WorldWideScience

Sample records for accurate reduced models

  1. Accurate Modeling of Advanced Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min

    Analysis and optimization methods for the design of advanced printed re ectarrays have been investigated, and the study is focused on developing an accurate and efficient simulation tool. For the analysis, a good compromise between accuracy and efficiency can be obtained using the spectral domain...... to the POT. The GDOT can optimize for the size as well as the orientation and position of arbitrarily shaped array elements. Both co- and cross-polar radiation can be optimized for multiple frequencies, dual polarization, and several feed illuminations. Several contoured beam reflectarrays have been designed...... using the GDOT to demonstrate its capabilities. To verify the accuracy of the GDOT, two offset contoured beam reflectarrays that radiate a high-gain beam on a European coverage have been designed and manufactured, and subsequently measured at the DTU-ESA Spherical Near-Field Antenna Test Facility...

  2. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    Science.gov (United States)

    Robinson, David

    2014-12-09

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.

  3. Universality: Accurate Checks in Dyson's Hierarchical Model

    Science.gov (United States)

    Godina, J. J.; Meurice, Y.; Oktay, M. B.

    2003-06-01

    In this talk we present high-accuracy calculations of the susceptibility near βc for Dyson's hierarchical model in D = 3. Using linear fitting, we estimate the leading (γ) and subleading (Δ) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized renormalization group transformation. We found γ = 1.29914073 ± 10 -8 and, Δ = 0.4259469 ± 10-7 independently of the choice of local integration measure (Ising or Landau-Ginzburg). After a suitable rescaling, the approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed by Koch and Wittwer.

  4. Determining Reduced Order Models for Optimal Stochastic Reduced Order Models

    Energy Technology Data Exchange (ETDEWEB)

    Bonney, Matthew S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brake, Matthew R.W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-08-01

    The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better represent the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.

  5. Towards Accurate Modeling of Moving Contact Lines

    CERN Document Server

    Holmgren, Hanna

    2015-01-01

    A main challenge in numerical simulations of moving contact line problems is that the adherence, or no-slip boundary condition leads to a non-integrable stress singularity at the contact line. In this report we perform the first steps in developing the macroscopic part of an accurate multiscale model for a moving contact line problem in two space dimensions. We assume that a micro model has been used to determine a relation between the contact angle and the contact line velocity. An intermediate region is introduced where an analytical expression for the velocity exists. This expression is used to implement boundary conditions for the moving contact line at a macroscopic scale, along a fictitious boundary located a small distance away from the physical boundary. Model problems where the shape of the interface is constant thought the simulation are introduced. For these problems, experiments show that the errors in the resulting contact line velocities converge with the grid size $h$ at a rate of convergence $...

  6. Regularized Reduced Order Models

    CERN Document Server

    Wells, David; Xie, Xuping; Iliescu, Traian

    2015-01-01

    This paper puts forth a regularization approach for the stabilization of proper orthogonal decomposition (POD) reduced order models (ROMs) for the numerical simulation of realistic flows. Two regularized ROMs (Reg-ROMs) are proposed: the Leray ROM (L-ROM) and the evolve-then-filter ROM (EF-ROM). These new Reg-ROMs use spatial filtering to smooth (regularize) various terms in the ROMs. Two spatial filters are used: a POD projection onto a POD subspace (Proj) and a new POD differential filter (DF). The four Reg-ROM/filter combinations are tested in the numerical simulation of the one-dimensional Burgers equation with a small diffusion coefficient and the three-dimensional flow past a circular cylinder at a low Reynolds number (Re = 100). Overall, the most accurate Reg-ROM/filter combination is EF-ROM-DF. Furthermore, the DF generally yields better results than Proj. Finally, the four Reg-ROM/filter combinations are computationally efficient and generally more accurate than the standard Galerkin ROM.

  7. Accurate Electromagnetic Modeling Methods for Integrated Circuits

    NARCIS (Netherlands)

    Sheng, Z.

    2010-01-01

    The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on t

  8. Spectropolarimetrically accurate magnetohydrostatic sunspot model for forward modelling in helioseismology

    CERN Document Server

    Przybylski, D; Cally, P S

    2015-01-01

    We present a technique to construct a spectropolarimetrically accurate magneto-hydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion and absorption in the solar interior and photosphere with the sunspot embedded into it. With the $6173\\mathrm{\\AA}$ magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as full Stokes vector for the simulation at various positions at the solar disk, and analyse the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterised. An increase in acoustic power in the simulated observ...

  9. Reduced Order Podolsky Model

    CERN Document Server

    Thibes, Ronaldo

    2016-01-01

    We perform the canonical and path integral quantizations of a lower-order derivatives model describing Podolsky's generalized electrodynamics. The physical content of the model shows an auxiliary massive vector field coupled to the usual electromagnetic field. The equivalence with Podolsky's original model is studied at classical and quantum levels. Concerning the dynamical time evolution we obtain a theory with two first-class and two second-class constraints in phase space. We calculate explicitly the corresponding Dirac brackets involving both vector fields. We use the Senjanovic procedure to implement the second-class constraints and the Batalin-Fradkin-Vilkovisky path integral quantization scheme to deal with the symmetries generated by the first-class constraints. The physical interpretation of the results turns out to be simpler due to the reduced derivatives order permeating the equations of motion, Dirac brackets and effective action.

  10. ACCURATE FORECAST AS AN EFFECTIVE WAY TO REDUCE THE ECONOMIC RISK OF AGRO-INDUSTRIAL COMPLEX

    Directory of Open Access Journals (Sweden)

    Kymratova A. M.

    2014-11-01

    Full Text Available This article discusses the ways of reducing the financial, economic and social risks on the basis of an accurate prediction. We study the importance of natural time series of winter wheat yield, minimum winter, winter-spring daily temperatures. The feature of the time series of this class is disobeying a normal distribution, there is no visible trend

  11. Accurate energy model for WSN node and its optimal design

    Institute of Scientific and Technical Information of China (English)

    Kan Baoqiang; Cai Li; Zhu Hongsong; Xu Yongjun

    2008-01-01

    With the development of CMOS and MEMS technologies, the implementation of a large number of wireless distributed micro-sensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. For better understanding of the design tradeoffs of wireless sensor network (WSN), a more accurate energy model for wireless sensor node is proposed, and an optimal design method of energy efficient wireless sensor node is described as well. Different from power models ever shown which assume the power cost of each component in WSN node is constant, the new one takes into account the energy dissipation of circuits in practical physical layer. It shows that there are some parameters, such as data rate, carrier frequency, bandwidth, Tsw, etc, which have a significant effect on the WSN node energy consumption per useful bit (EPUB). For a given quality specification, how energy consumption can be reduced by adjusting one or more of these parameters is shown.

  12. Model Reduction via Reducibility Matrix

    Institute of Scientific and Technical Information of China (English)

    Musa Abdalla; Othman Alsmadi

    2006-01-01

    In this work, a new model reduction technique is introduced. The proposed technique is derived using the matrix reducibility concept. The eigenvalues of the reduced model are preserved; that is, the reduced model eigenvalues are a subset of the full order model eigenvalues. This preservation of the eigenvalues makes the mathematical model closer to the physical model. Finally, the outcomes of this method are fully illustrated using simulations of two numeric examples.

  13. More-Accurate Model of Flows in Rocket Injectors

    Science.gov (United States)

    Hosangadi, Ashvin; Chenoweth, James; Brinckman, Kevin; Dash, Sanford

    2011-01-01

    An improved computational model for simulating flows in liquid-propellant injectors in rocket engines has been developed. Models like this one are needed for predicting fluxes of heat in, and performances of, the engines. An important part of predicting performance is predicting fluctuations of temperature, fluctuations of concentrations of chemical species, and effects of turbulence on diffusion of heat and chemical species. Customarily, diffusion effects are represented by parameters known in the art as the Prandtl and Schmidt numbers. Prior formulations include ad hoc assumptions of constant values of these parameters, but these assumptions and, hence, the formulations, are inaccurate for complex flows. In the improved model, these parameters are neither constant nor specified in advance: instead, they are variables obtained as part of the solution. Consequently, this model represents the effects of turbulence on diffusion of heat and chemical species more accurately than prior formulations do, and may enable more-accurate prediction of mixing and flows of heat in rocket-engine combustion chambers. The model has been implemented within CRUNCH CFD, a proprietary computational fluid dynamics (CFD) computer program, and has been tested within that program. The model could also be implemented within other CFD programs.

  14. On the importance of having accurate data for astrophysical modelling

    Science.gov (United States)

    Lique, Francois

    2016-06-01

    The Herschel telescope and the ALMA and NOEMA interferometers have opened new windows of observation for wavelengths ranging from far infrared to sub-millimeter with spatial and spectral resolutions previously unmatched. To make the most of these observations, an accurate knowledge of the physical and chemical processes occurring in the interstellar and circumstellar media is essential.In this presentation, I will discuss what are the current needs of astrophysics in terms of molecular data and I will show that accurate molecular data are crucial for the proper determination of the physical conditions in molecular clouds.First, I will focus on collisional excitation studies that are needed for molecular lines modelling beyond the Local Thermodynamic Equilibrium (LTE) approach. In particular, I will show how new collisional data for the HCN and HNC isomers, two tracers of star forming conditions, have allowed solving the problem of their respective abundance in cold molecular clouds. I will also present the last collisional data that have been computed in order to analyse new highly resolved observations provided by the ALMA interferometer.Then, I will present the calculation of accurate rate constants for the F+H2 → HF+H and Cl+H2 ↔ HCl+H reactions, which have allowed a more accurate determination of the physical conditions in diffuse molecular clouds. I will also present the recent work on the ortho-para-H2 conversion due to hydrogen exchange that allow more accurate determination of the ortho-to-para-H2 ratio in the universe and that imply a significant revision of the cooling mechanism in astrophysical media.

  15. Modelling reduced sparse data

    Science.gov (United States)

    Kozera, Ryszard; Noakes, Lyle

    2016-09-01

    In this paper we discuss the problem of fitting to an ordered collection of points in arbitary Euclidean space called reduced data. We are not given here the corresponding interpolation knots. Instead, these are estimated by new knots upon minimizing a relevant highly nonlinear optimization scheme based on natural spline interpolation. The existence of a global minimizer (i.e. the collection of interpolation knots in ascending order) is also addressed in this paper. Finally, Leap-Frog optimization tool is used to compute these knots approximating the unknown interpolation knots. This numerical scheme is subsequently compared with the Secant Method. Two illustrative examples are given.

  16. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    Directory of Open Access Journals (Sweden)

    Cecilia Noecker

    2015-03-01

    Full Text Available Upon infection of a new host, human immunodeficiency virus (HIV replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV. First, we found that the mode of virus production by infected cells (budding vs. bursting has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral

  17. Accurate high-harmonic spectra from time-dependent two-particle reduced density matrix theory

    CERN Document Server

    Lackner, Fabian; Sato, Takeshi; Ishikawa, Kenichi L; Burgdörfer, Joachim

    2016-01-01

    The accurate description of the non-linear response of many-electron systems to strong-laser fields remains a major challenge. Methods that bypass the unfavorable exponential scaling with particle number are required to address larger systems. In this paper we present a fully three-dimensional implementation of the time-dependent two-particle reduced density matrix (TD-2RDM) method for many-electron atoms. We benchmark this approach by a comparison with multi-configurational time-dependent Hartree-Fock (MCTDHF) results for the harmonic spectra of beryllium and neon. We show that the TD-2RDM is very well-suited to describe the non-linear atomic response and to reveal the influence of electron-correlation effects.

  18. Congestion Control in WMSNs by Reducing Congestion and Free Resources to Set Accurate Rates and Priority

    Directory of Open Access Journals (Sweden)

    Akbar Majidi

    2014-08-01

    Full Text Available The main intention of this paper is focus on mechanism for reducing congestion in the network by free resources to set accurate rates and priority data needs. If two nodes send their packets in the shortest path to the parent node in a crowded place, a source node must prioritize the data and uses data that have lower priorities of a suitable detour nodes consisting of low or non- active consciously. The proposed algorithm is applied to the nodes near the base station (which convey more traffic after the congestion detection mechanism detected the congestion. Obtained results from simulation test done by NS-2 simulator demonstrate the innovation and validity of proposed method with better performance in comparison with CCF, PCCP and DCCP protocols.

  19. Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations

    Science.gov (United States)

    Bowman, J.; Jensen, S.; McDonald, Mark

    2010-10-01

    High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.

  20. Accurate, low-cost 3D-models of gullies

    Science.gov (United States)

    Onnen, Nils; Gronz, Oliver; Ries, Johannes B.; Brings, Christine

    2015-04-01

    Soil erosion is a widespread problem in arid and semi-arid areas. The most severe form is the gully erosion. They often cut into agricultural farmland and can make a certain area completely unproductive. To understand the development and processes inside and around gullies, we calculated detailed 3D-models of gullies in the Souss Valley in South Morocco. Near Taroudant, we had four study areas with five gullies different in size, volume and activity. By using a Canon HF G30 Camcorder, we made varying series of Full HD videos with 25fps. Afterwards, we used the method Structure from Motion (SfM) to create the models. To generate accurate models maintaining feasible runtimes, it is necessary to select around 1500-1700 images from the video, while the overlap of neighboring images should be at least 80%. In addition, it is very important to avoid selecting photos that are blurry or out of focus. Nearby pixels of a blurry image tend to have similar color values. That is why we used a MATLAB script to compare the derivatives of the images. The higher the sum of the derivative, the sharper an image of similar objects. MATLAB subdivides the video into image intervals. From each interval, the image with the highest sum is selected. E.g.: 20min. video at 25fps equals 30.000 single images. The program now inspects the first 20 images, saves the sharpest and moves on to the next 20 images etc. Using this algorithm, we selected 1500 images for our modeling. With VisualSFM, we calculated features and the matches between all images and produced a point cloud. Then, MeshLab has been used to build a surface out of it using the Poisson surface reconstruction approach. Afterwards we are able to calculate the size and the volume of the gullies. It is also possible to determine soil erosion rates, if we compare the data with old recordings. The final step would be the combination of the terrestrial data with the data from our aerial photography. So far, the method works well and we

  1. A Verilog-A Based Fractional Frequency Synthesizer Model for Fast and Accurate Noise Assessment

    Directory of Open Access Journals (Sweden)

    V. R. Gonzalez-Diaz

    2016-04-01

    Full Text Available This paper presents a new strategy to simulate fractional frequency synthesizer behavioral models with better performance and reduced simulation time. The models are described in Verilog-A with accurate phase noise predictions and they are based on a time jitter to power spectral density transformation of the principal noise sources in a synthesizer. The results of a fractional frequency synthesizer simulation is compared with state of the art Verilog-A descriptions showing a reduction of nearly 20 times. In addition, experimental results of a fractional frequency synthesizer are compared to the simulation results to validate the proposed model.

  2. A Method to Build a Super Small but Practically Accurate Language Model for Handheld Devices

    Institute of Scientific and Technical Information of China (English)

    WU GenQing (吴根清); ZHENG Fang (郑方)

    2003-01-01

    In this paper, an important question, whether a small language model can be practically accurate enough, is raised. Afterwards, the purpose of a language model, the problems that a language model faces, and the factors that affect the performance of a language model,are analyzed. Finally, a novel method for language model compression is proposed, which makes the large language model usable for applications in handheld devices, such as mobiles, smart phones, personal digital assistants (PDAs), and handheld personal computers (HPCs). In the proposed language model compression method, three aspects are included. First, the language model parameters are analyzed and a criterion based on the importance measure of n-grams is used to determine which n-grams should be kept and which removed. Second, a piecewise linear warping method is proposed to be used to compress the uni-gram count values in the full language model. And third, a rank-based quantization method is adopted to quantize the bi-gram probability values. Experiments show that by using this compression method the language model can be reduced dramatically to only about 1M bytes while the performance almost does not decrease. This provides good evidence that a language model compressed by means of a well-designed compression technique is practically accurate enough, and it makes the language model usable in handheld devices.

  3. Modeling Battery Behavior for Accurate State-of-Charge Indication

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Veld, op het J.H.G.; Regtien, P.P.L.; Danilov, D.; Notten, P.H.L.

    2006-01-01

    Li-ion is the most commonly used battery chemistry in portable applications nowadays. Accurate state-of-charge (SOC) and remaining run-time indication for portable devices is important for the user's convenience and to prolong the lifetime of batteries. A new SOC indication system, combining the ele

  4. Fast and accurate prediction of numerical relativity waveforms from binary black hole mergers using surrogate models

    CERN Document Server

    Blackman, Jonathan; Galley, Chad R; Szilagyi, Bela; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-01-01

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. In this paper, we construct an accurate and fast-to-evaluate surrogate model for numerical relativity (NR) waveforms from non-spinning binary black hole coalescences with mass ratios from $1$ to $10$ and durations corresponding to about $15$ orbits before merger. Our surrogate, which is built using reduced order modeling techniques, is distinct from traditional modeling efforts. We find that the full multi-mode surrogate model agrees with waveforms generated by NR to within the numerical error of the NR code. In particular, we show that our modeling strategy produces surrogates which can correctly predict NR waveforms that were {\\em not} used for the surrogate's training. For all practical purposes, then, the surrogate waveform model is equivalent to the high-accuracy, large-scale simulation waveform but can be evaluated in a millisecond to a second dependin...

  5. Can Raters with Reduced Job Descriptive Information Provide Accurate Position Analysis Questionnaire (PAQ) Ratings?

    Science.gov (United States)

    Friedman, Lee; Harvey, Robert J.

    1986-01-01

    Job-naive raters provided with job descriptive information made Position Analysis Questionnaire (PAQ) ratings which were validated against ratings of job analysts who were also job content experts. None of the reduced job descriptive information conditions enabled job-naive raters to obtain either acceptable levels of convergent validity with…

  6. Artificial Intelligence for Constructing Accurate, Low-Cost Models and

    Science.gov (United States)

    2005-01-01

    0.5 1 1.5 2 2.5 -12 -7 -2 3 8 13 AOA C l Equation Model Human Predicition Machine Learning Test Data Figure C-14 NACA 4421 Model Comparison...Natrajan, Anand, and Srinivasan, Sudhir, (1997) “Consistency Maintenance in Multiresolution Simulation”, ACM Transactions on Modeling and

  7. An accurate and simple large signal model of HEMT

    DEFF Research Database (Denmark)

    Liu, Qing

    1989-01-01

    A large-signal model of discrete HEMTs (high-electron-mobility transistors) has been developed. It is simple and suitable for SPICE simulation of hybrid digital ICs. The model parameters are extracted by using computer programs and data provided by the manufacturer. Based on this model, a hybrid...

  8. Approximate Deconvolution Reduced Order Modeling

    CERN Document Server

    Xie, Xuping; Wang, Zhu; Iliescu, Traian

    2015-01-01

    This paper proposes a large eddy simulation reduced order model(LES-ROM) framework for the numerical simulation of realistic flows. In this LES-ROM framework, the proper orthogonal decomposition(POD) is used to define the ROM basis and a POD differential filter is used to define the large ROM structures. An approximate deconvolution(AD) approach is used to solve the ROM closure problem and develop a new AD-ROM. This AD-ROM is tested in the numerical simulation of the one-dimensional Burgers equation with a small diffusion coefficient(10^{-3})

  9. A Simple and Accurate Closed-Form EGN Model Formula

    CERN Document Server

    Poggiolini, P; Carena, A; Forghieri, F

    2015-01-01

    The GN model of non-linear fiber propagation has been shown to overestimate the variance of non-linearity due to the signal Gaussianity approximation, leading to maximum reach predictions for typical optical systems which may be pessimistic by about 5% to 15%, depending on fiber type and system set-up. Various models have been proposed which improve over the GN model accuracy. One of them is the EGN model, which completely removes the Gaussianity approximation from all non-linear interference (NLI) components. The EGN model is, however, substantially more complex than the GN model. Recently, we proposed a simple closed-form formula which permits to approximate the EGN model, starting from the GN. It was however limited to all-identical, equispaced channels, and did not correct single-channel NLI (also called SCI). In this follow-up contribution, we propose an improved version which both allows to address non-identical channels and corrects the SCI contribution as well. Extensive simulative testing shows the n...

  10. Towards an Accurate Performance Modeling of Parallel SparseFactorization

    Energy Technology Data Exchange (ETDEWEB)

    Grigori, Laura; Li, Xiaoye S.

    2006-05-26

    We present a performance model to analyze a parallel sparseLU factorization algorithm on modern cached-based, high-end parallelarchitectures. Our model characterizes the algorithmic behavior bytakingaccount the underlying processor speed, memory system performance, aswell as the interconnect speed. The model is validated using theSuperLU_DIST linear system solver, the sparse matrices from realapplications, and an IBM POWER3 parallel machine. Our modelingmethodology can be easily adapted to study performance of other types ofsparse factorizations, such as Cholesky or QR.

  11. Visual texture accurate material appearance measurement, representation and modeling

    CERN Document Server

    Haindl, Michal

    2013-01-01

    This book surveys the state of the art in multidimensional, physically-correct visual texture modeling. Features: reviews the entire process of texture synthesis, including material appearance representation, measurement, analysis, compression, modeling, editing, visualization, and perceptual evaluation; explains the derivation of the most common representations of visual texture, discussing their properties, advantages, and limitations; describes a range of techniques for the measurement of visual texture, including BRDF, SVBRDF, BTF and BSSRDF; investigates the visualization of textural info

  12. Accurate wind farm development and operation. Advanced wake modelling

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A.; Bot, E.; Ozdemir, H. [ECN Unit Wind Energy, P.O. Box 1, NL 1755 ZG Petten (Netherlands); Steinfeld, G.; Drueke, S.; Schmidt, M. [ForWind, Center for Wind Energy Research, Carl von Ossietzky Universitaet Oldenburg, D-26129 Oldenburg (Germany); Mittelmeier, N. REpower Systems SE, D-22297 Hamburg (Germany))

    2013-11-15

    The ability is demonstrated to calculate wind farm wakes on the basis of ambient conditions that were calculated with an atmospheric model. Specifically, comparisons are described between predicted and observed ambient conditions, and between power predictions from three wind farm wake models and power measurements, for a single and a double wake situation. The comparisons are based on performance indicators and test criteria, with the objective to determine the percentage of predictions that fall within a given range about the observed value. The Alpha Ventus site is considered, which consists of a wind farm with the same name and the met mast FINO1. Data from the 6 REpower wind turbines and the FINO1 met mast were employed. The atmospheric model WRF predicted the ambient conditions at the location and the measurement heights of the FINO1 mast. May the predictability of the wind speed and the wind direction be reasonable if sufficiently sized tolerances are employed, it is fairly impossible to predict the ambient turbulence intensity and vertical shear. Three wind farm wake models predicted the individual turbine powers: FLaP-Jensen and FLaP-Ainslie from ForWind Oldenburg, and FarmFlow from ECN. The reliabilities of the FLaP-Ainslie and the FarmFlow wind farm wake models are of equal order, and higher than FLaP-Jensen. Any difference between the predictions from these models is most clear in the double wake situation. Here FarmFlow slightly outperforms FLaP-Ainslie.

  13. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    CERN Document Server

    Mead, Alexander; Heymans, Catherine; Joudaki, Shahab; Heavens, Alan

    2015-01-01

    We present an optimised variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically-motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of $\\Lambda$CDM and $w$CDM models the halo-model power is accurate to $\\simeq 5$ per cent for $k\\leq 10h\\,\\mathrm{Mpc}^{-1}$ and $z\\leq 2$. We compare our results with recent revisions of the popular HALOFIT model and show that our predictions are more accurate. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limi...

  14. An accurate model for the thin film flow

    Institute of Scientific and Technical Information of China (English)

    Hamid Ait Abderahmane; Georgios H. Vatistas

    2008-01-01

    This paper deals with the linear stability of a liquid film flowing down an inclined plane. The Navier-Stokes equations were reduced into four evolution equations that describe the development of the film depth, the flow rate, the free surface velocity, and the wall shear stress, using the Karman-Polhausen boundary layer integral method. Thus, we were able to determine the stability threshold and approach well the critical wave number for long waves. The obtained results were found to be in good agreement with the experiments of Liu et al.

  15. Accurate Low-Mass Stellar Models of KOI-126

    CERN Document Server

    Feiden, Gregory A; Dotter, Aaron

    2011-01-01

    The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. (2011) appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influence of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M-dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.

  16. Double Layered Sheath in Accurate HV XLPE Cable Modeling

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella; Silva, J. De; Bak, Claus Leth;

    2010-01-01

    This paper discusses modelling of high voltage AC underground cables. For long cables, when crossbonding points are present, not only the coaxial mode of propagation is excited during transient phenomena, but also the intersheath mode. This causes inaccurate simulation results for high frequency ...

  17. Accurate Modeling of Buck Converters with Magnetic-Core Inductors

    DEFF Research Database (Denmark)

    Astorino, Antonio; Antonini, Giulio; Swaminathan, Madhavan

    2015-01-01

     model of buck converters with magnetic-core inductors in a SimulinkR environment is proposed. As an example, the presented approach is used to simulate an eight-phase buck converter. The simulation results show that an unexpected system behaviour in terms of current ripple amplitude needs the inductor core...

  18. Simulation model accurately estimates total dietary iodine intake

    NARCIS (Netherlands)

    Verkaik-Kloosterman, J.; Veer, van 't P.; Ocke, M.C.

    2009-01-01

    One problem with estimating iodine intake is the lack of detailed data about the discretionary use of iodized kitchen salt and iodization of industrially processed foods. To be able to take into account these uncertainties in estimating iodine intake, a simulation model combining deterministic and p

  19. Compact and Accurate Turbocharger Modelling for Engine Control

    DEFF Research Database (Denmark)

    Sorenson, Spencer C; Hendricks, Elbert; Magnússon, Sigurjón

    2005-01-01

    With the current trend towards engine downsizing, the use of turbochargers to obtain extra engine power has become common. A great díffuculty in the use of turbochargers is in the modelling of the compressor map. In general this is done by inserting the compressor map directly into the engine ECU...

  20. The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions

    Directory of Open Access Journals (Sweden)

    Thomas Philipp

    2012-05-01

    Full Text Available Abstract Background It is well known that the deterministic dynamics of biochemical reaction networks can be more easily studied if timescale separation conditions are invoked (the quasi-steady-state assumption. In this case the deterministic dynamics of a large network of elementary reactions are well described by the dynamics of a smaller network of effective reactions. Each of the latter represents a group of elementary reactions in the large network and has associated with it an effective macroscopic rate law. A popular method to achieve model reduction in the presence of intrinsic noise consists of using the effective macroscopic rate laws to heuristically deduce effective probabilities for the effective reactions which then enables simulation via the stochastic simulation algorithm (SSA. The validity of this heuristic SSA method is a priori doubtful because the reaction probabilities for the SSA have only been rigorously derived from microscopic physics arguments for elementary reactions. Results We here obtain, by rigorous means and in closed-form, a reduced linear Langevin equation description of the stochastic dynamics of monostable biochemical networks in conditions characterized by small intrinsic noise and timescale separation. The slow-scale linear noise approximation (ssLNA, as the new method is called, is used to calculate the intrinsic noise statistics of enzyme and gene networks. The results agree very well with SSA simulations of the non-reduced network of elementary reactions. In contrast the conventional heuristic SSA is shown to overestimate the size of noise for Michaelis-Menten kinetics, considerably under-estimate the size of noise for Hill-type kinetics and in some cases even miss the prediction of noise-induced oscillations. Conclusions A new general method, the ssLNA, is derived and shown to correctly describe the statistics of intrinsic noise about the macroscopic concentrations under timescale separation conditions

  1. Simulation model accurately estimates total dietary iodine intake.

    Science.gov (United States)

    Verkaik-Kloosterman, Janneke; van 't Veer, Pieter; Ocké, Marga C

    2009-07-01

    One problem with estimating iodine intake is the lack of detailed data about the discretionary use of iodized kitchen salt and iodization of industrially processed foods. To be able to take into account these uncertainties in estimating iodine intake, a simulation model combining deterministic and probabilistic techniques was developed. Data from the Dutch National Food Consumption Survey (1997-1998) and an update of the Food Composition database were used to simulate 3 different scenarios: Dutch iodine legislation until July 2008, Dutch iodine legislation after July 2008, and a potential future situation. Results from studies measuring iodine excretion during the former legislation are comparable with the iodine intakes estimated with our model. For both former and current legislation, iodine intake was adequate for a large part of the Dutch population, but some young children (iodine levels, the percentage of the Dutch population with intakes that were too low increased (almost 10% of young children). To keep iodine intakes adequate, salt iodine levels should not be decreased, unless many more foods will contain iodized salt. Our model should be useful in predicting the effects of food reformulation or fortification on habitual nutrient intakes.

  2. Accurate modelling of fabricated hollow-core photonic bandgap fibers.

    Science.gov (United States)

    Fokoua, Eric Numkam; Sandoghchi, Seyed Reza; Chen, Yong; Jasion, Gregory T; Wheeler, Natalie V; Baddela, Naveen K; Hayes, John R; Petrovich, Marco N; Richardson, David J; Poletti, Francesco

    2015-09-07

    We report a novel approach to reconstruct the cross-sectional profile of fabricated hollow-core photonic bandgap fibers from scanning electron microscope images. Finite element simulations on the reconstructed geometries achieve a remarkable match with the measured transmission window, surface mode position and attenuation. The agreement between estimated scattering loss from surface roughness and measured loss values indicates that structural distortions, in particular the uneven distribution of glass across the thin silica struts on the core boundary, have a strong impact on the loss. This provides insight into the differences between idealized models and fabricated fibers, which could be key to further fiber loss reduction.

  3. Velocity potential formulations of highly accurate Boussinesq-type models

    DEFF Research Database (Denmark)

    Bingham, Harry B.; Madsen, Per A.; Fuhrman, David R.

    2009-01-01

    processes on the weather side of reflective structures. Coast. Eng. 53, 929-945). An exact infinite series solution for the potential is obtained via a Taylor expansion about an arbitrary vertical position z=(z) over cap. For practical implementation however, the solution is expanded based on a slow...... variation of (z) over cap and terms are retained to first-order. With shoaling enhancement, the new models obtain a comparable accuracy in linear shoaling to the original velocity formulation. General consistency relations are also derived which are convenient for verifying that the differential operators...

  4. Accurate Force Field Development for Modeling Conjugated Polymers.

    Science.gov (United States)

    DuBay, Kateri H; Hall, Michelle Lynn; Hughes, Thomas F; Wu, Chuanjie; Reichman, David R; Friesner, Richard A

    2012-11-13

    The modeling of the conformational properties of conjugated polymers entails a unique challenge for classical force fields. Conjugation imposes strong constraints upon bond rotation. Planar configurations are favored, but the concomitantly shortened bond lengths result in moieties being brought into closer proximity than usual. The ensuing steric repulsions are particularly severe in the presence of side chains, straining angles, and stretching bonds to a degree infrequently found in nonconjugated systems. We herein demonstrate the resulting inaccuracies by comparing the LMP2-calculated inter-ring torsion potentials for a series of substituted stilbenes and bithiophenes to those calculated using standard classical force fields. We then implement adjustments to the OPLS-2005 force field in order to improve its ability to model such systems. Finally, we show the impact of these changes on the dihedral angle distributions, persistence lengths, and conjugation length distributions observed during molecular dynamics simulations of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) and poly 3-hexylthiophene (P3HT), two of the most widely used conjugated polymers.

  5. An Accurate and Computationally Efficient Model for Membrane-Type Circular-Symmetric Micro-Hotplates

    Directory of Open Access Journals (Sweden)

    Usman Khan

    2014-04-01

    Full Text Available Ideally, the design of high-performance micro-hotplates would require a large number of simulations because of the existence of many important design parameters as well as the possibly crucial effects of both spread and drift. However, the computational cost of FEM simulations, which are the only available tool for accurately predicting the temperature in micro-hotplates, is very high. As a result, micro-hotplate designers generally have no effective simulation-tools for the optimization. In order to circumvent these issues, here, we propose a model for practical circular-symmetric micro-hot-plates which takes advantage of modified Bessel functions, computationally efficient matrix-approach for considering the relevant boundary conditions, Taylor linearization for modeling the Joule heating and radiation losses, and external-region-segmentation strategy in order to accurately take into account radiation losses in the entire micro-hotplate. The proposed model is almost as accurate as FEM simulations and two to three orders of magnitude more computationally efficient (e.g., 45 s versus more than 8 h. The residual errors, which are mainly associated to the undesired heating in the electrical contacts, are small (e.g., few degrees Celsius for an 800 °C operating temperature and, for important analyses, almost constant. Therefore, we also introduce a computationally-easy single-FEM-compensation strategy in order to reduce the residual errors to about 1 °C. As illustrative examples of the power of our approach, we report the systematic investigation of a spread in the membrane thermal conductivity and of combined variations of both ambient and bulk temperatures. Our model enables a much faster characterization of micro-hotplates and, thus, a much more effective optimization prior to fabrication.

  6. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements.

    Science.gov (United States)

    Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models.

  7. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements.

    Directory of Open Access Journals (Sweden)

    Ajay Seth

    Full Text Available The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1 elevation and 2 abduction of the scapula on an ellipsoidal thoracic surface, 3 upward rotation of the scapula normal to the thoracic surface, and 4 internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models.

  8. Parameterized reduced-order models using hyper-dual numbers.

    Energy Technology Data Exchange (ETDEWEB)

    Fike, Jeffrey A.; Brake, Matthew Robert

    2013-10-01

    The goal of most computational simulations is to accurately predict the behavior of a real, physical system. Accurate predictions often require very computationally expensive analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the computational cost of the simulations while still providing accurate results by including all of the salient physics of the real system in the ROM. However, real, physical systems often deviate from the idealized models used in simulations due to variations in manufacturing or other factors. One approach to this issue is to create a parameterized model in order to characterize the effect of perturbations from the nominal model on the behavior of the system. This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the derivatives necessary for the parameterization.

  9. Accurate geometry scalable complementary metal oxide semiconductor modelling of low-power 90 nm amplifier circuits

    Directory of Open Access Journals (Sweden)

    Apratim Roy

    2014-05-01

    Full Text Available This paper proposes a technique to accurately estimate radio frequency behaviour of low-power 90 nm amplifier circuits with geometry scalable discrete complementary metal oxide semiconductor (CMOS modelling. Rather than characterising individual elements, the scheme is able to predict gain, noise and reflection loss of low-noise amplifier (LNA architectures made with bias, active and passive components. It reduces number of model parameters by formulating dependent functions in symmetric distributed modelling and shows that simple fitting factors can account for extraneous (interconnect effects in LNA structure. Equivalent-circuit model equations based on physical structure and describing layout parasites are developed for major amplifier elements like metal–insulator–metal (MIM capacitor, spiral symmetric inductor, polysilicon (PS resistor and bulk RF transistor. The models are geometry scalable with respect to feature dimensions, i.e. MIM/PS width and length, outer-dimension/turns of planar inductor and channel-width/fingers of active device. Results obtained with the CMOS models are compared against measured literature data for two 1.2 V amplifier circuits where prediction accuracy for RF parameters (S(21, noise figure, S(11, S(22 lies within the range of 92–99%.

  10. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.

    Science.gov (United States)

    Estrada, T; Zhang, B; Cicotti, P; Armen, R S; Taufer, M

    2012-07-01

    We present a scalable and accurate method for classifying protein-ligand binding geometries in molecular docking. Our method is a three-step process: the first step encodes the geometry of a three-dimensional (3D) ligand conformation into a single 3D point in the space; the second step builds an octree by assigning an octant identifier to every single point in the space under consideration; and the third step performs an octree-based clustering on the reduced conformation space and identifies the most dense octant. We adapt our method for MapReduce and implement it in Hadoop. The load-balancing, fault-tolerance, and scalability in MapReduce allow screening of very large conformation spaces not approachable with traditional clustering methods. We analyze results for docking trials for 23 protein-ligand complexes for HIV protease, 21 protein-ligand complexes for Trypsin, and 12 protein-ligand complexes for P38alpha kinase. We also analyze cross docking trials for 24 ligands, each docking into 24 protein conformations of the HIV protease, and receptor ensemble docking trials for 24 ligands, each docking in a pool of HIV protease receptors. Our method demonstrates significant improvement over energy-only scoring for the accurate identification of native ligand geometries in all these docking assessments. The advantages of our clustering approach make it attractive for complex applications in real-world drug design efforts. We demonstrate that our method is particularly useful for clustering docking results using a minimal ensemble of representative protein conformational states (receptor ensemble docking), which is now a common strategy to address protein flexibility in molecular docking.

  11. Accurate mask model implementation in OPC model for 14nm nodes and beyond

    Science.gov (United States)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Farys, Vincent; Huguennet, Frederic; Armeanu, Ana-Maria; Bork, Ingo; Chomat, Michael; Buck, Peter; Schanen, Isabelle

    2015-10-01

    In a previous work [1] we demonstrated that current OPC model assuming the mask pattern to be analogous to the designed data is no longer valid. Indeed as depicted in figure 1, an extreme case of line-end shortening shows a gap up to 10 nm difference (at mask level). For that reason an accurate mask model, for a 14nm logic gate level has been calibrated. A model with a total RMS of 1.38nm at mask level was obtained. 2D structures such as line-end shortening and corner rounding were well predicted using SEM pictures overlaid with simulated contours. The first part of this paper is dedicated to the implementation of our improved model in current flow. The improved model consists of a mask model capturing mask process and writing effects and a standard optical and resist model addressing the litho exposure and development effects at wafer level. The second part will focus on results from the comparison of the two models, the new and the regular, as depicted in figure 2.

  12. Accurate mask model implementation in optical proximity correction model for 14-nm nodes and beyond

    Science.gov (United States)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Farys, Vincent; Huguennet, Frederic; Armeanu, Ana-Maria; Bork, Ingo; Chomat, Michael; Buck, Peter; Schanen, Isabelle

    2016-04-01

    In a previous work, we demonstrated that the current optical proximity correction model assuming the mask pattern to be analogous to the designed data is no longer valid. An extreme case of line-end shortening shows a gap up to 10 nm difference (at mask level). For that reason, an accurate mask model has been calibrated for a 14-nm logic gate level. A model with a total RMS of 1.38 nm at mask level was obtained. Two-dimensional structures, such as line-end shortening and corner rounding, were well predicted using scanning electron microscopy pictures overlaid with simulated contours. The first part of this paper is dedicated to the implementation of our improved model in current flow. The improved model consists of a mask model capturing mask process and writing effects, and a standard optical and resist model addressing the litho exposure and development effects at wafer level. The second part will focus on results from the comparison of the two models, the new and the regular.

  13. Generalized Reduced Order Model Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — M4 Engineering proposes to develop a generalized reduced order model generation method. This method will allow for creation of reduced order aeroservoelastic state...

  14. Fast and accurate calculation of dilute quantum gas using Uehling-Uhlenbeck model equation

    Science.gov (United States)

    Yano, Ryosuke

    2017-02-01

    The Uehling-Uhlenbeck (U-U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U-U model equation. DSMC analysis based on the U-U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U-U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green-Kubo expression and the shock layer of a dilute Bose gas around a cylinder.

  15. A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Wei [Chinese Academy of Sciences; Ju, Lili [University of South Carolina; Gunzburger, Max [Florida State University; Price, Stephen [Los Alamos National Laboratory; Ringler, Todd [Los Alamos National Laboratory,

    2012-01-01

    The numerical modeling of glacier and ice sheet evolution is a subject of growing interest, in part because of the potential for models to inform estimates of global sea level change. This paper focuses on the development of a numerical model that determines the velocity and pressure fields within an ice sheet. Our numerical model features a high-fidelity mathematical model involving the nonlinear Stokes system and combinations of no-sliding and sliding basal boundary conditions, high-order accurate finite element discretizations based on variable resolution grids, and highly scalable parallel solution strategies, all of which contribute to a numerical model that can achieve accurate velocity and pressure approximations in a highly efficient manner. We demonstrate the accuracy and efficiency of our model by analytical solution tests, established ice sheet benchmark experiments, and comparisons with other well-established ice sheet models.

  16. Escherichia coli growth under modeled reduced gravity

    Science.gov (United States)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  17. Bilinear reduced order approximate model of parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2015-07-01

    This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low dimensional bilinear state representation, enables the reproduction of the heat transfer dynamics along the collector tube for system analysis. Moreover, presented as a reduced order bilinear state space model, the well established control theory for this class of systems can be applied. The approximation efficiency has been proven by several simulation tests, which have been performed considering parameters of the Acurex field with real external working conditions. Model accuracy has been evaluated by comparison to the analytical solution of the hyperbolic distributed model and its semi discretized approximation highlighting the benefits of using the proposed numerical scheme. Furthermore, model sensitivity to the different parameters of the gaussian interpolation has been studied.

  18. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Nicholas J. H.; Noid, W. G., E-mail: wnoid@chem.psu.edu [Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-12-28

    The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed “pressure-matching” variational principle to determine a volume-dependent contribution to the potential, U{sub V}(V), that approximates the volume-dependence of the PMF. We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing U{sub V}, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that U{sub V} accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the “simplicity” of the model.

  19. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids

    Science.gov (United States)

    Dunn, Nicholas J. H.; Noid, W. G.

    2015-12-01

    The present work investigates the capability of bottom-up coarse-graining (CG) methods for accurately modeling both structural and thermodynamic properties of all-atom (AA) models for molecular liquids. In particular, we consider 1, 2, and 3-site CG models for heptane, as well as 1 and 3-site CG models for toluene. For each model, we employ the multiscale coarse-graining method to determine interaction potentials that optimally approximate the configuration dependence of the many-body potential of mean force (PMF). We employ a previously developed "pressure-matching" variational principle to determine a volume-dependent contribution to the potential, UV(V), that approximates the volume-dependence of the PMF. We demonstrate that the resulting CG models describe AA density fluctuations with qualitative, but not quantitative, accuracy. Accordingly, we develop a self-consistent approach for further optimizing UV, such that the CG models accurately reproduce the equilibrium density, compressibility, and average pressure of the AA models, although the CG models still significantly underestimate the atomic pressure fluctuations. Additionally, by comparing this array of models that accurately describe the structure and thermodynamic pressure of heptane and toluene at a range of different resolutions, we investigate the impact of bottom-up coarse-graining upon thermodynamic properties. In particular, we demonstrate that UV accounts for the reduced cohesion in the CG models. Finally, we observe that bottom-up coarse-graining introduces subtle correlations between the resolution, the cohesive energy density, and the "simplicity" of the model.

  20. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  1. Fast and accurate exercise policies for Bermudan swaptions in the LIBOR market model

    NARCIS (Netherlands)

    Karlsson, P.K.; Jain, S.; Oosterlee, C.W.

    2016-01-01

    This paper describes an American Monte Carlo approach for obtaining fast and accurate exercise policies for pricing of callable LIBOR Exotics (e.g., Bermudan swaptions) in the LIBOR market model using the Stochastic Grid Bundling Method (SGBM). SGBM is a bundling and regression based Monte Carlo met

  2. Utilizing anisotropic Preisach-type models in the accurate simulation of magnetostriction

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A. [Cairo Univ., Giza (Egypt). Electrical Power and Machines Dept.; Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States). Electrical Engineering Dept.; Bergqvist, A. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Electrical Power Engineering

    1997-09-01

    Magnetostriction models are being widely used in the development of fine positioning and active vibration damping devices. This paper presents a new approach for simulating 1-D magnetostriction using 2-D anisotropic Preisach-type models. In this approach, identification of the model takes into account measured flux density versus field and strain versus field curves for different stress values. Consequently, a more accurate magnetostriction model may be obtained. Details of the identification procedure as well as experimental testing of the proposed model are given.

  3. Accurate Modeling of the Spiral Bevel and Hypoid Gear with a New Tooth Profile

    Institute of Scientific and Technical Information of China (English)

    LI Yun-song; ADAYI Xieeryazidan; DING Han

    2014-01-01

    Distinguishing with traditional tooth profile of spiral bevel and hypoid gear, it proposed a new tooth profile namely the spherical involute. Firstly, a new theory of forming the spherical involute tooth profile was proposed. Then, this theory was applied to complete parametric derivation of each part of its tooth profile. For enhancing the precision, the SWEEP method used for formation of each part of tooth surface and G1 stitching schema for obtaining a unified tooth surface are put forward and made the application in the accurate modeling. Lastly, owing to the higher accuracy of tooth surface of outputted model, it gave some optimization approaches. Given numerical example about the model can show that this designed gear with spherical involute tooth profile can achieve fast and accurate parametric modeling and provide a foundation for tooth contact analysis (TCA) in digitized design and manufacture.

  4. Development of an Accurate Urban Modeling System Using CAD/GIS Data for Atmosphere Environmental Simulation

    Institute of Scientific and Technical Information of China (English)

    Tomosato Takada; Kazuo Kashiyama

    2008-01-01

    This paper presents an urban modeling system using CAD/GIS data for atmosphere environ- mental simulation, such as wind flow and contaminant spread in urban area. The CAD data is used for the shape modeling for the high-storied buildings and civil structures with complicated shape since the data for that is not included in the 3D-GIS data accurately. The unstructured mesh based on the tetrahedron element is employed in order to express the urban structures with complicated shape accurately. It is difficult to un- derstand the quality of shape model and mesh by the conventional visualization technique. In this paper, the stereoscopic visualization using virtual reality (VR) technology is employed for the vedfication of the quality of shape model and mesh. The present system is applied to the atmosphere environmental simulation in ur- ban area and is shown to be an useful planning and design tool to investigate the atmosphere environmental problem.

  5. A stochastic model of kinetochore–microtubule attachment accurately describes fission yeast chromosome segregation

    OpenAIRE

    Gay, Guillaume; Courtheoux, Thibault; Reyes, Céline; Tournier, Sylvie; Gachet, Yannick

    2012-01-01

    In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduce...

  6. Accurate Cure Modeling for Isothermal Processing of Fast Curing Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Alexander Bernath

    2016-11-01

    Full Text Available In this work a holistic approach for the characterization and mathematical modeling of the reaction kinetics of a fast epoxy resin is shown. Major composite manufacturing processes like resin transfer molding involve isothermal curing at temperatures far below the ultimate glass transition temperature. Hence, premature vitrification occurs during curing and consequently has to be taken into account by the kinetic model. In order to show the benefit of using a complex kinetic model, the Kamal-Malkin kinetic model is compared to the Grindling kinetic model in terms of prediction quality for isothermal processing. From the selected models, only the Grindling kinetic is capable of taking into account vitrification. Non-isothermal, isothermal and combined differential scanning calorimetry (DSC measurements are conducted and processed for subsequent use for model parametrization. In order to demonstrate which DSC measurements are vital for proper cure modeling, both models are fitted to varying sets of measurements. Special attention is given to the evaluation of isothermal DSC measurements which are subject to deviations arising from unrecorded cross-linking prior to the beginning of the measurement as well as from physical aging effects. It is found that isothermal measurements are vital for accurate modeling of isothermal cure and cannot be neglected. Accurate cure predictions are achieved using the Grindling kinetic model.

  7. Towards more accurate wind and solar power prediction by improving NWP model physics

    Science.gov (United States)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during

  8. Impact of an accurate modeling of primordial chemistry in high resolution studies

    CERN Document Server

    Bovino, S; Latif, M A; Schleicher, D R G

    2013-01-01

    The formation of the first stars in the Universe is regulated by a sensitive interplay of chemistry and cooling with the dynamics of a self-gravitating system. As the outcome of the collapse and the final stellar masses depend sensitively on the thermal evolution, it is necessary to accurately model the thermal evolution in high resolution simulations. As previous investigations raised doubts regarding the convergence of the temperature at high resolution, we investigate the role of the numerical method employed to model the chemistry and the thermodynamics. Here we compare the standard implementation in the adaptive-mesh refinement code \\verb|ENZO|, employing a first order backward differentiation formula (BDF), with the 5th order accurate BDF solver \\verb|DLSODES|. While the standard implementation in \\verb|ENZO| shows a strong dependence on the employed resolution, the results obtained with \\verb|DLSODES| are considerably more robust, both with respect to the chemistry and thermodynamics, but also for dyna...

  9. Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis

    OpenAIRE

    S. Hosseini; MOGHANI, J. S.; Jensen, B B

    2011-01-01

    This paper presents an accurate modeling method that is applied to a single-sided outer-rotor transverse flux permanent magnet generator. The inductances and the induced electromotive force for a typical generator are calculated using the magnetostatic three-dimensional finite element method. A new method is then proposed that reveals the behavior of the generator under any load. Finally, torque calculations are carried out using three dimensional finite element analyses. It is shown that...

  10. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    Science.gov (United States)

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  11. A rapid and accurate two-point ray tracing method in horizontally layered velocity model

    Institute of Scientific and Technical Information of China (English)

    TIAN Yue; CHEN Xiao-fei

    2005-01-01

    A rapid and accurate method for two-point ray tracing in horizontally layered velocity model is presented in this paper. Numerical experiments show that this method provides stable and rapid convergence with high accuracies, regardless of various 1-D velocity structures, takeoff angles and epicentral distances. This two-point ray tracing method is compared with the pseudobending technique and the method advanced by Kim and Baag (2002). It turns out that the method in this paper is much more efficient and accurate than the pseudobending technique, but is only applicable to 1-D velocity model. Kim(s method is equivalent to ours for cases without large takeoff angles, but it fails to work when the takeoff angle is close to 90o. On the other hand, the method presented in this paper is applicable to cases with any takeoff angles with rapid and accurate convergence. Therefore, this method is a good choice for two-point ray tracing problems in horizontally layered velocity model and is efficient enough to be applied to a wide range of seismic problems.

  12. Accurate Mobility Modeling and Location Prediction Based on Pattern Analysis of Handover Series in Mobile Networks

    Directory of Open Access Journals (Sweden)

    Péter Fülöp

    2009-01-01

    Full Text Available The efficient dimensioning of cellular wireless access networks depends highly on the accuracy of the underlying mathematical models of user distribution and traffic estimations. Mobility prediction also considered as an effective method contributing to the accuracy of IP multicast based multimedia transmissions, and ad hoc routing algorithms. In this paper we focus on the tradeoff between the accuracy and the complexity of the mathematical models used to describe user movements in the network. We propose mobility model extension, in order to utilize user's movement history thus providing more accurate results than other widely used models in the literature. The new models are applicable in real-life scenarios, because these rely on additional information effectively available in cellular networks (e.g. handover history, too. The complexity of the proposed models is analyzed, and the accuracy is justified by means of simulation.

  13. Bayesian reduced-order models for multiscale dynamical systems

    CERN Document Server

    Koutsourelakis, P S

    2010-01-01

    While existing mathematical descriptions can accurately account for phenomena at microscopic scales (e.g. molecular dynamics), these are often high-dimensional, stochastic and their applicability over macroscopic time scales of physical interest is computationally infeasible or impractical. In complex systems, with limited physical insight on the coherent behavior of their constituents, the only available information is data obtained from simulations of the trajectories of huge numbers of degrees of freedom over microscopic time scales. This paper discusses a Bayesian approach to deriving probabilistic coarse-grained models that simultaneously address the problems of identifying appropriate reduced coordinates and the effective dynamics in this lower-dimensional representation. At the core of the models proposed lie simple, low-dimensional dynamical systems which serve as the building blocks of the global model. These approximate the latent, generating sources and parameterize the reduced-order dynamics. We d...

  14. Reduced Order Models for Dynamic Behavior of Elastomer Damping Devices

    Science.gov (United States)

    Morin, B.; Legay, A.; Deü, J.-F.

    2016-09-01

    In the context of passive damping, various mechanical systems from the space industry use elastomer components (shock absorbers, silent blocks, flexible joints...). The material of these devices has frequency, temperature and amplitude dependent characteristics. The associated numerical models, using viscoelastic and hyperelastic constitutive behaviour, may become computationally too expensive during a design process. The aim of this work is to propose efficient reduced viscoelastic models of rubber devices. The first step is to choose an accurate material model that represent the viscoelasticity. The second step is to reduce the rubber device finite element model to a super-element that keeps the frequency dependence. This reduced model is first built by taking into account the fact that the device's interfaces are much more rigid than the rubber core. To make use of this difference, kinematical constraints enforce the rigid body motion of these interfaces reducing the rubber device model to twelve dofs only on the interfaces (three rotations and three translations per face). Then, the superelement is built by using a component mode synthesis method. As an application, the dynamic behavior of a structure supported by four hourglass shaped rubber devices under harmonic loads is analysed to show the efficiency of the proposed approach.

  15. Yield-Ensuring DAC-Embedded Opamp Design Based on Accurate Behavioral Model Development

    Science.gov (United States)

    Jang, Yeong-Shin; Nguyen, Hoai-Nam; Ryu, Seung-Tak; Lee, Sang-Gug

    An accurate behavioral model of a DAC-embedded opamp (DAC-opamp) is developed for a yield-ensuring LCD column driver design. A lookup table for the V-I curve of the unit differential pair in the DAC-opamp is extracted from a circuit simulation and is later manipulated through a random error insertion. Virtual ground assumption simplifies the output voltage estimation algorithm. The developed behavioral model of a 5-bit DAC-opamp shows good agreement with the circuit level simulation with less than 5% INL difference.

  16. An Accurate Thermoviscoelastic Rheological Model for Ethylene Vinyl Acetate Based on Fractional Calculus

    Directory of Open Access Journals (Sweden)

    Marco Paggi

    2015-01-01

    Full Text Available The thermoviscoelastic rheological properties of ethylene vinyl acetate (EVA used to embed solar cells have to be accurately described to assess the deformation and the stress state of photovoltaic (PV modules and their durability. In the present work, considering the stress as dependent on a noninteger derivative of the strain, a two-parameter model is proposed to approximate the power-law relation between the relaxation modulus and time for a given temperature level. Experimental validation with EVA uniaxial relaxation data at different constant temperatures proves the great advantage of the proposed approach over classical rheological models based on exponential solutions.

  17. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    Science.gov (United States)

    Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.

    2016-06-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.

  18. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    CERN Document Server

    Mead, Alexander; Lombriser, Lucas; Peacock, John; Steele, Olivia; Winther, Hans

    2016-01-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead (2015b). We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo model method can predict the non-linear matter power spectrum measured from simulations of parameterised $w(a)$ dark energy models at the few per cent level for $k0.5\\,h\\mathrm{Mpc}^{-1}$. An updated version of our publicly available HMcode can be found at https://github.com/alexander-mead/HMcode

  19. Body charge modelling for accurate simulation of small-signal behaviour in floating body SOI

    Science.gov (United States)

    Benson, James; Redman-White, William; D'Halleweyn, Nele V.; Easson, Craig A.; Uren, Michael J.

    2002-04-01

    We show that careful modelling of body node elements in floating body PD-SOI MOSFET compact models is required in order to obtain accurate small-signal simulation results in the saturation region. The body network modifies the saturation output conductance of the device via the body-source transconductance, resulting in a pole/zero pair being introduced in the conductance-frequency response. We show that neglecting the presence of body charge in the saturation region can often yield inaccurate values for the body capacitances, which in turn can adversely affect the modelling of the output conductance above the pole/zero frequency. We conclude that the underlying cause of this problem is the use of separate models for the intrinsic and extrinsic capacitances. Finally, we present a simple saturation body charge model which can greatly improve small-signal simulation accuracy for floating body devices.

  20. An improved model for reduced-order physiological fluid flows

    CERN Document Server

    San, Omer; 10.1142/S0219519411004666

    2012-01-01

    An improved one-dimensional mathematical model based on Pulsed Flow Equations (PFE) is derived by integrating the axial component of the momentum equation over the transient Womersley velocity profile, providing a dynamic momentum equation whose coefficients are smoothly varying functions of the spatial variable. The resulting momentum equation along with the continuity equation and pressure-area relation form our reduced-order model for physiological fluid flows in one dimension, and are aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. The consequent nonlinear coupled system of equations is solved by the Lax-Wendroff scheme and is then applied to an open model arterial network of the human vascular system containing the largest fifty-five arteries. The proposed model with functional coefficients is compared with current classical one-dimensional theories which assume steady state Hagen-Poiseuille velocity pro...

  1. OPUS-Rota: a fast and accurate method for side-chain modeling.

    Science.gov (United States)

    Lu, Mingyang; Dousis, Athanasios D; Ma, Jianpeng

    2008-09-01

    In this paper, we introduce a fast and accurate side-chain modeling method, named OPUS-Rota. In a benchmark comparison with the methods SCWRL, NCN, LGA, SPRUCE, Rosetta, and SCAP, OPUS-Rota is shown to be much faster than all the methods except SCWRL, which is comparably fast. In terms of overall chi (1) and chi (1+2) accuracies, however, OPUS-Rota is 5.4 and 8.8 percentage points better, respectively, than SCWRL. Compared with NCN, which has the best accuracy in the literature, OPUS-Rota is 1.6 percentage points better for overall chi (1+2) but 0.3 percentage points weaker for overall chi (1). Hence, our algorithm is much more accurate than SCWRL with similar execution speed, and it has accuracy comparable to or better than the most accurate methods in the literature, but with a runtime that is one or two orders of magnitude shorter. In addition, OPUS-Rota consistently outperforms SCWRL on the Wallner and Elofsson homology-modeling benchmark set when the sequence identity is greater than 40%. We hope that OPUS-Rota will contribute to high-accuracy structure refinement, and the computer program is freely available for academic users.

  2. Accurate neural network-based modeling for RF MEMS component synthesizing

    Science.gov (United States)

    Mohamed, Firas; Affour, Bachar

    2004-01-01

    Contrary to traditional analysis flows as expensive FEM simulation tools or inaccurate electrical models extractors, we developed MemsCompiler that implements a new real synthesis approach for RF MEMS. The new flow starts from system designer requirements and generates, in a one-click operation, a ready-to-fabricate layout (GDSII) and a passive fitted equivalent Spice circuit. Concerning the circuit, physical considerations give us an equivalent schematic in which circuit parameters values must be adjusted to fit the required performances. As to the GDSII, which constitutes the main contribution of this work, Design Of Experiment technique, used in the first version of the synthesizer, gave about 11% of dispersion and found to be unsatisfactory in some cases. A more accurate modeling was indispensable. Thus, we developed a neural networks-based modeling for circular inductors, which are considered by designers among the most stubborn components. This new modeling has shown to be very accurate: MemsCompiler produced about 3% of dispersion compared to the equivalent circuit and about 6% of dispersion for generated geometries. This modeling is flexible and could be rapidly generalized to other components.

  3. Modeling the Non-Linear Behavior of Library Cells for an Accurate Static Noise Analysis

    CERN Document Server

    Forzan, Cristiano

    2011-01-01

    In signal integrity analysis, the joint effect of propagated noise through library cells, and of the noise injected on a quiet net by neighboring switching nets through coupling capacitances, must be considered in order to accurately estimate the overall noise impact on design functionality and performances. In this work the impact of the cell non-linearity on the noise glitch waveform is analyzed in detail, and a new macromodel that allows to accurately and efficiently modeling the non-linear effects of the victim driver in noise analysis is presented. Experimental results demonstrate the effectiveness of our method, and confirm that existing noise analysis approaches based on linear superposition of the propagated and crosstalk-injected noise can be highly inaccurate, thus impairing the sign-off functional verification phase.

  4. Reduced Chemical Kinetic Model for Titan Entries

    Directory of Open Access Journals (Sweden)

    Romain Savajano

    2011-01-01

    Full Text Available A reduced chemical kinetic model for Titan's atmosphere has been developed. This new model with 18 species and 28 reactions includes the mainfeatures of a more complete scheme, respecting the radiative fluxes. It has been verified against three key elements: a sensitivity analysis, the equilibrium chemical composition using shock tube simulations in CHEMKIN, and the results of computational fluid dynamics (CFDs simulations.

  5. An accurate simulation model for single-photon avalanche diodes including important statistical effects

    Science.gov (United States)

    Qiuyang, He; Yue, Xu; Feifei, Zhao

    2013-10-01

    An accurate and complete circuit simulation model for single-photon avalanche diodes (SPADs) is presented. The derived model is not only able to simulate the static DC and dynamic AC behaviors of an SPAD operating in Geiger-mode, but also can emulate the second breakdown and the forward bias behaviors. In particular, it considers important statistical effects, such as dark-counting and after-pulsing phenomena. The developed model is implemented using the Verilog-A description language and can be directly performed in commercial simulators such as Cadence Spectre. The Spectre simulation results give a very good agreement with the experimental results reported in the open literature. This model shows a high simulation accuracy and very fast simulation rate.

  6. An Accurate Multimoment Constrained Finite Volume Transport Model on Yin-Yang Grids

    Institute of Scientific and Technical Information of China (English)

    LI Xingliang; SHEN Xueshun; PENG Xindong; XIAO Feng; ZHUANG Zhaorong; CHEN Chungang

    2013-01-01

    A global transport model is proposed in which a multimoment constrained finite volume (MCV) scheme is applied to a Yin-Yang overset grid.The MCV scheme defines 16 degrees of freedom (DOFs) within each element to build a 2D cubic reconstruction polynomial.The time evolution equations for DOFs are derived from constraint conditions on moments of line-integrated averages (LIA),point values (PV),and values of first-order derivatives (DV).The Yin-Yang grid eliminates polar singularities and results in a quasi-uniform mesh.A limiting projection is designed to remove nonphysical oscillations around discontinuities.Our model was tested against widely used benchmarks; the competitive results reveal that the model is accurate and promising for developing general circulation models.

  7. A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever

    Science.gov (United States)

    Marzi, Andrea; Banadyga, Logan; Haddock, Elaine; Thomas, Tina; Shen, Kui; Horne, Eva J.; Scott, Dana P.; Feldmann, Heinz; Ebihara, Hideki

    2016-01-01

    Marburg virus (MARV), a close relative of Ebola virus, is the causative agent of a severe human disease known as Marburg hemorrhagic fever (MHF). No licensed vaccine or therapeutic exists to treat MHF, and MARV is therefore classified as a Tier 1 select agent and a category A bioterrorism agent. In order to develop countermeasures against this severe disease, animal models that accurately recapitulate human disease are required. Here we describe the development of a novel, uniformly lethal Syrian golden hamster model of MHF using a hamster-adapted MARV variant Angola. Remarkably, this model displayed almost all of the clinical features of MHF seen in humans and non-human primates, including coagulation abnormalities, hemorrhagic manifestations, petechial rash, and a severely dysregulated immune response. This MHF hamster model represents a powerful tool for further dissecting MARV pathogenesis and accelerating the development of effective medical countermeasures against human MHF. PMID:27976688

  8. Accurate modeling of switched reluctance machine based on hybrid trained WNN

    Science.gov (United States)

    Song, Shoujun; Ge, Lefei; Ma, Shaojie; Zhang, Man

    2014-04-01

    According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, the nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.

  9. A pairwise maximum entropy model accurately describes resting-state human brain networks.

    Science.gov (United States)

    Watanabe, Takamitsu; Hirose, Satoshi; Wada, Hiroyuki; Imai, Yoshio; Machida, Toru; Shirouzu, Ichiro; Konishi, Seiki; Miyashita, Yasushi; Masuda, Naoki

    2013-01-01

    The resting-state human brain networks underlie fundamental cognitive functions and consist of complex interactions among brain regions. However, the level of complexity of the resting-state networks has not been quantified, which has prevented comprehensive descriptions of the brain activity as an integrative system. Here, we address this issue by demonstrating that a pairwise maximum entropy model, which takes into account region-specific activity rates and pairwise interactions, can be robustly and accurately fitted to resting-state human brain activities obtained by functional magnetic resonance imaging. Furthermore, to validate the approximation of the resting-state networks by the pairwise maximum entropy model, we show that the functional interactions estimated by the pairwise maximum entropy model reflect anatomical connexions more accurately than the conventional functional connectivity method. These findings indicate that a relatively simple statistical model not only captures the structure of the resting-state networks but also provides a possible method to derive physiological information about various large-scale brain networks.

  10. What input data are needed to accurately model electromagnetic fields from mobile phone base stations?

    Science.gov (United States)

    Beekhuizen, Johan; Kromhout, Hans; Bürgi, Alfred; Huss, Anke; Vermeulen, Roel

    2015-01-01

    The increase in mobile communication technology has led to concern about potential health effects of radio frequency electromagnetic fields (RF-EMFs) from mobile phone base stations. Different RF-EMF prediction models have been applied to assess population exposure to RF-EMF. Our study examines what input data are needed to accurately model RF-EMF, as detailed data are not always available for epidemiological studies. We used NISMap, a 3D radio wave propagation model, to test models with various levels of detail in building and antenna input data. The model outcomes were compared with outdoor measurements taken in Amsterdam, the Netherlands. Results showed good agreement between modelled and measured RF-EMF when 3D building data and basic antenna information (location, height, frequency and direction) were used: Spearman correlations were >0.6. Model performance was not sensitive to changes in building damping parameters. Antenna-specific information about down-tilt, type and output power did not significantly improve model performance compared with using average down-tilt and power values, or assuming one standard antenna type. We conclude that 3D radio wave propagation modelling is a feasible approach to predict outdoor RF-EMF levels for ranking exposure levels in epidemiological studies, when 3D building data and information on the antenna height, frequency, location and direction are available.

  11. Robust simulation of buckled structures using reduced order modeling

    Science.gov (United States)

    Wiebe, R.; Perez, R. A.; Spottswood, S. M.

    2016-09-01

    Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.

  12. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    Directory of Open Access Journals (Sweden)

    Stovgaard Kasper

    2010-08-01

    Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for

  13. Accurate determination of lattice parameters based on Niggli reduced cell theory by using digitized electron diffraction micrograph.

    Science.gov (United States)

    Yang, Yi; Cai, Canying; Lin, Jianguo; Gong, Lunjun; Yang, Qibin

    2017-05-01

    In this paper, we used Niggli reduced cell theory to determine lattice constants of a micro/nano crystal by using electron diffraction patterns. The Niggli reduced cell method enhanced the accuracy of lattice constant measurement obviously, because the lengths and the angles of lattice vectors of a primitive cell can be measured directly on the electron micrographs instead of a double tilt holder. With the aid of digitized algorithm and least square optimization by using three digitized micrographs, a valid reciprocal Niggli reduced cell number can be obtained. Thus a reciprocal and real Bravais lattices are acquired. The results of three examples, i.e., Mg4Zn7, an unknown phase (Precipitate phase in nickel-base superalloy) and Ba4Ti13O30 showed that the maximum errors are 1.6% for lengths and are 0.3% for angles.

  14. Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis

    DEFF Research Database (Denmark)

    Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Jensen, Bogi Bech

    2011-01-01

    This paper presents an accurate modeling method that is applied to a single-sided outer-rotor transverse flux permanent magnet generator. The inductances and the induced electromotive force for a typical generator are calculated using the magnetostatic three-dimensional finite element method. A new...... method is then proposed that reveals the behavior of the generator under any load. Finally, torque calculations are carried out using three dimensional finite element analyses. It is shown that although in the single-phase generator the cogging torque is very high, this can be improved significantly...... by combining three single-phase modules into a three-phase generator....

  15. Particle Image Velocimetry Measurements in Anatomically-Accurate Models of the Mammalian Nasal Cavity

    Science.gov (United States)

    Rumple, C.; Richter, J.; Craven, B. A.; Krane, M.

    2012-11-01

    A summary of the research being carried out by our multidisciplinary team to better understand the form and function of the nose in different mammalian species that include humans, carnivores, ungulates, rodents, and marine animals will be presented. The mammalian nose houses a convoluted airway labyrinth, where two hallmark features of mammals occur, endothermy and olfaction. Because of the complexity of the nasal cavity, the anatomy and function of these upper airways remain poorly understood in most mammals. However, recent advances in high-resolution medical imaging, computational modeling, and experimental flow measurement techniques are now permitting the study of airflow and respiratory and olfactory transport phenomena in anatomically-accurate reconstructions of the nasal cavity. Here, we focus on efforts to manufacture transparent, anatomically-accurate models for stereo particle image velocimetry (SPIV) measurements of nasal airflow. Challenges in the design and manufacture of index-matched anatomical models are addressed and preliminary SPIV measurements are presented. Such measurements will constitute a validation database for concurrent computational fluid dynamics (CFD) simulations of mammalian respiration and olfaction. Supported by the National Science Foundation.

  16. AN ACCURATE MODEL FOR CALCULATING CORRECTION OF PATH FLEXURE OF SATELLITE SIGNALS

    Institute of Scientific and Technical Information of China (English)

    LiYanxing; HuXinkang; ShuaiPing; ZhangZhongfu

    2003-01-01

    The propagation path of satellite signals in the atmosphere is a curve thus it,is very difficult to calculate its flexure correction accurately, a strict calculating expressions has so far not been derived. In this study, the flexure correction of the refraction curve is divided into two parts and their strict calculating expressions are derived. By use of the standard atmospheric model, the accurate flexure correction of the refraction curve is calculated for different zenith distance Z. On this basis, a calculation model is structured. This model is very simple in structure, convenient in use and high in accuracy. When Z is smaller than 85°,the accuracy of the correction exceeds 0.06mm. The flexure correction is basically proportional to tan2Z and increases rapidly with the increase of Z When Z>50°,the correction is smaller than 0.5 mm and can be neglected. When Z>50°, the correction must be made. When Z is 85°, 88° and 89° , the corrections are 198mm, 8.911m and 28.497 km, respectively. The calculation results shows that the correction estimate by Hopfield is correct when Z≤80°, but too small when Z=89°. The expression in this paper is applicable to any satellite.

  17. AN ACCURATE MODEL FOR CALCULATING CORRECTION OF PATH FLEXURE OF SATELLITE SIGNALS

    Institute of Scientific and Technical Information of China (English)

    Li Yanxing; Hu Xinkang; Shuai Ping; Zhang Zhongfu

    2003-01-01

    The propagation path of satellite signals in the atmosphere is a curve thus it.is very difficult to calculate its flexure correction accurately, a strict calculating expressions has so far not been derived. In this study, the flexure correction of the refraction curve is divided into two parts and their strict calculating expressions are derived. By use of the standard atmospheric model, the accurate flexure correction of the refraction curve is calculated for different zenith distance Z. On this basis, a calculation model is structured. This model is very simple in structure, convenient in use and high in accuracy. When Z is smaller than 85°, the accuracy of the correction exceeds 0.06 mm. The flexure correction is basically proportional to tan2Z and increases rapidly with the increase of Z When Z>50°,the correction is smaller than 0.5 mm and can be neglected.When Z>50°, the correction must be made. When Z is 85° , 88° and 89° , the corrections are 198mm, 8. 911 m and 28. 497 km, respectively. The calculation results shows that the correction estimate by Hopfield is correct when Z≤80 °, but too small when Z=89°. The expression in this paper is applicable to any satellite.

  18. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    Science.gov (United States)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  19. Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties

    Science.gov (United States)

    Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1992-01-01

    The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.

  20. A Multilayer Recurrent Fuzzy Neural Network for Accurate Dynamic System Modeling

    Institute of Scientific and Technical Information of China (English)

    LIU He; HUANG Dao

    2008-01-01

    A muitilayer recurrent fuzzy neural network (MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can he solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy.

  1. A stochastic model of kinetochore-microtubule attachment accurately describes fission yeast chromosome segregation.

    Science.gov (United States)

    Gay, Guillaume; Courtheoux, Thibault; Reyes, Céline; Tournier, Sylvie; Gachet, Yannick

    2012-03-19

    In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduces the timing of correct chromosome biorientation and segregation seen in fission yeast. Prevention of attachment defects requires both appropriate kinetochore orientation and an Aurora B-like activity. The model also reproduces abnormal chromosome segregation behavior (caused by, for example, inhibition of Aurora B). It predicts that, in metaphase, merotelic attachment is prevented by a kinetochore orientation effect and corrected by an Aurora B-like activity, whereas in anaphase, it is corrected through unbalanced forces applied to the kinetochore. These unbalanced forces are sufficient to prevent aneuploidy.

  2. A probabilistic model for reducing medication errors.

    Directory of Open Access Journals (Sweden)

    Phung Anh Nguyen

    Full Text Available BACKGROUND: Medication errors are common, life threatening, costly but preventable. Information technology and automated systems are highly efficient for preventing medication errors and therefore widely employed in hospital settings. The aim of this study was to construct a probabilistic model that can reduce medication errors by identifying uncommon or rare associations between medications and diseases. METHODS AND FINDINGS: Association rules of mining techniques are utilized for 103.5 million prescriptions from Taiwan's National Health Insurance database. The dataset included 204.5 million diagnoses with ICD9-CM codes and 347.7 million medications by using ATC codes. Disease-Medication (DM and Medication-Medication (MM associations were computed by their co-occurrence and associations' strength were measured by the interestingness or lift values which were being referred as Q values. The DMQs and MMQs were used to develop the AOP model to predict the appropriateness of a given prescription. Validation of this model was done by comparing the results of evaluation performed by the AOP model and verified by human experts. The results showed 96% accuracy for appropriate and 45% accuracy for inappropriate prescriptions, with a sensitivity and specificity of 75.9% and 89.5%, respectively. CONCLUSIONS: We successfully developed the AOP model as an efficient tool for automatic identification of uncommon or rare associations between disease-medication and medication-medication in prescriptions. The AOP model helps to reduce medication errors by alerting physicians, improving the patients' safety and the overall quality of care.

  3. The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull

    Science.gov (United States)

    Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2013-01-01

    Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944

  4. Digitalized accurate modeling of SPCB with multi-spiral surface based on CPC algorithm

    Science.gov (United States)

    Huang, Yanhua; Gu, Lizhi

    2015-09-01

    The main methods of the existing multi-spiral surface geometry modeling include spatial analytic geometry algorithms, graphical method, interpolation and approximation algorithms. However, there are some shortcomings in these modeling methods, such as large amount of calculation, complex process, visible errors, and so on. The above methods have, to some extent, restricted the design and manufacture of the premium and high-precision products with spiral surface considerably. This paper introduces the concepts of the spatially parallel coupling with multi-spiral surface and spatially parallel coupling body. The typical geometry and topological features of each spiral surface forming the multi-spiral surface body are determined, by using the extraction principle of datum point cluster, the algorithm of coupling point cluster by removing singular point, and the "spatially parallel coupling" principle based on the non-uniform B-spline for each spiral surface. The orientation and quantitative relationships of datum point cluster and coupling point cluster in Euclidean space are determined accurately and in digital description and expression, coupling coalescence of the surfaces with multi-coupling point clusters under the Pro/E environment. The digitally accurate modeling of spatially parallel coupling body with multi-spiral surface is realized. The smooth and fairing processing is done to the three-blade end-milling cutter's end section area by applying the principle of spatially parallel coupling with multi-spiral surface, and the alternative entity model is processed in the four axis machining center after the end mill is disposed. And the algorithm is verified and then applied effectively to the transition area among the multi-spiral surface. The proposed model and algorithms may be used in design and manufacture of the multi-spiral surface body products, as well as in solving essentially the problems of considerable modeling errors in computer graphics and

  5. Towards an accurate understanding of UHMWPE visco-dynamic behaviour for numerical modelling of implants.

    Science.gov (United States)

    Quinci, Federico; Dressler, Matthew; Strickland, Anthony M; Limbert, Georges

    2014-04-01

    Considerable progress has been made in understanding implant wear and developing numerical models to predict wear for new orthopaedic devices. However any model of wear could be improved through a more accurate representation of the biomaterial mechanics, including time-varying dynamic and inelastic behaviour such as viscosity and plastic deformation. In particular, most computational models of wear of UHMWPE implement a time-invariant version of Archard's law that links the volume of worn material to the contact pressure between the metal implant and the polymeric tibial insert. During in-vivo conditions, however, the contact area is a time-varying quantity and is therefore dependent upon the dynamic deformation response of the material. From this observation one can conclude that creep deformations of UHMWPE may be very important to consider when conducting computational wear analyses, in stark contrast to what can be found in the literature. In this study, different numerical modelling techniques are compared with experimental creep testing on a unicondylar knee replacement system in a physiologically representative context. Linear elastic, plastic and time-varying visco-dynamic models are benchmarked using literature data to predict contact deformations, pressures and areas. The aim of this study is to elucidate the contributions of viscoelastic and plastic effects on these surface quantities. It is concluded that creep deformations have a significant effect on the contact pressure measured (experiment) and calculated (computational models) at the surface of the UHMWPE unicondylar insert. The use of a purely elastoplastic constitutive model for UHMWPE lead to compressive deformations of the insert which are much smaller than those predicted by a creep-capturing viscoelastic model (and those measured experimentally). This shows again the importance of including creep behaviour into a constitutive model in order to predict the right level of surface deformation

  6. Reduced Complexity Channel Models for IMT-Advanced Evaluation

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2009-01-01

    Full Text Available Accuracy and complexity are two crucial aspects of the applicability of a channel model for wideband multiple input multiple output (MIMO systems. For small number of antenna element pairs, correlation-based models have lower computational complexity while the geometry-based stochastic models (GBSMs can provide more accurate modeling of real radio propagation. This paper investigates several potential simplifications of the GBSM to reduce the complexity with minimal impact on accuracy. In addition, we develop a set of broadband metrics which enable a thorough investigation of the differences between the GBSMs and the simplified models. The impact of various random variables which are employed by the original GBSM on the system level simulation are also studied. Both simulation results and a measurement campaign show that complexity can be reduced significantly with a negligible loss of accuracy in the proposed metrics. As an example, in the presented scenarios, the computational time can be reduced by up to 57% while keeping the relative deviation of 5% outage capacity within 5%.

  7. LogGPO: An accurate communication model for performance prediction of MPI programs

    Institute of Scientific and Technical Information of China (English)

    CHEN WenGuang; ZHAI JiDong; ZHANG Jin; ZHENG WeiMin

    2009-01-01

    Message passing interface (MPI) is the de facto standard in writing parallel scientific applications on distributed memory systems. Performance prediction of MPI programs on current or future parallel sys-terns can help to find system bottleneck or optimize programs. To effectively analyze and predict per-formance of a large and complex MPI program, an efficient and accurate communication model is highly needed. A series of communication models have been proposed, such as the LogP model family, which assume that the sending overhead, message transmission, and receiving overhead of a communication is not overlapped and there is a maximum overlap degree between computation and communication. However, this assumption does not always hold for MPI programs because either sending or receiving overhead introduced by MPI implementations can decrease potential overlap for large messages. In this paper, we present a new communication model, named LogGPO, which captures the potential overlap between computation with communication of MPI programs. We design and implement a trace-driven simulator to verify the LogGPO model by predicting performance of point-to-point communication and two real applications CG and Sweep3D. The average prediction errors of LogGPO model are 2.4% and 2.0% for these two applications respectively, while the average prediction errors of LogGP model are 38.3% and 9.1% respectively.

  8. Physical modeling of real-world slingshots for accurate speed predictions

    CERN Document Server

    Yeats, Bob

    2016-01-01

    We discuss the physics and modeling of latex-rubber slingshots. The goal is to get accurate speed predictions inspite of the significant real world difficulties of force drift, force hysteresis, rubber ageing, and the very non- linear, non-ideal, force vs. pull distance curves of slingshot rubber bands. Slingshots are known to shoot faster under some circumstances when the bands are tapered rather than having constant width and stiffness. We give both qualitative understanding and numerical predictions of this effect. We consider two models. The first is based on conservation of energy and is easier to implement, but cannot determine the speeds along the rubber bands without making assumptions. The second, treats the bands as a series of mass points subject to being pulled by immediately adjacent mass points according to how much the rubber has been stretched on the two adjacent sides. This is a classic many-body F=ma problem but convergence requires using a particular numerical technique. It gives accurate p...

  9. A Flexible Fringe Projection Vision System with Extended Mathematical Model for Accurate Three-Dimensional Measurement

    Directory of Open Access Journals (Sweden)

    Suzhi Xiao

    2016-04-01

    Full Text Available In order to acquire an accurate three-dimensional (3D measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.

  10. Mass transport and direction dependent battery modeling for accurate on-line power capability prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wiegman, H.L.N. [General Electric Corporate Research and Development, Schenectady, NY (United States)

    2000-07-01

    Some recent advances in battery modeling were discussed with reference to on-line impedance estimates and power performance predictions for aqueous solution, porous electrode cell structures. The objective was to determine which methods accurately estimate a battery's internal state and power capability while operating a charge and sustaining a hybrid electric vehicle (HEV) over a wide range of driving conditions. The enhancements to the Randles-Ershler equivalent electrical model of common cells with lead-acid, nickel-cadmium and nickel-metal hydride chemistries were described. This study also investigated which impedances are sensitive to boundary layer charge concentrations and mass transport limitations. Non-linear impedances were shown to significantly affect the battery's ability to process power. The main advantage of on-line estimating a battery's impedance state and power capability is that the battery can be optimally sized for any application. refs., tabs., figs., append.

  11. Modelling of Limestone Dissolution in Wet FGD Systems: The Importance of an Accurate Particle Size Distribution

    DEFF Research Database (Denmark)

    Kiil, Søren; Johnsson, Jan Erik; Dam-Johansen, Kim

    1999-01-01

    In wet flue gas desulphurisation (FGD) plants, the most common sorbent is limestone. Over the past 25 years, many attempts to model the transient dissolution of limestone particles in aqueous solutions have been performed, due to the importance for the development of reliable FGD simu-lation tools...... suspended in a liquid solution. The measured PSDs were sensitive to the addition of a dispersing agent, the dispersion time, and the presence of ultrasound. It was found that the different PSDs influenced the simulated rate of dis-solution significantly (i.e. from below to above the measured dissolution...... rate). The results of this work show that a representative PSD is essential in order to model the rate of dissolution of lime-stone particles accurately....

  12. Accurate calibration of the velocity-dependent one-scale model for domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Leite, A.M.M., E-mail: up080322016@alunos.fc.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ecole Polytechnique, 91128 Palaiseau Cedex (France); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-01-08

    We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048{sup 3}, and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c{sub w}=0.34{+-}0.16 and k{sub w}=0.98{+-}0.07, which are of higher precision than (but in agreement with) earlier estimates.

  13. Accurate tissue area measurements with considerably reduced radiation dose achieved by patient-specific CT scan parameters

    DEFF Research Database (Denmark)

    Brandberg, J.; Bergelin, E.; Sjostrom, L.;

    2008-01-01

    to cover a wide range of diameters (31-47 cm) for both abdomen and thighs - were examined using both techniques. Tissue areas were compared, as were CT numbers...... for muscle tissue. Image noise was quantified by standard deviation measurements. The area deviation was ... as compared with the integral dose by the standard diagnostic technique. The CT numbers of muscle tissue remained unchanged with reduced radiation dose. Image noise was on average 20.9 HU (Hounsfield units) for subjects with diameters of 31-35 cm and 11.2 HU for subjects with diameters in the range of 36...

  14. Empirical Reduced-Order Modeling for Boundary Feedback Flow Control

    Directory of Open Access Journals (Sweden)

    Seddik M. Djouadi

    2008-01-01

    Full Text Available This paper deals with the practical and theoretical implications of model reduction for aerodynamic flow-based control problems. Various aspects of model reduction are discussed that apply to partial differential equation- (PDE- based models in general. Specifically, the proper orthogonal decomposition (POD of a high dimension system as well as frequency domain identification methods are discussed for initial model construction. Projections on the POD basis give a nonlinear Galerkin model. Then, a model reduction method based on empirical balanced truncation is developed and applied to the Galerkin model. The rationale for doing so is that linear subspace approximations to exact submanifolds associated with nonlinear controllability and observability require only standard matrix manipulations utilizing simulation/experimental data. The proposed method uses a chirp signal as input to produce the output in the eigensystem realization algorithm (ERA. This method estimates the system's Markov parameters that accurately reproduce the output. Balanced truncation is used to show that model reduction is still effective on ERA produced approximated systems. The method is applied to a prototype convective flow on obstacle geometry. An H∞ feedback flow controller is designed based on the reduced model to achieve tracking and then applied to the full-order model with excellent performance.

  15. Using the Neumann series expansion for assembling Reduced Order Models

    Directory of Open Access Journals (Sweden)

    Nasisi S.

    2014-06-01

    Full Text Available An efficient method to remove the limitation in selecting the master degrees of freedom in a finite element model by means of a model order reduction is presented. A major difficulty of the Guyan reduction and IRS method (Improved Reduced System is represented by the need of appropriately select the master and slave degrees of freedom for the rate of convergence to be high. This study approaches the above limitation by using a particular arrangement of the rows and columns of the assembled matrices K and M and employing a combination between the IRS method and a variant of the analytical selection of masters presented in (Shah, V. N., Raymund, M., Analytical selection of masters for the reduced eigenvalue problem, International Journal for Numerical Methods in Engineering 18 (1 1982 in case first lowest frequencies had to be sought. One of the most significant characteristics of the approach is the use of the Neumann series expansion that motivates this particular arrangement of the matrices’ entries. The method shows a higher rate of convergence when compared to the standard IRS and very accurate results for the lowest reduced frequencies. To show the effectiveness of the proposed method two testing structures and the human vocal tract model employed in (Vampola, T., Horacek, J., Svec, J. G., FE modeling of human vocal tract acoustics. Part I: Prodution of Czech vowels, Acta Acustica United with Acustica 94 (3 2008 are presented.

  16. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.

    Science.gov (United States)

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-02-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/.

  17. A Probabilistic Model for Reducing Medication Errors

    Science.gov (United States)

    Nguyen, Phung Anh; Syed-Abdul, Shabbir; Iqbal, Usman; Hsu, Min-Huei; Huang, Chen-Ling; Li, Hsien-Chang; Clinciu, Daniel Livius; Jian, Wen-Shan; Li, Yu-Chuan Jack

    2013-01-01

    Background Medication errors are common, life threatening, costly but preventable. Information technology and automated systems are highly efficient for preventing medication errors and therefore widely employed in hospital settings. The aim of this study was to construct a probabilistic model that can reduce medication errors by identifying uncommon or rare associations between medications and diseases. Methods and Finding(s) Association rules of mining techniques are utilized for 103.5 million prescriptions from Taiwan’s National Health Insurance database. The dataset included 204.5 million diagnoses with ICD9-CM codes and 347.7 million medications by using ATC codes. Disease-Medication (DM) and Medication-Medication (MM) associations were computed by their co-occurrence and associations’ strength were measured by the interestingness or lift values which were being referred as Q values. The DMQs and MMQs were used to develop the AOP model to predict the appropriateness of a given prescription. Validation of this model was done by comparing the results of evaluation performed by the AOP model and verified by human experts. The results showed 96% accuracy for appropriate and 45% accuracy for inappropriate prescriptions, with a sensitivity and specificity of 75.9% and 89.5%, respectively. Conclusions We successfully developed the AOP model as an efficient tool for automatic identification of uncommon or rare associations between disease-medication and medication-medication in prescriptions. The AOP model helps to reduce medication errors by alerting physicians, improving the patients’ safety and the overall quality of care. PMID:24312659

  18. Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model

    Science.gov (United States)

    Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.

    2007-05-01

    Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem

  19. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    Science.gov (United States)

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  20. Fast and accurate analytical model to solve inverse problem in SHM using Lamb wave propagation

    Science.gov (United States)

    Poddar, Banibrata; Giurgiutiu, Victor

    2016-04-01

    Lamb wave propagation is at the center of attention of researchers for structural health monitoring of thin walled structures. This is due to the fact that Lamb wave modes are natural modes of wave propagation in these structures with long travel distances and without much attenuation. This brings the prospect of monitoring large structure with few sensors/actuators. However the problem of damage detection and identification is an "inverse problem" where we do not have the luxury to know the exact mathematical model of the system. On top of that the problem is more challenging due to the confounding factors of statistical variation of the material and geometric properties. Typically this problem may also be ill posed. Due to all these complexities the direct solution of the problem of damage detection and identification in SHM is impossible. Therefore an indirect method using the solution of the "forward problem" is popular for solving the "inverse problem". This requires a fast forward problem solver. Due to the complexities involved with the forward problem of scattering of Lamb waves from damages researchers rely primarily on numerical techniques such as FEM, BEM, etc. But these methods are slow and practically impossible to be used in structural health monitoring. We have developed a fast and accurate analytical forward problem solver for this purpose. This solver, CMEP (complex modes expansion and vector projection), can simulate scattering of Lamb waves from all types of damages in thin walled structures fast and accurately to assist the inverse problem solver.

  1. Accurate modeling of vector hysteresis using a superposition of Preisach-type models

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A. [Cairo Univ., Giza (Egypt). Electrical Power and Machines Dept.; Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States). Electrical Engineering Dept.

    1997-09-01

    Vector hysteresis models are basically regarded as helpful tools that can be utilized in simulating and/or predicting multi-dimensional field-media interactions. Simulations of energy loss in power devices having unoriented magnetic cores, read/write recording processes as well as tape and disk erasure approaches are examples of such interactions that are currently of considerable interest. Vector hysteresis models are generally regarded as helpful tools that can be utilized in simulating multi-dimensional field-media interactions. In this paper, simulation of vector hysteresis is proposed by using a superposition of isotropic Preisach-type models. This approach gives the opportunity to fully incorporate rotational experimental results in its identification procedure, thus leading to higher simulation accuracy. Detailed solution of the model identification problem and some experimental testing results are given in the paper.

  2. Accurate integral equation theory for the central force model of liquid water and ionic solutions

    Science.gov (United States)

    Ichiye, Toshiko; Haymet, A. D. J.

    1988-10-01

    The atom-atom pair correlation functions and thermodynamics of the central force model of water, introduced by Lemberg, Stillinger, and Rahman, have been calculated accurately by an integral equation method which incorporates two new developments. First, a rapid new scheme has been used to solve the Ornstein-Zernike equation. This scheme combines the renormalization methods of Allnatt, and Rossky and Friedman with an extension of the trigonometric basis-set solution of Labik and co-workers. Second, by adding approximate ``bridge'' functions to the hypernetted-chain (HNC) integral equation, we have obtained predictions for liquid water in which the hydrogen bond length and number are in good agreement with ``exact'' computer simulations of the same model force laws. In addition, for dilute ionic solutions, the ion-oxygen and ion-hydrogen coordination numbers display both the physically correct stoichiometry and good agreement with earlier simulations. These results represent a measurable improvement over both a previous HNC solution of the central force model and the ex-RISM integral equation solutions for the TIPS and other rigid molecule models of water.

  3. A general pairwise interaction model provides an accurate description of in vivo transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Marc Santolini

    Full Text Available The identification of transcription factor binding sites (TFBSs on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs, in which each DNA base pair contributes independently to the transcription factor (TF binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM, a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting

  4. Application of thin plate splines for accurate regional ionosphere modeling with multi-GNSS data

    Science.gov (United States)

    Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej

    2016-04-01

    GNSS-derived regional ionosphere models are widely used in both precise positioning, ionosphere and space weather studies. However, their accuracy is often not sufficient to support precise positioning, RTK in particular. In this paper, we presented new approach that uses solely carrier phase multi-GNSS observables and thin plate splines (TPS) for accurate ionospheric TEC modeling. TPS is a closed solution of a variational problem minimizing both the sum of squared second derivatives of a smoothing function and the deviation between data points and this function. This approach is used in UWM-rt1 regional ionosphere model developed at UWM in Olsztyn. The model allows for providing ionospheric TEC maps with high spatial and temporal resolutions - 0.2x0.2 degrees and 2.5 minutes, respectively. For TEC estimation, EPN and EUPOS reference station data is used. The maps are available with delay of 15-60 minutes. In this paper we compare the performance of UWM-rt1 model with IGS global and CODE regional ionosphere maps during ionospheric storm that took place on March 17th, 2015. During this storm, the TEC level over Europe doubled comparing to earlier quiet days. The performance of the UWM-rt1 model was validated by (a) comparison to reference double-differenced ionospheric corrections over selected baselines, and (b) analysis of post-fit residuals to calibrated carrier phase geometry-free observational arcs at selected test stations. The results show a very good performance of UWM-rt1 model. The obtained post-fit residuals in case of UWM maps are lower by one order of magnitude comparing to IGS maps. The accuracy of UWM-rt1 -derived TEC maps is estimated at 0.5 TECU. This may be directly translated to the user positioning domain.

  5. Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB).

    Science.gov (United States)

    Brandenburg, Jan Gerit; Grimme, Stefan

    2014-06-05

    The ambitious goal of organic crystal structure prediction challenges theoretical methods regarding their accuracy and efficiency. Dispersion-corrected density functional theory (DFT-D) in principle is applicable, but the computational demands, for example, to compute a huge number of polymorphs, are too high. Here, we demonstrate that this task can be carried out by a dispersion-corrected density functional tight binding (DFTB) method. The semiempirical Hamiltonian with the D3 correction can accurately and efficiently model both solid- and gas-phase inter- and intramolecular interactions at a speed up of 2 orders of magnitude compared to DFT-D. The mean absolute deviations for interaction (lattice) energies for various databases are typically 2-3 kcal/mol (10-20%), that is, only about two times larger than those for DFT-D. For zero-point phonon energies, small deviations of <0.5 kcal/mol compared to DFT-D are obtained.

  6. Ab initio calculations to support accurate modelling of the rovibronic spectroscopy calculations of vanadium monoxide (VO)

    CERN Document Server

    McKemmish, Laura K; Tennyson, Jonathan

    2016-01-01

    Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity...

  7. An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows

    KAUST Repository

    Liang, Tengfei

    2013-01-01

    Aiming at simulating micro gas flows with accurate boundary conditions, an efficient hybrid algorithmis developed by combining themolecular dynamics (MD) method with the direct simulationMonte Carlo (DSMC)method. The efficiency comes from the fact that theMD method is applied only within the gas-wall interaction layer, characterized by the cut-off distance of the gas-solid interaction potential, to resolve accurately the gas-wall interaction process, while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer. A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface, hence there is no need for one-toone mapping between a MD gas molecule and a DSMC simulation particle. Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the "smart-wall model" proposed by Barisik et al. The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem. Both the accuracy and efficiency of the hybrid algorithm are discussed. As an application, the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface. Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models. ©c 2014 Global-Science Press.

  8. Parallel kinetic Monte Carlo simulation framework incorporating accurate models of adsorbate lateral interactions

    Science.gov (United States)

    Nielsen, Jens; d'Avezac, Mayeul; Hetherington, James; Stamatakis, Michail

    2013-12-01

    Ab initio kinetic Monte Carlo (KMC) simulations have been successfully applied for over two decades to elucidate the underlying physico-chemical phenomena on the surfaces of heterogeneous catalysts. These simulations necessitate detailed knowledge of the kinetics of elementary reactions constituting the reaction mechanism, and the energetics of the species participating in the chemistry. The information about the energetics is encoded in the formation energies of gas and surface-bound species, and the lateral interactions between adsorbates on the catalytic surface, which can be modeled at different levels of detail. The majority of previous works accounted for only pairwise-additive first nearest-neighbor interactions. More recently, cluster-expansion Hamiltonians incorporating long-range interactions and many-body terms have been used for detailed estimations of catalytic rate [C. Wu, D. J. Schmidt, C. Wolverton, and W. F. Schneider, J. Catal. 286, 88 (2012)]. In view of the increasing interest in accurate predictions of catalytic performance, there is a need for general-purpose KMC approaches incorporating detailed cluster expansion models for the adlayer energetics. We have addressed this need by building on the previously introduced graph-theoretical KMC framework, and we have developed Zacros, a FORTRAN2003 KMC package for simulating catalytic chemistries. To tackle the high computational cost in the presence of long-range interactions we introduce parallelization with OpenMP. We further benchmark our framework by simulating a KMC analogue of the NO oxidation system established by Schneider and co-workers [J. Catal. 286, 88 (2012)]. We show that taking into account only first nearest-neighbor interactions may lead to large errors in the prediction of the catalytic rate, whereas for accurate estimates thereof, one needs to include long-range terms in the cluster expansion.

  9. An Accurately Stable Thermo-Hydro-Mechanical Model for Geo-Environmental Simulations

    Science.gov (United States)

    Gambolati, G.; Castelletto, N.; Ferronato, M.

    2011-12-01

    In real-world applications involving complex 3D heterogeneous domains the use of advanced numerical algorithms is of paramount importance to stabily, accurately and efficiently solve the coupled system of partial differential equations governing the mass and the energy balance in deformable porous media. The present communication discusses a novel coupled 3-D numerical model based on a suitable combination of Finite Elements (FEs), Mixed FEs (MFEs), and Finite Volumes (FVs) developed with the aim at stabilizing the numerical solution. Elemental pressures and temperatures, nodal displacements and face normal Darcy and Fourier fluxes are the selected primary variables. Such an approach provides an element-wise conservative velocity field, with both pore pressure and stress having the same order of approximation, and allows for the accurate prediction of sharp temperature convective fronts. In particular, the flow-deformation problem is addressed jointly by FEs and MFEs and is coupled to the heat transfer equation using an ad hoc time splitting technique that separates the time temperature evolution into two partial differential equations, accounting for the convective and the diffusive contribution, respectively. The convective part is addressed by a FV scheme which proves effective in treating sharp convective fronts, while the diffusive part is solved by a MFE formulation. A staggered technique is then implemented for the global solution of the coupled thermo-hydro-mechanical problem, solving iteratively the flow-deformation and the heat transport at each time step. Finally, the model is successfully experimented with in realistic applications dealing with geothermal energy extraction and injection.

  10. Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors

    Directory of Open Access Journals (Sweden)

    Kostelich Eric J

    2011-12-01

    Full Text Available Abstract Background Data assimilation refers to methods for updating the state vector (initial condition of a complex spatiotemporal model (such as a numerical weather model by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor. Results We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter, previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles in the presence of a moderate degree of systematic model error and measurement noise. Conclusions The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling. Reviewers This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson (nominated by Georg Luebeck.

  11. Fast and Accurate Radiative Transfer Calculations Using Principal Component Analysis for (Exo-)Planetary Retrieval Models

    Science.gov (United States)

    Kopparla, P.; Natraj, V.; Shia, R. L.; Spurr, R. J. D.; Crisp, D.; Yung, Y. L.

    2015-12-01

    Radiative transfer (RT) computations form the engine of atmospheric retrieval codes. However, full treatment of RT processes is computationally expensive, prompting usage of two-stream approximations in current exoplanetary atmospheric retrieval codes [Line et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT computations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those few optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Kopparla et al. [2015, in preparation] extended the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Here, we apply the PCA method to a some typical (exo-)planetary retrieval problems. Comparisons between the new model, called Universal Principal Component Analysis Radiative Transfer (UPCART) model, two-stream models and line-by-line RT models are performed, for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the top of the atmosphere for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and stellar and viewing geometries. We demonstrate that very accurate radiance and flux estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases, as compared to a numerically exact line-by-line RT model. The accuracy is enhanced when the results are convolved to typical instrument resolutions. The operational speed and accuracy of UPCART can be further improved by optimizing binning schemes and parallelizing the codes, work

  12. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning

    CERN Document Server

    Rupp, Matthias; Müller, Klaus-Robert; von Lilienfeld, O Anatole

    2011-01-01

    We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schr\\"odinger equation is mapped onto a non-linear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross-validation over more than seven thousand small organic molecules yields a mean absolute error of ~10 kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves.

  13. Quad-Band Bowtie Antenna Design for Wireless Communication System Using an Accurate Equivalent Circuit Model

    Directory of Open Access Journals (Sweden)

    Mohammed Moulay

    2015-01-01

    Full Text Available A novel configuration of quad-band bowtie antenna suitable for wireless application is proposed based on accurate equivalent circuit model. The simple configuration and low profile nature of the proposed antenna lead to easy multifrequency operation. The proposed antenna is designed to satisfy specific bandwidth specifications for current communication systems including the Bluetooth (frequency range 2.4–2.485 GHz and bands of the Unlicensed National Information Infrastructure (U-NII low band (frequency range 5.15–5.35 GHz and U-NII mid band (frequency range 5.47–5.725 GHz and used for mobile WiMAX (frequency range 3.3–3.6 GHz. To validate the proposed equivalent circuit model, the simulation results are compared with those obtained by the moments method of Momentum software, the finite integration technique of CST Microwave studio, and the finite element method of HFSS software. An excellent agreement is achieved for all the designed antennas. The analysis of the simulated results confirms the successful design of quad-band bowtie antenna.

  14. Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.

  15. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves

    CERN Document Server

    Lelli, Federico; Schombert, James M

    2016-01-01

    We introduce SPARC (Spitzer Photometry & Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 um and high-quality rotation curves from previous HI/Halpha studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (~5 dex), and surface brightnesses (~4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass-HI mass relation and the stellar radius-HI radius relation have significant intrinsic scatter, while the HI mass-radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic-to-observed velocity (Vbar/Vobs) for different characteristic radii and values of the stellar mass-to-light ratio (M/L) at [3.6]. Assuming M/L=0.5 Msun/Lsun (as suggested by stellar population models) we find that (i) the gas fraction linearly correlates with total luminosity, (ii) the transition from star-dominated to gas-dominated galaxies roughly correspond...

  16. Developing an Accurate CFD Based Gust Model for the Truss Braced Wing Aircraft

    Science.gov (United States)

    Bartels, Robert E.

    2013-01-01

    The increased flexibility of long endurance aircraft having high aspect ratio wings necessitates attention to gust response and perhaps the incorporation of gust load alleviation. The design of civil transport aircraft with a strut or truss-braced high aspect ratio wing furthermore requires gust response analysis in the transonic cruise range. This requirement motivates the use of high fidelity nonlinear computational fluid dynamics (CFD) for gust response analysis. This paper presents the development of a CFD based gust model for the truss braced wing aircraft. A sharp-edged gust provides the gust system identification. The result of the system identification is several thousand time steps of instantaneous pressure coefficients over the entire vehicle. This data is filtered and downsampled to provide the snapshot data set from which a reduced order model is developed. A stochastic singular value decomposition algorithm is used to obtain a proper orthogonal decomposition (POD). The POD model is combined with a convolution integral to predict the time varying pressure coefficient distribution due to a novel gust profile. Finally the unsteady surface pressure response of the truss braced wing vehicle to a one-minus-cosine gust, simulated using the reduced order model, is compared with the full CFD.

  17. Inflation model building with an accurate measure of e-folding

    CERN Document Server

    Chongchitnan, Sirichai

    2016-01-01

    We revisit the problem of measuring the number of e-folding during inflation. It has become standard practice to take the logarithmic growth of the scale factor as a measure of the amount of inflation. However, this is only an approximation for the true amount of inflation required to solve the horizon and flatness problems. The aim of this work is to quantify the error in this approximation, and show how it can be avoided. We present an alternative framework for inflation model building using the inverse Hubble radius, aH, as the key parameter. We show that in this formalism, the correct number of e-folding arises naturally as a measure of inflation. As an application, we present an interesting model in which the entire inflationary dynamics can be solved analytically and exactly, and, in special cases, reduces to the familiar class of power-law models.

  18. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods

    Science.gov (United States)

    Jalas, S.; Dornmair, I.; Lehe, R.; Vincenti, H.; Vay, J.-L.; Kirchen, M.; Maier, A. R.

    2017-03-01

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR—or even suppress it—and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be prone to NCR. Here, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.

  19. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods

    CERN Document Server

    Jalas, Sören; Lehe, Rémi; Vincenti, Henri; Vay, Jean-Luc; Kirchen, Manuel; Maier, Andreas R

    2016-01-01

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR -- or even suppress it -- and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be prone to NCR. Here, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for efficient parallelization.

  20. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    Science.gov (United States)

    Li, Zhen; Zhang, Renyu

    2017-01-01

    Motivation Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. Method This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Results Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact

  1. Reduced-Rank Hidden Markov Models

    CERN Document Server

    Siddiqi, Sajid M; Gordon, Geoffrey J

    2009-01-01

    We introduce the Reduced-Rank Hidden Markov Model (RR-HMM), a generalization of HMMs that can model smooth state evolution as in Linear Dynamical Systems (LDSs) as well as non-log-concave predictive distributions as in continuous-observation HMMs. RR-HMMs assume an m-dimensional latent state and n discrete observations, with a transition matrix of rank k <= m. This implies the dynamics evolve in a k-dimensional subspace, while the shape of the set of predictive distributions is determined by m. Latent state belief is represented with a k-dimensional state vector and inference is carried out entirely in R^k, making RR-HMMs as computationally efficient as k-state HMMs yet more expressive. To learn RR-HMMs, we relax the assumptions of a recently proposed spectral learning algorithm for HMMs (Hsu, Kakade and Zhang 2009) and apply it to learn k-dimensional observable representations of rank-k RR-HMMs. The algorithm is consistent and free of local optima, and we extend its performance guarantees to cover the RR-...

  2. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves

    Science.gov (United States)

    Lelli, Federico; McGaugh, Stacy S.; Schombert, James M.

    2016-12-01

    We introduce SPARC (Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 μm and high-quality rotation curves from previous H i/Hα studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity (V bar/V obs) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ⋆) at [3.6]. Assuming ϒ⋆ ≃ 0.5 M ⊙/L ⊙ (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii) V bar/V obs varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ⋆ ≃ 0.2 M ⊙/L ⊙ as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ⋆ ≃ 0.7 M ⊙/L ⊙ at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.

  3. Numerical simulation of pharyngeal airflow applied to obstructive sleep apnea: effect of the nasal cavity in anatomically accurate airway models.

    Science.gov (United States)

    Cisonni, Julien; Lucey, Anthony D; King, Andrew J C; Islam, Syed Mohammed Shamsul; Lewis, Richard; Goonewardene, Mithran S

    2015-11-01

    Repetitive brief episodes of soft-tissue collapse within the upper airway during sleep characterize obstructive sleep apnea (OSA), an extremely common and disabling disorder. Failure to maintain the patency of the upper airway is caused by the combination of sleep-related loss of compensatory dilator muscle activity and aerodynamic forces promoting closure. The prediction of soft-tissue movement in patient-specific airway 3D mechanical models is emerging as a useful contribution to clinical understanding and decision making. Such modeling requires reliable estimations of the pharyngeal wall pressure forces. While nasal obstruction has been recognized as a risk factor for OSA, the need to include the nasal cavity in upper-airway models for OSA studies requires consideration, as it is most often omitted because of its complex shape. A quantitative analysis of the flow conditions generated by the nasal cavity and the sinuses during inspiration upstream of the pharynx is presented. Results show that adequate velocity boundary conditions and simple artificial extensions of the flow domain can reproduce the essential effects of the nasal cavity on the pharyngeal flow field. Therefore, the overall complexity and computational cost of accurate flow predictions can be reduced.

  4. Warm gas in the rotating disk of the Red Rectangle: accurate models of molecular line emission

    CERN Document Server

    Bujarrabal, V

    2013-01-01

    We aim to study the excitation conditions of the molecular gas in the rotating disk of the Red Rectangle, the only post-Asymptotic-Giant-Branch object in which the existence of an equatorial rotating disk has been demonstrated. For this purpose, we developed a complex numerical code that accurately treats radiative transfer in 2-D, adapted to the study of molecular lines from rotating disks. We present far-infrared Herschel/HIFI observations of the 12CO and 13CO J=6-5, J=10-9, and J=16-15 transitions in the Red Rectangle. We also present our code in detail and discuss the accuracy of its predictions, from comparison with well-tested codes. Theoretical line profiles are compared with the empirical data to deduce the physical conditions in the disk by means of model fitting. We conclude that our code is very efficient and produces reliable results. The comparison of the theoretical predictions with our observations reveals that the temperature of the Red Rectangle disk is typically ~ 100-150 K, about twice as h...

  5. Accurate prediction of DnaK-peptide binding via homology modelling and experimental data.

    Directory of Open Access Journals (Sweden)

    Joost Van Durme

    2009-08-01

    Full Text Available Molecular chaperones are essential elements of the protein quality control machinery that governs translocation and folding of nascent polypeptides, refolding and degradation of misfolded proteins, and activation of a wide range of client proteins. The prokaryotic heat-shock protein DnaK is the E. coli representative of the ubiquitous Hsp70 family, which specializes in the binding of exposed hydrophobic regions in unfolded polypeptides. Accurate prediction of DnaK binding sites in E. coli proteins is an essential prerequisite to understand the precise function of this chaperone and the properties of its substrate proteins. In order to map DnaK binding sites in protein sequences, we have developed an algorithm that combines sequence information from peptide binding experiments and structural parameters from homology modelling. We show that this combination significantly outperforms either single approach. The final predictor had a Matthews correlation coefficient (MCC of 0.819 when assessed over the 144 tested peptide sequences to detect true positives and true negatives. To test the robustness of the learning set, we have conducted a simulated cross-validation, where we omit sequences from the learning sets and calculate the rate of repredicting them. This resulted in a surprisingly good MCC of 0.703. The algorithm was also able to perform equally well on a blind test set of binders and non-binders, of which there was no prior knowledge in the learning sets. The algorithm is freely available at http://limbo.vib.be.

  6. Accurate two-dimensional model of an arrayed-waveguide grating demultiplexer and optimal design based on the reciprocity theory.

    Science.gov (United States)

    Dai, Daoxin; He, Sailing

    2004-12-01

    An accurate two-dimensional (2D) model is introduced for the simulation of an arrayed-waveguide grating (AWG) demultiplexer by integrating the field distribution along the vertical direction. The equivalent 2D model has almost the same accuracy as the original three-dimensional model and is more accurate for the AWG considered here than the conventional 2D model based on the effective-index method. To further improve the computational efficiency, the reciprocity theory is applied to the optimal design of a flat-top AWG demultiplexer with a special input structure.

  7. Stable, accurate and efficient computation of normal modes for horizontal stratified models

    Science.gov (United States)

    Wu, Bo; Chen, Xiaofei

    2016-08-01

    We propose an adaptive root-determining strategy that is very useful when dealing with trapped modes or Stoneley modes whose energies become very insignificant on the free surface in the presence of low-velocity layers or fluid layers in the model. Loss of modes in these cases or inaccuracy in the calculation of these modes may then be easily avoided. Built upon the generalized reflection/transmission coefficients, the concept of `family of secular functions' that we herein call `adaptive mode observers' is thus naturally introduced to implement this strategy, the underlying idea of which has been distinctly noted for the first time and may be generalized to other applications such as free oscillations or applied to other methods in use when these cases are encountered. Additionally, we have made further improvements upon the generalized reflection/transmission coefficient method; mode observers associated with only the free surface and low-velocity layers (and the fluid/solid interface if the model contains fluid layers) are adequate to guarantee no loss and high precision at the same time of any physically existent modes without excessive calculations. Finally, the conventional definition of the fundamental mode is reconsidered, which is entailed in the cases under study. Some computational aspects are remarked on. With the additional help afforded by our superior root-searching scheme and the possibility of speeding calculation using a less number of layers aided by the concept of `turning point', our algorithm is remarkably efficient as well as stable and accurate and can be used as a powerful tool for widely related applications.

  8. A simple and accurate model for Love wave based sensors: Dispersion equation and mass sensitivity

    Directory of Open Access Journals (Sweden)

    Jiansheng Liu

    2014-07-01

    Full Text Available Dispersion equation is an important tool for analyzing propagation properties of acoustic waves in layered structures. For Love wave (LW sensors, the dispersion equation with an isotropic-considered substrate is too rough to get accurate solutions; the full dispersion equation with a piezoelectric-considered substrate is too complicated to get simple and practical expressions for optimizing LW-based sensors. In this work, a dispersion equation is introduced for Love waves in a layered structure with an anisotropic-considered substrate and an isotropic guiding layer; an intuitive expression for mass sensitivity is also derived based on the dispersion equation. The new equations are in simple forms similar to the previously reported simplified model with an isotropic substrate. By introducing the Maxwell-Weichert model, these equations are also applicable to the LW device incorporating a viscoelastic guiding layer; the mass velocity sensitivity and the mass propagation loss sensitivity are obtained from the real part and the imaginary part of the complex mass sensitivity, respectively. With Love waves in an elastic SiO2 layer on an ST-90°X quartz structure, for example, comparisons are carried out between the velocities and normalized sensitivities calculated by using different dispersion equations and corresponding mass sensitivities. Numerical results of the method presented in this work are very close to those of the method with a piezoelectric-considered substrate. Another numerical calculation is carried out for the case of a LW sensor with a viscoelastic guiding layer. If the viscosity of the layer is not too big, the effect on the real part of the velocity and the mass velocity sensitivity is relatively small; the propagation loss and the mass loss sensitivity are proportional to the viscosity of the guiding layer.

  9. Accelerated gravitational wave parameter estimation with reduced order modeling.

    Science.gov (United States)

    Canizares, Priscilla; Field, Scott E; Gair, Jonathan; Raymond, Vivien; Smith, Rory; Tiglio, Manuel

    2015-02-20

    Inferring the astrophysical parameters of coalescing compact binaries is a key science goal of the upcoming advanced LIGO-Virgo gravitational-wave detector network and, more generally, gravitational-wave astronomy. However, current approaches to parameter estimation for these detectors require computationally expensive algorithms. Therefore, there is a pressing need for new, fast, and accurate Bayesian inference techniques. In this Letter, we demonstrate that a reduced order modeling approach enables rapid parameter estimation to be performed. By implementing a reduced order quadrature scheme within the LIGO Algorithm Library, we show that Bayesian inference on the 9-dimensional parameter space of nonspinning binary neutron star inspirals can be sped up by a factor of ∼30 for the early advanced detectors' configurations (with sensitivities down to around 40 Hz) and ∼70 for sensitivities down to around 20 Hz. This speedup will increase to about 150 as the detectors improve their low-frequency limit to 10 Hz, reducing to hours analyses which could otherwise take months to complete. Although these results focus on interferometric gravitational wave detectors, the techniques are broadly applicable to any experiment where fast Bayesian analysis is desirable.

  10. Accurate Locally Conservative Discretizations for Modeling Multiphase Flow in Porous Media on General Hexahedra Grids

    KAUST Repository

    Wheeler, M.F.

    2010-09-06

    For many years there have been formulations considered for modeling single phase ow on general hexahedra grids. These include the extended mixed nite element method, and families of mimetic nite di erence methods. In most of these schemes either no rate of convergence of the algorithm has been demonstrated both theoret- ically and computationally or a more complicated saddle point system needs to be solved for an accurate solution. Here we describe a multipoint ux mixed nite element (MFMFE) method [5, 2, 3]. This method is motivated from the multipoint ux approximation (MPFA) method [1]. The MFMFE method is locally conservative with continuous ux approximations and is a cell-centered scheme for the pressure. Compared to the MPFA method, the MFMFE has a variational formulation, since it can be viewed as a mixed nite element with special approximating spaces and quadrature rules. The framework allows han- dling of hexahedral grids with non-planar faces by applying trilinear mappings from physical elements to reference cubic elements. In addition, there are several multi- scale and multiphysics extensions such as the mortar mixed nite element method that allows the treatment of non-matching grids [4]. Extensions to the two-phase oil-water ow are considered. We reformulate the two- phase model in terms of total velocity, capillary velocity, water pressure, and water saturation. We choose water pressure and water saturation as primary variables. The total velocity is driven by the gradient of the water pressure and total mobility. Iterative coupling scheme is employed for the coupled system. This scheme allows treatments of di erent time scales for the water pressure and water saturation. In each time step, we rst solve the pressure equation using the MFMFE method; we then Center for Subsurface Modeling, The University of Texas at Austin, Austin, TX 78712; mfw@ices.utexas.edu. yCenter for Subsurface Modeling, The University of Texas at Austin, Austin, TX 78712; gxue

  11. Toward accurate tooth segmentation from computed tomography images using a hybrid level set model

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yangzhou; Zhao, Qunfei [Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240 (China); Xia, Zeyang, E-mail: zy.xia@siat.ac.cn, E-mail: jing.xiong@siat.ac.cn; Hu, Ying [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and The Chinese University of Hong Kong, Shenzhen 518055 (China); Xiong, Jing, E-mail: zy.xia@siat.ac.cn, E-mail: jing.xiong@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510855 (China); Zhang, Jianwei [TAMS, Department of Informatics, University of Hamburg, Hamburg 22527 (Germany)

    2015-01-15

    Purpose: A three-dimensional (3D) model of the teeth provides important information for orthodontic diagnosis and treatment planning. Tooth segmentation is an essential step in generating the 3D digital model from computed tomography (CT) images. The aim of this study is to develop an accurate and efficient tooth segmentation method from CT images. Methods: The 3D dental CT volumetric images are segmented slice by slice in a two-dimensional (2D) transverse plane. The 2D segmentation is composed of a manual initialization step and an automatic slice by slice segmentation step. In the manual initialization step, the user manually picks a starting slice and selects a seed point for each tooth in this slice. In the automatic slice segmentation step, a developed hybrid level set model is applied to segment tooth contours from each slice. Tooth contour propagation strategy is employed to initialize the level set function automatically. Cone beam CT (CBCT) images of two subjects were used to tune the parameters. Images of 16 additional subjects were used to validate the performance of the method. Volume overlap metrics and surface distance metrics were adopted to assess the segmentation accuracy quantitatively. The volume overlap metrics were volume difference (VD, mm{sup 3}) and Dice similarity coefficient (DSC, %). The surface distance metrics were average symmetric surface distance (ASSD, mm), RMS (root mean square) symmetric surface distance (RMSSSD, mm), and maximum symmetric surface distance (MSSD, mm). Computation time was recorded to assess the efficiency. The performance of the proposed method has been compared with two state-of-the-art methods. Results: For the tested CBCT images, the VD, DSC, ASSD, RMSSSD, and MSSD for the incisor were 38.16 ± 12.94 mm{sup 3}, 88.82 ± 2.14%, 0.29 ± 0.03 mm, 0.32 ± 0.08 mm, and 1.25 ± 0.58 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the canine were 49.12 ± 9.33 mm{sup 3}, 91.57 ± 0.82%, 0.27 ± 0.02 mm, 0

  12. Three dimensional printing as an effective method of producing anatomically accurate models for studies in thermal ecology.

    Science.gov (United States)

    Watson, Charles M; Francis, Gamal R

    2015-07-01

    Hollow copper models painted to match the reflectance of the animal subject are standard in thermal ecology research. While the copper electroplating process results in accurate models, it is relatively time consuming, uses caustic chemicals, and the models are often anatomically imprecise. Although the decreasing cost of 3D printing can potentially allow the reproduction of highly accurate models, the thermal performance of 3D printed models has not been evaluated. We compared the cost, accuracy, and performance of both copper and 3D printed lizard models and found that the performance of the models were statistically identical in both open and closed habitats. We also find that 3D models are more standard, lighter, durable, and inexpensive, than the copper electroformed models.

  13. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    Science.gov (United States)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  14. A fast and accurate implementation of tunable algorithms used for generation of fractal-like aggregate models

    Science.gov (United States)

    Skorupski, Krzysztof; Mroczka, Janusz; Wriedt, Thomas; Riefler, Norbert

    2014-06-01

    In many branches of science experiments are expensive, require specialist equipment or are very time consuming. Studying the light scattering phenomenon by fractal aggregates can serve as an example. Light scattering simulations can overcome these problems and provide us with theoretical, additional data which complete our study. For this reason a fractal-like aggregate model as well as fast aggregation codes are needed. Until now various computer models, that try to mimic the physics behind this phenomenon, have been developed. However, their implementations are mostly based on a trial-and-error procedure. Such approach is very time consuming and the morphological parameters of resulting aggregates are not exact because the postconditions (e.g. the position error) cannot be very strict. In this paper we present a very fast and accurate implementation of a tunable aggregation algorithm based on the work of Filippov et al. (2000). Randomization is reduced to its necessary minimum (our technique can be more than 1000 times faster than standard algorithms) and the position of a new particle, or a cluster, is calculated with algebraic methods. Therefore, the postconditions can be extremely strict and the resulting errors negligible (e.g. the position error can be recognized as non-existent). In our paper two different methods, which are based on the particle-cluster (PC) and the cluster-cluster (CC) aggregation processes, are presented.

  15. A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets

    Directory of Open Access Journals (Sweden)

    S. Carcano

    2013-11-01

    Full Text Available An improved version of the PDAC (Pyroclastic Dispersal Analysis Code, Esposti Ongaro et al., 2007 numerical model for the simulation of multiphase volcanic flows is presented and validated for the simulation of multiphase volcanic jets in supersonic regimes. The present version of PDAC includes second-order time- and space discretizations and fully multidimensional advection discretizations in order to reduce numerical diffusion and enhance the accuracy of the original model. The model is tested on the problem of jet decompression in both two and three dimensions. For homogeneous jets, numerical results are consistent with experimental results at the laboratory scale (Lewis and Carlson, 1964. For nonequilibrium gas–particle jets, we consider monodisperse and bidisperse mixtures, and we quantify nonequilibrium effects in terms of the ratio between the particle relaxation time and a characteristic jet timescale. For coarse particles and low particle load, numerical simulations well reproduce laboratory experiments and numerical simulations carried out with an Eulerian–Lagrangian model (Sommerfeld, 1993. At the volcanic scale, we consider steady-state conditions associated with the development of Vulcanian and sub-Plinian eruptions. For the finest particles produced in these regimes, we demonstrate that the solid phase is in mechanical and thermal equilibrium with the gas phase and that the jet decompression structure is well described by a pseudogas model (Ogden et al., 2008. Coarse particles, on the other hand, display significant nonequilibrium effects, which associated with their larger relaxation time. Deviations from the equilibrium regime, with maximum velocity and temperature differences on the order of 150 m s−1 and 80 K across shock waves, occur especially during the rapid acceleration phases, and are able to modify substantially the jet dynamics with respect to the homogeneous case.

  16. SWIFT-Tyre: an accurate tyre model for ride and handling studies also at higher frequencies and short road wavelengths

    NARCIS (Netherlands)

    Oosten, J.J.M. van; Pacejka, H.B.

    2000-01-01

    As is well known, Magic Formula tyre modelling (MF-Tyre is a part of ADAMS/Tire) allows an accurate and efficient description of tyre-road interaction forces required for any usual vehicle handling simulation. When it comes to modelling of tyre behaviour at higher frequencies and short road obstacle

  17. Towards a More Accurate Solar Power Forecast By Improving NWP Model Physics

    Science.gov (United States)

    Köhler, C.; Lee, D.; Steiner, A.; Ritter, B.

    2014-12-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the uncertainties associated with the large share of weather-dependent power sources. Precise power forecast, well-timed energy trading on the stock market, and electrical grid stability can be maintained. The research project EWeLiNE is a collaboration of the German Weather Service (DWD), the Fraunhofer Institute (IWES) and three German transmission system operators (TSOs). Together, wind and photovoltaic (PV) power forecasts shall be improved by combining optimized NWP and enhanced power forecast models. The conducted work focuses on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. Not only the representation of the model cloud characteristics, but also special events like Sahara dust over Germany and the solar eclipse in 2015 are treated and their effect on solar power accounted for. An overview of the EWeLiNE project and results of the ongoing research will be presented.

  18. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024 (United States)

    2015-11-15

    Purpose: Significant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode. Methods: A hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery. Results: The 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was

  19. Reduced form models of bond portfolios

    OpenAIRE

    Matti Koivu; Teemu Pennanen

    2010-01-01

    We derive simple return models for several classes of bond portfolios. With only one or two risk factors our models are able to explain most of the return variations in portfolios of fixed rate government bonds, inflation linked government bonds and investment grade corporate bonds. The underlying risk factors have natural interpretations which make the models well suited for risk management and portfolio design.

  20. Applicability of CFD Modelling in Determining Accurate Weir Discharge: Water Level Relationships

    NARCIS (Netherlands)

    Rombouts, P.M.M.; Tralli, A.; Langeveld, J.G.; Verhaart, F.; Clemens, F.H.L.R.

    2014-01-01

    Being able to accurately determine weir discharges is of key importance in urban water management. The most common method is performing a level measurement and calculating the discharge using the standard weir equation. Since this equation is only valid in certain conditions, this can lead to large

  1. Can crop-climate models be accurate and precise? A case study for wheat production in Denmark

    DEFF Research Database (Denmark)

    Montesino San Martin, Manuel; Olesen, Jørgen E.; Porter, John Roy

    2015-01-01

    and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions....... Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher...

  2. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Amor Chowdhury

    2016-09-01

    Full Text Available The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  3. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    Science.gov (United States)

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  4. Fast and accurate conversion of atomic models into electron density maps

    Directory of Open Access Journals (Sweden)

    Carlos O.S. Sorzano

    2015-03-01

    Full Text Available New image processing methodologies and algorithms have greatly contributed to the signi cant progress in three-dimensional electron microscopy (3DEM of biological complexes we have seen over the last decades. Naturally, the availability of accurate procedures for the objective testing of new algorithms is a crucial requirement for the further advancement of the eld. A good and accepted testing work ow involves the generation of realistic 3DEM-like maps of biological macromolecules from which some measure of ground truth can be derived, ideally because their 3D atomic structure is already known. In this work we propose a very accurate generation of maps using atomic form factors for electron scattering. We thoroughly review current approaches in the eld, quantitatively demonstrating the bene ts of the new methodology. Additionally, we study a concrete example of the use of this approach for hypothesis testing in 3D Electron Microscopy.

  5. Reducing RANS Model Error Using Random Forest

    Science.gov (United States)

    Wang, Jian-Xun; Wu, Jin-Long; Xiao, Heng; Ling, Julia

    2016-11-01

    Reynolds-Averaged Navier-Stokes (RANS) models are still the work-horse tools in the turbulence modeling of industrial flows. However, the model discrepancy due to the inadequacy of modeled Reynolds stresses largely diminishes the reliability of simulation results. In this work we use a physics-informed machine learning approach to improve the RANS modeled Reynolds stresses and propagate them to obtain the mean velocity field. Specifically, the functional forms of Reynolds stress discrepancies with respect to mean flow features are trained based on an offline database of flows with similar characteristics. The random forest model is used to predict Reynolds stress discrepancies in new flows. Then the improved Reynolds stresses are propagated to the velocity field via RANS equations. The effects of expanding the feature space through the use of a complete basis of Galilean tensor invariants are also studied. The flow in a square duct, which is challenging for standard RANS models, is investigated to demonstrate the merit of the proposed approach. The results show that both the Reynolds stresses and the propagated velocity field are improved over the baseline RANS predictions. SAND Number: SAND2016-7437 A

  6. Refinement of reduced-models for dynamic systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A refinement procedure for the reduced models of structural dynamic systems is presented in this article. The refinement procedure is to "tune" the parameters of a reduced model, which could be obtained from any traditional model reduction scheme, into an improved reduced model. Upon the completion of the refinement, the improved reduced model matches the dynamic characteristics - the chosen structural frequencies and their mode shapes - of the full order model. Mathematically, the procedure to implement the model refinement technique is an application of the recently developed cross-model cross-mode (CMCM) method for model updating. A numerical example of reducing a 5-DOF (degree-of-freedom) classical mass-spring (or shear-building) model into a 3-DOF generalized mass-spring model is demonstrated in this article.

  7. Accurate SPICE Modeling of Poly-silicon Resistor in 40nm CMOS Technology Process for Analog Circuit Simulation

    Directory of Open Access Journals (Sweden)

    Sun Lijie

    2015-01-01

    Full Text Available In this paper, the SPICE model of poly resistor is accurately developed based on silicon data. To describe the non-linear R-V trend, the new correlation in temperature and voltage is found in non-silicide poly-silicon resistor. A scalable model is developed on the temperature-dependent characteristics (TDC and the temperature-dependent voltage characteristics (TDVC from the R-V data. Besides, the parasitic capacitance between poly and substrate are extracted from real silicon structure in replacing conventional simulation data. The capacitance data are tested through using on-wafer charge-induced-injection error-free charge-based capacitance measurement (CIEF-CBCM technique which is driven by non-overlapping clock generation circuit. All modeling test structures are designed and fabricated through using 40nm CMOS technology process. The new SPICE model of poly-silicon resistor is more accurate to silicon for analog circuit simulation.

  8. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care.

    Science.gov (United States)

    Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer

    2017-04-01

    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.

  9. Effective and accurate approach for modeling of commensurate-incommensurate transition in krypton monolayer on graphite.

    Science.gov (United States)

    Ustinov, E A

    2014-10-01

    Commensurate-incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs-Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton-graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton-carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas-solid and solid-solid system.

  10. Accurate and fast table look-up models for leakage current analysis in 65 nm CMOS technology

    Institute of Scientific and Technical Information of China (English)

    薛冀颖; 李涛; 余志平

    2009-01-01

    Novel physical models for leakage current analysis in 65 nm technology are proposed. Taking into con-sideration the process variations and emerging effects in nano-scaled technology, the presented models are capable of accurately estimating the subthreshold leakage current and junction tunneling leakage current in 65 nm technol-ogy. Based on the physical models, new table look-up models are developed and first applied to leakage current analysis in pursuit of higher simulation speed. Simulation results show that the novel physical models are in ex-cellent agreement with the data measured from the foundry in the 65 nm process, and the proposed table look-up models can provide great computational efficiency by using suitable interpolation techniques. Compared with the traditional physical-based models, the table look-up models can achieve 2.5X speedup on average on a variety of industry circuits.

  11. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    Science.gov (United States)

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  12. Minimum required number of specimen records to develop accurate species distribution models

    NARCIS (Netherlands)

    Proosdij, van A.S.J.; Sosef, M.S.M.; Wieringa, J.J.; Raes, N.

    2016-01-01

    Species distribution models (SDMs) are widely used to predict the occurrence of species. Because SDMs generally use presence-only data, validation of the predicted distribution and assessing model accuracy is challenging. Model performance depends on both sample size and species’ prevalence, being t

  13. Towards more accurate isoscapes encouraging results from wine, water and marijuana data/model and model/model comparisons.

    Science.gov (United States)

    West, J. B.; Ehleringer, J. R.; Cerling, T.

    2006-12-01

    Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across

  14. Accurate and efficient modeling of global seismic wave propagation for an attenuative Earth model including the center

    Science.gov (United States)

    Toyokuni, Genti; Takenaka, Hiroshi

    2012-06-01

    We propose a method for modeling global seismic wave propagation through an attenuative Earth model including the center. This method enables accurate and efficient computations since it is based on the 2.5-D approach, which solves wave equations only on a 2-D cross section of the whole Earth and can correctly model 3-D geometrical spreading. We extend a numerical scheme for the elastic waves in spherical coordinates using the finite-difference method (FDM), to solve the viscoelastodynamic equation. For computation of realistic seismic wave propagation, incorporation of anelastic attenuation is crucial. Since the nature of Earth material is both elastic solid and viscous fluid, we should solve stress-strain relations of viscoelastic material, including attenuative structures. These relations represent the stress as a convolution integral in time, which has had difficulty treating viscoelasticity in time-domain computation such as the FDM. However, we now have a method using so-called memory variables, invented in the 1980s, followed by improvements in Cartesian coordinates. Arbitrary values of the quality factor (Q) can be incorporated into the wave equation via an array of Zener bodies. We also introduce the multi-domain, an FD grid of several layers with different grid spacings, into our FDM scheme. This allows wider lateral grid spacings with depth, so as not to perturb the FD stability criterion around the Earth center. In addition, we propose a technique to avoid the singularity problem of the wave equation in spherical coordinates at the Earth center. We develop a scheme to calculate wavefield variables on this point, based on linear interpolation for the velocity-stress, staggered-grid FDM. This scheme is validated through a comparison of synthetic seismograms with those obtained by the Direct Solution Method for a spherically symmetric Earth model, showing excellent accuracy for our FDM scheme. As a numerical example, we apply the method to simulate seismic

  15. The mathematical theory of reduced MHD models for fusion plasmas

    OpenAIRE

    Guillard, Hervé

    2015-01-01

    The derivation of reduced MHD models for fusion plasma is here formulated as a special instance of the general theory of singular limit of hyperbolic system of PDEs with large operator. This formulation allows to use the general results of this theory and to prove rigorously that reduced MHD models are valid approximations of the full MHD equations. In particular, it is proven that the solutions of the full MHD system converge to the solutions of an appropriate reduced model.

  16. Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3

    Science.gov (United States)

    Buckeridge, J.; Taylor, F. H.; Catlow, C. R. A.

    2016-04-01

    Complex perovskite oxides are promising materials for cathode layers in solid oxide fuel cells. Such materials have intricate electronic, magnetic, and crystalline structures that prove challenging to model accurately. We analyze a wide range of standard density functional theory approaches to modeling a highly promising system, the perovskite LaCoO3, focusing on optimizing the Hubbard U parameter to treat the self-interaction of the B-site cation's d states, in order to determine the most appropriate method to study defect formation and the effect of spin on local structure. By calculating structural and electronic properties for different magnetic states we determine that U =4 eV for Co in LaCoO3 agrees best with available experiments. We demonstrate that the generalized gradient approximation (PBEsol +U ) is most appropriate for studying structure versus spin state, while the local density approximation (LDA +U ) is most appropriate for determining accurate energetics for defect properties.

  17. EXAMINING THE MOVEMENTS OF MOBILE NODES IN THE REAL WORLD TO PRODUCE ACCURATE MOBILITY MODELS

    Directory of Open Access Journals (Sweden)

    TANWEER ALAM

    2010-09-01

    Full Text Available All communication occurs through a wireless median in an ad hoc network. Ad hoc networks are dynamically created and maintained by the individual nodes comprising the network. Random Waypoint Mobility Model is a model that includes pause times between changes in destination and speed. To produce a real-world environment within which an ad hoc network can be formed among a set of nodes, there is a need for the development of realistic, generic and comprehensive mobility models. In this paper, we examine the movements of entities in the real world and present the production of mobility model in an ad hoc network.

  18. Surface Response-based Behavioral Modeling of Accurate Digitizers a Case Study on a Fast Digital Integrator at CERN

    CERN Document Server

    Arpaia, P; Spiezia, G; Tiso, S

    2007-01-01

    A statistical approach to behavioral modeling for assessing dynamic metrological performance during the concept design of accurate digitizers is proposed. A surface-response approach based on statistical experiment design is exploited for avoiding unrealistic hypothesis of linearity, optimizing simulation, exploring operating conditions systematically, as well as verifying identification and validation uncertainty. An actual case study on the dynamic metrological characterization of a Fast Digital Integrator for high-performance magnetic measurements at the European Organization for Nuclear Research (CERN) is presented.

  19. Accurate 3D modeling of Cable in Conduit Conductor type superconductors by X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Tiseanu, Ion, E-mail: tiseanu@infim.ro [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Bucharest-Magurele (Romania); Zani, Louis [CEA/Cadarache – Institut de Recherche sur la Fusion Magnetique, St Paul-lez-Durance Cedex (France); Tiseanu, Catalin-Stefan [University of Bucharest, Faculty of Mathematics and Computer Science (Romania); Craciunescu, Teddy; Dobrea, Cosmin [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Bucharest-Magurele (Romania)

    2015-10-15

    Graphical abstract: - Highlights: • Quality controls monitoring of Cable in Conduit Conductor (CICC) by X-ray tomography. • High resolution (≈40 μm) X-ray tomography images of CICC section up to 300 mm long. • Assignment of vast majority of strand trajectories over relevant section of CICC. • Non-invasive accurate measurements of local void fraction statistics. - Abstract: Operation and data acquisition of an X-ray microtomography developed at INFLPR are optimized to produce stacks of 2-D high-resolution tomographic sections of Cable in Conduit Conductor (CICC) type superconductors demanded in major fusion projects. High-resolution images for CCIC samples (486 NbTi&Cu strands of 0.81 mm diameter, jacketed in rectangular stainless steel pipes of 22 × 26 mm{sup 2}) are obtained by a combination of high energy/intensity and small focus spot X-ray source and high resolution/efficiency detector array. The stack of reconstructed slices is then used for quantitative analysis consisting of accurate strand positioning, determination of the local and global void fraction and 3D strand trajectory assignment for relevant fragments of cable (∼300 mm). The strand positioning algorithm is based on the application of Gabor Annular filtering followed by local maxima detection. The local void fraction is extensively mapped by employing local segmentation methods at a space resolution of about 50 sub-cells sized to be relevant to the triplet of triplet twisting pattern. For the strand trajectory assignment part we developed a global algorithm of the linear programing type which provides the vast majority of correct strand trajectories for most practical applications. For carefully manufactured benchmark CCIC samples over 99% of the trajectories are correctly assigned. For production samples the efficiency of the algorithm is around 90%. Trajectory assignment of a high proportion of the strands is a crucial factor for the derivation of statistical properties of the cable

  20. Accurate characterization and modeling of transmission lines for GaAs MMIC's

    Science.gov (United States)

    Finlay, Hugh J.; Jansen, Rolf H.; Jenkins, John A.; Eddison, Ian G.

    1988-06-01

    The authors discuss computer-aided design (CAD) tools together with high-accuracy microwave measurements to realize improved design data for GaAs monolithic microwave integrated circuits (MMICs). In particular, a combined theoretical and experimental approach to the generation of an accurate design database for transmission lines on GaAs MMICs is presented. The theoretical approach is based on an improved transmission-line theory which is part of the spectral-domain hybrid-mode computer program MCLINE. The benefit of this approach in the design of multidielectric-media transmission lines is described. The program was designed to include loss mechanisms in all dielectric layers and to include conductor and surface roughness loss contributions. As an example, using GaAs ring resonator techniques covering 2 to 24 GHz, accuracies in effective dielectric constant and loss of 1 percent and 15 percent respectively, are presented. By combining theoretical and experimental techniques, a generalized MMIC microstrip design database is outlined.

  1. Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description

    Directory of Open Access Journals (Sweden)

    Jan Hackenberg

    2014-05-01

    Full Text Available This paper presents a method for fitting cylinders into a point cloud, derived from a terrestrial laser-scanned tree. Utilizing high scan quality data as the input, the resulting models describe the branching structure of the tree, capable of detecting branches with a diameter smaller than a centimeter. The cylinders are stored as a hierarchical tree-like data structure encapsulating parent-child neighbor relations and incorporating the tree’s direction of growth. This structure enables the efficient extraction of tree components, such as the stem or a single branch. The method was validated both by applying a comparison of the resulting cylinder models with ground truth data and by an analysis between the input point clouds and the models. Tree models were accomplished representing more than 99% of the input point cloud, with an average distance from the cylinder model to the point cloud within sub-millimeter accuracy. After validation, the method was applied to build two allometric models based on 24 tree point clouds as an example of the application. Computation terminated successfully within less than 30 min. For the model predicting the total above ground volume, the coefficient of determination was 0.965, showing the high potential of terrestrial laser-scanning for forest inventories.

  2. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    Science.gov (United States)

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in 3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required.

  3. Generalized Stoner-Wohlfarth model accurately describing the switching processes in pseudo-single ferromagnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Cimpoesu, Dorin, E-mail: cdorin@uaic.ro; Stoleriu, Laurentiu; Stancu, Alexandru [Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi 700506 (Romania)

    2013-12-14

    We propose a generalized Stoner-Wohlfarth (SW) type model to describe various experimentally observed angular dependencies of the switching field in non-single-domain magnetic particles. Because the nonuniform magnetic states are generally characterized by complicated spin configurations with no simple analytical description, we maintain the macrospin hypothesis and we phenomenologically include the effects of nonuniformities only in the anisotropy energy, preserving as much as possible the elegance of SW model, the concept of critical curve and its geometric interpretation. We compare the results obtained with our model with full micromagnetic simulations in order to evaluate the performance and limits of our approach.

  4. Accurate Modeling of Multilayer Transmission Lines for High-Speed Digital Interconnects

    Directory of Open Access Journals (Sweden)

    Sarhan M. Musa

    2014-03-01

    Full Text Available In this paper, we consider the finite element modeling of multilayer transmission lines for high-speed digital interconnects. We mainly focused on the modeling of the transmission structures with both cases of symmetric and asymmetric geometries. We specifically designed asymmetric coupled microstrips and four-line symmetric coupled microstrips with a two-layer substrate. We computed the capacitance matrix for asymmetric coupled microstrips and the capacitance, and inductance matrices for four-line symmetric coupled microstrips on a twolayer substrate. We also provide the potential distribution spectrums of the models.

  5. Accurate Fabrication of Hydroxyapatite Bone Models with Porous Scaffold Structures by Using Stereolithography

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Chiaki; Tasaki, Satoko; Kirihara, Soshu, E-mail: c-maeda@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki City, Osaka 567-0047 (Japan)

    2011-05-15

    Computer graphic models of bioscaffolds with four-coordinate lattice structures of solid rods in artificial bones were designed by using a computer aided design. The scaffold models composed of acryl resin with hydroxyapatite particles at 45vol. % were fabricated by using stereolithography of a computer aided manufacturing. After dewaxing and sintering heat treatment processes, the ceramics scaffold models with four-coordinate lattices and fine hydroxyapatite microstructures were obtained successfully. By using a computer aided analysis, it was found that bio-fluids could flow extensively inside the sintered scaffolds. This result shows that the lattice structures will realize appropriate bio-fluid circulations and promote regenerations of new bones.

  6. Compact and accurate linear and nonlinear autoregressive moving average model parameter estimation using laguerre functions

    DEFF Research Database (Denmark)

    Chon, K H; Cohen, R J; Holstein-Rathlou, N H

    1997-01-01

    A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving...... average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre...... function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes...

  7. Empirical approaches to more accurately predict benthic-pelagic coupling in biogeochemical ocean models

    Science.gov (United States)

    Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus

    2016-04-01

    The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?

  8. A Two-Phase Space Resection Model for Accurate Topographic Reconstruction from Lunar Imagery with PushbroomScanners

    Directory of Open Access Journals (Sweden)

    Xuemiao Xu

    2016-04-01

    Full Text Available Exterior orientation parameters’ (EOP estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang’E-1, compared to the existing space resection model.

  9. Reduced computational models of serotonin synthesis, release, and reuptake.

    Science.gov (United States)

    Flower, Gordon; Wong-Lin, KongFatt

    2014-04-01

    Multiscale computational models can provide systemic evaluation and prediction of neuropharmacological drug effects. To date, little computational modeling work has been done to bridge from intracellular to neuronal circuit level. A complex model that describes the intracellular dynamics of the presynaptic terminal of a serotonergic neuron has been previously proposed. By systematically perturbing the model's components, we identify the slow and fast dynamical components of the model, and the reduced slow or fast mode of the model is computationally significantly more efficient with accuracy not deviating much from the original model. The reduced fast-mode model is particularly suitable for incorporating into neurobiologically realistic spiking neuronal models, and hence for large-scale realistic computational simulations. We also develop user-friendly software based on the reduced models to allow scientists to rapidly test and predict neuropharmacological drug effects at a systems level.

  10. Accurate model annotation of a near-atomic resolution cryo-EM map.

    Science.gov (United States)

    Hryc, Corey F; Chen, Dong-Hua; Afonine, Pavel V; Jakana, Joanita; Wang, Zhao; Haase-Pettingell, Cameron; Jiang, Wen; Adams, Paul D; King, Jonathan A; Schmid, Michael F; Chiu, Wah

    2017-03-21

    Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo-EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structural features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.

  11. Statistical tests with accurate size and power for balanced linear mixed models.

    Science.gov (United States)

    Muller, Keith E; Edwards, Lloyd J; Simpson, Sean L; Taylor, Douglas J

    2007-08-30

    The convenience of linear mixed models for Gaussian data has led to their widespread use. Unfortunately, standard mixed model tests often have greatly inflated test size in small samples. Many applications with correlated outcomes in medical imaging and other fields have simple properties which do not require the generality of a mixed model. Alternately, stating the special cases as a general linear multivariate model allows analysing them with either the univariate or multivariate approach to repeated measures (UNIREP, MULTIREP). Even in small samples, an appropriate UNIREP or MULTIREP test always controls test size and has a good power approximation, in sharp contrast to mixed model tests. Hence, mixed model tests should never be used when one of the UNIREP tests (uncorrected, Huynh-Feldt, Geisser-Greenhouse, Box conservative) or MULTIREP tests (Wilks, Hotelling-Lawley, Roy's, Pillai-Bartlett) apply. Convenient methods give exact power for the uncorrected and Box conservative tests. Simulations demonstrate that new power approximations for all four UNIREP tests eliminate most inaccuracy in existing methods. In turn, free software implements the approximations to give a better choice of sample size. Two repeated measures power analyses illustrate the methods. The examples highlight the advantages of examining the entire response surface of power as a function of sample size, mean differences, and variability.

  12. A tri-stage cluster identification model for accurate analysis of seismic catalogs

    Directory of Open Access Journals (Sweden)

    S. J. Nanda

    2013-02-01

    Full Text Available In this paper we propose a tri-stage cluster identification model that is a combination of a simple single iteration distance algorithm and an iterative K-means algorithm. In this study of earthquake seismicity, the model considers event location, time and magnitude information from earthquake catalog data to efficiently classify events as either background or mainshock and aftershock sequences. Tests on a synthetic seismicity catalog demonstrate the efficiency of the proposed model in terms of accuracy percentage (94.81% for background and 89.46% for aftershocks. The close agreement between lambda and cumulative plots for the ideal synthetic catalog and that generated by the proposed model also supports the accuracy of the proposed technique. There is flexibility in the model design to allow for proper selection of location and magnitude ranges, depending upon the nature of the mainshocks present in the catalog. The effectiveness of the proposed model also is evaluated by the classification of events in three historic catalogs: California, Japan and Indonesia. As expected, for both synthetic and historic catalog analysis it is observed that the density of events classified as background is almost uniform throughout the region, whereas the density of aftershock events are higher near the mainshocks.

  13. Reduced Multivariate Polynomial Model for Manufacturing Costs Estimation of Piping Elements

    Directory of Open Access Journals (Sweden)

    Nibaldo Rodriguez

    2013-01-01

    Full Text Available This paper discusses the development and evaluation of an estimation model of manufacturing costs of piping elements through the application of a Reduced Multivariate Polynomial (RMP. The model allows obtaining accurate estimations, even when enough and adequate information is not available. This situation typically occurs in the early stages of the design process of industrial products. The experimental evaluations show that the approach is capable, with a low complexity, of reducing uncertainties and to predict costs with significant precision. Comparisons with a neural network showed also that the RMP performs better considering a set of classical performance measures with the corresponding lower complexity and higher accuracy.

  14. Computational methods toward accurate RNA structure prediction using coarse-grained and all-atom models.

    Science.gov (United States)

    Krokhotin, Andrey; Dokholyan, Nikolay V

    2015-01-01

    Computational methods can provide significant insights into RNA structure and dynamics, bridging the gap in our understanding of the relationship between structure and biological function. Simulations enrich and enhance our understanding of data derived on the bench, as well as provide feasible alternatives to costly or technically challenging experiments. Coarse-grained computational models of RNA are especially important in this regard, as they allow analysis of events occurring in timescales relevant to RNA biological function, which are inaccessible through experimental methods alone. We have developed a three-bead coarse-grained model of RNA for discrete molecular dynamics simulations. This model is efficient in de novo prediction of short RNA tertiary structure, starting from RNA primary sequences of less than 50 nucleotides. To complement this model, we have incorporated additional base-pairing constraints and have developed a bias potential reliant on data obtained from hydroxyl probing experiments that guide RNA folding to its correct state. By introducing experimentally derived constraints to our computer simulations, we are able to make reliable predictions of RNA tertiary structures up to a few hundred nucleotides. Our refined model exemplifies a valuable benefit achieved through integration of computation and experimental methods.

  15. A Reduced Wind Power Grid Model for Research and Education

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Lund, Torsten; Hansen, Anca Daniela;

    2007-01-01

    A reduced grid model of a transmission system with a number of central power plants, consumption centers, local wind turbines and a large offshore wind farm is developed and implemented in the simulation tool PowerFactory (DIgSILENT). The reduced grid model is given by Energinet.dk, Transmission ...

  16. Analysis of computational models for an accurate study of electronic excitations in GFP

    DEFF Research Database (Denmark)

    Schwabe, Tobias; Beerepoot, Maarten; Olsen, Jógvan Magnus Haugaard

    2015-01-01

    Using the chromophore of the green fluorescent protein (GFP), the performance of a hybrid RI-CC2 / polarizable embedding (PE) model is tested against a quantum chemical cluster pproach. Moreover, the effect of the rest of the protein environment is studied by systematically increasing the size...... that the treatment of only a small region around the chromophore is only by coincidence a good approximation. Therefore, such cluster approaches should be used with care. Based on our results, we suggest that polarizable embedding models, including a large part of the environment to describe its effect...

  17. Density Fluctuations in the Yukawa One Component Plasma: An accurate model for the dynamical structure factor

    CERN Document Server

    Mithen, James P; Crowley, Basil J B; Gregori, Gianluca

    2011-01-01

    Using numerical simulations, we investigate the equilibrium dynamics of a single component fluid with Yukawa interaction potential. We show that, for a wide range of densities and temperatures, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. Since the Yukawa potential can describe the ion-ion interactions in a plasma, the model has significant applicability for both analyzing and interpreting the results of x-ray scattering data from high power lasers and fourth generation light sources.

  18. High-order accurate finite-volume formulations for the pressure gradient force in layered ocean models

    CERN Document Server

    Engwirda, Darren; Marshall, John

    2016-01-01

    The development of a set of high-order accurate finite-volume formulations for evaluation of the pressure gradient force in layered ocean models is described. A pair of new schemes are presented, both based on an integration of the contact pressure force about the perimeter of an associated momentum control-volume. The two proposed methods differ in their choice of control-volume geometries. High-order accurate numerical integration techniques are employed in both schemes to account for non-linearities in the underlying equation-of-state definitions and thermodynamic profiles, and details of an associated vertical interpolation and quadrature scheme are discussed in detail. Numerical experiments are used to confirm the consistency of the two formulations, and it is demonstrated that the new methods maintain hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer-wise geometry, non-linear equation-of-state definitions and non-uniform vertical stratification profiles. Additionally, one...

  19. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08907 (Spain); Roé, Nuria [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036 (Spain); Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Complexo Hospitalario Universitario de Santiago de Compostela 15706, Spain and Grupo de Imagen Molecular, Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Galicia 15782 (Spain); Falcon, Carles; Ros, Domènec [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Pavía, Javier [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 080836 (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); and Servei de Medicina Nuclear, Hospital Clínic, Barcelona 08036 (Spain)

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  20. What input data are needed to accurately model electromagnetic fields from mobile phone base stations?

    NARCIS (Netherlands)

    Beekhuizen, Johan; Kromhout, Hans; Bürgi, Alfred; Huss, Anke; Vermeulen, Roel

    2015-01-01

    The increase in mobile communication technology has led to concern about potential health effects of radio frequency electromagnetic fields (RF-EMFs) from mobile phone base stations. Different RF-EMF prediction models have been applied to assess population exposure to RF-EMF. Our study examines what

  1. A fast and accurate SystemC-AMS model for PLL

    NARCIS (Netherlands)

    Ma, K.; Leuken, R. van; Vidojkovic, M.; Romme, J.; Rampu, S.; Pflug, H.; Huang, L.; Dolmans, G.

    2011-01-01

    PLLs have become an important part of electrical systems. When designing a PLL, an efficient and reliable simulation platform for system evaluation is needed. However, the closed loop simulation of a PLL is time consuming. To address this problem, in this paper, a new PLL model containing both digit

  2. Accurate 2D/3D electromagnetic modeling for time-domain airborne EM systems

    Science.gov (United States)

    Yin, C.; Hodges, G.

    2012-12-01

    The existing industry software cannot deliver correct results for 3D time-domain airborne EM responses. In this paper, starting from the Fourier transform and convolution, we compare the stability of different modeling techniques and analyze the reason for instable calculations of the time-domain airborne EM responses. We find that the singularity of the impulse responses of EM systems at very early time that are used in the convolution is responsible for the instability of the modeling (Fig.1). Based on this finding, we put forward an algorithm that uses step response rather than impulse response of the airborne EM system for the convolution and create a stable algorithm that delivers precise results and maintains well the integral/derivative relationship between the magnetic field B and the magnetic induction dB/dt. A three-step transformation procedure for the modeling is proposed: 1) output the frequency-domain EM response data from the existing software; 2) transform into step-response by digital Fourier/Hankel transform; 3) convolve the step response with the transmitting current or its derivatives. The method has proved to be working very well (Fig. 2). The algorithm can be extended to the modeling of other time-domain ground and airborne EM system responses.Fig. 1: Comparison of impulse and step responses for an airborne EM system Fig. 2: Bz and dBz/dt calculated from step (middle panel) and impulse responses (lower panel) for the same 3D model as in Fig.1.

  3. An accurate two-phase approximate solution to the acute viral infection model

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, Alan S [Los Alamos National Laboratory

    2009-01-01

    During an acute viral infection, virus levels rise, reach a peak and then decline. Data and numerical solutions suggest the growth and decay phases are linear on a log scale. While viral dynamic models are typically nonlinear with analytical solutions difficult to obtain, the exponential nature of the solutions suggests approximations can be found. We derive a two-phase approximate solution to the target cell limited influenza model and illustrate the accuracy using data and previously established parameter values of six patients infected with influenza A. For one patient, the subsequent fall in virus concentration was not consistent with our predictions during the decay phase and an alternate approximation is derived. We find expressions for the rate and length of initial viral growth in terms of the parameters, the extent each parameter is involved in viral peaks, and the single parameter responsible for virus decay. We discuss applications of this analysis in antiviral treatments and investigating host and virus heterogeneities.

  4. Accurate Simulation of 802.11 Indoor Links: A "Bursty" Channel Model Based on Real Measurements

    Directory of Open Access Journals (Sweden)

    Agüero Ramón

    2010-01-01

    Full Text Available We propose a novel channel model to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the "bursty" behavior which characterizes indoor wireless scenarios, having a great impact on the behavior of upper layer protocols. We compare this channel model, integrated within the Network Simulator (ns-2 platform, with other traditional approaches, showing that it is able to better reflect the real behavior which was empirically assessed.

  5. Morphometric analysis of Russian Plain's small lakes on the base of accurate digital bathymetric models

    Science.gov (United States)

    Naumenko, Mikhail; Guzivaty, Vadim; Sapelko, Tatiana

    2016-04-01

    Lake morphometry refers to physical factors (shape, size, structure, etc) that determine the lake depression. Morphology has a great influence on lake ecological characteristics especially on water thermal conditions and mixing depth. Depth analyses, including sediment measurement at various depths, volumes of strata and shoreline characteristics are often critical to the investigation of biological, chemical and physical properties of fresh waters as well as theoretical retention time. Management techniques such as loading capacity for effluents and selective removal of undesirable components of the biota are also dependent on detailed knowledge of the morphometry and flow characteristics. During the recent years a lake bathymetric surveys were carried out by using echo sounder with a high bottom depth resolution and GPS coordinate determination. Few digital bathymetric models have been created with 10*10 m spatial grid for some small lakes of Russian Plain which the areas not exceed 1-2 sq. km. The statistical characteristics of the depth and slopes distribution of these lakes calculated on an equidistant grid. It will provide the level-surface-volume variations of small lakes and reservoirs, calculated through combination of various satellite images. We discuss the methodological aspects of creating of morphometric models of depths and slopes of small lakes as well as the advantages of digital models over traditional methods.

  6. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data

    Science.gov (United States)

    Pagán, Josué; Irene De Orbe, M.; Gago, Ana; Sobrado, Mónica; Risco-Martín, José L.; Vivancos Mora, J.; Moya, José M.; Ayala, José L.

    2015-01-01

    Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN). The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID) that are capable of providing average forecast windows of 47 min and a low rate of false positives. PMID:26134103

  7. Robust and Accurate Modeling Approaches for Migraine Per-Patient Prediction from Ambulatory Data

    Directory of Open Access Journals (Sweden)

    Josué Pagán

    2015-06-01

    Full Text Available Migraine is one of the most wide-spread neurological disorders, and its medical treatment represents a high percentage of the costs of health systems. In some patients, characteristic symptoms that precede the headache appear. However, they are nonspecific, and their prediction horizon is unknown and pretty variable; hence, these symptoms are almost useless for prediction, and they are not useful to advance the intake of drugs to be effective and neutralize the pain. To solve this problem, this paper sets up a realistic monitoring scenario where hemodynamic variables from real patients are monitored in ambulatory conditions with a wireless body sensor network (WBSN. The acquired data are used to evaluate the predictive capabilities and robustness against noise and failures in sensors of several modeling approaches. The obtained results encourage the development of per-patient models based on state-space models (N4SID that are capable of providing average forecast windows of 47 min and a low rate of false positives.

  8. Accurate 3d Textured Models of Vessels for the Improvement of the Educational Tools of a Museum

    Science.gov (United States)

    Soile, S.; Adam, K.; Ioannidis, C.; Georgopoulos, A.

    2013-02-01

    Besides the demonstration of the findings, modern museums organize educational programs which aim to experience and knowledge sharing combined with entertainment rather than to pure learning. Toward that effort, 2D and 3D digital representations are gradually replacing the traditional recording of the findings through photos or drawings. The present paper refers to a project that aims to create 3D textured models of two lekythoi that are exhibited in the National Archaeological Museum of Athens in Greece; on the surfaces of these lekythoi scenes of the adventures of Odysseus are depicted. The project is expected to support the production of an educational movie and some other relevant interactive educational programs for the museum. The creation of accurate developments of the paintings and of accurate 3D models is the basis for the visualization of the adventures of the mythical hero. The data collection was made by using a structured light scanner consisting of two machine vision cameras that are used for the determination of geometry of the object, a high resolution camera for the recording of the texture, and a DLP projector. The creation of the final accurate 3D textured model is a complicated and tiring procedure which includes the collection of geometric data, the creation of the surface, the noise filtering, the merging of individual surfaces, the creation of a c-mesh, the creation of the UV map, the provision of the texture and, finally, the general processing of the 3D textured object. For a better result a combination of commercial and in-house software made for the automation of various steps of the procedure was used. The results derived from the above procedure were especially satisfactory in terms of accuracy and quality of the model. However, the procedure was proved to be time consuming while the use of various software packages presumes the services of a specialist.

  9. A simple iterative model accurately captures complex trapline formation by bumblebees across spatial scales and flower arrangements.

    Science.gov (United States)

    Reynolds, Andrew M; Lihoreau, Mathieu; Chittka, Lars

    2013-01-01

    Pollinating bees develop foraging circuits (traplines) to visit multiple flowers in a manner that minimizes overall travel distance, a task analogous to the travelling salesman problem. We report on an in-depth exploration of an iterative improvement heuristic model of bumblebee traplining previously found to accurately replicate the establishment of stable routes by bees between flowers distributed over several hectares. The critical test for a model is its predictive power for empirical data for which the model has not been specifically developed, and here the model is shown to be consistent with observations from different research groups made at several spatial scales and using multiple configurations of flowers. We refine the model to account for the spatial search strategy of bees exploring their environment, and test several previously unexplored predictions. We find that the model predicts accurately 1) the increasing propensity of bees to optimize their foraging routes with increasing spatial scale; 2) that bees cannot establish stable optimal traplines for all spatial configurations of rewarding flowers; 3) the observed trade-off between travel distance and prioritization of high-reward sites (with a slight modification of the model); 4) the temporal pattern with which bees acquire approximate solutions to travelling salesman-like problems over several dozen foraging bouts; 5) the instability of visitation schedules in some spatial configurations of flowers; 6) the observation that in some flower arrays, bees' visitation schedules are highly individually different; 7) the searching behaviour that leads to efficient location of flowers and routes between them. Our model constitutes a robust theoretical platform to generate novel hypotheses and refine our understanding about how small-brained insects develop a representation of space and use it to navigate in complex and dynamic environments.

  10. A simple iterative model accurately captures complex trapline formation by bumblebees across spatial scales and flower arrangements.

    Directory of Open Access Journals (Sweden)

    Andrew M Reynolds

    Full Text Available Pollinating bees develop foraging circuits (traplines to visit multiple flowers in a manner that minimizes overall travel distance, a task analogous to the travelling salesman problem. We report on an in-depth exploration of an iterative improvement heuristic model of bumblebee traplining previously found to accurately replicate the establishment of stable routes by bees between flowers distributed over several hectares. The critical test for a model is its predictive power for empirical data for which the model has not been specifically developed, and here the model is shown to be consistent with observations from different research groups made at several spatial scales and using multiple configurations of flowers. We refine the model to account for the spatial search strategy of bees exploring their environment, and test several previously unexplored predictions. We find that the model predicts accurately 1 the increasing propensity of bees to optimize their foraging routes with increasing spatial scale; 2 that bees cannot establish stable optimal traplines for all spatial configurations of rewarding flowers; 3 the observed trade-off between travel distance and prioritization of high-reward sites (with a slight modification of the model; 4 the temporal pattern with which bees acquire approximate solutions to travelling salesman-like problems over several dozen foraging bouts; 5 the instability of visitation schedules in some spatial configurations of flowers; 6 the observation that in some flower arrays, bees' visitation schedules are highly individually different; 7 the searching behaviour that leads to efficient location of flowers and routes between them. Our model constitutes a robust theoretical platform to generate novel hypotheses and refine our understanding about how small-brained insects develop a representation of space and use it to navigate in complex and dynamic environments.

  11. Reduced Order Internal Models in the Frequency Domain

    OpenAIRE

    Laakkonen, Petteri; Paunonen, Lassi

    2016-01-01

    The internal model principle states that all robustly regulating controllers must contain a suitably reduplicated internal model of the signal to be regulated. Using frequency domain methods, we show that the number of the copies may be reduced if the class of perturbations in the problem is restricted. We present a two step design procedure for a simple controller containing a reduced order internal model achieving robust regulation. The results are illustrated with an example of a five tank...

  12. An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates

    Energy Technology Data Exchange (ETDEWEB)

    Jha, D.K., E-mail: dkjha@barc.gov.in [Civil Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kant, Tarun [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Srinivas, K. [Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-12-15

    Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature.

  13. Highly accurate SVM model with automatic feature selection for word sense disambiguation

    Institute of Scientific and Technical Information of China (English)

    王浩; 陈贵林; 吴连献

    2004-01-01

    A novel algorithm for word sense disambiguation(WSD) that is based on SVM model improved with automatic feature selection is introduced. This learning method employs rich contextual features to predict the proper senses for specific words. Experimental results show that this algorithm can achieve an execellent performance on the set of data released during the SENSEEVAL-2 competition. We present the results obtained and discuss the transplantation of this algorithm to other languages such as Chinese. Experimental results on Chinese corpus show that our algorithm achieves an accuracy of 70.0 % even with small training data.

  14. Can an Atmospherically Forced Ocean Model Accurately Simulate Sea Surface Temperature During ENSO Events?

    Science.gov (United States)

    2010-01-01

    Mateger, Herley E. Hurlburt, Alan J. Walloraft H a inleficed to offer this paper to the (Nanm of Confe ounce) (Dafe. P/ace and Classification of...temperature during ENSO events? By A. BIROL KARA.HARLEY E. HURLBURT*. CHARLIE N. BARRON. ALAN J. WALLCRAFT andE. JOSEPH METZGER, Naval Research...Quantifying SST errors from an OGCM in relation to atmospheric forcing variables. Ocean Modell. 29, 43-57. Urge. W. G., McWilliams , J. C. and Doney. S. C

  15. Accurate Finite Element Modelling of Chipboard Single-Stud Floor Panels subjected to Dynamic Loads

    DEFF Research Database (Denmark)

    Sjöström, A.; Flodén, O.; Persson, K.;

    2012-01-01

    In multi-storey buildings, the use of lightweight material has many advantages. The low weight, the low energy consumption and the sustainability of the material are some attractive benefits from using lightweight materials. Compared with heavier structures i.e. concrete the challenge...... in constructing a building compliant with building codes vis-a-vis the propagation of sound and vibrations within the structure is a challenge. Focusing on junctions in a multi-storey lightweight buildings, a modular finite element model is developed to be used for analyses of vibration transmission...... in lightweight buildings subjected to different types of loads....

  16. A simple and accurate numerical network flow model for bionic micro heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, M.; Klein, P. [Fraunhofer Institute (ITWM), Kaiserslautern (Germany)

    2011-05-15

    Heat exchangers are often associated with drawbacks like a large pressure drop or a non-uniform flow distribution. Recent research shows that bionic structures can provide possible improvements. We considered a set of such structures that were designed with M. Hermann's FracTherm {sup registered} algorithm. In order to optimize and compare them with conventional heat exchangers, we developed a numerical method to determine their performance. We simulated the flow in the heat exchanger applying a network model and coupled these results with a finite volume method to determine the heat distribution in the heat exchanger. (orig.)

  17. Considering mask pellicle effect for more accurate OPC model at 45nm technology node

    Science.gov (United States)

    Wang, Ching-Heng; Liu, Qingwei; Zhang, Liguo

    2008-11-01

    Now it comes to the 45nm technology node, which should be the first generation of the immersion micro-lithography. And the brand-new lithography tool makes many optical effects, which can be ignored at 90nm and 65nm nodes, now have significant impact on the pattern transmission process from design to silicon. Among all the effects, one that needs to be pay attention to is the mask pellicle effect's impact on the critical dimension variation. With the implement of hyper-NA lithography tools, light transmits the mask pellicle vertically is not a good approximation now, and the image blurring induced by the mask pellicle should be taken into account in the computational microlithography. In this works, we investigate how the mask pellicle impacts the accuracy of the OPC model. And we will show that considering the extremely tight critical dimension control spec for 45nm generation node, to take the mask pellicle effect into the OPC model now becomes necessary.

  18. A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates

    CERN Document Server

    Savanevych, V E; Sokovikova, N S; Bezkrovny, M M; Vavilova, I B; Ivashchenko, Yu M; Elenin, L V; Khlamov, S V; Movsesian, Ia S; Dashkova, A M; Pogorelov, A V

    2015-01-01

    We describe a new iteration method to estimate asteroid coordinates, which is based on the subpixel Gaussian model of a discrete object image. The method operates by continuous parameters (asteroid coordinates) in a discrete observational space (the set of pixels potential) of the CCD frame. In this model, a kind of the coordinate distribution of the photons hitting a pixel of the CCD frame is known a priori, while the associated parameters are determined from a real digital object image. The developed method, being more flexible in adapting to any form of the object image, has a high measurement accuracy along with a low calculating complexity due to a maximum likelihood procedure, which is implemented to obtain the best fit instead of a least-squares method and Levenberg-Marquardt algorithm for the minimisation of the quadratic form. Since 2010, the method was tested as the basis of our CoLiTec (Collection Light Technology) software, which has been installed at several observatories of the world with the ai...

  19. Flow Modeling in Pelton Turbines by an Accurate Eulerian and a Fast Lagrangian Evaluation Method

    Directory of Open Access Journals (Sweden)

    A. Panagiotopoulos

    2015-01-01

    Full Text Available The recent development of CFD has allowed the flow modeling in impulse hydro turbines that includes complex phenomena like free surface flow, multifluid interaction, and unsteady, time dependent flow. Some commercial and open-source CFD codes, which implement Eulerian methods, have been validated against experimental results showing satisfactory accuracy. Nevertheless, further improvement of accuracy is still a challenge, while the computational cost is very high and unaffordable for multiparametric design optimization of the turbine’s runner. In the present work a CFD Eulerian approach is applied at first, in order to simulate the flow in the runner of a Pelton turbine model installed at the laboratory. Then, a particulate method, the Fast Lagrangian Simulation (FLS, is used for the same case, which is much faster and hence potentially suitable for numerical design optimization, providing that it can achieve adequate accuracy. The results of both methods for various turbine operation conditions, as also for modified runner and bucket designs, are presented and discussed in the paper. In all examined cases the FLS method shows very good accuracy in predicting the hydraulic efficiency of the runner, although the computed flow evolution and the torque curve exhibit some systematic differences from the Eulerian results.

  20. Extrapolation of Urn Models via Poissonization: Accurate Measurements of the Microbial Unknown

    CERN Document Server

    Lladser, Manuel; Reeder, Jens; 10.1371/journal.pone.0021105

    2011-01-01

    The availability of high-throughput parallel methods for sequencing microbial communities is increasing our knowledge of the microbial world at an unprecedented rate. Though most attention has focused on determining lower-bounds on the alpha-diversity i.e. the total number of different species present in the environment, tight bounds on this quantity may be highly uncertain because a small fraction of the environment could be composed of a vast number of different species. To better assess what remains unknown, we propose instead to predict the fraction of the environment that belongs to unsampled classes. Modeling samples as draws with replacement of colored balls from an urn with an unknown composition, and under the sole assumption that there are still undiscovered species, we show that conditionally unbiased predictors and exact prediction intervals (of constant length in logarithmic scale) are possible for the fraction of the environment that belongs to unsampled classes. Our predictions are based on a P...

  1. Modified Poisson-Nernst-Planck model with accurate Coulomb correlation in variable media

    CERN Document Server

    Liu, Pei; Xu, Zhenli

    2016-01-01

    We derive a set of modified Poisson-Nernst-Planck (PNP) equations for ion transport from the variation of the free energy functional which includes the many-body Coulomb correlation in media of variable dielectric coefficient. The correlation effects are considered through the Debye charging process in which the self energy of an ion is governed by the generalized Debye-H\\"uckel equation. We develop the asymptotic expansions of the self energy taking the ion radius as the small parameter such that the multiscale model can be solved efficiently by numerical methods. We show that the variations of the energy functional give the self-energy-modified PNP equations which satisfy a proper energy law. We present the numerical results from different asymptotic expansions with a semi-implicit conservative numerical method and investigate the effect of the Coulomb correlation.

  2. A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates

    Science.gov (United States)

    Savanevych, V. E.; Briukhovetskyi, O. B.; Sokovikova, N. S.; Bezkrovny, M. M.; Vavilova, I. B.; Ivashchenko, Yu. M.; Elenin, L. V.; Khlamov, S. V.; Movsesian, Ia. S.; Dashkova, A. M.; Pogorelov, A. V.

    2015-08-01

    We describe a new iteration method to estimate asteroid coordinates, based on a subpixel Gaussian model of the discrete object image. The method operates by continuous parameters (asteroid coordinates) in a discrete observational space (the set of pixel potentials) of the CCD frame. In this model, the kind of coordinate distribution of the photons hitting a pixel of the CCD frame is known a priori, while the associated parameters are determined from a real digital object image. The method that is developed, which is flexible in adapting to any form of object image, has a high measurement accuracy along with a low calculating complexity, due to the maximum-likelihood procedure that is implemented to obtain the best fit instead of a least-squares method and Levenberg-Marquardt algorithm for minimization of the quadratic form. Since 2010, the method has been tested as the basis of our Collection Light Technology (COLITEC) software, which has been installed at several observatories across the world with the aim of the automatic discovery of asteroids and comets in sets of CCD frames. As a result, four comets (C/2010 X1 (Elenin), P/2011 NO1(Elenin), C/2012 S1 (ISON) and P/2013 V3 (Nevski)) as well as more than 1500 small Solar system bodies (including five near-Earth objects (NEOs), 21 Trojan asteroids of Jupiter and one Centaur object) have been discovered. We discuss these results, which allowed us to compare the accuracy parameters of the new method and confirm its efficiency. In 2014, the COLITEC software was recommended to all members of the Gaia-FUN-SSO network for analysing observations as a tool to detect faint moving objects in frames.

  3. A fuzzy-logic-based approach to accurate modeling of a double gate MOSFET for nanoelectronic circuit design

    Institute of Scientific and Technical Information of China (English)

    F. Djeffal; A. Ferdi; M. Chahdi

    2012-01-01

    The double gate (DG) silicon MOSFET with an extremely short-channel length has the appropriate features to constitute the devices for nanoscale circuit design.To develop a physical model for extremely scaled DG MOSFETs,the drain current in the channel must be accurately determined under the application of drain and gate voltages.However,modeling the transport mechanism for the nanoscale structures requires the use of overkill methods and models in terms of their complexity and computation time (self-consistent,quantum computations ).Therefore,new methods and techniques are required to overcome these constraints.In this paper,a new approach based on the fuzzy logic computation is proposed to investigate nanoscale DG MOSFETs.The proposed approach has been implemented in a device simulator to show the impact of the proposed approach on the nanoelectronic circuit design.The approach is general and thus is suitable for any type ofnanoscale structure investigation problems in the nanotechnology industry.

  4. The human skin/chick chorioallantoic membrane model accurately predicts the potency of cosmetic allergens.

    Science.gov (United States)

    Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S

    2009-04-01

    The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin.

  5. GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modelling

    Indian Academy of Sciences (India)

    G Sasibhushana Rao

    2007-10-01

    The positional accuracy of the Global Positioning System (GPS)is limited due to several error sources.The major error is ionosphere.By augmenting the GPS,the Category I (CAT I)Precision Approach (PA)requirements can be achieved.The Space-Based Augmentation System (SBAS)in India is known as GPS Aided Geo Augmented Navigation (GAGAN).One of the prominent errors in GAGAN that limits the positional accuracy is instrumental biases.Calibration of these biases is particularly important in achieving the CAT I PA landings.In this paper,a new algorithm is proposed to estimate the instrumental biases by modelling the TEC using 4th order polynomial.The algorithm uses values corresponding to a single station for one month period and the results confirm the validity of the algorithm.The experimental results indicate that the estimation precision of the satellite-plus-receiver instrumental bias is of the order of ± 0.17 nsec.The observed mean bias error is of the order − 3.638 nsec and − 4.71 nsec for satellite 1 and 31 respectively.It is found that results are consistent over the period.

  6. Performance of a reduced-order FSI model for flow-induced vocal fold vibration

    Science.gov (United States)

    Chang, Siyuan; Luo, Haoxiang; Luo's lab Team

    2016-11-01

    Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which is often needed in procedures such as optimization and parameter estimation. In this work, we study the performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin. Supported by the NSF.

  7. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  8. Improved dimensionally-reduced visual cortical network using stochastic noise modeling.

    Science.gov (United States)

    Tao, Louis; Praissman, Jeremy; Sornborger, Andrew T

    2012-04-01

    In this paper, we extend our framework for constructing low-dimensional dynamical system models of large-scale neuronal networks of mammalian primary visual cortex. Our dimensional reduction procedure consists of performing a suitable linear change of variables and then systematically truncating the new set of equations. The extended framework includes modeling the effect of neglected modes as a stochastic process. By parametrizing and including stochasticity in one of two ways we show that we can improve the systems-level characterization of our dimensionally reduced neuronal network model. We examined orientation selectivity maps calculated from the firing rate distribution of large-scale simulations and stochastic dimensionally reduced models and found that by using stochastic processes to model the neglected modes, we were able to better reproduce the mean and variance of firing rates in the original large-scale simulations while still accurately predicting the orientation preference distribution.

  9. The Reduced RUM as a Logit Model: Parameterization and Constraints.

    Science.gov (United States)

    Chiu, Chia-Yi; Köhn, Hans-Friedrich

    2016-06-01

    Cognitive diagnosis models (CDMs) for educational assessment are constrained latent class models. Examinees are assigned to classes of intellectual proficiency defined in terms of cognitive skills called attributes, which an examinee may or may not have mastered. The Reduced Reparameterized Unified Model (Reduced RUM) has received considerable attention among psychometricians. Markov Chain Monte Carlo (MCMC) or Expectation Maximization (EM) are typically used for estimating the Reduced RUM. Commercial implementations of the EM algorithm are available in the latent class analysis (LCA) routines of Latent GOLD and Mplus, for example. Fitting the Reduced RUM with an LCA routine requires that it be reparameterized as a logit model, with constraints imposed on the parameters. For models involving two attributes, these have been worked out. However, for models involving more than two attributes, the parameterization and the constraints are nontrivial and currently unknown. In this article, the general parameterization of the Reduced RUM as a logit model involving any number of attributes and the associated parameter constraints are derived. As a practical illustration, the LCA routine in Mplus is used for fitting the Reduced RUM to two synthetic data sets and to a real-world data set; for comparison, the results obtained by using the MCMC implementation in OpenBUGS are also provided.

  10. On reducibility and ergodicity of population projection matrix models

    DEFF Research Database (Denmark)

    Stott, Iain; Townley, Stuart; Carslake, David;

    2010-01-01

    from all stages to all other stages) and therefore ergodic (whatever initial stage structure is used in the population projection, it will always exhibit the same stable asymptotic growth rate). 2. Evaluation of 652 PPM models for 171 species from the literature suggests that 24·7% of PPM models...... structure used in the population projection). In our sample of published PPMs, 15·6% are non-ergodic. 3. This presents a problem: reducible–ergodic models often defy biological rationale in their description of the life cycle but may or may not prove problematic for analysis as they often behave similarly...... of reducibility in published PPMs, with significant implications for the predictive power of such models in many cases. We suggest that as a general rule, reducibility of PPM models should be avoided. However, we provide a guide to the pertinent analysis of reducible matrix models, largely based upon whether...

  11. Reducing Fear of the Laboratory Rat: A Participant Modeling Approach.

    Science.gov (United States)

    Barber, Nigel

    1994-01-01

    Reports on the use of participant modeling in a study of 56 college-level students to reduce fear of laboratory rats. Discovers that even mild exposure reduced fear significantly. Finds that women were more fearful initially but that their fear reduction was equal to that of men. (CFR)

  12. Rolling mill optimization using an accurate and rapid new model for mill deflection and strip thickness profile

    Science.gov (United States)

    Malik, Arif Sultan

    This work presents improved technology for attaining high-quality rolled metal strip. The new technology is based on an innovative method to model both the static and dynamic characteristics of rolling mill deflection, and it applies equally to both cluster-type and non cluster-type rolling mill configurations. By effectively combining numerical Finite Element Analysis (FEA) with analytical solid mechanics, the devised approach delivers a rapid, accurate, flexible, high-fidelity model useful for optimizing many important rolling parameters. The associated static deflection model enables computation of the thickness profile and corresponding flatness of the rolled strip. Accurate methods of predicting the strip thickness profile and strip flatness are important in rolling mill design, rolling schedule set-up, control of mill flatness actuators, and optimization of ground roll profiles. The corresponding dynamic deflection model enables solution of the standard eigenvalue problem to determine natural frequencies and modes of vibration. The presented method for solving the roll-stack deflection problem offers several important advantages over traditional methods. In particular, it includes continuity of elastic foundations, non-iterative solution when using pre-determined elastic foundation moduli, continuous third-order displacement fields, simple stress-field determination, the ability to calculate dynamic characteristics, and a comparatively faster solution time. Consistent with the most advanced existing methods, the presented method accommodates loading conditions that represent roll crowning, roll bending, roll shifting, and roll crossing mechanisms. Validation of the static model is provided by comparing results and solution time with large-scale, commercial finite element simulations. In addition to examples with the common 4-high vertical stand rolling mill, application of the presented method to the most complex of rolling mill configurations is demonstrated

  13. Sliding Mode Control Design via Reduced Order Model Approach

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for the higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface.

  14. A reduced order model for nonlinear vibroacoustic problems

    Directory of Open Access Journals (Sweden)

    Ouisse Morvan

    2012-07-01

    Full Text Available This work is related to geometrical nonlinearities applied to thin plates coupled with fluid-filled domain. Model reduction is performed to reduce the computation time. Reduced order model (ROM is issued from the uncoupled linear problem and enriched with residues to describe the nonlinear behavior and coupling effects. To show the efficiency of the proposed method, numerical simulations in the case of an elastic plate closing an acoustic cavity are presented.

  15. Accurate Modeling of the Cubic and Antiferrodistortive Phases of SrTiO3 with Screened Hybrid Density Functional Theory

    CERN Document Server

    El-Mellouhi, Fadwa; Lucero, Melissa J; Scuseria, Gustavo E

    2011-01-01

    We have calculated the properties of SrTiO3 (STO) using a wide array of density functionals ranging from standard semi-local functionals to modern range-separated hybrids, combined with several basis sets of varying size/quality. We show how these combination's predictive ability varies signi?cantly, both for STO's cubic and antiferrodistortive (AFD) phases, with the greatest variation in functional/basis set e?cacy seen in modeling the AFD phase. The screened hybrid functionals we utilized predict the structural properties of both phases in very good agreement with experiment, especially if used with large (but still computationally tractable) basis sets. The most accurate results presented in this study, namely those from HSE06/modi?ed-def2-TZVP, stand as the most accurate modeling of STO to date when compared to the literature; these results agree well with experimental structural and electronic properties as well as providing insight into the band structure alteration during the phase transition.

  16. Projection-Based Reduced Order Modeling for Spacecraft Thermal Analysis

    Science.gov (United States)

    Qian, Jing; Wang, Yi; Song, Hongjun; Pant, Kapil; Peabody, Hume; Ku, Jentung; Butler, Charles D.

    2015-01-01

    This paper presents a mathematically rigorous, subspace projection-based reduced order modeling (ROM) methodology and an integrated framework to automatically generate reduced order models for spacecraft thermal analysis. Two key steps in the reduced order modeling procedure are described: (1) the acquisition of a full-scale spacecraft model in the ordinary differential equation (ODE) and differential algebraic equation (DAE) form to resolve its dynamic thermal behavior; and (2) the ROM to markedly reduce the dimension of the full-scale model. Specifically, proper orthogonal decomposition (POD) in conjunction with discrete empirical interpolation method (DEIM) and trajectory piece-wise linear (TPWL) methods are developed to address the strong nonlinear thermal effects due to coupled conductive and radiative heat transfer in the spacecraft environment. Case studies using NASA-relevant satellite models are undertaken to verify the capability and to assess the computational performance of the ROM technique in terms of speed-up and error relative to the full-scale model. ROM exhibits excellent agreement in spatiotemporal thermal profiles (<0.5% relative error in pertinent time scales) along with salient computational acceleration (up to two orders of magnitude speed-up) over the full-scale analysis. These findings establish the feasibility of ROM to perform rational and computationally affordable thermal analysis, develop reliable thermal control strategies for spacecraft, and greatly reduce the development cycle times and costs.

  17. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    Science.gov (United States)

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-01-01

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car. PMID:26927108

  18. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    Science.gov (United States)

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-02-24

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  19. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    Directory of Open Access Journals (Sweden)

    Shiyao Wang

    2016-02-01

    Full Text Available A high-performance differential global positioning system (GPS  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU/dead reckoning (DR data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  20. Reduced order modeling of some fluid flows of industrial interest

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, D; Terragni, F; Velazquez, A; Vega, J M, E-mail: josemanuel.vega@upm.es [E.T.S.I. Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2012-06-01

    Some basic ideas are presented for the construction of robust, computationally efficient reduced order models amenable to be used in industrial environments, combined with somewhat rough computational fluid dynamics solvers. These ideas result from a critical review of the basic principles of proper orthogonal decomposition-based reduced order modeling of both steady and unsteady fluid flows. In particular, the extent to which some artifacts of the computational fluid dynamics solvers can be ignored is addressed, which opens up the possibility of obtaining quite flexible reduced order models. The methods are illustrated with the steady aerodynamic flow around a horizontal tail plane of a commercial aircraft in transonic conditions, and the unsteady lid-driven cavity problem. In both cases, the approximations are fairly good, thus reducing the computational cost by a significant factor. (review)

  1. Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing

    Science.gov (United States)

    Kory, Carol L.

    2001-01-01

    The phenomenal growth of the satellite communications industry has created a large demand for traveling-wave tubes (TWT's) operating with unprecedented specifications requiring the design and production of many novel devices in record time. To achieve this, the TWT industry heavily relies on computational modeling. However, the TWT industry's computational modeling capabilities need to be improved because there are often discrepancies between measured TWT data and that predicted by conventional two-dimensional helical TWT interaction codes. This limits the analysis and design of novel devices or TWT's with parameters differing from what is conventionally manufactured. In addition, the inaccuracy of current computational tools limits achievable TWT performance because optimized designs require highly accurate models. To address these concerns, a fully three-dimensional, time-dependent, helical TWT interaction model was developed using the electromagnetic particle-in-cell code MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm). The model includes a short section of helical slow-wave circuit with excitation fed by radiofrequency input/output couplers, and an electron beam contained by periodic permanent magnet focusing. A cutaway view of several turns of the three-dimensional helical slow-wave circuit with input/output couplers is shown. This has been shown to be more accurate than conventionally used two-dimensional models. The growth of the communications industry has also imposed a demand for increased data rates for the transmission of large volumes of data. To achieve increased data rates, complex modulation and multiple access techniques are employed requiring minimum distortion of the signal as it is passed through the TWT. Thus, intersymbol interference (ISI) becomes a major consideration, as well as suspected causes such as reflections within the TWT. To experimentally investigate effects of the physical TWT on ISI would be

  2. Reduced order modeling of steady flows subject to aerodynamic constraints

    DEFF Research Database (Denmark)

    Zimmermann, Ralf; Vendl, Alexander; Goertz, Stefan

    2014-01-01

    A novel reduced-order modeling method based on proper orthogonal decomposition for predicting steady, turbulent flows subject to aerodynamic constraints is introduced. Model-order reduction is achieved by replacing the governing equations of computational fluid dynamics with a nonlinear weighted ...

  3. Reducing Redundancies in Reconfigurable Antenna Structures Using Graph Models

    Energy Technology Data Exchange (ETDEWEB)

    Costantine, Joseph; al-Saffar, Sinan; Christodoulou, Christos G.; Abdallah, Chaouki T.

    2010-04-23

    Many reconfigurable antennas have redundant components in their structures. In this paper we present an approach for reducing redundancies in reconfigurable antenna structures using graph models. We study reconfigurable antennas, which are grouped, categorized and modeled according to a set of proposed graph rules. Several examples are presented and discussed to demonstrate the validity of this new technique.

  4. A proposed Fast algorithm to construct the system matrices for a reduced-order groundwater model

    Science.gov (United States)

    Ushijima, Timothy T.; Yeh, William W.-G.

    2017-04-01

    Past research has demonstrated that a reduced-order model (ROM) can be two-to-three orders of magnitude smaller than the original model and run considerably faster with acceptable error. A standard method to construct the system matrices for a ROM is Proper Orthogonal Decomposition (POD), which projects the system matrices from the full model space onto a subspace whose range spans the full model space but has a much smaller dimension than the full model space. This projection can be prohibitively expensive to compute if it must be done repeatedly, as with a Monte Carlo simulation. We propose a Fast Algorithm to reduce the computational burden of constructing the system matrices for a parameterized, reduced-order groundwater model (i.e. one whose parameters are represented by zones or interpolation functions). The proposed algorithm decomposes the expensive system matrix projection into a set of simple scalar-matrix multiplications. This allows the algorithm to efficiently construct the system matrices of a POD reduced-order model at a significantly reduced computational cost compared with the standard projection-based method. The developed algorithm is applied to three test cases for demonstration purposes. The first test case is a small, two-dimensional, zoned-parameter, finite-difference model; the second test case is a small, two-dimensional, interpolated-parameter, finite-difference model; and the third test case is a realistically-scaled, two-dimensional, zoned-parameter, finite-element model. In each case, the algorithm is able to accurately and efficiently construct the system matrices of the reduced-order model.

  5. SU-E-T-475: An Accurate Linear Model of Tomotherapy MLC-Detector System for Patient Specific Delivery QA

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y; Mo, X; Chen, M; Olivera, G; Parnell, D; Key, S; Lu, W [21st Century Oncology, Madison, WI (United States); Reeher, M [21st Century Oncology, Naples, FL (United States); Galmarini, D [21st Century Oncology, Fort Myers, FL (United States)

    2014-06-01

    Purpose: An accurate leaf fluence model can be used in applications such as patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is known that the total fluence is not a linear combination of individual leaf fluence due to leakage-transmission, tongue-and-groove, and source occlusion effect. Here we propose a method to model the nonlinear effects as linear terms thus making the MLC-detector system a linear system. Methods: A leaf pattern basis (LPB) consisting of no-leaf-open, single-leaf-open, double-leaf-open and triple-leaf-open patterns are chosen to represent linear and major nonlinear effects of leaf fluence as a linear system. An arbitrary leaf pattern can be expressed as (or decomposed to) a linear combination of the LPB either pulse by pulse or weighted by dwelling time. The exit detector responses to the LPB are obtained by processing returned detector signals resulting from the predefined leaf patterns for each jaw setting. Through forward transformation, detector signal can be predicted given a delivery plan. An equivalent leaf open time (LOT) sinogram containing output variation information can also be inversely calculated from the measured detector signals. Twelve patient plans were delivered in air. The equivalent LOT sinograms were compared with their planned sinograms. Results: The whole calibration process was done in 20 minutes. For two randomly generated leaf patterns, 98.5% of the active channels showed differences within 0.5% of the local maximum between the predicted and measured signals. Averaged over the twelve plans, 90% of LOT errors were within +/−10 ms. The LOT systematic error increases and shows an oscillating pattern when LOT is shorter than 50 ms. Conclusion: The LPB method models the MLC-detector response accurately, which improves patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is sensitive enough to detect systematic LOT errors as small as 10 ms.

  6. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Vial, A.; Dridi, M.; Cunff, L. le [Universite de Technologie de Troyes, Institut Charles Delaunay, CNRS UMR 6279, Laboratoire de Nanotechnologie et d' Instrumentation Optique, 12, rue Marie Curie, BP-2060, Troyes Cedex (France); Laroche, T. [Universite de Franche-Comte, Institut FEMTO-ST, CNRS UMR 6174, Departement de Physique et de Metrologie des Oscillateurs, Besancon Cedex (France)

    2011-06-15

    We present FDTD simulations results obtained using the Drude critical points model. This model enables spectroscopic studies of metallic structures over wider wavelength ranges than usually used, and it facilitates the study of structures made of several metals. (orig.)

  7. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    Science.gov (United States)

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions.

  8. Insights on the role of accurate state estimation in coupled model parameter estimation by a conceptual climate model study

    Science.gov (United States)

    Yu, Xiaolin; Zhang, Shaoqing; Lin, Xiaopei; Li, Mingkui

    2017-03-01

    The uncertainties in values of coupled model parameters are an important source of model bias that causes model climate drift. The values can be calibrated by a parameter estimation procedure that projects observational information onto model parameters. The signal-to-noise ratio of error covariance between the model state and the parameter being estimated directly determines whether the parameter estimation succeeds or not. With a conceptual climate model that couples the stochastic atmosphere and slow-varying ocean, this study examines the sensitivity of state-parameter covariance on the accuracy of estimated model states in different model components of a coupled system. Due to the interaction of multiple timescales, the fast-varying atmosphere with a chaotic nature is the major source of the inaccuracy of estimated state-parameter covariance. Thus, enhancing the estimation accuracy of atmospheric states is very important for the success of coupled model parameter estimation, especially for the parameters in the air-sea interaction processes. The impact of chaotic-to-periodic ratio in state variability on parameter estimation is also discussed. This simple model study provides a guideline when real observations are used to optimize model parameters in a coupled general circulation model for improving climate analysis and predictions.

  9. Reduced order modeling of grid-connected photovoltaic inverter systems

    Science.gov (United States)

    Wasynczuk, O.; Krause, P. C.; Anwah, N. A.

    1988-04-01

    This report summarizes the development of reduced order models of three-phase, line- and self-commutated inverter systems. This work was performed as part of the National Photovoltaics Program within the United States Department of Energy and was supervised by Sandia National Laboratories. The overall objective of the national program is to promote the development of low cost, reliable terrestrial photovoltaic systems for widespread use in residential, commercial and utility applications. The purpose of the effort reported herein is to provide reduced order models of three-phase, line- and self-commutated PV systems suitable for implementation into transient stability programs, which are commonly used to predict the stability characteristics of large-scale power systems. The accuracy of the reduced models is verified by comparing the response characteristics predicted therefrom with the response established using highly detailed PV system models in which the inverter switching is represented in detail.

  10. Reduced order model for binary neutron star waveforms with tidal interactions

    Science.gov (United States)

    Lackey, Benjamin; Bernuzzi, Sebastiano; Galley, Chad

    2016-03-01

    Observations of inspiralling binary neutron star (BNS) systems with Advanced LIGO can be used to determine the unknown neutron-star equation of state by measuring the phase shift in the gravitational waveform due to tidal interactions. Unfortunately, this requires computationally efficient waveform models for use in parameter estimation codes that typically require 106-107 sequential waveform evaluations, as well as accurate waveform models with phase errors less than 1 radian over the entire inspiral to avoid systematic errors in the measured tidal deformability. The effective one body waveform model with l = 2 , 3, and 4 tidal multipole moments is currently the most accurate model for BNS systems, but takes several minutes to evaluate. We develop a reduced order model of this waveform by constructing separate orthonormal bases for the amplitude and phase evolution. We find that only 10-20 bases are needed to reconstruct any BNS waveform with a starting frequency of 10 Hz. The coefficients of these bases are found with Chebyshev interpolation over the waveform parameter space. This reduced order model has maximum errors of 0.2 radians, and results in a speedup factor of more than 103, allowing parameter estimation codes to run in days to weeks rather than decades.

  11. On the verification of PGD reduced-order models

    OpenAIRE

    Pled, Florent; Chamoin, Ludovic; Ladevèze, Pierre

    2014-01-01

    International audience; In current computational mechanics practice, multidimensional as well as multiscale or parametric models encountered in a wide variety of scientific and engineering fields often require either the resolution of significantly large complexity problems or the direct calculation of very numerous solutions of such complex models. In this framework, the use of model order reduction allows to dramatically reduce the computational requirements engendered by the increasing mod...

  12. User Guide for SMARTIES: Spheroids Modelled Accurately with a Robust T-matrix Implementation for Electromagnetic Scattering

    CERN Document Server

    Somerville, W R C; Ru, E C Le

    2015-01-01

    We provide a detailed user guide for SMARTIES, a suite of Matlab codes for the calculation of the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. SMARTIES is a Matlab implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. The theory behind the improvements in numerical accuracy and convergence is briefly summarised, with reference to the original publications. Instructions of use, and a detailed description of the code structure, its range of applicability, as well as guidelines for further developments by advanced users are discussed in separate sections of this user guide. The code may be useful to researchers seeking a fast, accurate and reliable tool to simulate the near-field and far-field optical properties of elongated particles, but will also appeal to other developers of light-scattering software seeking a reliable benchmark for...

  13. Lightning arrester models enabling highly accurate lightning surge analysis; Koseidona kaminari surge kaiseki wo kano ni suru hiraiki model

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, T. [Chubu Electric Power Co. Inc., Nagoya (Japan); Funabashi, T.; Hagiwara, T.; Watanabe, H. [Meidensha Corp., Tokyo (Japan)

    1998-12-28

    Introduced herein are a dynamic behavior model for lightning arresters designed for power stations and substations and a flashover model for a lightning arresting device designed for transmission, both developed by the author et al. The author et al base their zinc oxide type lightning arrester model on the conventional static V-I characteristics, and supplement them with difference in voltage between static and dynamic characteristics. The model is easily simulated using EMTP (Electromagnetic Transients Program) etc. There is good agreement between the results of calculation performed using this model and actually measured values. Lightning arresting devices for transmission have come into practical use, and their effectiveness is introduced on various occasions. For the proper application of such devices, an analysis model capable of faithfully describing the flashover characteristics of arcing horns installed in great numbers along transmission lines, and of lightning arresting devices for transmission, are required. The author et al have newly developed a flashover model for the devices and uses the model for the analysis of lightning surges. It is found that the actually measured values of discharge characteristics of lightning arresting devices for transmission agree well with the values calculated by use of the model. (NEDO)

  14. Reduced-Order Modeling of Parametrically Excited Micro-Electro-Mechanical Systems (MEMS

    Directory of Open Access Journals (Sweden)

    Sangram Redkar

    2010-01-01

    Full Text Available Reduced-order modeling is a systematic way of constructing models with smaller number of states that can capture the “essential dynamics” of the large-scale systems, accurately. In this paper, reduced-order modeling and control techniques for parametrically excited MEMS are presented. The techniques proposed here use the Lyapunov-Floquet (L-F transformation that makes the linear part of transformed equations time invariant. In this work, three model reduction techniques for MEMS are suggested. First method is simply an application of the well-known Guyan-like reduction method to nonlinear systems. The second technique is based on singular perturbation, where the transformed system dynamics is partitioned as fast and slow dynamics and the system of differential equations is converted into a differential algebraic (DAE system. In the third technique, the concept of invariant manifold for time-periodic systems is used. The “time periodic invariant manifold” based technique yields “reducibility conditions”. This is an important result because it helps us to understand the various types of resonances present in the system. These resonances indicate a tight coupling between the system states, and in order to retain the dynamic characteristics, one has to preserve all these “resonant” states in the reduced-order model. Thus, if the “reducibility conditions” are satisfied, only then a nonlinear order reduction based on invariant manifold approach is possible. It is found that the invariant manifold approach yields the most accurate results followed by the nonlinear projection and linear technique. These methodologies are general, free from small parameter assumptions, and can be applied to a variety of MEM systems like resonators, sensors and filters. The reduced-order models can be used for parametric study, sensitivity analysis and/or controller design. The controller design is based on the reduced-order system. Thus, first the

  15. Reduced-order models for vertical human-structure interaction

    Science.gov (United States)

    Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter

    2016-09-01

    For slender and lightweight structures, the vibration serviceability under crowd- induced loading is often critical in design. Currently, designers rely on equivalent load models, upscaled from single-person force measurements. Furthermore, it is important to consider the mechanical interaction with the human body as this can significantly reduce the structural response. To account for these interaction effects, the contact force between the pedestrian and the structure can be modelled as the superposition of the force induced by the pedestrian on a rigid floor and the force resulting from the mechanical interaction between the structure and the human body. For the case of large crowds, however, this approach leads to models with a very high system order. In the present contribution, two equivalent reduced-order models are proposed to approximate the dynamic behaviour of the full-order coupled crowd-structure system. A numerical study is performed to evaluate the impact of the modelling assumptions on the structural response to pedestrian excitation. The results show that the full-order moving crowd model can be well approximated by a reduced-order model whereby the interaction with the pedestrians in the crowd is modelled using a single (equivalent) SDOF system.

  16. On Modeling CPU Utilization of MapReduce Applications

    CERN Document Server

    Rizvandi, Nikzad Babaii; Zomaya, Albert Y

    2012-01-01

    In this paper, we present an approach to predict the total CPU utilization in terms of CPU clock tick of applications when running on MapReduce framework. Our approach has two key phases: profiling and modeling. In the profiling phase, an application is run several times with different sets of MapReduce configuration parameters to profile total CPU clock tick of the application on a given platform. In the modeling phase, multi linear regression is used to map the sets of MapReduce configuration parameters (number of Mappers, number of Reducers, size of File System (HDFS) and the size of input file) to total CPU clock ticks of the application. This derived model can be used for predicting total CPU requirements of the same application when using MapReduce framework on the same platform. Our approach aims to eliminate error-prone manual processes and presents a fully automated solution. Three standard applications (WordCount, Exim Mainlog parsing and Terasort) are used to evaluate our modeling technique on pseu...

  17. Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30.

    Science.gov (United States)

    Adidharma, Hertanto; Tan, Sugata P

    2016-07-07

    Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T(∗) ≤ 1.20) and high densities (0.96 ≤ ρ(∗) ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe the properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.

  18. Accurate tracking control in LOM application

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The fabrication of accurate prototype from CAD model directly in short time depends on the accurate tracking control and reference trajectory planning in (Laminated Object Manufacture) LOM application. An improvement on contour accuracy is acquired by the introduction of a tracking controller and a trajectory generation policy. A model of the X-Y positioning system of LOM machine is developed as the design basis of tracking controller. The ZPETC (Zero Phase Error Tracking Controller) is used to eliminate single axis following error, thus reduce the contour error. The simulation is developed on a Maltab model based on a retrofitted LOM machine and the satisfied result is acquired.

  19. Testing whether humans have an accurate model of their own motor uncertainty in a speeded reaching task.

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    Full Text Available In many motor tasks, optimal performance presupposes that human movement planning is based on an accurate internal model of the subject's own motor error. We developed a motor choice task that allowed us to test whether the internal model implicit in a subject's choices differed from the actual in isotropy (elongation and variance. Subjects were first trained to hit a circular target on a touch screen within a time limit. After training, subjects were repeatedly shown pairs of targets differing in size and shape and asked to choose the target that was easier to hit. On each trial they simply chose a target - they did not attempt to hit the chosen target. For each subject, we tested whether the internal model implicit in her target choices was consistent with her true error distribution in isotropy and variance. For all subjects, movement end points were anisotropic, distributed as vertically elongated bivariate Gaussians. However, in choosing targets, almost all subjects effectively assumed an isotropic distribution rather than their actual anisotropic distribution. Roughly half of the subjects chose as though they correctly estimated their own variance and the other half effectively assumed a variance that was more than four times larger than the actual, essentially basing their choices merely on the areas of the targets. The task and analyses we developed allowed us to characterize the internal model of motor error implicit in how humans plan reaching movements. In this task, human movement planning - even after extensive training - is based on an internal model of human motor error that includes substantial and qualitative inaccuracies.

  20. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  1. Accurate and self-consistent procedure for determining pH in seawater desalination brines and its manifestation in reverse osmosis modeling.

    Science.gov (United States)

    Nir, Oded; Marvin, Esra; Lahav, Ori

    2014-11-01

    Measuring and modeling pH in concentrated aqueous solutions in an accurate and consistent manner is of paramount importance to many R&D and industrial applications, including RO desalination. Nevertheless, unified definitions and standard procedures have yet to be developed for solutions with ionic strength higher than ∼0.7 M, while implementation of conventional pH determination approaches may lead to significant errors. In this work a systematic yet simple methodology for measuring pH in concentrated solutions (dominated by Na(+)/Cl(-)) was developed and evaluated, with the aim of achieving consistency with the Pitzer ion-interaction approach. Results indicate that the addition of 0.75 M of NaCl to NIST buffers, followed by assigning a new standard pH (calculated based on the Pitzer approach), enabled reducing measured errors to below 0.03 pH units in seawater RO brines (ionic strength up to 2 M). To facilitate its use, the method was developed to be both conceptually and practically analogous to the conventional pH measurement procedure. The method was used to measure the pH of seawater RO retentates obtained at varying recovery ratios. The results matched better the pH values predicted by an accurate RO transport model. Calibrating the model by the measured pH values enabled better boron transport prediction. A Donnan-induced phenomenon, affecting pH in both retentate and permeate streams, was identified and quantified.

  2. Reduced Models in Chemical Kinetics via Nonlinear Data-Mining

    Directory of Open Access Journals (Sweden)

    Eliodoro Chiavazzo

    2014-01-01

    Full Text Available The adoption of detailed mechanisms for chemical kinetics often poses two types of severe challenges: First, the number of degrees of freedom is large; and second, the dynamics is characterized by widely disparate time scales. As a result, reactive flow solvers with detailed chemistry often become intractable even for large clusters of CPUs, especially when dealing with direct numerical simulation (DNS of turbulent combustion problems. This has motivated the development of several techniques for reducing the complexity of such kinetics models, where, eventually, only a few variables are considered in the development of the simplified model. Unfortunately, no generally applicable a priori recipe for selecting suitable parameterizations of the reduced model is available, and the choice of slow variables often relies upon intuition and experience. We present an automated approach to this task, consisting of three main steps. First, the low dimensional manifold of slow motions is (approximately sampled by brief simulations of the detailed model, starting from a rich enough ensemble of admissible initial conditions. Second, a global parametrization of the manifold is obtained through the Diffusion Map (DMAP approach, which has recently emerged as a powerful tool in data analysis/machine learning. Finally, a simplified model is constructed and solved on the fly in terms of the above reduced (slow variables. Clearly, closing this latter model requires nontrivial interpolation calculations, enabling restriction (mapping from the full ambient space to the reduced one and lifting (mapping from the reduced space to the ambient one. This is a key step in our approach, and a variety of interpolation schemes are reported and compared. The scope of the proposed procedure is presented and discussed by means of an illustrative combustion example.

  3. A Reduced Three Dimensional Model for SAW Sensors Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed M. El Gowini

    2009-12-01

    Full Text Available A major problem that often arises in modeling Micro Electro Mechanical Systems (MEMS such as Surface Acoustic Wave (SAW sensors using Finite Element Analysis (FEA is the extensive computational capacity required. In this study a new approach is adopted to significantly reduce the computational capacity needed for analyzing the response of a SAW sensor using the finite element (FE method. The approach is based on the plane wave solution where the properties of the wave vary in two dimensions and are uniform along the thickness of the device. The plane wave solution therefore allows the thickness of the SAW device model to be minimized; the model is referred to as a Reduced 3D Model (R3D. Various configurations of this novel R3D model are developed and compared with theoretical and experimental frequency data and the results show very good agreement. In addition, two-dimensional (2D models with similar configurations to the R3D are developed for comparison since the 2D approach is widely adopted in the literature as a computationally inexpensive approach to model SAW sensors using the FE method. Results illustrate that the R3D model is capable of capturing the SAW response more accurately than the 2D model; this is demonstrated by comparison of centre frequency and insertion loss values. These results are very encouraging and indicate that the R3D model is capable of capturing the MEMS-based SAW sensor response without being computationally expensive.

  4. In pursuit of an accurate spatial and temporal model of biomolecules at the atomistic level: a perspective on computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alan [The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Harlen, Oliver G. [University of Leeds, Leeds LS2 9JT (United Kingdom); Harris, Sarah A., E-mail: s.a.harris@leeds.ac.uk [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Leeds, Leeds LS2 9JT (United Kingdom); Khalid, Syma; Leung, Yuk Ming [University of Southampton, Southampton SO17 1BJ (United Kingdom); Lonsdale, Richard [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg (Germany); Mulholland, Adrian J. [University of Bristol, Bristol BS8 1TS (United Kingdom); Pearson, Arwen R. [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Hamburg, Hamburg (Germany); Read, Daniel J.; Richardson, Robin A. [University of Leeds, Leeds LS2 9JT (United Kingdom); The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom)

    2015-01-01

    The current computational techniques available for biomolecular simulation are described, and the successes and limitations of each with reference to the experimental biophysical methods that they complement are presented. Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.

  5. An accurate locally active memristor model for S-type negative differential resistance in NbO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Gary A.; Musunuru, Srinitya; Zhang, Jiaming; Lee, James; Hsieh, Cheng-Chih; Jackson, Warren; Jeon, Yoocharn; Henze, Dick; Li, Zhiyong; Stanley Williams, R. [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); Vandenberghe, Ken [PTD-PPS, Hewlett-Packard Company, 1070 NE Circle Boulevard, Corvallis, Oregon 97330 (United States)

    2016-01-11

    A number of important commercial applications would benefit from the introduction of easily manufactured devices that exhibit current-controlled, or “S-type,” negative differential resistance (NDR). A leading example is emerging non-volatile memory based on crossbar array architectures. Due to the inherently linear current vs. voltage characteristics of candidate non-volatile memristor memory elements, individual memory cells in these crossbar arrays can be addressed only if a highly non-linear circuit element, termed a “selector,” is incorporated in the cell. Selectors based on a layer of niobium oxide sandwiched between two electrodes have been investigated by a number of groups because the NDR they exhibit provides a promisingly large non-linearity. We have developed a highly accurate compact dynamical model for their electrical conduction that shows that the NDR in these devices results from a thermal feedback mechanism. A series of electrothermal measurements and numerical simulations corroborate this model. These results reveal that the leakage currents can be minimized by thermally isolating the selector or by incorporating materials with larger activation energies for electron motion.

  6. X-ray and microwave emissions from the July 19, 2012 solar flare: Highly accurate observations and kinetic models

    Science.gov (United States)

    Gritsyk, P. A.; Somov, B. V.

    2016-08-01

    The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ˜5 × 1010 erg cm-2 s-1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ˜5. To independently test the model, we have calculated the microwave spectrum in the range 1-50 GHz that corresponds to the available radio observations.

  7. Mobile phone model with metamaterials to reduce the exposure

    Science.gov (United States)

    Pinto, Yenny; Begaud, Xavier

    2016-04-01

    This work presents a terminal mobile model where an Inverted-F Antenna (IFA) is associated with three different kinds of metamaterials: artificial magnetic conductor (AMC), electromagnetic band gap (EBG) and resistive high-impedance surface (RHIS). The objective was to evaluate whether some metamaterials may be used to reduce exposure while preserving the antenna performances. The exposure has been evaluated using a simplified phantom model. Two configurations, antenna in front of the phantom and antenna hidden by the ground plane, have been evaluated. Results show that using an optimized RHIS, the SAR 10 g is reduced and the antenna performances are preserved. With RHIS solution, the SAR 10 g peak is reduced by 8 % when the antenna is located in front of the phantom and by 6 % when the antenna is hidden by ground plane.

  8. Reduced Lorenz models for anomalous transport and profile resilience

    DEFF Research Database (Denmark)

    Rypdal, K.; Garcia, Odd Erik

    2007-01-01

    to resilience of the profile. Particular emphasis is put on the diffusionless limit, where these equations reduce to a simple dynamical system depending only on one single forcing parameter. This model is studied numerically, stressing experimentally observable signatures, and some of the perils of dimension...

  9. Development of Boundary Condition Independent Reduced Order Thermal Models using Proper Orthogonal Decomposition

    Science.gov (United States)

    Raghupathy, Arun; Ghia, Karman; Ghia, Urmila

    2008-11-01

    Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.

  10. Reduced order modeling of fluid/structure interaction.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert

    2009-11-01

    This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.

  11. Reduced Complexity Volterra Models for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Hacıoğlu Rıfat

    2001-01-01

    Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.

  12. Investigation on reduced thermal models for simulating infrared images in fusion devices

    Science.gov (United States)

    Gerardin, J.; Aumeunier, M.-H.; Firdaouss, M.; Gardarein, J.-L.; Rigollet, F.

    2016-09-01

    In fusion facilities, the in-vessel wall receives high heat flux density up to 20 MW/m2. The monitoring of in-vessel components is usually ensured by infra-red (IR) thermography but with all-metallic walls, disturbance phenomenon as reflections may lead to inaccurate temperature estimates, potentially endangering machine safety. A full predictive photonic simulation is then used to assess accurately the IR measurements. This paper investigates some reduced thermal models (semi-infinite wall, thermal quadrupole) to predict the surface temperature from the particle loads on components for a given plasma scenario. The results are compared with a reference 3D Finite Element Method (Ansys Mechanical) and used as input for simulating IR images. The performances of reduced thermal models are analysed by comparing the resulting IR images.

  13. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM +-up scheme

    Science.gov (United States)

    Chang, Chih-Hao; Liou, Meng-Sing

    2007-07-01

    In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations . Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM +-up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion. However, conservative form is lost in these balance equations when considering each individual phase; in fact, the interactions that exist simultaneously in both phases manifest themselves as nonconservative terms.

  14. Performance evaluation of ocean color satellite models for deriving accurate chlorophyll estimates in the Gulf of Saint Lawrence

    Directory of Open Access Journals (Sweden)

    M. Montes-Hugo

    2014-06-01

    Full Text Available The understanding of phytoplankton dynamics in the Gulf of the Saint Lawrence (GSL is critical for managing major fisheries off the Canadian East coast. In this study, the accuracy of two atmospheric correction techniques (NASA standard algorithm, SA, and Kuchinke's spectral optimization, KU and three ocean color inversion models (Carder's empirical for SeaWiFS (Sea-viewing Wide Field-of-View Sensor, EC, Lee's quasi-analytical, QAA, and Garver- Siegel-Maritorena semi-empirical, GSM for estimating the phytoplankton absorption coefficient at 443 nm (aph(443 and the chlorophyll concentration (chl in the GSL is examined. Each model was validated based on SeaWiFS images and shipboard measurements obtained during May of 2000 and April 2001. In general, aph(443 estimates derived from coupling KU and QAA models presented the smallest differences with respect to in situ determinations as measured by High Pressure liquid Chromatography measurements (median absolute bias per cruise up to 0.005, RMSE up to 0.013. A change on the inversion approach used for estimating aph(443 values produced up to 43.4% increase on prediction error as inferred from the median relative bias per cruise. Likewise, the impact of applying different atmospheric correction schemes was secondary and represented an additive error of up to 24.3%. By using SeaDAS (SeaWiFS Data Analysis System default values for the optical cross section of phytoplankton (i.e., aph(443 = aph(443/chl = 0.056 m2mg−1, the median relative bias of our chl estimates as derived from the most accurate spaceborne aph(443 retrievals and with respect to in situ determinations increased up to 29%.

  15. BWR stability using a reducing dynamical model; Estabilidad de un BWR con un modelo dinamico reducido

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin Bolea, J. M.; Blazquez Martinez, J. B.

    1990-07-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical structure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations is non-linear. Simple parametric calculation of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author)

  16. Identification of reduced-order thermal therapy models using thermal MR images: theory and validation.

    Science.gov (United States)

    Niu, Ran; Skliar, Mikhail

    2012-07-01

    In this paper, we develop and validate a method to identify computationally efficient site- and patient-specific models of ultrasound thermal therapies from MR thermal images. The models of the specific absorption rate of the transduced energy and the temperature response of the therapy target are identified in the reduced basis of proper orthogonal decomposition of thermal images, acquired in response to a mild thermal test excitation. The method permits dynamic reidentification of the treatment models during the therapy by recursively utilizing newly acquired images. Such adaptation is particularly important during high-temperature therapies, which are known to substantially and rapidly change tissue properties and blood perfusion. The developed theory was validated for the case of focused ultrasound heating of a tissue phantom. The experimental and computational results indicate that the developed approach produces accurate low-dimensional treatment models despite temporal and spatial noises in MR images and slow image acquisition rate.

  17. The i-V curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    KAUST Repository

    Han, Jie

    2016-07-17

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one-dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-Vcurve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agreement with those from the detailed simulations. The saturation voltage is found to depend significantly on the flame location relative to the electrodes, and on the sign of the voltage difference applied. Furthermore, at sub-saturation conditions, the current is shown to increase linearly or quadratically with the applied voltage, depending on the flame location. These limiting behaviors exhibited by the reduced model elucidate the features of i-V curves observed experimentally. The reduced model relies on the existence of a thin layer where charges are produced, corresponding to the reaction zone of a flame. Consequently, the analytical model we propose is not limited to the study of premixed flames, and may be applied easily to others configurations, e.g.~nonpremixed counterflow flames.

  18. MODELLING THE CONSTRAINTS OF SPATIAL ENVIRONMENT IN FAUNA MOVEMENT SIMULATIONS: COMPARISON OF A BOUNDARIES ACCURATE FUNCTION AND A COST FUNCTION

    Directory of Open Access Journals (Sweden)

    L. Jolivet

    2015-08-01

    Full Text Available Landscape influences fauna movement at different levels, from habitat selection to choices of movements’ direction. Our goal is to provide a development frame in order to test simulation functions for animal’s movement. We describe our approach for such simulations and we compare two types of functions to calculate trajectories. To do so, we first modelled the role of landscape elements to differentiate between elements that facilitate movements and the ones being hindrances. Different influences are identified depending on landscape elements and on animal species. Knowledge were gathered from ecologists, literature and observation datasets. Second, we analysed the description of animal movement recorded with GPS at fine scale, corresponding to high temporal frequency and good location accuracy. Analysing this type of data provides information on the relation between landscape features and movements. We implemented an agent-based simulation approach to calculate potential trajectories constrained by the spatial environment and individual’s behaviour. We tested two functions that consider space differently: one function takes into account the geometry and the types of landscape elements and one cost function sums up the spatial surroundings of an individual. Results highlight the fact that the cost function exaggerates the distances travelled by an individual and simplifies movement patterns. The geometry accurate function represents a good bottom-up approach for discovering interesting areas or obstacles for movements.

  19. Reducing equifinality of hydrological models by integrating Functional Streamflow Disaggregation

    Science.gov (United States)

    Lüdtke, Stefan; Apel, Heiko; Nied, Manuela; Carl, Peter; Merz, Bruno

    2014-05-01

    A universal problem of the calibration of hydrological models is the equifinality of different parameter sets derived from the calibration of models against total runoff values. This is an intrinsic problem stemming from the quality of the calibration data and the simplified process representation by the model. However, discharge data contains additional information which can be extracted by signal processing methods. An analysis specifically developed for the disaggregation of runoff time series into flow components is the Functional Streamflow Disaggregation (FSD; Carl & Behrendt, 2008). This method is used in the calibration of an implementation of the hydrological model SWIM in a medium sized watershed in Thailand. FSD is applied to disaggregate the discharge time series into three flow components which are interpreted as base flow, inter-flow and surface runoff. In addition to total runoff, the model is calibrated against these three components in a modified GLUE analysis, with the aim to identify structural model deficiencies, assess the internal process representation and to tackle equifinality. We developed a model dependent (MDA) approach calibrating the model runoff components against the FSD components, and a model independent (MIA) approach comparing the FSD of the model results and the FSD of calibration data. The results indicate, that the decomposition provides valuable information for the calibration. Particularly MDA highlights and discards a number of standard GLUE behavioural models underestimating the contribution of soil water to river discharge. Both, MDA and MIA yield to a reduction of the parameter ranges by a factor up to 3 in comparison to standard GLUE. Based on these results, we conclude that the developed calibration approach is able to reduce the equifinality of hydrological model parameterizations. The effect on the uncertainty of the model predictions is strongest by applying MDA and shows only minor reductions for MIA. Besides

  20. Detailed and Highly Accurate 3d Models of High Mountain Areas by the Macs-Himalaya Aerial Camera Platform

    Science.gov (United States)

    Brauchle, J.; Hein, D.; Berger, R.

    2015-04-01

    Remote sensing in areas with extreme altitude differences is particularly challenging. In high mountain areas specifically, steep slopes result in reduced ground pixel resolution and degraded quality in the DEM. Exceptionally high brightness differences can in part no longer be imaged by the sensors. Nevertheless, detailed information about mountainous regions is highly relevant: time and again glacier lake outburst floods (GLOFs) and debris avalanches claim dozens of victims. Glaciers are sensitive to climate change and must be carefully monitored. Very detailed and accurate 3D maps provide a basic tool for the analysis of natural hazards and the monitoring of glacier surfaces in high mountain areas. There is a gap here, because the desired accuracies are often not achieved. It is for this reason that the DLR Institute of Optical Sensor Systems has developed a new aerial camera, the MACS-Himalaya. The measuring unit comprises four camera modules with an overall aperture angle of 116° perpendicular to the direction of flight. A High Dynamic Range (HDR) mode was introduced so that within a scene, bright areas such as sun-flooded snow and dark areas such as shaded stone can be imaged. In 2014, a measuring survey was performed on the Nepalese side of the Himalayas. The remote sensing system was carried by a Stemme S10 motor glider. Amongst other targets, the Seti Valley, Kali-Gandaki Valley and the Mt. Everest/Khumbu Region were imaged at heights up to 9,200 m. Products such as dense point clouds, DSMs and true orthomosaics with a ground pixel resolution of up to 15 cm were produced. Special challenges and gaps in the investigation of high mountain areas, approaches for resolution of these problems, the camera system and the state of evaluation are presented with examples.

  1. Enhanced Constraints for Accurate Lower Bounds on Many-Electron Quantum Energies from Variational Two-Electron Reduced Density Matrix Theory

    Science.gov (United States)

    Mazziotti, David A.

    2016-10-01

    A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T 2 condition. Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T 2 condition will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.

  2. A locally parametrized reduced order model for the linear frequency domain approach to time-accurate computational fluid dynamics

    DEFF Research Database (Denmark)

    Zimmermann, Ralf

    2014-01-01

    ) in an offline stage. The claimed trajectory is obtained locally by interpolating the given local subspaces considered as sample points in the Grassmann manifold. It is shown that the manifold interpolation technique is subject to certain restrictions. Moreover, it turns out that the application of computing...... under a sinusoidal pitching motion....

  3. Accurate Monte Carlo modeling of cyclotrons for optimization of shielding and activation calculations in the biomedical field

    Science.gov (United States)

    Infantino, Angelo; Marengo, Mario; Baschetti, Serafina; Cicoria, Gianfranco; Longo Vaschetto, Vittorio; Lucconi, Giulia; Massucci, Piera; Vichi, Sara; Zagni, Federico; Mostacci, Domiziano

    2015-11-01

    Biomedical cyclotrons for production of Positron Emission Tomography (PET) radionuclides and radiotherapy with hadrons or ions are widely diffused and established in hospitals as well as in industrial facilities and research sites. Guidelines for site planning and installation, as well as for radiation protection assessment, are given in a number of international documents; however, these well-established guides typically offer analytic methods of calculation of both shielding and materials activation, in approximate or idealized geometry set up. The availability of Monte Carlo codes with accurate and up-to-date libraries for transport and interactions of neutrons and charged particles at energies below 250 MeV, together with the continuously increasing power of nowadays computers, makes systematic use of simulations with realistic geometries possible, yielding equipment and site specific evaluation of the source terms, shielding requirements and all quantities relevant to radiation protection. In this work, the well-known Monte Carlo code FLUKA was used to simulate two representative models of cyclotron for PET radionuclides production, including their targetry; and one type of proton therapy cyclotron including the energy selection system. Simulations yield estimates of various quantities of radiological interest, including the effective dose distribution around the equipment, the effective number of neutron produced per incident proton and the activation of target materials, the structure of the cyclotron, the energy degrader, the vault walls and the soil. The model was validated against experimental measurements and comparison with well-established reference data. Neutron ambient dose equivalent H*(10) was measured around a GE PETtrace cyclotron: an average ratio between experimental measurement and simulations of 0.99±0.07 was found. Saturation yield of 18F, produced by the well-known 18O(p,n)18F reaction, was calculated and compared with the IAEA recommended

  4. Lattice model of reduced jamming by a barrier

    Science.gov (United States)

    Cirillo, Emilio N. M.; Krehel, Oleh; Muntean, Adrian; van Santen, Rutger

    2016-10-01

    We study an asymmetric simple exclusion process in a strip in the presence of a solid impenetrable barrier. We focus on the effect of the barrier on the residence time of the particles, namely, the typical time needed by the particles to cross the whole strip. We explore the conditions for reduced jamming when varying the environment (different drifts, reservoir densities, horizontal diffusion walks, etc.). In particular, we discover an interesting nonmonotonic behavior of the residence time as a function of the barrier length. Besides recovering by means of both the lattice dynamics and the mean-field model well-known aspects like the faster-is-slower effect and the intermittence of the flow, we propose also a birth-and-death process and a reduced one-dimensional (1D) model with variable barrier permeability to capture the behavior of the residence time with respect to the parameters.

  5. Reducing component estimation for varying coefficient models with longitudinal data

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Varying-coefficient models with longitudinal observations are very useful in epidemiology and some other practical fields.In this paper,a reducing component procedure is proposed for es- timating the unknown functions and their derivatives in very general models,in which the unknown coefficient functions admit different or the same degrees of smoothness and the covariates can be time- dependent.The asymptotic properties of the estimators,such as consistency,rate of convergence and asymptotic distribution,are derived.The asymptotic results show that the asymptotic variance of the reducing component estimators is smaller than that of the existing estimators when the coefficient functions admit different degrees of smoothness.Finite sample properties of our procedures are studied through Monte Carlo simulations.

  6. Predictive modeling and reducing cyclic variability in autoignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  7. Anchanling reduces pathology in a lactacystin- induced Parkinson's disease model

    Institute of Scientific and Technical Information of China (English)

    Yinghong Li; Zhengzhi Wu; Xiaowei Gao; Qingwei Zhu; Yu Jin; Anmin Wu; Andrew C. J. Huang

    2012-01-01

    A rat model of Parkinson's disease was induced by injecting lactacystin stereotaxically into the left mesencephalic ventral tegmental area and substantia nigra pars compacta. After rats were intragastrically perfused with Anchanling, a Chinese medicine, mainly composed of magnolol, for 5 weeks, when compared with Parkinson's disease model rats, tyrosine hydroxylase expression was increased, α-synuclein and ubiquitin expression was decreased, substantia nigra cell apoptosis was reduced, and apomorphine-induced rotational behavior was improved. Results suggested that Anchanling can ameliorate Parkinson's disease pathology possibly by enhancing degradation activity of the ubiquitin-proteasome system.

  8. Multi-model analysis of terrestrial carbon cycles in Japan: reducing uncertainties in model outputs among different terrestrial biosphere models using flux observations

    Directory of Open Access Journals (Sweden)

    K. Ichii

    2009-08-01

    Full Text Available Terrestrial biosphere models show large uncertainties when simulating carbon and water cycles, and reducing these uncertainties is a priority for developing more accurate estimates of both terrestrial ecosystem statuses and future climate changes. To reduce uncertainties and improve the understanding of these carbon budgets, we investigated the ability of flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine-based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID, we conducted two simulations: (1 point simulations at four flux sites in Japan and (2 spatial simulations for Japan with a default model (based on original settings and an improved model (based on calibration using flux observations. Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using flux observations (GPP, RE and NEP, most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs, and model calibration using flux observations significantly improved the model outputs. These results show that to reduce uncertainties among terrestrial biosphere models, we need to conduct careful validation and calibration with available flux observations. Flux observation data significantly improved terrestrial biosphere models, not only on a point scale but also on spatial scales.

  9. Low-dose biplanar radiography can be used in children and adolescents to accurately assess femoral and tibial torsion and greatly reduce irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Meyrignac, Olivier; Baunin, Christiane; Vial, Julie; Sans, Nicolas [CHU Toulouse Purpan, Department of Radiology, Toulouse Cedex 9 (France); Moreno, Ramiro [ALARA Expertise, Oberhausbergen (France); Accadbled, Franck; Gauzy, Jerome Sales de [Hopital des Enfants, Department of Orthopedics, Toulouse Cedex 9 (France); Sommet, Agnes [Universite Paul Sabatier, Department of Fundamental Pharmaco-Clinical Pharmacology, Toulouse (France)

    2015-06-01

    To evaluate in children the agreement between femoral and tibial torsion measurements obtained with low-dose biplanar radiography (LDBR) and CT, and to study dose reduction ratio between these two techniques both in vitro and in vivo. Thirty children with lower limb torsion abnormalities were included in a prospective study. Biplanar radiographs and CTs were performed for measurements of lower limb torsion on each patient. Values were compared using Bland-Altman plots. Interreader and intrareader agreements were evaluated by intraclass correlation coefficients. Comparative dosimetric study was performed using an ionization chamber in a tissue-equivalent phantom, and with thermoluminescent dosimeters in 5 patients. Average differences between CT and LDBR measurements were -0.1 ±1.1 for femoral torsion and -0.7 ±1.4 for tibial torsion. Interreader agreement for LDBR measurements was very good for both femoral torsion (FT) (0.81) and tibial torsion (TT) (0.87). Intrareader agreement was excellent for FT (0.97) and TT (0.89). The ratio between CT scan dose and LDBR dose was 22 in vitro (absorbed dose) and 32 in vivo (skin dose). Lower limb torsion measurements obtained with LDBR are comparable to CT measurements in children and adolescents, with a considerably reduced radiation dose. (orig.)

  10. Systematic development of reduced reaction mechanisms for dynamic modeling

    Science.gov (United States)

    Frenklach, M.; Kailasanath, K.; Oran, E. S.

    1986-01-01

    A method for systematically developing a reduced chemical reaction mechanism for dynamic modeling of chemically reactive flows is presented. The method is based on the postulate that if a reduced reaction mechanism faithfully describes the time evolution of both thermal and chain reaction processes characteristic of a more complete mechanism, then the reduced mechanism will describe the chemical processes in a chemically reacting flow with approximately the same degree of accuracy. Here this postulate is tested by producing a series of mechanisms of reduced accuracy, which are derived from a full detailed mechanism for methane-oxygen combustion. These mechanisms were then tested in a series of reactive flow calculations in which a large-amplitude sinusoidal perturbation is applied to a system that is initially quiescent and whose temperature is high enough to start ignition processes. Comparison of the results for systems with and without convective flow show that this approach produces reduced mechanisms that are useful for calculations of explosions and detonations. Extensions and applicability to flames are discussed.

  11. Accurate Spectral Fits of Jupiter's Great Red Spot: VIMS Visual Spectra Modelled with Chromophores Created by Photolyzed Ammonia Reacting with Acetyleneχ±

    Science.gov (United States)

    Baines, Kevin; Sromovsky, Lawrence A.; Fry, Patrick M.; Carlson, Robert W.; Momary, Thomas W.

    2016-10-01

    We report results incorporating the red-tinted photochemically-generated aerosols of Carlson et al (2016, Icarus 274, 106-115) in spectral models of Jupiter's Great Red Spot (GRS). Spectral models of the 0.35-1.0-micron spectrum show good agreement with Cassini/VIMS near-center-meridian and near-limb GRS spectra for model morphologies incorporating an optically-thin layer of Carlson (2016) aerosols at high altitudes, either at the top of the tropospheric GRS cloud, or in a distinct stratospheric haze layer. Specifically, a two-layer "crème brûlée" structure of the Mie-scattering Carlson et al (2016) chromophore attached to the top of a conservatively scattering (hereafter, "white") optically-thick cloud fits the spectra well. Currently, best agreement (reduced χ2 of 0.89 for the central-meridian spectrum) is found for a 0.195-0.217-bar, 0.19 ± 0.02 opacity layer of chromophores with mean particle radius of 0.14 ± 0.01 micron. As well, a structure with a detached stratospheric chromophore layer ~0.25 bar above a white tropospheric GRS cloud provides a good spectral match (reduced χ2 of 1.16). Alternatively, a cloud morphology with the chromophore coating white particles in a single optically- and physically-thick cloud (the "coated-shell model", initially explored by Carlson et al 2016) was found to give significantly inferior fits (best reduced χ2 of 2.9). Overall, we find that models accurately fit the GRS spectrum if (1) most of the optical depth of the chromophore is in a layer near the top of the main cloud or in a distinct separated layer above it, but is not uniformly distributed within the main cloud, (2) the chromophore consists of relatively small, 0.1-0.2-micron-radius particles, and (3) the chromophore layer optical depth is small, ~ 0.1-0.2. Thus, our analysis supports the exogenic origin of the red chromophore consistent with the Carlson et al (2016) photolytic production mechanism rather than an endogenic origin, such as upwelling of material

  12. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Shen, Hongxia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Chan, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McDevitt, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Sturges, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-02-07

    Policies aimed at energy conservation and efficiency have broad environmental and economic impacts. Even if these impacts are relatively small, they may be significant compared to the cost of implementing the policy. Methodologies that quantify the marginal impacts of reduced demand for energy have an important role to play in developing accurate measures of both the benefits and costs of a given policy choice. This report presents a methodology for estimating the impacts of reduced demand for electricity on the electric power sector as a whole. The approach uses the National Energy Modeling System (NEMS), a mid-range energy forecast model developed and maintained by the U.S. Department of Energy, Energy Information Administration (EIA)(DOE EIA 2013). The report is organized as follows: In the rest of this section the traditional NEMS-BT approach is reviewed and an outline of the new reduced form NEMS methodology is presented. Section 2 provides an overview of how the NEMS model works, and describes the set of NEMS-BT runs that are used as input to the reduced form approach. Section 3 presents our NEMS-BT simulation results and post-processing methods. In Section 4 we show how the NEMS-BT output can be generalized to apply to a broader set of end-uses. In Section 5 we disuss the application of this approach to policy analysis, and summarize some of the issues that will be further investigated in Part 2 of this study.

  13. Reduced Complexity Modeling (RCM): toward more use of less

    Science.gov (United States)

    Paola, Chris; Voller, Vaughan

    2014-05-01

    Although not exact, there is a general correspondence between reductionism and detailed, high-fidelity models, while 'synthesism' is often associated with reduced-complexity modeling. There is no question that high-fidelity reduction- based computational models are extremely useful in simulating the behaviour of complex natural systems. In skilled hands they are also a source of insight and understanding. We focus here on the case for the other side (reduced-complexity models), not because we think they are 'better' but because their value is more subtle, and their natural constituency less clear. What kinds of problems and systems lend themselves to the reduced-complexity approach? RCM is predicated on the idea that the mechanism of the system or phenomenon in question is, for whatever reason, insensitive to the full details of the underlying physics. There are multiple ways in which this can happen. B.T. Werner argued for the importance of process hierarchies in which processes at larger scales depend on only a small subset of everything going on at smaller scales. Clear scale breaks would seem like a way to test systems for this property but to our knowledge has not been used in this way. We argue that scale-independent physics, as for example exhibited by natural fractals, is another. We also note that the same basic criterion - independence of the process in question from details of the underlying physics - underpins 'unreasonably effective' laboratory experiments. There is thus a link between suitability for experimentation at reduced scale and suitability for RCM. Examples from RCM approaches to erosional landscapes, braided rivers, and deltas illustrate these ideas, and suggest that they are insufficient. There is something of a 'wild west' nature to RCM that puts some researchers off by suggesting a departure from traditional methods that have served science well for centuries. We offer two thoughts: first, that in the end the measure of a model is its

  14. Construction of energy-stable Galerkin reduced order models.

    Energy Technology Data Exchange (ETDEWEB)

    Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan; van Bloemen Waanders, Bart Gustaaf

    2013-05-01

    This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs constructed

  15. Reduced order methods for modeling and computational reduction

    CERN Document Server

    Rozza, Gianluigi

    2014-01-01

    This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics.  Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This...

  16. Package Equivalent Reactor Networks as Reduced Order Models for Use with CAPE-OPEN Compliant Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, E.; Chou, C. -P.; Garratt, T.

    2013-03-31

    Engineering simulations of coal gasifiers are typically performed using computational fluid dynamics (CFD) software, where a 3-D representation of the gasifier equipment is used to model the fluid flow in the gasifier and source terms from the coal gasification process are captured using discrete-phase model source terms. Simulations using this approach can be very time consuming, making it difficult to imbed such models into overall system simulations for plant design and optimization. For such system-level designs, process flowsheet software is typically used, such as Aspen Plus® [1], where each component where each component is modeled using a reduced-order model. For advanced power-generation systems, such as integrated gasifier/gas-turbine combined-cycle systems (IGCC), the critical components determining overall process efficiency and emissions are usually the gasifier and combustor. Providing more accurate and more computationally efficient reduced-order models for these components, then, enables much more effective plant-level design optimization and design for control. Based on the CHEMKIN-PRO and ENERGICO software, we have developed an automated methodology for generating an advanced form of reduced-order model for gasifiers and combustors. The reducedorder model offers representation of key unit operations in flowsheet simulations, while allowing simulation that is fast enough to be used in iterative flowsheet calculations. Using high-fidelity fluiddynamics models as input, Reaction Design’s ENERGICO® [2] software can automatically extract equivalent reactor networks (ERNs) from a CFD solution. For the advanced reduced-order concept, we introduce into the ERN a much more detailed kinetics model than can be included practically in the CFD simulation. The state-of-the-art chemistry solver technology within CHEMKIN-PRO allows that to be accomplished while still maintaining a very fast model turn-around time. In this way, the ERN becomes the basis for

  17. A mathematical recursive model for accurate description of the phase behavior in the near-critical region by Generalized van der Waals Equation

    Science.gov (United States)

    Kim, Jibeom; Jeon, Joonhyeon

    2015-01-01

    Recently, related studies on Equation Of State (EOS) have reported that generalized van der Waals (GvdW) shows poor representations in the near critical region for non-polar and non-sphere molecules. Hence, there are still remains a problem of GvdW parameters to minimize loss in describing saturated vapor densities and vice versa. This paper describes a recursive model GvdW (rGvdW) for an accurate representation of pure fluid materials in the near critical region. For the performance evaluation of rGvdW in the near critical region, other EOS models are also applied together with two pure molecule group: alkane and amine. The comparison results show rGvdW provides much more accurate and reliable predictions of pressure than the others. The calculating model of EOS through this approach gives an additional insight into the physical significance of accurate prediction of pressure in the nearcritical region.

  18. Glyburide reduces bacterial dissemination in a mouse model of melioidosis.

    Directory of Open Access Journals (Sweden)

    Gavin C K W Koh

    Full Text Available BACKGROUND: Burkholderia pseudomallei infection (melioidosis is an important cause of community-acquired Gram-negative sepsis in Northeast Thailand, where it is associated with a ~40% mortality rate despite antimicrobial chemotherapy. We showed in a previous cohort study that patients taking glyburide ( = glibenclamide prior to admission have lower mortality and attenuated inflammatory responses compared to patients not taking glyburide. We sought to define the mechanism underlying this observation in a murine model of melioidosis. METHODS: Mice (C57BL/6 with streptozocin-induced diabetes were inoculated with ~6 × 10(2 cfu B. pseudomallei intranasally, then treated with therapeutic ceftazidime (600 mg/kg intraperitoneally twice daily starting 24 h after inoculation in order to mimic the clinical scenario. Glyburide (50 mg/kg or vehicle was started 7 d before inoculation and continued until sacrifice. The minimum inhibitory concentration of glyburide for B. pseudomallei was determined by broth microdilution. We also examined the effect of glyburide on interleukin (IL 1β by bone-marrow-derived macrophages (BMDM. RESULTS: Diabetic mice had increased susceptibility to melioidosis, with increased bacterial dissemination but no effect was seen of diabetes on inflammation compared to non-diabetic controls. Glyburide treatment did not affect glucose levels but was associated with reduced pulmonary cellular influx, reduced bacterial dissemination to both liver and spleen and reduced IL1β production when compared to untreated controls. Other cytokines were not different in glyburide-treated animals. There was no direct effect of glyburide on B. pseudomallei growth in vitro or in vivo. Glyburide directly reduced the secretion of IL1β by BMDMs in a dose-dependent fashion. CONCLUSIONS: Diabetes increases the susceptibility to melioidosis. We further show, for the first time in any model of sepsis, that glyburide acts as an anti-inflammatory agent by

  19. Reduced parameter model on trajectory tracking data with applications

    Institute of Scientific and Technical Information of China (English)

    王正明; 朱炬波

    1999-01-01

    The data fusion in tracking the same trajectory by multi-measurernent unit (MMU) is considered. Firstly, the reduced parameter model (RPM) of trajectory parameter (TP), system error and random error are presented,and then the RPM on trajectory tracking data (TTD) is obtained, a weighted method on measuring elements (ME) is studied and criteria on selection of ME based on residual and accuracy estimation are put forward. According to RPM,the problem about selection of ME and self-calibration of TTD is thoroughly investigated. The method improves data accuracy in trajectory tracking obviously and gives accuracy evaluation of trajectory tracking system simultaneously.

  20. Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles

    DEFF Research Database (Denmark)

    Maiorano, Andrea; Martre, Pierre; Asseng, Senthold

    2017-01-01

    To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of mo...

  1. A Reduced Order, One Dimensional Model of Joint Response

    Energy Technology Data Exchange (ETDEWEB)

    DOHNER,JEFFREY L.

    2000-11-06

    As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.

  2. Fast and Accurate Icepak-PSpice Co-Simulation of IGBTs under Short-Circuit with an Advanced PSpice Model

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    A basic problem in the IGBT short-circuit failure mechanism study is to obtain realistic temperature distribution inside the chip, which demands accurate electrical simulation to obtain power loss distribution as well as detailed IGBT geometry and material information. This paper describes an unp...

  3. Optimizing Crawler4j using MapReduce Programming Model

    Science.gov (United States)

    Siddesh, G. M.; Suresh, Kavya; Madhuri, K. Y.; Nijagal, Madhushree; Rakshitha, B. R.; Srinivasa, K. G.

    2016-08-01

    World wide web is a decentralized system that consists of a repository of information on the basis of web pages. These web pages act as a source of information or data in the present analytics world. Web crawlers are used for extracting useful information from web pages for different purposes. Firstly, it is used in web search engines where the web pages are indexed to form a corpus of information and allows the users to query on the web pages. Secondly, it is used for web archiving where the web pages are stored for later analysis phases. Thirdly, it can be used for web mining where the web pages are monitored for copyright purposes. The amount of information processed by the web crawler needs to be improved by using the capabilities of modern parallel processing technologies. In order to solve the problem of parallelism and the throughput of crawling this work proposes to optimize the Crawler4j using the Hadoop MapReduce programming model by parallelizing the processing of large input data. Crawler4j is a web crawler that retrieves useful information about the pages that it visits. The crawler Crawler4j coupled with data and computational parallelism of Hadoop MapReduce programming model improves the throughput and accuracy of web crawling. The experimental results demonstrate that the proposed solution achieves significant improvements with respect to performance and throughput. Hence the proposed approach intends to carve out a new methodology towards optimizing web crawling by achieving significant performance gain.

  4. Reduced physics models in SOLPS for reactor scoping studies

    Energy Technology Data Exchange (ETDEWEB)

    Coster, D.P. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-08-15

    Heat exhaust is a challenge for ITER and becomes even more of an issue for devices beyond ITER. The main reason for this is that the power produced in the core scales as R{sup 3} while relying on standard exhaust physics results in the heat exhaust scaling as R{sup 1} (R is the major radius). ITER has used SOLPS (B2-EIRENE) to design the ITER divertor, as well as to provide a database that supports the calculations of the ITER operational parameter space. The typical run time for such SOLPS runs is of the order 3 months (for D+C+He using EIRENE to treat the neutrals kinetically with an extensive choice of atomic and molecular physics). Future devices will be expected to radiate much of the power before it crosses the separatrix, and this requires treating extrinsic impurities such as Ne, Ar, Kr and Xe - the large number of charge states puts additional pressure on SOLPS, further slowing down the code. For design work of future machines, fast models have been implemented in system codes but these are usually unavoidably restricted in the included physics. As a bridge between system studies and detailed SOLPS runs, SOLPS offers a number of possibilities to speed up the code considerably at the cost of reducing the fidelity of the physics. By employing a fluid neutral model, aggressive bundling of the charge state of impurities, and reducing the size of the grids used, the run time for one second of physics time (which is often enough for the divertor to come to a steady state) can be reduced to approximately one day. This work looks at the impact of these trade-offs in the physics by comparing key parameters for different simulation assumptions. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Stochastic reduced order models for inverse problems under uncertainty.

    Science.gov (United States)

    Warner, James E; Aquino, Wilkins; Grigoriu, Mircea D

    2015-03-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well.

  6. A Reduced-order NLTE Kinetic Model for Radiating Plasmas of Outer Envelopes of Stellar Atmospheres

    Science.gov (United States)

    Munafò, Alessandro; Mansour, Nagi N.; Panesi, Marco

    2017-04-01

    The present work proposes a self-consistent reduced-order NLTE kinetic model for radiating plasmas found in the outer layers of stellar atmospheres. A detailed collisional-radiative kinetic mechanism is constructed by leveraging the most up-to-date set of ab initio and experimental data available in the literature. This constitutes the starting point for the derivation of a reduced-order model, obtained by lumping the bound energy states into groups. In order to determine the needed thermo-physical group properties, uniform and Maxwell–Boltzmann energy distributions are used to reconstruct the energy population of each group. Finally, the reduced set of governing equations for the material gas and the radiation field is obtained based on the moment method. Applications consider the steady flow across a shock wave in partially ionized hydrogen. The results clearly demonstrate that adopting a Maxwell–Boltzmann grouping allows, on the one hand, for a substantial reduction of the number of unknowns and, on the other, to maintain accuracy for both gas and radiation quantities. Also, it is observed that, when neglecting line radiation, the use of two groups already leads to a very accurate resolution of the photo-ionization precursor, internal relaxation, and radiative cooling regions. The inclusion of line radiation requires adopting just one additional group to account for optically thin losses in the α, β, and γ lines of the Balmer and Paschen series. This trend has been observed for a wide range of shock wave velocities.

  7. Determinations of from inclusive semileptonic decays with reduced model dependence.

    Science.gov (United States)

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Best, D S; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Minamora, J S; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Spaan, B; Brandt, T; Dickopp, M; Klose, V; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Langenegger, U; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Chai, X; Charles, M J; Mader, W F; Mallik, U; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J I; Schott, G; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Diberder, F Le; Lepeltier, V; Lutz, A M; Oyanguren, A; Petersen, T C; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Bevan, A J; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Schofield, K C; Touramanis, C; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Green, M G; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pacetti, S; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Graziani, G; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Abe, T; Allen, M T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Ricca, G Della; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H

    2006-06-09

    We report two novel determinations of /|Vub/ with reduced model dependence, based on measurements of the mass distribution of the hadronic system in semileptonic B decays. Events are selected by fully reconstructing the decay of one B meson and identifying a charged lepton from the decay of the other B meson from Upsilon(4S)-->BB events. In one approach, we combine the inclusive B-->Xulambdav rate, integrated up to a maximum hadronic mass mXXsgamma photon energy spectrum. We obtain /Vub/=(4.43+/-0.38stat+/-0.25syst+/-0.29theo) x 10-3. In another approach we measure the total B-->Xulambdav rate over the full phase space and find /Vub/=(3.84+/-0.70stat+/-0.30syst+/-0.10theo) x 10-3.

  8. Fragile DNA Repair Mechanism Reduces Ageing in Multicellular Model

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss; Juul, Jeppe Søgaard; Trusina, Ala

    2012-01-01

    DNA damages, as well as mutations, increase with age. It is believed that these result from increased genotoxic stress and decreased capacity for DNA repair. The two causes are not independent, DNA damage can, for example, through mutations, compromise the capacity for DNA repair, which in turn...... to DNA damage can undergo full repair, go apoptotic, or accumulate mutations thus reducing DNA repair capacity. Our model predicts that at the tissue level repair rate does not continuously decline with age, but instead has a characteristic extended period of high and non-declining DNA repair capacity...... of compromised cells, thus freeing the space for healthy peers. This finding might be a first step toward understanding why a mutation in single DNA repair protein (e.g. Wrn or Blm) is not buffered by other repair proteins and therefore, leads to severe ageing disorders...

  9. Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Bobadilla Fazzini, Roberto A; Cortés, Maria Paz; Padilla, Leandro; Maturana, Daniel; Budinich, Marko; Maass, Alejandro; Parada, Pilar

    2013-08-01

    The prokaryotic oxidation of reduced inorganic sulfur compounds (RISCs) is a topic of utmost importance from a biogeochemical and industrial perspective. Despite sulfur oxidizing bacterial activity is largely known, no quantitative approaches to biological RISCs oxidation have been made, gathering all the complex abiotic and enzymatic stoichiometry involved. Even though in the case of neutrophilic bacteria such as Paracoccus and Beggiatoa species the RISCs oxidation systems are well described, there is a lack of knowledge for acidophilic microorganisms. Here, we present the first experimentally validated stoichiometric model able to assess RISCs oxidation quantitatively in Acidithiobacillus thiooxidans (strain DSM 17318), the archetype of the sulfur oxidizing acidophilic chemolithoautotrophs. This model was built based on literature and genomic analysis, considering a widespread mix of formerly proposed RISCs oxidation models combined and evaluated experimentally. Thiosulfate partial oxidation by the Sox system (SoxABXYZ) was placed as central step of sulfur oxidation model, along with abiotic reactions. This model was coupled with a detailed stoichiometry of biomass production, providing accurate bacterial growth predictions. In silico deletion/inactivation highlights the role of sulfur dioxygenase as the main catalyzer and a moderate function of tetrathionate hydrolase in elemental sulfur catabolism, demonstrating that this model constitutes an advanced instrument for the optimization of At. thiooxidans biomass production with potential use in biohydrometallurgical and environmental applications.

  10. Improved Reduced Models for Single-Pass and Reflective Semiconductor Optical Amplifiers

    CERN Document Server

    Dúill, Seán P Ó

    2014-01-01

    We present highly accurate and easy to implement, improved lumped semiconductor optical amplifier (SOA) models for both single-pass and reflective semiconductor optical amplifiers (RSOA). The key feature of the model is the inclusion of the internal losses and we show that a few subdivisions are required to achieve an accuracy of 0.12 dB. For the case of RSOAs, we generalize a recently published model to account for the internal losses that are vital to replicate observed RSOA behavior. The results of the improved reduced RSOA model show large overlap when compared to a full bidirectional travelling wave model over a 40 dB dynamic range of input powers and a 20 dB dynamic range of reflectivity values. The models would be useful for the rapid system simulation of signals in communication systems, i.e. passive optical networks that employ RSOAs, signal processing using SOAs and for implementing digital back propagation to undo amplifier induced signal distortions.

  11. Ultraefficient reduced model for countercurrent two-layer flows

    Science.gov (United States)

    Lavalle, Gianluca; Vila, Jean-Paul; Lucquiaud, Mathieu; Valluri, Prashant

    2017-01-01

    We investigate the dynamics of two superposed layers with density contrast flowing countercurrent inside a channel, when the lower layer is much thinner than the wavelength of interfacial waves. We apply a low-dimensional film model to the bottom (heavier) layer and introduce a fast and efficient method to predict the onset of flow reversal in this phase. We study three vertical scenarios with different applied pressure gradients and compare the temporal growth rates of linear and weakly nonlinear waves to the Orr-Sommerfeld problem and to the weakly nonlinear theory, respectively. At the loading point, i.e., when a large wave hump stands at the interface, our spatiotemporal analysis shows that the system is absolutely unstable. We then present profiles of nonlinear saturated waves, pressure field, and streamline distribution in agreement with direct numerical simulation. The reduced model presented here allows us to explore the effect of the upper-layer speed on the wave pattern, showing that the wave profile is very sensitive when the mean film thickness, rather than the liquid flow rate, is maintained constant in the simulation. In addition, we show the strong effect of surface tension on both the maximum wave hump and the crest steepness before the loading point. Finally, we reveal how the nonlinear wave speed affects the vortex distribution within the lower layer by analyzing the stream function under different scenarios.

  12. From dimer to condensed phases at extreme conditions: accurate predictions of the properties of water by a Gaussian charge polarizable model.

    Science.gov (United States)

    Paricaud, Patrice; Predota, Milan; Chialvo, Ariel A; Cummings, Peter T

    2005-06-22

    Water exhibits many unusual properties that are essential for the existence of life. Water completely changes its character from ambient to supercritical conditions in a way that makes it possible to sustain life at extreme conditions, leading to conjectures that life may have originated in deep-sea vents. Molecular simulation can be very useful in exploring biological and chemical systems, particularly at extreme conditions for which experiments are either difficult or impossible; however this scenario entails an accurate molecular model for water applicable over a wide range of state conditions. Here, we present a Gaussian charge polarizable model (GCPM) based on the model developed earlier by Chialvo and Cummings [Fluid Phase Equilib. 150, 73 (1998)] which is, to our knowledge, the first that satisfies the water monomer and dimer properties, and simultaneously yields very accurate predictions of dielectric, structural, vapor-liquid equilibria, and transport properties, over the entire fluid range. This model would be appropriate for simulating biological and chemical systems at both ambient and extreme conditions. The particularity of the GCPM model is the use of Gaussian distributions instead of points to represent the partial charges on the water molecules. These charge distributions combined with a dipole polarizability and a Buckingham exp-6 potential are found to play a crucial role for the successful and simultaneous predictions of a variety of water properties. This work not only aims at presenting an accurate model for water, but also at proposing strategies to develop classical accurate models for the predictions of structural, dynamic, and thermodynamic properties.

  13. The stochastic quasi-steady-state assumption: Reducing the model but not the noise

    Science.gov (United States)

    Srivastava, Rishi; Haseltine, Eric L.; Mastny, Ethan; Rawlings, James B.

    2011-04-01

    Highly reactive species at small copy numbers play an important role in many biological reaction networks. We have described previously how these species can be removed from reaction networks using stochastic quasi-steady-state singular perturbation analysis (sQSPA). In this paper we apply sQSPA to three published biological models: the pap operon regulation, a biochemical oscillator, and an intracellular viral infection. These examples demonstrate three different potential benefits of sQSPA. First, rare state probabilities can be accurately estimated from simulation. Second, the method typically results in fewer and better scaled parameters that can be more readily estimated from experiments. Finally, the simulation time can be significantly reduced without sacrificing the accuracy of the solution.

  14. Accurate six-band nearest-neighbor tight-binding model for the pi-bands of bulk graphene and graphene nanoribbons

    OpenAIRE

    Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard; Jiang, Xueping; Kharche, Neerav; Zhou, Yu; Nayak, Saroj K

    2011-01-01

    Accurate modeling of the pi-bands of armchair graphene nanoribbons (AGNRs) requires correctly reproducing asymmetries in the bulk graphene bands as well as providing a realistic model for hydrogen passivation of the edge atoms. The commonly used single-pz orbital approach fails on both these counts. To overcome these failures we introduce a nearest-neighbor, three orbital per atom p/d tight-binding model for graphene. The parameters of the model are fit to first-principles density-functional ...

  15. Accurate Six-Band Nearest-Neighbor Tight-Binding Model for the π-Bands of Bulk Graphene and Graphene Nanoribbons

    OpenAIRE

    Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard; Jiang, Xueping; Kharche, Neerav; Zhou, Yu; Nayak, Saroj K

    2011-01-01

    Accurate modeling of the ␣-bands of armchair graphene nanoribbons (AGNRs) requires correctly reproducing asymmetries in the bulk graphene bands as well as providing a realistic model for hydrogen passivation of the edge atoms. The commonly used single-pz orbital approach fails on both these counts. To overcome these failures we introduce a nearest-neighbor, three orbital per atom p/d tight-binding model for graphene. The parameters of the model are fit to first-principles density-functional t...

  16. Reduced-dimension model of liquid plug propagation in tubes

    Science.gov (United States)

    Fujioka, Hideki; Halpern, David; Ryans, Jason; Gaver, Donald P.

    2016-09-01

    We investigate the flow resistance caused by the propagation of a liquid plug in a liquid-lined tube and propose a simple semiempirical formula for the flow resistance as a function of the plug length, the capillary number, and the precursor film thickness. These formulas are based on computational investigations of three key contributors to the plug resistance: the front meniscus, the plug core, and the rear meniscus. We show that the nondimensional flow resistance in the front meniscus varies as a function of the capillary number and the precursor film thickness. For a fixed capillary number, the flow resistance increases with decreasing precursor film thickness. The flow in the core region is modeled as Poiseuille flow and the flow resistance is a linear function of the plug length. For the rear meniscus, the flow resistance increases monotonically with decreasing capillary number. We investigate the maximum mechanical stress behavior at the wall, such as the wall pressure gradient, the wall shear stress, and the wall shear stress gradient, and propose empirical formulas for the maximum stresses in each region. These wall mechanical stresses vary as a function of the capillary number: For semi-infinite fingers of air propagating through pulmonary airways, the epithelial cell damage correlates with the pressure gradient. However, for shorter plugs the front meniscus may provide substantial mechanical stresses that could modulate this behavior and provide a major cause of cell injury when liquid plugs propagate in pulmonary airways. Finally, we propose that the reduced-dimension models developed herein may be of importance for the creation of large-scale models of interfacial flows in pulmonary networks, where full computational fluid dynamics calculations are untenable.

  17. Frequency domain reduced order models for gravitational waves from aligned-spin black-hole binaries

    CERN Document Server

    Pürrer, Michael

    2014-01-01

    Black-hole binary coalescences are one of the most promising sources for the first detection of gravitational waves. Fast and accurate theoretical models of the gravitational radiation emitted from these coalescences are highly important for the detection and extraction of physical parameters. Spinning effective-one-body (EOB) models for binaries with aligned spins have been shown to be highly faithful, but are slow to generate and thus have not yet been used for parameter estimation studies. I provide a frequency-domain singular value decomposition (SVD)-based surrogate reduced order model that is thousands to hundred thousands times faster for typical system masses and has a faithfulness mismatch of better than $\\sim 0.1\\%$ with the original SEOBNRv1 model for advanced LIGO detectors. This model enables parameter estimation studies up to signal-to-noise ratios (SNRs) of 20 and even up to SNR 50 for masses below $50 M_\\odot$. This article discusses various choices for approximations and interpolation over th...

  18. Reduced-Basis Determination of Planetary Boundary-Layer Flow Statistics for a Novel Turbulence Model

    Science.gov (United States)

    Skitka, Joseph; Marston, Brad; Fox-Kemper, Baylor

    2016-11-01

    Uncertainty in climate modeling and weather forecasting can largely be attributed to the omission or inaccurate representation of oceanic and atmospheric subgrid processes. Existing subgrid turbulence models are built on assumptions of isotropy, homogeneity, and the locality of correlations. Direct statistical simulation (DSS) using expansion in equal-time cumulants is a novel approach to subgrid modeling that does not make these assumptions. In prior work, a second-order closure, CE2, was shown to capture important vertical turbulent transports in Langmuir turbulence and Rayleigh-Bénard convection, but to run efficiently, this approach to turbulence modeling requires a drastic reduction in dimensionality. The present work addresses how accurately these systems can be represented with a truncated principal orthogonal decomposition (POD). The representation of turbulent transports by truncated POD bases are studied by static projection of fully resolved statistics and dynamical evolution of a reduced model. Results indicate the projected truncated turbulent statistics in these flows are less sensitive to flow details, like mixed-layer depth, than the truncated basis itself. The question of whether POD is an optimal truncation technique for these purposes is considered. NSF DMR 1306806, NSF GCE 1350795, The Institute at Brown for Environment and Society Graduate Student Fellowship.

  19. State reduced order models for the modelling of the thermal behavior of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Menezo, Christophe; Bouia, Hassan; Roux, Jean-Jacques; Depecker, Patrick [Institute National de Sciences Appliquees de Lyon, Villeurbanne Cedex, (France). Centre de Thermique de Lyon (CETHIL). Equipe Thermique du Batiment]. E-mail: menezo@insa-cethil-etb.insa-lyon.fr; bouia@insa-cethil-etb.insa-lyon.fr; roux@insa-cethil-etb.insa-lyon.fr; depecker@insa-cethil-etb.insa-lyon.fr

    2000-07-01

    This work is devoted to the field of building physics and related to the reduction of heat conduction models. The aim is to enlarge the model libraries of heat and mass transfer codes through limiting the considerable dimensions reached by the numerical systems during the modelling process of a multizone building. We show that the balanced realization technique, specifically adapted to the coupling of reduced order models with the other thermal phenomena, turns out to be very efficient. (author)

  20. Modelling obesity outcomes : reducing obesity risk in adulthood may have greater impact than reducing obesity prevalence in childhood

    NARCIS (Netherlands)

    Lhachimi, S. K.; Nusselder, W. J.; Lobstein, T. J.; Smit, H. A.; Baili, P.; Bennett, K.; Kulik, M. C.; Jackson-Leach, R.; Boshuizen, H. C.; Mackenbach, J. P.

    2013-01-01

    A common policy response to the rise in obesity prevalence is to undertake interventions in childhood, but it is an open question whether this is more effective than reducing the risk of becoming obese during adulthood. In this paper, we model the effect on health outcomes of (i) reducing the preval

  1. Modelling obesity outcomes: reducing obesity risk in adulthood may have grater impact than reducing obesity prevalence in childhood

    NARCIS (Netherlands)

    Lhachimi, S.K.; Nusselder, W.J.; Lobstein, T.J.; Smit, H.A.; Baili, P.; Bennett, K.; Kulik, M.C.; Jackson-Leach, R.; Boshuizen, H.C.; Mackenbach, J.P.

    2013-01-01

    A common policy response to the rise in obesity prevalence is to undertake interventions in childhood, but it is an open question whether this is more effective than reducing the risk of becoming obese during adulthood. In this paper, we model the effect on health outcomes of (i) reducing the preval

  2. Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon

    Science.gov (United States)

    Trzynadlowski, Bart

    The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source

  3. A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD

    Directory of Open Access Journals (Sweden)

    Chen Xin

    2015-10-01

    Full Text Available Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, computation fluid dynamics (CFD and experimental investigation, a reduced order modeling (ROM framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermodynamic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD-Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency.

  4. A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD

    Institute of Scientific and Technical Information of China (English)

    Chen X in; Liu Li; Long Teng; Yue Zhenjiang

    2015-01-01

    Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, compu-tation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD) and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF) are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermody-namic over a hypersonic surface indicate that:the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD-Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency.

  5. Wind Farm Flow Modeling using an Input-Output Reduced-Order Model

    Energy Technology Data Exchange (ETDEWEB)

    Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter

    2016-08-01

    Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used to extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.

  6. Testing the importance of accurate meteorological input fields and parameterizations in atmospheric transport modelling using DREAM - Validation against ETEX-1

    DEFF Research Database (Denmark)

    Brandt, J.; Bastrup-Birk, A.; Christensen, J.H.

    1998-01-01

    transport and dispersion of air pollutants caused by a single but strong source as, e.g. an accidental release from a nuclear power plant. The model system including the coupling of the Lagrangian model with the Eulerian model are described. Various simple and comprehensive parameterizations of the mixing...

  7. Azithromycin reduces inflammation in a rat model of acute conjunctivitis

    Science.gov (United States)

    Fernandez-Robredo, Patricia; Recalde, Sergio; Moreno-Orduña, Maite; García-García, Laura; Zarranz-Ventura, Javier; García-Layana, Alfredo

    2013-01-01

    Purpose Macrolide antibiotics are known to have various anti-inflammatory effects in addition to their antimicrobial activity, but the mechanisms are still unclear. The effect of azithromycin on inflammatory molecules in the lipopolysaccharide-induced rat conjunctivitis model was investigated. Methods Twenty-four Wistar rats were divided into two groups receiving topical ocular azithromycin (15 mg/g) or vehicle. In total, six doses (25 µl) were administered as one dose twice a day for three days before subconjunctival lipopolysaccharide injection (3 mg/ml). Before the rats were euthanized, mucus secretion, conjunctival and palpebral edema and redness were evaluated. Real-time polymerase chain reaction was used to determine gene expression for interleukin-6, cyclooxygenase-2, tumor necrosis factor-α, matrix metalloproteinase (MMP)-2, and MMP-9. Interleukin-6 was determined with enzyme-linked immunosorbent assay, nuclear factor-kappa B with western blot, and MMP-2 activity with gelatin zymogram. Four eyes per group were processed for histology and subsequent periodic acid-Schiff staining and CD68 for immunofluorescence. The Student t test or the Wilcoxon test for independent samples was applied (SPSS v.15.0). Results Azithromycin-treated animals showed a significant reduction in all clinical signs (p<0.05) compared to controls. Interleukin-6 (p<0.05), nuclear factor-kappa B protein expression (p<0.01), and MMP-2 activity (p<0.05) in conjunctival homogenates were significantly reduced compared with the control animals. MMP-2 gene expression showed a tendency to decrease in the azithromycin group (p=0.063). Mucus secretion by goblet cells and the macrophage count in conjunctival tissue were also decreased in the azithromycin group (p<0.05). Conclusions These results suggest that azithromycin administration ameliorates induced inflammation effects in a rat model of acute conjunctivitis. PMID:23378729

  8. Building relationships between plant traits and leaf spectra to reduce uncertainty in terrestrial ecosystem models

    Science.gov (United States)

    Lieberman-Cribbin, W.; Rogers, A.; Serbin, S.; Ely, K.

    2015-12-01

    Despite climate projections, there is uncertainty in how terrestrial ecosystems will respond to warming temperatures and increased atmospheric carbon dioxide concentrations. Earth system models are used to determine how ecosystems will respond in the future, but there is considerable variation in how plant traits are represented within these models. A potential approach to reducing uncertainty is the establishment of spectra-trait linkages among plant species. These relationships allow the accurate estimation of biochemical characteristics of plants from their shortwave spectral profiles. Remote sensing approaches can then be implemented to acquire spectral data and estimate plant traits over large spatial and temporal scales. This paper describes a greenhouse experiment conducted at Brookhaven National Laboratory in which spectra-trait relationships were investigated for 8 different plant species. This research was designed to generate a broad gradient in plant traits, using a range of species grown in different sized pots with different soil type. Fertilizer was also applied in different amounts to generate variation in plant C and N status that will be reflected in the traits measured, as well as the spectra observed. Leaves were sampled at different developmental stages to increase variation. Spectra and plant traits were then measured and a partial least-squares regression (PLSR) modeling approach was used to establish spectra-trait relationships. Despite the variability in growing conditions and plant species, our PLSR models could be used to accurately estimate plant traits from spectral signatures, yielding model calibration R2 and root mean square error (RMSE) values, respectively, of 0.85 and 0.30 for percent nitrogen by mass (Nmass%), R2 0.78 and 0.75 for carbon to nitrogen (C:N) ratio, 0.87 and 2.39 for leaf mass area (LMA), and 0.76 R2 and 15.16 for water (H2O) content. This research forms the basis for establishing new and more comprehensive spectra

  9. A mathematical model for reducing the composting time

    Directory of Open Access Journals (Sweden)

    Estefanía Larreategui

    2014-06-01

    Full Text Available The environment is still affected by the inappropriate use of organic matter waste, but a culture of recycling and reuse has been promoted in Ecuador to reduce carbon footprint. The composting, a technique to digest organic matter, which traditionally takes 16-24 weeks, is still inefficient to use. Therefore, this paper concerns the optimization of the composting process in both quality and production time. The variables studied were: type of waste (fruits and vegetables and type of bioaccelerator (yeast and indigenous microorganisms. By using a full factorial random design 22, a quality compost was obtained in 7 weeks of processing. Quality factors as temperature, density, moisture content, pH and carbon-nitrogen ratio allowed the best conditions for composting in the San Gabriel del Baba community (Santo Domingo de los Colorados, Ecuador. As a result of this study, a mathematical surface model which explains the relationship between the temperature and the digestion time of organic matter was obtained.

  10. Dynamic force matching: Construction of dynamic coarse-grained models with realistic short time dynamics and accurate long time dynamics

    Science.gov (United States)

    Davtyan, Aram; Voth, Gregory A.; Andersen, Hans C.

    2016-12-01

    We recently developed a dynamic force matching technique for converting a coarse-grained (CG) model of a molecular system, with a CG potential energy function, into a dynamic CG model with realistic dynamics [A. Davtyan et al., J. Chem. Phys. 142, 154104 (2015)]. This is done by supplementing the model with additional degrees of freedom, called "fictitious particles." In that paper, we tested the method on CG models in which each molecule is coarse-grained into one CG point particle, with very satisfactory results. When the method was applied to a CG model of methanol that has two CG point particles per molecule, the results were encouraging but clearly required improvement. In this paper, we introduce a new type (called type-3) of fictitious particle that exerts forces on the center of mass of two CG sites. A CG model constructed using type-3 fictitious particles (as well as type-2 particles previously used) gives a much more satisfactory dynamic model for liquid methanol. In particular, we were able to construct a CG model that has the same self-diffusion coefficient and the same rotational relaxation time as an all-atom model of liquid methanol. Type-3 particles and generalizations of it are likely to be useful in converting more complicated CG models into dynamic CG models.

  11. Reduced-Order Models for Acoustic Response Prediction

    Science.gov (United States)

    2011-07-01

    allowed to vibrate, decaying freely. Temporal frequencies and amplitudes are estimated using a variant of a method proposed by Agneni and Balis Crema [44...less than 0.06" may require the coupled ROM for accurate predictions. The phenomena can be explained as follows: The acoustic modes of the coupled...free vibration identification via the Hilbert transform. J. of Sound and Vibration, 1997, 208(3), 475-489. 44. Agneni, A. and Balis Crema, L

  12. A reduced-form intensity-based model under fuzzy environments

    Science.gov (United States)

    Wu, Liang; Zhuang, Yaming

    2015-05-01

    The external shocks and internal contagion are the important sources of default events. However, the external shocks and internal contagion effect on the company is not observed, we cannot get the accurate size of the shocks. The information of investors relative to the default process exhibits a certain fuzziness. Therefore, using randomness and fuzziness to study such problems as derivative pricing or default probability has practical needs. But the idea of fuzzifying credit risk models is little exploited, especially in a reduced-form model. This paper proposes a new default intensity model with fuzziness and presents a fuzzy default probability and default loss rate, and puts them into default debt and credit derivative pricing. Finally, the simulation analysis verifies the rationality of the model. Using fuzzy numbers and random analysis one can consider more uncertain sources in the default process of default and investors' subjective judgment on the financial markets in a variety of fuzzy reliability so as to broaden the scope of possible credit spreads.

  13. A Two-Scale Reduced Model for Darcy Flow in Fractured Porous Media

    KAUST Repository

    Chen, Huangxin

    2016-06-01

    In this paper, we develop a two-scale reduced model for simulating the Darcy flow in two-dimensional porous media with conductive fractures. We apply the approach motivated by the embedded fracture model (EFM) to simulate the flow on the coarse scale, and the effect of fractures on each coarse scale grid cell intersecting with fractures is represented by the discrete fracture model (DFM) on the fine scale. In the DFM used on the fine scale, the matrix-fracture system are resolved on unstructured grid which represents the fractures accurately, while in the EFM used on the coarse scale, the flux interaction between fractures and matrix are dealt with as a source term, and the matrix-fracture system can be resolved on structured grid. The Raviart-Thomas mixed finite element methods are used for the solution of the coupled flows in the matrix and the fractures on both fine and coarse scales. Numerical results are presented to demonstrate the efficiency of the proposed model for simulation of flow in fractured porous media.

  14. Using highly accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices.

    Science.gov (United States)

    Perassi, Eduardo M; Hernandez-Garrido, Juan C; Moreno, M Sergio; Encina, Ezequiel R; Coronado, Eduardo A; Midgley, Paul A

    2010-06-09

    The realization of materials at the nanometer scale creates new challenges for quantitative characterization and modeling as many physical and chemical properties at the nanoscale are highly size and shape-dependent. In particular, the accurate nanometrological characterization of noble metal nanoparticles (NPs) is crucial for understanding their optical response that is determined by the collective excitation of conduction electrons, known as localized surface plasmons. Its manipulation gives place to a variety of applications in ultrasensitive spectroscopies, photonics, improved photovoltaics, imaging, and cancer therapy. Here we show that by combining electron tomography with electrodynamic simulations an accurate optical model of a highly irregular gold NP synthesized by chemical methods could be achieved. This constitutes a novel and rigorous tool for understanding the plasmonic properties of real three-dimensional nano-objects.

  15. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull.

    Science.gov (United States)

    Swennen, G R J; Barth, E-L; Eulzer, C; Schutyser, F

    2007-02-01

    Three-dimensional (3D) virtual planning of orthognathic surgery requires detailed visualization of the interocclusal relationship. The purpose of this study was to introduce the modification of the double computed tomography (CT) scan procedure using a newly designed 3D splint in order to obtain a detailed anatomic 3D virtual augmented model of the skull. A total of 10 dry adult human cadaver skulls were used to evaluate the accuracy of the automatic rigid registration method for fusion of both CT datasets (Maxilim, version 1.3.0). The overall mean registration error was 0.1355+/-0.0323 mm (range 0.0760-0.1782 mm). Analysis of variance showed a registration method error of 0.0564 mm (P 3D splint with the double CT scan procedure allowed accurate registration and the set-up of an accurate anatomic 3D virtual augmented model of the skull with detailed dental surface.

  16. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling

    KAUST Repository

    Ruzziconi, Laura

    2013-06-10

    We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.

  17. Calibration of aero-structural reduced order models using full-field experimental measurements

    Science.gov (United States)

    Perez, R.; Bartram, G.; Beberniss, T.; Wiebe, R.; Spottswood, S. M.

    2017-03-01

    The structural response of hypersonic aircraft panels is a multi-disciplinary problem, where the nonlinear structural dynamics, aerodynamics, and heat transfer models are coupled. A clear understanding of the impact of high-speed flow effects on the structural response, and the potential influence of the structure on the local environment, is needed in order to prevent the design of overly-conservative structures, a common problem in past hypersonic programs. The current work investigates these challenges from a structures perspective. To this end, the first part of this investigation looks at the modeling of the response of a rectangular panel to an external heating source (thermo-structural coupling) where the temperature effect on the structure is obtained from forward looking infrared (FLIR) measurements and the displacement via 3D-digital image correlation (DIC). The second part of the study uses data from a previous series of wind-tunnel experiments, performed to investigate the response of a compliant panel to the effects of high-speed flow, to train a pressure surrogate model. In this case, the panel aero-loading is obtained from fast-response pressure sensitive paint (PSP) measurements, both directly and from the pressure surrogate model. The result of this investigation is the use of full-field experimental measurements to update the structural model and train a computational efficient model of the loading environment. The use of reduced order models, informed by these full-field physical measurements, is a significant step toward the development of accurate simulation models of complex structures that are computationally tractable.

  18. Accurate six-band nearest-neighbor tight-binding model for the π-bands of bulk graphene and graphene nanoribbons

    Science.gov (United States)

    Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard; Jiang, Xueping; Kharche, Neerav; Zhou, Yu; Nayak, Saroj K.

    2011-05-01

    Accurate modeling of the π-bands of armchair graphene nanoribbons (AGNRs) requires correctly reproducing asymmetries in the bulk graphene bands, as well as providing a realistic model for hydrogen passivation of the edge atoms. The commonly used single-pz orbital approach fails on both these counts. To overcome these failures we introduce a nearest-neighbor, three orbital per atom p/d tight-binding model for graphene. The parameters of the model are fit to first-principles density-functional theory -based calculations as well as to those based on the many-body Green's function and screened-exchange formalism, giving excellent agreement with the ab initio AGNR bands. We employ this model to calculate the current-voltage characteristics of an AGNR MOSFET and the conductance of rough-edge AGNRs, finding significant differences versus the single-pz model. These results show that an accurate band structure model is essential for predicting the performance of graphene-based nanodevices.

  19. Random forest algorithm yields accurate quantitative prediction models of benthic light at intertidal sites affected by toxic Lyngbya majuscula blooms

    NARCIS (Netherlands)

    Kehoe, M.J.; O’ Brien, K.; Grinham, A.; Rissik, D.; Ahern, K.S.; Maxwell, P.

    2012-01-01

    It is shown that targeted high frequency monitoring and modern machine learning methods lead to highly predictive models of benthic light flux. A state-of-the-art machine learning technique was used in conjunction with a high frequency data set to calibrate and test predictive benthic lights models

  20. Pramipexole reduces inflammation in the experimental animal models of inflammation.

    Science.gov (United States)

    Sadeghi, Heibatollah; Parishani, Mohammad; Akbartabar Touri, Mehdi; Ghavamzadeh, Mehdi; Jafari Barmak, Mehrzad; Zarezade, Vahid; Delaviz, Hamdollah; Sadeghi, Hossein

    2017-04-01

    Pramipexole is a dopamine (DA) agonist (D2 subfamily receptors) that widely use in the treatment of Parkinson's diseases. Some epidemiological and genetic studies propose a role of inflammation in the pathophysiology of Parkinson's disease. To our knowledge, there is no study regarding the anti-inflammatory activity of pramipexol. Therefore, the aim of the study was to investigate anti-inflammatory effect of pramipexol. Anti-inflammatory effects of pramipexole were studied in three well-characterized animal models of inflammation, including carrageenan- or formalin-induced paw inflammation in rats, and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema in mice. The animals received pramipexol (0.25, 0.5 and 1 mg/kg, I.P.) 30 min before subplantar injection of carrageenan or formalin. Pramipexol (0.5 and 1 mg/kg) was also injected 30 min before topical application of TPA on the ear mice. Serum malondialdehyde (MDA) levels were evaluated in the carrageenan test. Finally, pathological examination of the inflamed tissues was carried out. Pramipexole significantly inhibited paw inflammation 1, 2, 3 and 4 h after carrageenan challenge compared with the control group (p Pramipexol also showed considerable anti-inflammatory activity against formalin-evoked paw edema over a period of 24 h (p pramipexol (p pramipexole reduced tissue injury, neutrophil infiltration, and subcutaneous edema. Pramipexole did not alter the increased serum levels of MDA due to carrageenan injection. These data clearly indicate that pramipexol possesses significant anti-inflammatory activity. It seems that its antioxidants do not play an important role in these effects.

  1. An Accurate Analytical Model for 802.11e EDCA under Different Traffic Conditions with Contention-Free Bursting

    Directory of Open Access Journals (Sweden)

    Nada Chendeb Taher

    2011-01-01

    Full Text Available Extensive research addressing IEEE 802.11e enhanced distributed channel access (EDCA performance analysis, by means of analytical models, exist in the literature. Unfortunately, the currently proposed models, even though numerous, do not reach this accuracy due to the great number of simplifications that have been done. Particularly, none of these models considers the 802.11e contention free burst (CFB mode which allows a given station to transmit a burst of frames without contention during a given transmission opportunity limit (TXOPLimit time interval. Despite its influence on the global performance, TXOPLimit is ignored in almost all existing models. To fill in this gap, we develop in this paper a new and complete analytical model that (i reflects the correct functioning of EDCA, (ii includes all the 802.11e EDCA differentiation parameters, (iii takes into account all the features of the protocol, and (iv can be applied to all network conditions, going from nonsaturation to saturation conditions. Additionally, this model is developed in order to be used in admission control procedure, so it was designed to have a low complexity and an acceptable response time. The proposed model is validated by means of both calculations and extensive simulations.

  2. Reduced Order Aeroservoelastic Models with Rigid Body Modes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Complex aeroelastic and aeroservoelastic phenomena can be modeled on complete aircraft configurations generating models with millions of degrees of freedom. Starting...

  3. Some combinatorial models for reduced expressions in Coxeter groups

    CERN Document Server

    Denoncourt, Hugh

    2011-01-01

    Stanley's formula for the number of reduced expressions of a permutation regarded as a Coxeter group element raises the question of how to enumerate the reduced expressions of an arbitrary Coxeter group element. We provide a framework for answering this question by constructing combinatorial objects that represent the inversion set and the reduced expressions for an arbitrary Coxeter group element. The framework also provides a formula for the length of an element formed by deleting a generator from a Coxeter group element. Fan and Hagiwara, et al$.$ showed that for certain Coxeter groups, the short-braid avoiding elements characterize those elements that give reduced expressions when any generator is deleted from a reduced expression. We provide a characterization that holds in all Coxeter groups. Lastly, we give applications to the freely braided elements introduced by Green and Losonczy, generalizing some of their results that hold in simply-laced Coxeter groups to the arbitrary Coxeter group setting.

  4. Highly compact and accurate circuit-level macro modeling of gate-all-around charge-trap flash memory

    Science.gov (United States)

    Kim, Seunghyun; Lee, Sang-Ho; Kim, Young-Goan; Cho, Seongjae; Park, Byung-Gook

    2017-01-01

    In this paper, a highly reliable circuit model of gate-all-around (GAA) charge-trap flash (CTF) memory cell is proposed, considering the transient behaviors for describing the program operations with improved accuracy. Although several compact models have been reported in the previous literature, time-dependent behaviors have not been precisely reflected and the failures tend to get worse as the operation time elapses. Furthermore, the developed SPICE models in this work have been verified by the measurement results of the fabricated flash memory cells having silicon-oxide-nitride-oxide-silicon (SONOS). This more realistic model would be beneficial in designing the system architectures and setting up the operation schemes for the leading three-dimensional (3D) stack CTF memory.

  5. Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak?

    Science.gov (United States)

    Fischer, A.; Hoffmann, K.-H.

    2004-03-01

    In this case study a complex Otto engine simulation provides data including, but not limited to, effects from losses due to heat conduction, exhaust losses and frictional losses. This data is used as a benchmark to test whether the Novikov engine with heat leak, a simple endoreversible model, can reproduce the complex engine behavior quantitatively by an appropriate choice of model parameters. The reproduction obtained proves to be of high quality.

  6. Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: a mathematical solution to asymmetric Markov chains.

    Science.gov (United States)

    Vinyard, David J; Zachary, Chase E; Ananyev, Gennady; Dismukes, G Charles

    2013-07-01

    Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions.

  7. A hybrid stochastic-deterministic computational model accurately describes spatial dynamics and virus diffusion in HIV-1 growth competition assay.

    Science.gov (United States)

    Immonen, Taina; Gibson, Richard; Leitner, Thomas; Miller, Melanie A; Arts, Eric J; Somersalo, Erkki; Calvetti, Daniela

    2012-11-01

    We present a new hybrid stochastic-deterministic, spatially distributed computational model to simulate growth competition assays on a relatively immobile monolayer of peripheral blood mononuclear cells (PBMCs), commonly used for determining ex vivo fitness of human immunodeficiency virus type-1 (HIV-1). The novel features of our approach include incorporation of viral diffusion through a deterministic diffusion model while simulating cellular dynamics via a stochastic Markov chain model. The model accounts for multiple infections of target cells, CD4-downregulation, and the delay between the infection of a cell and the production of new virus particles. The minimum threshold level of infection induced by a virus inoculum is determined via a series of dilution experiments, and is used to determine the probability of infection of a susceptible cell as a function of local virus density. We illustrate how this model can be used for estimating the distribution of cells infected by either a single virus type or two competing viruses. Our model captures experimentally observed variation in the fitness difference between two virus strains, and suggests a way to minimize variation and dual infection in experiments.

  8. A three-dimensional nonlinear reduced-order predictive joint model

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Mechanical joints can have significant effects on the dynamics of assembled structures. However, the lack of efficacious predictive dynamic models for joints hinders accurate prediction of their dynamic behavior. The goal of our work is to develop physics-based, reduced-order, finite element models that are capable of replicating the effects of joints on vibrating structures. The authors recently developed the so-called two-dimensional adjusted Iwan beam element (2-D AIBE) to simulate the hysteretic behavior of bolted joints in 2-D beam structures. In this paper, 2-D AIBE is extended to three-dimensional cases by formulating a three-dimensional adjusted Iwan beam element (3-D AIBE). Impulsive loading experiments are applied to a jointed frame structure and a beam structure containing the same joint. The frame is subjected to excitation out of plane so that the joint is under rotation and single axis bending. By assuming that the rotation in the joint is linear elastic, the parameters of the joint associated with bending in the frame are identified from acceleration responses of the jointed beam structure, using a multi-layer feed-forward neural network (MLFF). Numerical simulation is then performed on the frame structure using the identified parameters. The good agreement between the simulated and experimental impulsive acceleration responses of the frame structure validates the efficacy of the presented 3-D AIBE, and indicates that the model can potentially be applied to more complex structural systems with joint parameters identified from a relatively simple structure.

  9. AN ACCURATE MODELING OF DELAY AND SLEW METRICS FOR ON-CHIP VLSI RC INTERCONNECTS FOR RAMP INPUTS USING BURR’S DISTRIBUTION FUNCTION

    Directory of Open Access Journals (Sweden)

    Rajib Kar

    2010-09-01

    Full Text Available This work presents an accurate and efficient model to compute the delay and slew metric of on-chip interconnect of high speed CMOS circuits foe ramp input. Our metric assumption is based on the Burr’s Distribution function. The Burr’s distribution is used to characterize the normalized homogeneous portion of the step response. We used the PERI (Probability distribution function Extension for Ramp Inputs technique that extends delay metrics and slew metric for step inputs to the more general and realistic non-step inputs. The accuracy of our models is justified with the results compared with that of SPICE simulations.

  10. HPC Institutional Computing Project: W15_lesreactiveflow KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Waters, Jiajia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-05

    KIVA-hpFE is a high performance computer software for solving the physics of multi-species and multiphase turbulent reactive flow in complex geometries having immersed moving parts. The code is written in Fortran 90/95 and can be used on any computer platform with any popular complier. The code is in two versions, a serial version and a parallel version utilizing MPICH2 type Message Passing Interface (MPI or Intel MPI) for solving distributed domains. The parallel version is at least 30x faster than the serial version and much faster than our previous generation of parallel engine modeling software, by many factors. The 5th generation algorithm construction is a Galerkin type Finite Element Method (FEM) solving conservative momentum, species, and energy transport equations along with two-equation turbulent model k-ω Reynolds Averaged Navier-Stokes (RANS) model and a Vreman type dynamic Large Eddy Simulation (LES) method. The LES method is capable modeling transitional flow from laminar to fully turbulent; therefore, this LES method does not require special hybrid or blending to walls. The FEM projection method also uses a Petrov-Galerkin (P-G) stabilization along with pressure stabilization. We employ hierarchical basis sets, constructed on the fly with enrichment in areas associated with relatively larger error as determined by error estimation methods. In addition, when not using the hp-adaptive module, the code employs Lagrangian basis or shape functions. The shape functions are constructed for hexahedral, prismatic and tetrahedral elements. The software is designed to solve many types of reactive flow problems, from burners to internal combustion engines and turbines. In addition, the formulation allows for direct integration of solid bodies (conjugate heat transfer), as in heat transfer through housings, parts, cylinders. It can also easily be extended to stress modeling of solids, used in fluid structure interactions problems, solidification, porous media

  11. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  12. Low-dimensional reduced-order models for statistical response and uncertainty quantification: Barotropic turbulence with topography

    Science.gov (United States)

    Qi, Di; Majda, Andrew J.

    2017-03-01

    A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty to changes in forcing in a barotropic turbulent system with topography involving interactions between small-scale motions and a large-scale mean flow. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model parameters. Statistical theories about a Gaussian invariant measure and the exact statistical energy equations are also developed for the truncated barotropic equations that can be used to improve the imperfect model prediction skill. A stringent paradigm model of 57 degrees of freedom is used to display the feasibility of the reduced-order methods. This simple model creates large-scale zonal mean flow shifting directions from westward to eastward jets with an abrupt change in amplitude when perturbations are applied, and prototype blocked and unblocked patterns can be generated in this simple model similar to the real natural system. Principal statistical responses in mean and variance can be captured by the reduced-order models with desirable accuracy and efficiency with only 3 resolved modes. An even more challenging regime with non-Gaussian equilibrium statistics using the fluctuation equations is also tested in the reduced-order models with accurate prediction using the first 5 resolved modes. These reduced-order models also show potential for uncertainty quantification and prediction in more complex realistic geophysical turbulent dynamical systems.

  13. Accurate flexible fitting of high-resolution protein structures to small-angle x-ray scattering data using a coarse-grained model with implicit hydration shell.

    Science.gov (United States)

    Zheng, Wenjun; Tekpinar, Mustafa

    2011-12-21

    Small-angle x-ray scattering (SAXS) is a powerful technique widely used to explore conformational states and transitions of biomolecular assemblies in solution. For accurate model reconstruction from SAXS data, one promising approach is to flexibly fit a known high-resolution protein structure to low-resolution SAXS data by computer simulations. This is a highly challenging task due to low information content in SAXS data. To meet this challenge, we have developed what we believe to be a novel method based on a coarse-grained (one-bead-per-residue) protein representation and a modified form of the elastic network model that allows large-scale conformational changes while maintaining pseudobonds and secondary structures. Our method optimizes a pseudoenergy that combines the modified elastic-network model energy with a SAXS-fitting score and a collision energy that penalizes steric collisions. Our method uses what we consider a new implicit hydration shell model that accounts for the contribution of hydration shell to SAXS data accurately without explicitly adding waters to the system. We have rigorously validated our method using five test cases with simulated SAXS data and three test cases with experimental SAXS data. Our method has successfully generated high-quality structural models with root mean-squared deviation of 1 ∼ 3 Å from the target structures.

  14. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    Energy Technology Data Exchange (ETDEWEB)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  15. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    Science.gov (United States)

    Basso, Bruno; Hyndman, David W; Kendall, Anthony D; Grace, Peter R; Robertson, G Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability.

  16. A support vector machine model provides an accurate transcript-level-based diagnostic for major depressive disorder

    Science.gov (United States)

    Yu, J S; Xue, A Y; Redei, E E; Bagheri, N

    2016-01-01

    Major depressive disorder (MDD) is a critical cause of morbidity and disability with an economic cost of hundreds of billions of dollars each year, necessitating more effective treatment strategies and novel approaches to translational research. A notable barrier in addressing this public health threat involves reliable identification of the disorder, as many affected individuals remain undiagnosed or misdiagnosed. An objective blood-based diagnostic test using transcript levels of a panel of markers would provide an invaluable tool for MDD as the infrastructure—including equipment, trained personnel, billing, and governmental approval—for similar tests is well established in clinics worldwide. Here we present a supervised classification model utilizing support vector machines (SVMs) for the analysis of transcriptomic data readily obtained from a peripheral blood specimen. The model was trained on data from subjects with MDD (n=32) and age- and gender-matched controls (n=32). This SVM model provides a cross-validated sensitivity and specificity of 90.6% for the diagnosis of MDD using a panel of 10 transcripts. We applied a logistic equation on the SVM model and quantified a likelihood of depression score. This score gives the probability of a MDD diagnosis and allows the tuning of specificity and sensitivity for individual patients to bring personalized medicine closer in psychiatry. PMID:27779627

  17. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering

    Science.gov (United States)

    Chen, Xin; Liu, Li; Zhou, Sida; Yue, Zhenjiang

    2016-09-01

    Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.

  18. Caries risk assessment in school children using a reduced Cariogram model without saliva tests

    DEFF Research Database (Denmark)

    Petersson, Gunnel Hänsel; Isberg, Per-Erik; Twetman, Svante

    2010-01-01

    To investigate the caries predictive ability of a reduced Cariogram model without salivary tests in schoolchildren.......To investigate the caries predictive ability of a reduced Cariogram model without salivary tests in schoolchildren....

  19. Reduced Noise Effect in Nonlinear Model Estimation Using Multiscale Representation

    Directory of Open Access Journals (Sweden)

    Mohamed N. Nounou

    2010-01-01

    Full Text Available Nonlinear process models are widely used in various applications. In the absence of fundamental models, it is usually relied on empirical models, which are estimated from measurements of the process variables. Unfortunately, measured data are usually corrupted with measurement noise that degrades the accuracy of the estimated models. Multiscale wavelet-based representation of data has been shown to be a powerful data analysis and feature extraction tool. In this paper, these characteristics of multiscale representation are utilized to improve the estimation accuracy of the linear-in-the-parameters nonlinear model by developing a multiscale nonlinear (MSNL modeling algorithm. The main idea in this MSNL modeling algorithm is to decompose the data at multiple scales, construct multiple nonlinear models at multiple scales, and then select among all scales the model which best describes the process. The main advantage of the developed algorithm is that it integrates modeling and feature extraction to improve the robustness of the estimated model to the presence of measurement noise in the data. This advantage of MSNL modeling is demonstrated using a nonlinear reactor model.

  20. A Parameterized yet Accurate Model of Ozone and Water Vapor Transmittance in the Solar-to-near-infrared Spectrum

    Institute of Scientific and Technical Information of China (English)

    LIU Weiyi; QIU Jinhuan

    2012-01-01

    A parameterized transmittance model (PTR) for ozone and water vapor monochromatic transmittance calculation in the solar-to-near-infrared spectrum 0.3-4 μm with a spectral resolution of 5 cm-1 was developed based on the transmittance data calculated by Moderate-resolution Transmittance model (MODTRAN).Polynomial equations were derived to represent the transmittance as functions of path length and airmass for every wavelength based on the least-squares method.Comparisons between the transmittances calculated using PTR and MODTRAN were made,using the results of MODTRAN as a reference.Relative root-mean-square error (RMSre) was 0.823% for ozone transmittance.RMSre values were 8.84% and 3.48% for water vapor transmittance ranges of 1-1 × 10-18and 1-1× 10-3,respectively.In addition,the Stratospheric Aerosol and Gas Experiment II (SAGEII) ozone profiles and University of Wyoming (UWYO)water vapor profiles were applied to validate the applicability of PTR model.RMSre was 0.437% for ozone transmittance.RMSre values were 8.89% and 2.43% for water vapor transmittance ranges of 1-1 × 10-18and 1-1 × 10-6,respectively.Furthermore,the optical depth profiles calculated using the PTR model were compared to the results of MODTRAN.Absolute RMS errors (RMSab) for ozone optical depths were within 0.0055 and 0.0523 for water vapor at all of the tested altitudes.Finally,the comparison between the solar heating rate calculated from the transmittance of PTR and Line-by-Line radiative transfer model (LBLRTM) was performed,showing a maximum deviation of 0.238 K d-1 (6% of the corresponding solar heating rate calculated using LBLRTM).In the troposphere all of the deviations were within 0.08 K d-1.The computational speed of PTR model is nearly two orders of magnitude faster than that of MODTRAN.

  1. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hung T. [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Case, David A., E-mail: case@biomaps.rutgers.edu [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2014-12-14

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb{sup +} and Sr{sup 2+}) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein–Zernike equations, with results from the Kovalenko–Hirata closure being closest to experiment for the cases studied here.

  2. Accurate simulation of 802.11 indoor links: a “bursty” channel model based on real measurements

    OpenAIRE

    Luis Muñoz; Ramón Agüero; Marta García-Arranz

    2010-01-01

    We propose a novel channel model to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the “bursty” behavior which characterizes indoor wireless scenarios, having a great impact...

  3. Establishing magnetic resonance imaging as an accurate and reliable tool to diagnose and monitor esophageal cancer in a rat model.

    Directory of Open Access Journals (Sweden)

    Juliann E Kosovec

    Full Text Available OBJECTIVE: To assess the reliability of magnetic resonance imaging (MRI for detection of esophageal cancer in the Levrat model of end-to-side esophagojejunostomy. BACKGROUND: The Levrat model has proven utility in terms of its ability to replicate Barrett's carcinogenesis by inducing gastroduodenoesophageal reflux (GDER. Due to lack of data on the utility of non-invasive methods for detection of esophageal cancer, treatment efficacy studies have been limited, as adenocarcinoma histology has only been validated post-mortem. It would therefore be of great value if the validity and reliability of MRI could be established in this setting. METHODS: Chronic GDER reflux was induced in 19 male Sprague-Dawley rats using the modified Levrat model. At 40 weeks post-surgery, all animals underwent endoscopy, MRI scanning, and post-mortem histological analysis of the esophagus and anastomosis. With post-mortem histology serving as the gold standard, assessment of presence of esophageal cancer was made by five esophageal specialists and five radiologists on endoscopy and MRI, respectively. RESULTS: The accuracy of MRI and endoscopic analysis to correctly identify cancer vs. no cancer was 85.3% and 50.5%, respectively. ROC curves demonstrated that MRI rating had an AUC of 0.966 (p<0.001 and endoscopy rating had an AUC of 0.534 (p = 0.804. The sensitivity and specificity of MRI for identifying cancer vs. no-cancer was 89.1% and 80% respectively, as compared to 45.5% and 57.5% for endoscopy. False positive rates of MRI and endoscopy were 20% and 42.5%, respectively. CONCLUSIONS: MRI is a more reliable diagnostic method than endoscopy in the Levrat model. The non-invasiveness of the tool and its potential to volumetrically quantify the size and number of tumors likely makes it even more useful in evaluating novel agents and their efficacy in treatment studies of esophageal cancer.

  4. MODELLING THE CONSTRAINTS OF SPATIAL ENVIRONMENT IN FAUNA MOVEMENT SIMULATIONS: COMPARISON OF A BOUNDARIES ACCURATE FUNCTION AND A COST FUNCTION

    OpenAIRE

    Jolivet, L.; Cohen, M.; Ruas, A.

    2015-01-01

    Landscape influences fauna movement at different levels, from habitat selection to choices of movements' direction. Our goal is to provide a development frame in order to test simulation functions for animal's movement. We describe our approach for such simulations and we compare two types of functions to calculate trajectories. To do so, we first modelled the role of landscape elements to differentiate between elements that facilitate movements and the ones being hindrances. Different influe...

  5. Wide-range and accurate modeling of linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil.

    Science.gov (United States)

    Oliver-Rodríguez, B; Zafra-Gómez, A; Reis, M S; Duarte, B P M; Verge, C; de Ferrer, J A; Pérez-Pascual, M; Vílchez, J L

    2015-11-01

    In this paper, rigorous data and adequate models about linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil are presented, contributing with a substantial improvement over available adsorption works. The kinetics of the adsorption/desorption phenomenon and the adsorption/desorption equilibrium isotherms were determined through batch studies for total LAS amount and also for each homologue series: C10, C11, C12 and C13. The proposed multiple pseudo-first order kinetic model provides the best fit to the kinetic data, indicating the presence of two adsorption/desorption processes in the general phenomenon. Equilibrium adsorption and desorption data have been properly fitted by a model consisting of a Langmuir plus quadratic term, which provides a good integrated description of the experimental data over a wide range of concentrations. At low concentrations, the Langmuir term explains the adsorption of LAS on soil sites which are highly selective of the n-alkyl groups and cover a very small fraction of the soil surface area, whereas the quadratic term describes adsorption on the much larger part of the soil surface and on LAS retained at moderate to high concentrations. Since adsorption/desorption phenomenon plays a major role in the LAS behavior in soils, relevant conclusions can be drawn from the obtained results.

  6. Models of emergency departments for reducing patient waiting times.

    Science.gov (United States)

    Laskowski, Marek; McLeod, Robert D; Friesen, Marcia R; Podaima, Blake W; Alfa, Attahiru S

    2009-07-02

    In this paper, we apply both agent-based models and queuing models to investigate patient access and patient flow through emergency departments. The objective of this work is to gain insights into the comparative contributions and limitations of these complementary techniques, in their ability to contribute empirical input into healthcare policy and practice guidelines. The models were developed independently, with a view to compare their suitability to emergency department simulation. The current models implement relatively simple general scenarios, and rely on a combination of simulated and real data to simulate patient flow in a single emergency department or in multiple interacting emergency departments. In addition, several concepts from telecommunications engineering are translated into this modeling context. The framework of multiple-priority queue systems and the genetic programming paradigm of evolutionary machine learning are applied as a means of forecasting patient wait times and as a means of evolving healthcare policy, respectively. The models' utility lies in their ability to provide qualitative insights into the relative sensitivities and impacts of model input parameters, to illuminate scenarios worthy of more complex investigation, and to iteratively validate the models as they continue to be refined and extended. The paper discusses future efforts to refine, extend, and validate the models with more data and real data relative to physical (spatial-topographical) and social inputs (staffing, patient care models, etc.). Real data obtained through proximity location and tracking system technologies is one example discussed.

  7. StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images.

    Science.gov (United States)

    De Backer, A; van den Bos, K H W; Van den Broek, W; Sijbers, J; Van Aert, S

    2016-12-01

    An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license.

  8. A new expression of Ns versus Ef to an accurate control charge model for AlGaAs/GaAs

    Science.gov (United States)

    Bouneb, I.; Kerrour, F.

    2016-03-01

    Semi-conductor components become the privileged support of information and communication, particularly appreciation to the development of the internet. Today, MOS transistors on silicon dominate largely the semi-conductors market, however the diminution of transistors grid length is not enough to enhance the performances and respect Moore law. Particularly, for broadband telecommunications systems, where faster components are required. For this reason, alternative structures proposed like hetero structures IV-IV or III-V [1] have been.The most effective components in this area (High Electron Mobility Transistor: HEMT) on IIIV substrate. This work investigates an approach for contributing to the development of a numerical model based on physical and numerical modelling of the potential at heterostructure in AlGaAs/GaAs interface. We have developed calculation using projective methods allowed the Hamiltonian integration using Green functions in Schrodinger equation, for a rigorous resolution “self coherent” with Poisson equation. A simple analytical approach for charge-control in quantum well region of an AlGaAs/GaAs HEMT structure was presented. A charge-control equation, accounting for a variable average distance of the 2-DEG from the interface was introduced. Our approach which have aim to obtain ns-Vg characteristics is mainly based on: A new linear expression of Fermi-level variation with two-dimensional electron gas density in high electron mobility and also is mainly based on the notion of effective doping and a new expression of AEc

  9. Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression.

    Science.gov (United States)

    Safaei, B; Naseradinmousavi, P; Rahmani, A

    2016-04-01

    In the present paper, an analytical solution based on a molecular mechanics model is developed to evaluate the elastic critical axial buckling strain of chiral multi-walled carbon nanotubes (MWCNTs). To this end, the total potential energy of the system is calculated with the consideration of the both bond stretching and bond angular variations. Density functional theory (DFT) in the form of generalized gradient approximation (GGA) is implemented to evaluate force constants used in the molecular mechanics model. After that, based on the principle of molecular mechanics, explicit expressions are proposed to obtain elastic surface Young's modulus and Poisson's ratio of the single-walled carbon nanotubes corresponding to different types of chirality. Selected numerical results are presented to indicate the influence of the type of chirality, tube diameter, and number of tube walls in detailed. An excellent agreement is found between the present numerical results and those found in the literature which confirms the validity as well as the accuracy of the present closed-form solution. It is found that the value of critical axial buckling strain exhibit significant dependency on the type of chirality and number of tube walls.

  10. Damage Detection in Flexible Plates through Reduced-Order Modeling and Hybrid Particle-Kalman Filtering.

    Science.gov (United States)

    Capellari, Giovanni; Azam, Saeed Eftekhar; Mariani, Stefano

    2015-12-22

    Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation), whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated.

  11. Damage Detection in Flexible Plates through Reduced-Order Modeling and Hybrid Particle-Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Giovanni Capellari

    2015-12-01

    Full Text Available Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation, whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated.

  12. Reduced model-based decision-making in schizophrenia.

    Science.gov (United States)

    Culbreth, Adam J; Westbrook, Andrew; Daw, Nathaniel D; Botvinick, Matthew; Barch, Deanna M

    2016-08-01

    Individuals with schizophrenia have a diminished ability to use reward history to adaptively guide behavior. However, tasks traditionally used to assess such deficits often rely on multiple cognitive and neural processes, leaving etiology unresolved. In the current study, we adopted recent computational formalisms of reinforcement learning to distinguish between model-based and model-free decision-making in hopes of specifying mechanisms associated with reinforcement-learning dysfunction in schizophrenia. Under this framework, decision-making is model-free to the extent that it relies solely on prior reward history, and model-based if it relies on prospective information such as motivational state, future consequences, and the likelihood of obtaining various outcomes. Model-based and model-free decision-making was assessed in 33 schizophrenia patients and 30 controls using a 2-stage 2-alternative forced choice task previously demonstrated to discern individual differences in reliance on the 2 forms of reinforcement-learning. We show that, compared with controls, schizophrenia patients demonstrate decreased reliance on model-based decision-making. Further, parameter estimates of model-based behavior correlate positively with IQ and working memory measures, suggesting that model-based deficits seen in schizophrenia may be partially explained by higher-order cognitive deficits. These findings demonstrate specific reinforcement-learning and decision-making deficits and thereby provide valuable insights for understanding disordered behavior in schizophrenia. (PsycINFO Database Record

  13. Numerical simulations of a reduced model for blood coagulation

    Science.gov (United States)

    Pavlova, Jevgenija; Fasano, Antonio; Sequeira, Adélia

    2016-04-01

    In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1-14, 2012), Pavlova et al. (Theor Biol 380:367-379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.

  14. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    Energy Technology Data Exchange (ETDEWEB)

    Myint, P. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Firoozabadi, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-27

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO2 activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO2, pure water, and both CO2-rich and aqueous (H2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun’s model yields accurate results for the partial molar enthalpy of CO2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H2O-CO2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  15. Can AERONET data be used to accurately model the monochromatic beam and circumsolar irradiances under cloud-free conditions in desert environment?

    Directory of Open Access Journals (Sweden)

    Y. Eissa

    2015-07-01

    Full Text Available Routine measurements of the beam irradiance at normal incidence (DNI include the irradiance originating from within the extent of the solar disc only (DNIS whose angular extent is 0.266° ± 1.7 %, and that from a larger circumsolar region, called the circumsolar normal irradiance (CSNI. This study investigates if the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic DNIS and CSNI under cloud-free conditions in a desert environment. The data from an AERONET station in Abu Dhabi, United Arab Emirates, and a collocated Sun and Aureole Measurement (SAM instrument which offers reference measurements of the monochromatic profile of solar radiance, were exploited. Using the AERONET data both the radiative transfer models libRadtran and SMARTS offer an accurate estimate of the monochromatic DNIS, with a relative root mean square error (RMSE of 5 %, a relative bias of +1 % and acoefficient of determination greater than 0.97. After testing two configurations in SMARTS and three in libRadtran for modelling the monochromatic CSNI, libRadtran exhibits the most accurate results when the AERONET aerosol phase function is presented as a Two Term Henyey–Greenstein phase function. In this case libRadtran exhibited a relative RMSE and a bias of respectively 22 and −19 % and a coefficient of determination of 0.89. The results are promising and pave the way towards reporting the contribution of the broadband circumsolar irradiance to standard DNI measurements.

  16. Model-reduced gradient-based history matching

    NARCIS (Netherlands)

    Kaleta, M.P.; Hanea, R.G.; Heemink, A.W.; Jansen, J.D.

    2010-01-01

    Gradient-based history matching algorithms can be used to adapt the uncertain parameters in a reservoir model using production data. They require, however, the implementation of an adjoint model to compute the gradients, which is usually an enormous programming effort. We propose a new approach to g

  17. Model-reduced gradient-based history matching

    NARCIS (Netherlands)

    Kaleta, M.P.

    2011-01-01

    Since the world's energy demand increases every year, the oil & gas industry makes a continuous effort to improve fossil fuel recovery. Physics-based petroleum reservoir modeling and closed-loop model-based reservoir management concept can play an important role here. In this concept measured data a

  18. Reduced-size kernel models for nonlinear hybrid system identification.

    Science.gov (United States)

    Le, Van Luong; Bloch, Grard; Lauer, Fabien

    2011-12-01

    This brief paper focuses on the identification of nonlinear hybrid dynamical systems, i.e., systems switching between multiple nonlinear dynamical behaviors. Thus the aim is to learn an ensemble of submodels from a single set of input-output data in a regression setting with no prior knowledge on the grouping of the data points into similar behaviors. To be able to approximate arbitrary nonlinearities, kernel submodels are considered. However, in order to maintain efficiency when applying the method to large data sets, a preprocessing step is required in order to fix the submodel sizes and limit the number of optimization variables. This brief paper proposes four approaches, respectively inspired by the fixed-size least-squares support vector machines, the feature vector selection method, the kernel principal component regression and a modification of the latter, in order to deal with this issue and build sparse kernel submodels. These are compared in numerical experiments, which show that the proposed approach achieves the simultaneous classification of data points and approximation of the nonlinear behaviors in an efficient and accurate manner.

  19. A Simple but Accurate Ultraviolet Limb-Scan Spherically-Layered Radiative-Transfer-Model Based on Single-Scattering Physics

    Institute of Scientific and Technical Information of China (English)

    GUO Xia; L(U) Daren; L(U) Yao

    2007-01-01

    Here we present a study focusing on atmospheric limb-scattered radiative characteristics in the ultraviolet band by using a limb-scan spherically-layered radiative-transfer-model based on the single-scattering approximation, which was developed by the present authors. We have applied an accurate numerical integration technique involving an auto-adaptive modified-space step, which assured high accuracy and simplification.Comparisons were made to the newly released spherical radiative transfer model, SCIATRAN2.0, which was developed by Institute of Remote Sensing/Institute of Environmental Physics (IUP/IFE) at University of Bremen and to measurements collected via an ultraviolet spectrometer on the Solar Mesospheric Explorer (SME) satellite, which was launched in October, 1981. Preliminary results indicate that the present model provides a good interpretation of the earth-limb scattered ultraviolet radiance, and thus, is suitable for the study of the ultraviolet-limb radiative-transfer problem with high accuracy.

  20. The type IIP supernova 2012aw in M95: Hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Ora, M.; Botticella, M. T.; Della Valle, M. [INAF, Osservatorio Astronomico di Capodimonte, Napoli (Italy); Pumo, M. L.; Zampieri, L.; Tomasella, L.; Cappellaro, E.; Benetti, S. [INAF, Osservatorio Astronomico di Padova, I-35122 Padova (Italy); Pignata, G.; Bufano, F. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Bayless, A. J. [Southwest Research Institute, Department of Space Science, 6220 Culebra Road, San Antonio, TX 78238 (United States); Pritchard, T. A. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Taubenberger, S.; Benitez, S. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Kotak, R.; Inserra, C.; Fraser, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom); Elias-Rosa, N. [Institut de Ciències de l' Espai (CSIC-IEEC) Campus UAB, Torre C5, Za plata, E-08193 Bellaterra, Barcelona (Spain); Haislip, J. B. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 120 E. Cameron Ave., Chapel Hill, NC 27599 (United States); Harutyunyan, A. [Fundación Galileo Galilei - Telescopio Nazionale Galileo, Rambla José Ana Fernández Pérez 7, E-38712 Breña Baja, TF - Spain (Spain); and others

    2014-06-01

    We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the {sup 56}Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical-infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M {sub env} ∼ 20 M {sub ☉}, progenitor radius R ∼ 3 × 10{sup 13} cm (∼430 R {sub ☉}), explosion energy E ∼ 1.5 foe, and initial {sup 56}Ni mass ∼0.06 M {sub ☉}. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M {sub ☉} of the Type IIP events.

  1. Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners.

    Directory of Open Access Journals (Sweden)

    Carlo Baldassi

    Full Text Available In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids, exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i the prediction of residue-residue contacts in proteins, and (ii the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code.

  2. Continuous piecewise-linear, reduced-order electrochemical model for lithium-ion batteries in real-time applications

    Science.gov (United States)

    Farag, Mohammed; Fleckenstein, Matthias; Habibi, Saeid

    2017-02-01

    Model-order reduction and minimization of the CPU run-time while maintaining the model accuracy are critical requirements for real-time implementation of lithium-ion electrochemical battery models. In this paper, an isothermal, continuous, piecewise-linear, electrode-average model is developed by using an optimal knot placement technique. The proposed model reduces the univariate nonlinear function of the electrode's open circuit potential dependence on the state of charge to continuous piecewise regions. The parameterization experiments were chosen to provide a trade-off between extensive experimental characterization techniques and purely identifying all parameters using optimization techniques. The model is then parameterized in each continuous, piecewise-linear, region. Applying the proposed technique cuts down the CPU run-time by around 20%, compared to the reduced-order, electrode-average model. Finally, the model validation against real-time driving profiles (FTP-72, WLTP) demonstrates the ability of the model to predict the cell voltage accurately with less than 2% error.

  3. Finite Element Model to Reduce Fire and Blast Vulnerability

    Science.gov (United States)

    2013-01-01

    blast without a foam pad The tibia and fibula both fracture ...... 16 Figure 18. Force time history of the tibia for the 20 kg under body blast without...pad The tibia and fibula both fracture UNCLASSIFIED 16 UNCLASSIFIED The results of the study show that the addition of the foam reduce the...tibia forces by at least 35%. The reduction is likely higher since the tibia and fibula fractured in the baseline analysis therefore limiting the

  4. More Accurate Prediction of Metastatic Pancreatic Cancer Patients' Survival with Prognostic Model Using Both Host Immunity and Tumor Metabolic Activity.

    Directory of Open Access Journals (Sweden)

    Younak Choi

    Full Text Available Neutrophil to lymphocyte ratio (NLR and standard uptake value (SUV by 18F-FDG PET represent host immunity and tumor metabolic activity, respectively. We investigated NLR and maximum SUV (SUVmax as prognostic markers in metastatic pancreatic cancer (MPC patients who receive palliative chemotherapy.We reviewed 396 MPC patients receiving palliative chemotherapy. NLR was obtained before and after the first cycle of chemotherapy. In 118 patients with PET prior to chemotherapy, SUVmax was collected. Cut-off values were determined by ROC curve.In multivariate analysis of all patients, NLR and change in NLR after the first cycle of chemotherapy (ΔNLR were independent prognostic factors for overall survival (OS. We scored the risk considering NLR and ΔNLR and identified 4 risk groups with different prognosis (risk score 0 vs 1 vs 2 vs 3: OS 9.7 vs 7.9 vs 5.7 vs 2.6 months, HR 1 vs 1.329 vs 2.137 vs 7.915, respectively; P<0.001. In PET cohort, NLR and SUVmax were independently prognostic for OS. Prognostication model using both NLR and SUVmax could define 4 risk groups with different OS (risk score 0 vs 1 vs 2 vs 3: OS 11.8 vs 9.8 vs 7.2 vs 4.6 months, HR 1 vs 1.536 vs 2.958 vs 5.336, respectively; P<0.001.NLR and SUVmax as simple parameters of host immunity and metabolic activity of tumor cell, respectively, are independent prognostic factors for OS in MPC patients undergoing palliative chemotherapy.

  5. Quantum mechanics can reduce the complexity of classical models.

    Science.gov (United States)

    Gu, Mile; Wiesner, Karoline; Rieper, Elisabeth; Vedral, Vlatko

    2012-03-27

    Mathematical models are an essential component of quantitative science. They generate predictions about the future, based on information available in the present. In the spirit of simpler is better; should two models make identical predictions, the one that requires less input is preferred. Yet, for almost all stochastic processes, even the provably optimal classical models waste information. The amount of input information they demand exceeds the amount of predictive information they output. Here we show how to systematically construct quantum models that break this classical bound, and that the system of minimal entropy that simulates such processes must necessarily feature quantum dynamics. This indicates that many observed phenomena could be significantly simpler than classically possible should quantum effects be involved.

  6. Reducing Lag in Virtual Displays Using Multiple Model Adaptive Estimation

    Science.gov (United States)

    1995-12-01

    time varying behavior. Kleinman [4] proposed an optimal control model for human performance in a closed loop. This model interprets human perception as a...Washington, D. C: NASA, 1963. 3. Arthur , Kevin W., Kellogg, S. Booth, Colin Ware, Evaluating 3D Task Performance for Fish Tank Virtual Worlds," ACM...of Describing Behavior," Human Factors, volume 19, number 4,1977. 13. Kozak, J. J., P. A. Hancock, E. J. Arthur , S. T. Chrysler, "Transfer of Training

  7. Crop Model Improvement Reduces the Uncertainty of the Response to Temperature of Multi-Model Ensembles

    Science.gov (United States)

    Maiorano, Andrea; Martre, Pierre; Asseng, Senthold; Ewert, Frank; Mueller, Christoph; Roetter, Reimund P.; Ruane, Alex C.; Semenov, Mikhail A.; Wallach, Daniel; Wang, Enli

    2016-01-01

    To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT worldwide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures greater than 24 C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.

  8. Reducing uncertainty in high-resolution sea ice models.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2013-07-01

    Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.

  9. Implementation of a numerical holding furnace model in foundry and construction of a reduced model

    Science.gov (United States)

    Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane

    2016-09-01

    Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts in according to geometrical and structural expectations. The definition of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. In a further stage this model will be used to characterize heat exchanges using internal sensors through inverse techniques to optimize the furnace command and the optimization of its design. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. A detailed model allows the calculation of the internal induction heat source as well as transient radiative transfer inside the furnace. A reduced lumped body model has been defined to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm with Matlab, using two synthetic temperature signals with a further validation test.

  10. Impact of AMS-02 Measurements on Reducing GCR Model Uncertainties

    Science.gov (United States)

    Slaba, T. C.; O'Neill, P. M.; Golge, S.; Norbury, J. W.

    2015-01-01

    For vehicle design, shield optimization, mission planning, and astronaut risk assessment, the exposure from galactic cosmic rays (GCR) poses a significant and complex problem both in low Earth orbit and in deep space. To address this problem, various computational tools have been developed to quantify the exposure and risk in a wide range of scenarios. Generally, the tool used to describe the ambient GCR environment provides the input into subsequent computational tools and is therefore a critical component of end-to-end procedures. Over the past few years, several researchers have independently and very carefully compared some of the widely used GCR models to more rigorously characterize model differences and quantify uncertainties. All of the GCR models studied rely heavily on calibrating to available near-Earth measurements of GCR particle energy spectra, typically over restricted energy regions and short time periods. In this work, we first review recent sensitivity studies quantifying the ions and energies in the ambient GCR environment of greatest importance to exposure quantities behind shielding. Currently available measurements used to calibrate and validate GCR models are also summarized within this context. It is shown that the AMS-II measurements will fill a critically important gap in the measurement database. The emergence of AMS-II measurements also provides a unique opportunity to validate existing models against measurements that were not used to calibrate free parameters in the empirical descriptions. Discussion is given regarding rigorous approaches to implement the independent validation efforts, followed by recalibration of empirical parameters.

  11. Linear and nonlinear properties of reduced two-layer models for non-hydrostatic free-surface flow

    Science.gov (United States)

    Bai, Yefei; Cheung, Kwok Fai

    2016-11-01

    A two-layer model with uniform non-hydrostatic pressure in the bottom produces favorable dispersion properties for coastal wave transformation at the computational requirements of a one-layer model. We derive the nonlinear governing equations and the corresponding dispersion relation, shoaling gradient, and super- and sub-harmonics to understand the theoretical performance of this reduced model. With the layer interface near the bottom, the dispersion relation shows an extended applicable range into deeper water at the expense of a slight overestimation of the celerity in intermediate water depth. The shoaling gradient rapidly converges to the exact solution in the shallow and intermediate depth range. These complementary characteristics allow identification of an optimal interface position for both linear wave properties. The resulting model exhibits good nonlinear performance in shallow and intermediate water depth and produces super- and sub-harmonics comparable to a two-layer model. Numerical tests involving standing waves show the reduced model has smaller discretization errors in the dispersion relation comparing to a one-layer model. Case studies of regular wave transformation over a submerged bar and a uniform slope provide comparison with laboratory data and demonstrate the linear and nonlinear properties derived from the governing equations. The good shoaling and nonlinear properties give rise to accurate waveforms in both cases, while dispersion errors from the governing equations and numerical schemes accumulate over time leading to phase shifts of the modeled waves.

  12. 精确动力学模型下的火星探测轨道设计%Orbit Design for Mars Exploration by the Accurate Dynamic Model

    Institute of Scientific and Technical Information of China (English)

    陈杨; 赵国强; 宝音贺西; 李俊峰

    2011-01-01

    The precision orbit design for Mars exploration by the accurate dynamic model was studied. The launch window and trans-Mars orbit was determined through the partical swarm optimization (PSO) algorithm within the heliocentric two-body restriction. The patched conics method was introduced to design the earth-centred parking orbit and departure hyperbolic orbit. The solution of two-body Lambert problem was input as initial value for precision orbit design, and the preliminary orbit was corrected with the restrictions of the Mars B-plane parameters and flight time by the accurate dynamic model. Finally the designed orbit was simulated with the STK softwares.%首先在二体意义下采用粒子群优化算法(PSO)求解Lambert问题,确定发射窗口和二体地火转移轨道.使用圆锥曲线拼接法设计地心停泊轨道、逃逸轨道,并作为轨道精确设计的初值,以建立在火星的B平面参数和地火转移时间为约束,在精确动力学模型下进行微分迭代修正,最终得到满足约束的精确轨道.将设计轨道在STK软件中仿真,结果吻合.

  13. Accurate Three States Model for Amino Acids with Two Chemically Coupled Titrating Sites in Explicit Solvent Atomistic Constant pH Simulations and pKa Calculations.

    Science.gov (United States)

    Dobrev, Plamen; Donnini, Serena; Groenhof, Gerrit; Grubmüller, Helmut

    2017-01-10

    Correct protonation of titratable groups in biomolecules is crucial for their accurate description by molecular dynamics simulations. In the context of constant pH simulations, an additional protonation degree of freedom is introduced for each titratable site, allowing the protonation state to change dynamically with changing structure or electrostatics. Here, we extend previous approaches for an accurate description of chemically coupled titrating sites. A second reaction coordinate is used to switch between two tautomeric states of an amino acid with chemically coupled titratable sites, such as aspartate (Asp), glutamate (Glu), and histidine (His). To this aim, we test a scheme involving three protonation states. To facilitate charge neutrality as required for periodic boundary conditions and Particle Mesh Ewald (PME) electrostatics, titration of each respective amino acid is coupled to a "water" molecule that is charged in the opposite direction. Additionally, a force field modification for Amber99sb is introduced and tested for the description of carboxyl group protonation. Our three states model is tested by titration simulations of Asp, Glu, and His, yielding a good agreement, reproducing the correct geometry of the groups in their different protonation forms. We further show that the ion concentration change due to the neutralizing "water" molecules does not significantly affect the protonation free energies of the titratable groups, suggesting that the three states model provides a good description of biomolecular dynamics at constant pH.

  14. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    Energy Technology Data Exchange (ETDEWEB)

    Rybynok, V O; Kyriacou, P A [City University, London (United Kingdom)

    2007-10-15

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.

  15. Safety-relevant mode confusions-modelling and reducing them

    Energy Technology Data Exchange (ETDEWEB)

    Bredereke, Jan [Universitaet Bremen, FB 3, P.O. Box 330 440, D-28334 Bremen (Germany)]. E-mail: brederek@tzi.de; Lankenau, Axel [Universitaet Bremen, FB 3, P.O. Box 330 440, D-28334 Bremen (Germany)

    2005-06-01

    Mode confusions are a significant safety concern in safety-critical systems, for example in aircraft. A mode confusion occurs when the observed behaviour of a technical system is out of sync with the user's mental model of its behaviour. But the notion is described only informally in the literature. We present a rigorous way of modelling the user and the machine in a shared-control system. This enables us to propose precise definitions of 'mode' and 'mode confusion' for safety-critical systems. We then validate these definitions against the informal notions in the literature. A new classification of mode confusions by cause leads to a number of design recommendations for shared-control systems. These help in avoiding mode confusion problems. Our approach supports the automated detection of remaining mode confusion problems. We apply our approach practically to a wheelchair robot.

  16. The i-V curve curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    CERN Document Server

    Han, Jie; Casey, Tiernan A; Bisetti, Fabrizio; Im, Hong G; Chen, Jyh-Yuan

    2016-01-01

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-V curve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agre...

  17. Certified reduced basis model validation: A frequentistic uncertainty framework

    OpenAIRE

    Patera, A. T.; Huynh, Dinh Bao Phuong; Knezevic, David; Patera, Anthony T.

    2011-01-01

    We introduce a frequentistic validation framework for assessment — acceptance or rejection — of the consistency of a proposed parametrized partial differential equation model with respect to (noisy) experimental data from a physical system. Our method builds upon the Hotelling T[superscript 2] statistical hypothesis test for bias first introduced by Balci and Sargent in 1984 and subsequently extended by McFarland and Mahadevan (2008). Our approach introduces two new elements: a spectral repre...

  18. Modeling Reduced Human Performance as a Complex Adaptive System

    Science.gov (United States)

    2003-09-01

    fittingly, the latest research paper describes these types of components as LEGOs (listener event graph objects). “The name is also a metaphor for how...Buss, A. H. and P. J. Sanchez (2002). Building Complex Models With LEGOs (Listener Event Graph Objects). Winter Simulation Conference. Buss, D. (1999...Kaarlela, C. (1997). New Gene Therapy Technique Could Eliminate Insulin Injections for many Diabetics, Jeffrey Norris and Jennifer O’Brien (415) 476-481

  19. An Efficient Reduced-Order Model for the Nonlinear Dynamics of Carbon Nanotubes

    KAUST Repository

    Xu, Tiantian

    2014-08-17

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools that typically used to analyze the behavior of complicated nonlinear systems, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. We plot and compare the expanded form of the electrostatic force to the exact form and found that at least twenty terms are needed to capture accurately the strong nonlinear form of the force over the full range of motion. Then, we utilize this form along with an Euler–Bernoulli beam model to study the static and dynamic behavior of CNTs. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. We found that the use of the new expanded form of the electrostatic force enables avoiding the cumbersome evaluation of the spatial integrals involving the electrostatic force during the modal projection procedure in the Galerkin method, which needs to be done at every time step. Hence, the new method proves to be much more efficient computationally.

  20. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    Science.gov (United States)

    Reynolds, Sheila M; Bilmes, Jeff A; Noble, William Stafford

    2010-07-08

    DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the

  1. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    Directory of Open Access Journals (Sweden)

    Sheila M Reynolds

    Full Text Available DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the

  2. Pseudo-spectral Maxwell solvers for an accurate modeling of Doppler harmonic generation on plasma mirrors with Particle-In-Cell codes

    CERN Document Server

    Blaclard, G; Lehe, R; Vay, J L

    2016-01-01

    With the advent of PW class lasers, the very large laser intensities attainable on-target should enable the production of intense high order Doppler harmonics from relativistic laser-plasma mirrors interactions. At present, the modeling of these harmonics with Particle-In-Cell (PIC) codes is extremely challenging as it implies an accurate description of tens of harmonic orders on a a broad range of angles. In particular, we show here that standard Finite Difference Time Domain (FDTD) Maxwell solvers used in most PIC codes partly fail to model Doppler harmonic generation because they induce numerical dispersion of electromagnetic waves in vacuum which is responsible for a spurious angular deviation of harmonic beams. This effect was extensively studied and a simple toy-model based on Snell-Descartes law was developed that allows us to finely predict the angular deviation of harmonics depending on the spatio-temporal resolution and the Maxwell solver used in the simulations. Our model demonstrates that the miti...

  3. Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone

    Science.gov (United States)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.

  4. An Efficient and Accurate Numerical Algorithm for Multi-Dimensional Modeling of Casting Solidification, Part Ⅱ: Combination of FEM and FDM

    Institute of Scientific and Technical Information of China (English)

    Jin Xuesong; Tsai Hailung

    1994-01-01

    This paper is a continuation of Ref. [1]. It employs frist-order accurate Taylor-Galerkin-based finite element approach for casting solidification. The approach is based on expressing the finite-difference approximation of the transient time derivative of temperature, while the expressions of the governing equations are discretized in space via the classical Galerkin scheme using finiteelement formulations. The detailed technique is reported in this study. Several casting solidification examples are solved to demonstrate the excellent agreements in comparison with the results obtained by using the control volume method, and to show the availability of combination of the finite element method and the finite difference method in multi-dimensional modeling of casting solidification.

  5. Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models.

    Science.gov (United States)

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-09-06

    Analytical and numerical methods have been used to extract essential engineering parameters such as elastic modulus, Poisson׳s ratio, permeability and diffusion coefficient from experimental data in various types of biological tissues. The major limitation associated with analytical techniques is that they are often only applicable to problems with simplified assumptions. Numerical multi-physics methods, on the other hand, enable minimizing the simplified assumptions but require substantial computational expertise, which is not always available. In this paper, we propose a novel approach that combines inverse and forward artificial neural networks (ANNs) which enables fast and accurate estimation of the diffusion coefficient of cartilage without any need for computational modeling. In this approach, an inverse ANN is trained using our multi-zone biphasic-solute finite-bath computational model of diffusion in cartilage to estimate the diffusion coefficient of the various zones of cartilage given the concentration-time curves. Robust estimation of the diffusion coefficients, however, requires introducing certain levels of stochastic variations during the training process. Determining the required level of stochastic variation is performed by coupling the inverse ANN with a forward ANN that receives the diffusion coefficient as input and returns the concentration-time curve as output. Combined together, forward-inverse ANNs enable computationally inexperienced users to obtain accurate and fast estimation of the diffusion coefficients of cartilage zones. The diffusion coefficients estimated using the proposed approach are compared with those determined using direct scanning of the parameter space as the optimization approach. It has been shown that both approaches yield comparable results.

  6. Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method

    Science.gov (United States)

    Amabili, M.; Sarkar, A.; Païdoussis, M. P.

    2006-03-01

    The geometric nonlinear response of a water-filled, simply supported circular cylindrical shell to harmonic excitation in the spectral neighbourhood of the fundamental natural frequency is investigated. The response is investigated for a fixed excitation frequency by using the excitation amplitude as bifurcation parameter for a wide range of variation. Bifurcation diagrams of Poincaré maps obtained from direct time integration and calculation of the Lyapunov exponents and Lyapunov dimension have been used to study the system. By increasing the excitation amplitude, the response undergoes (i) a period-doubling bifurcation, (ii) subharmonic response, (iii) quasi-periodic response and (iv) chaotic behaviour with up to 16 positive Lyapunov exponents (hyperchaos). The model is based on Donnell's nonlinear shallow-shell theory, and the reference solution is obtained by the Galerkin method. The proper orthogonal decomposition (POD) method is used to extract proper orthogonal modes that describe the system behaviour from time-series response data. These time-series have been obtained via the conventional Galerkin approach (using normal modes as a projection basis) with an accurate model involving 16 degrees of freedom (dofs), validated in previous studies. The POD method, in conjunction with the Galerkin approach, permits to build a lower-dimensional model as compared to those obtainable via the conventional Galerkin approach. Periodic and quasi-periodic response around the fundamental resonance for fixed excitation amplitude, can be very successfully simulated with a 3-dof reduced-order model. However, in the case of large variation of the excitation, even a 5-dof reduced-order model is not fully accurate. Results show that the POD methodology is not as "robust" as the Galerkin method.

  7. 基于ESL快速精确的处理器混合模型%Fast and Accurate Processor Hybrid Model Based on ESL

    Institute of Scientific and Technical Information of China (English)

    鲁超; 魏继增; 常轶松

    2012-01-01

    For RTL design cannot meet the requirement of the speed of System on Chip(SoC), this paper presents a fast and accurate processor hybrid model based on Electronic System Level(ESL). It uses the proprietary 32 bit embedded microprocessor C*CORE340 based on ESL design methodology. For this target the Instruction Set Simulator(ISS) and Cache adopt the different abstraction layers to construct. Experimental results show that the simulation speeds of hybrid model is a least 10 times faster than that of RTL model, and the less than 10% error rate simulation accuracy is gotten.%RTL设计不能满足片上系统对仿真速度的要求.为此,提出一种基于电子系统级快速精确的处理器混合模型.以32位嵌入式微处理器C*CORE340为例,采用不同的抽象层次对指令集仿真器和Cache进行构建.实验结果表明,与RTL级模型相比,该模型的仿真速度至少快10倍,仿真精度误差率低于10%.

  8. An accurate and fast forward model of three-dimensional electromagnetic wave scattering in a layered structure with multilayer rough interfaces

    Science.gov (United States)

    Wu, Chao; Zhang, Xiaojuan; Fang, Guangyou; Shi, Jiancheng; Liu, Shiyin

    2015-03-01

    We develop an accurate and fast forward model for calculating the compact closed-form high-order perturbative solutions of the problem of three-dimensional (3-D) radiation and propagation electromagnetic fields in a layered structure with multilayer rough interfaces. The proposed method for the fast forward model is first demonstrated by strictly theoretical formulas derivation in the framework of classical small perturbation method (SPM) without other else approximation and equivalent process. The kernel functions of high order are proposed for calculating the radar cross sections with more efficiency and clear physical meanings for better use in practice. What is more, we give the clear physical interpretation of the first-order fully polarimetric electromagnetic wave scattering mechanism in the layered structure with multilayer rough interfaces. The proposed forward model is necessary to insure a successful inversion process. Furthermore, the high-order SPM solutions derived by employing the proposed method are validated with existing methods and numerical results. Finally, we study the performance of the high-order fully polarimetric electromagnetic wave scattering according to the numerical results and analyze the scattering enhancement phenomena.

  9. Time-Dependent Solutions to the Fokker-Planck Equation of Maximum Reduced Air-Sea Coupling Climate Model

    Institute of Scientific and Technical Information of China (English)

    FENG Guolin; DONG Wenjie; GAO Hongxing

    2005-01-01

    The time-dependent solution of reduced air-sea coupling stochastic-dynamic model is accurately obtained by using the Fokker-Planck equation and the quantum mechanical method. The analysis of the timedependent solution suggests that when the climate system is in the ground state, the behavior of the system appears to be a Brownian movement, thus reasoning the foothold of Hasselmann's stochastic climatic model;when the system is in the first excitation state, the motion of the system exhibits a form of time-decaying,or under certain condition a periodic oscillation with the main period being 2.3 yr. At last, the results are used to discuss the impact of the doubling of carbon dioxide on climate.

  10. Comparison of reduced models for blood flow using Runge-Kutta discontinuous Galerkin methods

    CERN Document Server

    Puelz, Charles; Canic, Suncica; Rusin, Craig G

    2015-01-01

    Reduced, or one-dimensional blood flow models take the general form of nonlinear hyperbolic systems, but differ greatly in their formulation. One class of models considers the physically conserved quantities of mass and momentum, while another class describes mass and velocity. Further, the averaging process employed in the model derivation requires the specification of the axial velocity profile; this choice differentiates models within each class. Discrepancies among differing models have yet to be investigated. In this paper, we systematically compare several reduced models of blood flow for physiologically relevant vessel parameters, network topology, and boundary data. The models are discretized by a class of Runge-Kutta discontinuous Galerkin methods.

  11. Bayesian State-Space Modelling of Conventional Acoustic Tracking Provides Accurate Descriptors of Home Range Behavior in a Small-Bodied Coastal Fish Species

    Science.gov (United States)

    Alós, Josep; Palmer, Miquel; Balle, Salvador; Arlinghaus, Robert

    2016-01-01

    State-space models (SSM) are increasingly applied in studies involving biotelemetry-generated positional data because they are able to estimate movement parameters from positions that are unobserved or have been observed with non-negligible observational error. Popular telemetry systems in marine coastal fish consist of arrays of omnidirectional acoustic receivers, which generate a multivariate time-series of detection events across the tracking period. Here we report a novel Bayesian fitting of a SSM application that couples mechanistic movement properties within a home range (a specific case of random walk weighted by an Ornstein-Uhlenbeck process) with a model of observational error typical for data obtained from acoustic receiver arrays. We explored the performance and accuracy of the approach through simulation modelling and extensive sensitivity analyses of the effects of various configurations of movement properties and time-steps among positions. Model results show an accurate and unbiased estimation of the movement parameters, and in most cases the simulated movement parameters were properly retrieved. Only in extreme situations (when fast swimming speeds are combined with pooling the number of detections over long time-steps) the model produced some bias that needs to be accounted for in field applications. Our method was subsequently applied to real acoustic tracking data collected from a small marine coastal fish species, the pearly razorfish, Xyrichtys novacula. The Bayesian SSM we present here constitutes an alternative for those used to the Bayesian way of reasoning. Our Bayesian SSM can be easily adapted and generalized to any species, thereby allowing studies in freely roaming animals on the ecological and evolutionary consequences of home ranges and territory establishment, both in fishes and in other taxa. PMID:27119718

  12. Sensitivity of Reliability Estimates in Partially Damaged RC Structures subject to Earthquakes, using Reduced Hysteretic Models

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.; Skjærbæk, P. S.

    The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation.......The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation....

  13. 西部脱贫攻坚小康化医疗卫生精准脱贫模式研究%Study on Accurate Poverty Alleviation Model through Health Care in West China

    Institute of Scientific and Technical Information of China (English)

    赵韡; 焦建彬

    2016-01-01

    Health care accurate poverty alleviation is an arduous and onerous task that alleviates poverty in the western region to implement welfare. According to the targets requirements task to shake off poverty to perform western welfare in the 13th Five-Year Plan period, this paper explores in depth “analytical framework, practical foundation and policy basis”. Then on this basis, the paper creates a new model, called “Western GASE health care accurate poverty alleviation model”. The new model can overcome all kinds of drawbacks in traditional health care Poverty Reducing Model and contribute to ensuring victory of western help-the-poor battle, to achieve western health care synchronous welfare.%医疗卫生精准脱贫是西部脱贫攻坚小康化一项艰巨繁重的任务。本文根据“十三五”时期西部脱贫攻坚小康化的目标任务要求,在深入探讨医疗卫生精准脱贫的“分析框架、实践基础与政策依据”的基础上,创新构建了一种新型的模式———“西部GASE医疗卫生精准脱贫模式”。这一新型模式能够克服西部“传统医疗卫生扶贫模式”的种种弊端,有助于确保2020年打赢西部脱贫攻坚战,实现西部医疗卫生同步小康化。

  14. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, En-Yu [Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Chawla, Nikhilesh [Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Jing, Tao [Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Torquato, Salvatore [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544 (United States); Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544 (United States); Jiao, Yang, E-mail: yang.jiao.2@asu.edu [Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States)

    2014-03-01

    Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide range of important engineering applications. Accurate modeling and reconstructing three-dimensional (3D) microstructure of topologically complex materials from limited morphological information such as a two-dimensional (2D) micrograph is crucial to the assessment and prediction of effective material properties and performance under extreme conditions. Here, we extend a recently developed dilation–erosion method and employ the Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as well as the standard stochastic reconstructions incorporating topological connectedness information. The fact that the former can achieve the same level of accuracy as the latter suggests that the dilation–erosion procedure is tantamount to incorporating appreciably more topological and geometrical information into the reconstruction while being much more computationally efficient. - Highlights: • Spatial correlation functions used to characterize filamentary ferrite phase • Clustering information assessed from 3D experimental structure via serial sectioning • Stochastic reconstruction used to generate 3D virtual structure 2D micrograph • Dilation–erosion method to improve accuracy of 3D reconstruction.

  15. The role of chemistry and pH of solid surfaces for specific adsorption of biomolecules in solution--accurate computational models and experiment.

    Science.gov (United States)

    Heinz, Hendrik

    2014-06-18

    Adsorption of biomolecules and polymers to inorganic nanostructures plays a major role in the design of novel materials and therapeutics. The behavior of flexible molecules on solid surfaces at a scale of 1-1000 nm remains difficult and expensive to monitor using current laboratory techniques, while playing a critical role in energy conversion and composite materials as well as in understanding the origin of diseases. Approaches to implement key surface features and pH in molecular models of solids are explained, and distinct mechanisms of peptide recognition on metal nanostructures, silica and apatite surfaces in solution are described as illustrative examples. The influence of surface energies, specific surface features and protonation states on the structure of aqueous interfaces and selective biomolecular adsorption is found to be critical, comparable to the well-known influence of the charge state and pH of proteins and surfactants on their conformations and assembly. The representation of such details in molecular models according to experimental data and available chemical knowledge enables accurate simulations of unknown complex interfaces in atomic resolution in quantitative agreement with independent experimental measurements. In this context, the benefits of a uniform force field for all material classes and of a mineral surface structure database are discussed.

  16. Reduced-complexity modeling of braided rivers: Assessing model performance by sensitivity analysis, calibration, and validation

    Science.gov (United States)

    Ziliani, L.; Surian, N.; Coulthard, T. J.; Tarantola, S.

    2013-12-01

    paper addresses an important question of modeling stream dynamics: How may numerical models of braided stream morphodynamics be rigorously and objectively evaluated against a real case study? Using simulations from the Cellular Automaton Evolutionary Slope and River (CAESAR) reduced-complexity model (RCM) of a 33 km reach of a large gravel bed river (the Tagliamento River, Italy), this paper aims to (i) identify a sound strategy for calibration and validation of RCMs, (ii) investigate the effectiveness of multiperformance model assessments, (iii) assess the potential of using CAESAR at mesospatial and mesotemporal scales. The approach used has three main steps: first sensitivity analysis (using a screening method and a variance-based method), then calibration, and finally validation. This approach allowed us to analyze 12 input factors initially and then to focus calibration only on the factors identified as most important. Sensitivity analysis and calibration were performed on a 7.5 km subreach, using a hydrological time series of 20 months, while validation on the whole 33 km study reach over a period of 8 years (2001-2009). CAESAR was able to reproduce the macromorphological changes of the study reach and gave good results as for annual bed load sediment estimates which turned out to be consistent with measurements in other large gravel bed rivers but showed a poorer performance in reproducing the characteristics of the braided channel (e.g., braiding intensity). The approach developed in this study can be effectively applied in other similar RCM contexts, allowing the use of RCMs not only in an explorative manner but also in obtaining quantitative results and scenarios.

  17. Speaking Fluently And Accurately

    Institute of Scientific and Technical Information of China (English)

    JosephDeVeto

    2004-01-01

    Even after many years of study,students make frequent mistakes in English. In addition, many students still need a long time to think of what they want to say. For some reason, in spite of all the studying, students are still not quite fluent.When I teach, I use one technique that helps students not only speak more accurately, but also more fluently. That technique is dictations.

  18. Cationic liposomes containing antioxidants reduces pulmonary injury in experimental model of sepsis: Liposomes antioxidants reduces pulmonary damage.

    Science.gov (United States)

    Galvão, Andre Martins; Galvão, Júlia Siqueira; Pereira, Marcela Araújo; Cadena, Pabyton Gonçalves; Magalhães, Nereide Stella Santos; Fink, James B; de Andrade, Armele Dornelas; Castro, Celia Maria Machado Barbosa de; de Sousa Maia, Maria Bernadete

    2016-09-01

    The intracellular redox state of alveolar cells is a determining factor for tolerance to oxidative and pro-inflammatory stresses. This study investigated the effects of intratracheal co-administration of antioxidants encapsulated in liposomes on the lungs of rats subjected to sepsis. For this, male rats subjected to sepsis induced by lipopolysaccharide from Escherichia coli or placebo operation were treated (intratracheally) with antibiotic, 0.9% saline and antioxidants encapsulated or non-encapsulated in liposomes. Experimental model of sepsis by cecal ligation and puncture (CLP) was performed in order to expose the cecum. The cecum was then gently squeezed to extrude a small amount of feces from the perforation site. As an index of oxidative damage, superoxide anions, lipid peroxidation, protein carbonyls, catalase activity, nitrates/nitrites, cell viability and mortality rate were measured. Infected animals treated with antibiotic plus antioxidants encapsulated in liposomes showed reduced levels of superoxide anion (54% or 7.650±1.263 nmol/min/mg protein), lipid peroxidation (33% or 0.117±0.041 nmol/mg protein), protein carbonyl (57% or 0.039 ± 0.022 nmol/mg protein) and mortality rate (3.3%), p value <0.001. This treatment also reduced the level of nitrite/nitrate and increased cell viability (90.7%) of alveolar macrophages. Taken togheter, theses results support that cationic liposomes containing antioxidants should be explored as coadjuvants in the treatment of pulmonary oxidative damage.

  19. A random forest based risk model for reliable and accurate prediction of receipt of transfusion in patients undergoing percutaneous coronary intervention.

    Directory of Open Access Journals (Sweden)

    Hitinder S Gurm

    Full Text Available BACKGROUND: Transfusion is a common complication of Percutaneous Coronary Intervention (PCI and is associated with adverse short and long term outcomes. There is no risk model for identifying patients most likely to receive transfusion after PCI. The objective of our study was to develop and validate a tool for predicting receipt of blood transfusion in patients undergoing contemporary PCI. METHODS: Random forest models were developed utilizing 45 pre-procedural clinical and laboratory variables to estimate the receipt of transfusion in patients undergoing PCI. The most influential variables were selected for inclusion in an abbreviated model. Model performance estimating transfusion was evaluated in an independent validation dataset using area under the ROC curve (AUC, with net reclassification improvement (NRI used to compare full and reduced model prediction after grouping in low, intermediate, and high risk categories. The impact of procedural anticoagulation on observed versus predicted transfusion rates were assessed for the different risk categories. RESULTS: Our study cohort was comprised of 103,294 PCI procedures performed at 46 hospitals between July 2009 through December 2012 in Michigan of which 72,328 (70% were randomly selected for training the models, and 30,966 (30% for validation. The models demonstrated excellent calibration and discrimination (AUC: full model  = 0.888 (95% CI 0.877-0.899, reduced model AUC = 0.880 (95% CI, 0.868-0.892, p for difference 0.003, NRI = 2.77%, p = 0.007. Procedural anticoagulation and radial access significantly influenced transfusion rates in the intermediate and high risk patients but no clinically relevant impact was noted in low risk patients, who made up 70% of the total cohort. CONCLUSIONS: The risk of transfusion among patients undergoing PCI can be reliably calculated using a novel easy to use computational tool (https://bmc2.org/calculators/transfusion. This risk prediction

  20. CLASH-VLT: Insights on the mass substructures in the Frontier Fields Cluster MACS J0416.1-2403 through accurate strong lens modeling

    CERN Document Server

    Grillo, C; Rosati, P; Mercurio, A; Balestra, I; Munari, E; Nonino, M; Caminha, G B; Lombardi, M; De Lucia, G; Borgani, S; Gobat, R; Biviano, A; Girardi, M; Umetsu, K; Coe, D; Koekemoer, A M; Postman, M; Zitrin, A; Halkola, A; Broadhurst, T; Sartoris, B; Presotto, V; Annunziatella, M; Maier, C; Fritz, A; Vanzella, E; Frye, B

    2014-01-01

    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the CLASH and Frontier Fields galaxy cluster MACS J0416.1-2403. We show and employ our extensive spectroscopic data set taken with the VIMOS instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log(M_*/M_Sun) ~ 8.6. We reproduce the measured positions of 30 multiple images with a remarkable median offset of only 0.3" by means of a comprehensive strong lensing model comprised of 2 cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ~5%, including systematic uncertainties. We emphasize that the use of multip...

  1. Temperature Field Accurate Modeling and Cooling Performance Evaluation of Direct-Drive Outer-Rotor Air-Cooling In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Feng Chai

    2016-10-01

    Full Text Available High power density outer-rotor motors commonly use water or oil cooling. A reasonable thermal design for outer-rotor air-cooling motors can effectively enhance the power density without the fluid circulating device. Research on the heat dissipation mechanism of an outer-rotor air-cooling motor can provide guidelines for the selection of the suitable cooling mode and the design of the cooling structure. This study investigates the temperature field of the motor through computational fluid dynamics (CFD and presents a method to overcome the difficulties in building an accurate temperature field model. The proposed method mainly includes two aspects: a new method for calculating the equivalent thermal conductivity (ETC of the air-gap in the laminar state and an equivalent treatment to the thermal circuit that comprises a hub, shaft, and bearings. Using an outer-rotor air-cooling in-wheel motor as an example, the temperature field of this motor is calculated numerically using the proposed method; the results are experimentally verified. The heat transfer rate (HTR of each cooling path is obtained using the numerical results and analytic formulas. The influences of the structural parameters on temperature increases and the HTR of each cooling path are analyzed. Thereafter, the overload capability of the motor is analyzed in various overload conditions.

  2. Reduced-order LPV model of flexible wind turbines from high fidelity aeroelastic codes

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sønderby, Ivan Bergquist; Hansen, Morten Hartvig

    2013-01-01

    Linear aeroelastic models used for stability analysis of wind turbines are commonly of very high order. These high-order models are generally not suitable for control analysis and synthesis. This paper presents a methodology to obtain a reduced-order linear parameter varying (LPV) model from a se...

  3. Modeling and Optimization of Direct Chill Casting to Reduce Ingot Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Das, Subodh K.

    2006-01-09

    reheating-cooling method (RCM), was developed and validated for measuring mechanical properties in the nonequilibrium mushy zones of alloys. The new method captures the brittle nature of aluminum alloys at temperatures close to the nonequilibrium solidus temperature, while specimens tested using the reheating method exhibit significant ductility. The RCM has been used for determining the mechanical properties of alloys at nonequilibrium mushy zone temperatures. Accurate data obtained during this project show that the metal becomes more brittle at high temperatures and high strain rates. (4) The elevated-temperature mechanical properties of the alloy were determined. Constitutive models relating the stress and strain relationship at elevated temperatures were also developed. The experimental data fit the model well. (5) An integrated 3D DC casting model has been used to simulate heat transfer, fluid flow, solidification, and thermally induced stress-strain during casting. A temperature-dependent HTC between the cooling water and the ingot surface, cooling water flow rate, and air gap were coupled in this model. An elasto-viscoplastic model based on high-temperature mechanical testing was used to calculate the stress during casting. The 3D integrated model can be used for the prediction of temperature, fluid flow, stress, and strain distribution in DC cast ingots. (6) The cracking propensity of DC cast ingots can be predicted using the 3D integrated model as well as thermodynamic models. Thus, an ingot cracking index based on the ratio of local stress to local alloy strength was established. Simulation results indicate that cracking propensity increases with increasing casting speed. The composition of the ingots also has a major effect on cracking formation. It was found that copper and zinc increase the cracking propensity of DC cast ingots. The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry in reducing the incidence of stress

  4. Novel Reduced Order in Time Models for Problems in Nonlinear Aeroelasticity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Research is proposed for the development and implementation of state of the art, reduced order models for problems in nonlinear aeroelasticity. Highly efficient and...

  5. Quantum corrections of (fuzzy) spacetimes from a supersymmetric reduced model with Filippov 3-algebra

    OpenAIRE

    Tomino, Dan

    2010-01-01

    1-loop vacuum energies of (fuzzy) spacetimes from a supersymmetric reduced model with Filippov 3-algebra are discussed. A_{2,2} algebra, Nambu-Poisson algebra in flat spacetime, and a Lorentzian 3-algebra are examined as 3-algebras.

  6. Study on dynamic characteristics' change of hippocampal neuron reduced models caused by the Alzheimer's disease.

    Science.gov (United States)

    Peng, Yueping; Wang, Jue; Zheng, Chongxun

    2016-01-01

    In the paper, based on the electrophysiological experimental data, the Hippocampal neuron reduced model under the pathology condition of Alzheimer's disease (AD) has been built by modifying parameters' values. The reduced neuron model's dynamic characteristics under effect of AD are comparatively studied. Under direct current stimulation, compared with the normal neuron model, the AD neuron model's dynamic characteristics have obviously been changed. The neuron model under the AD condition undergoes supercritical Andronov-Hopf bifurcation from the rest state to the continuous discharge state. It is different from the neuron model under the normal condition, which undergoes saddle-node bifurcation. So, the neuron model changes into a resonator with monostable state from an integrator with bistable state under AD's action. The research reveals the neuron model's dynamic characteristics' changing under effect of AD, and provides some theoretic basis for AD research by neurodynamics theory.

  7. Investigation of the Stability of POD-Galerkin Techniques for Reduced Order Model Development

    Science.gov (United States)

    2016-01-09

    CFD solutions comparison of Case A at x/L = 0.5 for cases in Table 4. 12 The remaining three cases with multiple frequencies in the forcing function...Techniques for Reduced Order Model Development 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Huang, C...mitigate the stability issues encountered in developing a reduced order model (ROM) for combustion response to specified excitations using the Euler

  8. Reduced-order modeling for cardiac electrophysiology. Application to parameter identification

    CERN Document Server

    Boulakia, Muriel; Gerbeau, Jean-Frédéric

    2011-01-01

    A reduced-order model based on Proper Orthogonal Decomposition (POD) is proposed for the bidomain equations of cardiac electrophysiology. Its accuracy is assessed through electrocardiograms in various configurations, including myocardium infarctions and long-time simulations. We show in particular that a restitution curve can efficiently be approximated by this approach. The reduced-order model is then used in an inverse problem solved by an evolutionary algorithm. Some attempts are presented to identify ionic parameters and infarction locations from synthetic ECGs.

  9. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  10. Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons

    Science.gov (United States)

    Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M.

    2014-10-01

    A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-linear terms is employed to ensure the method remained efficient. This is the first time such an approach has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air flows are captured, whilst the computational requirements are reduced. In the examples presented below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE model while the CPU time is reduced by up to 98% of that required by the full model.

  11. A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials

    Science.gov (United States)

    Bhattacharjee, Satyaki; Matouš, Karel

    2016-05-01

    A new manifold-based reduced order model for nonlinear problems in multiscale modeling of heterogeneous hyperelastic materials is presented. The model relies on a global geometric framework for nonlinear dimensionality reduction (Isomap), and the macroscopic loading parameters are linked to the reduced space using a Neural Network. The proposed model provides both homogenization and localization of the multiscale solution in the context of computational homogenization. To construct the manifold, we perform a number of large three-dimensional simulations of a statistically representative unit cell using a parallel finite strain finite element solver. The manifold-based reduced order model is verified using common principles from the machine-learning community. Both homogenization and localization of the multiscale solution are demonstrated on a large three-dimensional example and the local microscopic fields as well as the homogenized macroscopic potential are obtained with acceptable engineering accuracy.

  12. An optimal control model for reducing and trading of carbon emissions

    Science.gov (United States)

    Guo, Huaying; Liang, Jin

    2016-03-01

    A stochastic optimal control model of reducing and trading for carbon emissions is established in this paper. With considerations of reducing the carbon emission growth and the price of the allowances in the market, an optimal policy is searched to have the minimum total costs to achieve the agreement of emission reduction targets. The model turns to a two-dimension HJB equation problem. By the methods of reducing dimension and Cole-Hopf transformation, a semi-closed form solution of the corresponding HJB problem under some assumptions is obtained. For more general cases, the numerical calculations, analysis and comparisons are presented.

  13. Evaluation of reduced chemical kinetic mechanisms used for modeling mild combustion for natural gas

    Directory of Open Access Journals (Sweden)

    Hamdi Mohamed

    2009-01-01

    Full Text Available A numerical and parametric study was performed to evaluate the potential of reduced chemistry mechanisms to model natural gas chemistry including NOx chemistry under mild combustion mode. Two reduced mechanisms, 5-step and 9-step, were tested against the GRI-Mech3.0 by comparing key species, such as NOx, CO2 and CO, and gas temperature predictions in idealized reactors codes under mild combustion conditions. It is thus concluded that the 9-step mechanism appears to be a promising reduced mechanism that can be used in multi-dimensional codes for modeling mild combustion of natural gas.

  14. Reduced Order Modeling for Prediction and Control of Large-Scale Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kalashnikova, Irina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Mathematics; Arunajatesan, Srinivasan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Aerosciences Dept.; Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Aerosciences Dept.; van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Uncertainty Quantification and Optimization Dept.; Fike, Jeffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Component Science and Mechanics Dept.

    2014-05-01

    This report describes work performed from June 2012 through May 2014 as a part of a Sandia Early Career Laboratory Directed Research and Development (LDRD) project led by the first author. The objective of the project is to investigate methods for building stable and efficient proper orthogonal decomposition (POD)/Galerkin reduced order models (ROMs): models derived from a sequence of high-fidelity simulations but having a much lower computational cost. Since they are, by construction, small and fast, ROMs can enable real-time simulations of complex systems for onthe- spot analysis, control and decision-making in the presence of uncertainty. Of particular interest to Sandia is the use of ROMs for the quantification of the compressible captive-carry environment, simulated for the design and qualification of nuclear weapons systems. It is an unfortunate reality that many ROM techniques are computationally intractable or lack an a priori stability guarantee for compressible flows. For this reason, this LDRD project focuses on the development of techniques for building provably stable projection-based ROMs. Model reduction approaches based on continuous as well as discrete projection are considered. In the first part of this report, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is developed. The key idea is to apply a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. It is shown that, for many PDE systems including the linearized compressible Euler and linearized compressible Navier-Stokes equations, the desired transformation is induced by a special inner product, termed the “symmetry inner product”. Attention is then turned to nonlinear conservation laws. A new transformation and corresponding energy-based inner product for the full nonlinear compressible Navier

  15. CLASH-VLT: INSIGHTS ON THE MASS SUBSTRUCTURES IN THE FRONTIER FIELDS CLUSTER MACS J0416.1–2403 THROUGH ACCURATE STRONG LENS MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, C. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Suyu, S. H.; Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Rosati, P.; Caminha, G. B. [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Mercurio, A. [INAF - Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Balestra, I.; Munari, E.; Nonino, M.; De Lucia, G.; Borgani, S.; Biviano, A.; Girardi, M. [INAF - Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143, Trieste (Italy); Lombardi, M. [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy); Gobat, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Universitè Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Coe, D.; Koekemoer, A. M.; Postman, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Zitrin, A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Halkola, A., E-mail: grillo@dark-cosmology.dk; and others

    2015-02-10

    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the Cluster Lensing And Supernova survey with Hubble (CLASH) and Frontier Fields galaxy cluster MACS J0416.1–2403. We show and employ our extensive spectroscopic data set taken with the VIsible Multi-Object Spectrograph instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log (M {sub *}/M {sub ☉}) ≅ 8.6. We reproduce the measured positions of a set of 30 multiple images with a remarkable median offset of only 0.''3 by means of a comprehensive strong lensing model comprised of two cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components, parameterized with dual pseudo-isothermal total mass profiles. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ∼5%, including the systematic uncertainties estimated from six distinct mass models. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological N-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1–2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide

  16. On the Nonlinear Structural Analysis of Wind Turbine Blades using Reduced Degree-of-Freedom Models

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Larsen, Jesper Winther; Nielsen, Søren R.K.

    2008-01-01

    and stability conditions. It is demonstrated that the response predicted by such models in some cases becomes instable or chaotic. However, as a consequence of the energy flow the stability is increased and the tendency of chaotic vibrations is reduced as the number of modes are increased. The FE model...

  17. Structural and reduced-form modeling and forecasting with application to Armenia

    NARCIS (Netherlands)

    Poghosyan, K.

    2012-01-01

    The thesis deals with structural and reduced-form modeling and forecasting of key macroeconomic variables (real growth of GDP, inflation, exchange rate, and policy interest rate). The central part of the thesis (Chapters 2-4) consists of three chapters. Chapter 2 considers the structural DSGE model

  18. Quality Prediction and Control of Reducing Pipe Based on EOS-ELM-RPLS Mathematics Modeling Method

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2014-01-01

    Full Text Available The inspection of inhomogeneous transverse and longitudinal wall thicknesses, which determines the quality of reducing pipe during the production of seamless steel reducing pipe, is lags and difficult to establish its mechanism model. Aiming at the problems, we proposed the quality prediction model of reducing pipe based on EOS-ELM-RPLS algorithm, which taking into account the production characteristics of its time-varying, nonlinearity, rapid intermission, and data echelon distribution. Key contents such as analysis of data time interval, solving of mean value, establishment of regression model, and model online prediction were introduced and the established prediction model was used in the quality prediction and iteration control of reducing pipe. It is shown through experiment and simulation that the prediction and iteration control method based on EOS-ELM-RPLS model can effectively improve the quality of steel reducing pipe, and, moreover, its maintenance cost was low and it has good characteristics of real time, reliability, and high accuracy.

  19. A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures

    DEFF Research Database (Denmark)

    Andersen, Torben G.; Bollerslev, Tim; Huang, Xin

    Building on realized variance and bi-power variation measures constructed from high-frequency financial prices, we propose a simple reduced form framework for effectively incorporating intraday data into the modeling of daily return volatility. We decompose the total daily return variability...... of an ACH model for the time-varying jump intensities coupled with a relatively simple log-linear structure for the jump sizes. Lastly, we discuss how the resulting reduced form model structure for each of the three components may be used in the construction of out-of-sample forecasts for the total return...

  20. Mathematical Model of Load Pass and Prediction of Fatigue Life on Bolt Threads with Reduced Lead

    Science.gov (United States)

    Asayama, Yukiteru

    A mathematical model is proposed in order to elucidate the mechanism that the fatigue strength of external threads increases by reducing the lead on a thread system such as a bolt and nut. The model is constructed from the concept that a local strain proportional to the reducing degree of the lead, although the local strain is at first produced in the bolt thread farthest from the bearing surface of the nut, is induced in each thread root with an increase of applied load. The fatigue life predicted from the mathematical model shows good agreement with the experimental fatigue life of cadmium-plated external threads with the reduced lead on the material having strength as high as 1270MPa. The model can provide useful suggestions for the design of fasteners for aerospace, which are required to satisfy severe requirements of fatigue strengths and dimensions.

  1. Incorporating Prior Knowledge for Quantifying and Reducing Model-Form Uncertainty in RANS Simulations

    CERN Document Server

    Wang, Jian-Xun; Xiao, Heng

    2015-01-01

    Simulations based on Reynolds-Averaged Navier--Stokes (RANS) models have been used to support high-consequence decisions related to turbulent flows. Apart from the deterministic model predictions, the decision makers are often equally concerned about the predictions confidence. Among the uncertainties in RANS simulations, the model-form uncertainty is an important or even a dominant source. Therefore, quantifying and reducing the model-form uncertainties in RANS simulations are of critical importance to make risk-informed decisions. Researchers in statistics communities have made efforts on this issue by considering numerical models as black boxes. However, this physics-neutral approach is not a most efficient use of data, and is not practical for most engineering problems. Recently, we proposed an open-box, Bayesian framework for quantifying and reducing model-form uncertainties in RANS simulations by incorporating observation data and physics-prior knowledge. It can incorporate the information from the vast...

  2. Resilient model approximation for Markov jump time-delay systems via reduced model with hierarchical Markov chains

    Science.gov (United States)

    Zhu, Yanzheng; Zhang, Lixian; Sreeram, Victor; Shammakh, Wafa; Ahmad, Bashir

    2016-10-01

    In this paper, the resilient model approximation problem for a class of discrete-time Markov jump time-delay systems with input sector-bounded nonlinearities is investigated. A linearised reduced-order model is determined with mode changes subject to domination by a hierarchical Markov chain containing two different nonhomogeneous Markov chains. Hence, the reduced-order model obtained not only reflects the dependence of the original systems but also model external influence that is related to the mode changes of the original system. Sufficient conditions formulated in terms of bilinear matrix inequalities for the existence of such models are established, such that the resulting error system is stochastically stable and has a guaranteed l2-l∞ error performance. A linear matrix inequalities optimisation coupled with line search is exploited to solve for the corresponding reduced-order systems. The potential and effectiveness of the developed theoretical results are demonstrated via a numerical example.

  3. Study of the nutrient and plankton dynamics in Lake Tanganyika using a reduced-gravity model

    OpenAIRE

    Naithani, Jaya; Darchambeau, François; Deleersnijder, Eric; Descy, Jean*-Pierre; Wolanski, Eric

    2007-01-01

    An eco-hydrodynamic (ECOH) model is proposed for Lake Tanganyika to study the plankton productivity. The hydrodynamic sub-model solves the non-linear, reduced-gravity equations in which wind is the dominant forcing. The ecological sub-model for the epilimnion comprises nutrients, primary production, phytoplankton biomass and zooplankton biomass. In the absence of significant terrestrial input of nutrients, the nutrient loss is compensated for by seasonal, wind-driven, turbulent entrainment of...

  4. Toward a Reduced Complexity Channel Resolving Model for Sedimentary Delta Formation

    Science.gov (United States)

    Liang, M.; Voller, V. R.; Edmonds, D. A.; Paola, C.

    2010-12-01

    Predicting styles of delta growth in restoration areas is a challenge as we try to restore impacted coastlines. Cellular and rule-based reduced complexity models offer a worthwhile means of uncovering key dynamics in delta morphodynamics without the need to fully solve the governing transport equations. In terms of modeling sedimentary delta building processes a critical ingredients is accounting for the formation and bifurcation of channels; phenomena that can be related to the formation of levees and mouth-bars. To that end, we have developed a reduced complexity model that uses a simplified shallow-water solver to study channel formation, mouth bar deposition, and delta development under different forcings. Under the assumption that the flow has a very low Froude Number (Fr2jet. We test the reduced model against flow over Gaussian-shaped bumps of various heights. Comparison of results from this model with results from a full scale commercial code (Delft3D) show a satisfactory agreement on the critical mouth bar height needed to divert flow around the bar. Based on the same diffusive equation, we develop a low-Froude water-routing method for reduced complexity morphodynamics models. The preliminary results show that the method is capable of producing reasonable channel forms and mouth bar formation, and provides a good starting point for development of a channel resolving delta building model.

  5. Use of Paired Simple and Complex Models to Reduce Predictive Bias and Quantify Uncertainty

    DEFF Research Database (Denmark)

    Doherty, John; Christensen, Steen

    2011-01-01

    of these details born of the necessity for model outputs to replicate observations of historical system behavior. In contrast, the rapid run times and general numerical reliability of simple models often promulgates good calibration and ready implementation of sophisticated methods of calibration...... into the costs of model simplification, and into how some of these costs may be reduced. It then describes a methodology for paired model usage through which predictive bias of a simplified model can be detected and corrected, and postcalibration predictive uncertainty can be quantified. The methodology...

  6. Modeling of bubble detachment in reduced gravity under the influence of electric fields and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Cila [Johns Hopkins University, Department of Mechanical Engineering, Baltimore, MD 21218 (United States); Iacona, Estelle [Johns Hopkins University, Department of Mechanical Engineering, Baltimore, MD 21218 (United States); Ecole Centrale, Laboratoire EM2C, Paris UPR 288 (France)

    2004-10-01

    A simple model for predicting bubble volume and shape at detachment in reduced gravity under the influence of electric fields is described in the paper. The model is based on relatively simple thermodynamic arguments and relies on and combines several models described in the literature. It accounts for the level of gravity and the magnitude of the electric field. For certain conditions of bubble development the properties of the bubble source are also considered. Computations were carried out for a uniform unperturbed electric field for a range of model parameters, and the significance of model assumptions and simplifications is discussed for the particular method of bubble formation. Experiments were conducted in terrestrial conditions and reduced gravity (during parabolic flights in NASA's KC-135 aircraft) by injecting air bubbles through an orifice into the electrically insulating working fluid, PF5052. Bubble shapes visualized experimentally were compared with model predictions. Measured data and model predictions show good agreement. The results suggest that the model can provide quick engineering estimates concerning bubble formation for a range of conditions (both for formation at an orifice and boiling) and such a model reduces the need for complex and expensive numerical simulations for certain applications. (orig.)

  7. EXPERIMENTS OF A REDUCED GRID IN LASG/IAP WORLD OCEAN GENERAL CIRCULATION MODELS (OGCMs)

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; LIU Hailong; ZHANG Xuehong; YU Rucong

    2006-01-01

    Due to the decrease in grid size associated with the convergence of meridians toward the poles in spherical coordinates, the time steps in many global climate models with finite-difference method are restricted to be unpleasantly small. To overcome the problem, a reduced grid is introduced to LASG/IAP world ocean general circulation models. The reduced grid is implemented successfully in the coarser resolutions version model L30T63 at first. Then, it is carried out in the improved version model LICOM with finer resolutions. In the experiment with model L30T63, under time step unchanged though, execution time per single model run is shortened significantly owing to the decrease of grid number and filtering execution in high latitudes. Results from additional experiments with L30T63 show that the time step of integration can be quadrupled at most in reduced grid with refinement ratio 3. In the experiment with model LICOM and with the model's original time step unchanged, the model covered area is extended to the whole globe from its original case with the grid point of North Pole considered as an isolated island and the results of experiment are shown to be acceptable.

  8. Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer's disease mouse models.

    Science.gov (United States)

    Huang, Yunhong; Skwarek-Maruszewska, Aneta; Horré, Katrien; Vandewyer, Elke; Wolfs, Leen; Snellinx, An; Saito, Takashi; Radaelli, Enrico; Corthout, Nikky; Colombelli, Julien; Lo, Adrian C; Van Aerschot, Leen; Callaerts-Vegh, Zsuzsanna; Trabzuni, Daniah; Bossers, Koen; Verhaagen, Joost; Ryten, Mina; Munck, Sebastian; D'Hooge, Rudi; Swaab, Dick F; Hardy, John; Saido, Takaomi C; De Strooper, Bart; Thathiah, Amantha

    2015-10-14

    The orphan G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) GPR3 regulates activity of the γ-secretase complex in the absence of an effect on Notch proteolysis, providing a potential therapeutic target for Alzheimer's disease (AD). However, given the vast resources required to develop and evaluate any new therapy for AD and the multiple failures involved in translational research, demonstration of the pathophysiological relevance of research findings in multiple disease-relevant models is necessary before initiating costly drug development programs. We evaluated the physiological consequences of loss of Gpr3 in four AD transgenic mouse models, including two that contain the humanized murine Aβ sequence and express similar amyloid precursor protein (APP) levels as wild-type mice, thereby reducing potential artificial phenotypes. Our findings reveal that genetic deletion of Gpr3 reduced amyloid pathology in all of the AD mouse models and alleviated cognitive deficits in APP/PS1 mice. Additional three-dimensional visualization and analysis of the amyloid plaque burden provided accurate information on the amyloid load, distribution, and volume in the structurally intact adult mouse brain. Analysis of 10 different regions in healthy human postmortem brain tissue indicated that GPR3 expression was stable during aging. However, two cohorts of human AD postmortem brain tissue samples showed a correlation between elevated GPR3 and AD progression. Collectively, these studies provide evidence that GPR3 mediates the amyloidogenic proteolysis of APP in four AD transgenic mouse models as well as the physiological processing of APP in wild-type mice, suggesting that GPR3 may be a potential therapeutic target for AD drug development.

  9. A Privacy Data-Oriented Hierarchical MapReduce Programming Model

    Directory of Open Access Journals (Sweden)

    Haiwen Han

    2013-08-01

    Full Text Available To realize privacy data protection efficiently in hybrid cloud service, a hierarchical control architecture based multi-cluster MapReduce programming model (the Hierarchical MapReduce Model,HMR is presented. Under this hierarchical control architecture,  data isolation and placement among private cloud and public clouds according to the data privacy characteristic is implemented by the control center in private cloud.  And then, to perform the corresponding distributed parallel computation correctly under the multi-clusters mode that is different to the conventional single-cluster mode, the Map-Reduce-GlobalReduce three stage scheduling process is designed. Limiting the computation about privacy data in private cloud while outsourcing the computation about non-privacy data to public clouds as much as possible, HMR reaches the performance of both security and low cost.  

  10. Approaches for Reduced Order Modeling of Electrically Actuated von Karman Microplates

    KAUST Repository

    Saghir, Shahid

    2016-07-25

    This article presents and compares different approaches to develop reduced order models for the nonlinear von Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. Results among the various reduced-order modes are compared and are also validated by comparing to results of the finite-element model. Further, the reduced order models are employed to capture the forced dynamic response of the microplate under small and large vibration amplitudes. Comparison of the different approaches are made for this case. Keywords: electrically actuated microplates, static analysis, dynamics of microplates, diaphragm vibration, large amplitude vibrations, nonlinear dynamics

  11. Reduced models of doubly fed induction generator system for wind turbine simulations

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Lund, Torsten;

    2005-01-01

    This article compares three reduced models with a detailed model of a doubly fed induction generator system for wind turbine applications. The comparisons are based on simulations only. The main idea is to provide reduced generator models which are appropriate to simulate normal wind turbine...... fed induction generator system is very well represented by the dynamics due to the generator inertia and the generator control system, whereas the electromagnetic characteristics of the generator can be represented by the steady state relations. The parameters for the proposed models are derived from...... parameters typically available from the generator data sheet and from the controller settings. Thus the models are simple to apply in any case where the generator data sheet is available....

  12. Reduced model for precessional switching of thin-film nanomagnets under the influence of spin torque

    Science.gov (United States)

    Lund, Ross G.; Chaves-O'Flynn, Gabriel D.; Kent, Andrew D.; Muratov, Cyrill B.

    2016-10-01

    We study the magnetization dynamics of thin-film magnetic elements with in-plane magnetization subject to a spin current flowing perpendicular to the film plane. We derive a reduced partial differential equation for the in-plane magnetization angle in a weakly damped regime. We then apply this model to study the experimentally relevant problem of switching of an elliptical element when the spin polarization has a component perpendicular to the film plane, restricting the reduced model to a macrospin approximation. The macrospin ordinary differential equation is treated analytically as a weakly damped Hamiltonian system, and an orbit-averaging method is used to understand transitions in solution behaviors in terms of a discrete dynamical system. The predictions of our reduced model are compared to those of the full Landau-Lifshitz-Gilbert-Slonczewski equation for a macrospin.

  13. REDUCING PROCESS VARIABILITY BY USING DMAIC MODEL: A CASE STUDY IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Ripon Kumar Chakrabortty

    2013-03-01

    Full Text Available Now-a-day's many leading manufacturing industry have started to practice Six Sigma and Lean manufacturing concepts to boost up their productivity as well as quality of products. In this paper, the Six Sigma approach has been used to reduce process variability of a food processing industry in Bangladesh. DMAIC (Define,Measure, Analyze, Improve, & Control model has been used to implement the Six Sigma Philosophy. Five phases of the model have been structured step by step respectively. Different tools of Total Quality Management, Statistical Quality Control and Lean Manufacturing concepts likely Quality function deployment, P Control chart, Fish-bone diagram, Analytical Hierarchy Process, Pareto analysis have been used in different phases of the DMAIC model. The process variability have been tried to reduce by identify the root cause of defects and reducing it. The ultimate goal of this study is to make the process lean and increase the level of sigma.

  14. The application of the reduced order model Kalman filter to motion estimation of degraded image sequences. M.S. Thesis

    Science.gov (United States)

    Simpson, Elizabeth C.

    1989-01-01

    Motion estimation is a field of great interest because of its many applications in areas such as robotics and image coding. The optic flow method is one such scheme which, although fairly accurate, is prone to error in the presence of noise. This thesis describes the use of the reduced order model Kalman filter (ROMKF) in reducing errors in displacement estimation due to degradation of the sequence. The implementation of filtering and motion estimation algorithms on the SUN workstation is also discussed. Results from preliminary testing were used to determine the degrees of freedom available for the ROMKF in the SUN software. The tests indicated that increasing the state to the left leads to slight improvement over the minimum state case. Therefore, the software uses the minimum model, with the option of adding states to the left only. The ROMKF was then used in conjunction with a hierarchical pel recursive motion estimation algorithm. Applying the ROMKF to the degraded displacements themselves generally yielded slight improvements in cases with noise degradation and noise plus blur. Filtering the images of the degraded sequence prior to motion estimation was less effective in these cases. Both methods performed badly in the case of blur alone, resulting in increased displacement errors. This is thought to be due in part to filter artifacts. Some improvements were obtained by varying the filter parameters when filtering the displacements directly. This result suggests that further study in varying filter parameters may lead to better results. The results of this thesis indicate that the ROMKF can play a part in reducing motion estimation errors from degraded sequences. However, more work needs to be done before the use of the ROMKF can be a practical solution.

  15. Reduced-order models for dynamic control of power plants based on controllability and observability

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, G.S.; Abdel-Magid, Y.L.

    1987-07-01

    A new technique for constructing dynamic equivalents of power systems is developed. The method identifies the important modes of the system utilizing a performance index based on the notions of controllability and observability. The system state variables corresponding to the retained modes are identified by inspection of the elements of the sensitivity matrix relating the eigenvalues to the state variables. The suitability of the method for obtaining reduced-order models of power systems for dynamic-control purposes is demonstrated on a single-machine infinite-bus system. Several reduced-order models are produced and their accuracy discussed. 11 refs.

  16. Mindfulness as a personal resource to reduce work stress in the job demands-resources model.

    Science.gov (United States)

    Grover, Steven L; Teo, Stephen T T; Pick, David; Roche, Maree

    2016-11-09

    Based on the job demands-resources (JD-R) model, this study examines the different ways that the personal resource of mindfulness reduces stress. Structural equation modeling based on data from 415 Australian nurses shows that mindfulness relates directly and negatively to work stress and perceptions of emotional demands as well as buffering the relation of emotional demands on psychological stress. This study contributes to the literature by employing empirical analysis to the task of unravelling how personal resources function within the JD-R model. It also introduces mindfulness as a personal resource in the JD-R model.

  17. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    Science.gov (United States)

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability.

  18. A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Roettgen, Dan [Wisc; Seeger, Benjamin [Stuttgart; Tai, Wei Che [Washington; Baek, Seunghun [Michigan; Dossogne, Tilan [Liege; Allen, Matthew S [Wisc; Kuether, Robert J.; Brake, Matthew Robert; Mayes, Randall L.

    2016-01-01

    Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then they are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.

  19. A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring.

    Energy Technology Data Exchange (ETDEWEB)

    Roettgen, Dan; Seegar, Ben; Tai, Wei Che; Baek, Seunghun; Dossogne, Tilan; Allen, Matthew; Kuether, Robert J.; Brake, Matthew Robert; Mayes, Randall L.

    2015-10-01

    Experimental dynamic substructuring is a means whereby a mathematical model for a substructure can be obtained experimentally and then coupled to a model for the rest of the assembly to predict the response. Recently, various methods have been proposed that use a transmission simulator to overcome sensitivity to measurement errors and to exercise the interface between the substructures; including the Craig-Bampton, Dual Craig-Bampton, and Craig-Mayes methods. This work compares the advantages and disadvantages of these reduced order modeling strategies for two dynamic substructuring problems. The methods are first used on an analytical beam model to validate the methodologies. Then they are used to obtain an experimental model for structure consisting of a cylinder with several components inside connected to the outside case by foam with uncertain properties. This represents an exceedingly difficult structure to model and so experimental substructuring could be an attractive way to obtain a model of the system.

  20. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  1. Accurate Weather Forecasting for Radio Astronomy

    Science.gov (United States)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  2. Methodology for Constructing Reduced-Order Power Block Performance Models for CSP Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M.

    2010-10-01

    The inherent variability of the solar resource presents a unique challenge for CSP systems. Incident solar irradiation can fluctuate widely over a short time scale, but plant performance must be assessed for long time periods. As a result, annual simulations with hourly (or sub-hourly) timesteps are the norm in CSP analysis. A highly detailed power cycle model provides accuracy but tends to suffer from prohibitively long run-times; alternatively, simplified empirical models can run quickly but don?t always provide enough information, accuracy, or flexibility for the modeler. The ideal model for feasibility-level analysis incorporates both the detail and accuracy of a first-principle model with the low computational load of a regression model. The work presented in this paper proposes a methodology for organizing and extracting information from the performance output of a detailed model, then using it to develop a flexible reduced-order regression model in a systematic and structured way. A similar but less generalized approach for characterizing power cycle performance and a reduced-order modeling methodology for CFD analysis of heat transfer from electronic devices have been presented. This paper builds on these publications and the non-dimensional approach originally described.

  3. Efficient and accurate fragmentation methods.

    Science.gov (United States)

    Pruitt, Spencer R; Bertoni, Colleen; Brorsen, Kurt R; Gordon, Mark S

    2014-09-16

    Conspectus Three novel fragmentation methods that are available in the electronic structure program GAMESS (general atomic and molecular electronic structure system) are discussed in this Account. The fragment molecular orbital (FMO) method can be combined with any electronic structure method to perform accurate calculations on large molecular species with no reliance on capping atoms or empirical parameters. The FMO method is highly scalable and can take advantage of massively parallel computer systems. For example, the method has been shown to scale nearly linearly on up to 131 000 processor cores for calculations on large water clusters. There have been many applications of the FMO method to large molecular clusters, to biomolecules (e.g., proteins), and to materials that are used as heterogeneous catalysts. The effective fragment potential (EFP) method is a model potential approach that is fully derived from first principles and has no empirically fitted parameters. Consequently, an EFP can be generated for any molecule by a simple preparatory GAMESS calculation. The EFP method provides accurate descriptions of all types of intermolecular interactions, including Coulombic interactions, polarization/induction, exchange repulsion, dispersion, and charge transfer. The EFP method has been applied successfully to the study of liquid water, π-stacking in substituted benzenes and in DNA base pairs, solvent effects on positive and negative ions, electronic spectra and dynamics, non-adiabatic phenomena in electronic excited states, and nonlinear excited state properties. The effective fragment molecular orbital (EFMO) method is a merger of the FMO and EFP methods, in which interfragment interactions are described by the EFP potential, rather than the less accurate electrostatic potential. The use of EFP in this manner facilitates the use of a smaller value for the distance cut-off (Rcut). Rcut determines the distance at which EFP interactions replace fully quantum

  4. A Study of the Equivalence of the BLUEs between a Partitioned Singular Linear Model and Its Reduced Singular Linear Models

    Institute of Scientific and Technical Information of China (English)

    Bao Xue ZHANG; Bai Sen LIU; Chang Yu LU

    2004-01-01

    Consider the partitioned linear regression model A = (y, X1β1 + X2β2, σ2V) and its four reduced linear models, where y is an n × 1 observable random vector with E(y) = Xβ and dispersion matrix Var(y) = σ2V, where σ2 is an unknown positive scalar, V is an n × n known symmetric nonnegative definite matrix, X = (X1: X2) is an n× (p+q) known design matrix with rank(X) = r ≤ (p+q),andβ = (β'1:β'2)' withβ1 andβ2 being p × 1 and q × 1 vectors of unknown parameters, respectively. In this article the formulae for the differences between the best linear unbiased estimators of M2X1β1under the model A and its best linear unbiased estimators under the reduced linear models of A are given,where M2 = I - X2X2+. Furthermore, the necessary and sufficient conditions for the equalities between the best linear unbiased estimators of M2X1β1 under the model A and those under its reduced linear models are established. Lastly, we also study the connections between the model A and its linear transformation model.

  5. A Reduced-Order Model of Transport Phenomena for Power Plant Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Paul Cizmas; Brian Richardson; Thomas Brenner; Raymond Fontenot

    2009-09-30

    A reduced-order model based on proper orthogonal decomposition (POD) has been developed to simulate transient two- and three-dimensional isothermal and non-isothermal flows in a fluidized bed. Reduced-order models of void fraction, gas and solids temperatures, granular energy, and z-direction gas and solids velocity have been added to the previous version of the code. These algorithms are presented and their implementation is discussed. Verification studies are presented for each algorithm. A number of methods to accelerate the computations performed by the reduced-order model are presented. The errors associated with each acceleration method are computed and discussed. Using a combination of acceleration methods, a two-dimensional isothermal simulation using the reduced-order model is shown to be 114 times faster than using the full-order model. In the pursue of achieving the objectives of the project and completing the tasks planned for this program, several unplanned and unforeseen results, methods and studies have been generated. These additional accomplishments are also presented and they include: (1) a study of the effect of snapshot sampling time on the computation of the POD basis functions, (2) an investigation of different strategies for generating the autocorrelation matrix used to find the POD basis functions, (3) the development and implementation of a bubble detection and tracking algorithm based on mathematical morphology, (4) a method for augmenting the proper orthogonal decomposition to better capture flows with discontinuities, such as bubbles, and (5) a mixed reduced-order/full-order model, called point-mode proper orthogonal decomposition, designed to avoid unphysical due to approximation errors. The limitations of the proper orthogonal decomposition method in simulating transient flows with moving discontinuities, such as bubbling flows, are discussed and several methods are proposed to adapt the method for future use.

  6. Reduced atomic pair-interaction design (RAPID) model for simulations of proteins.

    Science.gov (United States)

    Ni, Boris; Baumketner, Andrij

    2013-02-14

    Increasingly, theoretical studies of proteins focus on large systems. This trend demands the development of computational models that are fast, to overcome the growing complexity, and accurate, to capture the physically relevant features. To address this demand, we introduce a protein model that uses all-atom architecture to ensure the highest level of chemical detail while employing effective pair potentials to represent the effect of solvent to achieve the maximum speed. The effective potentials are derived for amino acid residues based on the condition that the solvent-free model matches the relevant pair-distribution functions observed in explicit solvent simulations. As a test, the model is applied to alanine polypeptides. For the chain with 10 amino acid residues, the model is found to reproduce properly the native state and its population. Small discrepancies are observed for other folding properties and can be attributed to the approximations inherent in the model. The transferability of the generated effective potentials is investigated in simulations of a longer peptide with 25 residues. A minimal set of potentials is identified that leads to qualitatively correct results in comparison with the explicit solvent simulations. Further tests, conducted for multiple peptide chains, show that the transferable model correctly reproduces the experimentally observed tendency of polyalanines to aggregate into β-sheets more strongly with the growing length of the peptide chain. Taken together, the reported results suggest that the proposed model could be used to succesfully simulate folding and aggregation of small peptides in atomic detail. Further tests are needed to assess the strengths and limitations of the model more thoroughly.

  7. Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

    KAUST Repository

    Ajami, H.

    2014-12-12

    One of the main challenges in the application of coupled or integrated hydrologic models is specifying a catchment\\'s initial conditions in terms of soil moisture and depth-to-water table (DTWT) distributions. One approach to reducing uncertainty in model initialization is to run the model recursively using either a single year or multiple years of forcing data until the system equilibrates with respect to state and diagnostic variables. However, such "spin-up" approaches often require many years of simulations, making them computationally intensive. In this study, a new hybrid approach was developed to reduce the computational burden of the spin-up procedure by using a combination of model simulations and an empirical DTWT function. The methodology is examined across two distinct catchments located in a temperate region of Denmark and a semi-arid region of Australia. Our results illustrate that the hybrid approach reduced the spin-up period required for an integrated groundwater–surface water–land surface model (ParFlow.CLM) by up to 50%. To generalize results to different climate and catchment conditions, we outline a methodology that is applicable to other coupled or integrated modeling frameworks when initialization from an equilibrium state is required.

  8. Existence of global weak solution for a reduced gravity two and a half layer model

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhenhua, E-mail: zhenhua.guo.math@gmail.com; Li, Zilai, E-mail: lizilai0917@163.com; Yao, Lei, E-mail: yaolei1056@hotmail.com [Department of Mathematics and CNS, Northwest University, Xi' an 710127 (China)

    2013-12-15

    We investigate the existence of global weak solution to a reduced gravity two and a half layer model in one-dimensional bounded spatial domain or periodic domain. Also, we show that any possible vacuum state has to vanish within finite time, then the weak solution becomes a unique strong one.

  9. Interpolation-based reduced-order modelling for steady transonic flows via manifold learning

    DEFF Research Database (Denmark)

    Franz, Thomas; Zimmermann, Ralf; Goertz, Stefan

    2014-01-01

    This paper presents a parametric reduced-order model (ROM) based on manifold learning (ML) for use in steady transonic aerodynamic applications. The main objective of this work is to derive an efficient ROM that exploits the low-dimensional nonlinear solution manifold to ensure an improved...

  10. A Reduced-Order Model for Structural Wave Control and the Concept of Degree of Controllability

    Institute of Scientific and Technical Information of China (English)

    王泉; 王大钧; 苏先樾

    1994-01-01

    This paper introduces the concept and criteria of controllability and degree of controllability for structural wave control, and advances a new approach to structural reduced-order model, which is similar to the constrained substructural method in dynamics, and is also the extension of the method of aggregation raised by Aoki. It has physical meaning and is easy to realize.

  11. DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS USING THE BEST MODEL

    Science.gov (United States)

    BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with a public domain computer software package, PHREEQCI. BEST is intended to be used in the design process of sulfate-reducing bacteria (SRB)field bioreactors to pas...

  12. Reduced Order Model Implementation in the Risk-Informed Safety Margin Characterization Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rinaldi, Ivan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Dan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The RISMC project aims to develop new advanced simulation-based tools to perform Probabilistic Risk Analysis (PRA) for the existing fleet of U.S. nuclear power plants (NPPs). These tools numerically model not only the thermo-hydraulic behavior of the reactor primary and secondary systems but also external events temporal evolution and components/system ageing. Thus, this is not only a multi-physics problem but also a multi-scale problem (both spatial, µm-mm-m, and temporal, ms-s-minutes-years). As part of the RISMC PRA approach, a large amount of computationally expensive simulation runs are required. An important aspect is that even though computational power is regularly growing, the overall computational cost of a RISMC analysis may be not viable for certain cases. A solution that is being evaluated is the use of reduce order modeling techniques. During the FY2015, we investigated and applied reduced order modeling techniques to decrease the RICM analysis computational cost by decreasing the number of simulations runs to perform and employ surrogate models instead of the actual simulation codes. This report focuses on the use of reduced order modeling techniques that can be applied to any RISMC analysis to generate, analyze and visualize data. In particular, we focus on surrogate models that approximate the simulation results but in a much faster time (µs instead of hours/days). We apply reduced order and surrogate modeling techniques to several RISMC types of analyses using RAVEN and RELAP-7 and show the advantages that can be gained.

  13. Accurate thickness measurement of graphene.

    Science.gov (United States)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-03-29

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  14. Accurate thickness measurement of graphene

    Science.gov (United States)

    Shearer, Cameron J.; Slattery, Ashley D.; Stapleton, Andrew J.; Shapter, Joseph G.; Gibson, Christopher T.

    2016-03-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1-1.3 nm to 0.1-0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials.

  15. Poissonian reducibility and thermal scaling within the lattice gas model and molecular dynamics model

    OpenAIRE

    Ma, Y.G.

    2000-01-01

    The emission of clusters in the nuclear disassembly is investigated within the framework of isospin dependent lattice gas model and classical molecular dynamics model. As observed in the recent experimental data, it is found that the emission of individual cluster is poissonian and thermal scaling is observed in the linear Arrhenius plots made from the average multiplicity of each cluster. The mass, isotope and charge dependent "emission barriers" are extracted from the slopes of the Arrheniu...

  16. Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

    KAUST Repository

    Ajami, H.

    2014-06-26

    One of the main challenges in catchment scale application of coupled/integrated hydrologic models is specifying a catchment\\'s initial conditions in terms of soil moisture and depth to water table (DTWT) distributions. One approach to reduce uncertainty in model initialization is to run the model recursively using a single or multiple years of forcing data until the system equilibrates with respect to state and diagnostic variables. However, such "spin-up" approaches often require many years of simulations, making them computationally intensive. In this study, a new hybrid approach was developed to reduce the computational burden of spin-up time for an integrated groundwater-surface water-land surface model (ParFlow.CLM) by using a combination of ParFlow.CLM simulations and an empirical DTWT function. The methodology is examined in two catchments located in the temperate and semi-arid regions of Denmark and Australia respectively. Our results illustrate that the hybrid approach reduced the spin-up time required by ParFlow.CLM by up to 50%, and we outline a methodology that is applicable to other coupled/integrated modelling frameworks when initialization from equilibrium state is required.

  17. Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

    Directory of Open Access Journals (Sweden)

    H. Ajami

    2014-06-01

    Full Text Available One of the main challenges in catchment scale application of coupled/integrated hydrologic models is specifying a catchment's initial conditions in terms of soil moisture and depth to water table (DTWT distributions. One approach to reduce uncertainty in model initialization is to run the model recursively using a single or multiple years of forcing data until the system equilibrates with respect to state and diagnostic variables. However, such "spin-up" approaches often require many years of simulations, making them computationally intensive. In this study, a new hybrid approach was developed to reduce the computational burden of spin-up time for an integrated groundwater-surface water-land surface model (ParFlow.CLM by using a combination of ParFlow.CLM simulations and an empirical DTWT function. The methodology is examined in two catchments located in the temperate and semi-arid regions of Denmark and Australia respectively. Our results illustrate that the hybrid approach reduced the spin-up time required by ParFlow.CLM by up to 50%, and we outline a methodology that is applicable to other coupled/integrated modelling frameworks when initialization from equilibrium state is required.

  18. Implementation of REDIM reduced chemistry to model an axisymmetric laminar diffusion methane-air flame

    Science.gov (United States)

    Henrique de Almeida Konzen, Pedro; Richter, Thomas; Riedel, Uwe; Maas, Ulrich

    2011-06-01

    The goal of this work is to analyze the use of automatically reduced chemistry by the Reaction-Diffusion Manifold (REDIM) method in simulating axisymmetric laminar coflow diffusion flames. Detailed chemical kinetic models are usually computationally prohibitive for simulating complex reacting flows, and therefore reduced models are required. Automatic reduction model approaches usually exploit the natural multi-scale structure of combustion systems. The novel REDIM approach applies the concept of invariant manifolds to treat also the influence of the transport processes on the reduced model, which overcomes a fundamental problem of model reduction in neglecting the coupling of molecular transport with thermochemical processes. We have considered a previously well studied atmospheric pressure nitrogen-diluted methane-air flame as a test case to validate the methodology presented here. First, one-dimensional and two-dimensional REDIMs were computed and tabulated in lookup tables. Then, the full set of governing equations are projected on the REDIM and implemented in the object-oriented C++ Gascoigne code with a new add-on library to deal with the REDIM tables. The projected set of governing equations have been discretized by the Finite Element Method (FEM) and solved by a GMRES iteration preconditioned by a geometric multigrid method. Local grid refinement, adaptive mesh and parallelization are applied to ensure efficiency and precision. The numerical results obtained using the REDIM approach have shown very good agreement with detailed numerical simulations and experimental data.

  19. Dynamic Programming on Reduced Models and Its Evaluation through Its Application to Elevator Operation Problems

    Science.gov (United States)

    Inamoto, Tsutomu; Tamaki, Hisashi; Murao, Hajime

    In this paper, we present a modified dynamic programming (DP) method. The method is basically the same as the value iteration method (VI), a representative DP method, except the preprocess of a system's state transition model for reducing its complexity, and is called the dynamic programming on reduced models (DPRM). That reduction is achieved by imaginarily considering causes of the probabilistic behavior of a system, and then cutting off some causes with low occurring probabilities. In computational illustrations, VI, DPRM, and the real-time Q-learning method (RTQ) are applied to elevator operation problems, which can be modeled by using Markov decision processes. The results show that DPRM can compute quasi-optimal value functions which bring more effective allocations of elevators than value functions by RTQ in less computational times than VI. This characteristic is notable when the traffic pattern is complicated.

  20. Using Variational Inference and MapReduce to Scale Topic Modeling

    CERN Document Server

    Zhai, Ke; Asadi, Nima

    2011-01-01

    Latent Dirichlet Allocation (LDA) is a popular topic modeling technique for exploring document collections. Because of the increasing prevalence of large datasets, there is a need to improve the scalability of inference of LDA. In this paper, we propose a technique called ~\\emph{MapReduce LDA} (Mr. LDA) to accommodate very large corpus collections in the MapReduce framework. In contrast to other techniques to scale inference for LDA, which use Gibbs sampling, we use variational inference. Our solution efficiently distributes computation and is relatively simple to implement. More importantly, this variational implementation, unlike highly tuned and specialized implementations, is easily extensible. We demonstrate two extensions of the model possible with this scalable framework: informed priors to guide topic discovery and modeling topics from a multilingual corpus.

  1. POD-Galerkin reduced-order modeling with adaptive finite element snapshots

    Science.gov (United States)

    Ullmann, Sebastian; Rotkvic, Marko; Lang, Jens

    2016-11-01

    We consider model order reduction by proper orthogonal decomposition (POD) for parametrized partial differential equations, where the underlying snapshots are computed with adaptive finite elements. We address computational and theoretical issues arising from the fact that the snapshots are members of different finite element spaces. We propose a method to create a POD-Galerkin model without interpolating the snapshots onto their common finite element mesh. The error of the reduced-order solution is not necessarily Galerkin orthogonal to the reduced space created from space-adapted snapshot. We analyze how this influences the error assessment for POD-Galerkin models of linear elliptic boundary value problems. As a numerical example we consider a two-dimensional convection-diffusion equation with a parametrized convective direction. To illustrate the applicability of our techniques to non-linear time-dependent problems, we present a test case of a two-dimensional viscous Burgers equation with parametrized initial data.

  2. Building Accurate 3D Spatial Networks to Enable Next Generation Intelligent Transportation Systems

    DEFF Research Database (Denmark)

    Kaul, Manohar; Yang, Bin; Jensen, Christian S.

    2013-01-01

    model with elevation information extracted from massive aerial laser scan data and thus yields an accurate 3D model. We present a filtering technique that is capable of pruning irrelevant laser scan points in a single pass, but assumes that the 2D network fits in internal memory and that the points......The use of accurate 3D spatial network models can enable substantial improvements in vehicle routing. Notably, such models enable eco-routing, which reduces the environmental impact of transportation. We propose a novel filtering and lifting framework that augments a standard 2D spatial network...

  3. Reduced models accounting for parallel magnetic perturbations: gyrofluid and finite Larmor radius-Landau fluid approaches

    Science.gov (United States)

    Tassi, E.; Sulem, P. L.; Passot, T.

    2016-12-01

    Reduced models are derived for a strongly magnetized collisionless plasma at scales which are large relative to the electron thermal gyroradius and in two asymptotic regimes. One corresponds to cold ions and the other to far sub-ion scales. By including the electron pressure dynamics, these models improve the Hall reduced magnetohydrodynamics (MHD) and the kinetic Alfvén wave model of Boldyrev et al. (2013 Astrophys. J., vol. 777, 2013, p. 41), respectively. We show that the two models can be obtained either within the gyrofluid formalism of Brizard (Phys. Fluids, vol. 4, 1992, pp. 1213-1228) or as suitable weakly nonlinear limits of the finite Larmor radius (FLR)-Landau fluid model of Sulem and Passot (J. Plasma Phys., vol 81, 2015, 325810103) which extends anisotropic Hall MHD by retaining low-frequency kinetic effects. It is noticeable that, at the far sub-ion scales, the simplifications originating from the gyroaveraging operators in the gyrofluid formalism and leading to subdominant ion velocity and temperature fluctuations, correspond, at the level of the FLR-Landau fluid, to cancellation between hydrodynamic contributions and ion finite Larmor radius corrections. Energy conservation properties of the models are discussed and an explicit example of a closure relation leading to a model with a Hamiltonian structure is provided.

  4. Hydro-economic Modeling: Reducing the Gap between Large Scale Simulation and Optimization Models

    Science.gov (United States)

    Forni, L.; Medellin-Azuara, J.; Purkey, D.; Joyce, B. A.; Sieber, J.; Howitt, R.

    2012-12-01

    The integration of hydrological and socio economic components into hydro-economic models has become essential for water resources policy and planning analysis. In this study we integrate the economic value of water in irrigated agricultural production using SWAP (a StateWide Agricultural Production Model for California), and WEAP (Water Evaluation and Planning System) a climate driven hydrological model. The integration of the models is performed using a step function approximation of water demand curves from SWAP, and by relating the demand tranches to the priority scheme in WEAP. In order to do so, a modified version of SWAP was developed called SWEAP that has the Planning Area delimitations of WEAP, a Maximum Entropy Model to estimate evenly sized steps (tranches) of water derived demand functions, and the translation of water tranches into crop land. In addition, a modified version of WEAP was created called ECONWEAP with minor structural changes for the incorporation of land decisions from SWEAP and series of iterations run via an external VBA script. This paper shows the validity of this integration by comparing revenues from WEAP vs. ECONWEAP as well as an assessment of the approximation of tranches. Results show a significant increase in the resulting agricultural revenues for our case study in California's Central Valley using ECONWEAP while maintaining the same hydrology and regional water flows. These results highlight the gains from allocating water based on its economic compared to priority-based water allocation systems. Furthermore, this work shows the potential of integrating optimization and simulation-based hydrologic models like ECONWEAP.ercentage difference in total agricultural revenues (EconWEAP versus WEAP).

  5. Reducing Ambulance Diversion at Hospital and Regional Levels: Systemic Review of Insights from Simulation Models

    Directory of Open Access Journals (Sweden)

    M Kit Delgado

    2013-09-01

    Full Text Available Introduction: Optimal solutions for reducing diversion without worsening emergency department (ED crowding are unclear. We performed a systematic review of published simulation studies to identify: 1 the tradeoff between ambulance diversion and ED wait times; 2 the predicted impact of patient flow interventions on reducing diversion; and 3 the optimal regional strategy for reducing diversion.Methods: Data Sources: Systematic review of articles using MEDLINE, Inspec, Scopus. Additional studies identified through bibliography review, Google Scholar, and scientific conference proceedings. Study Selection: Only simulations modeling ambulance diversion as a result of ED crowding or inpatient capacity problems were included. Data extraction: Independent extraction by two authors using predefined data fields.Results: We identified 5,116 potentially relevant records; 10 studies met inclusion criteria. In models that quantified the relationship between ED throughput times and diversion, diversion was found to only minimally improve ED waiting room times. Adding holding units for inpatient boarders and ED-based fast tracks, improving lab turnaround times, and smoothing elective surgery caseloads were found to reduce diversion considerably. While two models found a cooperative agreement between hospitals is necessary to prevent defensive diversion behavior by a hospital when a nearby hospital goes on diversion, one model found there may be more optimal solutions for reducing region wide wait times than a regional ban on diversion.Conclusion: Smoothing elective surgery caseloads, adding ED fast tracks as well as holding units for inpatient boarders, improving ED lab turnaround times, and implementing regional cooperative agreements among hospitals. [West J Emerg Med. 2013;14(5:489-498.

  6. Escitalopram reduces increased hippocampal cytogenesis in a genetic rat depression model

    DEFF Research Database (Denmark)

    Petersén, Asa; Wörtwein, Gitta; Gruber, Susanne H M

    2008-01-01

    ) reduced by escitalopram treatment in maternally separated animals to the level found in non-separated animals. These results argue against the prevailing hypothesis that adult cytogenesis is reduced in depression and that the common mechanism underlying antidepressant treatments is to increase adult...... cytogenesis. The results also point to the importance of using a disease model and not healthy animals for testing effects of potential treatments for human depression and suggest other cellular mechanisms of action than those that had previously been proposed for escitalopram....

  7. Reduced-Order Dynamic Modeling, Fouling Detection, and Optimal Control of Solar-Powered Direct Contact Membrane Distillation

    KAUST Repository

    Karam, Ayman M.

    2016-12-01

    Membrane Distillation (MD) is an emerging sustainable desalination technique. While MD has many advantages and can be powered by solar thermal energy, its main drawback is the low water production rate. However, the MD process has not been fully optimized in terms of its manipulated and controlled variables. This is largely due to the lack of adequate dynamic models to study and simulate the process. In addition, MD is prone to membrane fouling, which is a fault that degrades the performance of the MD process. This work has three contributions to address these challenges. First, we derive a mathematical model of Direct Contact Membrane Distillation (DCMD), which is the building block for the next parts. Then, the proposed model is extended to account for membrane fouling and an observer-based fouling detection method is developed. Finally, various control strategies are implemented to optimize the performance of the DCMD solar-powered process. In part one, a reduced-order dynamic model of DCMD is developed based on lumped capacitance method and electrical analogy to thermal systems. The result is an electrical equivalent thermal network to the DCMD process, which is modeled by a system of nonlinear differential algebraic equations (DAEs). This model predicts the water-vapor flux and the temperature distribution along the module length. Experimental data is collected to validate the steady-state and dynamic responses of the proposed model, with great agreement demonstrated in both. The second part proposes an extension of the model to account for membrane fouling. An adaptive observer for DAE systems is developed and convergence proof is presented. A method for membrane fouling detection is then proposed based on adaptive observers. Simulation results demonstrate the performance of the membrane fouling detection method. Finally, an optimization problem is formulated to maximize the process efficiency of a solar-powered DCMD. The adapted method is known as Extremum

  8. A Peptide to Reduce Pulmonary Edema in a Rat Model of Lung Transplantation

    Science.gov (United States)

    Finsterwalder, Richard; Friedl, Heinz P.; Rauscher, Sabine; Gröger, Marion; Kocher, Alfred; Wagner, Christine; Wagner, Stephan N.; Fischer, Gottfried; Schultz, Marcus J.; Wiedemann, Dominik; Petzelbauer, Peter

    2015-01-01

    Background Despite significant advances in organ preservation, surgical techniques and perioperative care, primary graft dysfunction is a serious medical problem in transplantation medicine in general and a specific problem in patients undergoing lung transplantation. As a result, patients develop lung edema, causing reduced tissue oxygenation capacity, reduced lung compliance and increased requirements for mechanical ventilatory support. Yet, there is no effective strategy available to protect the grafted organ from stress reactions induced by ischemia/reperfusion and by the surgical procedure itself. Methods We assessed the effect of a cingulin-derived peptide, XIB13 or a random peptide in an established rat model of allogeneic lung transplantation. Donor lungs and recipients received therapeutic peptide at the time of transplantation and outcome was analyzed 100min and 28 days post grafting. Results XIB13 improved blood oxygenation and reduced vascular leak 100min post grafting. Even after 28 days, lung edema was significantly reduced by XIB13 and lungs had reduced fibrotic or necrotic zones. Moreover, the induction of an allogeneic T cell response was delayed indicating a reduced antigen exchange between the donor and the host. Conclusions In summary, we provide a new tool to strengthen endothelial barrier function thereby improving outcomes in lung transplantation. PMID:26536466

  9. A Peptide to Reduce Pulmonary Edema in a Rat Model of Lung Transplantation.

    Directory of Open Access Journals (Sweden)

    Klaudia Schossleitner

    Full Text Available Despite significant advances in organ preservation, surgical techniques and perioperative care, primary graft dysfunction is a serious medical problem in transplantation medicine in general and a specific problem in patients undergoing lung transplantation. As a result, patients develop lung edema, causing reduced tissue oxygenation capacity, reduced lung compliance and increased requirements for mechanical ventilatory support. Yet, there is no effective strategy available to protect the grafted organ from stress reactions induced by ischemia/reperfusion and by the surgical procedure itself.We assessed the effect of a cingulin-derived peptide, XIB13 or a random peptide in an established rat model of allogeneic lung transplantation. Donor lungs and recipients received therapeutic peptide at the time of transplantation and outcome was analyzed 100min and 28 days post grafting.XIB13 improved blood oxygenation and reduced vascular leak 100min post grafting. Even after 28 days, lung edema was significantly reduced by XIB13 and lungs had reduced fibrotic or necrotic zones. Moreover, the induction of an allogeneic T cell response was delayed indicating a reduced antigen exchange between the donor and the host.In summary, we provide a new tool to strengthen endothelial barrier function thereby improving outcomes in lung transplantation.

  10. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models

    Directory of Open Access Journals (Sweden)

    Minmin Li

    2015-01-01

    Full Text Available The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2 and cyclooxygenase- (COX- 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models.

  11. Development of a model to assess acoustic treatments to reduce railway noise

    Science.gov (United States)

    Jeong, H.; Squicciarini, G.; Thompson, D. J.; Ryue, J.

    2016-09-01

    Porous materials have recently been used in absorptive treatments around railway tracks to reduce noise emissions. To investigate the effect of porous materials, a finite element model has been developed. 2D models for porous materials have been considered either as an equivalent fluid or as a poroelastic material based on the Biot theory. The two models have been validated and compared with each other to check the effect of the skeleton vibration. The poroelastic FE model has been coupled with a 2D acoustic boundary element model for use in railway applications. The results show that it may be necessary to include the frame vibration, especially at low frequencies where a frame resonance occurs. A method for the characterization of porous materials is also discussed. From this it is shown that the elastic properties of the material determine the resonance frequency and the magnitude.

  12. Stochastic stability analysis of a reduced galactic dynamo model with perturbed α-effect

    Science.gov (United States)

    Kelly, Cónall

    2016-09-01

    We investigate the asymptotic behaviour of a reduced αΩ-dynamo model of magnetic field generation in spiral galaxies where fluctuation in the α-effect results in a system with state-dependent stochastic perturbations. By computing the upper Lyapunov exponent of the linearised model, we can identify regions of instability and stability in probability for the equilibrium of the nonlinear model; in this case the equilibrium solution corresponds to a magnetic field that has undergone catastrophic quenching. These regions are compared to regions of exponential mean-square stability and regions of sub- and super-criticality in the unperturbed linearised model. Prior analysis in the literature which focuses on these latter regions does not adequately address the corresponding transition in the nonlinear stochastic model. Finally we provide a visual representation of the influence of drift non-normality and perturbation intensity on these regions.

  13. Mixture experiment techniques for reducing the number of components applied for modeling waste glass sodium release

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, G.; Redgate, T. [Pacific Northwest National Lab., Richland, WA (United States). Statistics Group

    1997-12-01

    Statistical mixture experiment techniques were applied to a waste glass data set to investigate the effects of the glass components on Product Consistency Test (PCT) sodium release (NR) and to develop a model for PCT NR as a function of the component proportions. The mixture experiment techniques indicate that the waste glass system can be reduced from nine to four components for purposes of modeling PCT NR. Empirical mixture models containing four first-order terms and one or two second-order terms fit the data quite well, and can be used to predict the NR of any glass composition in the model domain. The mixture experiment techniques produce a better model in less time than required by another approach.

  14. Optimization of a Reduced Chemical Kinetic Model for HCCI Engine Simulations by Micro-Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A reduced chemical kinetic model (44 species and 72 reactions) for the homogeneous charge compression ignition (HCCI) combustion of n-heptane was optimized to improve its autoignition predictions under different engine operating conditions. The seven kinetic parameters of the optimized model were determined by using the combination of a micro-genetic algorithm optimization methodology and the SENKIN program of CHEMKIN chemical kinetics software package. The optimization was performed within the range of equivalence ratios 0.2-1.2, initial temperature 310-375 K and initial pressure 0.1-0.3 MPa. The engine simulations show that the optimized model agrees better with the detailed chemical kinetic model (544 species and 2 446 reactions) than the original model does.

  15. Reducing biases in regional climate downscaling by applying Bayesian model averaging on large-scale forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongwei [APEC Climate Center, Busan (Korea, Republic of); Wang, Bin [University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Wang, Bin [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China)

    2012-11-15

    Reduction of uncertainty in large-scale lateral-boundary forcing in regional climate modeling is a critical issue for improving the performance of regional climate downscaling. Numerical simulations of 1998 East Asian summer monsoon were conducted using the Weather Research and Forecast model forced by four different reanalysis datasets, their equal-weight ensemble, and Bayesian model averaging (BMA) ensemble means. Large discrepancies were found among experiments forced by the four individual reanalysis datasets mainly due to the uncertainties in the moisture field of large-scale forcing over ocean. We used satellite water-vapor-path data as observed truth-and-training data to determine the posterior probability (weight) for each forcing dataset using the BMA method. The experiment forced by the equal-weight ensemble reduced the circulation biases significantly but reduced the precipitation biases only moderately. However, the experiment forced by the BMA ensemble outperformed not only the experiments forced by individual reanalysis datasets but also the equal-weight ensemble experiment in simulating the seasonal mean circulation and precipitation. These results suggest that the BMA ensemble method is an effective method for reducing the uncertainties in lateral-boundary forcing and improving model performance in regional climate downscaling. (orig.)

  16. Construction of reduced transport model by gyro-kinetic simulation with kinetic electrons in helical plasmas

    Science.gov (United States)

    Toda, S.; Nakata, M.; Nunami, M.; Ishizawa, A.; Watanabe, T.-H.; Sugama, H.

    2016-10-01

    A reduced model of the turbulent ion heat diffusivity is proposed by the gyrokinetic simulation code (GKV-X) with the adiabatic electrons for the high-Ti Large Helical Device discharge. The plasma parameter region of the short poloidal wavelength is studied, where the ion temperature gradient mode becomes unstable. The ion heat diffusivity by the nonlinear simulation with the kinetic electrons is found to be several times larger than the simulation results using the adiabatic electrons in the radial region 0.46 ion energy flux. The model of the turbulent diffusivity is derived as the function of the squared electrostatic potential fluctuation and the squared zonal flow potential. Next, the squared electrostatic potential fluctuation is approximated with the mixing length estimate. The squared zonal flow potential fluctuation is shown as the linear zonal flow response function. The reduced model of the turbulent diffusivity is derived as the function of the physical parameters by the linear GKV-X simulation with the kinetic electrons. This reduced model is applied to the transport code with the same procedure as.

  17. Modeling of the Propagation of Seismic Waves in Non-Classical Media: Reduced Cosserat Continuum

    Science.gov (United States)

    Grekova, E.; Kulesh, M.; Herman, G.; Shardakov, I.

    2006-12-01

    In rock mechanics, elastic wave propagation is usually modeled in terms of classical elasticity. There are situations, however, when rock behaviour is still elastic but cannot be described by the classical model. In particular, current effective medium theories, based on classical elasticity, do not properly describe strong dispersive or attenuative behaviour of wave propagation observed sometimes. The approach we have taken to address this problem is to introduce supplementary and independent degrees of freedom of material particles, in our case rotational ones. Various models of this kind are widely used in continuum mechanics: Cosserat theory, micropolar model of Eringen, Cosserat pseudocontinuum, reduced Cosserat continuum etc. We have considered the reduced Cosserat medium where the couple stress is zero, while the rotation vector is independent of the translational displacement. In this model, the stress depends on the rotation of a particle relatively to the background continuum of mass centers, but it does not depend on the relative rotation of two neighboring particles. This model seems to be adequate for the description of granular media, consolidated soils, and rocks with inhomogeneous microstructure. A real inhomogeneous medium is considered as effective homogeneous enriched continuum, where proper rotational dynamics of inhomogeneities are taken into account by means of rotation of a particle of the enriched continuum. We have obtained and analyzed theoretical solutions for this model describing the propagation of body waves and surface waves. We have shown both the dispersive character of these waves in elastic space and half space, and the existence of forbidden frequency zones. These results can be used for the preparation, execution, and interpretation of seismic experiments, which would allow one to determine whether (and in which situations) polar theories are important in rock mechanics, and to help with the identification of material parameters

  18. Efficient Accurate Context-Sensitive Anomaly Detection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For program behavior-based anomaly detection, the only way to ensure accurate monitoring is to construct an efficient and precise program behavior model. A new program behavior-based anomaly detection model,called combined pushdown automaton (CPDA) model was proposed, which is based on static binary executable analysis. The CPDA model incorporates the optimized call stack walk and code instrumentation technique to gain complete context information. Thereby the proposed method can detect more attacks, while retaining good performance.

  19. Reduced Order Models of a Current Source Inverter Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    Ibrahim K. Al-Abbas

    2009-01-01

    Full Text Available Problem Statement: The current source inverter induction motor (CSI-IM drive was widely used in various industries. The main disadvantage of this drive was nonlinearity and complexity. This work was done to develop a simple drive systems models. Approach: The MATLAB/SIMULINK software was used for system modeling. Three reduced models were developed by choosing specific frame, neglecting stator transients and ignoring stator equations. Results: The dynamic performance of the models was examined in open loop form for a step change in control variable (the input voltage as well as for step change in disturbance (mechanical load.Conclusion: The three models were equivalent in steady state. The error of these models in the transient response was less than 5 %, with the exception of the time performances of the transient model to step change of supply voltage. Recommendations: All three models were suggested to be used for designing torque control systems. The detailed and stator equation models were recommended to be used in speed control design.

  20. Charging and discharging tests for obtaining an accurate dynamic electro-thermal model of high power lithium-ion pack system for hybrid and EV applications

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Camacho, Oscar Mauricio Forero; Nørgård, Per Bromand

    2013-01-01

    circuit model, based on the runtime battery model and the Thevenin circuit model, with parameters obtained from the tests and depending on SOC, current and temperature has been implemented in MATLAB/Simulink and Power Factory. A good alignment between simulations and measurements has been found....