size and metastasis was determined. Forty-seven (47%) dogs, of which 23 (49%) had enlarged mandibular lymph nodes, had no cytologic or histologic evidence of metastasis. Of 53 (53%) dogs with cytologic or histologic evidence of mandibular lymph node metastasis, 37 (70%) had enlarged mandibular lymph nodes, and 16 (30%) had mandibular lymph nodes of normal size. Overall, 16 of the 40 (40%) dogs with normal-sized lymph nodes had microscopic evidence of metastatic disease. Sensitivity and specificity of lymph node size as a predictor of metastasis were 70 and 51%, respectively, and the positive and negative predictive values were 62 and 60%, respectively. Although a significant relationship was identified between lymph node size and metastasis to the lymph node, this association did not appear strong enough to be clinically relevant. Results suggest that lymph node size alone is insufficient for accurate clinical staging of oral malignant melanoma in dogs; cytologic or histologic examination of regional lymph nodes should routinely be performed, regardless of size of those nodes.

  5. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems

    Science.gov (United States)

    Jarzębski, Maciej; Kościński, Mikołaj; Białopiotrowicz, Tomasz

    2017-08-01

    The size of nanoparticles is one of the most important factors for their possible applications. Various techniques for the nanoparticle size characterization are available. In this paper selected techniques will be considered base on the prepared core-shell magnetite nanoparticles. Magnetite is one of the most investigated and developed magnetic material. It shows interesting magnetic properties which can be used for biomedical applications, such as drug delivery, hypothermia and also as a contrast agent. To reduce the toxic effects of Fe3O4, magnetic core was covered by dextran and gelatin. Moreover, the shell was doped by fluorescent dye for confocal microscopy investigation. The main investigation focused on the methods for particles size determination of modified magnetite nanoparticles prepared with different techniques. The size distribution were obtained by nanoparticle tracking analysis, dynamic light scattering and transmission electron microscopy. Furthermore, fluorescent correlation spectroscopy (FCS) and confocal microscopy were used to compare the results for particle size determination of core-shell systems.

  6. The use of 65Zn for estimating group size of brown hyaenas Hyaena ...

    African Journals Online (AJOL)

    MacDonald 1983), is influenced by the quality of resources within a territory (Mills 1982). Group size is, however, difficult to determine accurately using routine methods (i.e., direct counts and mark recapture techniques) owing to the shy, elusive and nocturnal habits of brown hyaenas and the physiognomic characteristics of ...

  7. Ultrasonic simulation studies for sizing of planar flaws in thick carbon steel welds

    International Nuclear Information System (INIS)

    Prakash, Alok

    2015-01-01

    Ultrasonic non-destructive testing typically involves detection of flaws that may affect the integrity of component under test. Once detected, the flaw is sized for its critical dimensions and its nature. The detection of flaw in the component by ultrasonic test is based on the principle of echo or reflection. Once the echo from a flaw is received, there are several approaches for analyzing the signal so that more and accurate information is obtained on the size of the flaw and its nature. The 6dB drop method is commonly used for sizing of flaws. This technique is based on determining the end points where the ultrasonic signal amplitude from the flaw drops to half of the peak amplitude. Though this method works well for large flaws whose size is larger than the beam width, it has a tendency to oversize the flaw which is smaller than the beam dimensions. In addition to beam divergence, flaw sizing also depends upon the orientation of the flaw with respect to incident sound beam. The paper describes the results of simulation studies on ultrasonic response from planar flaws of various orientations, their imaging and the methodology to be adopted for their accurate depth sizing. The paper also describes the experimental results to validate the flaw sizing approach

  8. Traceable size determination of nanoparticles, a comparison among European metrology institutes

    International Nuclear Information System (INIS)

    Meli, Felix; Klein, Tobias; Buhr, Egbert; Frase, Carl Georg; Gleber, Gudrun; Krumrey, Michael; Duta, Alexandru; Duta, Steluta; Korpelainen, Virpi; Bellotti, Roberto; Picotto, Gian Bartolo; Boyd, Robert D; Cuenat, Alexandre

    2012-01-01

    Within the European iMERA-Plus project ‘Traceable Characterisation of Nanoparticles’ various particle measurement procedures were developed and finally a measurement comparison for particle size was carried out among seven laboratories across six national metrology institutes. Seven high quality particle samples made from three different materials and having nominal sizes in the range from 10 to 200 nm were used. The participants applied five fundamentally different measurement methods, atomic force microscopy, dynamic light scattering (DLS), small-angle x-ray scattering, scanning electron microscopy and scanning electron microscopy in transmission mode, and provided a total of 48 independent, traceable results. The comparison reference values were determined as weighted means based on the estimated measurement uncertainties of the participants. The comparison reference values have combined standard uncertainties smaller than 1.4 nm for particles with sizes up to 100 nm. All methods, except DLS, provided consistent results. (paper)

  9. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations

    International Nuclear Information System (INIS)

    Mori, Taizo; Hegmann, Torsten

    2016-01-01

    Size, shape, overall composition, and surface functionality largely determine the properties and applications of metal nanoparticles. Aside from well-defined metal clusters, their composition is often estimated assuming a quasi-spherical shape of the nanoparticle core. With decreasing diameter of the assumed circumscribed sphere, particularly in the range of only a few nanometers, the estimated nanoparticle composition increasingly deviates from the real composition, leading to significant discrepancies between anticipated and experimentally observed composition, properties, and characteristics. We here assembled a compendium of tables, models, and equations for thiol-protected gold nanoparticles that will allow experimental scientists to more accurately estimate the composition of their gold nanoparticles using TEM image analysis data. The estimates obtained from following the routines described here will then serve as a guide for further analytical characterization of as-synthesized gold nanoparticles by other bulk (thermal, structural, chemical, and compositional) and surface characterization techniques. While the tables, models, and equations are dedicated to gold nanoparticles, the composition of other metal nanoparticle cores with face-centered cubic lattices can easily be estimated simply by substituting the value for the radius of the metal atom of interest.Graphical abstract

  10. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Taizo, E-mail: MORI.Taizo@nims.go.jp; Hegmann, Torsten, E-mail: thegmann@kent.edu [Kent State University, Chemical Physics Interdisciplinary Program, Liquid Crystal Institute (United States)

    2016-10-15

    Size, shape, overall composition, and surface functionality largely determine the properties and applications of metal nanoparticles. Aside from well-defined metal clusters, their composition is often estimated assuming a quasi-spherical shape of the nanoparticle core. With decreasing diameter of the assumed circumscribed sphere, particularly in the range of only a few nanometers, the estimated nanoparticle composition increasingly deviates from the real composition, leading to significant discrepancies between anticipated and experimentally observed composition, properties, and characteristics. We here assembled a compendium of tables, models, and equations for thiol-protected gold nanoparticles that will allow experimental scientists to more accurately estimate the composition of their gold nanoparticles using TEM image analysis data. The estimates obtained from following the routines described here will then serve as a guide for further analytical characterization of as-synthesized gold nanoparticles by other bulk (thermal, structural, chemical, and compositional) and surface characterization techniques. While the tables, models, and equations are dedicated to gold nanoparticles, the composition of other metal nanoparticle cores with face-centered cubic lattices can easily be estimated simply by substituting the value for the radius of the metal atom of interest.Graphical abstract.

  11. Linear signal noise summer accurately determines and controls S/N ratio

    Science.gov (United States)

    Sundry, J. L.

    1966-01-01

    Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

  12. Accurate calibration of the velocity-dependent one-scale model for domain walls

    International Nuclear Information System (INIS)

    Leite, A.M.M.; Martins, C.J.A.P.; Shellard, E.P.S.

    2013-01-01

    We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048 3 , and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c w =0.34±0.16 and k w =0.98±0.07, which are of higher precision than (but in agreement with) earlier estimates.

  13. Accurate calibration of the velocity-dependent one-scale model for domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Leite, A.M.M., E-mail: up080322016@alunos.fc.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ecole Polytechnique, 91128 Palaiseau Cedex (France); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-01-08

    We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048{sup 3}, and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c{sub w}=0.34{+-}0.16 and k{sub w}=0.98{+-}0.07, which are of higher precision than (but in agreement with) earlier estimates.

  14. Accurate and Simple Calibration of DLP Projector Systems

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Larsen, Rasmus

    2014-01-01

    does not rely on an initial camera calibration, and so does not carry over the error into projector calibration. A radial interpolation scheme is used to convert features coordinates into projector space, thereby allowing for a very accurate procedure. This allows for highly accurate determination...

  15. Method for accurate determination of dissociation constants of optical ratiometric systems: chemical probes, genetically encoded sensors, and interacting molecules.

    Science.gov (United States)

    Pomorski, Adam; Kochańczyk, Tomasz; Miłoch, Anna; Krężel, Artur

    2013-12-03

    Ratiometric chemical probes and genetically encoded sensors are of high interest for both analytical chemists and molecular biologists. Their high sensitivity toward the target ligand and ability to obtain quantitative results without a known sensor concentration have made them a very useful tool in both in vitro and in vivo assays. Although ratiometric sensors are widely used in many applications, their successful and accurate usage depends on how they are characterized in terms of sensing target molecules. The most important feature of probes and sensors besides their optical parameters is an affinity constant toward analyzed molecules. The literature shows that different analytical approaches are used to determine the stability constants, with the ratio approach being most popular. However, oversimplification and lack of attention to detail results in inaccurate determination of stability constants, which in turn affects the results obtained using these sensors. Here, we present a new method where ratio signal is calibrated for borderline values of intensities of both wavelengths, instead of borderline ratio values that generate errors in many studies. At the same time, the equation takes into account the cooperativity factor or fluorescence artifacts and therefore can be used to characterize systems with various stoichiometries and experimental conditions. Accurate determination of stability constants is demonstrated utilizing four known optical ratiometric probes and sensors, together with a discussion regarding other, currently used methods.

  16. Does copepod size determine food consumption of particulate feeding fish?

    DEFF Research Database (Denmark)

    Deurs, Mikael van; Koski, Marja; Rindorf, Anna

    2014-01-01

    on adult particulate feeding fish is unknown. In the present study, we investigated the hypothesis that the availability of the large copepods determines food consumption and growth conditions of lesser sandeel (Ammodytes marinus) in the North Sea. Analysis of stomach content suggested that food...... consumption is higher for fish feeding on large copepods, and additional calculations revealed how handling time limitation may provide part of the explanation for this relationship. Comparing stomach data and zooplankton samples indicated that lesser sandeel actively target large copepods when......The climate-induced reduction in the mean copepod size, mainly driven by a decrease in the abundance of the large Calanus finmarchicus around 1987, has been linked to the low survival of fish larvae in the North Sea. However, to what extent this sort of reduction in copepod size has any influence...

  17. Liquidity Determinants of the Selected Banking Sectors and their Size Groups

    Directory of Open Access Journals (Sweden)

    Jana Laštůvková

    2016-01-01

    Full Text Available The article focuses on the factors affecting the liquidity of selected bank sectors, as well as their size groups, using panel regression analysis. For higher complexity of the results, multiple dependent variables are used: liquidity creation, outflow and net change. The values are calculated based on the specific method of liquidity risk measurement – gross liquidity flows. The results indicate both multiple effects of some factors on the given variables, as well as isolated influence of factors on a single liquidity form or size group. Thus, when looking for determinants using just one form of liquidity, such as creation, the results need not necessarily comprehensively show the influence of the given factors, and can lead to erroneous conclusions. The results also point to the differing behaviours of the size groups and their different sensitivity on the factors; smaller banks have shown higher sensitivity on macroeconomic variables. Higher flexibility in regulation could lead to higher optimization.

  18. Variance in predicted cup size by 2-dimensional vs 3-dimensional computerized tomography-based templating in primary total hip arthroplasty.

    Science.gov (United States)

    Osmani, Feroz A; Thakkar, Savyasachi; Ramme, Austin; Elbuluk, Ameer; Wojack, Paul; Vigdorchik, Jonathan M

    2017-12-01

    Preoperative total hip arthroplasty templating can be performed with radiographs using acetate prints, digital viewing software, or with computed tomography (CT) images. Our hypothesis is that 3D templating is more precise and accurate with cup size prediction as compared to 2D templating with acetate prints and digital templating software. Data collected from 45 patients undergoing robotic-assisted total hip arthroplasty compared cup sizes templated on acetate prints and OrthoView software to MAKOplasty software that uses CT scan. Kappa analysis determined strength of agreement between each templating modality and the final size used. t tests compared mean cup-size variance from the final size for each templating technique. Interclass correlation coefficient (ICC) determined reliability of digital and acetate planning by comparing predictions of the operating surgeon and a blinded adult reconstructive fellow. The Kappa values for CT-guided, digital, and acetate templating with the final size was 0.974, 0.233, and 0.262, respectively. Both digital and acetate templating significantly overpredicted cup size, compared to CT-guided methods ( P cup size when compared to the significant overpredictions of digital and acetate templating. CT-guided templating may also lead to better outcomes due to bone stock preservation from a smaller and more accurate cup size predicted than that of digital and acetate predictions.

  19. Determining consumer purchase intentions: the importance of dry matter, size, and price of kiwifruit.

    Science.gov (United States)

    Jaeger, Sara R; Harker, Roger; Triggs, Chris M; Gunson, Anne; Campbell, Rachel L; Jackman, Richard; Requejo-Jackman, Cecilia

    2011-04-01

    Knowledge of the relative importance of food quality attributes in determining consumer purchase intention is critical for robust assessment of economic opportunities for industry growth. The aim of this study is to demonstrate how conjoint analysis methodology that incorporates tasting of fruit can be used to collect such information. Three hundred Japanese consumers took part in research designed to measure the importance of dry matter (DM), size, and price of kiwifruit (Actinidia deliciosa "Hayward" and Actinidia chinensis "Hort16A") for purchase intention. Measurement of consumer liking for kiwifruit of different DM content was a key first step. Liking increased as DM increased and was accompanied by increased purchase likelihood/choice probability for kiwifruit. The size of kiwifruit presented to consumers varied from "small" to "extra large." Consumers liked "mid-sized" kiwifruit over "small" or "extra-large" kiwifruit. Despite these differences in liking, size was of little importance in determining purchase likelihood/choice probability for kiwifruit. Price was a very important factor in determining purchase likelihood/choice probability but was less important than DM content. As price increased, purchase likelihood/choice probability decreased. Beneath these general findings, heterogeneity existed. Some consumers placed more/less importance on the focal purchase drivers than suggested by the aggregate model. Overall, the results suggest that incentive schemes already implemented by industry should consider rewarding high-DM fruit more than fruit size.   This research has contributed to the New Zealand kiwifruit industry gaining a better understanding of the relative importance consumers place on DM, size, and price of kiwifruit and has resulted in changes to grower incentive schemes. The research approach presented forces consumer to tradeoff attributes of kiwifruit against each other and decide on how important two key quality attributes-DM and

  20. Comparison of photon correlation spectroscopy with photosedimentation analysis for the determination of aqueous colloid size distributions

    Science.gov (United States)

    Rees, Terry F.

    1990-01-01

    Colloidal materials, dispersed phases with dimensions between 0.001 and 1 μm, are potential transport media for a variety of contaminants in surface and ground water. Characterization of these colloids, and identification of the parameters that control their movement, are necessary before transport simulations can be attempted. Two techniques that can be used to determine the particle-size distribution of colloidal materials suspended in natural waters are compared. Photon correlation Spectroscopy (PCS) utilizes the Doppler frequency shift of photons scattered off particles undergoing Brownian motion to determine the size of colloids suspended in water. Photosedimentation analysis (PSA) measures the time-dependent change in optical density of a suspension of colloidal particles undergoing centrifugation. A description of both techniques, important underlying assumptions, and limitations are given. Results for a series of river water samples show that the colloid-size distribution means are statistically identical as determined by both techniques. This also is true of the mass median diameter (MMD), even though MMD values determined by PSA are consistently smaller than those determined by PCS. Because of this small negative bias, the skew parameters for the distributions are generally smaller for the PCS-determined distributions than for the PSA-determined distributions. Smaller polydispersity indices for the distributions are also determined by PCS.

  1. An Accurate Mass Determination for Kepler-1655b, a Moderately Irradiated World with a Significant Volatile Envelope

    Science.gov (United States)

    Haywood, Raphaëlle D.; Vanderburg, Andrew; Mortier, Annelies; Giles, Helen A. C.; López-Morales, Mercedes; Lopez, Eric D.; Malavolta, Luca; Charbonneau, David; Collier Cameron, Andrew; Coughlin, Jeffrey L.; Dressing, Courtney D.; Nava, Chantanelle; Latham, David W.; Dumusque, Xavier; Lovis, Christophe; Molinari, Emilio; Pepe, Francesco; Sozzetti, Alessandro; Udry, Stéphane; Bouchy, François; Johnson, John A.; Mayor, Michel; Micela, Giusi; Phillips, David; Piotto, Giampaolo; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Watson, Chris; Affer, Laura; Bonomo, Aldo S.; Buchhave, Lars A.; Ciardi, David R.; Fiorenzano, Aldo F.; Harutyunyan, Avet

    2018-05-01

    We present the confirmation of a small, moderately irradiated (F = 155 ± 7 F ⊕) Neptune with a substantial gas envelope in a P = 11.8728787 ± 0.0000085 day orbit about a quiet, Sun-like G0V star Kepler-1655. Based on our analysis of the Kepler light curve, we determined Kepler-1655b’s radius to be 2.213 ± 0.082 R ⊕. We acquired 95 high-resolution spectra with Telescopio Nazionale Galileo/HARPS-N, enabling us to characterize the host star and determine an accurate mass for Kepler-1655b of 5.0{+/- }2.83.1 {M}\\oplus via Gaussian-process regression. Our mass determination excludes an Earth-like composition with 98% confidence. Kepler-1655b falls on the upper edge of the evaporation valley, in the relatively sparsely occupied transition region between rocky and gas-rich planets. It is therefore part of a population of planets that we should actively seek to characterize further.

  2. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography

    NARCIS (Netherlands)

    Qin, X.P.; Liu, F.; Wang, G.C.; Weng, L.P.

    2012-01-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used

  3. Visual accumulation tube for size analysis of sands

    Science.gov (United States)

    Colby, B.C.; Christensen, R.P.

    1956-01-01

    The visual-accumulation-tube method was developed primarily for making size analyses of the sand fractions of suspended-sediment and bed-material samples. Because the fundamental property governing the motion of a sediment particle in a fluid is believed to be its fall velocity. the analysis is designed to determine the fall-velocity-frequency distribution of the individual particles of the sample. The analysis is based on a stratified sedimentation system in which the sample is introduced at the top of a transparent settling tube containing distilled water. The procedure involves the direct visual tracing of the height of sediment accumulation in a contracted section at the bottom of the tube. A pen records the height on a moving chart. The method is simple and fast, provides a continuous and permanent record, gives highly reproducible results, and accurately determines the fall-velocity characteristics of the sample. The apparatus, procedure, results, and accuracy of the visual-accumulation-tube method for determining the sedimentation-size distribution of sands are presented in this paper.

  4. Accurate label-free reaction kinetics determination using initial rate heat measurements

    Science.gov (United States)

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  5. Gridsampler – A Simulation Tool to Determine the Required Sample Size for Repertory Grid Studies

    Directory of Open Access Journals (Sweden)

    Mark Heckmann

    2017-01-01

    Full Text Available The repertory grid is a psychological data collection technique that is used to elicit qualitative data in the form of attributes as well as quantitative ratings. A common approach for evaluating multiple repertory grid data is sorting the elicited bipolar attributes (so called constructs into mutually exclusive categories by means of content analysis. An important question when planning this type of study is determining the sample size needed to a discover all attribute categories relevant to the field and b yield a predefined minimal number of attributes per category. For most applied researchers who collect multiple repertory grid data, programming a numeric simulation to answer these questions is not feasible. The gridsampler software facilitates determining the required sample size by providing a GUI for conducting the necessary numerical simulations. Researchers can supply a set of parameters suitable for the specific research situation, determine the required sample size, and easily explore the effects of changes in the parameter set.

  6. 13 CFR 121.401 - What procurement programs are subject to size determinations?

    Science.gov (United States)

    2010-01-01

    ... program, the Women-Owned Small Business (WOSB) Federal Contract Assistance Procedures, SBA's Service... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What procurement programs are subject to size determinations? 121.401 Section 121.401 Business Credit and Assistance SMALL BUSINESS...

  7. Age differences in the use of serving size information on food labels: numeracy or attention?

    Science.gov (United States)

    Miller, Lisa M Soederberg; Applegate, Elizabeth; Beckett, Laurel A; Wilson, Machelle D; Gibson, Tanja N

    2017-04-01

    The ability to use serving size information on food labels is important for managing age-related chronic conditions such as diabetes, obesity and cancer. Past research suggests that older adults are at risk for failing to accurately use this portion of the food label due to numeracy skills. However, the extent to which older adults pay attention to serving size information on packages is unclear. We compared the effects of numeracy and attention on age differences in accurate use of serving size information while individuals evaluated product healthfulness. Accuracy and attention were assessed across two tasks in which participants compared nutrition labels of two products to determine which was more healthful if they were to consume the entire package. Participants' eye movements were monitored as a measure of attention while they compared two products presented side-by-side on a computer screen. Numeracy as well as food label habits and nutrition knowledge were assessed using questionnaires. Sacramento area, California, USA, 2013-2014. Stratified sample of 358 adults, aged 20-78 years. Accuracy declined with age among those older adults who paid less attention to serving size information. Although numeracy, nutrition knowledge and self-reported food label use supported accuracy, these factors did not influence age differences in accuracy. The data suggest that older adults are less accurate than younger adults in their use of serving size information. Age differences appear to be more related to lack of attention to serving size information than to numeracy skills.

  8. The Effect of Starspots on Accurate Radius Determination of the Low-Mass Double-Lined Eclipsing Binary Gu Boo

    Science.gov (United States)

    Windmiller, G.; Orosz, J. A.; Etzel, P. B.

    2010-04-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. López-Morales & Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by López-Morales & Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, López-Morales & Ribas derived masses and radii accurate to sime2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spots in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of López-Morales & Ribas using models with and without spots. We derived a radius of the primary of 0.6329 ± 0.0026 R sun, 0.6413 ± 0.0049 R sun, and 0.6373 ± 0.0029 R sun from the CCD, photoelectric, and López-Morales & Ribas data, respectively. Each of these measurements agrees with the value reported by López-Morales & Ribas (R 1 = 0.623 ± 0.016 R sun) at the level of ≈2%. In addition, the spread in these values is ≈1%-2% from the mean. For the secondary, we derive radii of 0.6074 ± 0.0035 R sun, 0.5944 ± 0.0069 R sun, and 0.5976 ± 0.0059 R sun from the three respective data sets. The López-Morales & Ribas value is R 2 = 0.620 ± 0.020 R sun, which is ≈2%-3% larger than each of the three values we found. The spread in these values is ≈2% from the mean. The systematic difference between our three determinations of the secondary radius and that of López-Morales & Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations accurate at the ≈2% level.

  9. THE EFFECT OF STARSPOTS ON ACCURATE RADIUS DETERMINATION OF THE LOW-MASS DOUBLE-LINED ECLIPSING BINARY GU Boo

    International Nuclear Information System (INIS)

    Windmiller, G.; Orosz, J. A.; Etzel, P. B.

    2010-01-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. Lopez-Morales and Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by Lopez-Morales and Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, Lopez-Morales and Ribas derived masses and radii accurate to ≅2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spots in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of Lopez-Morales and Ribas using models with and without spots. We derived a radius of the primary of 0.6329 ± 0.0026 R sun , 0.6413 ± 0.0049 R sun , and 0.6373 ± 0.0029 R sun from the CCD, photoelectric, and Lopez-Morales and Ribas data, respectively. Each of these measurements agrees with the value reported by Lopez-Morales and Ribas (R 1 = 0.623 ± 0.016 R sun ) at the level of ∼2%. In addition, the spread in these values is ∼1%-2% from the mean. For the secondary, we derive radii of 0.6074 ± 0.0035 R sun , 0.5944 ± 0.0069 R sun , and 0.5976 ± 0.0059 R sun from the three respective data sets. The Lopez-Morales and Ribas value is R 2 = 0.620 ± 0.020 R sun , which is ∼2%-3% larger than each of the three values we found. The spread in these values is ∼2% from the mean. The systematic difference between our three determinations of the secondary radius and that of Lopez-Morales and Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations accurate at the ∼2% level.

  10. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    Science.gov (United States)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  11. Simultaneous determination of size and refractive index of red blood cells by light scattering measurements

    International Nuclear Information System (INIS)

    Ghosh, N.; Buddhiwant, P.; Uppal, A.; Majumder, S.K.; Patel, H.S.; Gupta, P.K.

    2006-01-01

    We present a fast and accurate approach for simultaneous determination of both the mean diameter and refractive index of a collection of red blood cells (RBCs). The approach uses the peak frequency of the power spectrum and the corresponding phase angle obtained by performing Fourier transform on the measured angular distribution of scattered light to determine these parameters. Results on the measurement of two important clinical parameters, the mean cell volume and mean cell hemoglobin concentration of a collection of RBCs, are presented

  12. Characterization of size, anisotropy, and density heterogeneity of nanoparticles by sedimentation velocity

    KAUST Repository

    Demeler, Borries

    2014-08-05

    A critical problem in materials science is the accurate characterization of the size dependent properties of colloidal inorganic nanocrystals. Due to the intrinsic polydispersity present during synthesis, dispersions of such materials exhibit simultaneous heterogeneity in density ρ, molar mass M, and particle diameter d. The density increments ∂ρ/∂d and ∂ρ/∂M of these nanoparticles, if known, can then provide important information about crystal growth and particle size distributions. For most classes of nanocrystals, a mixture of surfactants is added during synthesis to control their shape, size, and optical properties. However, it remains a challenge to accurately determine the amount of passivating ligand bound to the particle surface post synthesis. The presence of the ligand shell hampers an accurate determination of the nanocrystal diameter. Using CdSe and PbS semiconductor nanocrystals, and the ultrastable silver nanoparticle (M4Ag 44(p-MBA)30), as model systems, we describe a Custom Grid method implemented in UltraScan-III for the characterization of nanoparticles and macromolecules using sedimentation velocity analytical ultracentrifugation. We show that multiple parametrizations are possible, and that the Custom Grid method can be generalized to provide high resolution composition information for mixtures of solutes that are heterogeneous in two out of three parameters. For such cases, our method can simultaneously resolve arbitrary two-dimensional distributions of hydrodynamic parameters when a third property can be held constant. For example, this method extracts partial specific volume and molar mass from sedimentation velocity data for cases where the anisotropy can be held constant, or provides anisotropy and partial specific volume if the molar mass is known. © 2014 American Chemical Society.

  13. Evaluation of instruments used in particle size analysis by using the sedimentation technique

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abdrahman, A.A.M.; Ahmed, A.Z.

    2007-01-01

    This study is carried out to evaluate the performance of some instruments in which the sedimentation technique is used for the determination of particle size distribution using Stoke's law. A mathematical formula has been developed to calculate the particle size distribution for different cases and the results were compared to the real ones. The results revealed unsatisfactory agreement between the calculated and the measured values. In addition, illogic results were obtained indicating that the instruments in which the sedimentation technique is used are not the proper ones to provide accurate measurements except for mono particle size cases. More above, the results obtained represent the sedimentation rate but not the particle size distribution.

  14. Preliminary study of determination of UO2 grain size using X-ray diffraction method

    International Nuclear Information System (INIS)

    Mulyana, T.; Sambodo, G. D.; Juanda, D.; Fatchatul, B.

    1998-01-01

    The determination of UO 2 grain size has accomplished using x-ray diffraction method. The UO 2 powder is obtained from sol-gel process. A copper target as radiation source in the x-ray diffractometer was used in this experiment with CμKα characteristic wavelength 1.54433 Angstrom. The result indicate that the UO 2 mean grain size on presintered (temperature 800 o C) has the value 456.8500 Angstrom and the UO 2 mean grain size on sintered (temperature 1700 o C) has value 651.4934 Angstrom

  15. Laser Guided Automated Calibrating System for Accurate Bracket ...

    African Journals Online (AJOL)

    Background: The basic premise of preadjusted bracket system is accurate bracket positioning. ... using MATLAB ver. 7 software (The MathWorks Inc.). These images are in the form of matrices of size 640 × 480. 650 nm (red light) type III diode laser is used as ... motion control and Pitch, Yaw, Roll degrees of freedom (DOF).

  16. The Remote Food Photography Method accurately estimates dry powdered foods—the source of calories for many infants

    Science.gov (United States)

    Duhé, Abby F.; Gilmore, L. Anne; Burton, Jeffrey H.; Martin, Corby K.; Redman, Leanne M.

    2016-01-01

    Background Infant formula is a major source of nutrition for infants with over half of all infants in the United States consuming infant formula exclusively or in combination with breast milk. The energy in infant powdered formula is derived from the powder and not the water making it necessary to develop methods that can accurately estimate the amount of powder used prior to reconstitution. Objective To assess the use of the Remote Food Photography Method (RFPM) to accurately estimate the weight of infant powdered formula before reconstitution among the standard serving sizes. Methods For each serving size (1-scoop, 2-scoop, 3-scoop, and 4-scoop), a set of seven test bottles and photographs were prepared including the recommended gram weight of powdered formula of the respective serving size by the manufacturer, three bottles and photographs containing 15%, 10%, and 5% less powdered formula than recommended, and three bottles and photographs containing 5%, 10%, and 15% more powdered formula than recommended (n=28). Ratio estimates of the test photographs as compared to standard photographs were obtained using standard RFPM analysis procedures. The ratio estimates and the United States Department of Agriculture (USDA) data tables were used to generate food and nutrient information to provide the RFPM estimates. Statistical Analyses Performed Equivalence testing using the two one-sided t- test (TOST) approach was used to determine equivalence between the actual gram weights and the RFPM estimated weights for all samples, within each serving size, and within under-prepared and over-prepared bottles. Results For all bottles, the gram weights estimated by the RFPM were within 5% equivalence bounds with a slight under-estimation of 0.05 g (90% CI [−0.49, 0.40]; p<0.001) and mean percent error ranging between 0.32% and 1.58% among the four serving sizes. Conclusion The maximum observed mean error was an overestimation of 1.58% of powdered formula by the RFPM under

  17. CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO

    International Nuclear Information System (INIS)

    Guerry, Paul; Duong, Viet Dung; Herrmann, Torsten

    2015-01-01

    UNIO is a comprehensive software suite for protein NMR structure determination that enables full automation of all NMR data analysis steps involved—including signal identification in NMR spectra, sequence-specific backbone and side-chain resonance assignment, NOE assignment and structure calculation. Within the framework of the second round of the community-wide stringent blind NMR structure determination challenge (CASD-NMR 2), we participated in two categories of CASD-NMR 2, namely using either raw NMR spectra or unrefined NOE peak lists as input. A total of 15 resulting NMR structure bundles were submitted for 9 out of 10 blind protein targets. All submitted UNIO structures accurately coincided with the corresponding blind targets as documented by an average backbone root mean-square deviation to the reference proteins of only 1.2 Å. Also, the precision of the UNIO structure bundles was virtually identical to the ensemble of reference structures. By assessing the quality of all UNIO structures submitted to the two categories, we find throughout that only the UNIO–ATNOS/CANDID approach using raw NMR spectra consistently yielded structure bundles of high quality for direct deposition in the Protein Data Bank. In conclusion, the results obtained in CASD-NMR 2 are another vital proof for robust, accurate and unsupervised NMR data analysis by UNIO for real-world applications

  18. Acceptance criteria for determining armed response force size at nuclear power plants

    International Nuclear Information System (INIS)

    1983-02-01

    This guidance document contains acceptance criteria to be used in the NRC license review process. It consists of a scored worksheet and guidelines for interpreting the worksheet score that can be used in determining the adequacy of the armed response force size at a nuclear power reactor facility

  19. Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS

    International Nuclear Information System (INIS)

    Balcaen, Lieve; Bolea-Fernandez, Eduardo; Resano, Martín; Vanhaecke, Frank

    2014-01-01

    Graphical abstract: -- Highlights: •Novel method for determination of Ti at ultra-trace levels in clinical samples (serum). •Novel method based on Ti(NH 3 ) 6 + reaction product ion formation and double mass selection using recently introduced ICP-QQQ instrumentation. •Lowest limits of detection ever obtained using quadrupole-based instrumentation for Ti. •Accurate determination of basal levels of Ti in blood serum. -- Abstract: Ti is frequently used in implants and prostheses and it has been shown before that the presence of these in the human body can lead to elevated Ti concentrations in body fluids such as serum and urine. As identification of the exact mechanisms responsible for this increase in Ti concentrations, and the risks associated with it, are not fully understood, it is important to have sound analytical methods that enable straightforward quantification of Ti levels in body fluids (for both implanted and non-implanted individuals). Until now, only double-focusing sector field ICP-mass spectrometry (SF-ICP-MS) offered limits of detection that are good enough to deal with the very low basal levels of Ti in human serum. This work reports on the development of a novel method for the accurate and precise determination of trace levels of Ti in human serum samples, based on the use of ICP-MS/MS. O 2 and NH 3 /He have been compared as reaction gases. While the use of O 2 did not enable to overcome all spectral interferences, it has been shown that conversion of Ti + ions into Ti(NH 3 ) 6 + cluster ions by using NH 3 /He as a reaction gas in an ICP-QQQ-MS system, operated in MS/MS mode, provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L −1 (instrumental detection limit obtained for the most abundant Ti isotope). The accuracy of the method proposed was evaluated by analysis of a Seronorm Trace Elements Serum L-1 reference material and by comparing the results obtained with those achieved by means of SF

  20. Choosing a suitable sample size in descriptive sampling

    International Nuclear Information System (INIS)

    Lee, Yong Kyun; Choi, Dong Hoon; Cha, Kyung Joon

    2010-01-01

    Descriptive sampling (DS) is an alternative to crude Monte Carlo sampling (CMCS) in finding solutions to structural reliability problems. It is known to be an effective sampling method in approximating the distribution of a random variable because it uses the deterministic selection of sample values and their random permutation,. However, because this method is difficult to apply to complex simulations, the sample size is occasionally determined without thorough consideration. Input sample variability may cause the sample size to change between runs, leading to poor simulation results. This paper proposes a numerical method for choosing a suitable sample size for use in DS. Using this method, one can estimate a more accurate probability of failure in a reliability problem while running a minimal number of simulations. The method is then applied to several examples and compared with CMCS and conventional DS to validate its usefulness and efficiency

  1. Accurate determination of high-risk coronary lesion type by multidetector cardiac computed tomography.

    Science.gov (United States)

    Alasnag, Mirvat; Umakanthan, Branavan; Foster, Gary P

    2008-07-01

    Coronary arteriography (CA) is the standard method to image coronary lesions. Multidetector cardiac computerized tomography (MDCT) provides high-resolution images of coronary arteries, allowing a noninvasive alternative to determine lesion type. To date, no studies have assessed the ability of MDCT to categorize coronary lesion types. The objective of this study was to determine the accuracy of lesion type categorization by MDCT using CA as a reference standard. Patients who underwent both MDCT and CA within 2 months of each other were enrolled. MDCT and CA images were reviewed in a blinded fashion. Lesions were categorized according to the SCAI classification system (Types I-IV). The origin, proximal and middle segments of the major arteries were analyzed. Each segment comprised a data point for comparison. Analysis was performed using the Spearman Correlation Test. Four hundred eleven segments were studied, of which 110 had lesions. The lesion distribution was as follows: 35 left anterior descending (LAD), 29 circumflex (Cx), 31 right coronary artery (RCA), 2 ramus intermedius, 8 diagonal, 4 obtuse marginal and 2 left internal mammary arteries. Correlations between MDCT and CA were significant in all major vessels (LAD, Cx, RCA) (p < 0.001). The overall correlation coefficient was 0.67. Concordance was strong for lesion Types II-IV (97%) and poor for Type I (30%). High-risk coronary lesion types can be accurately categorized by MDCT. This ability may allow MDCT to play an important noninvasive role in the planning of coronary interventions.

  2. A highly accurate wireless digital sun sensor based on profile detecting and detector multiplexing technologies

    Science.gov (United States)

    Wei, Minsong; Xing, Fei; You, Zheng

    2017-01-01

    The advancing growth of micro- and nano-satellites requires miniaturized sun sensors which could be conveniently applied in the attitude determination subsystem. In this work, a profile detecting technology based high accurate wireless digital sun sensor was proposed, which could transform a two-dimensional image into two-linear profile output so that it can realize a high update rate under a very low power consumption. A multiple spots recovery approach with an asymmetric mask pattern design principle was introduced to fit the multiplexing image detector method for accuracy improvement of the sun sensor within a large Field of View (FOV). A FOV determination principle based on the concept of FOV region was also proposed to facilitate both sub-FOV analysis and the whole FOV determination. A RF MCU, together with solar cells, was utilized to achieve the wireless and self-powered functionality. The prototype of the sun sensor is approximately 10 times lower in size and weight compared with the conventional digital sun sensor (DSS). Test results indicated that the accuracy of the prototype was 0.01° within a cone FOV of 100°. Such an autonomous DSS could be equipped flexibly on a micro- or nano-satellite, especially for highly accurate remote sensing applications.

  3. A new approach of recognition of ellipsoidal micro- and nanoparticles on AFM images and determination of their sizes

    International Nuclear Information System (INIS)

    Akhmadeev, Albert A; Kh Salakhov, Myakzyum

    2016-01-01

    In this work we develop an approach of automatic recognition of ellipsoidal particles on the atomic force microscopy (AFM) image and determination of their size, which is based on image segmentation and the surface approximation by ellipsoids. In addition to the comparative simplicity and rapidity of processing, this method allows us to determine the size of particles, the surface of which is not completely visible on the image. The proposed method showed good results on simulated images including noisy ones. Using this algorithm the size distributions of silica particles on experimental AFM images have been determined. (paper)

  4. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. How accurate are adolescents in portion-size estimation using the computer tool Young Adolescents' Nutrition Assessment on Computer (YANA-C)?

    Science.gov (United States)

    Vereecken, Carine; Dohogne, Sophie; Covents, Marc; Maes, Lea

    2010-06-01

    Computer-administered questionnaires have received increased attention for large-scale population research on nutrition. In Belgium-Flanders, Young Adolescents' Nutrition Assessment on Computer (YANA-C) has been developed. In this tool, standardised photographs are available to assist in portion-size estimation. The purpose of the present study is to assess how accurate adolescents are in estimating portion sizes of food using YANA-C. A convenience sample, aged 11-17 years, estimated the amounts of ten commonly consumed foods (breakfast cereals, French fries, pasta, rice, apple sauce, carrots and peas, crisps, creamy velouté, red cabbage, and peas). Two procedures were followed: (1) short-term recall: adolescents (n 73) self-served their usual portions of the ten foods and estimated the amounts later the same day; (2) real-time perception: adolescents (n 128) estimated two sets (different portions) of pre-weighed portions displayed near the computer. Self-served portions were, on average, 8 % underestimated; significant underestimates were found for breakfast cereals, French fries, peas, and carrots and peas. Spearman's correlations between the self-served and estimated weights varied between 0.51 and 0.84, with an average of 0.72. The kappa statistics were moderate (>0.4) for all but one item. Pre-weighed portions were, on average, 15 % underestimated, with significant underestimates for fourteen of the twenty portions. Photographs of food items can serve as a good aid in ranking subjects; however, to assess the actual intake at a group level, underestimation must be considered.

  6. Determination of the surface area and sizes of supported copper nanoparticles through organothiol adsorption—ñhemisorption

    Energy Technology Data Exchange (ETDEWEB)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout, E-mail: rmeijboom@uj.ac.za

    2016-12-30

    Highlights: • Cu on γ-Al{sub 2}O{sub 3} catalysts were prepared and characterized. • The ligand sorption-based technique was used for the determination of specific surface area and particle sizes. • The ligand packing density on Cu nanoparticles was quantified. • A fair agreement was found between the Cu particle sizes obtained from ligand adsorption and TEM methods. • The oxidation of morin by hydrogen peroxide was used to evaluate the catalytic activities of the Cu supported catalysts. - Abstract: The mechanisms involving the nanoparticle surfaces in catalytic reactions are more difficult to elucidate due to the nanoparticle surface unevenness, size distributions, and morphological irregularity. True surface area and particle sizes determination are key aspects of the activity of metal nanoparticle catalysts. Here we report on the organothiol adsorption-based technique for the determination of specific surface area of Cu nanoparticles, and their resultant sizes on γ-Al{sub 2}O{sub 3} supports. Quantification of ligand packing density on copper nanoparticles is also reported. The concentration of the probe ligand, 2-mercaptobenzimidazole (2-MBI) before and after immersion of supported copper catalysts was determined by ultraviolet-visible spectrometry (UV–vis). The amount of ligand adsorbed was found to be proportional to the copper nanoparticles surface area. Atomic absorption spectrometry (AAS), N{sub 2}-physisorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were used for the characterization of the catalysts. A fair agreement was found between particle sizes obtained from ligand adsorption and TEM methods. The catalytic activity of the copper nanoparticles related to their inherent surface area was evaluated using the model reaction of the oxidation of morin by hydrogen peroxide.

  7. Platelet Counts in Insoluble Platelet-Rich Fibrin Clots: A Direct Method for Accurate Determination

    Directory of Open Access Journals (Sweden)

    Yutaka Kitamura

    2018-02-01

    Full Text Available Platelet-rich fibrin (PRF clots have been used in regenerative dentistry most often, with the assumption that growth factor levels are concentrated in proportion to the platelet concentration. Platelet counts in PRF are generally determined indirectly by platelet counting in other liquid fractions. This study shows a method for direct estimation of platelet counts in PRF. To validate this method by determination of the recovery rate, whole-blood samples were obtained with an anticoagulant from healthy donors, and platelet-rich plasma (PRP fractions were clotted with CaCl2 by centrifugation and digested with tissue-plasminogen activator. Platelet counts were estimated before clotting and after digestion using an automatic hemocytometer. The method was then tested on PRF clots. The quality of platelets was examined by scanning electron microscopy and flow cytometry. In PRP-derived fibrin matrices, the recovery rate of platelets and white blood cells was 91.6 and 74.6%, respectively, after 24 h of digestion. In PRF clots associated with small and large red thrombi, platelet counts were 92.6 and 67.2% of the respective total platelet counts. These findings suggest that our direct method is sufficient for estimating the number of platelets trapped in an insoluble fibrin matrix and for determining that platelets are distributed in PRF clots and red thrombi roughly in proportion to their individual volumes. Therefore, we propose this direct digestion method for more accurate estimation of platelet counts in most types of platelet-enriched fibrin matrix.

  8. Size and geometry of apical sesamoid fracture fragments as a determinant of prognosis in Thoroughbred racehorses.

    Science.gov (United States)

    Kamm, J L; Bramlage, L R; Schnabel, L V; Ruggles, A J; Embertson, R M; Hopper, S A

    2011-07-01

    Analysis was performed to examine a method for refining the preoperative prognosis for horses that had surgery to remove apical fractures of the proximal sesamoid bones (PSBs). To determine if: 1) there was a difference in size or configuration of apical fractures between the different anatomical locations of the PSBs, which have been shown to affect the prognosis; and 2) the size or configuration could predict the prognosis for racehorses with these fractures. The study included 110 weanlings and yearlings and 56 training racehorses that underwent surgery to remove apical PSB fractures. Radiographs of the fractures were used for measurement of the abaxial and axial proportion and the abaxial to axial ratio, and race records were used to determine average earnings per start (AEPS) and total post operative starts. Analysis of variance and regression statistics were used to compare the fragment sizes between the specific PSBs on each of the limbs and compare size and configuration of the fractures to prognosis. There was a significantly larger abaxial to axial ratio (more transverse fracture) for the forelimb medial sesamoids than for all other sesamoids in untrained racehorses (P = 0.03). There were no other significant differences in size. There was no relationship between fracture size or configuration and AEPS nor total post operative starts. Apical fractures in weanlings and yearlings tend to be more transverse in the forelimb medial PSBs than the other PSBs. Apical fracture size and geometry does not determine prognosis for apical sesamoid fractures. Horses that undergo surgery to remove larger apical fractures of the PSBs do not have a worse outcome than those horses with smaller fractures. © 2010 EVJ Ltd.

  9. Determination of crack size around rivet hole through neural network using ultrasonic Lamb wave

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun

    1998-01-01

    Rivets are typical structural features that are potential initiation sites for fatigue crack due to combination of local stress concentration around rivet hole and moisture trapping. For the viewpoint of structural assurance, it is crucial to evaluate the size of crack around rivets by appropriate nondestructive techniques. Guided waves, which direct wave energy along the plate, carry information about the material in their path and offer a potentially more efficient tool for nondestructive inspection of structural material. Neural network that is considered to be the most suitable for pattern recognition and has been used by researchers in NDE field to classify different types of flaws and flaw size. In this study, crack size determination around rivet through a neural network based on the back-propagation algorithm has been done by extracting some feature from time-domain waveforms of ultrasonic Lamb wave for Al 2024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between transducer and specimen by extracting some features related to only time component data in ultrasonic waveform. It was demonstrated clearly that features extraction based on time component data of the time-domain waveform of Lamb wave was very useful to determine crack size initiated from rivet hole through neural network.

  10. Discrete sensors distribution for accurate plantar pressure analyses.

    Science.gov (United States)

    Claverie, Laetitia; Ille, Anne; Moretto, Pierre

    2016-12-01

    The aim of this study was to determine the distribution of discrete sensors under the footprint for accurate plantar pressure analyses. For this purpose, two different sensor layouts have been tested and compared, to determine which was the most accurate to monitor plantar pressure with wireless devices in research and/or clinical practice. Ten healthy volunteers participated in the study (age range: 23-58 years). The barycenter of pressures (BoP) determined from the plantar pressure system (W-inshoe®) was compared to the center of pressures (CoP) determined from a force platform (AMTI) in the medial-lateral (ML) and anterior-posterior (AP) directions. Then, the vertical ground reaction force (vGRF) obtained from both W-inshoe® and force platform was compared for both layouts for each subject. The BoP and vGRF determined from the plantar pressure system data showed good correlation (SCC) with those determined from the force platform data, notably for the second sensor organization (ML SCC= 0.95; AP SCC=0.99; vGRF SCC=0.91). The study demonstrates that an adjusted placement of removable sensors is key to accurate plantar pressure analyses. These results are promising for a plantar pressure recording outside clinical or laboratory settings, for long time monitoring, real time feedback or for whatever activity requiring a low-cost system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Determination of the particle size distribution in a powder using radiotracers

    International Nuclear Information System (INIS)

    Revilla D, R.

    1974-01-01

    To determine experimentally the particle size distribution in a powder the meshed method is generally used. This method has the disadvantage that in the obtained distribution is not observed at detail the fine structure of such distribution. In this work, a method for obtaining the distribution of particle size using radiotracers is presented. In the obtained distribution by this method it is observed with more detail the fine structure of the distribution, comparing with the obtained results by the classical method of meshed. The radiotracer method has major resolution for the experimental determination mentioned. In the chapter 1, it is done a brief analysis about theoretical aspects related with the method. In the first part it is analysed the particle behavior (sedimenting) in a fluid. The second part treats the relating with the radioactivity of an activated material as well as its detection. In the chapter 2, a description of the method is done also the experimental problems to applying to the alumina crystals sample are discussed. In the chapter 3 the obtained results and the mistake calculations in such results are showed. Finally, in the chapter 4 the conclusions and recommendations are given which is possible to obtain better results and improve to those in this work were obtained. (Author)

  12. Determination of particle size distributions from acoustic wave propagation measurements

    International Nuclear Information System (INIS)

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-01-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. 51, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. copyright 1999 American Institute of Physics

  13. Software Estimation: Developing an Accurate, Reliable Method

    Science.gov (United States)

    2011-08-01

    based and size-based estimates is able to accurately plan, launch, and execute on schedule. Bob Sinclair, NAWCWD Chris Rickets , NAWCWD Brad Hodgins...Office by Carnegie Mellon University. SMPSP and SMTSP are service marks of Carnegie Mellon University. 1. Rickets , Chris A, “A TSP Software Maintenance...Life Cycle”, CrossTalk, March, 2005. 2. Koch, Alan S, “TSP Can Be the Building blocks for CMMI”, CrossTalk, March, 2005. 3. Hodgins, Brad, Rickets

  14. Determination of the optimal sample size for a clinical trial accounting for the population size.

    Science.gov (United States)

    Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin

    2017-07-01

    The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice

    Directory of Open Access Journals (Sweden)

    Blaine A. Christiansen

    2016-12-01

    Full Text Available Micro-computed tomography (μCT is currently the gold standard for determining trabecular bone microstructure in small animal models. Numerous parameters associated with scanning and evaluation of μCT scans can strongly affect morphologic results obtained from bone samples. However, the effect of these parameters on specific trabecular bone outcomes is not well understood. This study investigated the effect of μCT scanning with nominal voxel sizes between 6–30 μm on trabecular bone outcomes quantified in mouse vertebral body trabecular bone. Additionally, two methods for determining a global segmentation threshold were compared: based on qualitative assessment of 2D images, or based on quantitative assessment of image histograms. It was found that nominal voxel size had a strong effect on several commonly reported trabecular bone parameters, in particular connectivity density, trabecular thickness, and bone tissue mineral density. Additionally, the two segmentation methods provided similar trabecular bone outcomes for scans with small nominal voxel sizes, but considerably different outcomes for scans with larger voxel sizes. The Qualitatively Selected segmentation method more consistently estimated trabecular bone volume fraction (BV/TV and trabecular thickness across different voxel sizes, but the Histogram segmentation method more consistently estimated trabecular number, trabecular separation, and structure model index. Altogether, these results suggest that high-resolution scans be used whenever possible to provide the most accurate estimation of trabecular bone microstructure, and that the limitations of accurately determining trabecular bone outcomes should be considered when selecting scan parameters and making conclusions about inter-group variance or between-group differences in studies of trabecular bone microstructure in small animals. Keywords: Trabecular bone, Microstructure, Micro-computed tomography, Voxel size, Resolution

  16. An accurate and nondestructive GC method for determination of cocaine on US paper currency.

    Science.gov (United States)

    Zuo, Yuegang; Zhang, Kai; Wu, Jingping; Rego, Christopher; Fritz, John

    2008-07-01

    The presence of cocaine on US paper currency has been known for a long time. Banknotes become contaminated during the exchange, storage, and abuse of cocaine. The analysis of cocaine on various denominations of US banknotes in the general circulation can provide law enforcement circles and forensic epidemiologists objective and timely information on epidemiology of illicit drug use and on how to differentiate money contaminated in the general circulation from banknotes used in drug transaction. A simple, nondestructive, and accurate capillary gas chromatographic method has been developed for the determination of cocaine on various denominations of US banknotes in this study. The method comprises a fast ultrasonic extraction using water as a solvent followed by a SPE cleanup process with a C(18) cartridge and capillary GC separation, identification, and quantification. This nondestructive analytical method has been successfully applied to determine the cocaine contamination in US paper currency of all denominations. Standard calibration curve was linear over the concentration range from the LOQ (2.00 ng/mL) to 100 microg/mL and the RSD less than 2.0%. Cocaine was detected in 67% of the circulated banknotes collected in Southeastern Massachusetts in amounts ranging from approximately 2 ng to 49.4 microg per note. On average, $5, 10, 20, and 50 denominations contain higher amounts of cocaine than $1 and 100 denominations of US banknotes.

  17. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  18. Molecular sizes of lichen ice nucleation sites determined by gamma radiation inactivation analysis

    International Nuclear Information System (INIS)

    Kieft, T.L.; Ruscetti, T.

    1992-01-01

    It has previously been shown that some species of lichen fungi contain proteinaceous ice nuclei which are active at temperatures as warm as −2 °C. This experiment was undertaken to determine the molecular sizes of ice nuclei in the lichen fungus Rhizoplaca chrysoleuca and to compare them to bacterial ice nuclei from Pseudomonas syringae. Gamma radiation inactivation analysis was used to determine molecular weights. Radiation inactivation analysis is based on target theory, which states that the likelihood of a molecule being inactivated by gamma rays increases as its size increases. Three different sources of ice nuclei from the lichen R. chrysoleuca were tested: field-collected lichens, extract of lichen fungus, and a pure culture of the fungus R. chrysoleuca. P. syringae strain Cit7 was used as a source of bacterial ice nuclei. Samples were lyophilized, irradiated with gamma doses ranging from 0 to 10.4 Mrads, and then tested for ice nucleation activity using a droplet-freezing assay. Data for all four types of samples were in rough agreement; sizes of nucleation sites increased logarithmically with increasing temperatures of ice nucleation activity. Molecular weights of nucleation sites active between −3 and −4 °C from the bacteria and from the field-collected lichens were approximately 1.0 × 10 6 Da. Nuclei from the lichen fungus and in the lichen extract appeared to be slightly smaller but followed the same log-normal pattern with temperature of ice nucleation activity. The data for both the bacterial and lichen ice nuclei are in agreement with ice nucleation theory which states that the size of ice nucleation sites increases logarithmically as the temperature of nucleation increases linearly. This suggests that although some differences exist between bacterial and lichen ice nucleation sites, their molecular sizes are quite similar

  19. Determination of Flaw Size and Depth From Temporal Evolution of Thermal Response

    Science.gov (United States)

    Winfree, William P.; Zalameda, Joseph N.; Cramer, Elliott; Howell, Patricia A.

    2015-01-01

    Simple methods for reducing the pulsed thermographic responses of flaws have tended to be based on either the spatial or temporal response. This independent assessment limits the accuracy of characterization. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that incorporates both the temporal and spatial response to improve the characterization. The size and depth are determined from both the temporal and spatial thermal response of the exterior surface above a flaw and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data acquired are presented to investigate the limitations of the technique.

  20. Use of Loran-C navigation system to accurately determine sampling site location in an above ground cooling reservoir

    International Nuclear Information System (INIS)

    Lockwood, R.E.; Blankinship, D.R.

    1994-01-01

    Environmental monitoring programs often require accurate determination of sampling site locations in aquatic environments. This is especially true when a open-quotes pictureclose quotes of high resolution is needed for observing a changing variable in a given area and location is assumed to be important to the distribution of that variable. Sample site location can be difficult if few visible land marks are available for reference on a large body of water. The use of navigational systems such as Global Positioning System (GPS) and its predecessor, Loran-C, provide an excellent method for sample site location. McFarland (1992) discusses the practicality of GPS for location determination. This article discusses the use of Loran-C in a sampling scheme implemented at the South Texas Project Electrical Generating Station (STPEGS), Wadsworth, Texas

  1. Shifts in frog size and phenology: Testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming.

    Science.gov (United States)

    Sheridan, Jennifer A; Caruso, Nicholas M; Apodaca, Joseph J; Rissler, Leslie J

    2018-01-01

    Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km 2 , and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901-1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961-2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in "space-for-time" studies where measures of a species' traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population

  2. Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study.

    Science.gov (United States)

    Eisner, Brian H; Kambadakone, Avinash; Monga, Manoj; Anderson, James K; Thoreson, Andrew A; Lee, Hang; Dretler, Stephen P; Sahani, Dushyant V

    2009-04-01

    We determined the most accurate method of measuring urinary stones on computerized tomography. For the in vitro portion of the study 24 calculi, including 12 calcium oxalate monohydrate and 12 uric acid stones, that had been previously collected at our clinic were measured manually with hand calipers as the gold standard measurement. The calculi were then embedded into human kidney-sized potatoes and scanned using 64-slice multidetector computerized tomography. Computerized tomography measurements were performed at 4 window settings, including standard soft tissue windows (window width-320 and window length-50), standard bone windows (window width-1120 and window length-300), 5.13x magnified soft tissue windows and 5.13x magnified bone windows. Maximum stone dimensions were recorded. For the in vivo portion of the study 41 patients with distal ureteral stones who underwent noncontrast computerized tomography and subsequently spontaneously passed the stones were analyzed. All analyzed stones were 100% calcium oxalate monohydrate or mixed, calcium based stones. Stones were prospectively collected at the clinic and the largest diameter was measured with digital calipers as the gold standard. This was compared to computerized tomography measurements using 4.0x magnified soft tissue windows and 4.0x magnified bone windows. Statistical comparisons were performed using Pearson's correlation and paired t test. In the in vitro portion of the study the most accurate measurements were obtained using 5.13x magnified bone windows with a mean 0.13 mm difference from caliper measurement (p = 0.6). Measurements performed in the soft tissue window with and without magnification, and in the bone window without magnification were significantly different from hand caliper measurements (mean difference 1.2, 1.9 and 1.4 mm, p = 0.003, window settings with magnification. For uric acid calculi the measurement error was observed only in standard soft tissue window settings. In vivo 4.0x

  3. The determination of accurate dipole polarizabilities alpha and gamma for the noble gases

    Science.gov (United States)

    Rice, Julia E.; Taylor, Peter R.; Lee, Timothy J.; Almloef, Jan

    1989-01-01

    The static dipole polarizabilities alpha and gamma for the noble gases helium through xenon were determined using large flexible one-particle basis sets in conjunction with high-level treatments of electron correlation. The electron correlation methods include single and double excitation coupled-cluster theory (CCSD), an extension of CCSD that includes a perturbational estimate of connected triple excitations, CCSD(T), and second order perturbation theory (MP2). The computed alpha and gamma values are estimated to be accurate to within a few percent. Agreement with experimental data for the static hyperpolarizability gamma is good for neon and xenon, but for argon and krypton the differences are larger than the combined theoretical and experimental uncertainties. Based on our calculations, we suggest that the experimental value of gamma for argon is too low; adjusting this value would bring the experimental value of gamma for krypton into better agreement with our computed result. The MP2 values for the polarizabilities of neon, argon, krypton and zenon are in reasonabe agreement with the CCSD and CCSD(T) values, suggesting that this less expensive method may be useful in studies of polarizabilities for larger systems.

  4. Determination of lesion size by ultrasound during radiofrequency catheter ablation.

    Science.gov (United States)

    Awad, S; Eick, O

    2003-01-01

    The catheter tip temperature that is used to control the radiofrequency generator output poorly correlates to lesion size. We, therefore, evaluated lesions created in vitro using a B-mode ultrasound imaging device as a potential means to assess lesion generation during RF applications non-invasively. Porcine ventricular tissue was immersed in saline solution at 37 degrees C. The catheter was fixed in a holder and positioned in a parallel orientation to the tissue with an array transducer (7.5 MHz) app. 3 cm above the tissue. Lesions were produced either in a temperature controlled mode with a 4-mm tip catheter with different target temperatures (50, 60, 70 and 80 degrees C, 80 W maximum output) or in a power controlled mode (25, 50 and 75 W, 20 ml/min irrigation flow) using an irrigated tip catheter. Different contact forces (0.5 N, 1.0 N) were tested, and RF was delivered for 60 s. A total of 138 lesions was produced. Out of these, 128 could be identified on the ultrasound image. The lesion depth and volume was on average 4.1 +/- 1.6 mm and 52 +/- 53 mm3 as determined by ultrasound and 3.9 +/- 1.7 mm and 52 +/- 55 mm3 as measured thereafter, respectively. A linear correlation between the lesion size determined by ultrasound and that measured thereafter was demonstrated with a correlation coefficient of r = 0.87 for lesion depth and r = 0.93 for lesion volume. We conclude that lesions can be assessed by B-mode ultrasound imaging.

  5. [Determination of the distribution of relative molecular mass of organic matter by high pressure size exclusion chromatography with UV and TOC detectors].

    Science.gov (United States)

    Zhang, Han; Dong, Bing-Zhi

    2012-09-01

    An on-line high pressure size exclusion chromatography (HPSEC) with UV and TOC detectors was adapted to examine the distribution of relative molecular mass of natural organic matter (NOM). Through synchronous determination of UV254 and TOC responses in a wide range of relative molecular mass, it was possible to accurately characterize the structure of NOM, especially for some non-aromatic and non-conjugated double bond organics which have low response to UV. It was found that, TOC detector was capable of detecting all kinds of organic matters, including sucrose, sodium alginate and other hydrophilic organic compounds. The sample volume had a positively linear correlation with the TOC response, indicating that the larger volume would produce stronger responses. The effect of ion strength was relatively low, shown by the small decrease of peak area (1.2% ) from none to 0.2 mol x L(-1) NaCl. The pH value of tested samples should be adjusted to neutral or acidic because when the samples were alkaline, the results might be inaccurate. Compared to the sample solvents adopted as ultrapure water, the samples prepared by mobile phase solvents had less interference to salt boundary peak. The on-line HPSEC-UV-TOC can be used accurately to characterize the distribution of relative molecular mass and its four fractions in River Xiang.

  6. Determining an Estimate of an Equivalence Relation for Moderate and Large Sized Sets

    Directory of Open Access Journals (Sweden)

    Leszek Klukowski

    2017-01-01

    Full Text Available This paper presents two approaches to determining estimates of an equivalence relation on the basis of pairwise comparisons with random errors. Obtaining such an estimate requires the solution of a discrete programming problem which minimizes the sum of the differences between the form of the relation and the comparisons. The problem is NP hard and can be solved with the use of exact algorithms for sets of moderate size, i.e. about 50 elements. In the case of larger sets, i.e. at least 200 comparisons for each element, it is necessary to apply heuristic algorithms. The paper presents results (a statistical preprocessing, which enable us to determine the optimal or a near-optimal solution with acceptable computational cost. They include: the development of a statistical procedure producing comparisons with low probabilities of errors and a heuristic algorithm based on such comparisons. The proposed approach guarantees the applicability of such estimators for any size of set. (original abstract

  7. Determining the optimal size of small molecule mixtures for high throughput NMR screening

    International Nuclear Information System (INIS)

    Mercier, Kelly A.; Powers, Robert

    2005-01-01

    High-throughput screening (HTS) using NMR spectroscopy has become a common component of the drug discovery effort and is widely used throughout the pharmaceutical industry. NMR provides additional information about the nature of small molecule-protein interactions compared to traditional HTS methods. In order to achieve comparable efficiency, small molecules are often screened as mixtures in NMR-based assays. Nevertheless, an analysis of the efficiency of mixtures and a corresponding determination of the optimum mixture size (OMS) that minimizes the amount of material and instrumentation time required for an NMR screen has been lacking. A model for calculating OMS based on the application of the hypergeometric distribution function to determine the probability of a 'hit' for various mixture sizes and hit rates is presented. An alternative method for the deconvolution of large screening mixtures is also discussed. These methods have been applied in a high-throughput NMR screening assay using a small, directed library

  8. The Size of Local Government Administration at a Municipal Level as a Determinant of Entrepreneurship

    Directory of Open Access Journals (Sweden)

    Rusłan Harasym

    2017-01-01

    Full Text Available This artcle’s aim is to examine a dependency between local government administraton at a municipal level and the level of local entrepreneurship. This paper atempts to answer the queston of whether the size of the local government administraton has features of stmulant or de-stmulant in the process of setng up a business. In other words, does the size of public administraton at a local level (municipal level have a positve or negatve impact on creatng new business enttes? This is important due to at least a couple of reasons. First of all, the current research achievements are not extensive, when it comes to the publicatons that link entrepreneurship and the size of local government administraton. Secondly, the problem of entrepreneurship determinants consttutes stll topical and not fully investgated (or explained aspects of local economy development. Thirdly and fnally, the authors of this artcle have proposed and copyrighted an approach to the quantfcaton of the size of local government administraton, modifying commonly used measures of local public administraton. Thus, this artcle fts not only into the explanaton of the entrepreneurship phenomenon and its determinants, but also contributes to the development of knowledge about dependencies between the size of local selfgovernment and the entrepreneurship level. It expands the knowledge resource on analyzed dependencies and re-orients current approaches to similar research.

  9. Determination of cluster size of Pratylenchus Penetrans ...

    African Journals Online (AJOL)

    A nursery field 21 m x 80 m was sampled sequentially for Pratylenchus penetrans by decreasing the plot sizes systematically. Plots sizes of 3.6 m x 8 m, 3.6 m x 3.6 m and 0.6 m x 0.6 m were sampled. Nematode counts were computed to obtain the respective sample mean and variance. The sample mean and variance ...

  10. Optimal sample preparation for nanoparticle metrology (statistical size measurements) using atomic force microscopy

    International Nuclear Information System (INIS)

    Hoo, Christopher M.; Doan, Trang; Starostin, Natasha; West, Paul E.; Mecartney, Martha L.

    2010-01-01

    Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2-5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.

  11. Accurate 3D Mapping Algorithm for Flexible Antennas

    Directory of Open Access Journals (Sweden)

    Saed Asaly

    2018-01-01

    Full Text Available This work addresses the problem of performing an accurate 3D mapping of a flexible antenna surface. Consider a high-gain satellite flexible antenna; even a submillimeter change in the antenna surface may lead to a considerable loss in the antenna gain. Using a robotic subreflector, such changes can be compensated for. Yet, in order to perform such tuning, an accurate 3D mapping of the main antenna is required. This paper presents a general method for performing an accurate 3D mapping of marked surfaces such as satellite dish antennas. Motivated by the novel technology for nanosatellites with flexible high-gain antennas, we propose a new accurate mapping framework which requires a small-sized monocamera and known patterns on the antenna surface. The experimental result shows that the presented mapping method can detect changes up to 0.1-millimeter accuracy, while the camera is located 1 meter away from the dish, allowing an RF antenna optimization for Ka and Ku frequencies. Such optimization process can improve the gain of the flexible antennas and allow an adaptive beam shaping. The presented method is currently being implemented on a nanosatellite which is scheduled to be launched at the end of 2018.

  12. The Remote Food Photography Method Accurately Estimates Dry Powdered Foods-The Source of Calories for Many Infants.

    Science.gov (United States)

    Duhé, Abby F; Gilmore, L Anne; Burton, Jeffrey H; Martin, Corby K; Redman, Leanne M

    2016-07-01

    Infant formula is a major source of nutrition for infants, with more than half of all infants in the United States consuming infant formula exclusively or in combination with breast milk. The energy in infant powdered formula is derived from the powder and not the water, making it necessary to develop methods that can accurately estimate the amount of powder used before reconstitution. Our aim was to assess the use of the Remote Food Photography Method to accurately estimate the weight of infant powdered formula before reconstitution among the standard serving sizes. For each serving size (1 scoop, 2 scoops, 3 scoops, and 4 scoops), a set of seven test bottles and photographs were prepared as follow: recommended gram weight of powdered formula of the respective serving size by the manufacturer; three bottles and photographs containing 15%, 10%, and 5% less powdered formula than recommended; and three bottles and photographs containing 5%, 10%, and 15% more powdered formula than recommended (n=28). Ratio estimates of the test photographs as compared to standard photographs were obtained using standard Remote Food Photography Method analysis procedures. The ratio estimates and the US Department of Agriculture data tables were used to generate food and nutrient information to provide the Remote Food Photography Method estimates. Equivalence testing using the two one-sided t tests approach was used to determine equivalence between the actual gram weights and the Remote Food Photography Method estimated weights for all samples, within each serving size, and within underprepared and overprepared bottles. For all bottles, the gram weights estimated by the Remote Food Photography Method were within 5% equivalence bounds with a slight underestimation of 0.05 g (90% CI -0.49 to 0.40; P<0.001) and mean percent error ranging between 0.32% and 1.58% among the four serving sizes. The maximum observed mean error was an overestimation of 1.58% of powdered formula by the Remote

  13. Small-angle X-ray scattering (SAXS) for metrological size determination of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, Gudrun; Krumrey, Michael; Cibik, Levent; Marggraf, Stefanie; Mueller, Peter [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Hoell, Armin [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

    2011-07-01

    To measure the size of nanoparticles, different measurement methods are available but their results are often not compatible. In the framework of an European metrology project we use Small-Angle X-ray Scattering (SAXS) to determine the size and size distribution of nanoparticles in aqueous solution, where the special challange is the traceability of the results. The experiments were performed at the Four-Crystal Monochromator (FCM) beamline in the laboratory of Physikalisch-Technische Bundesanstalt (PTB) at BESSY II using the SAXS setup of the Helmholtz-Zentrum Berlin (HZB). We measured different particles made of PMMA and gold in a diameter range of 200 nm down to about 10 nm. The aspects of traceability can be classified in two parts: the first is the experimental part with the uncertainties of distances, angles, and wavelength, the second is the part of analysis, with the uncertainty of the choice of the model used for fitting the data. In this talk we want to show the degree of uncertainty, which we reached in this work yet.

  14. Predicting the number and sizes of IBD regions among family members and evaluating the family size requirement for linkage studies.

    Science.gov (United States)

    Yang, Wanling; Wang, Zhanyong; Wang, Lusheng; Sham, Pak-Chung; Huang, Peng; Lau, Yu Lung

    2008-12-01

    With genotyping of high-density single nucleotide polymorphisms (SNPs) replacing that of microsatellite markers in linkage studies, it becomes possible to accurately determine the genomic regions shared identity by descent (IBD) by family members. In addition to evaluating the likelihood of linkage for a region with the underlining disease (the LOD score approach), an appropriate question to ask is what would be the expected number and sizes of IBD regions among the affecteds, as there could be more than one region reaching the maximum achievable LOD score for a given family. Here, we introduce a computer program to allow the prediction of the total number of IBD regions among family members and their sizes. Reversely, it can be used to predict the portion of the genome that can be excluded from consideration according to the family size and user-defined inheritance mode and penetrance. Such information has implications on the feasibility of conducting linkage analysis on a given family of certain size and structure or on a few small families when interfamily homogeneity can be assumed. It can also help determine the most relevant members to be genotyped for such a study. Simulation results showed that the IBD regions containing true mutations are usually larger than regions IBD due to random chance. We have made use of this feature in our program to allow evaluation of the identified IBD regions based on Bayesian probability calculation and simulation results.

  15. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Christelle, E-mail: christelle.herman@ulb.ac.b [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium); Leyssens, Tom [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, 1 Place Louis Pasteur, 1348 Louvain-La-Neuve (Belgium); Vermylen, Valerie [UCB Pharma, 60 Allee de la Recherche, 1070 Braine l' Alleud (Belgium); Halloin, Veronique; Haut, Benoit [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium)

    2011-05-15

    the second experimental method is a more accurate, precise, time- and effort-friendly method for the determination of T{sub tr}. The solid-solid transition temperature of the Etiracetam system, determined with the second method, using three different solvents, is found to be equal to 303.65 K {+-} 0.5 K.

  16. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    International Nuclear Information System (INIS)

    Herman, Christelle; Leyssens, Tom; Vermylen, Valerie; Halloin, Veronique; Haut, Benoit

    2011-01-01

    while the second experimental method is a more accurate, precise, time- and effort-friendly method for the determination of T tr . The solid-solid transition temperature of the Etiracetam system, determined with the second method, using three different solvents, is found to be equal to 303.65 K ± 0.5 K.

  17. A ROBUST DETERMINATION OF THE SIZE OF QUASAR ACCRETION DISKS USING GRAVITATIONAL MICROLENSING

    International Nuclear Information System (INIS)

    Jiménez-Vicente, J.; Mediavilla, E.; Muñoz, J. A.; Kochanek, C. S.

    2012-01-01

    Using microlensing measurements for a sample of 27 image pairs of 19 lensed quasars we determine a maximum likelihood estimate for the accretion disk size of an average quasar of r s = 4.0 +2.4 –3.1 lt-day at rest frame (λ) = 1736 Å for microlenses with a mean mass of (M) = 0.3 M ☉ . This value, in good agreement with previous results from smaller samples, is roughly a factor of five greater than the predictions of the standard thin disk model. The individual size estimates for the 19 quasars in our sample are also in excellent agreement with the results of the joint maximum likelihood analysis.

  18. Estimating minimum polycrystalline aggregate size for macroscopic material homogeneity

    International Nuclear Information System (INIS)

    Kovac, M.; Simonovski, I.; Cizelj, L.

    2002-01-01

    During severe accidents the pressure boundary of reactor coolant system can be subjected to extreme loadings, which might cause failure. Reliable estimation of the extreme deformations can be crucial to determine the consequences of severe accidents. Important drawback of classical continuum mechanics is idealization of inhomogenous microstructure of materials. Classical continuum mechanics therefore cannot predict accurately the differences between measured responses of specimens, which are different in size but geometrical similar (size effect). A numerical approach, which models elastic-plastic behavior on mesoscopic level, is proposed to estimate minimum size of polycrystalline aggregate above which it can be considered macroscopically homogeneous. The main idea is to divide continuum into a set of sub-continua. Analysis of macroscopic element is divided into modeling the random grain structure (using Voronoi tessellation and random orientation of crystal lattice) and calculation of strain/stress field. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to 2D models.(author)

  19. Determination of the size distribution of metallic nanoparticles by optical extinction spectroscopy

    International Nuclear Information System (INIS)

    Pena, Ovidio; Rodriguez-Fernandez, Luis; Rodriguez-Iglesias, Vladimir; Kellermann, Guinther; Crespo-Sosa, Alejandro; Cheang-Wong, Juan Carlos; Silva-Pereyra, Hector Gabriel; Arenas-Alatorre, Jesus; Oliver, Alicia

    2009-01-01

    A method is proposed to estimate the size distribution of nearly spherical metallic nanoparticles (NPs) from optical extinction spectroscopy (OES) measurements based on Mie's theory and an optimization algorithm. The described method is compared against two of the most widely used techniques for the task: transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS). The size distribution of Au and Cu NPs, obtained by ion implantation in silica and a subsequent thermal annealing in air, was determined by TEM, grazing-incidence SAXS (GISAXS) geometry, and our method, and the average radius obtained by all the three techniques was almost the same for the two studied metals. Concerning the radius dispersion (RD), OES and GISAXS give very similar results, while TEM considerably underestimates the RD of the distribution

  20. Automatic Determination of the Size of Elliptical Nanoparticles from AFM Images

    Czech Academy of Sciences Publication Activity Database

    Sedlář, Jiří; Zitová, Barbara; Kopeček, Jaromír; Flusser, Jan; Todorcius, T.; Kratochvílová, Irena

    2013-01-01

    Roč. 15, č. 8 (2013), s. 1-10 ISSN 1388-0764 R&D Projects: GA ČR GAP103/11/1552; GA ČR(CZ) GAP304/10/1951; GA TA ČR TA01011165 Institutional support: RVO:67985556 ; RVO:68378271 Keywords : Atomic force microscopy * Image moments * Pyrrole derivatives * Size determination * Watershed segmentation Subject RIV: JD - Computer Applications, Robotics; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.278, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/sedlar-0394390.pdf

  1. Accurate measurement of the optical activity of alanine crystals and the determination of their absolute chirality

    Science.gov (United States)

    Ishikawa, Kazuhiko; Terasawa, Yukana; Tanaka, Masahito; Asahi, Toru

    2017-05-01

    Wavelength dependence measurements of the chiroptical properties in alanine crystals have so far been unsuccessful using conventional spectroscopic techniques. We describe our attempts to measure the wavelength dependence of the optical activity in L- and D-alanine crystals along each crystallographic axis, and to determine the absolute chirality of alanine crystals by correlating the absolute structure to the optical activity using an x-ray diffractometer and a generalized high accuracy universal polarimeter. We have succeeded in accurately measuring the optical rotatory dispersion in the direction, which shows that the optical rotation of the D-alanine crystal is dextrorotatory and that of the L-alanine crystal is laevorotatory, thereby determining the absolute chirality. Furthermore, comparison with the optical activity in solution shows that the optical activity in alanine crystals is different not only in value, but also in the sign. These results have led us to conclude that the optical rotatory power in the crystalline state should not be simply the summation of molecular optical rotatory power values. We propose the necessity of a theory, which contains the contribution of molecular interactions within the crystal, in order to calculate the optical rotatory power of the crystalline state.

  2. Rapid, accurate, and direct determination of total lycopene content in tomato paste

    Science.gov (United States)

    Bicanic, D.; Anese, M.; Luterotti, S.; Dadarlat, D.; Gibkes, J.; Lubbers, M.

    2003-01-01

    Lycopene that imparts red color to the tomato fruit is the most potent antioxidant among carotenes, an important nutrient and also used as a color ingredient in many food formulations. Since cooked and processed foods derived from tomatoes were shown to provide optimal lycopene boost, products such as paste, puree, juice, etc. are nowadays gaining popularity as dietary sources. The analysis of lycopene in tomato paste (partially dehydrated product prepared by vacuum concentrating tomato juice) is carried out using either high pressure liquid chromatography (HPLC), spectrophotometry, or by evaluating the color. The instability of lycopene during processes of extraction, etc., handling, and disposal of organic solvents makes the preparation of a sample for the analysis a delicate task. Despite a recognized need for accurate and rapid assessment of lycopene in tomato products no such method is available at present. The study described here focuses on a direct determination of a total lycopene content in different tomato pastes by means of the laser optothermal window (LOW) method at 502 nm. The concentration of lycopene in tomato paste ranged between 25 and 150 mg per 100 g product; the results are in excellent agreement with those obtained by spectrophotometry. The time needed to complete LOW analysis is very short, so that decomposition of pigment and the formation of artifacts are minimized. Preliminary results indicate a good degree of reproducibility making the LOW method suitable for routine assays of lycopene content in tomato paste.

  3. Determination of User Distribution Image Size and Position of Each Observation Area of Meteorological Imager in COMS

    Directory of Open Access Journals (Sweden)

    Jeong-Soo Seo

    2006-12-01

    Full Text Available In this paper, requirements of Meteorological Administration about Meteorological Imager (MI of Communications, Ocean and Meteorological Satellite (COMS is analyzed for the design of COMS ground station and according to the analysis results, the distribution image size of each observation area suitable for satellite Field Of View (FOV stated at the requirements of meteorological administration is determined and the precise satellite FOV and the size of distribution image is calculated on the basis of the image size of the determined observation area. The results in this paper were applied to the detailed design for COMS ground station and also are expected to be used for the future observation scheduling and the scheduling of distribution of user data.

  4. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    Science.gov (United States)

    Afrooz, A. R. M. Nabiul; Hussain, Saber M.; Saleh, Navid B.

    2014-12-01

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.

  5. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    International Nuclear Information System (INIS)

    Afrooz, A. R. M. Nabiul; Hussain, Saber M.; Saleh, Navid B.

    2014-01-01

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.Graphical Abstract

  6. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Afrooz, A. R. M. Nabiul [The University of Texas, Civil, Architectural and Environmental Engineering (United States); Hussain, Saber M. [Wright-Patterson AFB, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory (United States); Saleh, Navid B., E-mail: navid.saleh@utexas.edu [The University of Texas, Civil, Architectural and Environmental Engineering (United States)

    2014-12-15

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.Graphical Abstract.

  7. Preoperative estimation of the pathological breast tumour size by physical examination, mammography and ultrasound: a prospective study on 105 invasive tumours

    International Nuclear Information System (INIS)

    Bosch, Anne M.; Kessels, Alfons G.H.; Beets, Geerard L.; Rupa, Jan D.; Koster, Dick; Engelshoven, Jos M.A. van; Meyenfeldt, Maarten F. von

    2003-01-01

    Objective: The clinical breast tumour size can be assessed preoperatively by physical examination, mammography and ultrasound. At present it is not clear which modality correlates best with the histological invasive breast tumour size. This prospective study aims to determine the most accurate clinical method (physical examination, mammography or ultrasound) to predict the histological invasive tumour size preoperatively. Methods and patients: Between October 1999 and August 2000, 96 women with 105 invasive malignant breast tumours were included in this study. All patients underwent excision and the tumour size was measured on histology. Tumour size was measured by all three modalities in 73 cases. Results were evaluated by calculating correlation coefficients. The examination modalities presenting the best estimation of the pathological tumour size were used in a stepwise linear regression analysis to construct a formula predicting the pathological tumour size from the result of the various diagnostic modalities. Results: The correlation coefficient between ultrasound and pathological size (r=0.68) was significantly better than the correlations between physical examination and pathological size (r=0.42) and mammographic and pathological size (r=0.44). Physical examination overestimates and ultrasound underestimates breast tumour classification. The most accurate prediction formula was: Pathological tumour size (mm) equals sonographic tumour size (mm)+3 mm. Conclusion: When comparing physical examination, mammography and ultrasound for the prediction of the pathological size of a malignant breast tumour, ultrasound is the best predictor. The ensuing regression formula determines pathological size as tumour size by ultrasound+3 mm. However, with the wide 95% confidence interval of ±11 mm, it remains difficult to predict the exact pathological size for an individual invasive breast tumour. A small deviation in millimetres of the tumour size could lead to a change in

  8. Diagnostic peritoneal lavage: volume of lavage effluent needed for accurate determination of a negative lavage.

    Science.gov (United States)

    Sweeney, J F; Albrink, M H; Bischof, E; McAllister, E W; Rosemurgy, A S

    1994-12-01

    While the ability of diagnostic peritoneal lavage (DPL) to 'rule out' occult intra-abdominal injuries has been well established, the volume of lavage effluent necessary for accurate prediction of a negative lavage has not been determined. To address this, 60 injured adults with blunt (N = 45) or penetrating (N = 15) trauma undergoing DPL were evaluated prospectively through protocol. After infusion of 1l of Ringer's lactate solution, samples of lavage effluent were obtained at 100 cm3, 250 cm3, 500 cm3, and 759 cm3, and when no more effluent could be returned (final sample). DPL was considered negative if final sample RBC count was < or = 100,000/mm3 for blunt injury and < 50,000/mm3 for penetrating injury. The conclusion is that at 100 cm3 of lavage effluent returned, negative results are highly predictive of a negative DPL (98 per cent), though 250 cm3 of lavage effluent is required to predict a negative DPL uniformly (100 per cent).

  9. Factors determining the average body size of geographically separated Arctodiaptomus salinus (Daday, 1885) populations.

    Science.gov (United States)

    Anufriieva, Elena V; Shadrin, Nickolai V

    2014-03-01

    Arctodiaptomus salinus inhabits water bodies across Eurasia and North Africa. Based on our own data and that from the literature, we analyzed the influences of several factors on the intra- and inter-population variability of this species. A strong negative linear correlation between temperature and average body size in the Crimean and African populations was found, in which the parameters might be influenced by salinity. Meanwhile, a significant negative correlation between female body size and the altitude of habitats was found by comparing body size in populations from different regions. Individuals from environments with highly varying abiotic parameters, e.g. temporary reservoirs, had a larger body size than individuals from permanent water bodies. The changes in average body mass in populations were at 11.4 times, whereas, those in individual metabolic activities were at 6.2 times. Moreover, two size groups of A. salinus in the Crimean and the Siberian lakes were observed. The ratio of female length to male length fluctuated between 1.02 and 1.30. The average size of A. salinus in populations and its variations were determined by both genetic and environmental factors. However, the parities of these factors were unequal in either spatial or temporal scales.

  10. A PCR-based protocol to accurately size C9orf72 intermediate-length alleles.

    Science.gov (United States)

    Biasiotto, Giorgio; Archetti, Silvana; Di Lorenzo, Diego; Merola, Francesca; Paiardi, Giulia; Borroni, Barbara; Alberici, Antonella; Padovani, Alessandro; Filosto, Massimiliano; Bonvicini, Cristian; Caimi, Luigi; Zanella, Isabella

    2017-04-01

    Although large expansions of the non-coding GGGGCC repeat in C9orf72 gene are clearly defined as pathogenic for Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), intermediate-length expansions have also been associated with those and other neurodegenerative diseases. Intermediate-length allele sizing is complicated by intrinsic properties of current PCR-based methodologies, in that somatic mosaicism could be suspected. We designed a protocol that allows the exact sizing of intermediate-length alleles, as well as the identification of large expansions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Association studies and legume synteny reveal haplotypes determining seed size in Vigna unguiculata

    Directory of Open Access Journals (Sweden)

    Mitchell R Lucas

    2013-04-01

    Full Text Available Highly specific seed market classes for cowpea and other grain legumes exists because grain is most commonly cooked and consumed whole. Size, shape, color, and texture are critical features of these market classes and breeders target development of cultivars for market acceptance. Resistance to biotic and abiotic stresses that are absent from elite breeding material are often introgressed through crosses to landraces or wild relatives. When crosses are made between parents with different grain quality characteristics, recovery of progeny with acceptable or enhanced grain quality is problematic. Thus genetic markers for grain quality traits can help in pyramiding genes needed for specific market classes. Allelic variation dictating the inheritance of seed size can be tagged and used to assist the selection of large-seeded lines. In this work we applied SNP genotyping and knowledge of legume synteny to characterize regions of the cowpea genome associated with seed size. These marker-trait associations will enable breeders to use marker based selection approaches to increase the frequency of progeny with large seed. For ~800 samples derived from eight bi-parental populations, QTL analysis was used to identify markers linked to ten trait determinants. In addition, the population structure of 171 samples from the USDA core collection was identified and incorporated into a genome-wide association study which supported more than half of the trait-associated regions important in the bi-parental populations. Seven of the total ten QTL were supported based on synteny to seed size associated regions identified in the related legume soybean. In addition to delivering markers linked to major trait determinants in the context of modern breeding, we provide an analysis of the diversity of the USDA core collection of cowpea to identify genepools, migrants, admixture, and duplicates.

  12. Association Studies and Legume Synteny Reveal Haplotypes Determining Seed Size in Vigna unguiculata.

    Science.gov (United States)

    Lucas, Mitchell R; Huynh, Bao-Lam; da Silva Vinholes, Patricia; Cisse, Ndiaga; Drabo, Issa; Ehlers, Jeffrey D; Roberts, Philip A; Close, Timothy J

    2013-01-01

    Highly specific seed market classes for cowpea and other grain legumes exist because grain is most commonly cooked and consumed whole. Size, shape, color, and texture are critical features of these market classes and breeders target development of cultivars for market acceptance. Resistance to biotic and abiotic stresses that are absent from elite breeding material are often introgressed through crosses to landraces or wild relatives. When crosses are made between parents with different grain quality characteristics, recovery of progeny with acceptable or enhanced grain quality is problematic. Thus genetic markers for grain quality traits can help in pyramiding genes needed for specific market classes. Allelic variation dictating the inheritance of seed size can be tagged and used to assist the selection of large seeded lines. In this work we applied 1,536-plex SNP genotyping and knowledge of legume synteny to characterize regions of the cowpea genome associated with seed size. These marker-trait associations will enable breeders to use marker-based selection approaches to increase the frequency of progeny with large seed. For 804 individuals derived from eight bi-parental populations, QTL analysis was used to identify markers linked to 10 trait determinants. In addition, the population structure of 171 samples from the USDA core collection was identified and incorporated into a genome-wide association study which supported more than half of the trait-associated regions important in the bi-parental populations. Seven of the total 10 QTLs were supported based on synteny to seed size associated regions identified in the related legume soybean. In addition to delivering markers linked to major trait determinants in the context of modern breeding, we provide an analysis of the diversity of the USDA core collection of cowpea to identify genepools, migrants, admixture, and duplicates.

  13. The penetration of fibrous media by aerosols as a function of particle size

    Energy Technology Data Exchange (ETDEWEB)

    Dyment, J.

    1963-11-15

    This paper is concerned with the accurate experimental determination of the penetration of fibrous filter media by aerosols as a function of particle size, a topic about which previous papers give partial and conflicting data. in the present work, a heterogeneous sodium chloride aerosol was sampled before and after passing through the glass fiber filter medium by means of an electrostatic precipitator and the samples were examined under the electron microscope; the relation between particle size and penetration was derives at different gas velocities by comparison of the size distribution of the filtered and unfiltered clouds. As an extension of this work, size analyses have been made of plutonium aerosols occurring in glove boxes and enclosures during typical working operations. This information is considered in relation to the penetration of plutonium and other high density aerosol materials through filters. (auth)

  14. Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique)

    International Nuclear Information System (INIS)

    Charalampous, Georgios; Hardalupas, Yannis

    2011-01-01

    The dependence of fluorescent and scattered light intensities from spherical droplets on droplet diameter was evaluated using Mie theory. The emphasis is on the evaluation of droplet sizing, based on the ratio of laser-induced fluorescence and scattered light intensities (LIF/Mie technique). A parametric study is presented, which includes the effects of scattering angle, the real part of the refractive index and the dye concentration in the liquid (determining the imaginary part of the refractive index). The assumption that the fluorescent and scattered light intensities are proportional to the volume and surface area of the droplets for accurate sizing measurements is not generally valid. More accurate sizing measurements can be performed with minimal dye concentration in the liquid and by collecting light at a scattering angle of 60 deg. rather than the commonly used angle of 90 deg. Unfavorable to the sizing accuracy are oscillations of the scattered light intensity with droplet diameter that are profound at the sidescatter direction (90 deg.) and for droplets with refractive indices around 1.4.

  15. Accurate, low-cost 3D-models of gullies

    Science.gov (United States)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  16. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    Science.gov (United States)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  17. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón [Centro de Investigaciones Ópticas (CIOp), (CONICET La Plata-CIC) (Argentina); Schinca, Daniel C.; Scaffardi, Lucía B., E-mail: lucias@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CIOp), (CONICET La Plata-CIC) (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP (Argentina)

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ω{sub P}   and the damping constant γ{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ω{sub p} (0.5%–1.6%) and for γ{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ω{sub p} and γ{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ω{sub p} and γ{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  18. Accurate isotope ratio mass spectrometry. Some problems and possibilities

    International Nuclear Information System (INIS)

    Bievre, P. de

    1978-01-01

    The review includes reference to 190 papers, mainly published during the last 10 years. It covers the following: important factors in accurate isotope ratio measurements (precision and accuracy of isotope ratio measurements -exemplified by determinations of 235 U/ 238 U and of other elements including 239 Pu/ 240 Pu; isotope fractionation -exemplified by curves for Rb, U); applications (atomic weights); the Oklo natural nuclear reactor (discovered by UF 6 mass spectrometry at Pierrelatte); nuclear and other constants; isotope ratio measurements in nuclear geology and isotope cosmology - accurate age determination; isotope ratio measurements on very small samples - archaeometry; isotope dilution; miscellaneous applications; and future prospects. (U.K.)

  19. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for the determination of copepod production

    DEFF Research Database (Denmark)

    Berggren, U.; Hansen, B.; Kiørboe, Thomas

    1988-01-01

    Clearance rates on different sizes of spherically shaped algae were determined in uni-algal experiments for all developmental stages (NII through adult) of the copepodAcartia tonsa, and used to construct food size spectra. Growth and developmental rates were determined at 7 food levels (0 to 1 500...... g C l-1 ofRhodomonas baltica). The lower size limit for particle capture was between 2 and 4 m for all developmental stages. Optimum particle size and upper size limit increased during development from 7 m and 10 to 14 m for NII to NIII to 14 to 70 m and 250 m for adults, respectively. When food...... size spectra were normalized (percent of maximum clearance in a particular stage versus particle diameter/prosome length) they resembled log-normal distributions with near constant width (variance). Optimum, relative particle sizes corresponded to 2 to 5% of prosome length independent of developmental...

  20. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.

    Science.gov (United States)

    Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  1. Sample size for morphological traits of pigeonpea

    Directory of Open Access Journals (Sweden)

    Giovani Facco

    2015-12-01

    Full Text Available The objectives of this study were to determine the sample size (i.e., number of plants required to accurately estimate the average of morphological traits of pigeonpea (Cajanus cajan L. and to check for variability in sample size between evaluation periods and seasons. Two uniformity trials (i.e., experiments without treatment were conducted for two growing seasons. In the first season (2011/2012, the seeds were sown by broadcast seeding, and in the second season (2012/2013, the seeds were sown in rows spaced 0.50 m apart. The ground area in each experiment was 1,848 m2, and 360 plants were marked in the central area, in a 2 m × 2 m grid. Three morphological traits (e.g., number of nodes, plant height and stem diameter were evaluated 13 times during the first season and 22 times in the second season. Measurements for all three morphological traits were normally distributed and confirmed through the Kolmogorov-Smirnov test. Randomness was confirmed using the Run Test, and the descriptive statistics were calculated. For each trait, the sample size (n was calculated for the semiamplitudes of the confidence interval (i.e., estimation error equal to 2, 4, 6, ..., 20% of the estimated mean with a confidence coefficient (1-? of 95%. Subsequently, n was fixed at 360 plants, and the estimation error of the estimated percentage of the average for each trait was calculated. Variability of the sample size for the pigeonpea culture was observed between the morphological traits evaluated, among the evaluation periods and between seasons. Therefore, to assess with an accuracy of 6% of the estimated average, at least 136 plants must be evaluated throughout the pigeonpea crop cycle to determine the sample size for the traits (e.g., number of nodes, plant height and stem diameter in the different evaluation periods and between seasons. 

  2. Size and number of DNA molecules from Chinese hamster ovary cells determined by molecular autoradiography

    International Nuclear Information System (INIS)

    Todd, M.B.

    1980-06-01

    A new method for visualization of separable subunits of DNA is described. Autoradiography of tritium-labeled DNA from one or a few nuclei, lysed with detergent, moderate salt, and proteases, and gently deposited on a filter, allows determination of subunit molecular weight, size distribution, number per nucleus, and organization. The shape of the size distribution of CHO subunit images is similar to that of CHO mitotic chromosomes, and the numbers of subunits per nucleus supports a model of eight subunits per chromosome

  3. Mobility-based correction for accurate determination of binding constants by capillary electrophoresis-frontal analysis.

    Science.gov (United States)

    Qian, Cheng; Kovalchik, Kevin A; MacLennan, Matthew S; Huang, Xiaohua; Chen, David D Y

    2017-06-01

    Capillary electrophoresis frontal analysis (CE-FA) can be used to determine binding affinity of molecular interactions. However, its current data processing method mandate specific requirement on the mobilities of the binding pair in order to obtain accurate binding constants. This work shows that significant errors are resulted when the mobilities of the interacting species do not meet these requirements. Therefore, the applicability of CE-FA in many real word applications becomes questionable. An electrophoretic mobility-based correction method is developed in this work based on the flux of each species. A simulation program and a pair of model compounds are used to verify the new equations and evaluate the effectiveness of this method. Ibuprofen and hydroxypropyl-β-cyclodextrinare used to demonstrate the differences in the obtained binding constant by CE-FA when different calculation methods are used, and the results are compared with those obtained by affinity capillary electrophoresis (ACE). The results suggest that CE-FA, with the mobility-based correction method, can be a generally applicable method for a much wider range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Planimetric volumetry of the prostate: how accurate is it?

    NARCIS (Netherlands)

    Aarnink, R. G.; Giesen, R. J.; de la Rosette, J. J.; Huynen, A. L.; Debruyne, F. M.; Wijkstra, H.

    1995-01-01

    Planimetric volumetry is used in clinical practice when accurate volume determination of the prostate is needed. The prostate volume is determined by discretization of the 3D prostate shape. The are of the prostate is calculated in consecutive ultrasonographic cross-sections. This area is multiplied

  5. The importance of plot size and the number of sampling seasons on capturing macrofungal species richness.

    Science.gov (United States)

    Li, Huili; Ostermann, Anne; Karunarathna, Samantha C; Xu, Jianchu; Hyde, Kevin D; Mortimer, Peter E

    2018-07-01

    The species-area relationship is an important factor in the study of species diversity, conservation biology, and landscape ecology. A deeper understanding of this relationship is necessary, in order to provide recommendations on how to improve the quality of data collection on macrofungal diversity in different land use systems in future studies, a systematic assessment of methodological parameters, in particular optimal plot sizes. The species-area relationship of macrofungi in tropical and temperate climatic zones and four different land use systems were investigated by determining the macrofungal species richness in plot sizes ranging from 100 m 2 to 10 000 m 2 over two sampling seasons. We found that the effect of plot size on recorded species richness significantly differed between land use systems with the exception of monoculture systems. For both climate zones, land use system needs to be considered when determining optimal plot size. Using an optimal plot size was more important than temporal replication (over two sampling seasons) in accurately recording species richness. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Improving accuracy of portion-size estimations through a stimulus equivalence paradigm.

    Science.gov (United States)

    Hausman, Nicole L; Borrero, John C; Fisher, Alyssa; Kahng, SungWoo

    2014-01-01

    The prevalence of obesity continues to increase in the United States (Gordon-Larsen, The, & Adair, 2010). Obesity can be attributed, in part, to overconsumption of energy-dense foods. Given that overeating plays a role in the development of obesity, interventions that teach individuals to identify and consume appropriate portion sizes are warranted. Specifically, interventions that teach individuals to estimate portion sizes correctly without the use of aids may be critical to the success of nutrition education programs. The current study evaluated the use of a stimulus equivalence paradigm to teach 9 undergraduate students to estimate portion size accurately. Results suggested that the stimulus equivalence paradigm was effective in teaching participants to make accurate portion size estimations without aids, and improved accuracy was observed in maintenance sessions that were conducted 1 week after training. Furthermore, 5 of 7 participants estimated the target portion size of novel foods during extension sessions. These data extend existing research on teaching accurate portion-size estimations and may be applicable to populations who seek treatment (e.g., overweight or obese children and adults) to teach healthier eating habits. © Society for the Experimental Analysis of Behavior.

  7. Accuracy of templating the acetabular cup size in Total Hip Replacement using conventional acetate templates on digital radiographs.

    Science.gov (United States)

    Krishnamoorthy, Vignesh P; Perumal, Rajamani; Daniel, Alfred J; Poonnoose, Pradeep M

    2015-12-01

    Templating of the acetabular cup size in Total Hip Replacement (THR) is normally done using conventional radiographs. As these are being replaced by digital radiographs, it has become essential to create a technique of templating using digital films. We describe a technique that involves templating the digital films using the universally available acetate templates for THR without the use of special software. Preoperative digital radiographs of the pelvis were taken with a 30 mm diameter spherical metal ball strapped over the greater trochanter. Using standard acetate templates provided by the implant company on magnified digital radiographs, the size of the metal ball (X mm) and acetabular cup (Y mm) were determined. The size of the acetabular cup to be implanted was estimated using the formula 30*Y/X. The estimated size was compared with the actual size of the cup used at surgery. Using this technique, it was possible to accurately predict the acetabular cup size in 28/40 (70%) of the hips. When the accuracy to within one size was considered, templating was correct in 90% (36/40). When assessed by two independent observers, there was good intra-observer and inter-observer reliability with intra-class correlation coefficient values greater than 0.8. It was possible to accurately and reliably predict the size of the acetabular cup, using acetate templates on digital films, without any digital templates.

  8. Preliminary Estimation of Local Bypass Flow Gap Sizes for a Prismatic VHTR Core

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Jo, Chang Keun; Lee, Won Jae

    2009-01-01

    The Very High Temperature Reactor (VHTR) has been selected for the Nuclear Hydrogen Development and Demonstration (NHDD) project. In the VHTR design, core bypass flow has been one of key issues for core thermal margins and target temperature of the core outlet. The core bypass flow in the prismatic VHTR varies with the core life due to the irradiation shrinkage/ swelling and thermal expansion of the graphite blocks, which could be a significant proportion of the total core flow. Thus, accurate prediction of the bypass flow is of major importance in assuring the core thermal margin. To predict the bypass flow, first of all, local gap sizes between graphite blocks in the core should be determined. The objectives of this work are to develop a methodology for determining the gap sizes and to perform a preliminary evaluation for a reference reactor

  9. Determining the effect of grain size and maximum induction upon coercive field of electrical steels

    Science.gov (United States)

    Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel

    2011-10-01

    Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.

  10. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    OpenAIRE

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abu...

  11. Grain size determination in zirconium alloys. Final report of a co-ordinated research programme, 1989-1992

    International Nuclear Information System (INIS)

    1995-04-01

    A research programme was planned as an exercise to establish procedures and evaluate the success of technology transfer. The first programme under this scheme was proposed by the IAEA on the research topic: grain size determination in zirconium alloys. The host laboratory was Siemens AG Erlangen, in Germany. The programme was supervised by experts selected from participating countries. This report contains the results of the work carried out under this programme. The grain size of Zircaloy, the measurement methods, distribution of grain size in the matrix and dependence of grain size on temperature time of annealing are discussed in this report. The report also includes some information on the organizational arrangements and discusses possibilities for future collaboration. 38 figs, 11 tabs

  12. Determining Sample Size with a Given Range of Mean Effects in One-Way Heteroscedastic Analysis of Variance

    Science.gov (United States)

    Shieh, Gwowen; Jan, Show-Li

    2013-01-01

    The authors examined 2 approaches for determining the required sample size of Welch's test for detecting equality of means when the greatest difference between any 2 group means is given. It is shown that the actual power obtained with the sample size of the suggested approach is consistently at least as great as the nominal power. However, the…

  13. Highly accurate determination of relative gamma-ray detection efficiency for Ge detector and its application

    International Nuclear Information System (INIS)

    Miyahara, H.; Mori, C.; Fleming, R.F.; Dewaraja, Y.K.

    1997-01-01

    When quantitative measurements of γ-rays using High-Purity Ge (HPGe) detectors are made for a variety of applications, accurate knowledge of oy-ray detection efficiency is required. The emission rates of γ-rays from sources can be determined quickly in the case that the absolute peak efficiency is calibrated. On the other hand, the relative peak efficiencies can be used for determination of intensity ratios for plural samples and for comparison to the standard source. Thus, both absolute and relative detection efficiencies are important in use of γ-ray detector. The objective of this work is to determine the relative gamma-ray peak detection efficiency for an HPGe detector with the uncertainty approaching 0.1% . We used some nuclides which emit at least two gamma-rays with energies from 700 to 2400 keV for which the relative emission probabilities are known with uncertainties much smaller than 0.1%. The relative peak detection efficiencies were calculated from the measurements of the nuclides, 46 Sc, 48 Sc, 60 Co and 94 Nb, emitting two γ- rays with the emission probabilities of almost unity. It is important that various corrections for the emission probabilities, the cascade summing effect, and the self-absorption are small. A third order polynomial function on both logarithmic scales of energy and efficiency was fitted to the data, and the peak efficiency predicted at certain energy from covariance matrix showed the uncertainty less than 0.5% except for near 700 keV. As an application, the emission probabilities of the 1037.5 and 1212.9 keV γ-rays for 48 Sc were determined using the function of the highly precise relative peak efficiency. Those were 0.9777+0,.00079 and 0.02345+0.00017 for the 1037.5 and 1212.9 keV γ-rays, respectively. The sum of these probabilities is close to unity within the uncertainty which means that the certainties of the results are high and the accuracy has been improved considerably

  14. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    Science.gov (United States)

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.

  15. Determinants of capital structure in small and medium sized enterprises in Malaysia

    OpenAIRE

    Mat Nawi, Hafizah

    2015-01-01

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London This study aims to investigate the determinants of capital structure in small and medium-sized enterprises (SMEs) in Malaysia and their effect on firms’ performance. The study addresses the following primary question: What are the factors that influence the capital structure of SMEs in Malaysia? The sample of this research is SMEs in the east coast region of Malaysia. Adopting a posi...

  16. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  17. TESTING THE GRAIN-SIZE DISTRIBUTION DETERMINED BY LASER DIFFRACTOMETRY FOR SICILIAN SOILS

    Directory of Open Access Journals (Sweden)

    Costanza Di Stefano

    2012-06-01

    Full Text Available In this paper the soil grain-size distribution determined by Laser Diffraction method (LDM is tested using the Sieve-Hydrometer method (SHM applied for 747 soil samples representing a different texture classification, sampled in Sicily. 005_Di_Stefano(599_39 28-12-2011 15:01 Pagina 45 The analysis showed that the sand content measured by SHM can be assumed equal to the one determined by LDM. An underestimation of the clay fraction measured by LDM was obtained with respect to the SHM and a set of equations useful to refer laser diffraction measurements to SHM was calibrated using the measurements carried out for 635 soil samples. Finally, the proposed equations were tested using independent measurements carried out by LDM and SHM for 112 soil samples with a different texture classification.

  18. Prediction of Accurate Mixed Mode Fatigue Crack Growth Curves using the Paris' Law

    Science.gov (United States)

    Sajith, S.; Krishna Murthy, K. S. R.; Robi, P. S.

    2017-12-01

    Accurate information regarding crack growth times and structural strength as a function of the crack size is mandatory in damage tolerance analysis. Various equivalent stress intensity factor (SIF) models are available for prediction of mixed mode fatigue life using the Paris' law. In the present investigation these models have been compared to assess their efficacy in prediction of the life close to the experimental findings as there are no guidelines/suggestions available on selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempts to outline models that would provide accurate and conservative life predictions.

  19. Are the determinants of markup size industry-specific? The case of Slovenian manufacturing firms

    Directory of Open Access Journals (Sweden)

    Ponikvar Nina

    2011-01-01

    Full Text Available The aim of this paper is to identify factors that affect the pricing policy in Slovenian manufacturing firms in terms of the markup size and, most of all, to explicitly account for the possibility of differences in pricing procedures among manufacturing industries. Accordingly, the analysis of the dynamic panel is carried out on an industry-by-industry basis, allowing the coefficients on the markup determinants to vary across industries. We find that the oligopoly theory of markup determination for the most part holds for the manufacturing sector as a whole, although large variability in markup determinants exists across industries within the Slovenian manufacturing. Our main conclusion is that each industry should be investigated separately in detail in order to assess the precise role of markup factors in the markup-determination process.

  20. Sample size methodology

    CERN Document Server

    Desu, M M

    2012-01-01

    One of the most important problems in designing an experiment or a survey is sample size determination and this book presents the currently available methodology. It includes both random sampling from standard probability distributions and from finite populations. Also discussed is sample size determination for estimating parameters in a Bayesian setting by considering the posterior distribution of the parameter and specifying the necessary requirements. The determination of the sample size is considered for ranking and selection problems as well as for the design of clinical trials. Appropria

  1. Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination

    Science.gov (United States)

    Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael

    2014-05-01

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of

  2. Simultaneous measurement of monocomponent droplet temperature/refractive index, size and evaporation rate with phase rainbow refractometry

    Science.gov (United States)

    Wu, Yingchun; Crua, Cyril; Li, Haipeng; Saengkaew, Sawitree; Mädler, Lutz; Wu, Xuecheng; Gréhan, Gérard

    2018-07-01

    The accurate measurements of droplet temperature, size and evaporation rate are of great importance to characterize the heat and mass transfer during evaporation/condensation processes. The nanoscale size change of a micron-sized droplet exactly describes its transient mass transfer, but is difficult to measure because it is smaller than the resolutions of current size measurement techniques. The Phase Rainbow Refractometry (PRR) technique is developed and applied to measure droplet temperature, size and transient size changes and thereafter evaporation rate simultaneously. The measurement principle of PRR is theoretically derived, and it reveals that the phase shift of the time-resolved ripple structures linearly depends on, and can directly yield, nano-scale size changes of droplets. The PRR technique is first verified through the simulation of rainbows of droplets with changing size, and results show that PRR can precisely measure droplet refractive index, absolute size, as well as size change with absolute and relative errors within several nanometers and 0.6%, respectively, and thus PRR permits accurate measurements of transient droplet evaporation rates. The evaporations of flowing single n-nonane droplet and mono-dispersed n-heptane droplet stream are investigated by two PRR systems with a high speed linear CCD and a low speed array CCD, respectively. Their transient evaporation rates are experimentally determined and quantitatively agree well with the theoretical values predicted by classical Maxwell and Stefan-Fuchs models. With the demonstration of evaporation rate measurement of monocomponent droplet in this work, PRR is an ideal tool for measurements of transient droplet evaporation/condensation processes, and can be extended to multicomponent droplets in a wide range of industrially-relevant applications.

  3. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    Science.gov (United States)

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  4. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    Directory of Open Access Journals (Sweden)

    Marlies Verschuuren

    Full Text Available A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND, which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  5. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    International Nuclear Information System (INIS)

    Jones, A. Kyle; Ensor, Joe E.; Pasciak, Alexander S.

    2014-01-01

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone

  6. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, G; Cibik, L; Mueller, P; Krumrey, M [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin (Germany); Haas, S; Hoell, A, E-mail: gudrun.gleber@ptb.d [Helmholtz-Zentrum-Berlin fuer Materialien und Energie (HZB), Albert-Einstein-Strasse 15, 12489 Berlin (Germany)

    2010-10-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below {+-} 0.3 %. The determined number-weighted mean diameters of (109.0 {+-} 0.7) nm and (188.0 {+-} 1.3) nm, respectively, are close to the nominal values.

  7. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    Science.gov (United States)

    Gleber, G.; Cibik, L.; Haas, S.; Hoell, A.; Müller, P.; Krumrey, M.

    2010-10-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below ± 0.3 %. The determined number-weighted mean diameters of (109.0 ± 0.7) nm and (188.0 ± 1.3) nm, respectively, are close to the nominal values.

  8. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    International Nuclear Information System (INIS)

    Gleber, G; Cibik, L; Mueller, P; Krumrey, M; Haas, S; Hoell, A

    2010-01-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below ± 0.3 %. The determined number-weighted mean diameters of (109.0 ± 0.7) nm and (188.0 ± 1.3) nm, respectively, are close to the nominal values.

  9. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE MRI.

    Directory of Open Access Journals (Sweden)

    Noam Shemesh

    Full Text Available Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE, can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.

  10. CLSM as quantitative method to determine the size of drug crystals in a solid dispersion

    NARCIS (Netherlands)

    de Waard, Hans; Hessels, Martin J T; Boon, Maarten; Sjollema, Klaas A; Hinrichs, Wouter L J; Eissens, Anko C; Frijlink, Henderik W

    2011-01-01

    PURPOSE: To test whether confocal laser scanning microscopy (CLSM) can be used as an analytical tool to determine the drug crystal size in a powder mixture or a crystalline solid dispersion. METHODS: Crystals of the autofluorescent drug dipyridamole were incorporated in a matrix of crystalline

  11. Generalized procedures for determining inspection sample sizes (related to quantitative measurements). Vol. 1: Detailed explanations

    International Nuclear Information System (INIS)

    Jaech, J.L.; Lemaire, R.J.

    1986-11-01

    Generalized procedures have been developed to determine sample sizes in connection with the planning of inspection activities. These procedures are based on different measurement methods. They are applied mainly to Bulk Handling Facilities and Physical Inventory Verifications. The present report attempts (i) to assign to appropriate statistical testers (viz. testers for gross, partial and small defects) the measurement methods to be used, and (ii) to associate the measurement uncertainties with the sample sizes required for verification. Working papers are also provided to assist in the application of the procedures. This volume contains the detailed explanations concerning the above mentioned procedures

  12. Phase size distribution in WC/Co hardmetal

    International Nuclear Information System (INIS)

    Roebuck, B.; Bennett, E.G.

    1986-01-01

    A high-resolution field emission scanning electron microscope was used to perform accurate quantitative metallography on a variety of WC/Co hardmetals. Particular attention was paid to obtaining the mean size and size distribution of the cobalt phase by linear analysis. Cobalt regions are frequently submicron and difficult to resolve adequately by conventional methods. The WC linear intercept distributions, and contiguity were also measured at the same time. The results were used to examine the validity of theoretic derivations of cobalt intercept size

  13. Final report on: Grain size determination in zirconium alloys (IAEA Research Contract No. 6025/Rb.)

    International Nuclear Information System (INIS)

    Martinez M, E.

    1991-12-01

    In spite of the amount of research developed the knowledge still is far from complete and in this basis the International Atomic Energy Agency, (IAEA), by means of the Working Group on Water Reactor Fuel Performance and Technology, initiated, in 1990 the Coordinated Research Programme named Grain Size Determination In Zirconium Alloys. Several countries were invited to participate and to contribute to the main objective of the programme, which can be state as: To develop a unified metallographic technique capable to show the microstructure of zircaloy in a reproducible and uniform manner. To fulfill the objective the following goals were established: A. To measure the grain size and perform an statistical treatment, in samples prepared specifically to show different amounts of cold work, recrystallization and grain growth. B. To compare the results obtained by the different laboratories involved in the programme. C. Finally, after the Ugine meeting, also the determination of the recrystallization and grain growth kinetics. (Author)

  14. Age versus size determination of radial variation in wood specific gravity : lessons from eccentrics

    Science.gov (United States)

    G. Bruce Williamson; Michael C. Wiemann

    2011-01-01

    Radial increases in wood specific gravity have been shown to characterize early successional trees from tropical forests. Here, we develop and apply a novel method to test whether radial increases are determined by tree age or tree size. The method compares the slopes of specific gravity changes across a short radius and a long radius of trees with eccentric trunks. If...

  15. Determination of the quality index (Q) for photon beams at arbitrary field sizes.

    Science.gov (United States)

    Sauer, Otto A

    2009-09-01

    A commonly used beam quality index (Q) for high-energy photon beams is the tissue phantom ratio (TPR20,10) for a square field of 10 x 10 cm2 and SDD of 100 cm. On some specialized radiotherapy treatment equipment such a reference collimator setting is not achievable. Likewise a flat beam profile, not explicitly required in dosimetry protocols, but certainly influences the measurement of Q, is not always produced. In this work, a method was developed in order to determine Q at any field size, especially for small and nonflattened beams. An analytical relationship was derived between TPR20,10 for arbitrary field sizes and Q [the TPR20,10 (10 x 10 cm2)] as quality index. The proposed model equation was fitted to the measured and published data in order to achieve three general fit parameters. The procedure was then tested with published data from TomoTherapy and CyperKnife treatment devices. For standard flattened photon fields, the uncertainty in Q measured at any field size using the parameters derived from this study is better than 1%. In flattening-filter free beams, the proposed procedure results in a reliable Q for any field size setting. A method is introduced and successfully tested in order to measure the beam quality under nonstandard conditions. It can be used, e.g., to get energy dependent correction factors as tabulated in dosimetry codes of practice even if standard conditions are not adjustable.

  16. Accurate shear measurement with faint sources

    International Nuclear Information System (INIS)

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys

  17. FIRST VLTI-MIDI DIRECT DETERMINATIONS OF ASTEROID SIZES

    International Nuclear Information System (INIS)

    Delbo, M.; Ligori, S.; Cellino, A.; Matter, A.; Berthier, J.

    2009-01-01

    We have obtained the first successful interferometric measurements of asteroid sizes and shapes by means of the Very Large Telescope Interferometer-Mid-Infrared Interferometric Instrument (VLTI-MIDI). The VLTI can spatially resolve asteroids in a range of sizes and heliocentric distances that are not accessible to other techniques such as adaptive optics and radar. We have observed, as a typical bench mark, the asteroid (951) Gaspra, visited in the past by the Galileo space probe, and we derive a size in good agreement with the ground truth coming from the in situ measurements by the Galileo mission. Moreover, we have also observed the asteroid (234) Barbara, known to exhibit unusual polarimetric properties, and we found evidence of a potential binary nature. In particular, our data are best fit by a system of two bodies of 37 and 21 km in diameter, separated by a center-to-center distance of ∼24 km (projected along the direction of the baseline at the epoch of our observations).

  18. Control valve sizing and specification: The first step

    International Nuclear Information System (INIS)

    Harkins, J.F.; Hoyle, E.D.

    1991-01-01

    Today's modern control valve can satisfy almost any application. Special trim, materials, operators, and body configurations have been developed to meet the most severe operating conditions. The missing link in the chain connecting design to application is often the interpretation and communication of the requirements for determining the proper valve for each application. This paper addresses an important but often neglected requirement for proper selection and sizing of control valves: the determination of correct input data. It presents criteria necessary to ensure that the data given the manufacturer accurately reflects the conditions under which the control valve will operate. It highlights the importance of communication between the system design engineer, the valve specifying engineer, and the control valve supplier, to ensure that the final system design meets the true requirements of the application. An example is provided of a simple liquid-handling system, for which line losses and variations in flow and equipment capacities are tabulated and requirements shown graphically on typical control valve characteristic curves. The effects of seemingly harmless, conservative assumptions regarding line losses, equipment capacities and selection, sizing practices, and the selection of various flow data can have on the final valve selection are illustrated. Also discussed is the proper selection of equipment and input data, based on the example

  19. Sample-size effects in fast-neutron gamma-ray production measurements: solid-cylinder samples

    International Nuclear Information System (INIS)

    Smith, D.L.

    1975-09-01

    The effects of geometry, absorption and multiple scattering in (n,Xγ) reaction measurements with solid-cylinder samples are investigated. Both analytical and Monte-Carlo methods are employed in the analysis. Geometric effects are shown to be relatively insignificant except in definition of the scattering angles. However, absorption and multiple-scattering effects are quite important; accurate microscopic differential cross sections can be extracted from experimental data only after a careful determination of corrections for these processes. The results of measurements performed using several natural iron samples (covering a wide range of sizes) confirm validity of the correction procedures described herein. It is concluded that these procedures are reliable whenever sufficiently accurate neutron and photon cross section and angular distribution information is available for the analysis. (13 figures, 5 tables) (auth)

  20. Relationship between the pitch of modulation collimators and the determination accuracy of source positions

    International Nuclear Information System (INIS)

    Fujii, Masami; Nishimura, Jun

    1989-01-01

    The celestial positions of X-ray bursters and gamma-ray burst sources can be accurately determined with rotating modulation collimators which possess wide fields of view and also high angular resolutions. Since the determination accuracy is dependent on the signal to noise ratio of incident photons, the distribution of signal power is analysed and the optimum pitch of the modulation collimator for a burst of a given size is discussed. (author)

  1. Statistical methods for accurately determining criticality code bias

    International Nuclear Information System (INIS)

    Trumble, E.F.; Kimball, K.D.

    1997-01-01

    A system of statistically treating validation calculations for the purpose of determining computer code bias is provided in this paper. The following statistical treatments are described: weighted regression analysis, lower tolerance limit, lower tolerance band, and lower confidence band. These methods meet the criticality code validation requirements of ANS 8.1. 8 refs., 5 figs., 4 tabs

  2. Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function

    International Nuclear Information System (INIS)

    Fdida, Nicolas; Blaisot, Jean-Bernard

    2010-01-01

    Measurement of drop size distributions in a spray depends on the definition of the control volume for drop counting. For image-based techniques, this implies the definition of a depth-of-field (DOF) criterion. A sizing procedure based on an imaging model and associated with a calibration procedure is presented. Relations between image parameters and object properties are used to provide a measure of the size of the droplets, whatever the distance from the in-focus plane. A DOF criterion independent of the size of the drops and based on the determination of the width of the point spread function (PSF) is proposed. It allows to extend the measurement volume to defocused droplets and, due to the calibration of the PSF, to clearly define the depth of the measurement volume. Calibrated opaque discs, calibrated pinholes and an optical edge are used for this calibration. A comparison of the technique with a phase Doppler particle analyser and a laser diffraction granulometer is performed on an application to an industrial spray. Good agreement is found between the techniques when particular care is given to the sampling of droplets. The determination of the measurement volume is used to determine the drop concentration in the spray and the maximum drop concentration that imaging can support

  3. Simultaneous determination of the styrene unit content and assessment of molecular weight of triblock copolymers in adhesives by a size exclusion chromatography method.

    Science.gov (United States)

    Wang, Mingfang; Wang, Yuerong; Luo, Pei; Zhang, Hongyang; Zhang, Min; Hu, Ping

    2017-10-01

    The content of styrene units in nonhydrogenated and hydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers (r = 0.974 for styrene contents of 19.3-46.3% for nonhydrogenated ones and r = 0.970 for the styrene contents of 23-58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene-isoprene-styrene or hydrogenated styrene-butadiene-styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene-butadiene-styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene-containing polymers in blends such as poly(acrylonitrile-butadiene styrene). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Association between placentome size, measured using transrectal ultrasonography, and gestational age in cattle.

    Science.gov (United States)

    Adeyinka, F D; Laven, R A; Lawrence, K E; van Den Bosch, M; Blankenvoorde, G; Parkinson, T J

    2014-03-01

    The aim of this study was to estimate whether fetal age could be accurately estimated using placentome size. Fifty-eight cows with confirmed conception dates in two herds were used for the study. The length of the long axis and cross-sectional area of placentomes close to the cervix were measured once every 10 days between approximately 60-130 days of gestation and once every 15 days between 130-160 days of gestation. Four to six placentomes were measured using transrectal ultrasonography in each uterine horn. A linear mixed model was used to establish the factors that were significantly associated with log mean placentome length and to create an equation to predict gestational age from mean placentome length. Limits of agreement analysis was then used to evaluate whether the predictions were sufficiently accurate for mean placentome length to be used, in practice, as a method of determining gestational age. Only age of gestation (puterine horn (p=0.048) were found to have a significant effect on log mean placentome length. From the three models used to predict gestational age the one that used log mean placentome length of all placentomes, adjusting for the effect of horn, had the smallest 95% limits of agreement; ±33 days. That is, predicted gestational age had a 95% chance of being between 33 days greater and 33.7 days less than actual age. This is approximately twice that reported in studies using measurement of fetal size. Measurement of placentomes near to the cervix using transrectal ultrasonography was easily achieved. There was a significant association between placentome size and gestational age, but between-cow variation in placentome size and growth resulted in poor agreement between placentome size and gestational age. Although placentomes can be easily visualised during diagnosis of pregnancy using transrectal ultrasonography, mean placentome size should not be used to estimate gestational age.

  5. Limitation of secondary electron multiplier non-linearity on accurate U-Th isotopic determination by MC-ICP-MS

    Science.gov (United States)

    Shen, C.; Wu, C.; Gallet, S.; Cheng, H.; Edwards, R.; Hsieh, Y.; Lin, K.

    2008-12-01

    Contemporary multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) with discrete dynode secondary electron multipliers (SEMs) can offer U-Th isotopic determinations with subpermil-permil- level precision in femtogram quantities. However, accurate isotopic measurement requires fully understanding SEM mass and intensity biases. In additional to dead-time effect, Richter et al (2001, Int. J. Mass Spectrom., 206, 105-127) reported a nonlinearity on SEMs produced by ETP and MasCom for count rates > 20 thousand counts per second (cps). We evaluated the possible biases for ion beams of 500- 1,600,000 cps on a latest MasCom SEM, SEV TE-Z/17, with more effective ion optical acceptance area (>50%) and better peak shape than previous models, used in a MC-ICP-MS, Thermo Fisher NEPTUNE. With the retarding potential quadruple lens (RPQ) turned off, ion beam intensity can be biased by only dead- time effect, which can be precisely corrected online or offline. With the RPQ on, two additional biases, an exponential-like increase of ion beam intensity from 100-100,000 s cps and an apparent dead-time effect (-2 to 2 ns) at high count rates, are observed. They are likely caused by the slightly defocused ions with a wide kinetic energy spread of ~5 eV, 10 times worse than that with thermal source, passing through the RPQ lens to the SEM, which is installed behind the focal plane. Fortunately, the two biases, which are stable during the daily measurements with the same settings of inlet system, source lenses, zoom optics, and RPQ, can be corrected effectively offline to earn accurate U-Th isotopic measurement.

  6. Accurate potentiometric determination of lipid membrane-water partition coefficients and apparent dissociation constants of ionizable drugs: electrostatic corrections.

    Science.gov (United States)

    Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor

    2009-06-01

    Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.

  7. Determinants of family size in a Gulf Arab state: a comparison between two areas.

    Science.gov (United States)

    Hamadeh, Randah R; Al-Roomi, Khaldoon; Masuadi, Emad

    2008-09-01

    The rapid economic transition in the Gulf Arab countries has resulted in marked changes in fertility and marriage patterns and a decrease in the number of children per family. Yet little is known about the determinants of family size in urban and less urban areas. A cross-sectional study was carried out on 450 Kuwaiti women aged 20-60 years who attended health care centres in Al Asima and Al Jahra governorates. A semi-structured questionnaire was administered through face-to-face interview which included variables on socio-demographic characteristics, family size, actual and ideal spacing, marriage related variables, health conditions and utilization of health services. Both univariate and multivariate analyses were performed to identify the factors that affect family size. The socio-economic indicators were significantly better in Al Asima, the capital, than in Al Jahra, a less urbanized area. On average, family size for the total sample was 5.97 +/- 0.114 with a larger size (6.27 +/- 0.242) in Al Jahra than in Al Asima (5.80 +/- 0.118) but without a significant difference. Al Jahra women reported a larger number of deliveries and past pregnancies but a lower usage of contraceptive measures. The total fertility rate was 3.65 in Al Asima, 3.84 in Al Jahra and 3.71 births per woman in the total population. Family size was inversely related to the educational level of women and their husbands. Currently employed women had a smaller family size (5.22 +/- 0.119) than the unemployed (6.81 +/- 0.187); p Families where the husband was the decision-maker on the number of children had a significantly larger family size (6.91 +/- 0.451) than families where the couple both participated in the decision (5.83 +/- 0.129; p = 0.032). The duration of marriage, ideal number of children, age of women at last delivery, number of rooms and the crowding index had significant positive effects on family size, whereas age at first delivery, duration between two consecutive pregnancies and

  8. Size and molecular weight determination of polysaccharides by means of nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA).

    Science.gov (United States)

    Weiss, Victor U; Golesne, Monika; Friedbacher, Gernot; Alban, Susanne; Szymanski, Wladyslaw W; Marchetti-Deschmann, Martina; Allmaier, Günter

    2018-02-21

    Size, size distribution and molecular weight (MW) determination of nanoparticles and that are for example large polymers, are of great interest and pose an analytical challenge. In this context, nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) is a valuable tool with growing impact. Separation of single-charged analytes according to their electrophoretic mobility diameter (EMD) starting from single-digit EMDs up to several hundred nm diameters is possible. In case of spherical analytes, the EMD corresponds to the dry nanoparticle size. Additionally, the instrument is capable of number-based, single-particle detection following the recommendation of the European Commission for nanoparticle characterization (2011/696/EU). In case an EMD/MW correlation for a particular compound class (based on availability of well-defined standards) exists, a nanoparticle's MW can be determined from its EMD. In the present study, we focused on nES GEMMA of linear and branched, water-soluble polysaccharides forming nanoparticles and were able to obtain spectra for both analyte classes regarding single-charged species. Based on EMDs for corresponding analytes, an excellent EMD/MW correlation could be obtained in case of the branched natural polymer (dextran). This enables the determination of dextran MWs from nES GEMMA spectra despite high analyte polydispersity and in a size/MW range, where classical mass spectrometry is limited. EMD/MW correlations based on linear (pullulans, oat-ß-glucans) polymers were significantly different, possibly indicating challenges in the exact MW determination of these compounds by, for example, chromatographic and light scattering means. Despite these observations, nES GEMMA of linear, monosaccharide-based polymers enabled the determination of size and size-distribution of such dry bionanoparticles. © 2018 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Fast, Accurate Memory Architecture Simulation Technique Using Memory Access Characteristics

    OpenAIRE

    小野, 貴継; 井上, 弘士; 村上, 和彰

    2007-01-01

    This paper proposes a fast and accurate memory architecture simulation technique. To design memory architecture, the first steps commonly involve using trace-driven simulation. However, expanding the design space makes the evaluation time increase. A fast simulation is achieved by a trace size reduction, but it reduces the simulation accuracy. Our approach can reduce the simulation time while maintaining the accuracy of the simulation results. In order to evaluate validity of proposed techniq...

  10. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Science.gov (United States)

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  11. Analysis of normalized-characteristic curves and determination of the granulometric state of dissolved uranium dioxides

    International Nuclear Information System (INIS)

    Melichar, F.; Neumann, L.

    1977-01-01

    Methods are presented for the analysis of normalized-characteristic curves, which make it possible to determine the granulometric composition of a dissolved polydispersion - the cumulative mass distribution of particles - as a function of the relative particle size. If the size of the largest particle in the dissolved polydispersion is known, these methods allow the determination of the dependence of cumulative mass ratios of particles on their absolute sizes. In the inverse method of the geometrical model for determining the granulometric composition of a dissolved polydispersion, the polydispersion is represented by a finite number of monodispersions. An accurate analysis of normalized-characteristic equations leads to the Akselrud dissolution model. As against the other two methods, the latter allows the determination of the granulometric composition for an arbitrary number of particle sizes. The method of the granulometric atlas is a method for estimating the granulometric composition of a dissolved polydispersion and is based on comparison of a normalized-characteristic curve for an unknown granulometric composition with an atlas of normalized-characteristic curves for selected granulometric spectra of polydispersions. (author)

  12. How Accurately can we Calculate Thermal Systems?

    International Nuclear Information System (INIS)

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-01-01

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K eff , for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors

  13. Genome size variation in the pine fusiform rust pathogen Cronartium quercuum f.sp. fusiforme as determined by flow cytometry

    Science.gov (United States)

    Claire L Anderson; Thomas L Kubisiak; C Dana Nelson; Jason A Smith; John M Davis

    2010-01-01

    The genome size of the pine fusiform rust pathogen Cronartium quercuum f.sp. fusiforme (Cqf) was determined by flow cytometric analysis of propidium iodide-stained, intact haploid pycniospores with haploid spores of two genetically well characterized fungal species, Sclerotinia sclerotiorum and Puccinia graminis f.sp. tritici, as size standards. The Cqf haploid genome...

  14. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    Science.gov (United States)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  15. Determination of size distribution using neural networks

    NARCIS (Netherlands)

    Stevens, JH; Nijhuis, JAG; Spaanenburg, L; Mohammadian, M

    1999-01-01

    In this paper we present a novel approach to the estimation of size distributions of grains in water from images. External conditions such as the concentrations of grains in water cannot be controlled. This poses problems for local image analysis which tries to identify and measure single grains.

  16. Utility of ck metrics in predicting size of board-based software games

    International Nuclear Information System (INIS)

    Sabhat, N.; Azam, F.; Malik, A.A.

    2017-01-01

    Software size is one of the most important inputs of many software cost and effort estimation models. Early estimation of software plays an important role at the time of project inception. An accurate estimate of software size is, therefore, crucial for planning, managing, and controlling software development projects dealing with the development of software games. However, software size is unavailable during early phase of software development. This research determines the utility of CK (Chidamber and Kemerer) metrics, a well-known suite of object-oriented metrics, in estimating the size of software applications using the information from its UML (Unified Modeling Language) class diagram. This work focuses on a small subset dealing with board-based software games. Almost sixty games written using an object-oriented programming language are downloaded from open source repositories, analyzed and used to calibrate a regression-based size estimation model. Forward stepwise MLR (Multiple Linear Regression) is used for model fitting. The model thus obtained is assessed using a variety of accuracy measures such as MMRE (Mean Magnitude of Relative Error), Prediction of x(PRED(x)), MdMRE (Median of Relative Error) and validated using K-fold cross validation. The accuracy of this model is also compared with an existing model tailored for size estimation of board games. Based on a small subset of desktop games developed in various object-oriented languages, we obtained a model using CK metrics and forward stepwise multiple linear regression with reasonable estimation accuracy as indicated by the value of the coefficient of determination (R2 = 0.756).Comparison results indicate that the existing size estimation model outperforms the model derived using CK metrics in terms of accuracy of prediction. (author)

  17. Being Barbie: The Size of One’s Own Body Determines the Perceived Size of the World

    Science.gov (United States)

    van der Hoort, Björn; Guterstam, Arvid; Ehrsson, H. Henrik

    2011-01-01

    A classical question in philosophy and psychology is if the sense of one's body influences how one visually perceives the world. Several theoreticians have suggested that our own body serves as a fundamental reference in visual perception of sizes and distances, although compelling experimental evidence for this hypothesis is lacking. In contrast, modern textbooks typically explain the perception of object size and distance by the combination of information from different visual cues. Here, we describe full body illusions in which subjects experience the ownership of a doll's body (80 cm or 30 cm) and a giant's body (400 cm) and use these as tools to demonstrate that the size of one's sensed own body directly influences the perception of object size and distance. These effects were quantified in ten separate experiments with complementary verbal, questionnaire, manual, walking, and physiological measures. When participants experienced the tiny body as their own, they perceived objects to be larger and farther away, and when they experienced the large-body illusion, they perceived objects to be smaller and nearer. Importantly, despite identical retinal input, this “body size effect” was greater when the participants experienced a sense of ownership of the artificial bodies compared to a control condition in which ownership was disrupted. These findings are fundamentally important as they suggest a causal relationship between the representations of body space and external space. Thus, our own body size affects how we perceive the world. PMID:21633503

  18. Improved sample size determination for attributes and variables sampling

    International Nuclear Information System (INIS)

    Stirpe, D.; Picard, R.R.

    1985-01-01

    Earlier INMM papers have addressed the attributes/variables problem and, under conservative/limiting approximations, have reported analytical solutions for the attributes and variables sample sizes. Through computer simulation of this problem, we have calculated attributes and variables sample sizes as a function of falsification, measurement uncertainties, and required detection probability without using approximations. Using realistic assumptions for uncertainty parameters of measurement, the simulation results support the conclusions: (1) previously used conservative approximations can be expensive because they lead to larger sample sizes than needed; and (2) the optimal verification strategy, as well as the falsification strategy, are highly dependent on the underlying uncertainty parameters of the measurement instruments. 1 ref., 3 figs

  19. Observations of a potential size-effect in experimental determination of the hydraulic properties of fractures

    International Nuclear Information System (INIS)

    Witherspoon, P.A.; Amick, C.H.; Gale, J.E.; Iwai, K.

    1979-05-01

    In several recent investigations, experimental studies on the effect of normal stress on the hydraulic conductivity of a single fracture were made on three rock specimens ranging in cross-sectional area from 0.02 m 2 to over 1.0 m 2 . At the maximum stress levels that could be attained (10 to 20 MPa), minimum values of the fracture hydraulic conductivity were not the same for each rock specimen. These minimum values increased with specimen size, indicating that the determination of fracture conductivity may be significantly influenced by a size effect. The implications of these results are important. Cores collected in the field are normally not larger than 0.15 m in diameter. However, the results of this work suggest that when this size core is used for laboratory investigations, the results may be nonconservative in that fracture permeabilities will be significantly lower than will be found in the field. 6 figures

  20. Absolute Hounsfield unit measurement on noncontrast computed tomography cannot accurately predict struvite stone composition.

    Science.gov (United States)

    Marchini, Giovanni Scala; Gebreselassie, Surafel; Liu, Xiaobo; Pynadath, Cindy; Snyder, Grace; Monga, Manoj

    2013-02-01

    The purpose of our study was to determine, in vivo, whether single-energy noncontrast computed tomography (NCCT) can accurately predict the presence/percentage of struvite stone composition. We retrospectively searched for all patients with struvite components on stone composition analysis between January 2008 and March 2012. Inclusion criteria were NCCT prior to stone analysis and stone size ≥4 mm. A single urologist, blinded to stone composition, reviewed all NCCT to acquire stone location, dimensions, and Hounsfield unit (HU). HU density (HUD) was calculated by dividing mean HU by the stone's largest transverse diameter. Stone analysis was performed via Fourier transform infrared spectrometry. Independent sample Student's t-test and analysis of variance (ANOVA) were used to compare HU/HUD among groups. Spearman's correlation test was used to determine the correlation between HU and stone size and also HU/HUD to % of each component within the stone. Significance was considered if pR=0.017; p=0.912) and negative with HUD (R=-0.20; p=0.898). Overall, 3 (6.8%) had stones (n=5) with other miscellaneous stones (n=39), no difference was found for HU (p=0.09) but HUD was significantly lower for pure stones (27.9±23.6 v 72.5±55.9, respectively; p=0.006). Again, significant overlaps were seen. Pure struvite stones have significantly lower HUD than mixed struvite stones, but overlap exists. A low HUD may increase the suspicion for a pure struvite calculus.

  1. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    Science.gov (United States)

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. 9 CFR 442.3 - Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Scale requirements for accurate... PROCEDURES AND REQUIREMENTS FOR ACCURATE WEIGHTS § 442.3 Scale requirements for accurate weights, repairs, adjustments, and replacements after inspection. (a) All scales used to determine the net weight of meat and...

  3. An approach to determine a critical size for rolling contact fatigue initiating from rail surface defects

    NARCIS (Netherlands)

    Li, Z.; Zhao, X.; Dollevoet, R.P.B.J.

    2016-01-01

    A methodology for the determination of a critical size of surface defects, above which RCF can initiate, has been developed and demonstrated with its application to the passive type of squats under typical Dutch railway loading conditions. Such a methodology is based on stress evaluation of

  4. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    International Nuclear Information System (INIS)

    Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.; Prasad, Lakshman; Sullivan, John P.

    2012-01-01

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

  5. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Science.gov (United States)

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  6. Solid oxide fuel cell cathode infiltrate particle size control and oxygen surface exchange resistance determination

    Science.gov (United States)

    Burye, Theodore E.

    Over the past decade, nano-sized Mixed Ionic Electronic Conducting (MIEC) -- micro-sized Ionic Conducting (IC) composite cathodes produced by the infiltration method have received much attention in the literature due to their low polarization resistance (RP) at intermediate (500-700°C) operating temperatures. Small infiltrated MIEC oxide nano-particle size and low intrinsic MIEC oxygen surface exchange resistance (Rs) have been two critical factors allowing these Nano-Micro-Composite Cathodes (NMCCs) to achieve high performance and/or low temperature operation. Unfortunately, previous studies have not found a reliable method to control or reduce infiltrated nano-particle size. In addition, controversy exists on the best MIEC infiltrate composition because: 1) Rs measurements on infiltrated MIEC particles are presently unavailable in the literature, and 2) bulk and thin film Rs measurements on nominally identical MIEC compositions often vary by up to 3 orders of magnitude. Here, two processing techniques, precursor nitrate solution desiccation and ceria oxide pre-infiltration, were developed to systematically produce a reduction in the average La0.6Sr0.4Co0.8Fe 0.2O3-delta (LSCF) infiltrated nano-particle size from 50 nm to 22 nm. This particle size reduction reduced the SOFC operating temperature, (defined as the temperature where RP=0.1 Ocm 2) from 650°C to 540°C. In addition, Rs values for infiltrated MIEC particles were determined for the first time through finite element modeling calculations on 3D Focused Ion Beam-Scanning Electron Microscope (FIB-SEM) reconstructions of electrochemically characterized infiltrated electrodes.

  7. Functional and physical molecular size of the chicken hepatic lectin determined by radiation inactivation and sedimentation equilibrium analysis

    International Nuclear Information System (INIS)

    Steer, C.J.; Osborne, J.C. Jr.; Kempner, E.S.

    1990-01-01

    Radiation inactivation and sedimentation equilibrium analysis were used to determine the functional and physical size of the chicken hepatic membrane receptor that binds N-acetylglucosamine-terminated glycoproteins. Purified plasma membranes from chicken liver were irradiated with high energy electrons and assayed for 125I-agalactoorosomucoid binding. Increasing the dose of ionizing radiation resulted in a monoexponential decay in binding activity due to a progressive loss of binding sites. The molecular mass of the chicken lectin, determined in situ by target analysis, was 69,000 +/- 9,000 Da. When the same irradiated membranes were solubilized in Brij 58 and assayed, the binding protein exhibited a target size of 62,000 +/- 4,000 Da; in Triton X-100, the functional size of the receptor was 85,000 +/- 10,000 Da. Sedimentation equilibrium measurements of the purified binding protein yielded a lower limit molecular weight of 79,000 +/- 7,000. However, the solubilized lectin was detected as a heterogeneous population of oligomers with molecular weights as high as 450,000. Addition of calcium or calcium plus N-acetylglucosamine decreased the higher molecular weight species, but the lower limit molecular weights remained invariant. Similar results were determined when the chicken lectin was solubilized in Brij 58, C12E9, or 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonic acid (CHAPS). Results from the present study suggest that in the plasma membrane, the functional species of the chicken hepatic lectin exists as a trimer. However, in detergent solution, the purified receptor forms a heterogeneous population of irreversible oligomers that exhibit binding activity proportional to size

  8. Size matters: the interplay between sensing and size in aquatic environments

    Science.gov (United States)

    Wadhwa, Navish; Martens, Erik A.; Lindemann, Christian; Jacobsen, Nis S.; Andersen, Ken H.; Visser, Andre

    2015-11-01

    Sensing the presence or absence of other organisms in the surroundings is critical for the survival of any aquatic organism. This is achieved via the use of various sensory modes such as chemosensing, mechanosensing, vision, hearing, and echolocation. We ask how the size of an organism determines what sensory modes are available to it while others are not. We investigate this by examining the physical laws governing signal generation, transmission, and reception, together with the limits set by physiology. Hydrodynamics plays an important role in sensing; in particular chemosensing and mechanosensing are constrained by the physics of fluid motion at various scales. Through our analysis, we find a hierarchy of sensing modes determined by body size. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in the literature. Our analysis of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life. The Centre for Ocean Life is a VKR center of excellence supported by the Villum Foundation.

  9. Comparison of three analytical methods to measure the size of silver nanoparticles in real environmental water and wastewater samples

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying-jie [Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Shih, Yang-hsin, E-mail: yhs@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Su, Chiu-Hun [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Ho, Han-Chen [Department of Anatomy, Tzu-Chi University, Hualien 970, Taiwan (China)

    2017-01-15

    Highlights: • Three emerging techniques to detect NPs in the aquatic environment were evaluated. • The pretreatment of centrifugation to decrease the interference was established. • Asymmetric flow field flow fractionation has a low recovery of NPs. • Hydrodynamic chromatography is recommended to be a low-cost screening tool. • Single particle ICPMS is recommended to accurately measure trace NPs in water. - Abstract: Due to the widespread application of engineered nanoparticles, their potential risk to ecosystems and human health is of growing concern. Silver nanoparticles (Ag NPs) are one of the most extensively produced NPs. Thus, this study aims to develop a method to detect Ag NPs in different aquatic systems. In complex media, three emerging techniques are compared, including hydrodynamic chromatography (HDC), asymmetric flow field flow fractionation (AF4) and single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). The pre-treatment procedure of centrifugation is evaluated. HDC can estimate the Ag NP sizes, which were consistent with the results obtained from DLS. AF4 can also determine the size of Ag NPs but with lower recoveries, which could result from the interactions between Ag NPs and the working membrane. For the SP-ICP-MS, both the particle size and concentrations can be determined with high Ag NP recoveries. The particle size resulting from SP-ICP-MS also corresponded to the transmission electron microscopy observation (p > 0.05). Therefore, HDC and SP-ICP-MS are recommended for environmental analysis of the samples after our established pre-treatment process. The findings of this study propose a preliminary technique to more accurately determine the Ag NPs in aquatic environments and to use this knowledge to evaluate the environmental impact of manufactured NPs.

  10. Comparison of three analytical methods to measure the size of silver nanoparticles in real environmental water and wastewater samples

    International Nuclear Information System (INIS)

    Chang, Ying-jie; Shih, Yang-hsin; Su, Chiu-Hun; Ho, Han-Chen

    2017-01-01

    Highlights: • Three emerging techniques to detect NPs in the aquatic environment were evaluated. • The pretreatment of centrifugation to decrease the interference was established. • Asymmetric flow field flow fractionation has a low recovery of NPs. • Hydrodynamic chromatography is recommended to be a low-cost screening tool. • Single particle ICPMS is recommended to accurately measure trace NPs in water. - Abstract: Due to the widespread application of engineered nanoparticles, their potential risk to ecosystems and human health is of growing concern. Silver nanoparticles (Ag NPs) are one of the most extensively produced NPs. Thus, this study aims to develop a method to detect Ag NPs in different aquatic systems. In complex media, three emerging techniques are compared, including hydrodynamic chromatography (HDC), asymmetric flow field flow fractionation (AF4) and single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). The pre-treatment procedure of centrifugation is evaluated. HDC can estimate the Ag NP sizes, which were consistent with the results obtained from DLS. AF4 can also determine the size of Ag NPs but with lower recoveries, which could result from the interactions between Ag NPs and the working membrane. For the SP-ICP-MS, both the particle size and concentrations can be determined with high Ag NP recoveries. The particle size resulting from SP-ICP-MS also corresponded to the transmission electron microscopy observation (p > 0.05). Therefore, HDC and SP-ICP-MS are recommended for environmental analysis of the samples after our established pre-treatment process. The findings of this study propose a preliminary technique to more accurately determine the Ag NPs in aquatic environments and to use this knowledge to evaluate the environmental impact of manufactured NPs.

  11. Species specific isotope dilution for the accurate and SI traceable determination of arsenobetaine and methylmercury in cuttlefish and prawn

    International Nuclear Information System (INIS)

    Kumkrong, Paramee; Thiensong, Benjaporn; Le, Phuong Mai; McRae, Garnet; Windust, Anthony; Deawtong, Suladda; Meija, Juris; Maxwell, Paulette; Yang, Lu; Mester, Zoltán

    2016-01-01

    Methods based on species specific isotope dilution were developed for the accurate and SI traceable determination of arsenobetaine (AsBet) and methylmercury (MeHg) in prawn and cuttlefish tissues by LC-MS/MS and SPME GC-ICPMS. Quantitation of AsBet and MeHg were achieved by using a "1"3C-enriched AsBet spike (NRC CRM CBET-1) and an enriched spike of Me"1"9"8Hg (NRC CRM EMMS-1), respectively, wherein analyte mass fractions in enriched spikes were determined by reverse isotope dilution using natural abundance AsBet and MeHg primary standards. Purity of these primary standards were characterized by quantitative "1H-NMR with the use of NIST SRM 350b benzoic acid as a primary calibrator, ensuring the final measurement results traceable to SI. Validation of employed methods of ID LC-MS/MS and ID SPME GC-ICPMS was demonstrated by analysis of several biological CRMs (DORM-4, TORT-3, DOLT-5, BCR-627 and BCR-463) with satisfying results. The developed methods were applied for the determination of AsBet and MeHg in two new certified reference materials (CRMs) prawn (PRON-1) and cuttlefish (SQID-1) produced jointly by Thailand Institute of Scientific and Technological Research (TISTR) and National Research Council Canada (NRC). With additional measurements of AsBet using LC-ICPMS with standard additions calibration and external calibration at NRC and TISTR, respectively, certified values of 1.206 ± 0.058 and 13.96 ± 0.54 mg kg"−"1 for AsBet as As (expanded uncertainty, k = 2) were obtained for the new CRMs PRON-1 and SQID-1, respectively. The reference value of 0.324 ± 0.028 mg kg"−"1 as Hg (expanded uncertainty, k = 2) for MeHg was obtained for the SQID-1 based on the results obtained by ID SPME GC-ICPMS method only, whereas MeHg in PRON-1 was found to be < 0.015 mg kg"−"1. It was found that AsBet comprised 69.7% and 99.0% of total As in the prawn and cuttlefish, respectively, whereas MeHg comprised 94.5% of total Hg in cuttlefish. - Highlights:

  12. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  13. Reliable and Accurate Release of Micro-Sized Objects with a Gripper that Uses the Capillary-Force Method

    Directory of Open Access Journals (Sweden)

    Suzana Uran

    2017-06-01

    Full Text Available There have been recent developments in grippers that are based on capillary force and condensed water droplets. These are used for manipulating micro-sized objects. Recently, one-finger grippers have been produced that are able to reliably grip using the capillary force. To release objects, either the van der Waals, gravitational or inertial-forces method is used. This article presents methods for reliably gripping and releasing micro-objects using the capillary force. The moisture from the surrounding air is condensed into a thin layer of water on the contact surfaces of the objects. From the thin layer of water, a water meniscus between the micro-sized object, the gripper and the releasing surface is created. Consequently, the water meniscus between the object and the releasing surface produces a high enough capillary force to release the micro-sized object from the tip of the one-finger gripper. In this case, either polystyrene, glass beads with diameters between 5–60 µm, or irregularly shaped dust particles of similar sizes were used. 3D structures made up of micro-sized objects could be constructed using this method. This method is reliable for releasing during assembly and also for gripping, when the objects are removed from the top of the 3D structure—the so-called “disassembling gripping” process. The accuracy of the release was lower than 0.5 µm.

  14. Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management

    Science.gov (United States)

    Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.

    2016-01-01

    A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.

  15. Ultrasonic delay measurements for the determination of the size of quasi-natural defects

    International Nuclear Information System (INIS)

    Proegler, H.

    1978-01-01

    Criteria in the form of delay measurements and phase assessments on ultrasonic pulses were worked out for a series of the most different reflection positions of the artificial, quasi-natural and natural kind which in many cases enable an differentiation of defects and the determination of the defect size. Even though it was not possible to completely clarify all effects occuring, such as reflection positions with undefined pulse orientations, the results sofar are still a contribution to the improvement of the stating ability of ultrasonic testing. (orig./RW) [de

  16. Sample size determination algorithm for fingerprint-based indoor localization systems

    NARCIS (Netherlands)

    Kanaris, L.; Kokkinis, A.; Fortino, G.; Liotta, A.; Stavrou, S.

    2016-01-01

    Provision of accurate location information is an important task in the Internet of Things (IoT) applications and scenarios. This need has boosted the research and development of fingerprint based, indoor localization systems, since GPS information is not available in indoor environments. Performance

  17. Theoretical basis for transfer of laboratory test results of grain size distribution of coal to real object

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Chodura, J [Politechnika Sladska, Gliwice (Poland). Instytut Mechanizacji Gornictwa

    1989-01-01

    Evaluates a method for forecasting size distribution of black coal mined by shearer loaders in one coal seam. Laboratory tests for determining coal comminution during cutting and haulage along the face are analyzed. Methods for forecasting grain size distribution of coal under operational conditions using formulae developed on the basis of laboratory tests are discussed. Recommendations for design of a test stand and test conditions are discussed. A laboratory stand should accurately model operational conditions of coal cutting, especially dimensions of the individual elements of the shearer loader, geometry of the cutting drum and cutting tools, and strength characteristics of the coal seam. 9 refs.

  18. Determination of the rare earth elements in marine pore waters and associated sediments

    International Nuclear Information System (INIS)

    Kennedy, H.; Elderfield, H.

    Accurate and precise determinations of natural levels of rare earth elements (R.E.E.) in sea water and pore water are highly reliant upon the size and variability of the analytical blank, the method for determining the yield, and, to a lesser extent, the inherent precision of the instrument used. Isotope dilution mass spectrometry (IDMS) together with ultra-clean room techniques has been successfully used in the determinations of rare earth elements in pore waters. Simultaneous multi-element analysis by inductively coupled plasma atomic emission spectrometry (ICP) provides an alternative to IDMS for a rapid determination of R.E.E. in sediments. (author)

  19. Accurate anisotropic material modelling using only tensile tests for hot and cold forming

    Science.gov (United States)

    Abspoel, M.; Scholting, M. E.; Lansbergen, M.; Neelis, B. M.

    2017-09-01

    Accurate material data for simulations require a lot of effort. Advanced yield loci require many different kinds of tests and a Forming Limit Curve (FLC) needs a large amount of samples. Many people use simple material models to reduce the effort of testing, however some models are either not accurate enough (i.e. Hill’48), or do not describe new types of materials (i.e. Keeler). Advanced yield loci describe the anisotropic materials behaviour accurately, but are not widely adopted because of the specialized tests, and data post-processing is a hurdle for many. To overcome these issues, correlations between the advanced yield locus points (biaxial, plane strain and shear) and mechanical properties have been investigated. This resulted in accurate prediction of the advanced stress points using only Rm, Ag and r-values in three directions from which a Vegter yield locus can be constructed with low effort. FLC’s can be predicted with the equations of Abspoel & Scholting depending on total elongation A80, r-value and thickness. Both predictive methods are initially developed for steel, aluminium and stainless steel (BCC and FCC materials). The validity of the predicted Vegter yield locus is investigated with simulation and measurements on both hot and cold formed parts and compared with Hill’48. An adapted specimen geometry, to ensure a homogeneous temperature distribution in the Gleeble hot tensile test, was used to measure the mechanical properties needed to predict a hot Vegter yield locus. Since for hot material, testing of stress states other than uniaxial is really challenging, the prediction for the yield locus adds a lot of value. For the hot FLC an A80 sample with a homogeneous temperature distribution is needed which is due to size limitations not possible in the Gleeble tensile tester. Heating the sample in an industrial type furnace and tensile testing it in a dedicated device is a good alternative to determine the necessary parameters for the FLC

  20. CT determinants of prognosis in pancreatic carcinoma

    International Nuclear Information System (INIS)

    Schreiber, A.E.; Honda, H.; Berbaum, K.; Franken, E.A.; Lu, C.H.

    1988-01-01

    Abdominal CT scans of 61 patients with pathologically proved pancreatic carcinoma were analyzed to determine the radiographic features that predict length of survival. Excluded from study were patients who underwent definitive surgical procedures (Whipple procedure or pancreatectomy) or who received radiation or chemotherapy. Scans were evaluated in 18 radiographic and clinicopathologic categories. Multifactorial regression analysis indicated that the factors that most accurately predict the length of patient survival are (1) size, (2) associated lymphadenopathy, (3) hepatic metastasis, (4) hepatoduodenal ligament involvement, and (5) involvement of the mesentery and/or peritoneum

  1. Depicted serving size: cereal packaging pictures exaggerate serving sizes and promote overserving.

    Science.gov (United States)

    Tal, Aner; Niemann, Stina; Wansink, Brian

    2017-02-06

    Extensive work has focused on the effects of nutrition label information on consumer behavior on the one hand, and on the effects of packaging graphics on the other hand. However, little work has examined how serving suggestion depictions - graphics relating to serving size - influence the quantity consumers serve themselves. The current work examines the prevalence of exaggerated serving size depictions on product packaging (study 1) and its effects on food serving in the context of cereal (study 2). Study 1 was an observational field survey of cereal packaging. Study 2 was a mixed experimental cross-sectional design conducted at a U.S. university, with 51 student participants. Study 1 coded 158 US breakfast cereals and compared the serving sizes depicted on the front of the box with the suggested serving size stated on the nutrition facts panel. Study 2 measured the amount of cereal poured from exaggerated or accurate serving size depictions. Study 1 compared average servings via t-tests. Study 2 used a mixed model with cereal type as the repeated measure and a compound symmetry covariance matrix. Study 1 demonstrated that portion size depictions on the front of 158 cereal boxes were 65.84% larger (221 vs. 134 calories) than the recommended portions on nutrition facts panels of those cereals. Study 2 showed that boxes that depicted exaggerated serving sizes led people to pour 20% more cereal compared to pouring from modified boxes that depicted a single-size portion of cereal matching suggested serving size. This was 45% over the suggested serving size. Biases in depicted serving size depicted on cereal packaging are prevalent in the marketplace. Such biases may lead to overserving, which may consequently lead to overeating. Companies should depict the recommended serving sizes, or otherwise indicate that the depicted portion represents an exaggerated serving size.

  2. Depicted serving size: cereal packaging pictures exaggerate serving sizes and promote overserving

    Directory of Open Access Journals (Sweden)

    Aner Tal

    2017-02-01

    Full Text Available Abstract Background Extensive work has focused on the effects of nutrition label information on consumer behavior on the one hand, and on the effects of packaging graphics on the other hand. However, little work has examined how serving suggestion depictions - graphics relating to serving size - influence the quantity consumers serve themselves. The current work examines the prevalence of exaggerated serving size depictions on product packaging (study 1 and its effects on food serving in the context of cereal (study 2. Methods Study 1 was an observational field survey of cereal packaging. Study 2 was a mixed experimental cross-sectional design conducted at a U.S. university, with 51 student participants. Study 1 coded 158 US breakfast cereals and compared the serving sizes depicted on the front of the box with the suggested serving size stated on the nutrition facts panel. Study 2 measured the amount of cereal poured from exaggerated or accurate serving size depictions. Study 1 compared average servings via t-tests. Study 2 used a mixed model with cereal type as the repeated measure and a compound symmetry covariance matrix. Results Study 1 demonstrated that portion size depictions on the front of 158 cereal boxes were 64.7% larger (221 vs. 134 calories than the recommended portions on nutrition facts panels of those cereals. Study 2 showed that boxes that depicted exaggerated serving sizes led people to pour 17.8% more cereal compared to pouring from modified boxes that depicted a single-size portion of cereal matching suggested serving size. This was 42% over the suggested serving size. Conclusions Biases in depicted serving size depicted on cereal packaging are prevalent in the marketplace. Such biases may lead to overserving, which may consequently lead to overeating. Companies should depict the recommended serving sizes, or otherwise indicate that the depicted portion represents an exaggerated serving size.

  3. Superresolution size determination in fluorescence microscopy: A comparison between spatially modulated illumination and confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Spoeri, Udo; Failla, Antonio Virgilio; Cremer, Christoph

    2004-01-01

    Recently developed far field light optical methods are a powerful tool to analyze biological nanostructures and their dynamics, in particular including the interior of three-dimensionally conserved cells. In this article, the recently described method of spatially modulated illumination (SMI) microscopy has been further extended to the online determination of the extension of small, subwavelength sized, fluorescent objects (nanosizing). Using fluorescence excitation with 488 nm, the determination of fluorescent labeled object diameters down to 40 nm corresponding to about 1/12th of the wavelength used for one-photon excitation could be shown. The results of the SMI nanosizing procedure for a detailed, systematic variation of the object diameter are presented together with a fast algorithm for online size evaluation. In addition, we show a direct comparison of the diameter of 'colocalization volumes' between SMI nanosizing and conventional confocal laser scanning microscopy

  4. Direct Measurement of Initial 230TH/ 232TH Ratios in Central Texas Speleothems for More Accurate Age Determination

    Science.gov (United States)

    Wortham, B. E.; Banner, J. L.; James, E.; Loewy, S. L.

    2013-12-01

    Speleothems, calcite deposits in caves, preserve a record of climate in their growth rate, isotope ratios and trace element concentrations. These variables must be tied to precise ages to produce pre-instrumental records of climate. The 238U-234U- 230Th disequilibrium method of dating can yield precise ages if the amount of 230Th from the decay of radiogenic 238U can be constrained. 230Th in a speleothem calcite growth layer has two potential sources - 1) decay of radioactive 238U since the time of growth of the calcite layer; and 2) initial detrital 230Th, incorporated along with detrital 232Th, into the calcite layer at the time it grew. Although the calcite lattice does not typically incorporate Th, samples can contain impurities with relatively high Th contents. Initial 230Th/232Th is commonly estimated by assuming a source with bulk-Earth U/Th values in a state of secular equilibrium in the 238U-decay chain. The uncertainty in this 230Th/232Th estimate is also assumed, typically at +/-100%. Both assumptions contribute to uncertainty in ages determined for young speleothems. If the amount of initial detrital 230Th can be better quantified for samples or sites, then U-series ages will have smaller uncertainties and more precisely define the time series of climate proxies. This study determined the initial 230Th/232Th of modern calcite to provide more precise dates for central Texas speleothems. Calcite was grown on glass-plate substrates placed under active drips in central Texas caves. The 230Th/232Th of this modern calcite was determined using thermal ionization mass spectrometry. Results show that: 1) initial 230Th/232Th ratios can be accurately determined in these young samples and 2) measuring 230Th/232Th reduces the uncertainties in previously-determined ages on stalagmites from under the same drips. For example, measured initial 230Th/232Th in calcite collected on substrates from different locations in the cave at Westcave Preserve are 15.3 × 0.67 ppm

  5. Species distribution model transferability and model grain size - finer may not always be better.

    Science.gov (United States)

    Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin

    2018-05-08

    Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

  6. The Determinants of Venture Capital Portfolio Size: Empirical Evidence

    OpenAIRE

    Douglas J. Cumming

    2006-01-01

    This paper explores factors that affect portfolio size among a sample of venture capital financing data from 214 Canadian funds. Four categories of factors affect portfolio size: (1) the venture capital funds' characteristics, including the type of fund, fund duration, fund-raising, and the number of venture capital fund managers; (2) the entrepreneurial firms' characteristics, including stage of development, technology, and geographic location; (3) the nature of the financing transactions, i...

  7. In-situ particle sizing at millimeter scale from electrochemical noise: simulation and experiments

    International Nuclear Information System (INIS)

    Yakdi, N.; Huet, F.; Ngo, K.

    2015-01-01

    Over the last few years, particle sizing techniques in multiphase flows based on optical technologies emerged as standard tools but the main disadvantage of these techniques is their dependence on the visibility of the measurement volume and on the focal distance. Thus, it is important to promote alternative techniques for particle sizing, and, moreover, able to work in hostile environment. This paper presents a single-particle sizing technique at a millimeter scale based on the measurement of the variation of the electrolyte resistance (ER) due to the passage of an insulating sphere between two electrodes immerged in a conductive solution. A theoretical model was proposed to determine the influence of the electrode size, the interelectrode distance, the size and the position of the sphere, on the electrolyte resistance. Experimental variations of ER due to the passage of spheres and measured by using a home-made electronic device are also presented in this paper. The excellent agreement obtained between the theoretical and experimental results allows validation of both model and experimental measurements. In addition, the technique was shown to be able to perform accurate measurements of the velocity of a ball falling in a liquid.

  8. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 6: Accurate in-tank determination of liquid density in accountancy tanks equipped with dip tubes

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 18213 deals with the acquisition, standardization, analysis, and use of calibration data to determine liquid volumes in process tanks for accountability purposes. This part of ISO 18213 is complementary to the other parts, ISO 18213-1 (procedural overview), ISO 18213-2 (data standardization), ISO 18213-3 (statistical methods), ISO 18213-4 (slow bubbling rate), ISO 18213-5 (fast bubbling rate). The procedure described in this part of ISO 18213 is a two-step procedure. First, a liquid of known density is used to determine the vertical distance between the tips of the two probes (i.e. to calibrate their separation). The calibration step requires synchronous (or as nearly synchronous as possible) measurements of the pressure exerted at the tips of two probes by the calibration liquid in which they are submerged. The measurements obtained are used to make an accurate determination of probe separation. Second, the unknown density of the process liquid is determined with the aid of the probe separation calibration. The density-determination step also requires (nearly) synchronous measurements of the pressure exerted at the tips of two probes by the process liquid of unknown density. With careful technique, it is possible to make determinations of liquid density with in-tank measurements that approach the accuracy and precision of those made in the laboratory. Moreover, density determinations made with in-tank measurements are automatically made at the observed temperature of the tank liquid. Thus, no additional information about the liquid is required to infer its density at its tank temperature from determinations of its density at some other temperature. Except that the density of the process liquid is generally not well characterized, the steps involved in determining the height of process liquid in the tank are the same as those for determining the height of calibration liquid. Thus, the method of density determination given in this part of ISO 18213 is very

  9. Accurate and computationally efficient prediction of thermochemical properties of biomolecules using the generalized connectivity-based hierarchy.

    Science.gov (United States)

    Sengupta, Arkajyoti; Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-08-14

    In this study we have used the connectivity-based hierarchy (CBH) method to derive accurate heats of formation of a range of biomolecules, 18 amino acids and 10 barbituric acid/uracil derivatives. The hierarchy is based on the connectivity of the different atoms in a large molecule. It results in error-cancellation reaction schemes that are automated, general, and can be readily used for a broad range of organic molecules and biomolecules. Herein, we first locate stable conformational and tautomeric forms of these biomolecules using an accurate level of theory (viz. CCSD(T)/6-311++G(3df,2p)). Subsequently, the heats of formation of the amino acids are evaluated using the CBH-1 and CBH-2 schemes and routinely employed density functionals or wave function-based methods. The calculated heats of formation obtained herein using modest levels of theory and are in very good agreement with those obtained using more expensive W1-F12 and W2-F12 methods on amino acids and G3 results on barbituric acid derivatives. Overall, the present study (a) highlights the small effect of including multiple conformers in determining the heats of formation of biomolecules and (b) in concurrence with previous CBH studies, proves that use of the more effective error-cancelling isoatomic scheme (CBH-2) results in more accurate heats of formation with modestly sized basis sets along with common density functionals or wave function-based methods.

  10. Accurate multiplicity scaling in isotopically conjugate reactions

    International Nuclear Information System (INIS)

    Golokhvastov, A.I.

    1989-01-01

    The generation of accurate scaling of mutiplicity distributions is presented. The distributions of π - mesons (negative particles) and π + mesons in different nucleon-nucleon interactions (PP, NP and NN) are described by the same universal function Ψ(z) and the same energy dependence of the scale parameter which determines the stretching factor for the unit function Ψ(z) to obtain the desired multiplicity distribution. 29 refs.; 6 figs

  11. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.

    Science.gov (United States)

    Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong

    2016-05-30

    Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.

  12. Analysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains

    Directory of Open Access Journals (Sweden)

    Kaustav Bandyopadhyay

    2016-09-01

    Full Text Available Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA and abscisic acid (ABA ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination.

  13. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    International Nuclear Information System (INIS)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-01

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented

  14. Phase rainbow refractometry for accurate droplet variation characterization.

    Science.gov (United States)

    Wu, Yingchun; Promvongsa, Jantarat; Saengkaew, Sawitree; Wu, Xuecheng; Chen, Jia; Gréhan, Gérard

    2016-10-15

    We developed a one-dimensional phase rainbow refractometer for the accurate trans-dimensional measurements of droplet size on the micrometer scale as well as the tiny droplet diameter variations at the nanoscale. The dependence of the phase shift of the rainbow ripple structures on the droplet variations is revealed. The phase-shifting rainbow image is recorded by a telecentric one-dimensional rainbow imaging system. Experiments on the evaporating monodispersed droplet stream show that the phase rainbow refractometer can measure the tiny droplet diameter changes down to tens of nanometers. This one-dimensional phase rainbow refractometer is capable of measuring the droplet refractive index and diameter, as well as variations.

  15. Three-dimensional computed tomography measurement accuracy of varying Hill-Sachs lesion size.

    Science.gov (United States)

    Ho, Anthony; Kurdziel, Michael D; Koueiter, Denise M; Wiater, J Michael

    2018-02-01

    The glenoid track concept has been proposed to correlate shoulder stability with bone loss. Accurate assessment of Hill-Sachs lesion size preoperatively may affect surgical planning and postoperative outcomes; however, no measurement method has been universally accepted. This study aimed to assess the accuracy and reliability of measuring Hill-Sachs lesion sizes using 3-dimensional (3D) computed tomography (CT). Nine polyurethane humerus bone substitutes were used to create Hill-Sachs lesions of varying sizes with a combination of lesion depth (shallow, intermediate, and deep) and width (small, medium, and large). Specimens were scanned with a clinical CT scanner for size measurements and a micro-CT scanner for measurement of true lesion size. Six evaluators repeated measurements twice in a 2-week interval. Scans were measured by use of 3D CT reconstructions for length, width, and Hill-Sachs interval and with use of 2D CT for depth. The interclass correlation coefficient evaluated interobserver and intraobserver variability and percentage error, and Student t-tests assessed measurement accuracy. Interclass correlation coefficient reliability demonstrated strong agreement for all variables measured (0.856-0.975). Percentage error between measured length and measured depth and the true measurement significantly varied with respect to both lesion depth (P = .003 and P = .005, respectively) and lesion size (P = .049 and P = .004, respectively). The 3D CT imaging is effective and reproducible in determining lesion size. Determination of Hill-Sachs interval width is also reliable when it is applied to the glenoid track concept. Measured values on 3D and 2-dimensional imaging using a conventional CT scanner may slightly underestimate true measurements. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Optimum sample size to estimate mean parasite abundance in fish parasite surveys

    Directory of Open Access Journals (Sweden)

    Shvydka S.

    2018-03-01

    Full Text Available To reach ethically and scientifically valid mean abundance values in parasitological and epidemiological studies this paper considers analytic and simulation approaches for sample size determination. The sample size estimation was carried out by applying mathematical formula with predetermined precision level and parameter of the negative binomial distribution estimated from the empirical data. A simulation approach to optimum sample size determination aimed at the estimation of true value of the mean abundance and its confidence interval (CI was based on the Bag of Little Bootstraps (BLB. The abundance of two species of monogenean parasites Ligophorus cephali and L. mediterraneus from Mugil cephalus across the Azov-Black Seas localities were subjected to the analysis. The dispersion pattern of both helminth species could be characterized as a highly aggregated distribution with the variance being substantially larger than the mean abundance. The holistic approach applied here offers a wide range of appropriate methods in searching for the optimum sample size and the understanding about the expected precision level of the mean. Given the superior performance of the BLB relative to formulae with its few assumptions, the bootstrap procedure is the preferred method. Two important assessments were performed in the present study: i based on CIs width a reasonable precision level for the mean abundance in parasitological surveys of Ligophorus spp. could be chosen between 0.8 and 0.5 with 1.6 and 1x mean of the CIs width, and ii the sample size equal 80 or more host individuals allows accurate and precise estimation of mean abundance. Meanwhile for the host sample size in range between 25 and 40 individuals, the median estimates showed minimal bias but the sampling distribution skewed to the low values; a sample size of 10 host individuals yielded to unreliable estimates.

  17. A simple and inclusive method to determine the habit plane in transmission electron microscope based on accurate measurement of foil thickness

    International Nuclear Information System (INIS)

    Qiu, Dong; Zhang, Mingxing

    2014-01-01

    A simple and inclusive method is proposed for accurate determination of the habit plane between bicrystals in transmission electron microscope. Whilst this method can be regarded as a variant of surface trace analysis, the major innovation lies in the improved accuracy and efficiency of foil thickness measurement, which involves a simple tilt of the thin foil about a permanent tilting axis of the specimen holder, rather than cumbersome tilt about the surface trace of the habit plane. Experimental study has been done to validate this proposed method in determining the habit plane between lamellar α 2 plates and γ matrix in a Ti–Al–Nb alloy. Both high accuracy (± 1°) and high precision (± 1°) have been achieved by using the new method. The source of the experimental errors as well as the applicability of this method is discussed. Some tips to minimise the experimental errors are also suggested. - Highlights: • An improved algorithm is formulated to measure the foil thickness. • Habit plane can be determined with a single tilt holder based on the new algorithm. • Better accuracy and precision within ± 1° are achievable using the proposed method. • The data for multi-facet determination can be collected simultaneously

  18. A new method of accurate determination of isotopic composition and concentration of strontium in a spike solution used for geochronological works

    International Nuclear Information System (INIS)

    Yanagi, Takeru

    1990-01-01

    A new method of accurate determination of isotopic composition and concentration of a strontium-84 spike solution was devised for simultaneous determination of strontium contents and isotopic compositions in rocks and minerals by measuring strontium isotopic ratios in spiked samples. In this method, the isotopic composition of strontium in the spike were determined so as to minimize the sum of squares of deviations of spike strontium-84 concentrations which were calculated from measured isotopic ratios of strontium in five different mixtures of the spike and the standard solution. The method can eliminate all mass discriminations occurred during the measurements on a surface ionization mass spectrometer. The results were tested by measuring 87 Sr/ 86 Sr ratios of Eimer and Amend SrCO 3 and JB-1 geochemical reference material, and by determining the strontium content in JB-1. The measurements of strontium isotope ratios in spiked samples give average values of 0.708007±0.000052 and 0.70417±0.00004 for 87 Sr/ 86 Sr ratios of E and A SrCO 3 and JB-1, respectively. The strontium content in JB-1 was estimated at 457.1±1.3 ppm. These values are very close to reported respective values. (author)

  19. Accurate Determination of the Quasiparticle and Scaling Properties Surrounding the Quantum Critical Point of Disordered Three-Dimensional Dirac Semimetals.

    Science.gov (United States)

    Fu, Bo; Zhu, Wei; Shi, Qinwei; Li, Qunxiang; Yang, Jinlong; Zhang, Zhenyu

    2017-04-07

    Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behavior is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. We further show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.

  20. On Using a Pilot Sample Variance for Sample Size Determination in the Detection of Differences between Two Means: Power Consideration

    Science.gov (United States)

    Shieh, Gwowen

    2013-01-01

    The a priori determination of a proper sample size necessary to achieve some specified power is an important problem encountered frequently in practical studies. To establish the needed sample size for a two-sample "t" test, researchers may conduct the power analysis by specifying scientifically important values as the underlying population means…

  1. Strategy for determination of an efficient Cochleate particle size.

    Science.gov (United States)

    Gil, Danay; Bracho, Gustavo; Zayas, Caridad; del Campo, Judith; Acevedo, Reinaldo; Toledo, Arturo; Lastre, Miriam; Pérez, Oliver

    2006-04-12

    Cochleate structures obtained from the outer membrane of Neisseria meningitidis serotype B have demonstrated to be high immunogenicity when administrated by intramuscular, oral or intranasal routes, and could be used as adjuvant and meningococcal nasal vaccine candidate. Due to the microparticulate nature of Cochleate it is necessary to control the particle size since it capture by cells of the immune system could be affected by this aspect. We combined optic microscopy and immunisation experiments to select the optimum particle size. Six different processes of producing Cochleate obtaining were evaluated and different mechanical stress conditions were carried out to homogenize and modulate the particles size. The more immunogenic particles were selected on the basis of the levels of specific IgA and IgG antibodies induced after intranasal immunisation in mice. The best treatment parameter for mechanical stress of the Cochleate was prolonged treatment with untrasonic low frequency waves.

  2. General approach for accurate resonance analysis in transformer windings

    NARCIS (Netherlands)

    Popov, M.

    2018-01-01

    In this paper, resonance effects in transformer windings are thoroughly investigated and analyzed. The resonance is determined by making use of an accurate approach based on the application of the impedance matrix of a transformer winding. The method is validated by a test coil and the numerical

  3. Accurate thickness measurement of graphene

    International Nuclear Information System (INIS)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-01-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)

  4. Measurement of aerosol size distribution by impaction and sedimentation An experimental study and data reduction

    International Nuclear Information System (INIS)

    Diouri, Mohamed.

    1981-09-01

    This study concerns essentially solid aerosols produced by combustion and more particulary the aerosol liberated by a sodium fire taken into account in safety studies related to sodium cooled nuclear reactors. The accurate determination of the aerosol size distribution depends on the selection device use. An experimental study of the parameters affecting the solid aerosol collection efficiency was made with the Andersen Mark II cascade impactor (blow off and bounce, electrical charge of particles, wall-loss). A sedimentation chamber was built and calibrated for the range between 4 and 10 μm. The second part describes a comparative study of different data reduction methods for the impactor and a new method for setting up the aerosol size distribution with data obtained by the sedimentation chamber [fr

  5. Determination of the particle size distribution of an aerosol using a diffusion battery

    International Nuclear Information System (INIS)

    Maigne, Jean-Pierre

    1974-02-01

    The principal methods for the treatment of concentration measurements both upstream and downstream of a diffusion battery are reviewed and discussed, the purpose of the measurements being the determination of the aerosol particle size distribution. It is then demonstrated that the resolution of the equations arising from the problem leads to the imposing of physical constraints on the distribution sought, these constraints being more and more restrictive with increasing experimental inaccuracies. An algorithm is proposed which provides an approximate solution to the system of equations, certain predetermined criteria, and the constraints imposed on the distribution being taken into account. (author)

  6. Genome size variation in the genus Avena.

    Science.gov (United States)

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.

  7. An Earth-sized planet with an Earth-like density.

    Science.gov (United States)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  8. Accurate stopping power determination of 15N ions for hydrogen depth profiling by a combination of ion beams and synchrotron radiation

    Science.gov (United States)

    Zier, M.; Reinholz, U.; Riesemeier, H.; Radtke, M.; Munnik, F.

    2012-02-01

    Hydrogen analysis is of particular importance in thin film technology and it is often necessary to obtain a depth profile. The method with the best depth resolution is NRA using the 6385 keV resonance of the 1H( 15N,αγ) 12C nuclear reaction. The correct quantification of the depth and concentration scales in the measured hydrogen profiles relies on accurate stopping power values. We present a method to deduce these values from a combination of two techniques: NRA and X-ray reflectometry (XRR). This method is applied to the determination of the stopping power of ˜6.4 MeV 15N ions in H-containing amorphous Si-layers (a-Si:H). Density-independent stopping powers at different H concentrations are determined by combining the results from NRA and XRR with an overall uncertainty of 3.3%, showing good agreement with SRIM values. This work shows exemplary the methodology for future evaluation of stopping powers for quality assurance in NRA.

  9. Particle size determination in small solid propellant rocket motors using the diffractively scattered light method.

    OpenAIRE

    Cramer, Robert Grewelle.

    1982-01-01

    Approved for public release; distribution unlimited A dual beam apparatus was developed which simultaneously measured particle size (D32) at the entrance and exit of an exhaust nozzle of a small solid propellant rocket motor. The diameters were determined using measurements of dif fractiveiy scattered laser power spectra. The apparatus was calibrated by using spherical glass beads and aluminum oxide powder. Measurements were successfully made at both locations. Because of...

  10. Determination of the minimum size of a statistical representative volume element from a fibre-reinforced composite based on point pattern statistics

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl

    2013-01-01

    In a previous study, Trias et al. [1] determined the minimum size of a statistical representative volume element (SRVE) of a unidirectional fibre-reinforced composite primarily based on numerical analyses of the stress/strain field. In continuation of this, the present study determines the minimu...... size of an SRVE based on a statistical analysis on the spatial statistics of the fibre packing patterns found in genuine laminates, and those generated numerically using a microstructure generator. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  11. Rapid and accurate determination of Stern-Volmer quenching constants

    International Nuclear Information System (INIS)

    Goodpaster, John V.; McGuffin, Victoria L.

    1999-01-01

    In this work, a novel system has been designed, characterized, and validated for the determination of fluorescence quenching constants. Capillary flow injection methods are used to automate the preparation and mixing of the fluorophore and quencher solutions. Because of the small diameter of the capillary (75-200 μm), fluorescence measurements can be made without corrections for primary and secondary absorbance effects. The fluorescence spectrometer is equipped with a charge-coupled device (CCD) that has a detection limit of 3.0x10 -9 M (2.3 ppb) and a linear dynamic range of 10 5 for integration times of 0.01-10 s. This spectrometer has a 300 nm spectral range with 1 nm resolution, allowing the fluorescence quenching constants to be calculated at single wavelengths or over integrated wavelength ranges. This system was validated by comparison to traditional methods for the determination of Stern-Volmer constants for alternant and nonalternant polycyclic aromatic hydrocarbons with nitromethane and triethylamine. (c) 2000 Society for Applied Spectroscopy

  12. Species specific isotope dilution for the accurate and SI traceable determination of arsenobetaine and methylmercury in cuttlefish and prawn

    Energy Technology Data Exchange (ETDEWEB)

    Kumkrong, Paramee [National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6 (Canada); Thailand Institute of Scientific and Technological Research, 35 Mu 3 Tambon Khlong Ha, Amphoe Khlong Luang, Pathum Thani, 12120 (Thailand); Thiensong, Benjaporn [Thailand Institute of Scientific and Technological Research, 35 Mu 3 Tambon Khlong Ha, Amphoe Khlong Luang, Pathum Thani, 12120 (Thailand); Le, Phuong Mai; McRae, Garnet; Windust, Anthony [National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6 (Canada); Deawtong, Suladda [Thailand Institute of Scientific and Technological Research, 35 Mu 3 Tambon Khlong Ha, Amphoe Khlong Luang, Pathum Thani, 12120 (Thailand); Meija, Juris; Maxwell, Paulette [National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6 (Canada); Yang, Lu, E-mail: Lu.yang@nrc-cnrc.gc.ca [National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6 (Canada); Mester, Zoltán [National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6 (Canada)

    2016-11-02

    Methods based on species specific isotope dilution were developed for the accurate and SI traceable determination of arsenobetaine (AsBet) and methylmercury (MeHg) in prawn and cuttlefish tissues by LC-MS/MS and SPME GC-ICPMS. Quantitation of AsBet and MeHg were achieved by using a {sup 13}C-enriched AsBet spike (NRC CRM CBET-1) and an enriched spike of Me{sup 198}Hg (NRC CRM EMMS-1), respectively, wherein analyte mass fractions in enriched spikes were determined by reverse isotope dilution using natural abundance AsBet and MeHg primary standards. Purity of these primary standards were characterized by quantitative {sup 1}H-NMR with the use of NIST SRM 350b benzoic acid as a primary calibrator, ensuring the final measurement results traceable to SI. Validation of employed methods of ID LC-MS/MS and ID SPME GC-ICPMS was demonstrated by analysis of several biological CRMs (DORM-4, TORT-3, DOLT-5, BCR-627 and BCR-463) with satisfying results. The developed methods were applied for the determination of AsBet and MeHg in two new certified reference materials (CRMs) prawn (PRON-1) and cuttlefish (SQID-1) produced jointly by Thailand Institute of Scientific and Technological Research (TISTR) and National Research Council Canada (NRC). With additional measurements of AsBet using LC-ICPMS with standard additions calibration and external calibration at NRC and TISTR, respectively, certified values of 1.206 ± 0.058 and 13.96 ± 0.54 mg kg{sup −1} for AsBet as As (expanded uncertainty, k = 2) were obtained for the new CRMs PRON-1 and SQID-1, respectively. The reference value of 0.324 ± 0.028 mg kg{sup −1} as Hg (expanded uncertainty, k = 2) for MeHg was obtained for the SQID-1 based on the results obtained by ID SPME GC-ICPMS method only, whereas MeHg in PRON-1 was found to be < 0.015 mg kg{sup −1}. It was found that AsBet comprised 69.7% and 99.0% of total As in the prawn and cuttlefish, respectively, whereas MeHg comprised 94.5% of total Hg in

  13. Materialised Ideals Sizes and Beauty

    Directory of Open Access Journals (Sweden)

    Kirsi Laitala

    2011-04-01

    Full Text Available Today’s clothing industry is based on a system where clothes are made in ready-to-wear sizes and meant to fit most people. Studies have pointed out that consumers are discontent with the use of these systems: size designations are not accurate enough to find clothing that fits, and different sizes are poorly available. This article discusses in depth who these consumers are, and which consumer groups are the most dissatisfied with today’s sizing systems. Results are based on a web survey where 2834 Nordic consumers responded, complemented with eight in-depth interviews, market analysis on clothing sizes and in-store trouser size measurements. Results indicate that higher shares of the consumers who have a body out of touch with the existing beauty ideals express discontentment with the sizing systems and the poor selection available. In particular, large women, very large men, and thin, short men are those who experience less priority in clothing stores and have more difficulties in finding clothes that fit. Consumers tend to blame themselves when the clothes do not fit their bodies, while our study points out that the industry is to blame as they do not produce clothing for all customers.

  14. Accurate simulation of ionisation chamber response with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Sempau, Josep; Andreo, Pedro

    2011-01-01

    Ionisation chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, for various decades, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects can be sizeable when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artefact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics are discussed in the context of the transport model implemented in the PENELOPE code. The degree of violation of the Fano theorem for a simple, planar geometry, is used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It is shown that, with a suitable choice of transport parameters, PENELOPE simulates IC response with an accuracy of the order of 0.1%.

  15. Accurate simulation of ionization chamber response with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Sempau, Josep

    2010-01-01

    Full text. Ionization chambers (IC) are routinely used in hospitals for the dosimetry of the photon and electron beams used for radiotherapy treatments. The determination of absorbed dose to water from the absorbed dose to the air filling the cavity requires the introduction of stopping power ratios and perturbation factors, which account for the disturbance caused by the presence of the chamber. Although this may seem a problem readily amenable to Monte Carlo simulation, the fact is that the accurate determination of IC response has been, during the last 20 years, one of the most important challenges of the simulation of electromagnetic showers. The main difficulty stems from the use of condensed history techniques for electron and positron transport. This approach, which involves grouping a large number of interactions into a single artificial event, is known to produce the so-called interface effects when particles travel across surfaces separating different media. These effects are extremely important when the electron step length is not negligible compared to the size of the region being crossed, as it is the case with the cavity of an IC. The artifact, which becomes apparent when the chamber response shows a marked dependence on the adopted step size, can be palliated with the use of sophisticated electron transport algorithms. These topics will be discussed in the context of the transport model implemented in the Penelope code. The degree of violation of the Fano theorem for a simple, planar geometry, will be used as a measure of the stability of the algorithm with respect to variations of the electron step length, thus assessing the 'quality' of its condensed history scheme. It will be shown that, with a suitable choice of transport parameters, Penelope can simulate IC response with an accuracy of the order of 0.1%. (author)

  16. Controlling coarse woody debris inventory quality: taper and relative size methods

    Science.gov (United States)

    C.W. Woodall; J.A. Westfall

    2008-01-01

    Accurately measuring the dimensions of coarse woody debris (CWD) is critical for ensuring the quality of CWD estimates and, hence, for accurately estimating forest ecosystem attributes (e.g., CWD carbon stocks). To improve the quality of CWD dimensional measurements, the distribution of taper (ratio of change in diameter and length) and relative size (RS; ratio of...

  17. Dependence of US hurricane economic loss on maximum wind speed and storm size

    International Nuclear Information System (INIS)

    Zhai, Alice R; Jiang, Jonathan H

    2014-01-01

    Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependences of normalized US hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the US from 1988 through 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (V max ) and size (R), L = 10 c V max a R b , with c determining an overall scaling factor and the exponents a and b generally ranging between 4–12 and 2–4 respectively. Both a and b tend to increase with stronger wind speed. Hurricane Sandy’s size was about three times of the average size of all hurricanes analyzed. Based on the bi-variate regression model that explains the most variance for hurricanes, Hurricane Sandy’s loss would be approximately 20 times smaller if its size were of the average size with maximum wind speed unchanged. It is important to revise conventional empirical hurricane loss models that are only dependent on maximum wind speed to include both maximum wind speed and size as predictors. (letters)

  18. Comparison of conventional and 3-dimensional computed tomography against histopathologic examination in determining pancreatic adenocarcinoma tumor size: Implications for radiation therapy planning

    International Nuclear Information System (INIS)

    Qiu Haoming; Wild, Aaron T.; Wang Hao; Fishman, Elliot K.; Hruban, Ralph H.; Laheru, Daniel A.; Kumar, Rachit; Hacker-Prietz, Amy; Tuli, Richard; Tryggestad, Erik; Schulick, Richard D.; Cameron, John L.; Edil, Barish H.; Pawlik, Timothy M.; Wolfgang, Christopher L.; Herman, Joseph M.

    2012-01-01

    Background and purpose: This study seeks to: (a) quantify radiologic-pathologic discrepancy for pancreatic adenocarcinoma by comparing tumor size on conventional computed tomography (C-CT) and 3-dimensional CT (3D-CT) to corresponding pathologic specimens; and (b) to identify clinico-pathologic characteristics predictive of radiologic-pathologic discrepancy to assist radiotherapy planning. Materials and methods: Sixty-three patients with pancreatic adenocarcinoma and preoperative C-CT and volume-rendered 3D-CT imaging within 6 weeks of resection were identified. Maximum tumor diameter (MTD) was measured on pathology, C-CT, and 3D-CT and compared for each patient as well as among different clinico-pathologic subgroups. Results: There was a trend toward C-CT underestimation of MTD compared to final pathology (p = 0.08), but no significant difference between 3D-CT MTD and pathology (p = 0.54). Pathologic tumor size was significantly underestimated by C-CT in patients with larger pathologic tumor size (>3.0 cm, p = 0.0001), smaller tumor size on C-CT ( 90 U/mL, p = 0.008), and location in the pancreatic head (p = 0.015). A model for predicting pathologic MTD using C-CT MTD and CA19-9 level was generated. Conclusions: 3D-CT may allow for more accurate contouring of pancreatic tumors than C-CT. Patients with the above clinico-pathologic characteristics may require expanded margins relative to tumor size estimates on C-CT during radiotherapy planning.

  19. Representative volume size: A comparison of statistical continuum mechanics and statistical physics

    Energy Technology Data Exchange (ETDEWEB)

    AIDUN,JOHN B.; TRUCANO,TIMOTHY G.; LO,CHI S.; FYE,RICHARD M.

    1999-05-01

    In this combination background and position paper, the authors argue that careful work is needed to develop accurate methods for relating the results of fine-scale numerical simulations of material processes to meaningful values of macroscopic properties for use in constitutive models suitable for finite element solid mechanics simulations. To provide a definite context for this discussion, the problem is couched in terms of the lack of general objective criteria for identifying the size of the representative volume (RV) of a material. The objective of this report is to lay out at least the beginnings of an approach for applying results and methods from statistical physics to develop concepts and tools necessary for determining the RV size, as well as alternatives to RV volume-averaging for situations in which the RV is unmanageably large. The background necessary to understand the pertinent issues and statistical physics concepts is presented.

  20. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals.

    Science.gov (United States)

    Ye, Shuji; Li, Hongchun; Yang, Weilai; Luo, Yi

    2014-01-29

    Accurate determination of protein structures at the interface is essential to understand the nature of interfacial protein interactions, but it can only be done with a few, very limited experimental methods. Here, we demonstrate for the first time that sum frequency generation vibrational spectroscopy can unambiguously differentiate the interfacial protein secondary structures by combining surface-sensitive amide I and amide III spectral signals. This combination offers a powerful tool to directly distinguish random-coil (disordered) and α-helical structures in proteins. From a systematic study on the interactions between several antimicrobial peptides (including LKα14, mastoparan X, cecropin P1, melittin, and pardaxin) and lipid bilayers, it is found that the spectral profiles of the random-coil and α-helical structures are well separated in the amide III spectra, appearing below and above 1260 cm(-1), respectively. For the peptides with a straight backbone chain, the strength ratio for the peaks of the random-coil and α-helical structures shows a distinct linear relationship with the fraction of the disordered structure deduced from independent NMR experiments reported in the literature. It is revealed that increasing the fraction of negatively charged lipids can induce a conformational change of pardaxin from random-coil to α-helical structures. This experimental protocol can be employed for determining the interfacial protein secondary structures and dynamics in situ and in real time without extraneous labels.

  1. Field test comparison of an autocorrelation technique for determining grain size using a digital 'beachball' camera versus traditional methods

    Science.gov (United States)

    Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.

    2007-01-01

    This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than

  2. ANN modelling for the determination of moulding sand matrix grain size

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-10-01

    Full Text Available One of the modern methods of the production optimisation are artificial neural networks. Neural networks are gaining broader and broader application in the foundry industry, among others for controlling melting processes in cupolas and in arc furnaces, for designing castings and supply systems, for controlling moulding sand processing, for predicting properties of cast alloys or selecting parameters of pressure castings. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means of detecting correlations between their individual parameters. The presented investigations were obtained by using the Statistica 9.0 program. The aim of the investigations was to select the neural network suitable for prediction the moulding sand matrix grain size on the basis of the determined sand properties such as: permeability, compactibility, and compressive strength.

  3. AFM topographies of densely packed nanoparticles: a quick way to determine the lateral size distribution by autocorrelation function analysis

    International Nuclear Information System (INIS)

    Fekete, L.; Kůsová, K.; Petrák, V.; Kratochvílová, I.

    2012-01-01

    The distribution of sizes is one of the basic characteristics of nanoparticles. Here, we propose a novel way to determine the lateral distribution of sizes from AFM topographies. Our algorithm is based on the autocorrelation function and can be applied both on topographies containing spatially separated and densely packed nanoparticles as well as on topographies of polycrystalline films. As no manual treatment is required, this algorithm can be easily automatable for batch processing. The algorithm works in principle with any kind of spatially mapped information (AFM current maps, optical microscope images, etc.), and as such has no size limitations. However, in the case of AFM topographies, the tip/sample convolution effects will be the factor limiting the smallest size to which the algorithm is applicable. Here, we demonstrate the usefulness of this algorithm on objects with sizes ranging between 20 nm and 1.5 μm.

  4. Determination of hydrogen in milligram quantities of titanium and its alloys

    Science.gov (United States)

    Otterson, D. A.; Smith, R. J.

    1973-01-01

    An accurate, versatile, and sensitive method for the determination of hydrogen in milligram-size titanium samples is presented. It involves extraction of hydrogen at 1070 K while a mercury diffusion pump transfers the evolved gases into the inlet of a mass spectrometer. All the evolved gases may then be positively identified and determined. This method can be readily adapted for use with other metals and for the study of the slow evolution of hydrogen. Reduction of interferences due to the evolution of hydrogen by reactions involving vapors such as those of water, acetone, and vacuum grease is discussed.

  5. Synthesis, optical characterization, and size distribution determination by curve resolution methods of water-soluble CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Calink Indiara do Livramento; Carvalho, Melissa Souza; Raphael, Ellen; Ferrari, Jefferson Luis; Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Universidade Federal de Sao Joao del-Rei (UFSJ), MG (Brazil). Grupo de Pesquisa em Quimica de Materiais; Dantas, Clecio [Universidade Estadual do Maranhao (LQCINMETRIA/UEMA), Caxias, MA (Brazil). Lab. de Quimica Computacional Inorganica e Quimiometria

    2016-11-15

    In this work a colloidal approach to synthesize water-soluble CdSe quantum dots (QDs) bearing a surface ligand, such as thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), glutathione (GSH), or thioglycerol (TGH) was applied. The synthesized material was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-Vis), and fluorescence spectroscopy (PL). Additionally, a comparative study of the optical properties of different CdSe QDs was performed, demonstrating how the surface ligand affected crystal growth. The particles sizes were calculated from a polynomial function that correlates the particle size with the maximum fluorescence position. Curve resolution methods (EFA and MCR-ALS) were employed to decompose a series of fluorescence spectra to investigate the CdSe QDs size distribution and determine the number of fraction with different particle size. The results for the MPA-capped CdSe sample showed only two main fraction with different particle sizes with maximum emission at 642 and 686 nm. The calculated diameters from these maximum emission were, respectively, 2.74 and 3.05 nm. (author)

  6. Diagnostic methodology is critical for accurately determining the prevalence of Ichthyophonus infections in wild fish populations.

    Science.gov (United States)

    Kocan, Richard; Dolan, Heather; Hershberger, Paul

    2011-04-01

    Several different techniques have been employed to detect and identify Ichthyophonus spp. in infected fish hosts; these include macroscopic observation, microscopic examination of tissue squashes, histological evaluation, in vitro culture, and molecular techniques. Examination of the peer-reviewed literature revealed that when more than 1 diagnostic method is used, they often result in significantly different results; for example, when in vitro culture was used to identify infected trout in an experimentally exposed population, 98.7% of infected trout were detected, but when standard histology was used to confirm known infected tissues from wild salmon, it detected ~50% of low-intensity infections and ~85% of high-intensity infections. Other studies on different species reported similar differences. When we examined a possible mechanism to explain the disparity between different diagnostic techniques, we observed non-random distribution of the parasite in 3-dimensionally visualized tissue sections from infected hosts, thus providing a possible explanation for the different sensitivities of commonly used diagnostic techniques. Based on experimental evidence and a review of the peer-reviewed literature, we have concluded that in vitro culture is currently the most accurate diagnostic technique for determining infection prevalence of Ichthyophonus , particularly when the exposure history of the population is not known.

  7. Gridsampler – A Simulation Tool to Determine the Required Sample Size for Repertory Grid Studies

    OpenAIRE

    Heckmann, Mark; Burk, Lukas

    2017-01-01

    The repertory grid is a psychological data collection technique that is used to elicit qualitative data in the form of attributes as well as quantitative ratings. A common approach for evaluating multiple repertory grid data is sorting the elicited bipolar attributes (so called constructs) into mutually exclusive categories by means of content analysis. An important question when planning this type of study is determining the sample size needed to a) discover all attribute categories relevant...

  8. Porosity and pore size distribution determination of Tumblagooda formation sandstone by X-ray microtomography

    International Nuclear Information System (INIS)

    Fernandes, Jaquiel S.; Appoloni, Carlos R.; Moreira, Anderson C.

    2007-01-01

    Microstructural parameters evaluations of reservoir rocks are very important to petroleum industry. This work presents total porosity and pore size distribution measurement of a sandstone sample from the Tumblagooda formation, collected at Kalbarri National Park in Australia. Porosity and pores size distribution were determined using X-Ray microtomography and imaging techniques. For these measurements, it was employed a micro-CT (μ-CT) Skyscan system model 1172 with conical beam, operated with a 1 mm Al filter at 80 kV and 125 μA, respectively, and a 2000 x 1048 pixels CCD camera. The sample was rotated from 0 deg to 180 deg, in step of 0.5 deg. For the considered sample, this equipment provided images with 2.9 μm spatial resolution. Six hundreds 2-D images where reconstructed with the Skyscan NRecon software, which were analyzed with the aid of Imago software, developed at the Laboratory of Porous Media and Thermophysical Properties (LMPT), Department of Mechanical Engineering, Federal University of Santa Catarina, Brazil, in association with the Brazilian software company Engineering Simulation and Scientific Software (ESSS), and Petroleo Brasileiro SA (PETROBRAS) Research and Development Center (CENPES). The determined average porosity was 11.45 ±1.53 %. Ninety five percent of the porous phase refers to pores with radius ranging from 2.9 to 85.2 μm, presenting the larger frequency (7.7 %) at 11.7 μm radius. (author)

  9. Proof of principle in vitro study of a prototype ultrasound technology to size stone fragments during ureteroscopy.

    Science.gov (United States)

    Sorensen, Mathew D; Teichman, Joel M H; Bailey, Michael R

    2009-07-01

    Proof-of-principle in vitro experiments evaluated a prototype ultrasound technology to size kidney stone fragments. Nineteen human stones were measured using manual calipers. A 10-MHz, 1/8'' (10F) ultrasound transducer probe pinged each stone on a kidney tissue phantom submerged in water using two methods. In Method 1, the instrument was aligned such that the ultrasound pulse traveled through the stone. In Method 2, the instrument was aligned partially over the stone such that the ultrasound pulse traveled through water. For Method 1, the correlation between caliper- and ultrasound-determined stone size was r(2) = 0.71 (P stone measurements were accurate and precise to within 1 mm. For Method 2, the correlation was r(2) = 0.99 (P stone size with good accuracy and precision. This technology may be possible to incorporate into ureteroscopy.

  10. PENENTUAN PRODUCTION LOT SIZES DAN TRANSFER BATCH SIZES DENGAN PENDEKATAN MULTISTAGE

    Directory of Open Access Journals (Sweden)

    Purnawan Adi W

    2012-02-01

    optimal lot size in a system of production with several types. Analysis of production batch (production lot using hybrid analytic simulation is one kind of research about optimal lot size. That research uses single-stage system approach where there are not relationships between processes in every stage or in other word; one process is independent to other process. Using the same research object with one before, this research then take up problem how to determine production lot size with multi-stage approach. First, determining optimal production lot size by linear program using the same data with previous research. Then, production lot size is used as simulation input to determine transfer batch size. Average of queue length and waiting time as performance measurement are used as reference in determining transfer batch size from several alternatives.In this research, it shows that production lot size is same with demand each period. Determination result of transfer batch size by using simulation then implemented on model. The result is descent of inventory of connector product at 76.35% and 50.59% for box connector product, as compared to inventory using single-stage approach. Keywords : multistage, production lot, transfer batch

  11. Accurate lithography simulation model based on convolutional neural networks

    Science.gov (United States)

    Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki

    2017-07-01

    Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.

  12. Ensemble coding remains accurate under object and spatial visual working memory load.

    Science.gov (United States)

    Epstein, Michael L; Emmanouil, Tatiana A

    2017-10-01

    A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.

  13. SPONTANEOUS INITIATION OF DETONATIONS IN WHITE DWARF ENVIRONMENTS: DETERMINATION OF CRITICAL SIZES

    International Nuclear Information System (INIS)

    Seitenzahl, Ivo R.; Meakin, Casey A.; Townsley, Dean M.; Truran, James W.; Lamb, Don Q.

    2009-01-01

    Some explosion models for Type Ia supernovae (SNe Ia), such as the gravitationally confined detonation (GCD) or the double detonation sub-Chandrasekhar (DDSC) models, rely on the spontaneous initiation of a detonation in the degenerate 12 C/ 16 O material of a white dwarf (WD). The length scales pertinent to the initiation of the detonation are notoriously unresolved in multidimensional stellar simulations, prompting the use of results of one-dimensional simulations at higher resolution, such as those performed for this work, as guidelines for deciding whether or not conditions reached in the higher dimensional full star simulations successfully would lead to the onset of a detonation. Spontaneous initiation relies on the existence of a suitable gradient in self-ignition (induction) times of the fuel, which we set up with a spatially localized nonuniformity of temperature-a hot spot. We determine the critical (smallest) sizes of such hot spots that still marginally result in a detonation in WD matter by integrating the reactive Euler equations with the hydrodynamics code FLASH. We quantify the dependences of the critical sizes of such hot spots on composition, background temperature, peak temperature, geometry, and functional form of the temperature disturbance, many of which were hitherto largely unexplored in the literature. We discuss the implications of our results in the context of modeling of SNe Ia.

  14. Perception of contextual size illusions by honeybees in restricted and unrestricted viewing conditions.

    Science.gov (United States)

    Howard, Scarlett R; Avarguès-Weber, Aurore; Garcia, Jair E; Stuart-Fox, Devi; Dyer, Adrian G

    2017-11-29

    How different visual systems process images and make perceptual errors can inform us about cognitive and visual processes. One of the strongest geometric errors in perception is a misperception of size depending on the size of surrounding objects, known as the Ebbinghaus or Titchener illusion. The ability to perceive the Ebbinghaus illusion appears to vary dramatically among vertebrate species, and even populations, but this may depend on whether the viewing distance is restricted. We tested whether honeybees perceive contextual size illusions, and whether errors in perception of size differed under restricted and unrestricted viewing conditions. When the viewing distance was unrestricted, there was an effect of context on size perception and thus, similar to humans, honeybees perceived contrast size illusions. However, when the viewing distance was restricted, bees were able to judge absolute size accurately and did not succumb to visual illusions, despite differing contextual information. Our results show that accurate size perception depends on viewing conditions, and thus may explain the wide variation in previously reported findings across species. These results provide insight into the evolution of visual mechanisms across vertebrate and invertebrate taxa, and suggest convergent evolution of a visual processing solution. © 2017 The Author(s).

  15. Determination of denaturated proteins and biotoxins by on-line size-exclusion chromatography-digestion-liquid chromatography-electrospray mass spectrometry

    NARCIS (Netherlands)

    Carol, J.; Gorseling, M.C.J.K.; Jong, C.F. de; Lingeman, H.; Kientz, C.E.; Baar, B.L.M. van; Irth, H.

    2005-01-01

    A multidimensional analytical method for the rapid determination and identification of proteins has been developed. The method is based on the size-exclusion fractionation of protein-containing samples, subsequent on-line trypsin digestion and desalination, and reversed-phase high-performance liquid

  16. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    Science.gov (United States)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  17. Size Estimation of Non-Cooperative Data Collections

    NARCIS (Netherlands)

    Khelghati, Mohammadreza; Hiemstra, Djoerd; van Keulen, Maurice

    2012-01-01

    With the increasing amount of data in deep web sources (hidden from general search engines behind web forms), ac- cessing this data has gained more attention. In the algo- rithms applied for this purpose, it is the knowledge of a data source size that enables the algorithms to make accurate de-

  18. Data Mining for Efficient and Accurate Large Scale Retrieval of Geophysical Parameters

    Science.gov (United States)

    Obradovic, Z.; Vucetic, S.; Peng, K.; Han, B.

    2004-12-01

    Our effort is devoted to developing data mining technology for improving efficiency and accuracy of the geophysical parameter retrievals by learning a mapping from observation attributes to the corresponding parameters within the framework of classification and regression. We will describe a method for efficient learning of neural network-based classification and regression models from high-volume data streams. The proposed procedure automatically learns a series of neural networks of different complexities on smaller data stream chunks and then properly combines them into an ensemble predictor through averaging. Based on the idea of progressive sampling the proposed approach starts with a very simple network trained on a very small chunk and then gradually increases the model complexity and the chunk size until the learning performance no longer improves. Our empirical study on aerosol retrievals from data obtained with the MISR instrument mounted at Terra satellite suggests that the proposed method is successful in learning complex concepts from large data streams with near-optimal computational effort. We will also report on a method that complements deterministic retrievals by constructing accurate predictive algorithms and applying them on appropriately selected subsets of observed data. The method is based on developing more accurate predictors aimed to catch global and local properties synthesized in a region. The procedure starts by learning the global properties of data sampled over the entire space, and continues by constructing specialized models on selected localized regions. The global and local models are integrated through an automated procedure that determines the optimal trade-off between the two components with the objective of minimizing the overall mean square errors over a specific region. Our experimental results on MISR data showed that the combined model can increase the retrieval accuracy significantly. The preliminary results on various

  19. Measuring the sizes of nanospheres on a rough surface by using atomic force microscopy and a curvature-reconstruction method

    International Nuclear Information System (INIS)

    Oikawa, Koudai; Kim, Hyonchol; Watanabe, Naoya; Shigeno, Masatsugu; Shirakawabe, Yoshiharu; Yasuda, Kenji

    2007-01-01

    One of the advantages of atomic force microscopy (AFM) is that it can accurately measure the heights of targets on flat substrates. It is difficult, however, to determine the shape of nanoparticles on rough surfaces. We therefore propose a curvature-reconstruction method that estimates the sizes of particles by fitting sphere curvatures acquired from raw AFM data. We evaluated this fitting estimation using 15-, 30-, and 50-nm gold nanoparticles on mica and confirmed that particle sizes could be estimated within 5% from 20% of their curvature measured using a carbon nanotube (CNT) tip. We also estimated the sizes of nanoparticles on the rough surface of dried cells and found we also can estimate the size of those particles within 5%, which is difficult when we only used the height information. The results indicate the size of nanoparticles even on rough surfaces can be measured by using our method and a CNT tip

  20. STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    High, F. William; Stubbs, Christopher W.; Rest, Armin; Stalder, Brian; Challis, Peter

    2009-01-01

    We present stellar locus regression (SLR), a method of directly adjusting the instrumental broadband optical colors of stars to bring them into accord with a universal stellar color-color locus, producing accurately calibrated colors for both stars and galaxies. This is achieved without first establishing individual zero points for each passband, and can be performed in real-time at the telescope. We demonstrate how SLR naturally makes one wholesale correction for differences in instrumental response, for atmospheric transparency, for atmospheric extinction, and for Galactic extinction. We perform an example SLR treatment of Sloan Digital Sky Survey data over a wide range of Galactic dust values and independently recover the direction and magnitude of the canonical Galactic reddening vector with 14-18 mmag rms uncertainties. We then isolate the effect of atmospheric extinction, showing that SLR accounts for this and returns precise colors over a wide range of air mass, with 5-14 mmag rms residuals. We demonstrate that SLR-corrected colors are sufficiently accurate to allow photometric redshift estimates for galaxy clusters (using red sequence galaxies) with an uncertainty σ(z)/(1 + z) = 0.6% per cluster for redshifts 0.09 < z < 0.25. Finally, we identify our objects in the 2MASS all-sky catalog, and produce i-band zero points typically accurate to 18 mmag using only SLR. We offer open-source access to our IDL routines, validated and verified for the implementation of this technique, at http://stellar-locus-regression.googlecode.com.

  1. An analytical model for the determination of resonance frequencies of perforated beams

    International Nuclear Information System (INIS)

    Luschi, Luca; Pieri, Francesco

    2014-01-01

    In this paper, we develop closed expressions for the equivalent bending and shear stiffness of beams with regular square perforations, and apply them to the problem of determining the resonance frequencies of slender, regularly perforated clamped–clamped beams, which are of interest in the development of MEMS resonant devices. We prove that, depending on the perforation size, the Euler–Bernoulli equation or the more complex shear equation needs to be used to obtain accurate values for these frequencies. Extensive finite element method simulations are used to validate the proposed model over the full practical range of possible hole sizes. An experimental verification of the model is also presented. (paper)

  2. Sizing of patent ductus arteriosus in adults for transcatheter closure using the balloon pull-through technique.

    Science.gov (United States)

    Shafi, Nabil A; Singh, Gagan D; Smith, Thomas W; Rogers, Jason H

    2018-05-01

    To describe a novel balloon sizing technique used during adult transcatheter patent ductus arteriosus (PDA) closure. In addition, to determine the clinical and procedural outcomes in six patients who underwent PDA balloon sizing with subsequent deployment of a PDA occluder device. Transcatheter PDA closure in adults has excellent safety and procedural outcomes. However, PDA sizing in adults can be challenging due to variable defect size, high flow state, or anatomical complexity. We describe a series of six cases where the balloon- pull through technique was successfully performed for PDA sizing prior to transcatheter closure. Consecutive adult patients undergoing adult PDA closure at our institution were studied retrospectively. A partially inflated sizing balloon was pulled through the defect from the aorta into the pulmonary artery and the balloon waist diameter was measured. Procedural success and clinical outcomes were obtained. Six adult patients underwent successful balloon pull-through technique for PDA sizing during transcatheter PDA closure, since conventional angiography often gave suboptimal opacification of the defect. All PDAs were treated with closure devices based on balloon PDA sizing with complete closure and no complications. In three patients that underwent preprocedure computed tomography, the balloon size matched the CT derived measurements. The balloon pull-through technique for PDA sizing is a safe and accurate sizing modality in adults undergoing transcatheter PDA closure. © 2017 Wiley Periodicals, Inc.

  3. Constant size descriptors for accurate machine learning models of molecular properties

    Science.gov (United States)

    Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole; Yaron, David J.

    2018-06-01

    Two different classes of molecular representations for use in machine learning of thermodynamic and electronic properties are studied. The representations are evaluated by monitoring the performance of linear and kernel ridge regression models on well-studied data sets of small organic molecules. One class of representations studied here counts the occurrence of bonding patterns in the molecule. These require only the connectivity of atoms in the molecule as may be obtained from a line diagram or a SMILES string. The second class utilizes the three-dimensional structure of the molecule. These include the Coulomb matrix and Bag of Bonds, which list the inter-atomic distances present in the molecule, and Encoded Bonds, which encode such lists into a feature vector whose length is independent of molecular size. Encoded Bonds' features introduced here have the advantage of leading to models that may be trained on smaller molecules and then used successfully on larger molecules. A wide range of feature sets are constructed by selecting, at each rank, either a graph or geometry-based feature. Here, rank refers to the number of atoms involved in the feature, e.g., atom counts are rank 1, while Encoded Bonds are rank 2. For atomization energies in the QM7 data set, the best graph-based feature set gives a mean absolute error of 3.4 kcal/mol. Inclusion of 3D geometry substantially enhances the performance, with Encoded Bonds giving 2.4 kcal/mol, when used alone, and 1.19 kcal/mol, when combined with graph features.

  4. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    Energy Technology Data Exchange (ETDEWEB)

    Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  5. Highly Accurate Prediction of Jobs Runtime Classes

    OpenAIRE

    Reiner-Benaim, Anat; Grabarnick, Anna; Shmueli, Edi

    2016-01-01

    Separating the short jobs from the long is a known technique to improve scheduling performance. In this paper we describe a method we developed for accurately predicting the runtimes classes of the jobs to enable this separation. Our method uses the fact that the runtimes can be represented as a mixture of overlapping Gaussian distributions, in order to train a CART classifier to provide the prediction. The threshold that separates the short jobs from the long jobs is determined during the ev...

  6. Accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes and pure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinhua; Fu, Qingshan; Xue, Yongqiang, E-mail: xyqlw@126.com; Cui, Zixiang

    2017-05-01

    Based on the surface pre-melting model, accurate thermodynamic relations of the melting temperature of nanocrystals with different shapes (tetrahedron, cube, octahedron, dodecahedron, icosahedron, nanowire) were derived. The theoretically calculated melting temperatures are in relative good agreements with experimental, molecular dynamic simulation and other theoretical results for nanometer Au, Ag, Al, In and Pb. It is found that the particle size and shape have notable effects on the melting temperature of nanocrystals, and the smaller the particle size, the greater the effect of shape. Furthermore, at the same equivalent radius, the more the shape deviates from sphere, the lower the melting temperature is. The value of melting temperature depression of cylindrical nanowire is just half of that of spherical nanoparticle with an identical radius. The theoretical relations enable one to quantitatively describe the influence regularities of size and shape on the melting temperature and to provide an effective way to predict and interpret the melting temperature of nanocrystals with different sizes and shapes. - Highlights: • Accurate relations of T{sub m} of nanocrystals with various shapes are derived. • Calculated T{sub m} agree with literature results for nano Au, Ag, Al, In and Pb. • ΔT{sub m} (nanowire) = 0.5ΔT{sub m} (spherical nanocrystal). • The relations apply to predict and interpret the melting behaviors of nanocrystals.

  7. An accurate projection algorithm for array processor based SPECT systems

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Cool, S.L.

    1985-01-01

    A data re-projection algorithm has been developed for use in single photon emission computed tomography (SPECT) on an array processor based computer system. The algorithm makes use of an accurate representation of pixel activity (uniform square pixel model of intensity distribution), and is rapidly performed due to the efficient handling of an array based algorithm and the Fast Fourier Transform (FFT) on parallel processing hardware. The algorithm consists of using a pixel driven nearest neighbour projection operation to an array of subdivided projection bins. This result is then convolved with the projected uniform square pixel distribution before being compressed to original bin size. This distribution varies with projection angle and is explicitly calculated. The FFT combined with a frequency space multiplication is used instead of a spatial convolution for more rapid execution. The new algorithm was tested against other commonly used projection algorithms by comparing the accuracy of projections of a simulated transverse section of the abdomen against analytically determined projections of that transverse section. The new algorithm was found to yield comparable or better standard error and yet result in easier and more efficient implementation on parallel hardware. Applications of the algorithm include iterative reconstruction and attenuation correction schemes and evaluation of regions of interest in dynamic and gated SPECT

  8. Influence of particle size of wear metal on the spectrometric oil analysis programme (SOAP), demonstrated by the determination of iron by AAS

    Energy Technology Data Exchange (ETDEWEB)

    Klaegler, S.H.; Jantzen, E.

    1982-02-01

    The possibility that there might be a relation between particle size of wear metal and spectrometric determination, (e.g. of the iron content in used lubricating oils) has been examined. In this connection it had to be clarified from which particle size of the iron wear the Fe content determined by direct AAS (solution of the oil sample) is in agreement with the true value in the used oil. The determination of the absolute iron content was performed by a colorimetric method preceded by an incineration of the used oil. Contrary to other publications, in which work is based on spherical iron particles as a simulated wear, the test described here relates to true wear particles. To obtain the total iron wear from a gear oil it was filtered off from the used oil and afterwards separated into defined particle size ranges by a procedure specially developed for this purpose. The different groups of scaly particles, which were collected in this way, were then mixed homogeneously into fresh luboil samples according to their sizes. The determination of the iron content from these newly mixed luboil samples was carried out 1. by direct AAS, 2. by AAS after incineration of the oil samples and 3. by a colorimetric method (to obtain the absolute value of the iron content). The results showed a recovery of the iron of only 50% if the wear particles were bigger than about 2 ..mu..m. That means that the true value of the iron content in a used lubricating oil is found by direct AAS only if the particle size is <=1 ..mu..m.

  9. Dynamic determination of modulus of elasticity of full-size wood composite panels using a vibration method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; Lujing Zhou; Xiping Wang

    2015-01-01

    A vibration testing method based on free vibration theory in a ‘‘free–free” support condition was investigated for evaluating the modulus of elasticity (MOE) of full-size wood composite panels (WCPs). Vibration experiments were conducted on three types of WCPs (medium density fibreboard, particleboard, and plywood) to determine the dynamic MOE of the panels. Static...

  10. Determination of size and shape distributions of metal and ceramic powders; Odredjivanje raspodele velicina, specificne povrsine i oblika metalnih i keramickih prahova

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, DI [Institute of Nuclear Sciences Boris Kidric, Laboratorija za termotehniku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    For testing the size and shape distributions of metal and ceramic uranium oxide powders the following method for analysing the grain size of powders were developed and implemented: microscopic analysis and sedimentation method. A gravimetry absorption device was constructed for determining the specific surfaces of powders.

  11. Accurate Classification of Chronic Migraine via Brain Magnetic Resonance Imaging

    Science.gov (United States)

    Schwedt, Todd J.; Chong, Catherine D.; Wu, Teresa; Gaw, Nathan; Fu, Yinlin; Li, Jing

    2015-01-01

    Background The International Classification of Headache Disorders provides criteria for the diagnosis and subclassification of migraine. Since there is no objective gold standard by which to test these diagnostic criteria, the criteria are based on the consensus opinion of content experts. Accurate migraine classifiers consisting of brain structural measures could serve as an objective gold standard by which to test and revise diagnostic criteria. The objectives of this study were to utilize magnetic resonance imaging measures of brain structure for constructing classifiers: 1) that accurately identify individuals as having chronic vs. episodic migraine vs. being a healthy control; and 2) that test the currently used threshold of 15 headache days/month for differentiating chronic migraine from episodic migraine. Methods Study participants underwent magnetic resonance imaging for determination of regional cortical thickness, cortical surface area, and volume. Principal components analysis combined structural measurements into principal components accounting for 85% of variability in brain structure. Models consisting of these principal components were developed to achieve the classification objectives. Ten-fold cross validation assessed classification accuracy within each of the ten runs, with data from 90% of participants randomly selected for classifier development and data from the remaining 10% of participants used to test classification performance. Headache frequency thresholds ranging from 5–15 headache days/month were evaluated to determine the threshold allowing for the most accurate subclassification of individuals into lower and higher frequency subgroups. Results Participants were 66 migraineurs and 54 healthy controls, 75.8% female, with an average age of 36 +/− 11 years. Average classifier accuracies were: a) 68% for migraine (episodic + chronic) vs. healthy controls; b) 67.2% for episodic migraine vs. healthy controls; c) 86.3% for chronic

  12. Size structure, not metabolic scaling rules, determines fisheries reference points

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2015-01-01

    Impact assessments of fishing on a stock require parameterization of vital rates: growth, mortality and recruitment. For 'data-poor' stocks, vital rates may be estimated from empirical size-based relationships or from life-history invariants. However, a theoretical framework to synthesize...... these empirical relations is lacking. Here, we combine life-history invariants, metabolic scaling and size-spectrum theory to develop a general size- and trait-based theory for demography and recruitment of exploited fish stocks. Important concepts are physiological or metabolic scaled mortalities and flux...... is that larger species have a higher egg production per recruit than small species. This means that density dependence is stronger for large than for small species and has the consequence that fisheries reference points that incorporate recruitment do not obey metabolic scaling rules. This result implies...

  13. Antibody-dendrimer conjugates: the number, not the size of the dendrimers, determines the immunoreactivity.

    Science.gov (United States)

    Wängler, C; Moldenhauer, G; Eisenhut, M; Haberkorn, U; Mier, W

    2008-04-01

    Radioimmunotherapy using antibodies with favorable tumor targeting properties and high binding affinity is increasingly applied in cancer therapy. The potential of this valuable cancer treatment modality could be further improved by increasing the specific activity of the labeled proteins. This can be done either by coupling a large number of chelators which leads to a decreased immunoreactivity or by conjugating a small number of multimeric chelators. In order to systematically investigate the influence of conjugations on immunoreactivity with respect to size and number of the conjugates, the anti-EGFR antibody hMAb425 was reacted with PAMAM dendrimers of different size containing up to 128 chelating agents per conjugation site. An improved dendrimer synthesis protocol was established to obtain compounds of high homogeneity suitable for the formation of defined protein conjugates. The quantitative derivatization of the PAMAM dendrimers with DOTA moieties and the characterization of the products by isotopic dilution titration using (111)In/(nat)In are shown. The DOTA-containing dendrimers were conjugated with high efficiency to hMAb425 by applying Sulfo-SMCC as cross-linking agent and a 10- to 25-fold excess of the thiol-containing dendrimers. The determination of the immunoreactivities of the antibody-dendrimer conjugates by FACS analysis revealed a median retained immunoreactivity of 62.3% for 1.7 derivatization sites per antibody molecule, 55.4% for 2.8, 27.9% for 5.3, and 17.1% for 10.0 derivatization sites per antibody but no significant differences in immunoreactivity for different dendrimer sizes. These results show that the dendrimer size does not influence the immunoreactivity of the derivatized antibody significantly over a wide molecular weight range, whereas the number of derivatization sites has a crucial effect.

  14. Fish egg size: a characteristic determined by parental care

    Directory of Open Access Journals (Sweden)

    Rosana RM Mazzoni

    2015-12-01

    Full Text Available The existence of a trade-off between relative batch fecundity and egg size has been widely documented (e.g. Brown & Shine 2009. Studies on the evolution of parental care and its relationship with fish egg size were stimulated by the work of Shine (1978, who proposed several possible hypotheses, including one that predicted that the onset of parental care preceded the increase in egg size. This hypothesis has since been challenged by Nussbaum & Schultz (1989 and more recently by Summers et al. (2006, who proposed an alternative hypothesis in which the evolution of large eggs was said to precede the evolution of parental care and not the reverse. Here, we examined 313 species of bony fish, including 152 species with parental care (PC and 161 species without parental care (NPC, and found evidence that fully supports the hypothesis of Shine (1978. Additionally, we explain how strengthening this hypothesis could impact the development of phylogenies. We also make suggestions for future studies on gene regulatory mechanisms that could explain the evolution of parental care and egg size in bony fish within a more modern context of developmental ecology. Our analysis uses data describing the mean size of ripe eggs and the occurrence of parental care in 313 species of bony fish belonging to 53 families in 11 orders. Data for 22 of the 313 species were collected by us from the Tocantins River. Data for the remaining species were obtained from the literature: 6 species from the Paraná River (Suzuki et al. 2000, 149 species from large African lakes and some pelagic marine species (Duponchelle et al. 2008, 74 marine species (Pauly & Pullin 1988, and 65 species from the Tocantins River (Neuberger 2010. Of these 313 total species, 161 (51.4% are PC species and 152 (48.6% are NPC species. We analyzed a minimum of eight mature females from each of the 16 species we collected, and for each female, we measured 10 mature oocytes and derived the mean diameter of

  15. Signal processing for underclad crack sizing

    International Nuclear Information System (INIS)

    Shankar, R.; Lane, S.S.; Paradiso, T.J.; Quinn, J.R.

    1985-01-01

    The techniques developed in this work provide a means of sizing underclad cracks and quality control methods for assessing the accuracy of the data. Data were collected with a minicomputer (LSI 11-02), a transient recorder (Biomaton 8100) and anti-aliasing filter. Three techniques were developed: the calibration curve, phase velocity and epicentral. The phase reversal characteristic in the data is a strong indication of the nature of the signal source. That is, cracks are clearly seperable from two isolated inclusions on the basis of observed phase reversal. These methods have been implemented on a computer and appear to provide an accurate rapid method to discriminate and size underclad cracks

  16. Accurate determination and certification of bromine in plastic by isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Ohata, Masaki; Miura, Tsutomu

    2014-01-01

    Highlights: • Accurate analytical method of Br in plastic was studied by isotope dilution ICPMS. • A microwave acid digestion using quartz vessel was suitable for Br analysis. • Sample dilution by NH 3 solution could remove memory effect for ICPMS measurement. • The analytical result of the ID-ICPMS showed consistency with that of INAA. • The ID-ICPMS developed could apply to certification of Br in candidate plastic CRM. - Abstract: The accurate analytical method of bromine (Br) in plastic was developed by an isotope dilution inductively coupled plasma mass spectrometry (ID-ICPMS). The figures of merit of microwave acid digestion procedures using polytetrafluoroethylene (PTFE) or quartz vessels were studied and the latter one was suitable for Br analysis since its material was free from Br contamination. The sample dilution procedures using Milli-Q water or ammonium (NH 3 ) solution were also studied to remove memory effect for ICPMS measurement. Although severe memory effect was observed on Milli-Q water dilution, NH 3 solution could remove it successfully. The accuracy of the ID-ICPMS was validated by a certified reference material (CRM) as well as the comparison with the analytical result obtained by an instrumental neutron activation analysis (INAA) as different analytical method. From these results, the ID-ICPMS developed in the present study could be evaluated as accurate analytical method of Br in plastic materials and it could apply to certification of Br in candidate plastic CRM with respect to such regulations related to RoHS (restriction of the use of hazardous substances in electrical and electronics equipment) directive

  17. Comparison of the free volume sizes and shapes determined from crystallographic and PALS data

    Directory of Open Access Journals (Sweden)

    Tydda Maciej

    2015-12-01

    Full Text Available Two different classes of molecular crystals were investigated. The first group was benzenediols, which are characterized by the same chemical composition but a different organization of their crystallographic structures; all of the compounds from this group have only one kind of free volumes. The second class was represented by olanzapine, which has more complex chemical composition and two kinds of free volumes in the structure. The o-Ps lifetime values determined from positron annihilation lifetime spectroscopy (PALS measurements agree quite well with those calculated for sizes found from crystallographic data for benzenediols (agreement within 10% of the lifetime values. For olanzapine, a good agreement is observed in the case of cuboidal free volumes, while for the other kind of void, the agreement is less satisfactory. Positronium diffusion coefficient determined from o-Ps redistribution in olanzapine agrees with these found for polymers.

  18. Novel analytical model for the determination of grain size distributions in nanocrystalline materials with low lattice microstrains by X-ray diffractometry

    International Nuclear Information System (INIS)

    Sanchez-Bajo, F.; Ortiz, A.L.; Cumbrera, F.L.

    2006-01-01

    We have developed a novel, analytical model for the determination of grain size distributions in nanocrystalline (nc) materials with low internal stresses by X-ray diffractometry (XRD). The model assumes explicitly that the XRD peaks are pseudo-Voigtian and that the grain size distributions are lognormal, both of which are assumptions amply supported by the experimental evidence. It was found analytically that the grain size dispersion depends on the shape of the XRD peaks only, whereas the grain size median depends on both the shape and width of the XRD peaks. In addition, the theoretical predictions resulting from the model were validated using standard XRD peaks obtained by computer simulation from first principles. Particular emphasis is given to the discussion of the validity limits of the model, and to the analysis of the influence of the characteristics of the grain size distributions on the nature of the XRD peaks. We then show how to calculate the average and apparent grain sizes from the grain size distribution determined with the model, and how this compares with the Scherrer method. Implications for the characterization of (undistorted and distorted) nc-materials are indicated, and a case study of an nc-powder of cubic ZrO 2 is presented. The application of the model itself is simple, involving only the fit of a pseudo-Voigt function to a single XRD peak followed by the use of two equations. This suggests that the model may have an important role to play in the characterization of nc-materials

  19. Novel analytical model for the determination of grain size distributions in nanocrystalline materials with low lattice microstrains by X-ray diffractometry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Bajo, F. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas S/N, Badajoz 06071 (Spain); Ortiz, A.L. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Avda. de Elvas S/N, Badajoz 06071 (Spain)]. E-mail: alortiz@unex.es; Cumbrera, F.L. [Departamento de Fisica, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071 (Spain)

    2006-01-15

    We have developed a novel, analytical model for the determination of grain size distributions in nanocrystalline (nc) materials with low internal stresses by X-ray diffractometry (XRD). The model assumes explicitly that the XRD peaks are pseudo-Voigtian and that the grain size distributions are lognormal, both of which are assumptions amply supported by the experimental evidence. It was found analytically that the grain size dispersion depends on the shape of the XRD peaks only, whereas the grain size median depends on both the shape and width of the XRD peaks. In addition, the theoretical predictions resulting from the model were validated using standard XRD peaks obtained by computer simulation from first principles. Particular emphasis is given to the discussion of the validity limits of the model, and to the analysis of the influence of the characteristics of the grain size distributions on the nature of the XRD peaks. We then show how to calculate the average and apparent grain sizes from the grain size distribution determined with the model, and how this compares with the Scherrer method. Implications for the characterization of (undistorted and distorted) nc-materials are indicated, and a case study of an nc-powder of cubic ZrO{sub 2} is presented. The application of the model itself is simple, involving only the fit of a pseudo-Voigt function to a single XRD peak followed by the use of two equations. This suggests that the model may have an important role to play in the characterization of nc-materials.

  20. Eliminating high-order scattering effects in optical microbubble sizing.

    Science.gov (United States)

    Qiu, Huihe

    2003-04-01

    Measurements of bubble size and velocity in multiphase flows are important in much research and many industrial applications. It has been found that high-order refractions have great impact on microbubble sizing by use of phase-Doppler anemometry (PDA). The problem has been investigated, and a model of phase-size correlation, which also takes high-order refractions into consideration, is introduced to improve the accuracy of bubble sizing. Hence the model relaxes the assumption of a single-scattering mechanism in a conventional PDA system. The results of simulation based on this new model are compared with those based on a single-scattering-mechanism approach or a first-order approach. An optimization method for accurately sizing air bubbles in water has been suggested.

  1. A feasible, economical, and accurate analytical method for simultaneous determination of six alkaloid markers in Aconiti Lateralis Radix Praeparata from different manufacturing sources and processing ways.

    Science.gov (United States)

    Zhang, Yi-Bei; DA, Juan; Zhang, Jing-Xian; Li, Shang-Rong; Chen, Xin; Long, Hua-Li; Wang, Qiu-Rong; Cai, Lu-Ying; Yao, Shuai; Hou, Jin-Jun; Wu, Wan-Ying; Guo, De-An

    2017-04-01

    Aconiti Lateralis Radix Praeparata (Fuzi) is a commonly used traditional Chinese medicine in clinic for its potency in restoring yang and rescuing from collapse. Aconiti alkaloids, mainly including monoester-diterpenoidaconitines (MDAs) and diester-diterpenoidaconitines (DDAs), are considered to act as both bioactive and toxic constituents. In the present study, a feasible, economical, and accurate HPLC method for simultaneous determination of six alkaloid markers using the Single Standard for Determination of Multi-Components (SSDMC) method was developed and fully validated. Benzoylmesaconine was used as the unique reference standard. This method was proven as accurate (recovery varying between 97.5%-101.8%, RSD 0.999 9) over the concentration ranges, and subsequently applied to quantitative evaluation of 62 batches of samples, among which 45 batches were from good manufacturing practice (GMP) facilities and 17 batches from the drug market. The contents were then analyzed by principal component analysis (PCA) and homogeneity test. The present study provided valuable information for improving the quality standard of Aconiti Lateralis Radix Praeparata. The developed method also has the potential in analysis of other Aconitum species, such as Aconitum carmichaelii (prepared parent root) and Aconitum kusnezoffii (prepared root). Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  2. Stochastic Neural Field Theory and the System-Size Expansion

    KAUST Repository

    Bressloff, Paul C.

    2010-01-01

    We analyze a master equation formulation of stochastic neurodynamics for a network of synaptically coupled homogeneous neuronal populations each consisting of N identical neurons. The state of the network is specified by the fraction of active or spiking neurons in each population, and transition rates are chosen so that in the thermodynamic or deterministic limit (N → ∞) we recover standard activity-based or voltage-based rate models. We derive the lowest order corrections to these rate equations for large but finite N using two different approximation schemes, one based on the Van Kampen system-size expansion and the other based on path integral methods. Both methods yield the same series expansion of the moment equations, which at O(1/N) can be truncated to form a closed system of equations for the first-and second-order moments. Taking a continuum limit of the moment equations while keeping the system size N fixed generates a system of integrodifferential equations for the mean and covariance of the corresponding stochastic neural field model. We also show how the path integral approach can be used to study large deviation or rare event statistics underlying escape from the basin of attraction of a stable fixed point of the mean-field dynamics; such an analysis is not possible using the system-size expansion since the latter cannot accurately determine exponentially small transitions. © by SIAM.

  3. Updating the maize karyotype by chromosome DNA sizing

    Science.gov (United States)

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species’ karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes. PMID:29293613

  4. Size distribution measurements and chemical analysis of aerosol components

    Energy Technology Data Exchange (ETDEWEB)

    Pakkanen, T.A.

    1995-12-31

    The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subsequent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 {mu}m of equivalent aerodynamic particle diameter (EAD). Furthermore, it turned out that a substantial amount of analyses associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occurred. Chloride was depleted when acidic species reacted

  5. Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography

    International Nuclear Information System (INIS)

    Winkler, Hanspeter; Taylor, Kenneth A.

    2006-01-01

    An image alignment method for electron tomography is presented which is based on cross-correlation techniques and which includes a simultaneous refinement of the tilt geometry. A coarsely aligned tilt series is iteratively refined with a procedure consisting of two steps for each cycle: area matching and subsequent geometry correction. The first step, area matching, brings into register equivalent specimen regions in all images of the tilt series. It determines four parameters of a linear two-dimensional transformation, not just translation and rotation as is done during the preceding coarse alignment with conventional methods. The refinement procedure also differs from earlier methods in that the alignment references are now computed from already aligned images by reprojection of a backprojected volume. The second step, geometry correction, refines the initially inaccurate estimates of the geometrical parameters, including the direction of the tilt axis, a tilt angle offset, and the inclination of the specimen with respect to the support film or specimen holder. The correction values serve as an indicator for the progress of the refinement. For each new iteration, the correction values are used to compute an updated set of geometry parameters by a least squares fit. Model calculations show that it is essential to refine the geometrical parameters as well as the accurate alignment of the images to obtain a faithful map of the original structure

  6. Quantity, size and distribution of borides for aluminium grain refinement by neutron-induced autoradiography (NIAR). Pt. 2

    International Nuclear Information System (INIS)

    Rachlitz, R.; Gaertner, S.; Holze, J.; Krumnacker, M.

    1990-01-01

    Al-Ti-B grain refiners improve the cast structure of aluminium and its alloys, but also cause problems related to the great hardness of the borides and their tendency to agglomerate and settle. Accurate information about the distribution, quantity and size of the TiB 2 particles is needed if material properties are to be improved and the quantity of additives minimized. This information is obtained mostly by NIAR. In laboratory-scale tests Al 99.8 and Al 99.5 were refined using different master alloys added in various quantities. In all cases the commercial master alloy gave the best refining effect. Besides boride particle size distribution and the presence of nuclei and nucleus stabilizers, morphological properties (duplex particles) are obviously of essential importance. It has been demonstrated that the TiB 2 size distribution values determined by NIAR are comparable with those established by optical microscopy measurements. (orig.) [de

  7. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter

    Science.gov (United States)

    2009-03-31

    AFRL-RV-HA-TR-2009-1055 Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter ...m (or even 500 m) at mid to high latitudes . At low latitudes , the FDTD model exhibits variations that make it difficult to determine a reliable...Scientific, Final 3. DATES COVERED (From - To) 02-08-2006 – 31-12-2008 4. TITLE AND SUBTITLE Accurate Modeling of Ionospheric Electromagnetic Fields

  8. Simple area-based measurement for multidetector computed tomography to predict left ventricular size

    International Nuclear Information System (INIS)

    Schlett, Christopher L.; Kwait, Dylan C.; Mahabadi, Amir A.; Hoffmann, Udo; Bamberg, Fabian; O'Donnell, Christopher J.; Fox, Caroline S.

    2010-01-01

    Measures of left ventricular (LV) mass and dimensions are independent predictors of morbidity and mortality. We determined whether an axial area-based method by computed tomography (CT) provides an accurate estimate of LV mass and volume. A total of 45 subjects (49% female, 56.0 ± 12 years) with a wide range of LV geometry underwent contrast-enhanced 64-slice CT. LV mass and volume were derived from 3D data. 2D images were analysed to determine LV area, the direct transverse cardiac diameter (dTCD) and the cardiothoracic ratio (CTR). Furthermore, feasibility was confirmed in 100 Framingham Offspring Cohort subjects. 2D measures of LV area, dTCD and CTR were 47.3 ± 8 cm 2 , 14.7 ± 1.5 cm and 0.54 ± 0.05, respectively. 3D-derived LV volume (end-diastolic) and mass were 148.9 ± 45 cm 3 and 124.2 ± 34 g, respectively. Excellent inter- and intra-observer agreement were shown for 2D LV area measurements (both intraclass correlation coefficients (ICC) = 0.99, p 0.27). Compared with traditionally used CTR, LV size can be accurately predicted based on a simple and highly reproducible axial LV area-based measurement. (orig.)

  9. Simulation and experiment for depth sizing of cracks in anchor bolts by ultrasonic phased array technology

    Science.gov (United States)

    Lin, Shan

    2018-04-01

    There have been lots of reports about the occurrence of cracks in bolts in aging nuclear and thermal power plants. Sizing of such cracks is crucial for assessing the integrity of bolts. Currently, hammering and visual tests are used to detect cracks in bolts. However, they are not applicable for sizing cracks. Although the tip diffraction method is well known as a crack sizing technique, reflection echoes from threads make it difficult to apply this technique to bolts. This paper addresses a method for depth sizing of cracks in bolts by means of ultrasonic phased array technology. Numerical results of wave propagation in bolts by the finite element method (FEM) shows that a peak associated within the vicinity of a crack tip can be observed in the curve of echo intensity versus refraction angle for deep cracks. The refraction angle with respect to this peak decreases as crack depth increases. Such numerical results are verified by experiments on bolt specimens that have electrical discharge machining notches or fatigue cracks with different depths. In the experiment, a 10-MHz linear array probe is used. Depth of cracks in bolts using the refraction angle associated with the peak is determined and compared to actual depths. The comparison shows that accurately determining a crack depth from the inspection results is possible.

  10. Size did not matter: An evolutionary account of the variation in penis size and size anxiety

    Directory of Open Access Journals (Sweden)

    Menelaos Apostolou

    2016-12-01

    Full Text Available The human penis exhibits considerable variation in size, while a substantial proportion of the adult male population experiences size anxiety. This paper employs an evolutionary framework in order to understand this variation, as well as the concern men exhibit about the adequacy of the size of their penis. It is argued that female choice has been one important sexual selection force, responsible for shaping the size of the penis. However, this force has been relatively weak, because women do not consider the size of their partners’ penis to be the most important determinant of their sexual satisfaction. Also, in ancestral human societies, sexual satisfaction was a secondary concern, while women had limited space to exercise mate choice. The mismatch between ancestral and modern conditions, with female choice being stronger in the present than in the past, causes anxiety in men about their ability to satisfy their partners, which is also manifested in their concerns about size.

  11. Accurate determination and certification of bromine in plastic by isotope dilution inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Masaki, E-mail: m-oohata@aist.go.jp; Miura, Tsutomu

    2014-07-21

    Highlights: • Accurate analytical method of Br in plastic was studied by isotope dilution ICPMS. • A microwave acid digestion using quartz vessel was suitable for Br analysis. • Sample dilution by NH{sub 3} solution could remove memory effect for ICPMS measurement. • The analytical result of the ID-ICPMS showed consistency with that of INAA. • The ID-ICPMS developed could apply to certification of Br in candidate plastic CRM. - Abstract: The accurate analytical method of bromine (Br) in plastic was developed by an isotope dilution inductively coupled plasma mass spectrometry (ID-ICPMS). The figures of merit of microwave acid digestion procedures using polytetrafluoroethylene (PTFE) or quartz vessels were studied and the latter one was suitable for Br analysis since its material was free from Br contamination. The sample dilution procedures using Milli-Q water or ammonium (NH{sub 3}) solution were also studied to remove memory effect for ICPMS measurement. Although severe memory effect was observed on Milli-Q water dilution, NH{sub 3} solution could remove it successfully. The accuracy of the ID-ICPMS was validated by a certified reference material (CRM) as well as the comparison with the analytical result obtained by an instrumental neutron activation analysis (INAA) as different analytical method. From these results, the ID-ICPMS developed in the present study could be evaluated as accurate analytical method of Br in plastic materials and it could apply to certification of Br in candidate plastic CRM with respect to such regulations related to RoHS (restriction of the use of hazardous substances in electrical and electronics equipment) directive.

  12. Chefs' opinions of restaurant portion sizes.

    Science.gov (United States)

    Condrasky, Marge; Ledikwe, Jenny H; Flood, Julie E; Rolls, Barbara J

    2007-08-01

    The objectives were to determine who establishes restaurant portion sizes and factors that influence these decisions, and to examine chefs' opinions regarding portion size, nutrition information, and weight management. A survey was distributed to chefs to obtain information about who is responsible for determining restaurant portion sizes, factors influencing restaurant portion sizes, what food portion sizes are being served in restaurants, and chefs' opinions regarding nutrition information, health, and body weight. The final sample consisted of 300 chefs attending various culinary meetings. Executive chefs were identified as being primarily responsible for establishing portion sizes served in restaurants. Factors reported to have a strong influence on restaurant portion sizes included presentation of foods, food cost, and customer expectations. While 76% of chefs thought that they served "regular" portions, the actual portions of steak and pasta they reported serving were 2 to 4 times larger than serving sizes recommended by the U.S government. Chefs indicated that they believe that the amount of food served influences how much patrons consume and that large portions are a problem for weight control, but their opinions were mixed regarding whether it is the customer's responsibility to eat an appropriate amount when served a large portion of food. Portion size is a key determinant of energy intake, and the results from this study suggest that cultural norms and economic value strongly influence the determination of restaurant portion sizes. Strategies are needed to encourage chefs to provide and promote portions that are appropriate for customers' energy requirements.

  13. How accurate is unenhanced multidetector-row CT (MDCT) for localization of renal calculi?

    International Nuclear Information System (INIS)

    Goetschi, Stefan; Umbehr, Martin; Ullrich, Stephan; Glenck, Michael; Suter, Stefan; Weishaupt, Dominik

    2012-01-01

    Purpose: To investigate the correlation between unenhanced MDCT and intraoperative findings with regard to the exact anatomical location of renal calculi. Design, setting, and participants: Fifty-nine patients who underwent unenhanced MDCT for suspected urinary stone disease, and who underwent subsequent flexible ureterorenoscopy (URS) as treatment of nephrolithiasis were included in this retrospective study. All MDCT data sets were independently reviewed by three observers with different degrees of experience in reading CT. Each observer was asked to indicate presence and exact anatomical location of any calcification within pyelocaliceal system, renal papilla or renal cortex. Results were compared to intraoperative findings which have been defined as standard of reference. Calculi not described at surgery, but present on MDCT data were counted as renal cortex calcifications. Results: Overall 166 calculi in 59 kidneys have been detected on MDCT, 100 (60.2%) were located in the pyelocaliceal system and 66 (39.8%) in the renal parenchyma. Of the 100 pyelocaliceal calculi, 84 (84%) were correctly located on CT data sets by observer 1, 62 (62%) by observer 2, and 71 (71%) by observer 3. Sensitivity/specificity was 90–94% and 50–100% if only pyelocaliceal calculi measuring >4 mm in size were considered. For pyelocaliceal calculi ≤4 mm in size diagnostic performance of MDCT was inferior. Conclusion: Compared to flexible URS, unenhanced MDCT is accurate for distinction between pyelocaliceal calculi and renal parenchyma calcifications if renal calculi are >4 mm in size. For smaller renal calculi, unenhanced MDCT is less accurate and distinction between a pyelocaliceal calculus and renal parenchyma calcification is difficult.

  14. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    Science.gov (United States)

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the

  15. Women's Preferences for Penis Size: A New Research Method Using Selection among 3D Models.

    Science.gov (United States)

    Prause, Nicole; Park, Jaymie; Leung, Shannon; Miller, Geoffrey

    2015-01-01

    Women's preferences for penis size may affect men's comfort with their own bodies and may have implications for sexual health. Studies of women's penis size preferences typically have relied on their abstract ratings or selecting amongst 2D, flaccid images. This study used haptic stimuli to allow assessment of women's size recall accuracy for the first time, as well as examine their preferences for erect penis sizes in different relationship contexts. Women (N = 75) selected amongst 33, 3D models. Women recalled model size accurately using this method, although they made more errors with respect to penis length than circumference. Women preferred a penis of slightly larger circumference and length for one-time (length = 6.4 inches/16.3 cm, circumference = 5.0 inches/12.7 cm) versus long-term (length = 6.3 inches/16.0 cm, circumference = 4.8 inches/12.2 cm) sexual partners. These first estimates of erect penis size preferences using 3D models suggest women accurately recall size and prefer penises only slightly larger than average.

  16. Women's Preferences for Penis Size: A New Research Method Using Selection among 3D Models.

    Directory of Open Access Journals (Sweden)

    Nicole Prause

    Full Text Available Women's preferences for penis size may affect men's comfort with their own bodies and may have implications for sexual health. Studies of women's penis size preferences typically have relied on their abstract ratings or selecting amongst 2D, flaccid images. This study used haptic stimuli to allow assessment of women's size recall accuracy for the first time, as well as examine their preferences for erect penis sizes in different relationship contexts. Women (N = 75 selected amongst 33, 3D models. Women recalled model size accurately using this method, although they made more errors with respect to penis length than circumference. Women preferred a penis of slightly larger circumference and length for one-time (length = 6.4 inches/16.3 cm, circumference = 5.0 inches/12.7 cm versus long-term (length = 6.3 inches/16.0 cm, circumference = 4.8 inches/12.2 cm sexual partners. These first estimates of erect penis size preferences using 3D models suggest women accurately recall size and prefer penises only slightly larger than average.

  17. A new approach for sizing stand alone photovoltaic systems based in neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hontoria, L.; Aguilera, J. [Universidad de Jaen, Dept. de Electronica, Jaen (Spain); Zufiria, P. [UPM Ciudad Universitaria, Dept. de Matematica Aplicada a las Tecnologias de la Informacion, Madrid (Spain)

    2005-02-01

    Several methods for sizing stand alone photovoltaic (pv) systems has been developed. The more simplistic are called intuitive methods. They are a useful tool for a first approach in sizing stand alone photovoltaic systems. Nevertheless they are very inaccurate. Analytical methods use equations to describe the pv system size as a function of reliability. These ones are more accurate than the previous ones but they are also not accurate enough for sizing of high reliability. In a third group there are methods which use system simulations. These ones are called numerical methods. Many of the analytical methods employ the concept of reliability of the system or the complementary term: loss of load probability (LOLP). In this paper an improvement for obtaining LOLP curves based on the neural network called Multilayer Perceptron (MLP) is presented. A unique MLP for many locations of Spain has been trained and after the training, the MLP is able to generate LOLP curves for any value and location. (Author)

  18. Determining the Variability of Lesion Size Measurements from CT Patient Data Sets Acquired under “No Change” Conditions

    Directory of Open Access Journals (Sweden)

    Michael F. McNitt-Gray

    2015-02-01

    Full Text Available PURPOSE: To determine the variability of lesion size measurements in computed tomography data sets of patients imaged under a “no change” (“coffee break” condition and to determine the impact of two reading paradigms on measurement variability. METHOD AND MATERIALS: Using data sets from 32 non-small cell lung cancer patients scanned twice within 15 minutes (“no change”, measurements were performed by five radiologists in two phases: (1 independent reading of each computed tomography dataset (timepoint: (2 a locked, sequential reading of datasets. Readers performed measurements using several sizing methods, including one-dimensional (1D longest in-slice dimension and 3D semi-automated segmented volume. Change in size was estimated by comparing measurements performed on both timepoints for the same lesion, for each reader and each measurement method. For each reading paradigm, results were pooled across lesions, across readers, and across both readers and lesions, for each measurement method. RESULTS: The mean percent difference (±SD when pooled across both readers and lesions for 1D and 3D measurements extracted from contours was 2.8 ± 22.2% and 23.4 ± 105.0%, respectively, for the independent reads. For the locked, sequential reads, the mean percent differences (±SD reduced to 2.52 ± 14.2% and 7.4 ± 44.2% for the 1D and 3D measurements, respectively. CONCLUSION: Even under a “no change” condition between scans, there is variation in lesion size measurements due to repeat scans and variations in reader, lesion, and measurement method. This variation is reduced when using a locked, sequential reading paradigm compared to an independent reading paradigm.

  19. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  20. Neutral axis determination of full size concrete structures using coda wave measurements

    Science.gov (United States)

    Jiang, Hanwan; Zhan, Hanyu; Zhuang, Chenxu; Jiang, Ruinian

    2018-03-01

    Coda waves experiencing multiple scattering behaviors are sensitive to weak changes occurring in media. In this paper, a typical four-point bending test with varied external loads is conducted on a 30-meter T-beam that is removed from a bridge after being in service for 15 years, and the coda wave signals are collected with a couple of sources-receivers pairs. Then the observed coda waves at different loads are compared to calculate their relative velocity variations, which are utilized as the parameter to distinct the compression and tensile zones as well as determine the neutral axis position. Without any prior knowledge of the concrete beam, the estimated axis position agrees well with the associated strain gage measurement results, and the zones bearing stress and tension behaviors are indicated. The presented work offers significant potential for Non-Destructive Testing and Evaluation of full-size concrete structures in future work.

  1. Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel β-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation.

    Science.gov (United States)

    Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo

    2012-11-25

    The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.

  2. An improved assay for the determination of Huntington`s disease allele size

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, C.; Klinger, K.; Miller, G. [Intergrated Genetics, Framingham, MA (United States)

    1994-09-01

    The hallmark of Huntington`s disease (HD) is the expansion of a polymorphic (CAG)n repeat. Several methods have been published describing PCR amplification of this region. Most of these assays require a complex PCR reaction mixture to amplify this GC-rich region. A consistent problem with trinucleotide repeat PCR amplification is the presence of a number of {open_quotes}stutter bands{close_quotes} which may be caused by primer or amplicon slippage during amplification or insufficient polymerase processivity. Most assays for HD arbitrarily select a particular band for diagnostic purposes. Without a clear choice for band selection such an arbitrary selection may result in inconsistent intra- or inter-laboratory findings. We present an improved protocol for the amplification of the HD trinucleotide repeat region. This method simplifies the PCR reaction buffer and results in a set of easily identifiable bands from which to determine allele size. HD alleles were identified by selecting bands of clearly greater signal intensity. Stutter banding was much reduced thus permitting easy identification of the most relevant PCR product. A second set of primers internal to the CCG polymorphism was used in selected samples to confirm allele size. The mechanism of action of N,N,N trimethylglycine in the PCR reaction is not clear. It may be possible that the minimal isostabilizing effect of N,N,N trimethylglycine at 2.5 M is significant enough to affect primer specificity. The use of N,N,N trimethylglycine in the PCR reaction facilitated identification of HD alleles and may be appropriate for use in other assays of this type.

  3. The Effects of Transient Emotional State and Workload on Size Scaling in Perspective Displays

    Energy Technology Data Exchange (ETDEWEB)

    Tuan Q. Tran; Kimberly R. Raddatz

    2006-10-01

    Previous research has been devoted to the study of perceptual (e.g., number of depth cues) and cognitive (e.g., instructional set) factors that influence veridical size perception in perspective displays. However, considering that perspective displays have utility in high workload environments that often induce high arousal (e.g., aircraft cockpits), the present study sought to examine the effect of observers’ emotional state on the ability to perceive and judge veridical size. Within a dual-task paradigm, observers’ ability to make accurate size judgments was examined under conditions of induced emotional state (positive, negative, neutral) and high and low workload. Results showed that participants in both positive and negative induced emotional states were slower to make accurate size judgments than those not under induced emotional arousal. Results suggest that emotional state is an important factor that influences visual performance on perspective displays and is worthy of further study.

  4. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC50) test using WST-1 assay

    International Nuclear Information System (INIS)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-01-01

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this work the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC 50 values in WST-1 assays. The IC 50 values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles

  5. Selective determination of dopamine using quantum-sized gold nanoparticles protected with charge selective ligands

    Science.gov (United States)

    Kwak, Kyuju; Kumar, S. Senthil; Lee, Dongil

    2012-06-01

    We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid.We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the

  6. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner

    DEFF Research Database (Denmark)

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan

    2009-01-01

    MOTIVATION: The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary...... determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than...

  7. Hit size effectiveness in relation to the microdosimetric site size

    International Nuclear Information System (INIS)

    Varma, M.N.; Wuu, C.S.; Zaider, M.

    1994-01-01

    This paper examines the effect of site size (that is, the diameter of the microdosimetric volume) on the hit size effectiveness function (HSEF), q(y), for several endpoints relevant in radiation protection. A Bayesian and maximum entropy approach is used to solve the integral equations that determine, given microdosimetric spectra and measured initial slopes, the function q(y). All microdosimetric spectra have been calculated de novo. The somewhat surprising conclusion of this analysis is that site size plays only a minor role in selecting the hit size effectiveness function q(y). It thus appears that practical means (e.g. conventional proportional counters) are already at hand to actually implement the HSEF as a radiation protection tool. (Author)

  8. Determination of Particle Size and Distribution through Image-Based Macroscopic Analysis of the Structure of Biomass Briquettes

    Directory of Open Access Journals (Sweden)

    Veronika Chaloupková

    2018-02-01

    Full Text Available Via image-based macroscopic, analysis of a briquettes’ surface structure, particle size, and distribution was determined to better understand the behavioural pattern of input material during agglomeration in the pressing chamber of a briquetting machine. The briquettes, made of miscanthus, industrial hemp and pine sawdust were produced by a hydraulic piston press. Their structure was visualized by a stereomicroscope equipped with a digital camera and software for image analysis and data measurements. In total, 90 images of surface structure were obtained and quantitatively analysed. Using Nikon Instruments Software (NIS-Elements software, the length and area of 900 particles were measured and statistically tested to compare the size of the particles at different surface locations. Results showed statistically significant differences in particles’ size distribution: larger particles were generally on the front side of briquettes and vice versa, smaller particles were on the rear side. As well, larger particles were centred in the middle of cross sections and the smaller particles were centred on the bottom of the briquette.

  9. Characterization of resonances using finite size effects

    International Nuclear Information System (INIS)

    Pozsgay, B.; Takacs, G.

    2006-01-01

    We develop methods to extract resonance widths from finite volume spectra of (1+1)-dimensional quantum field theories. Our two methods are based on Luscher's description of finite size corrections, and are dubbed the Breit-Wigner and the improved ''mini-Hamiltonian'' method, respectively. We establish a consistent framework for the finite volume description of sufficiently narrow resonances that takes into account the finite size corrections and mass shifts properly. Using predictions from form factor perturbation theory, we test the two methods against finite size data from truncated conformal space approach, and find excellent agreement which confirms both the theoretical framework and the numerical validity of the methods. Although our investigation is carried out in 1+1 dimensions, the extension to physical 3+1 space-time dimensions appears straightforward, given sufficiently accurate finite volume spectra

  10. Grain Size and Parameter Recovery with TIMSS and the General Diagnostic Model

    Science.gov (United States)

    Skaggs, Gary; Wilkins, Jesse L. M.; Hein, Serge F.

    2016-01-01

    The purpose of this study was to explore the degree of grain size of the attributes and the sample sizes that can support accurate parameter recovery with the General Diagnostic Model (GDM) for a large-scale international assessment. In this resampling study, bootstrap samples were obtained from the 2003 Grade 8 TIMSS in Mathematics at varying…

  11. Experimental determination of the unattached radon daughter fraction and dust size distribution in some Canadian uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.; Kirk, J.

    1982-01-01

    The unattached radon daughter fraction has been experimentally determined in some Canadian uranium mines. Two experimental methods have been used, the wire screen method and a diffusion sampler based on Mercer's theory of diffusional deposition on parallel circular plates. Experiments were conducted in 'non-diesel' and 'diesel' areas of the mines, i.e. locations where mining was done with diesel machinery. Unattached fractions ranged from about 2-8 per cent for non-diesel area. For diesel areas the unattached fraction was substantially lower, less than about one per cent. The aerosol concentration in the range 0.0015 - 0.13 μm was measured with a condensation nuclei counter. Dust concentration was determined with conventional samplers. Particle size distribution in the respirable range was determined with a fine particle spectrometer in conjunction with eriometric techniques

  12. Development and validation of a novel, simple, and accurate spectrophotometric method for the determination of lead in human serum.

    Science.gov (United States)

    Shayesteh, Tavakol Heidari; Khajavi, Farzad; Khosroshahi, Abolfazl Ghafuri; Mahjub, Reza

    2016-01-01

    The determination of blood lead levels is the most useful indicator of the determination of the amount of lead that is absorbed by the human body. Various methods, like atomic absorption spectroscopy (AAS), have already been used for the detection of lead in biological fluid, but most of these methods are based on complicated, expensive, and highly instructed instruments. In this study, a simple and accurate spectroscopic method for the determination of lead has been developed and applied for the investigation of lead concentration in biological samples. In this study, a silica gel column was used to extract lead and eliminate interfering agents in human serum samples. The column was washed with deionized water. The pH was adjusted to the value of 8.2 using phosphate buffer, and then tartrate and cyanide solutions were added as masking agents. The lead content was extracted into the organic phase containing dithizone as a complexion reagent and the dithizone-Pb(II) complex was formed and approved by visible spectrophotometry at 538 nm. The recovery was found to be 84.6 %. In order to validate the method, a calibration curve involving the use of various concentration levels was calculated and proven to be linear in the range of 0.01-1.5 μg/ml, with an R (2) regression coefficient of 0.9968 by statistical analysis of linear model validation. The largest error % values were found to be -5.80 and +11.6 % for intra-day and inter-day measurements, respectively. The largest RSD % values were calculated to be 6.54 and 12.32 % for intra-day and inter-day measurements, respectively. Further, the limit of detection (LOD) was calculated to be 0.002 μg/ml. The developed method was applied to determine the lead content in the human serum of voluntary miners, and it has been proven that there is no statistically significant difference between the data provided from this novel method and the data obtained from previously studied AAS.

  13. Accurate protein structure modeling using sparse NMR data and homologous structure information.

    Science.gov (United States)

    Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David

    2012-06-19

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.

  14. Solving lot-sizing problem with quantity discount and transportation cost

    Science.gov (United States)

    Lee, Amy H. I.; Kang, He-Yau; Lai, Chun-Mei

    2013-04-01

    Owing to today's increasingly competitive market and ever-changing manufacturing environment, the inventory problem is becoming more complicated to solve. The incorporation of heuristics methods has become a new trend to tackle the complex problem in the past decade. This article considers a lot-sizing problem, and the objective is to minimise total costs, where the costs include ordering, holding, purchase and transportation costs, under the requirement that no inventory shortage is allowed in the system. We first formulate the lot-sizing problem as a mixed integer programming (MIP) model. Next, an efficient genetic algorithm (GA) model is constructed for solving large-scale lot-sizing problems. An illustrative example with two cases in a touch panel manufacturer is used to illustrate the practicality of these models, and a sensitivity analysis is applied to understand the impact of the changes in parameters to the outcomes. The results demonstrate that both the MIP model and the GA model are effective and relatively accurate tools for determining the replenishment for touch panel manufacturing for multi-periods with quantity discount and batch transportation. The contributions of this article are to construct an MIP model to obtain an optimal solution when the problem is not too complicated itself and to present a GA model to find a near-optimal solution efficiently when the problem is complicated.

  15. Effect of solvent and temperature on the size distribution of casein micelles measured by dynamic light scattering.

    Science.gov (United States)

    Beliciu, C M; Moraru, C I

    2009-05-01

    The objectives of this study were to investigate the effect of the solvent on the accuracy of casein micelle particle size determination by dynamic light scattering (DLS) at different temperatures and to establish a clear protocol for these measurements. Dynamic light scattering analyses were performed at 6, 20, and 50 degrees C using a 90Plus Nanoparticle Size Analyzer (Brookhaven Instruments, Holtsville, NY). Raw and pasteurized skim milk were used as sources of casein micelles. Simulated milk ultrafiltrate, ultrafiltered water, and permeate obtained by ultrafiltration of skim milk using a 10-kDa cutoff membrane were used as solvents. The pH, ionic concentration, refractive index, and viscosity of all solvents were determined. The solvents were evaluated by DLS to ensure that they did not have a significant influence on the results of the particle size measurements. Experimental protocols were developed for accurate measurement of particle sizes in all solvents and experimental conditions. All measurements had good reproducibility, with coefficients of variation below 5%. Both the solvent and the temperature had a significant effect on the measured effective diameter of the casein micelles. When ultrafiltered permeate was used as a solvent, the particle size and polydispersity of casein micelles decreased as temperature increased. The effective diameter of casein micelles from raw skim milk diluted with ultrafiltered permeate was 176.4 +/- 5.3 nm at 6 degrees C, 177.4 +/- 1.9 nm at 20 degrees C, and 137.3 +/- 2.7 nm at 50 degrees C. This trend was justified by the increased strength of hydrophobic bonds with increasing temperature. Overall, the results of this study suggest that the most suitable solvent for the DLS analyses of casein micelles was casein-depleted ultrafiltered permeate. Dilution with water led to micelle dissociation, which significantly affected the DLS measurements, especially at 6 and 20 degrees C. Simulated milk ultrafiltrate seemed to give

  16. Accurate measurements of neutron activation cross sections

    International Nuclear Information System (INIS)

    Semkova, V.

    1999-01-01

    The applications of some recent achievements of neutron activation method on high intensity neutron sources are considered from the view point of associated errors of cross sections data for neutron induced reaction. The important corrections in -y-spectrometry insuring precise determination of the induced radioactivity, methods for accurate determination of the energy and flux density of neutrons, produced by different sources, and investigations of deuterium beam composition are considered as factors determining the precision of the experimental data. The influence of the ion beam composition on the mean energy of neutrons has been investigated by measurement of the energy of neutrons induced by different magnetically analysed deuterium ion groups. Zr/Nb method for experimental determination of the neutron energy in the 13-15 MeV energy range allows to measure energy of neutrons from D-T reaction with uncertainty of 50 keV. Flux density spectra from D(d,n) E d = 9.53 MeV and Be(d,n) E d = 9.72 MeV are measured by PHRS and foil activation method. Future applications of the activation method on NG-12 are discussed. (author)

  17. Litter size variation in hypothalamic gene expression determines adult metabolic phenotype in Brandt's voles (Lasiopodomys brandtii.

    Directory of Open Access Journals (Sweden)

    Xue-Ying Zhang

    Full Text Available Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10-12 and small (3-4 litter sizes, of Brandt's voles (Lasiopodomys brandtii, a rodent species from Inner Mongolia grassland in China.Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3 mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP mRNA increased in the offspring from small litters.These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood.

  18. Determination of a representative volume element based on the variability of mechanical properties with sample size in bread.

    Science.gov (United States)

    Ramírez, Cristian; Young, Ashley; James, Bryony; Aguilera, José M

    2010-10-01

    Quantitative analysis of food structure is commonly obtained by image analysis of a small portion of the material that may not be the representative of the whole sample. In order to quantify structural parameters (air cells) of 2 types of bread (bread and bagel) the concept of representative volume element (RVE) was employed. The RVE for bread, bagel, and gelatin-gel (used as control) was obtained from the relationship between sample size and the coefficient of variation, calculated from the apparent Young's modulus measured on 25 replicates. The RVE was obtained when the coefficient of variation for different sample sizes converged to a constant value. In the 2 types of bread tested, the tendency of the coefficient of variation was to decrease as the sample size increased, while in the homogeneous gelatin-gel, it remained always constant around 2.3% to 2.4%. The RVE resulted to be cubes with sides of 45 mm for bread, 20 mm for bagels, and 10 mm for gelatin-gel (smallest sample tested). The quantitative image analysis as well as visual observation demonstrated that bread presented the largest dispersion of air-cell sizes. Moreover, both the ratio of maximum air-cell area/image area and maximum air-cell height/image height were greater for bread (values of 0.05 and 0.30, respectively) than for bagels (0.03 and 0.20, respectively). Therefore, the size and the size variation of air cells present in the structure determined the size of the RVE. It was concluded that RVE is highly dependent on the heterogeneity of the structure of the types of baked products.

  19. Small arteries can be accurately studied in vivo, using high frequency ultrasound

    DEFF Research Database (Denmark)

    Nielsen, T H; Iversen, Helle Klingenberg; Tfelt-Hansen, P

    1993-01-01

    We have validated measurements of diameters of the superficial temporal artery and other small arteries in man with a newly developed 20 MHz ultrasound scanner with A, B and M-mode imaging. The diameter of a reference object was 1.202 mm vs. 1.205 mm as measured by stereomicroscopy (nonsignifican......-gauge plethysmography (nonsignificant). Pulsations were 4.6% in the radial artery. We conclude that high frequency ultrasound provides an accurate and reproducible measure of the diameter of small and medium sized human arteries in vivo....

  20. ANFIS-based genetic algorithm for predicting the optimal sizing coefficient of photovoltaic supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [Medea Univ., Medea (Algeria). Inst. of Science Engineering, Dept. of Electronics

    2007-07-01

    Stand-alone photovoltaic (PV) power supply systems are regarded as reliable and economical sources of electricity in rural remote areas, particularly in developing countries. However, the sizing of stand-alone photovoltaic (PV) systems is an important part of the system design. Choosing the optimal number of solar cell panels and the size of the storage battery to be used for a certain application at a particular site is an important economical problem. In this paper, a genetic algorithm (GA) and an adaptive neuro-fuzzy inference scheme (ANFIS) were proposed as a means for determining the optimal size of PV system, particularly, in isolated areas. The GA-ANFIS model was shown to be suitable for modelling the optimal sizing parameters of PVS systems. The GA was used to determine the PV-array capacity and the storage capacity for 60 sites. From this database, 56 pairs relative to 56 sites were used for training the network. Four pairs were used for testing and validating the ANFIS model. A correlation of 99 per cent was achieved when complete unknown data parameters were presented to the model. The proposed technique provided more accurate results than the alternative artificial neural network (ANN) with GA. The advantage of this model was that it could estimate the PV-array area and the useful capacity of the battery from only geographical coordinates. Although the technique was applied and tested in Algeria, it can be generalized for any location in the world. 15 refs., 4 tabs., 8 figs.

  1. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size.

    Directory of Open Access Journals (Sweden)

    Rotem Kadir

    2016-03-01

    Full Text Available Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.

  2. An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: Application for isolated sites in Algeria

    International Nuclear Information System (INIS)

    Mellit, A.; Benghanem, M.; Hadj Arab, A.; Guessoum, G.

    2004-07-01

    In this paper we investigate, by using an adaptive Artificial Neural Network (ANN), in order to find a suitable model for sizing Stand-Alone Photovoltaic (SAPV) systems, based on a minimum of input data. This model combines Radial Basis Function (RBF) network and Infinite Impulse Response (IIR) filter in order to accelerate the convergence of the network. For the sizing of a photovoltaic (PV) system, we need to determine the optimal sizing coefficients (K PV , K B . These coefficients allow us to determine the number of solar panels and storage batteries necessary to satisfy a given consumption, especially in isolated sites where the global solar radiation data is not always available and which are considered the most important parameters for sizing a PV system. Obtained results by classical models (analytical, numerical, analytical- numerical, B-spline function) and new models like feed-forward (MLP), radial basis function (RBF), MLP-IIR and RBF-IIR have been compared with experimental sizing coefficients in order to illustrate the accuracy of the results of the new developed model. This model has been trained by using 200 known optimal sizing coefficients corresponding to 200 locations in Algeria. In this way, the adaptive model was trained to accept and even handle a number of unusual cases, the unknown validation sizing coefficients set produced very set accurate estimation and a correlation coefficient of 98% was obtained between the calculated and that estimated by the RBF-IIR model. This result indicates that the proposed method can be successfully used for the estimation of optimal sizing coefficients of SAPV systems for any locations in Algeria, but the methodology can be generalized using different locations over the world. (author)

  3. Low-cost small action cameras in stereo generates accurate underwater measurements of fish

    OpenAIRE

    Letessier, T. B.; Juhel, Jean-Baptiste; Vigliola, Laurent; Meeuwig, J. J.

    2015-01-01

    Small action cameras have received interest for use in underwater videography because of their low-cost, standardised housing, widespread availability and small size. Here, we assess the capacity of GoPro action cameras to provide accurate stereo-measurements of fish in comparison to the Sony handheld cameras that have traditionally been used for this purpose. Standardised stereo-GoPro and Sony systems were employed to capture measurements of known-length targets in a pool to explore the infl...

  4. Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authentication.

    Science.gov (United States)

    Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Bellato, Cláudia M; Motilal, Lambert; Zhang, Dapeng

    2014-01-15

    Cacao (Theobroma cacao L.), the source of cocoa, is an economically important tropical crop. One problem with the premium cacao market is contamination with off-types adulterating raw premium material. Accurate determination of the genetic identity of single cacao beans is essential for ensuring cocoa authentication. Using nanofluidic single nucleotide polymorphism (SNP) genotyping with 48 SNP markers, we generated SNP fingerprints for small quantities of DNA extracted from the seed coat of single cacao beans. On the basis of the SNP profiles, we identified an assumed adulterant variety, which was unambiguously distinguished from the authentic beans by multilocus matching. Assignment tests based on both Bayesian clustering analysis and allele frequency clearly separated all 30 authentic samples from the non-authentic samples. Distance-based principle coordinate analysis further supported these results. The nanofluidic SNP protocol, together with forensic statistical tools, is sufficiently robust to establish authentication and to verify gourmet cacao varieties. This method shows significant potential for practical application.

  5. Size, Albedo, and Taxonomy of the Don Quijote Space Mission Target

    Science.gov (United States)

    Harris, Alan; Mueller, Michael; Fitzsimmons, Alan

    2006-03-01

    Rendezvous and lander missions are a very effective but very expensive way of investigating Solar-System bodies. The planning, optimization and success of space missions depends crucially on prior remotely-sensed knowledge of target bodies. Near-Earth asteroids (NEAs), which are mainly fragments of main-belt asteroids, are seen as important goals for investigation by space missions, mainly due to the role their forebears played in planet formation and the evolution of the Solar System, but also for the pragmatic reason that these objects can collide with the Earth with potentially devastating consequences. The European Space Agency is currently planning the Don Quijote mission to a NEA, which includes a rendezvous (and perhaps a lander) spacecraft and an impactor vehicle. The aim is to study the physical properties of the target asteroid and the effects of the impact on its dynamical state, as a first step in considering realistic mitigation measures against an eventual hazardous NEA. Two potential targets have been selected for the mission, the preferred one being (10302) 1989 ML, which is energetically easier to reach and is possibly a scientifically interesting primitive asteroid. However, due to the ambiguity of available spectral data, it is currently not possible to confidently determine the taxonomic type and mineralogy of this object. Crucially, the albedo is uncertain by a factor of 10, which leads to large uncertainties in the size and mass and hence the planned near-surface operations of Don Quijote. Thermal-infrared observations are urgently required for accurate size and albedo determination. These observations, which can only be carried out by Spitzer and would require only a modest amount of observing time, would enable an accurate diameter to be derived for the first time and the resulting albedo would remove the taxonomic ambiguity. The proposed Spitzer observations are critical for effective mission planning and would greatly increase our

  6. MRI of the Breast for the Detection and Assessment of the Size of Ductal Carcinoma in Situ

    International Nuclear Information System (INIS)

    Kim, Do Youn; Moon, Woo Kyung; Cho, Nariya

    2007-01-01

    The aim of the study was to compare the accuracy of magnetic resonance imaging (MRI) and mammography for the detection and assessment of the size of ductal carcinoma in situ (DCIS). The preoperative contrast-enhanced MRI and mammography were analyzed in respect of the detection and assessment of the size of DCIS in 72 patients (age range: 30 67 years, mean age: 47 years). The MRI and mammographic measurements were compared with the histopathologic size with using the Pearson's correlation coefficients and the Mann-Whitney u test. We evaluated whether the breast density, the tumor nuclear grade, the presence of comedo necrosis and microinvasion influenced the MRI and mammographic size estimates by using the chi-square test. Of the 72 DCIS lesions, 68 (94%) were detected by MRI and 62 (86%) were detected by mammography. Overall, the Pearson's correlation of the size between MRI and histopathology was 0.786 versus 0.633 between mammography and histopathology (p < 0.001). MRI underestimated the size by more than 1 cm (including false negative examination) in 12 patients (17%), was accurate in 52 patients (72%) and overestimated the size by more than 1 cm in eight patients (11%) whereas mammography underestimated the size in 25 patients (35%), was accurate in 31 patients (43%) and overestimated the size in 16 patients (22%). The MRI, but not the mammography, showed significant correlation for the assessment of the size of tumor in noncomedo DCIS (p < 0.001 vs p = 0.060). The assessment of tumor size by MRI was affected by the nuclear grade (p = 0.008) and the presence of comedo necrosis (p = 0.029), but not by the breast density (p 0.747) or microinvasion (p = 0.093). MRI was more accurate for the detection and assessment of the size of DCIS than mammography

  7. Detecting size and shape of bodies capacitatively

    International Nuclear Information System (INIS)

    Walton, H.

    1980-01-01

    The size and shape of a body is determined by rolling it between the plates of capacitors and measuring the capacitance changes. A capacitor comprising two parallel, spaced wires inclined to the rolling direction and above and below the rolling body scans sections of the body along its longitudinal axis, another determines the body's lengths and a third comprising two non-parallel wires determines the position of the body. The capacitance changes are compared with those produced by a body of known size and shape so that the size and shape of the body can be determined. (author)

  8. Accurate technetium-99 determination using the combination of TEVA resin pretreatment and ICP-MS measurement and its influence on the Tc-99/Cs-137 scaling factor calculation

    International Nuclear Information System (INIS)

    Lian-Song Chen; Tsing-Hai Wang; Yi-Kong Hsieh; Li-Wei Jian; Wie-Han Chen; Chu-Fang Wang; Tsuey-Lin Tsai

    2014-01-01

    Accurate determination of technetium-99 (Tc-99) is very important because any overestimation will cause the examined radioactive wastes to be categorized into super C class, which dramatically increases the cost of waste management. Herein, we demonstrated that by adopting the analytical method comprising TEVA resin pretreatment and ICP-MS measurement, the determined Tc-99 concentrations in representative waste stream samples from the Lan-Yu low-level radioactive waste temporary storage site in Taiwan were approximately two orders of magnitude lower than those determined from the beta radiation measurement using a low background liquid scintillation counter. Two important concerns emerged from our results. First, severe interferences from other nuclides residing in the matrix considerably affect the determination of Tc-99, even when a low background liquid scintillation counter was used. Second, the currently used Tc-99/Cs-137 scaling factor should be carefully revised, or it might lead to a considerable overestimation of the Tc-99 concentration. (author)

  9. Coconut genome size determined by flow cytometry: Tall versus Dwarf types.

    Science.gov (United States)

    Freitas Neto, M; Pereira, T N S; Geronimo, I G C; Azevedo, A O N; Ramos, S R R; Pereira, M G

    2016-02-11

    Coconuts (Cocos nucifera L.) are tropical palm trees that are classified into Tall and Dwarf types based on height, and both types are diploid (2n = 2x = 32 chromosomes). The reproduction mode is autogamous for Dwarf types and allogamous for Tall types. One hypothesis for the origin of the Dwarf coconut suggests that it is a Tall variant that resulted from either mutation or inbreeding, and differences in genome size between the two types would support this hypothesis. In this study, we estimated the genome sizes of 14 coconut accessions (eight Tall and six Dwarf types) using flow cytometry. Nuclei were extracted from leaf discs and stained with propidium iodide, and Pisum sativum (2C = 9.07 pg DNA) was used as an internal standard. Histograms with good resolution and low coefficients of variation (2.5 to 3.2%) were obtained. The 2C DNA content ranged from 5.72 to 5.48 pg for Tall accessions and from 5.58 to 5.52 pg for Dwarf accessions. The mean genome sizes for Tall and Dwarf specimens were 5.59 and 5.55 pg, respectively. Among all accessions, Rennel Island Tall had the highest mean DNA content (5.72 pg), whereas West African Tall had the lowest (5.48 pg). The mean coconut genome size (2C = 5.57 pg, corresponding to 2723.73 Mbp/haploid set) was classified as small. Only small differences in genome size existed among the coconut accessions, suggesting that the Dwarf type did not evolve from the Tall type.

  10. A comparison of tumour size measurements with palpation, ultrasound and mammography in male breast cancer: first results of the prospective register study.

    Science.gov (United States)

    Streng, Martin; Ignatov, Atanas; Reinisch, Mattea; Costa, Serban-Dan; Eggemann, Holm

    2018-02-01

    Precise presurgical diagnosis of tumour size is essential for adequate treatment of male breast cancer (MBC). This study is aimed to compare the accuracy of clinical measurement (CE), ultrasound (US) and mammography (MG) for preoperative estimation of tumour size. This study was conducted as a prospective, multicentre register study. One hundred and twenty-nine male patients with invasive breast cancer were included. CE, US and MG were performed in 107, 110 and 75 patients, respectively, and the estimated tumour size was compared with the histopathological (HP) tumour size. All methods tended to underestimate the HP tumour size. None of the methods were significantly more accurate than the others in determining the maximal tumour diameter. The sensitivity within 5 mm tolerance for US was 65.5%, which was better than for MG (61.3%) and CE (56.6%). In the group of patients with pT2 tumours, MG showed significantly better accuracy than US. The measurements obtained with each method were significantly correlated with the HP measurements. The highest correlation coefficient was observed for MG (0.788), followed by US (0.741) and CE (0.671). Our data demonstrate that MG and US have similar accuracy with regard to tumour size estimation. US assessment showed the highest sensitivity in determining tumour size, followed by MG and CE. However, MG demonstrated a significant advantage for estimating the real tumour size for pT2 tumours compared to US or CE.

  11. Sample size adjustments for varying cluster sizes in cluster randomized trials with binary outcomes analyzed with second-order PQL mixed logistic regression.

    Science.gov (United States)

    Candel, Math J J M; Van Breukelen, Gerard J P

    2010-06-30

    Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second-order penalized quasi-likelihood estimation (PQL). Starting from first-order marginal quasi-likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second-order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed-form formulas for sample size calculation are based on first-order MQL, planning a trial also requires a conversion factor to obtain the variance of the second-order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. (c) 2010 John Wiley & Sons, Ltd.

  12. Improved microwave-assisted wet digestion procedures for accurate Se determination in fish and shellfish by flow injection-hydride generation-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lavilla, I.; Gonzalez-Costas, J.M.; Bendicho, C.

    2007-01-01

    Accurate determination of Se in biological samples, especially fish and shellfish, by hydride generation techniques has generally proven troublesome owing to the presence of organoselenium that cannot readily converted into inorganic selenium under usual oxidising conditions. Further improvements in the oxidation procedures are needed so as to obtain accurate concentration values when this type of samples is analyzed. Microwave-assisted wet digestion (MAWD) procedures of seafood based on HNO 3 or the mixture HNO 3 /H 2 O 2 and further thermal reduction of the Se(VI) formed to Se(IV) were evaluated. These procedures were as follows: (I) without H 2 O 2 and without heating to dryness; (II) without H 2 O 2 and with heating to dryness; (III) with H 2 O 2 and without heating to dryness; (IV) with H 2 O 2 and with heating to dryness. In general, low recoveries of selenium are obtained for several marine species (e.g., crustaceans and cephalopods), which may be ascribed to the presence of Se forms mainly associated with nonpolar proteins and lipids. Post-digestion UV irradiation proved very efficient since not only complete organoselenium decomposition was achieved but also the final step required for prereduction of Se(VI) into Se(IV) (i.e. heating at 90 deg. C for 30 min in 6 M HCl) could be avoided. With the MAWD/UV procedure, the use of strong oxidising agents (persuphate, etc.) or acids (e.g. perchloric acid) which are typically applied prior to Se determination by hydride generation techniques is overcome, and as a result, sample pre-treatment is significantly simplified. The method was successfully validated against CRM DOLT-2 (dogfish liver), CRM DORM-2 (dogfish muscle) and CRM TORT-2 (lobster hepatopancreas). Automated ultrasonic slurry sampling with electrothermal atomic absorption spectrometry was also applied for comparison. Total Se contents in ten seafood samples were established. Se levels ranged from 0.7 to 2.9 μg g -1

  13. Determination of transverse phase-space and momentum error from size measurements along the 50-MeV H- RCS injection line

    International Nuclear Information System (INIS)

    Cho, Y.; Crosbie, E.A.; Takeda, H.

    1981-01-01

    The 50-MeV H - injection line for the RCS at Argonne National Laboratory has 16 quadrupole and eight bending magnets. Horizontal and vertical profiles can be obtained at 12 wire scanner positions. Size information from these profiles can be used to determine the three ellipses parameters in each plane required to describe the transverse phase space. These locations that have dispersion permit the momentum error to be used as a fourth fitting parameter. The assumed accuracy of the size measurements provides an error matrix that predicts the rms errors of the fitted parameters

  14. Quality assessment for recycling aggregates from construction and demolition waste: An image-based approach for particle size estimation.

    Science.gov (United States)

    Di Maria, Francesco; Bianconi, Francesco; Micale, Caterina; Baglioni, Stefano; Marionni, Moreno

    2016-02-01

    The size distribution of aggregates has direct and important effects on fundamental properties of construction materials such as workability, strength and durability. The size distribution of aggregates from construction and demolition waste (C&D) is one of the parameters which determine the degree of recyclability and therefore the quality of such materials. Unfortunately, standard methods like sieving or laser diffraction can be either very time consuming (sieving) or possible only in laboratory conditions (laser diffraction). As an alternative we propose and evaluate the use of image analysis to estimate the size distribution of aggregates from C&D in a fast yet accurate manner. The effectiveness of the procedure was tested on aggregates generated by an existing C&D mechanical treatment plant. Experimental comparison with manual sieving showed agreement in the range 81-85%. The proposed technique demonstrated potential for being used on on-line systems within mechanical treatment plants of C&D. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Determinants and the Size of International Migration in Central and Eastern Europe After 2004

    Directory of Open Access Journals (Sweden)

    Organiściak-Krzykowska Anna

    2017-12-01

    Full Text Available Migration is a very important socio‑economic issue in the contemporary world. One of the interesting and pertinent research problems worth considering concerns the scale and nature of migration from countries which entered the European Union in 2004 and in the subsequent years. As a result of integration within the European Community, the citizens of member states acquired citizenship within the entire European Union (which is complementary to citizenship in the country of origin. The right of free movement led to the emergence of the migration phenomenon within the territory of the European Union. A well educated and young labour force may be an influential factor in the social and economic development of the European Union members. The enlargement of the EU led to a significant increase in the number of part‑time/temporary migrants. According to statistical data, the number of emigrants from the Central and Eastern European Countries (CEE to the more prosperous European countries increased from 1,66 million in 2004 to 7,3 million in 2016. Within the context of the scale of economic migration from the CEE, questions should be asked about the determinants and economic consequences of this mobility. The main objective of this article is a diagnosis and evaluation of the determinants and size of migration from the CEE. The analyses are based on Eurostat data. The determinants of migration are presented from the point of view of the push and pull factors theory and related to the situation in the European labour market. An analysis of the size of migration outflow from the CEE countries made it possible to classify them into three groups: countries with a high emigration potential (Latvia, Lithuania, Romania, a moderate emigration potential (Hungary, Bulgaria, Poland, Estonia, Slovakia and a low emigration potential (the Czech Republic, Slovenia. The economic consequences of migration are shown from the perspective of remittances received from

  16. Direct Calculation of Permeability by High-Accurate Finite Difference and Numerical Integration Methods

    KAUST Repository

    Wang, Yi

    2016-07-21

    Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.

  17. JCZS: An Intermolecular Potential Database for Performing Accurate Detonation and Expansion Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.R.; Hobbs, M.L.; McGee, B.C.

    1998-11-03

    Exponential-13,6 (EXP-13,6) potential pammeters for 750 gases composed of 48 elements were determined and assembled in a database, referred to as the JCZS database, for use with the Jacobs Cowperthwaite Zwisler equation of state (JCZ3-EOS)~l) The EXP- 13,6 force constants were obtained by using literature values of Lennard-Jones (LJ) potential functions, by using corresponding states (CS) theory, by matching pure liquid shock Hugoniot data, and by using molecular volume to determine the approach radii with the well depth estimated from high-pressure isen- tropes. The JCZS database was used to accurately predict detonation velocity, pressure, and temperature for 50 dif- 3 Accurate predictions were also ferent explosives with initial densities ranging from 0.25 glcm3 to 1.97 g/cm . obtained for pure liquid shock Hugoniots, static properties of nitrogen, and gas detonations at high initial pressures.

  18. An Accurate Method to Determine the Muzzle Leaving Time of Guns

    Directory of Open Access Journals (Sweden)

    H. X. Chao

    2014-11-01

    Full Text Available This paper states the importance of determining the muzzle leaving time of guns with a high degree of accuracy. Two commonly used methods are introduced, which are the high speed photography method and photoelectric transducer method, and the advantage and disadvantage of these two methods are analyzed. Furthermore, a new method to determine the muzzle leaving time of guns based on the combination of high speed photography and synchronized trigger technology is present in this paper, and its principle and uncertainty of measurement are evaluated. The firing experiments shows that the present method has distinguish advantage in accuracy and reliability from other methods.

  19. Determining the best phenological state for accurate mapping of Phragmites australis in wetlands using time series multispectral satellite data

    Science.gov (United States)

    Rupasinghe, P. A.; Markle, C. E.; Marcaccio, J. V.; Chow-Fraser, P.

    2017-12-01

    Phragmites australis (European common reed), is a relatively recent invader of wetlands and beaches in Ontario. It can establish large homogenous stands within wetlands and disperse widely throughout the landscape by wind and vehicular traffic. A first step in managing this invasive species includes accurate mapping and quantification of its distribution. This is challenging because Phragimtes is distributed in a large spatial extent, which makes the mapping more costly and time consuming. Here, we used freely available multispectral satellite images taken monthly (cloud free images as available) for the calendar year to determine the optimum phenological state of Phragmites that would allow it to be accurately identified using remote sensing data. We analyzed time series, Landsat-8 OLI and Sentinel-2 images for Big Creek Wildlife Area, ON using image classification (Support Vector Machines), Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). We used field sampling data and high resolution image collected using Unmanned Aerial Vehicle (UAV; 8 cm spatial resolution) as training data and for the validation of the classified images. The accuracy for all land cover classes and for Phragmites alone were low at both the start and end of the calendar year, but reached overall accuracy >85% by mid to late summer. The highest classification accuracies for Landsat-8 OLI were associated with late July and early August imagery. We observed similar trends using the Sentinel-2 images, with higher overall accuracy for all land cover classes and for Phragmites alone from late July to late September. During this period, we found the greatest difference between Phragmites and Typha, commonly confused classes, with respect to near-infrared and shortwave infrared reflectance. Therefore, the unique spectral signature of Phragmites can be attributed to both the level of greenness and factors related to water content in the leaves during late

  20. An efficient and accurate method for calculating nonlinear diffraction beam fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.