WorldWideScience

Sample records for accurate protein identification

  1. Rapid identification of sequences for orphan enzymes to power accurate protein annotation.

    Directory of Open Access Journals (Sweden)

    Kevin R Ramkissoon

    Full Text Available The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the "back catalog" of enzymology--"orphan enzymes," those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC database alone. In this study, we demonstrate how this orphan enzyme "back catalog" is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology's "back catalog" another powerful tool to drive accurate genome annotation.

  2. Rapid Identification of Sequences for Orphan Enzymes to Power Accurate Protein Annotation

    Science.gov (United States)

    Ojha, Sunil; Watson, Douglas S.; Bomar, Martha G.; Galande, Amit K.; Shearer, Alexander G.

    2013-01-01

    The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the “back catalog” of enzymology – “orphan enzymes,” those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme “back catalog” is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology’s “back catalog” another powerful tool to drive accurate genome annotation. PMID:24386392

  3. Towards an accurate bioimpedance identification

    Science.gov (United States)

    Sanchez, B.; Louarroudi, E.; Bragos, R.; Pintelon, R.

    2013-04-01

    This paper describes the local polynomial method (LPM) for estimating the time-invariant bioimpedance frequency response function (FRF) considering both the output-error (OE) and the errors-in-variables (EIV) identification framework and compare it with the traditional cross— and autocorrelation spectral analysis techniques. The bioimpedance FRF is measured with the multisine electrical impedance spectroscopy (EIS) technique. To show the overwhelming accuracy of the LPM approach, both the LPM and the classical cross— and autocorrelation spectral analysis technique are evaluated through the same experimental data coming from a nonsteady-state measurement of time-varying in vivo myocardial tissue. The estimated error sources at the measurement frequencies due to noise, σnZ, and the stochastic nonlinear distortions, σZNL, have been converted to Ω and plotted over the bioimpedance spectrum for each framework. Ultimately, the impedance spectra have been fitted to a Cole impedance model using both an unweighted and a weighted complex nonlinear least square (CNLS) algorithm. A table is provided with the relative standard errors on the estimated parameters to reveal the importance of which system identification frameworks should be used.

  4. HIPPI: highly accurate protein family classification with ensembles of HMMs

    Directory of Open Access Journals (Sweden)

    Nam-phuong Nguyen

    2016-11-01

    Full Text Available Abstract Background Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics. Results We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification. HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy. Conclusion HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp .

  5. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology

    Directory of Open Access Journals (Sweden)

    Jieru Zhang

    2016-01-01

    Full Text Available Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram, have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.

  6. [A accurate identification method for Chinese materia medica--systematic identification of Chinese materia medica].

    Science.gov (United States)

    Wang, Xue-Yong; Liao, Cai-Li; Liu, Si-Qi; Liu, Chun-Sheng; Shao, Ai-Juan; Huang, Lu-Qi

    2013-05-01

    This paper put forward a more accurate identification method for identification of Chinese materia medica (CMM), the systematic identification of Chinese materia medica (SICMM) , which might solve difficulties in CMM identification used the ordinary traditional ways. Concepts, mechanisms and methods of SICMM were systematically introduced and possibility was proved by experiments. The establishment of SICMM will solve problems in identification of Chinese materia medica not only in phenotypic characters like the mnorphous, microstructure, chemical constituents, but also further discovery evolution and classification of species, subspecies and population in medical plants. The establishment of SICMM will improve the development of identification of CMM and create a more extensive study space.

  7. Accurate computational design of multipass transmembrane proteins.

    Science.gov (United States)

    Lu, Peilong; Min, Duyoung; DiMaio, Frank; Wei, Kathy Y; Vahey, Michael D; Boyken, Scott E; Chen, Zibo; Fallas, Jorge A; Ueda, George; Sheffler, William; Mulligan, Vikram Khipple; Xu, Wenqing; Bowie, James U; Baker, David

    2018-03-02

    The computational design of transmembrane proteins with more than one membrane-spanning region remains a major challenge. We report the design of transmembrane monomers, homodimers, trimers, and tetramers with 76 to 215 residue subunits containing two to four membrane-spanning regions and up to 860 total residues that adopt the target oligomerization state in detergent solution. The designed proteins localize to the plasma membrane in bacteria and in mammalian cells, and magnetic tweezer unfolding experiments in the membrane indicate that they are very stable. Crystal structures of the designed dimer and tetramer-a rocket-shaped structure with a wide cytoplasmic base that funnels into eight transmembrane helices-are very close to the design models. Our results pave the way for the design of multispan membrane proteins with new functions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Accurate simulation of protein dynamics in solution

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, M.; Sharon, R. (Weizmann Institute of Science, Rehovot (Israel))

    1988-10-01

    Simulation of the molecular dynamics of a small protein, bovine pancreatic trypsin inhibitor, was found to be more realistic when water molecules were included than when in vacuo: the time-averaged structure was much more like that observed in high-resolution x-ray studies, the amplitudes of atomic vibration in solution were smaller, and fewer incorrect hydrogen bonds were formed. The authors approach, which provides a sound basis for reliable simulation of diverse properties of biological macromolecules in solution, uses atom-centered forces and classical mechanics.

  9. DOMAC: an accurate, hybrid protein domain prediction server

    OpenAIRE

    Cheng, Jianlin

    2007-01-01

    Protein domain prediction is important for protein structure prediction, structure determination, function annotation, mutagenesis analysis and protein engineering. Here we describe an accurate protein domain prediction server (DOMAC) combining both template-based and ab initio methods. The preliminary version of the server was ranked among the top domain prediction servers in the seventh edition of Critical Assessment of Techniques for Protein Structure Prediction (CASP7), 2006. DOMAC server...

  10. Ultraviolet-Fluorescent Tattoo Facilitates Accurate Identification of Biopsy Sites.

    Science.gov (United States)

    Russell, Kathryn; Schleichert, Rachel; Baum, Bertha; Villacorta, Miguel; Hardigan, Patrick; Thomas, Jacqueline; Weiss, Eduardo

    2015-11-01

    Cutaneous biopsy sites are often difficult to discern or are frequently misidentified when patients present for the treatment of skin cancers. This frustrating situation can lead to delays in treatment and wrong site surgeries. Current methods aiming to prevent this situation are not perfect. This study seeks to determine the efficacy of ultraviolet-fluorescent tattoos in facilitating the correct identification of suspected nonmelanoma skin cancer biopsy sites. In this prospective cohort, 51 shave biopsy sites were tattooed with ultraviolet-fluorescent ink in a series of 31 patients suspected of having a cutaneous malignancy. At the time of follow-up, the ability of the patient and the physician to identify the correct site with and without ultraviolet illumination of the tattoo was recorded. Visibility of the tattoo was graded before and after treatment. Patients could not positively identify their biopsy site in 35% of cases. In 7% of cases, physicians could not confidently identify the site without the aid of ultraviolet illumination. In conjunction with tattoo illumination, physicians confidently identified the site in 100% of the cases. No adverse events occurred. Ultraviolet-fluorescent tattoos offer a safe and reliable means of accurately marking cutaneous biopsy sites.

  11. FragBag, an accurate representation of protein structure, retrieves structural neighbors from the entire PDB quickly and accurately.

    Science.gov (United States)

    Budowski-Tal, Inbal; Nov, Yuval; Kolodny, Rachel

    2010-02-23

    Fast identification of protein structures that are similar to a specified query structure in the entire Protein Data Bank (PDB) is fundamental in structure and function prediction. We present FragBag: An ultrafast and accurate method for comparing protein structures. We describe a protein structure by the collection of its overlapping short contiguous backbone segments, and discretize this set using a library of fragments. Then, we succinctly represent the protein as a "bags-of-fragments"-a vector that counts the number of occurrences of each fragment-and measure the similarity between two structures by the similarity between their vectors. Our representation has two additional benefits: (i) it can be used to construct an inverted index, for implementing a fast structural search engine of the entire PDB, and (ii) one can specify a structure as a collection of substructures, without combining them into a single structure; this is valuable for structure prediction, when there are reliable predictions only of parts of the protein. We use receiver operating characteristic curve analysis to quantify the success of FragBag in identifying neighbor candidate sets in a dataset of over 2,900 structures. The gold standard is the set of neighbors found by six state of the art structural aligners. Our best FragBag library finds more accurate candidate sets than the three other filter methods: The SGM, PRIDE, and a method by Zotenko et al. More interestingly, FragBag performs on a par with the computationally expensive, yet highly trusted structural aligners STRUCTAL and CE.

  12. Accurate prediction of peptide binding sites on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Evangelia Petsalaki

    2009-03-01

    Full Text Available Many important protein-protein interactions are mediated by the binding of a short peptide stretch in one protein to a large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins for which a three-dimensional structure is available (either known experimentally or readily modeled but where no structure of the protein-peptide complex is known. To address this gap, we present an approach that can accurately predict peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a putative or predicted peptide partner will bind. We used known protein-peptide complexes to derive preferences, in the form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly discovered peptides mediating critical events in biology.

  13. Legislative Ambiguity and the Accurate Identification of Seriously Emotionally Disturbed.

    Science.gov (United States)

    Ostrander, Rick; And Others

    1988-01-01

    Surveyed school psychologists (N=127) practicing under three types of state criteria used in identifying children as seriously emotionally disturbed (SED) to determine the legal accuracy of their identifications of 12 behavioral descriptions of specific disorders. Found considerable differences in the perceptions of school psychology personnel.…

  14. Accurate identification of fear facial expressions predicts prosocial behavior.

    Science.gov (United States)

    Marsh, Abigail A; Kozak, Megan N; Ambady, Nalini

    2007-05-01

    The fear facial expression is a distress cue that is associated with the provision of help and prosocial behavior. Prior psychiatric studies have found deficits in the recognition of this expression by individuals with antisocial tendencies. However, no prior study has shown accuracy for recognition of fear to predict actual prosocial or antisocial behavior in an experimental setting. In 3 studies, the authors tested the prediction that individuals who recognize fear more accurately will behave more prosocially. In Study 1, participants who identified fear more accurately also donated more money and time to a victim in a classic altruism paradigm. In Studies 2 and 3, participants' ability to identify the fear expression predicted prosocial behavior in a novel task designed to control for confounding variables. In Study 3, accuracy for recognizing fear proved a better predictor of prosocial behavior than gender, mood, or scores on an empathy scale.

  15. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    Directory of Open Access Journals (Sweden)

    Xin Deng

    2015-07-01

    Full Text Available Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  16. Towards accurate modeling of noncovalent interactions for protein rigidity analysis.

    Science.gov (United States)

    Fox, Naomi; Streinu, Ileana

    2013-01-01

    Protein rigidity analysis is an efficient computational method for extracting flexibility information from static, X-ray crystallography protein data. Atoms and bonds are modeled as a mechanical structure and analyzed with a fast graph-based algorithm, producing a decomposition of the flexible molecule into interconnected rigid clusters. The result depends critically on noncovalent atomic interactions, primarily on how hydrogen bonds and hydrophobic interactions are computed and modeled. Ongoing research points to the stringent need for benchmarking rigidity analysis software systems, towards the goal of increasing their accuracy and validating their results, either against each other and against biologically relevant (functional) parameters. We propose two new methods for modeling hydrogen bonds and hydrophobic interactions that more accurately reflect a mechanical model, without being computationally more intensive. We evaluate them using a novel scoring method, based on the B-cubed score from the information retrieval literature, which measures how well two cluster decompositions match. To evaluate the modeling accuracy of KINARI, our pebble-game rigidity analysis system, we use a benchmark data set of 20 proteins, each with multiple distinct conformations deposited in the Protein Data Bank. Cluster decompositions for them were previously determined with the RigidFinder method from Gerstein's lab and validated against experimental data. When KINARI's default tuning parameters are used, an improvement of the B-cubed score over a crude baseline is observed in 30% of this data. With our new modeling options, improvements were observed in over 70% of the proteins in this data set. We investigate the sensitivity of the cluster decomposition score with case studies on pyruvate phosphate dikinase and calmodulin. To substantially improve the accuracy of protein rigidity analysis systems, thorough benchmarking must be performed on all current systems and future

  17. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Zheng-Wei Li

    2016-08-01

    Full Text Available Protein-protein interactions (PPIs occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research.

  18. Rapid and Accurate Identification of Adulterants via an Electronic Nose and DNA Identification Platform: Identification of Fake Velvet Antlers as an Example

    OpenAIRE

    Guojie Xu; Chunsheng Liu; Caili Liao; Xiaolei Ren; Xinyue Zhang; Xiaorui Fu; Xueyong Wang

    2016-01-01

    Background. Adulterants in Chinese medicines had always affected the efficacy of Chinese medicines and resulted in safety problems in drug use. We aimed to take the identification of fake velvet antlers as an example for establishment of a rapid and accurate identification platform for modern pharmaceutical companies and markets of Chinese medicine. Methods. In this study, we developed a novel electronic nose and DNA identification platform for identifying fake velvet antlers. Electronic nose...

  19. The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Pletscher-Frankild, Sune; Fanini, Lucia

    2013-01-01

    The exponential growth of the biomedical literature is making the need for efficient, accurate text-mining tools increasingly clear. The identification of named biological entities in text is a central and difficult task. We have developed an efficient algorithm and implementation of a dictionary......-based approach to named entity recognition, which we here use to identify names of species and other taxa in text. The tool, SPECIES, is more than an order of magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard corpus and on a new corpus...

  20. Mycobacterium bovis BCG: the importance of an accurate identification in the diagnostic routine

    Directory of Open Access Journals (Sweden)

    Antonella Grottola

    2010-09-01

    Full Text Available M. bovis BCG is used clinically in the immunotherapy treatment of superficial bladder cancer to prevent progression to invasive disease, leading in some cases to a severe localized inflammation or disseminated infections. For this reason, an accurate and early identification of this particular microorganism is clinically relevant.We describe a case-report of bladder cancer with a urine culture-positive for mycobacteria initially diagnosed as MTB complex infection and later identified as BCG disease by molecular methods.

  1. Protein Identification Using Top-Down

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaowen; Sirotkin, Yakov; Shen, Yufeng; Anderson, Gordon A.; Tsai, Yi-Hsuan S.; Ting, Ying S.; Goodlett, David R.; Smith, Richard D.; Bafna, Vineet; Pevzner, Pavel A.

    2012-06-01

    In the last two years, due to advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications (PTMs). We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark MS-Align+ along with PIITA, ProSightPTM and SEQUEST, which were previously used for top-down MS/MS database searches. We demonstrate that MS-Align+ and PIITA significantly increase the number of identified proteins as compared to ProSightPTM and SEQUEST.

  2. Post-Electrophoretic Identification of Oxidized Proteins

    Directory of Open Access Journals (Sweden)

    Conrad Craig

    2000-01-01

    Full Text Available The oxidative modification of proteins has been shown to play a major role in a number of human diseases. However, the ability to identify specific proteins that are most susceptible to oxidative modifications is difficult. Separation of proteins using polyacrylamide gel electrophoresis (PAGE offers the analytical potential for the recovery, amino acid sequencing, and identification of thousands of individual proteins from cells and tissues. We have developed a method to allow underivatized proteins to be electroblotted onto PVDF membranes before derivatization and staining. Since both the protein and oxidation proteins are quantifiable, the specific oxidation index of each protein can be determined. The optimal sequence and conditions for the staining process are (a electrophoresis, (b electroblotting onto PVDF membranes, (c derivatization of carbonyls with 2,4-DNP, (d immunostaining with anti DNP antibody, and (e protein staining with colloidal gold.

  3. Rapid and accurate identification of microorganisms contaminating cosmetic products based on DNA sequence homology.

    Science.gov (United States)

    Fujita, Y; Shibayama, H; Suzuki, Y; Karita, S; Takamatsu, S

    2005-12-01

    The aim of this study was to develop rapid and accurate procedures to identify microorganisms contaminating cosmetic products, based on the identity of the nucleotide sequences of the internal transcribed spacer (ITS) region of the ribosomal RNA coding DNA (rDNA). Five types of microorganisms were isolated from the inner portion of lotion bottle caps, skin care lotions, and cleansing gels. The rDNA ITS region of microorganisms was amplified through the use of colony-direct PCR or ordinal PCR using DNA extracts as templates. The nucleotide sequences of the amplified DNA were determined and subjected to homology search of a publicly available DNA database. Thereby, we obtained DNA sequences possessing high similarity with the query sequences from the databases of all the five organisms analyzed. The traditional identification procedure requires expert skills, and a time period of approximately 1 month to identify the microorganisms. On the contrary, 3-7 days were sufficient to complete all the procedures employed in the current method, including isolation and cultivation of organisms, DNA sequencing, and the database homology search. Moreover, it was possible to develop the skills necessary to perform the molecular techniques required for the identification procedures within 1 week. Consequently, the current method is useful for rapid and accurate identification of microorganisms, contaminating cosmetics.

  4. Accurate assignment of significance to neuropeptide identifications using Monte Carlo k-permuted decoy databases.

    Directory of Open Access Journals (Sweden)

    Malik N Akhtar

    Full Text Available In support of accurate neuropeptide identification in mass spectrometry experiments, novel Monte Carlo permutation testing was used to compute significance values. Testing was based on k-permuted decoy databases, where k denotes the number of permutations. These databases were integrated with a range of peptide identification indicators from three popular open-source database search software (OMSSA, Crux, and X! Tandem to assess the statistical significance of neuropeptide spectra matches. Significance p-values were computed as the fraction of the sequences in the database with match indicator value better than or equal to the true target spectra. When applied to a test-bed of all known manually annotated mouse neuropeptides, permutation tests with k-permuted decoy databases identified up to 100% of the neuropeptides at p-value < 10(-5. The permutation test p-values using hyperscore (X! Tandem, E-value (OMSSA and Sp score (Crux match indicators outperformed all other match indicators. The robust performance to detect peptides of the intuitive indicator "number of matched ions between the experimental and theoretical spectra" highlights the importance of considering this indicator when the p-value was borderline significant. Our findings suggest permutation decoy databases of size 1×105 are adequate to accurately detect neuropeptides and this can be exploited to increase the speed of the search. The straightforward Monte Carlo permutation testing (comparable to a zero order Markov model can be easily combined with existing peptide identification software to enable accurate and effective neuropeptide detection. The source code is available at http://stagbeetle.animal.uiuc.edu/pepshop/MSMSpermutationtesting.

  5. Accurate identification of polyadenylation sites from 3' end deep sequencing using a naive Bayes classifier.

    Science.gov (United States)

    Sheppard, Sarah; Lawson, Nathan D; Zhu, Lihua Julie

    2013-10-15

    3' end processing is important for transcription termination, mRNA stability and regulation of gene expression. To identify 3' ends, most techniques use an oligo-dT primer to construct deep sequencing libraries. However, this approach can lead to identification of artifactual polyadenylation sites due to internal priming in homopolymeric stretches of adenines. Although heuristic filters have been applied in these cases, they typically result in a high proportion of both false-positive and -negative classifications. Therefore, there is a need to develop improved algorithms to better identify mis-priming events in oligo-dT primed sequences. By analyzing sequence features flanking 3' ends derived from oligo-dT-based sequencing, we developed a naïve Bayes classifier to classify them as true or false/internally primed. The resulting algorithm is highly accurate, outperforms previous heuristic filters and facilitates identification of novel polyadenylation sites.

  6. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    Science.gov (United States)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  7. Top-Down Clustering for Protein Subfamily Identification

    Science.gov (United States)

    Costa, Eduardo P.; Vens, Celine; Blockeel, Hendrik

    2013-01-01

    We propose a novel method for the task of protein subfamily identification; that is, finding subgroups of functionally closely related sequences within a protein family. In line with phylogenomic analysis, the method first builds a hierarchical tree using as input a multiple alignment of the protein sequences, then uses a post-pruning procedure to extract clusters from the tree. Differently from existing methods, it constructs the hierarchical tree top-down, rather than bottom-up and associates particular mutations with each division into subclusters. The motivating hypothesis for this method is that it may yield a better tree topology with more accurate subfamily identification as a result and additionally indicates functionally important sites and allows for easy classification of new proteins. A thorough experimental evaluation confirms the hypothesis. The novel method yields more accurate clusters and a better tree topology than the state-of-the-art method SCI-PHY, identifies known functional sites, and identifies mutations that alone allow for classifying new sequences with an accuracy approaching that of hidden Markov models. PMID:23700359

  8. Mechanism for accurate, protein-assisted DNA annealing by Deinococcus radiodurans DdrB.

    Science.gov (United States)

    Sugiman-Marangos, Seiji N; Weiss, Yoni M; Junop, Murray S

    2016-04-19

    Accurate pairing of DNA strands is essential for repair of DNA double-strand breaks (DSBs). How cells achieve accurate annealing when large regions of single-strand DNA are unpaired has remained unclear despite many efforts focused on understanding proteins, which mediate this process. Here we report the crystal structure of a single-strand annealing protein [DdrB (DNA damage response B)] in complex with a partially annealed DNA intermediate to 2.2 Å. This structure and supporting biochemical data reveal a mechanism for accurate annealing involving DdrB-mediated proofreading of strand complementarity. DdrB promotes high-fidelity annealing by constraining specific bases from unauthorized association and only releases annealed duplex when bound strands are fully complementary. To our knowledge, this mechanism provides the first understanding for how cells achieve accurate, protein-assisted strand annealing under biological conditions that would otherwise favor misannealing.

  9. Fast and accurate identification of cryptic and sympatric mayfly species of the Baetis rhodani group.

    Science.gov (United States)

    Bisconti, Roberta; Tenchini, Roberta; Belfiore, Carlo; Nascetti, Giuseppe; Canestrelli, Daniele

    2018-01-08

    Species of the Baetis rhodani group are among the most widespread mayflies of the Palearctic region. However, frequent occurrence of morphologically cryptic species complicates the identification of sympatric species. Here, we proposed and tested a method for the fast, accurate, and cost-effective assignment of a large number of individuals to their putative species, based on high resolution melting profiles of a standard mitochondrial gene fragment. We tested this method using a system of three recently identified cryptic species inhabiting the Tyrrhenian Islands (western Mediterranean basin). Highly species-specific high resolution melting profiles were obtained, allowing the unequivocal attribution of each individual to the respective species. This assay provides a convenient and easily customizable alternative to traditional barcoding approaches, provided that the mayfly taxa occurring within the geographic area of interest have been previously identified and their high resolution melting profiles assessed.

  10. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: identification of ethoxylated surfactants.

    Science.gov (United States)

    Thurman, E Michael; Ferrer, Imma; Blotevogel, Jens; Borch, Thomas

    2014-10-07

    Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3-EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly and doubly charged forms. A structural model of adduct formation is presented, and binding constants are calculated, which is based on a spherical cagelike conformation, where the central cation (NH4(+) or Na(+)) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over 500 accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate "fingerprinting", in a first application to monitor water quality that results from fluids used in hydraulic fracturing.

  11. PlantLoc: an accurate web server for predicting plant protein subcellular localization by substantiality motif

    OpenAIRE

    Tang, Shengnan; Li, Tonghua; Cong, Peisheng; Xiong, Wenwei; Wang, Zhiheng; Sun, Jiangming

    2013-01-01

    Knowledge of subcellular localizations (SCLs) of plant proteins relates to their functions and aids in understanding the regulation of biological processes at the cellular level. We present PlantLoc, a highly accurate and fast webserver for predicting the multi-label SCLs of plant proteins. The PlantLoc server has two innovative characters: building localization motif libraries by a recursive method without alignment and Gene Ontology information; and establishing simple architecture for rapi...

  12. An accurate and efficient identification of children with psychosocial problems by means of computerized adaptive testing

    Directory of Open Access Journals (Sweden)

    Reijneveld Symen A

    2011-08-01

    Full Text Available Abstract Background Questionnaires used by health services to identify children with psychosocial problems are often rather short. The psychometric properties of such short questionnaires are mostly less than needed for an accurate distinction between children with and without problems. We aimed to assess whether a short Computerized Adaptive Test (CAT can overcome the weaknesses of short written questionnaires when identifying children with psychosocial problems. Method We used a Dutch national data set obtained from parents of children invited for a routine health examination by Preventive Child Healthcare with 205 items on behavioral and emotional problems (n = 2,041, response 84%. In a random subsample we determined which items met the requirements of an Item Response Theory (IRT model to a sufficient degree. Using those items, item parameters necessary for a CAT were calculated and a cut-off point was defined. In the remaining subsample we determined the validity and efficiency of a Computerized Adaptive Test using simulation techniques, with current treatment status and a clinical score on the Total Problem Scale (TPS of the Child Behavior Checklist as criteria. Results Out of 205 items available 190 sufficiently met the criteria of the underlying IRT model. For 90% of the children a score above or below cut-off point could be determined with 95% accuracy. The mean number of items needed to achieve this was 12. Sensitivity and specificity with the TPS as a criterion were 0.89 and 0.91, respectively. Conclusion An IRT-based CAT is a very promising option for the identification of psychosocial problems in children, as it can lead to an efficient, yet high-quality identification. The results of our simulation study need to be replicated in a real-life administration of this CAT.

  13. Accurate label-free protein quantitation with high- and low-resolution mass spectrometers.

    Science.gov (United States)

    Krey, Jocelyn F; Wilmarth, Phillip A; Shin, Jung-Bum; Klimek, John; Sherman, Nicholas E; Jeffery, Erin D; Choi, Dongseok; David, Larry L; Barr-Gillespie, Peter G

    2014-02-07

    Label-free quantitation of proteins analyzed by tandem mass spectrometry uses either integrated peak intensity from the parent-ion mass analysis (MS1) or features from fragment-ion analysis (MS2), such as spectral counts or summed fragment-ion intensity. We directly compared MS1 and MS2 quantitation by analyzing human protein standards diluted into Escherichia coli extracts on an Orbitrap mass spectrometer. We found that summed MS2 intensities were nearly as accurate as integrated MS1 intensities, and both outperformed MS2 spectral counting in accuracy and linearity. We compared these results to those obtained from two low-resolution ion-trap mass spectrometers; summed MS2 intensities from LTQ and LTQ Velos instruments were similar in accuracy to those from the Orbitrap. Data from all three instruments are available via ProteomeXchange with identifier PXD000602. Abundance measurements using MS1 or MS2 intensities had limitations, however. While measured protein concentration was on average well-correlated with the known concentration, there was considerable protein-to-protein variation. Moreover, not all human proteins diluted to a mole fraction of 10(-3) or lower were detected, with a strong falloff below 10(-4) mole fraction. These results show that MS1 and MS2 intensities are simple measures of protein abundance that are on average accurate but should be limited to quantitation of proteins of intermediate to higher fractional abundance.

  14. HattCI: Fast and Accurate attC site Identification Using Hidden Markov Models.

    Science.gov (United States)

    Pereira, Mariana Buongermino; Wallroth, Mikael; Kristiansson, Erik; Axelson-Fisk, Marina

    2016-11-01

    Integrons are genetic elements that facilitate the horizontal gene transfer in bacteria and are known to harbor genes associated with antibiotic resistance. The gene mobility in the integrons is governed by the presence of attC sites, which are 55 to 141-nucleotide-long imperfect inverted repeats. Here we present HattCI, a new method for fast and accurate identification of attC sites in large DNA data sets. The method is based on a generalized hidden Markov model that describes each core component of an attC site individually. Using twofold cross-validation experiments on a manually curated reference data set of 231 attC sites from class 1 and 2 integrons, HattCI showed high sensitivities of up to 91.9% while maintaining satisfactory false-positive rates. When applied to a metagenomic data set of 35 microbial communities from different environments, HattCI found a substantially higher number of attC sites in the samples that are known to contain more horizontally transferred elements. HattCI will significantly increase the ability to identify attC sites and thus integron-mediated genes in genomic and metagenomic data. HattCI is implemented in C and is freely available at http://bioinformatics.math.chalmers.se/HattCI .

  15. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    DEFF Research Database (Denmark)

    Stovgaard, Kasper; Andreetta, Christian; Ferkinghoff-Borg, Jesper

    2010-01-01

    CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, Torus......) is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function......, which is paramount for structure determination based on statistical inference. Results: We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids...

  16. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    Directory of Open Access Journals (Sweden)

    Stovgaard Kasper

    2010-08-01

    Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for

  17. Automated protein subfamily identification and classification.

    Directory of Open Access Journals (Sweden)

    Duncan P Brown

    2007-08-01

    Full Text Available Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to

  18. A random protein-creatinine ratio accurately predicts baseline proteinuria in early pregnancy.

    Science.gov (United States)

    Hirshberg, Adi; Draper, Jennifer; Curley, Cara; Sammel, Mary D; Schwartz, Nadav

    2014-12-01

    Data surrounding the use of a random urine protein:creatinine ratio (PCR) in the diagnosis of preeclampsia is conflicting. We sought to determine whether PCR in early pregnancy can replace the 24-hour urine collection as the primary screening test in patients at risk for baseline proteinuria. Women requiring a baseline evaluation for proteinuria supplied a urine sample the morning after their 24-hour collection. The PCR was analyzed as a predictor of significant proteinuria (≥150 mg). A regression equation to estimate the 24-hour protein value from the PCR was then developed. Sixty of 135 subjects enrolled completed the study. The median 24-hour urine protein and PCR were 90 mg (IQR: 50-145) and 0.063 (IQR: 0.039-0.083), respectively. Fifteen patients (25%) had significant proteinuria. PCR was strongly correlated with the 24-hour protein value (r = 0.99, p protein = 46.5 + 904.2*PCR] accurately estimates the actual 24-hour protein (95% CI: ±88 mg). A random urine PCR accurately estimates the 24-hour protein excretion in the first half of pregnancy and can be used as the primary screening test for baseline proteinuria in at-risk patients.

  19. Improved method for rapid and accurate isolation and identification of Streptococcus mutans and Streptococcus sobrinus from human plaque samples.

    Science.gov (United States)

    Villhauer, Alissa L; Lynch, David J; Drake, David R

    2017-08-01

    Mutans streptococci (MS), specifically Streptococcus mutans (SM) and Streptococcus sobrinus (SS), are bacterial species frequently targeted for investigation due to their role in the etiology of dental caries. Differentiation of S. mutans and S. sobrinus is an essential part of exploring the role of these organisms in disease progression and the impact of the presence of either/both on a subject's caries experience. Of vital importance to the study of these organisms is an identification protocol that allows us to distinguish between the two species in an easy, accurate, and timely manner. While conducting a 5-year birth cohort study in a Northern Plains American Indian tribe, the need for a more rapid procedure for isolating and identifying high volumes of MS was recognized. We report here on the development of an accurate and rapid method for MS identification. Accuracy, ease of use, and material and time requirements for morphological differentiation on selective agar, biochemical tests, and various combinations of PCR primers were compared. The final protocol included preliminary identification based on colony morphology followed by PCR confirmation of species identification using primers targeting regions of the glucosyltransferase (gtf) genes of SM and SS. This method of isolation and identification was found to be highly accurate, more rapid than the previous methodology used, and easily learned. It resulted in more efficient use of both time and material resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Tanel Pärnamaa

    2017-05-01

    Full Text Available High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy.

  1. Mass spectrometry allows direct identification of proteins in large genomes

    DEFF Research Database (Denmark)

    Küster, B; Mortensen, Peter V.; Andersen, Jens S.

    2001-01-01

    Proteome projects seek to provide systematic functional analysis of the genes uncovered by genome sequencing initiatives. Mass spectrometric protein identification is a key requirement in these studies but to date, database searching tools rely on the availability of protein sequences derived fro...... genome and allows identification, mapping, cloning and assistance in gene prediction of any protein for which minimal mass spectrometric information can be obtained. Several novel proteins from Arabidopsis thaliana and human have been discovered in this way....

  2. Fast and accurate protein substructure searching with simulated annealing and GPUs

    Directory of Open Access Journals (Sweden)

    Stivala Alex D

    2010-09-01

    Full Text Available Abstract Background Searching a database of protein structures for matches to a query structure, or occurrences of a structural motif, is an important task in structural biology and bioinformatics. While there are many existing methods for structural similarity searching, faster and more accurate approaches are still required, and few current methods are capable of substructure (motif searching. Results We developed an improved heuristic for tableau-based protein structure and substructure searching using simulated annealing, that is as fast or faster and comparable in accuracy, with some widely used existing methods. Furthermore, we created a parallel implementation on a modern graphics processing unit (GPU. Conclusions The GPU implementation achieves up to 34 times speedup over the CPU implementation of tableau-based structure search with simulated annealing, making it one of the fastest available methods. To the best of our knowledge, this is the first application of a GPU to the protein structural search problem.

  3. Accurate refinement of docked protein complexes using evolutionary information and deep learning.

    Science.gov (United States)

    Akbal-Delibas, Bahar; Farhoodi, Roshanak; Pomplun, Marc; Haspel, Nurit

    2016-06-01

    One of the major challenges for protein docking methods is to accurately discriminate native-like structures from false positives. Docking methods are often inaccurate and the results have to be refined and re-ranked to obtain native-like complexes and remove outliers. In a previous work, we introduced AccuRefiner, a machine learning based tool for refining protein-protein complexes. Given a docked complex, the refinement tool produces a small set of refined versions of the input complex, with lower root-mean-square-deviation (RMSD) of atomic positions with respect to the native structure. The method employs a unique ranking tool that accurately predicts the RMSD of docked complexes with respect to the native structure. In this work, we use a deep learning network with a similar set of features and five layers. We show that a properly trained deep learning network can accurately predict the RMSD of a docked complex with 1.40 Å error margin on average, by approximating the complex relationship between a wide set of scoring function terms and the RMSD of a docked structure. The network was trained on 35000 unbound docking complexes generated by RosettaDock. We tested our method on 25 different putative docked complexes produced also by RosettaDock for five proteins that were not included in the training data. The results demonstrate that the high accuracy of the ranking tool enables AccuRefiner to consistently choose the refinement candidates with lower RMSD values compared to the coarsely docked input structures.

  4. Applications of graph theory in protein structure identification.

    Science.gov (United States)

    Yan, Yan; Zhang, Shenggui; Wu, Fang-Xiang

    2011-10-14

    There is a growing interest in the identification of proteins on the proteome wide scale. Among different kinds of protein structure identification methods, graph-theoretic methods are very sharp ones. Due to their lower costs, higher effectiveness and many other advantages, they have drawn more and more researchers' attention nowadays. Specifically, graph-theoretic methods have been widely used in homology identification, side-chain cluster identification, peptide sequencing and so on. This paper reviews several methods in solving protein structure identification problems using graph theory. We mainly introduce classical methods and mathematical models including homology modeling based on clique finding, identification of side-chain clusters in protein structures upon graph spectrum, and de novo peptide sequencing via tandem mass spectrometry using the spectrum graph model. In addition, concluding remarks and future priorities of each method are given.

  5. Accurate Prediction of Contact Numbers for Multi-Spanning Helical Membrane Proteins

    Science.gov (United States)

    Li, Bian; Mendenhall, Jeffrey; Nguyen, Elizabeth Dong; Weiner, Brian E.; Fischer, Axel W.; Meiler, Jens

    2017-01-01

    Prediction of the three-dimensional (3D) structures of proteins by computational methods is acknowledged as an unsolved problem. Accurate prediction of important structural characteristics such as contact number is expected to accelerate the otherwise slow progress being made in the prediction of 3D structure of proteins. Here, we present a dropout neural network-based method, TMH-Expo, for predicting the contact number of transmembrane helix (TMH) residues from sequence. Neuronal dropout is a strategy where certain neurons of the network are excluded from back-propagation to prevent co-adaptation of hidden-layer neurons. By using neuronal dropout, overfitting was significantly reduced and performance was noticeably improved. For multi-spanning helical membrane proteins, TMH-Expo achieved a remarkable Pearson correlation coefficient of 0.69 between predicted and experimental values and a mean absolute error of only 1.68. In addition, among those membrane protein–membrane protein interface residues, 76.8% were correctly predicted. Mapping of predicted contact numbers onto structures indicates that contact numbers predicted by TMH-Expo reflect the exposure patterns of TMHs and reveal membrane protein–membrane protein interfaces, reinforcing the potential of predicted contact numbers to be used as restraints for 3D structure prediction and protein–protein docking. TMH-Expo can be accessed via a Web server at www.meilerlab.org. PMID:26804342

  6. Hidden Markov Models for Protein Domain Homology Identification and Analysis.

    Science.gov (United States)

    Jablonowski, Karl

    2017-01-01

    Protein domain identification and analysis are cornerstones of modern proteomics. The tools available to protein domain researchers avail a variety of approaches to understanding large protein domain families. Hidden Markov Models (HMM) form the basis for identifying and categorizing evolutionarily linked protein domains. Here I describe the use of HMM models for predicting and identifying Src Homology 2 (SH2) domains within the proteome.

  7. Unifying protein inference and peptide identification with feedback to update consistency between peptides.

    Science.gov (United States)

    Shi, Jinhong; Chen, Bolin; Wu, Fang-Xiang

    2013-01-01

    We first propose a new method to process peptide identification reports from databases search engines. Then via it we develop a method for unifying protein inference and peptide identification by adding a feedback from protein inference to peptide identification. The feedback information is a list of high-confidence proteins, which is used to update an adjacency matrix between peptides. The adjacency matrix is used in the regularization of peptide scores. Logistic regression (LR) is used to compute the probability of peptide identification with the regularized scores. Protein scores are then calculated with the LR probability of peptides. Instead of selecting the best peptide match for each MS/MS, we select multiple peptides. By testing on two datasets, the results have shown that the proposed method can robustly assign accurate probabilities to peptides, and have a higher discrimination power than PeptideProphet to distinguish correct and incorrect identified peptides. Additionally, not only can our method infer more true positive proteins but also infer less false positive proteins than ProteinProphet at the same false positive rate. The coverage of inferred proteins is also significantly increased due to the selection of multiple peptides for each MS/MS and the improvement of their scores by the feedback from the inferred proteins. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    Science.gov (United States)

    Li, Zhen; Zhang, Renyu

    2017-01-01

    Motivation Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. Method This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Results Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact

  9. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.

    Science.gov (United States)

    Wang, Sheng; Sun, Siqi; Li, Zhen; Zhang, Renyu; Xu, Jinbo

    2017-01-01

    Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have

  10. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.

    Directory of Open Access Journals (Sweden)

    Sheng Wang

    2017-01-01

    Full Text Available Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction.This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question.Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6 for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact

  11. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  12. Rapid and accurate prediction and scoring of water molecules in protein binding sites.

    Directory of Open Access Journals (Sweden)

    Gregory A Ross

    Full Text Available Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.

  13. mTM-align: an algorithm for fast and accurate multiple protein structure alignment.

    Science.gov (United States)

    Dong, Runze; Peng, Zhenling; Zhang, Yang; Yang, Jianyi

    2017-12-21

    As protein structure is more conserved than sequence during evolution, multiple structure alignment can be more informative than multiple sequence alignment, especially for distantly related proteins. With the rapid increase of the number of protein structures in the Protein Data Bank, it becomes urgent to develop efficient algorithms for multiple structure alignment. A new multiple structure alignment algorithm (mTM-align) was proposed, which is an extension of the highly efficient pairwise structure alignment program TM-align. The algorithm was benchmarked on four widely used datasets, HOMSTRAD, SABmark_sup, SABmark_twi and SISY-multiple, showing that mTM-align consistently outperforms other algorithms. In addition, the comparison with the manually curated alignments in the HOMSTRAD database shows that the automated alignments built by mTM-align is in general more accurate. Therefore mTM-align may be used as a reliable complement to construct multiple structure alignments for real-world applications. http://yanglab.nankai.edu.cn/mTM-align. zhng@umich.edu, yangjy@nankai.edu.cn. Supplementary data are available at Bioinformatics online.

  14. SIFTER search: a web server for accurate phylogeny-based protein function prediction.

    Science.gov (United States)

    Sahraeian, Sayed M; Luo, Kevin R; Brenner, Steven E

    2015-07-01

    We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. nDNA-Prot: identification of DNA-binding proteins based on unbalanced classification.

    Science.gov (United States)

    Song, Li; Li, Dapeng; Zeng, Xiangxiang; Wu, Yunfeng; Guo, Li; Zou, Quan

    2014-09-08

    DNA-binding proteins are vital for the study of cellular processes. In recent genome engineering studies, the identification of proteins with certain functions has become increasingly important and needs to be performed rapidly and efficiently. In previous years, several approaches have been developed to improve the identification of DNA-binding proteins. However, the currently available resources are insufficient to accurately identify these proteins. Because of this, the previous research has been limited by the relatively unbalanced accuracy rate and the low identification success of the current methods. In this paper, we explored the practicality of modelling DNA binding identification and simultaneously employed an ensemble classifier, and a new predictor (nDNA-Prot) was designed. The presented framework is comprised of two stages: a 188-dimension feature extraction method to obtain the protein structure and an ensemble classifier designated as imDC. Experiments using different datasets showed that our method is more successful than the traditional methods in identifying DNA-binding proteins. The identification was conducted using a feature that selected the minimum Redundancy and Maximum Relevance (mRMR). An accuracy rate of 95.80% and an Area Under the Curve (AUC) value of 0.986 were obtained in a cross validation. A test dataset was tested in our method and resulted in an 86% accuracy, versus a 76% using iDNA-Prot and a 68% accuracy using DNA-Prot. Our method can help to accurately identify DNA-binding proteins, and the web server is accessible at http://datamining.xmu.edu.cn/~songli/nDNA. In addition, we also predicted possible DNA-binding protein sequences in all of the sequences from the UniProtKB/Swiss-Prot database.

  16. Polyphenol Identification Based on Systematic and Robust High-Resolution Accurate Mass Spectroscopy Fragmentation

    NARCIS (Netherlands)

    Hooft, van der J.J.J.; Vervoort, J.J.M.; Bino, R.J.; Beekwilder, M.J.; Vos, de R.C.H.

    2011-01-01

    High-mass resolution multi-stage mass spectrometry (MSn) fragmentation was tested for differentiation and identification of metabolites, using a series of 121 polyphenolic molecules. The MSn fragmentation approach is based on the systematic breakdown of compounds, forming a so-called spectral tree.

  17. An accurate and efficient identification of children with psychosocial problems by means of computerized adaptive testing

    NARCIS (Netherlands)

    Vogels, Antonius G. C.; Jacobusse, Gert W.; Reijneveld, Symen A.

    2011-01-01

    Background: Questionnaires used by health services to identify children with psychosocial problems are often rather short. The psychometric properties of such short questionnaires are mostly less than needed for an accurate distinction between children with and without problems. We aimed to assess

  18. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) Provides Accurate Direct from Culture Species Identification within the Genus Candida.

    Science.gov (United States)

    Cameron, Simon J S; Bolt, Frances; Perdones-Montero, Alvaro; Rickards, Tony; Hardiman, Kate; Abdolrasouli, Alireza; Burke, Adam; Bodai, Zsolt; Karancsi, Tamas; Simon, Daniel; Schaffer, Richard; Rebec, Monica; Balog, Julia; Takáts, Zoltan

    2016-11-14

    Members of the genus Candida, such as C. albicans and C. parapsilosis, are important human pathogens. Other members of this genus, previously believed to carry minimal disease risk, are increasingly recognised as important human pathogens, particularly because of variations in susceptibilities to widely used anti-fungal agents. Thus, rapid and accurate identification of clinical Candida isolates is fundamental in ensuring timely and effective treatments are delivered. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) has previously been shown to provide a high-throughput platform for the rapid and accurate identification of bacterial and fungal isolates. In comparison to commercially available matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF), REIMS based methods require no preparative steps nor time-consuming cell extractions. Here, we report on the ability of REIMS-based analysis to rapidly and accurately identify 153 clinical Candida isolates to species level. Both handheld bipolar REIMS and high-throughput REIMS platforms showed high levels of species classification accuracy, with 96% and 100% of isolates classified correctly to species level respectively. In addition, significantly different (FDR corrected P value < 0.05) lipids within the 600 to 1000 m/z mass range were identified, which could act as species-specific biomarkers in complex microbial communities.

  19. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.

    Science.gov (United States)

    He, Jieyue; Li, Chaojun; Ye, Baoliu; Zhong, Wei

    2012-06-25

    Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures. In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules. The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms. Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the

  20. Vaquita: Fast and Accurate Identification of Structural Variation Using Combined Evidence

    OpenAIRE

    Kim, Jongkyu; Reinert, Knut

    2017-01-01

    Motivation: Comprehensive identification of structural variations (SVs) is a crucial task for studying genetic diversity and diseases. However, it remains challenging. There is only a marginal consensus between different methods, and our understanding of SVs is substantially limited.In general, integration of multiple pieces of evidence including split-read, read-pair, soft-clip, and read-depth yields the best result regarding accuracy. However, doing this step by step is usually cumbersome a...

  1. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    Science.gov (United States)

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  2. Identification of SUMO target proteins by quantitative proteomics

    DEFF Research Database (Denmark)

    Andersen, Jens S; Matic, Ivan; Vertegaal, Alfred C O

    2009-01-01

    , the methodological details of the application of stable isotope labeling of amino acids in cell culture (SILAC) for the identification of target proteins for SUMOs are described. In addition to steady state sumoylation, the sumoylated proteome undergoes dynamic rearrangements in response to a diverse array......The identification of target proteins for small ubiquitin-like modifiers (SUMOs) is a critical step towards a detailed understanding of the cellular functions of SUMOs. Substrate protein identification for SUMOs is hampered by the low abundance of SUMO targets, the finding that only a small...... fraction of these target proteins is sumoylated, and the high activity of deconjugating enzymes. Quantitative proteomics is a powerful tool to overcome these challenges, because it allows discrimination between contaminating proteins in SUMO-enriched preparations and true target proteins. In this chapter...

  3. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Karosiene, Edita; Rasmussen, Michael

    2015-01-01

    by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding...... with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped...... to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1....

  4. Accurate Prediction of Complex Structure and Affinity for a Flexible Protein Receptor and Its Inhibitor.

    Science.gov (United States)

    Bekker, Gert-Jan; Kamiya, Narutoshi; Araki, Mitsugu; Fukuda, Ikuo; Okuno, Yasushi; Nakamura, Haruki

    2017-06-13

    In order to predict the accurate binding configuration as well as the binding affinity for a flexible protein receptor and its inhibitor drug, enhanced sampling with multicanonical molecular dynamics (McMD) simulation and thermodynamic integration (TI) were combined as a general drug docking method. CDK2, cyclin-dependent kinase 2, is involved in the cell cycle regulation. Malfunctions in CDK2 can cause tumorigenesis, and thus it is a potential drug target. Here, we performed a long McMD simulation for docking the inhibitor CS3 to CDK2 starting from the unbound structure. Subsequently, a potential binding/unbinding pathway was given from the multicanonical ensemble, and the binding free energy was readily computed by TI along the pathway. Using this combination, the correct binding configuration of CS3 to CDK2 was obtained, and its affinity coincided well with the experimental value.

  5. Automated selected reaction monitoring software for accurate label-free protein quantification.

    Science.gov (United States)

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  6. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.

    Science.gov (United States)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by

  7. Multidimensional Protein Identification Technology (MudPIT) Analysis of Ubiquitinated Proteins in Plants

    National Research Council Canada - National Science Library

    Rudy Maor; Alex Jones; Thomas S. Nühse; David J. Studholme; Scott C. Peck; Ken Shirasu

    2007-01-01

    .... High molecular weight ubiquitinated proteins were separated by SDS-PAGE, and the trypsin-digested samples were then analyzed by a multidimensional protein identification technology (MudPIT) system...

  8. DeepBound: accurate identification of transcript boundaries via deep convolutional neural fields

    KAUST Repository

    Shao, Mingfu

    2017-04-20

    Motivation: Reconstructing the full- length expressed transcripts (a. k. a. the transcript assembly problem) from the short sequencing reads produced by RNA-seq protocol plays a central role in identifying novel genes and transcripts as well as in studying gene expressions and gene functions. A crucial step in transcript assembly is to accurately determine the splicing junctions and boundaries of the expressed transcripts from the reads alignment. In contrast to the splicing junctions that can be efficiently detected from spliced reads, the problem of identifying boundaries remains open and challenging, due to the fact that the signal related to boundaries is noisy and weak.

  9. Application of the antibiotic batumin for accurate and rapid identification of staphylococcal small colony variants

    Directory of Open Access Journals (Sweden)

    Churkina Larisa N

    2012-07-01

    Full Text Available Abstract Background Staphylococcus aureus is a major human pathogen causing significant morbidity and mortality. The S. aureus colonies in osteomyelitis, in patients with cystic fibrosis and patients with endoprosthesis rejection frequently have an atypical morphology, i.e. staphylococcal small-colony variants, which form a naturally occurring subpopulation of clinically important staphylococci. Identification of these small colony variants is difficult, because of the loss of typical phenotypic characteristics of these variants. We wanted to improve and simplify the diagnosis of staphylococcal infection using a diagnostic preparation, consisting of 5 μg batumin paper disks. Batumin possesses a unique selective activity against all studied Staphylococcus spp., whereas all other species tested thus far are batumin resistant. We assessed the efficacy of the batumin diagnostic preparation to identify staphylococcal small colony variants, isolated from osteomyelitis patients. Findings With the batumin diagnostic preparation, all 30 tested staphylococcal small-colony variants had a growth inhibition zone around the disk of minimum 25 mm, accordant with the inhibition zones of the parent strains, isolated from the same patients. Conclusions The batumin diagnostic preparation correctly identified the small-colony variants of S. aureus, S. haemolyticus and S. epidermidis as belonging to the genus Staphylococcus, which differ profoundly from parental strains and are difficult to identify with standard methods. Identification of staphylococcal small-colony variants with the batumin diagnostic preparation is technically simple and can facilitate practical laboratory work.

  10. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.

    Science.gov (United States)

    Xia, Jun-Feng; Zhao, Xing-Ming; Song, Jiangning; Huang, De-Shuang

    2010-04-08

    It is well known that most of the binding free energy of protein interaction is contributed by a few key hot spot residues. These residues are crucial for understanding the function of proteins and studying their interactions. Experimental hot spots detection methods such as alanine scanning mutagenesis are not applicable on a large scale since they are time consuming and expensive. Therefore, reliable and efficient computational methods for identifying hot spots are greatly desired and urgently required. In this work, we introduce an efficient approach that uses support vector machine (SVM) to predict hot spot residues in protein interfaces. We systematically investigate a wide variety of 62 features from a combination of protein sequence and structure information. Then, to remove redundant and irrelevant features and improve the prediction performance, feature selection is employed using the F-score method. Based on the selected features, nine individual-feature based predictors are developed to identify hot spots using SVMs. Furthermore, a new ensemble classifier, namely APIS (A combined model based on Protrusion Index and Solvent accessibility), is developed to further improve the prediction accuracy. The results on two benchmark datasets, ASEdb and BID, show that this proposed method yields significantly better prediction accuracy than those previously published in the literature. In addition, we also demonstrate the predictive power of our proposed method by modelling two protein complexes: the calmodulin/myosin light chain kinase complex and the heat shock locus gene products U and V complex, which indicate that our method can identify more hot spots in these two complexes compared with other state-of-the-art methods. We have developed an accurate prediction model for hot spot residues, given the structure of a protein complex. A major contribution of this study is to propose several new features based on the protrusion index of amino acid residues, which

  11. Fast and accurate discovery of degenerate linear motifs in protein sequences.

    Science.gov (United States)

    Kelil, Abdellali; Dubreuil, Benjamin; Levy, Emmanuel D; Michnick, Stephen W

    2014-01-01

    Linear motifs mediate a wide variety of cellular functions, which makes their characterization in protein sequences crucial to understanding cellular systems. However, the short length and degenerate nature of linear motifs make their discovery a difficult problem. Here, we introduce MotifHound, an algorithm particularly suited for the discovery of small and degenerate linear motifs. MotifHound performs an exact and exhaustive enumeration of all motifs present in proteins of interest, including all of their degenerate forms, and scores the overrepresentation of each motif based on its occurrence in proteins of interest relative to a background (e.g., proteome) using the hypergeometric distribution. To assess MotifHound, we benchmarked it together with state-of-the-art algorithms. The benchmark consists of 11,880 sets of proteins from S. cerevisiae; in each set, we artificially spiked-in one motif varying in terms of three key parameters, (i) number of occurrences, (ii) length and (iii) the number of degenerate or "wildcard" positions. The benchmark enabled the evaluation of the impact of these three properties on the performance of the different algorithms. The results showed that MotifHound and SLiMFinder were the most accurate in detecting degenerate linear motifs. Interestingly, MotifHound was 15 to 20 times faster at comparable accuracy and performed best in the discovery of highly degenerate motifs. We complemented the benchmark by an analysis of proteins experimentally shown to bind the FUS1 SH3 domain from S. cerevisiae. Using the full-length protein partners as sole information, MotifHound recapitulated most experimentally determined motifs binding to the FUS1 SH3 domain. Moreover, these motifs exhibited properties typical of SH3 binding peptides, e.g., high intrinsic disorder and evolutionary conservation, despite the fact that none of these properties were used as prior information. MotifHound is available (http://michnick.bcm.umontreal.ca or http

  12. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    Federica Boraldi

    Full Text Available Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination.Circulating mature cells (CMC, CD45-, CD34+, CD133- and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+ were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+ or osteogenic (BAP+ differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification.This study shows that: 1 polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2 the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3 the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+ is observed in the presence of ectopic calcification.Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context.

  13. Accurate identification of whispering gallery mode patterns of gyrotron with stabilized electro-optic imaging system

    Science.gov (United States)

    Lee, Ingeun; Sawant, Ashwini; Choe, Mun Seok; Lee, Dong-Joon; Choi, EunMi

    2018-01-01

    The precise field pattern measurement and analysis of a typical whispering gallery mode excited in a gyrotron are important to understand the interaction physics of the gyrotron. We precisely analyzed the characteristic of a whispering gallery mode, rotating TE6,2 mode, by a photonic-assisted W-band (75-110 GHz) electro-optic imaging measurement system. The whispering gallery mode in the W-band region diverges fast in free space as it propagates from the radiation port. Therefore, scanning the field patterns of a device-under-test should be performed as close as possible to identify the device's characteristics. We successfully accomplished visualizing highly accurate field patterns of a rotating and mixed whispering gallery mode based on the measured electric field magnitude and phase by using dual optical fiber-scale electro-optic (EO) probes. We observed the distorted fields when the typical open-ended waveguide and a general EO probe were used in the extremely near-field zone, whereas a very precise field was measured in a minimally invasive way by the proposed EO probe. The measured mode patterns were quantitatively analyzed by using a cross correlation function and a mode purity equation. This work promises a way to provide accurate electric field information in the generation of the whispering gallery mode in the millimeter and submillimeter regime.

  14. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Institute of Physics and Engineering, (Russian Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  15. Rapid and accurate identification of Xanthomonas citri subspecies citri by fluorescence in situ hybridization.

    Science.gov (United States)

    Waite, D W; Griffin, R; Taylor, R; George, S

    2016-11-01

    Citrus canker is an economically important disease caused by the bacterial pathogen Xanthomonas citri subsp. citri (Xcc). This organism targets a wide range of citrus plants, including sweet orange, grapefruit, lemon and lime. As Xcc is spread by environmental factors such as wind and rain, it is difficult to control its movement once the disease has established. In order to facilitate monitoring of citrus canker we sought to design a novel diagnostic protocol based on fluorescence in situ hybridization (FISH) for identification of bacterial cells directly from canker pustules without cultivation or DNA extraction. This method was validated for specificity against a range of Xanthomonas species and strains. We show that our assay is extremely rapid (typically requiring between 2 and 3 h), and possesses a similar specificity to existing PCR diagnostic tools. The sensitivity of the assay is comparable to that of an existing PCR-based technique and sufficient for identifying Xcc in symptomatic plant material. The method is easily transferable to diagnosticians without prior experience using FISH. Xanthomonas citri subsp. citri (Xcc) is an aggressive and hardy pathogen of citrus plants worldwide. Outbreaks are difficult and costly to contain and the establishment of citrus canker results in restricted trade. In order to extend the existing toolkit for identification of Xcc we developed a novel diagnostic approach based on fluorescence in situ hybridization. Our approach is of comparable specificity and sensitivity to existing methods but can be performed directly on infected tissue making it significantly faster than existing PCRs, and requiring fewer laboratory resources. © 2016 The Society for Applied Microbiology.

  16. Accurate Identification of Fatty Liver Disease in Data Warehouse Utilizing Natural Language Processing.

    Science.gov (United States)

    Redman, Joseph S; Natarajan, Yamini; Hou, Jason K; Wang, Jingqi; Hanif, Muzammil; Feng, Hua; Kramer, Jennifer R; Desiderio, Roxanne; Xu, Hua; El-Serag, Hashem B; Kanwal, Fasiha

    2017-10-01

    Natural language processing is a powerful technique of machine learning capable of maximizing data extraction from complex electronic medical records. We utilized this technique to develop algorithms capable of "reading" full-text radiology reports to accurately identify the presence of fatty liver disease. Abdominal ultrasound, computerized tomography, and magnetic resonance imaging reports were retrieved from the Veterans Affairs Corporate Data Warehouse from a random national sample of 652 patients. Radiographic fatty liver disease was determined by manual review by two physicians and verified with an expert radiologist. A split validation method was utilized for algorithm development. For all three imaging modalities, the algorithms could identify fatty liver disease with >90% recall and precision, with F-measures >90%. These algorithms could be used to rapidly screen patient records to establish a large cohort to facilitate epidemiological and clinical studies and examine the clinic course and outcomes of patients with radiographic hepatic steatosis.

  17. DeepBound: accurate identification of transcript boundaries via deep convolutional neural fields.

    Science.gov (United States)

    Shao, Mingfu; Ma, Jianzhu; Wang, Sheng

    2017-07-15

    Reconstructing the full-length expressed transcripts ( a.k.a. the transcript assembly problem) from the short sequencing reads produced by RNA-seq protocol plays a central role in identifying novel genes and transcripts as well as in studying gene expressions and gene functions. A crucial step in transcript assembly is to accurately determine the splicing junctions and boundaries of the expressed transcripts from the reads alignment. In contrast to the splicing junctions that can be efficiently detected from spliced reads, the problem of identifying boundaries remains open and challenging, due to the fact that the signal related to boundaries is noisy and weak. We present DeepBound, an effective approach to identify boundaries of expressed transcripts from RNA-seq reads alignment. In its core DeepBound employs deep convolutional neural fields to learn the hidden distributions and patterns of boundaries. To accurately model the transition probabilities and to solve the label-imbalance problem, we novelly incorporate the AUC (area under the curve) score into the optimizing objective function. To address the issue that deep probabilistic graphical models requires large number of labeled training samples, we propose to use simulated RNA-seq datasets to train our model. Through extensive experimental studies on both simulation datasets of two species and biological datasets, we show that DeepBound consistently and significantly outperforms the two existing methods. DeepBound is freely available at https://github.com/realbigws/DeepBound . mingfu.shao@cs.cmu.edu or realbigws@gmail.com.

  18. Identification of outer membrane proteins of Yersinia pestis through biotinylation

    NARCIS (Netherlands)

    Smither, S.J.; Hill, J.; Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Titball, R.W.

    2007-01-01

    The outer membrane of Gram-negative bacteria contains proteins that might be good targets for vaccines, antimicrobials or detection systems. The identification of surface located proteins using traditional methods is often difficult. Yersinia pestis, the causative agent of plague, was labelled with

  19. Identification and cloning of two insecticidal protein genes from ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... 2State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of ... Different insecticidal crystal proteins of Bt have different bioactivity ... Key words: Bacillus thuringiensis, peptide mess fingerprint, identification, clone, insecticidal crystal protein.

  20. Identification of intermediate species in protein-folding by ...

    Indian Academy of Sciences (India)

    Identification of intermediate species in protein-folding by quantitative analysis of amplitudes in time-domain fluorescence spectroscopy ... This differentiation of a two-state from a multi-state structural transition is non-trivial when studied by the several steady-state spectroscopic methods that are popular in protein-folding ...

  1. A novel approach for latent print identification using accurate overlays to prioritize reference prints.

    Science.gov (United States)

    Gantz, Daniel T; Gantz, Donald T; Walch, Mark A; Roberts, Maria Antonia; Buscaglia, JoAnn

    2014-12-01

    A novel approach to automated fingerprint matching and scoring that produces accurate locally and nonlinearly adjusted overlays of a latent print onto each reference print in a corpus is described. The technology, which addresses challenges inherent to latent prints, provides the latent print examiner with a prioritized ranking of candidate reference prints based on the overlays of the latent onto each candidate print. In addition to supporting current latent print comparison practices, this approach can make it possible to return a greater number of AFIS candidate prints because the ranked overlays provide a substantial starting point for latent-to-reference print comparison. To provide the image information required to create an accurate overlay of a latent print onto a reference print, "Ridge-Specific Markers" (RSMs), which correspond to short continuous segments of a ridge or furrow, are introduced. RSMs are reliably associated with any specific local section of a ridge or a furrow using the geometric information available from the image. Latent prints are commonly fragmentary, with reduced clarity and limited minutiae (i.e., ridge endings and bifurcations). Even in the absence of traditional minutiae, latent prints contain very important information in their ridges that permit automated matching using RSMs. No print orientation or information beyond the RSMs is required to generate the overlays. This automated process is applied to the 88 good quality latent prints in the NIST Special Database (SD) 27. Nonlinear overlays of each latent were produced onto all of the 88 reference prints in the NIST SD27. With fully automated processing, the true mate reference prints were ranked in the first candidate position for 80.7% of the latents tested, and 89.8% of the true mate reference prints ranked in the top ten positions. After manual post-processing of those latents for which the true mate reference print was not ranked first, these frequencies increased to 90

  2. The importance of accurate microorganism identification in microbial challenge tests of membrane filters--part I.

    Science.gov (United States)

    Kaesler, I; Haake, G; Hennig, H; Rosenhagen, A; Meltzer, T H; Jornitz, M W

    2011-01-01

    Microbial challenge testing is a common procedure to determine the retention efficiency, performance, and validity of a sterilizing-grade filter. The ASTM 838-05 standard describes a bacteria challenge test procedure based on Brevundimonas diminuta (ATCC 19146), routinely used to verify a 0.2 μm rated sterilizing-grade filter. Process validation procedures most often also utilize B. diminuta (ATCC 19146), but instead of the standard procedures and fluids, process, and product parameters are employed to determine whether these parameters influence the retentivity of the filter or changes to the challenge organism, which might result in the penetration of the filter. In certain instances, the native bioburden within the drug manufacturing process is used to perform such process validation challenge tests. Filter penetrations can happen and cause concern; therefore, it is essential to identify the organism species with accuracy to avoid unnecessary confusion. This paper and its follow-up will describe such imprecision and the resulting misconceptions. It will clarify past determinations and put perspective on the findings. Sterilizing-grade filters are used to remove microorganisms from biopharmaceutical solutions. To determine the retention performance of such filters, bacteria challenge tests are utilized, often with a standard challenge organism (Brevundimonas diminuta), in instances with native bioburden. The accuracy of the microorganism identification is of importance to avoid flawed results and misinterpretation of the filter's performance.

  3. Accurate spectroscopic characterization of the HOC(O)O radical: A route toward its experimental identification

    Science.gov (United States)

    Puzzarini, Cristina; Biczysko, Malgorzata; Peterson, Kirk A.; Francisco, Joseph S.; Linguerri, Roberto

    2017-07-01

    A set of accurate spectroscopic parameters for the detection of the atmospherically important HOC(O)O radical has been obtained by means of state-of-the-art ab initio computations. These include advanced coupled cluster treatments, involving both standard and explicitly correlated approaches, to correctly account for basis set incompleteness and core-valence effects. Geometric parameters for the X˜ 2A' and A˜ 2A' ' states and, for the ground state only, vibrationally corrected rotational constants including quartic and sextic centrifugal distortion terms are reported. The infrared spectrum of the X˜ 2A' state has been simulated in the 4000-400 cm-1 wavenumber interval with an approach based on second order vibrational perturbation theory that allows accounting for anharmonic effects in both energies and intensities. Finally, the vibronic spectrum for the A ˜ ← X ˜ transition has been calculated at three different temperatures in the 9000-3000 cm-1 energy range with a time-independent technique based on the Franck-Condon approximation.

  4. Accurate microRNA target prediction correlates with protein repression levels

    Directory of Open Access Journals (Sweden)

    Simossis Victor A

    2009-09-01

    Full Text Available Abstract Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT

  5. An improved Bathocuproine assay for accurate valence identification and quantification of copper bound by biomolecules.

    Science.gov (United States)

    Chen, Dinglong; Darabedian, Narek; Li, Zhiqiang; Kai, Tianhan; Jiang, Dianlu; Zhou, Feimeng

    2016-03-15

    Copper is an essential metal in all organisms. Reliably quantifying and identifying the copper content and oxidation state is crucial, since the information is essential to understanding protein structure and function. Chromophoric ligands, such as Bathocuproine (BC) and its water-soluble analog, Bathocuproinedisulfonic acid (BCS), preferentially bind Cu(I) over Cu(II), and therefore have been widely used as optical probes to determine the oxidation state of copper bound by biomolecules. However, the BCS assay is commonly misused, leading to erroneous conclusions regarding the role of copper in biological processes. By measuring the redox potential of Cu(II)-BCS2 and conducting UV-vis absorption measurements in the presence of oxidizable amino acids, the thermodynamic origin of the potential artifacts becomes evident. The BCS assay was improved by introducing a strong Cu(II) chelator EDTA prior to the addition of BCS to prevent interference that might arise from Cu(II) present in the sample. The strong Cu(II) chelator rids of all the potential errors inherent in the conventional BCS assay. Applications of the improved assay to peptides and protein containing oxidizable amino acid residues confirm that free Cu(II) no longer leads to artifacts, thereby resolving issues related to this persistently misused colorimetric assay of Cu(I) in biological systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Use of Fourier transform infrared spectroscopy (FTIR spectroscopy for rapid and accurate identification of Yeasts isolated from human and animals

    Directory of Open Access Journals (Sweden)

    M. Taha

    2013-06-01

    Full Text Available Rapid and accurate identification of yeast is increasingly important to stipulate the appropriate therapy thus reducing morbidity and mortality related to yeast infections. Vibrational spectroscopic techniques (infrared (IR and Raman could provide potential alternatives to conventional typing methods, because they constitute a rapid, inexpensive and highly specific spectroscopic fingerprint through-which microorganism can be identified. The present study evaluate (FTIR spectroscopy as a sensitive and effective assay for the identification of the most frequent yeast species isolated from human and animals. One hundred and twenty-eight yeasts isolated from infected human mouths/vaginas, chronic diseased cows, crop mycosis in chicken and soil contaminated with pigeon droppings were phenotypically identified. Using universal primers, ITS1/ITS4, we have amplified ITS1-5.8S-ITS2 rDNA regions for 39 yeast isolates as representative samples. The PCR products were digested with restriction enzyme MspI and examined by PCR-RFLP, which was an efficient technique for identification of Candida spp., Cryptococcus neoformans and Trichosporon asahii. Further, identification of the same 39 isolates were done by FTIR spectroscopy and considered as reference for other strains by comparison of their FTIR spectra. The current study has sharply demonstrated the significant spectral differences between the various examined species of Candida, Cryptococcus, Trichosporon, Rhodotorula and Geotrichum isolated from different sources. Decisively, our research has confirmed that FTIR spectroscopy is a promising diagnostic tool, because of its sensitivity, rapidity, high differentiation capacity and simplicity compared to conventional/molecular techniques.

  7. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry.

    Science.gov (United States)

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification.

  8. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating...

  9. Proteomics: Protein Identification Using Online Databases

    Science.gov (United States)

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  10. More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel DNA sequencing

    Directory of Open Access Journals (Sweden)

    Angie D. Ambers

    2016-10-01

    Full Text Available Abstract Background Although the primary objective of forensic DNA analyses of unidentified human remains is positive identification, cases involving historical or archaeological skeletal remains often lack reference samples for comparison. Massively parallel sequencing (MPS offers an opportunity to provide biometric data in such cases, and these cases provide valuable data on the feasibility of applying MPS for characterization of modern forensic casework samples. In this study, MPS was used to characterize 140-year-old human skeletal remains discovered at a historical site in Deadwood, South Dakota, United States. The remains were in an unmarked grave and there were no records or other metadata available regarding the identity of the individual. Due to the high throughput of MPS, a variety of biometric markers could be typed using a single sample. Results Using MPS and suitable forensic genetic markers, more relevant information could be obtained from a limited quantity and quality sample. Results were obtained for 25/26 Y-STRs, 34/34 Y SNPs, 166/166 ancestry-informative SNPs, 24/24 phenotype-informative SNPs, 102/102 human identity SNPs, 27/29 autosomal STRs (plus amelogenin, and 4/8 X-STRs (as well as ten regions of mtDNA. The Y-chromosome (Y-STR, Y-SNP and mtDNA profiles of the unidentified skeletal remains are consistent with the R1b and H1 haplogroups, respectively. Both of these haplogroups are the most common haplogroups in Western Europe. Ancestry-informative SNP analysis also supported European ancestry. The genetic results are consistent with anthropological findings that the remains belong to a male of European ancestry (Caucasian. Phenotype-informative SNP data provided strong support that the individual had light red hair and brown eyes. Conclusions This study is among the first to genetically characterize historical human remains with forensic genetic marker kits specifically designed for MPS. The outcome demonstrates that

  11. More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel DNA sequencing.

    Science.gov (United States)

    Ambers, Angie D; Churchill, Jennifer D; King, Jonathan L; Stoljarova, Monika; Gill-King, Harrell; Assidi, Mourad; Abu-Elmagd, Muhammad; Buhmeida, Abdelbaset; Al-Qahtani, Mohammed; Budowle, Bruce

    2016-10-17

    Although the primary objective of forensic DNA analyses of unidentified human remains is positive identification, cases involving historical or archaeological skeletal remains often lack reference samples for comparison. Massively parallel sequencing (MPS) offers an opportunity to provide biometric data in such cases, and these cases provide valuable data on the feasibility of applying MPS for characterization of modern forensic casework samples. In this study, MPS was used to characterize 140-year-old human skeletal remains discovered at a historical site in Deadwood, South Dakota, United States. The remains were in an unmarked grave and there were no records or other metadata available regarding the identity of the individual. Due to the high throughput of MPS, a variety of biometric markers could be typed using a single sample. Using MPS and suitable forensic genetic markers, more relevant information could be obtained from a limited quantity and quality sample. Results were obtained for 25/26 Y-STRs, 34/34 Y SNPs, 166/166 ancestry-informative SNPs, 24/24 phenotype-informative SNPs, 102/102 human identity SNPs, 27/29 autosomal STRs (plus amelogenin), and 4/8 X-STRs (as well as ten regions of mtDNA). The Y-chromosome (Y-STR, Y-SNP) and mtDNA profiles of the unidentified skeletal remains are consistent with the R1b and H1 haplogroups, respectively. Both of these haplogroups are the most common haplogroups in Western Europe. Ancestry-informative SNP analysis also supported European ancestry. The genetic results are consistent with anthropological findings that the remains belong to a male of European ancestry (Caucasian). Phenotype-informative SNP data provided strong support that the individual had light red hair and brown eyes. This study is among the first to genetically characterize historical human remains with forensic genetic marker kits specifically designed for MPS. The outcome demonstrates that substantially more genetic information can be obtained from

  12. Optimizing identification and quantitation of 15N-labeled proteins in comparative proteomics.

    Science.gov (United States)

    Gouw, Joost W; Tops, Bastiaan B J; Mortensen, Peter; Heck, Albert J R; Krijgsveld, Jeroen

    2008-10-15

    Comparative proteomics has emerged as a powerful approach to determine differences in protein abundance between biological samples. The introduction of stable-isotopes as internal standards especially paved the road for quantitative proteomics for comprehensive approaches to accurately determine protein dynamics. Metabolic labeling with (15)N isotopes is applied to an increasing number of organisms, including Drosophila, C. elegans, and rats. However, (15)N-enrichment is often suboptimal (quantitation of proteins. Here, we systematically investigated two independent (15)N-labeled data sets to explore the influence of heavy nitrogen enrichment on the number of identifications as well as on the error in protein quantitation. We show that specifically larger (15)N-labeled peptides are under-represented when compared to their (14)N counterparts and propose a correction method, which significantly increases the number of identifications. In addition, we developed a method that corrects for inaccurate peptide ratios introduced by incomplete (15)N enrichment. This results in improved accuracy and precision of protein quantitation. Altogether, this study provides insight into the process of protein identification and quantitation, and the methods described here can be used to improve both qualitative and quantitative data obtained by labeling with heavy nitrogen with enrichment less than 100%.

  13. Identification of Ina proteins from Fusarium acuminatum

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  14. Machine learning based identification of protein-protein interactions using derived features of physiochemical properties and evolutionary profiles.

    Science.gov (United States)

    Tahir, Muhammad; Hayat, Maqsood

    2017-05-01

    Proteins are the central constitute of a cell or biological system. Proteins execute their functions by interacting with other molecules such as RNA, DNA and other proteins. The major functionality of protein-protein interactions (PPIs) is the execution of biochemical activities in living species. Therefore, an accurate identification of PPIs becomes a challenging and demanding task for investigators from last few decades. Various traditional and computational methods have been applied but they have not achieved quite encouraging results. In order to extend the concept of computational model by incorporating intelligent, contemporary machine learning algorithms have been utilized for identification of PPIs. In this prediction model, protein sequences are expressed by using two distinct feature extraction methods namely: physiochemical properties of amino acids and evolutionary profiles method position specific scoring matrix (PSSM). Jackknife test and numerous performance parameters namely: specificity, recall, accuracy, MCC, precision, and F-measure were employed to compute the predictive quality of proposed model. After empirical analysis, it is determined that the proposed prediction model yielded encouraging predictive outcomes compared to existing state-of-the-art models. This achievement is ascribed with PSSM because it has clearly discerned a motif of PPIs. It is realized that the proposed prediction model will lead to be a practical and very useful tool for research community. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Accurately modeling nanosecond protein dynamics requires at least microseconds of simulation.

    Science.gov (United States)

    Bowman, Gregory R

    2016-03-05

    Advances in hardware and algorithms have greatly extended the timescales accessible to molecular simulation. This article assesses whether such long timescale simulations improve our ability to calculate order parameters that describe conformational heterogeneity on ps-ns timescales or if force fields are now a limiting factor. Order parameters from experiment are compared with order parameters calculated in three different ways from simulations ranging from 10 ns to 100 μs in length. Importantly, bootstrapping is employed to assess the variability in results for each simulation length. The results of 10-100 ns timescale simulations are highly variable, possibly explaining the variation in levels of agreement between simulation and experiment in published works examining different proteins. Fortunately, microsecond timescale simulations improve both the accuracy and precision of calculated order parameters, at least so long as the full exponential fit or truncated average approximation is used instead of the common long-time limit approximation. The improved precision of these long timescale simulations allows a statistically sound comparison of a number of modern force fields, such as Amber03, Amber99sb-ILDN, and Charmm27. While there is some variation between these force fields, they generally give very similar results for sufficiently long simulations. The fact that so much simulation is required to precisely capture ps-ns timescale processes suggests that extremely extensive simulations are required for slower processes. Advanced sampling techniques could aid greatly, however, such methods will need to maintain accurate kinetics if they are to be of value for calculating dynamical properties like order parameters. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1.

    Directory of Open Access Journals (Sweden)

    Jennifer L Schehr

    Full Text Available Expression of programmed-death ligand 1 (PD-L1 in non-small cell lung cancer (NSCLC is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT.To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP technology.Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33-100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples.Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria, thus improving the

  17. Computational identification of ubiquitylation sites from protein sequences

    Directory of Open Access Journals (Sweden)

    Ho Shinn-Ying

    2008-07-01

    Full Text Available Abstract Background Ubiquitylation plays an important role in regulating protein functions. Recently, experimental methods were developed toward effective identification of ubiquitylation sites. To efficiently explore more undiscovered ubiquitylation sites, this study aims to develop an accurate sequence-based prediction method to identify promising ubiquitylation sites. Results We established an ubiquitylation dataset consisting of 157 ubiquitylation sites and 3676 putative non-ubiquitylation sites extracted from 105 proteins in the UbiProt database. This study first evaluates promising sequence-based features and classifiers for the prediction of ubiquitylation sites by assessing three kinds of features (amino acid identity, evolutionary information, and physicochemical property and three classifiers (support vector machine, k-nearest neighbor, and NaïveBayes. Results show that the set of used 531 physicochemical properties and support vector machine (SVM are the best kind of features and classifier respectively that their combination has a prediction accuracy of 72.19% using leave-one-out cross-validation. Consequently, an informative physicochemical property mining algorithm (IPMA is proposed to select an informative subset of 531 physicochemical properties. A prediction system UbiPred was implemented by using an SVM with the feature set of 31 informative physicochemical properties selected by IPMA, which can improve the accuracy from 72.19% to 84.44%. To further analyze the informative physicochemical properties, a decision tree method C5.0 was used to acquire if-then rule-based knowledge of predicting ubiquitylation sites. UbiPred can screen promising ubiquitylation sites from putative non-ubiquitylation sites using prediction scores. By applying UbiPred, 23 promising ubiquitylation sites were identified from an independent dataset of 3424 putative non-ubiquitylation sites, which were also validated by using the obtained prediction rules

  18. United Complex Centrality for Identification of Essential Proteins from PPI Networks.

    Science.gov (United States)

    Li, Min; Lu, Yu; Niu, Zhibei; Wu, Fang-Xiang

    2017-01-01

    Essential proteins are indispensable for the survival or reproduction of an organism. Identification of essential proteins is not only necessary for the understanding of the minimal requirements for cellular life, but also important for the disease study and drug design. With the development of high-throughput techniques, a large number of protein-protein interaction data are available, which promotes the studies of essential proteins from the network level. Up to now, though a series of computational methods have been proposed, the prediction precision still needs to be improved. In this paper, we propose a new method, United complex Centrality (UC), to identify essential proteins by integrating the protein complexes with the topological features of protein-protein interaction (PPI) networks. By analyzing the relationship between the essential proteins and the known protein complexes of S. cerevisiae and human, we find that the proteins in complexes are more likely to be essential compared with the proteins not included in any complexes and the proteins appeared in multiple complexes are more inclined to be essential compared to those only appeared in a single complex. Considering that some protein complexes generated by computational methods are inaccurate, we also provide a modified version of UC with parameter alpha, named UC-P. The experimental results show that protein complex information can help identify the essential proteins more accurate both for the PPI network of S. cerevisiae and that of human. The proposed method UC performs obviously better than the eight previously proposed methods (DC, IC, EC, SC, BC, CC, NC, and LAC) for identifying essential proteins.

  19. Reconfigurable hardware-software codesign methodology for protein identification.

    Science.gov (United States)

    Gudur, Venkateshwarlu Y; Thallada, Sandeep; Deevi, Abhinay R; Gande, Venkata Krishna; Acharyya, Amit; Bhandari, Vasundhra; Sharma, Paresh; Khursheed, Saqib; Naik, Ganesh R

    2016-08-01

    In this paper we propose an on-the-fly reconfigurable hardware-software codesign based reconfigurable solution for real-time protein identification. Reconfigurable string matching is performed in the disciplines of protein identification and biomarkers discovery. With the generation of plethora of sequenced data and number of biomarkers for several diseases, it is becoming necessary to have an accelerated processing and on-the-fly reconfigurable system design methodology to bring flexibility to its usage in the medical science community without the need of changing the entire hardware every time with the advent of new biomarker or protein. The proteome database of human at UniProtKB (Proteome ID up000005640) comprising of 42132 canonical and isoform proteins with variable database-size are used for testing the proposed design and the performance of the proposed system has been found to compare favorably with the state-of-the-art approaches with the additional advantage of real-time reconfigurability.

  20. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.

    2013-09-03

    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  1. Protein C/S ratio, an accurate and simple tool to identify carriers of a protein C gene mutation

    NARCIS (Netherlands)

    Libourel, EJ; Meinardi, [No Value; de Kam, PJ; Ruiters, MHJ; van der Meer, J; van der Schaaf, W; Veenstra, R.

    Hereditary protein C deficiency is demonstrated by lowered protein C plasma levels in a patient and at least one first-degree relative. This approach is insufficient in some cases owing to overlapping protein C levels in carriers and non-carriers of a protein C gene mutation. The protein C/S ratio

  2. Identification of intermediate species in protein-folding by ...

    Indian Academy of Sciences (India)

    TECS

    Identification of intermediate species in protein-folding by quantitative analysis of amplitudes in time-domain fluorescence spectroscopy. ANOOP M SAXENA,. 1. G KRISHNAMOORTHY,. 1,. * JAYANT B UDGAONKAR. 2 and. N PERIASAMY. 1. *. 1. Department of Chemical Sciences, Tata Institute of Fundamental Research, ...

  3. Method for Rapid Protein Identification in a Large Database

    Directory of Open Access Journals (Sweden)

    Wenli Zhang

    2013-01-01

    Full Text Available Protein identification is an integral part of proteomics research. The available tools to identify proteins in tandem mass spectrometry experiments are not optimized to face current challenges in terms of identification scale and speed owing to the exponential growth of the protein database and the accelerated generation of mass spectrometry data, as well as the demand for nonspecific digestion and post-modifications in complex-sample identification. As a result, a rapid method is required to mitigate such complexity and computation challenges. This paper thus aims to present an open method to prevent enzyme and modification specificity on a large database. This paper designed and developed a distributed program to facilitate application to computer resources. With this optimization, nearly linear speedup and real-time support are achieved on a large database with nonspecific digestion, thus enabling testing with two classical large protein databases in a 20-blade cluster. This work aids in the discovery of more significant biological results, such as modification sites, and enables the identification of more complex samples, such as metaproteomics samples.

  4. Identification of differentially expressed proteins in response to Pb ...

    African Journals Online (AJOL)

    use

    oxidative stress. Key words: Antioxidants, chlorophyll, MALDI-TOF-MS, oxidative stress, protein identification. INTRODUCTION. Defensive responses in plants to abiotic stresses like heavy metals have become a major part of the research in plant sciences which mainly concentrate on the elucidation of mechanisms playing ...

  5. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.

    Directory of Open Access Journals (Sweden)

    Yasser El-Manzalawy

    Full Text Available A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles. Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein

  6. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing.

    Directory of Open Access Journals (Sweden)

    Hansaim Lim

    2016-10-01

    Full Text Available Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing

  7. Identification of surface proteins in Enterococcus faecalis V583

    Directory of Open Access Journals (Sweden)

    Eijsink Vincent GH

    2011-03-01

    Full Text Available Abstract Background Surface proteins are a key to a deeper understanding of the behaviour of Gram-positive bacteria interacting with the human gastro-intestinal tract. Such proteins contribute to cell wall synthesis and maintenance and are important for interactions between the bacterial cell and the human host. Since they are exposed and may play roles in pathogenicity, surface proteins are interesting targets for drug design. Results Using methods based on proteolytic "shaving" of bacterial cells and subsequent mass spectrometry-based protein identification, we have identified surface-located proteins in Enterococcus faecalis V583. In total 69 unique proteins were identified, few of which have been identified and characterized previously. 33 of these proteins are predicted to be cytoplasmic, whereas the other 36 are predicted to have surface locations (31 or to be secreted (5. Lipid-anchored proteins were the most dominant among the identified surface proteins. The seemingly most abundant surface proteins included a membrane protein with a potentially shedded extracellular sulfatase domain that could act on the sulfate groups in mucin and a lipid-anchored fumarate reductase that could contribute to generation of reactive oxygen species. Conclusions The present proteome analysis gives an experimental impression of the protein landscape on the cell surface of the pathogenic bacterium E. faecalis. The 36 identified secreted (5 and surface (31 proteins included several proteins involved in cell wall synthesis, pheromone-regulated processes, and transport of solutes, as well as proteins with unknown function. These proteins stand out as interesting targets for further investigation of the interaction between E. faecalis and its environment.

  8. Affinity purification of soluble lysosomal proteins for mass spectrometric identification.

    Science.gov (United States)

    Jaquinod, Sylvie Kieffer-; Chapel, Agnès; Garin, Jérôme; Journet, Agnøs

    2008-01-01

    This chapter describes the process of production, purification, separation, and mass spectrometry identification of soluble lysosomal proteins. The rationale for purification of these proteins resides in their characteristic sugar, the mannose-6-phosphate (M6P), which allows an easy purification by affinity chromatography on immobilized M6P receptor (MPR). The secretion of M6P proteins (essentially soluble lysosomal proteins) from cells in culture is induced by adding a weak base in the culture medium. Secreted proteins are ammonium sulfate precipitated, dialyzed, and loaded onto the immobilized MPR column. After specific elution and collection of the M6P proteins, these are resolved by either bidimensional or monodimensional gel electrophoresis (designated as 2-DE or 1-DE, respectively). Mass spectrometry analysis is performed on spots excised from the 2-DE gel, or on discrete bands covering altogether the whole length of the 1-DE gel lane: these spots or bands are in-gel digested with trypsin and protein identification is obtained, thanks to peptide mass fingerprints [provided by analysis of the digests by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS)] or peptide amino acid sequences (provided by analysis of the digests by the coupling between liquid chromatography and tandem mass spectrometry, LC-MS/MS).

  9. Accurate, rapid identification of dislocation lines in coherent diffractive imaging via a min-max optimization formulation

    Science.gov (United States)

    Ulvestad, A.; Menickelly, M.; Wild, S. M.

    2018-01-01

    Defects such as dislocations impact materials properties and their response during external stimuli. Imaging these defects in their native operating conditions to establish the structure-function relationship and, ultimately, to improve performance via defect engineering has remained a considerable challenge for both electron-based and x-ray-based imaging techniques. While Bragg coherent x-ray diffractive imaging (BCDI) is successful in many cases, nuances in identifying the dislocations has left manual identification as the preferred method. Derivative-based methods are also used, but they can be inaccurate and are computationally inefficient. Here we demonstrate a derivative-free method that is both more accurate and more computationally efficient than either derivative- or human-based methods for identifying 3D dislocation lines in nanocrystal images produced by BCDI. We formulate the problem as a min-max optimization problem and show exceptional accuracy for experimental images. We demonstrate a 227x speedup for a typical experimental dataset with higher accuracy over current methods. We discuss the possibility of using this algorithm as part of a sparsity-based phase retrieval process. We also provide MATLAB code for use by other researchers.

  10. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    Science.gov (United States)

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Ginther, Jennifer L; Mayo, Mark; Cook, James M; Seymour, Meagan L; Kaestli, Mirjam; Theobald, Vanessa; Hall, Carina M; Busch, Joseph D; Foster, Jeffrey T; Keim, Paul; Wagner, David M; Tuanyok, Apichai; Pearson, Talima; Currie, Bart J

    2013-01-01

    Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  11. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    Directory of Open Access Journals (Sweden)

    Erin P Price

    Full Text Available Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc, a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  12. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles.

    Science.gov (United States)

    Dobrovolskaia, Marina A; Neun, Barry W; Man, Sonny; Ye, Xiaoying; Hansen, Matthew; Patri, Anil K; Crist, Rachael M; McNeil, Scott E

    2014-10-01

    Proteins bound to nanoparticle surfaces are known to affect particle clearance by influencing immune cell uptake and distribution to the organs of the mononuclear phagocytic system. The composition of the protein corona has been described for several types of nanomaterials, but the role of the corona in nanoparticle biocompatibility is not well established. In this study we investigate the role of nanoparticle surface properties (PEGylation) and incubation times on the protein coronas of colloidal gold nanoparticles. While neither incubation time nor PEG molecular weight affected the specific proteins in the protein corona, the total amount of protein binding was governed by the molecular weight of PEG coating. Furthermore, the composition of the protein corona did not correlate with nanoparticle hematocompatibility. Specialized hematological tests should be used to deduce nanoparticle hematotoxicity. From the clinical editor: It is overall unclear how the protein corona associated with colloidal gold nanoparticles may influence hematotoxicity. This study warns that PEGylation itself may be insufficient, because composition of the protein corona does not directly correlate with nanoparticle hematocompatibility. The authors suggest that specialized hematological tests must be used to deduce nanoparticle hematotoxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Visualization and Identification of Fatty Acylated Proteins Using Chemical Reporters

    Science.gov (United States)

    Yount, Jacob S.; Zhang, Mingzi M.; Hang, Howard C.

    2011-01-01

    Protein fatty-acylation is the covalent addition of a lipid chain at specific amino acids. This modification changes the inherent hydrophobicity of a protein, often targeting it to cellular membrane compartments. Acylation may also regulate protein activity, stability, and protein-protein interactions. Its study is therefore critical to understanding the biology of the hundreds of proteins described to be lipid-modified, as well as those that are continually being discovered. Fatty-acylation can be analyzed using chemical reporters that mimic natural lipids and contain bioorthogonal chemical handles allowing them to be reacted with detection tags such as fluorophores or affinity tags. Our laboratory has successfully utilized alkynyl-chemical reporters of protein myristoylation, S-palmitoylation, prenylation and acetylation. Protocol 1 describes metabolic incorporation of these chemical reporters onto proteins in living cells. Protocol 2 describes the global visualization of reporter-labeled proteins by selectively reacting alkyne-containing chemical reporter-labeled proteins in cell lysates with azido-rhodamine via the click chemistry and fluorescence gel scanning. Protocol 3 describes analysis of protein acylation on individual candidate proteins using immunoprecipitation, click chemistry and fluorescence gel scanning. Finally, Protocol 4 allows identification of novel fatty acylated proteins by reacting chemical reporter-labeled proteins with azido-biotin via click chemistry and selective retrieval using streptavidin beads. This may be particularly valuable for the examination of S-palmitoylomes in different cell types or activation states, as these modifications do not occur on readily predicted consensus amino acid motifs. Overall, these techniques provide robust, non-radioactive methods for examining the acylation states of full cellular proteomes and individual proteins of interest. PMID:23061028

  14. Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis

    DEFF Research Database (Denmark)

    Roepstorff, P; Larsen, Martin Røssel

    2001-01-01

    dominant strategies for identification of proteins from gels based on peptide mass spectrometric fingerprinting and partial sequencing by mass spectrometry are described. After identification of the proteins the next challenge in proteome analysis is characterization of their post-translational...

  15. VORFFIP-driven dock: V-D2OCK, a fast and accurate protein docking strategy.

    Science.gov (United States)

    Segura, Joan; Marín-López, Manuel Alejandro; Jones, Pamela F; Oliva, Baldo; Fernandez-Fuentes, Narcis

    2015-01-01

    The experimental determination of the structure of protein complexes cannot keep pace with the generation of interactomic data, hence resulting in an ever-expanding gap. As the structural details of protein complexes are central to a full understanding of the function and dynamics of the cell machinery, alternative strategies are needed to circumvent the bottleneck in structure determination. Computational protein docking is a valid and valuable approach to model the structure of protein complexes. In this work, we describe a novel computational strategy to predict the structure of protein complexes based on data-driven docking: VORFFIP-driven dock (V-D2OCK). This new approach makes use of our newly described method to predict functional sites in protein structures, VORFFIP, to define the region to be sampled during docking and structural clustering to reduce the number of models to be examined by users. V-D2OCK has been benchmarked using a validated and diverse set of protein complexes and compared to a state-of-art docking method. The speed and accuracy compared to contemporary tools justifies the potential use of VD2OCK for high-throughput, genome-wide, protein docking. Finally, we have developed a web interface that allows users to browser and visualize V-D2OCK predictions from the convenience of their web-browsers.

  16. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  17. Computational identification of strain-, species- and genus-specific proteins

    Directory of Open Access Journals (Sweden)

    Thiagarajan Rathi

    2005-11-01

    Full Text Available Abstract Background The identification of unique proteins at different taxonomic levels has both scientific and practical value. Strain-, species- and genus-specific proteins can provide insight into the criteria that define an organism and its relationship with close relatives. Such proteins can also serve as taxon-specific diagnostic targets. Description A pipeline using a combination of computational and manual analyses of BLAST results was developed to identify strain-, species-, and genus-specific proteins and to catalog the closest sequenced relative for each protein in a proteome. Proteins encoded by a given strain are preliminarily considered to be unique if BLAST, using a comprehensive protein database, fails to retrieve (with an e-value better than 0.001 any protein not encoded by the query strain, species or genus (for strain-, species- and genus-specific proteins respectively, or if BLAST, using the best hit as the query (reverse BLAST, does not retrieve the initial query protein. Results are manually inspected for homology if the initial query is retrieved in the reverse BLAST but is not the best hit. Sequences unlikely to retrieve homologs using the default BLOSUM62 matrix (usually short sequences are re-tested using the PAM30 matrix, thereby increasing the number of retrieved homologs and increasing the stringency of the search for unique proteins. The above protocol was used to examine several food- and water-borne pathogens. We find that the reverse BLAST step filters out about 22% of proteins with homologs that would otherwise be considered unique at the genus and species levels. Analysis of the annotations of unique proteins reveals that many are remnants of prophage proteins, or may be involved in virulence. The data generated from this study can be accessed and further evaluated from the CUPID (Core and Unique Protein Identification system web site (updated semi-annually at http://pir.georgetown.edu/cupid. Conclusion CUPID

  18. CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation

    Directory of Open Access Journals (Sweden)

    Li Gong-Hua

    2010-08-01

    Full Text Available Abstract Background The rapid development of structural genomics has resulted in many "unknown function" proteins being deposited in Protein Data Bank (PDB, thus, the functional prediction of these proteins has become a challenge for structural bioinformatics. Several sequence-based and structure-based methods have been developed to predict protein function, but these methods need to be improved further, such as, enhancing the accuracy, sensitivity, and the computational speed. Here, an accurate algorithm, the CMASA (Contact MAtrix based local Structural Alignment algorithm, has been developed to predict unknown functions of proteins based on the local protein structural similarity. This algorithm has been evaluated by building a test set including 164 enzyme families, and also been compared to other methods. Results The evaluation of CMASA shows that the CMASA is highly accurate (0.96, sensitive (0.86, and fast enough to be used in the large-scale functional annotation. Comparing to both sequence-based and global structure-based methods, not only the CMASA can find remote homologous proteins, but also can find the active site convergence. Comparing to other local structure comparison-based methods, the CMASA can obtain the better performance than both FFF (a method using geometry to predict protein function and SPASM (a local structure alignment method; and the CMASA is more sensitive than PINTS and is more accurate than JESS (both are local structure alignment methods. The CMASA was applied to annotate the enzyme catalytic sites of the non-redundant PDB, and at least 166 putative catalytic sites have been suggested, these sites can not be observed by the Catalytic Site Atlas (CSA. Conclusions The CMASA is an accurate algorithm for detecting local protein structural similarity, and it holds several advantages in predicting enzyme active sites. The CMASA can be used in large-scale enzyme active site annotation. The CMASA can be available by the

  19. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  20. Identification of immunogenic maize proteins in a casein hydrolysate formula.

    Science.gov (United States)

    Frisner, H; Rosendal, A; Barkholt, V

    2000-05-01

    Cow's milk-based formulas used for infants with cow's milk allergy are based on hydrolyzed proteins. The formulas that are successful in preventing allergic responses are extensively hydrolyzed. Nevertheless, reactions to such formulas are occasionally reported, and protein material of higher molecular weight than expected has been detected by binding immunoglobulin E (IgE) from patients' sera. This paper presents the identification of high-molecular-weight material in the extensively hydrolyzed casein formula, Nutramigen. The material was concentrated by simple centrifugation. The proteins in the pellet were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and protein-containing bands were analyzed by protein sequencing after electroblotting. The proteins were identified as maize zeins, which are water-insoluble proteins of apparent M(r) 20,000 and 23,000, presumably originating from the maize starch in Nutramigen. Rabbits immunized with this formula developed antibodies against zeins but not against milk proteins. The maize zeins are probably identical to the recently reported components in Nutramigen (1), detected by binding of IgE from milk allergic patients, but not correlated to clinical allergic reactivity. The clinical relevance of maize proteins in Nutramigen remains to be established.

  1. Top-down protein identification using isotopic envelope fingerprinting.

    Science.gov (United States)

    Xiao, Kaijie; Yu, Fan; Tian, Zhixin

    2017-01-30

    For top-down protein database search and identification from tandem mass spectra, our isotopic envelope fingerprinting search algorithm and ProteinGoggle search engine have demonstrated their strength of efficiently resolving heavily overlapping data as well separating non-ideal data with non-ideal isotopic envelopes from ideal ones with ideal isotopic envelopes. Here we report our updated ProteinGoggle 2.0 for intact protein database search with full-capacity. The indispensable updates include users' optional definition of dynamic post-translational modifications and static chemical labeling during database creation, comprehensive dissociation methods and ion series, as well as a Proteoform Score for each proteoform. ProteinGoggle has previously been benchmarked with both collision-based dissociation (CID, HCD) and electron-based dissociation (ETD) data of either intact proteins or intact proteomes. Here we report our further benchmarking of the new version of ProteinGoggle with publically available photon-based dissociation (UVPD) data (http://hdl.handle.net/2022/17316) of intact E. coli ribosomal proteins. Protein species (aka proteoforms) function at their molecular level, and diverse structures and biological roles of every proteoform come from often co-occurring proteolysis, amino acid variation and post-translational modifications. Complete and high-throughput capture of this combinatorial information of proteoforms has become possible in evolving top-down proteomics; yet, various methods and technologies, especially database search and bioinformatics identification tools, in the top-down pipeline are still in their infancy stages and demand intensive research and development. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fast and accurate resonance assignment of small-to-large proteins by combining automated and manual approaches.

    Directory of Open Access Journals (Sweden)

    Markus Niklasson

    2015-01-01

    Full Text Available The process of resonance assignment is fundamental to most NMR studies of protein structure and dynamics. Unfortunately, the manual assignment of residues is tedious and time-consuming, and can represent a significant bottleneck for further characterization. Furthermore, while automated approaches have been developed, they are often limited in their accuracy, particularly for larger proteins. Here, we address this by introducing the software COMPASS, which, by combining automated resonance assignment with manual intervention, is able to achieve accuracy approaching that from manual assignments at greatly accelerated speeds. Moreover, by including the option to compensate for isotope shift effects in deuterated proteins, COMPASS is far more accurate for larger proteins than existing automated methods. COMPASS is an open-source project licensed under GNU General Public License and is available for download from http://www.liu.se/forskning/foass/tidigare-foass/patrik-lundstrom/software?l=en. Source code and binaries for Linux, Mac OS X and Microsoft Windows are available.

  3. Fast and accurate resonance assignment of small-to-large proteins by combining automated and manual approaches.

    Science.gov (United States)

    Niklasson, Markus; Ahlner, Alexandra; Andresen, Cecilia; Marsh, Joseph A; Lundström, Patrik

    2015-01-01

    The process of resonance assignment is fundamental to most NMR studies of protein structure and dynamics. Unfortunately, the manual assignment of residues is tedious and time-consuming, and can represent a significant bottleneck for further characterization. Furthermore, while automated approaches have been developed, they are often limited in their accuracy, particularly for larger proteins. Here, we address this by introducing the software COMPASS, which, by combining automated resonance assignment with manual intervention, is able to achieve accuracy approaching that from manual assignments at greatly accelerated speeds. Moreover, by including the option to compensate for isotope shift effects in deuterated proteins, COMPASS is far more accurate for larger proteins than existing automated methods. COMPASS is an open-source project licensed under GNU General Public License and is available for download from http://www.liu.se/forskning/foass/tidigare-foass/patrik-lundstrom/software?l=en. Source code and binaries for Linux, Mac OS X and Microsoft Windows are available.

  4. Accurate identification of the six human Plasmodium spp. causing imported malaria, including Plasmodium ovale wallikeri and Plasmodium knowlesi.

    Science.gov (United States)

    Calderaro, Adriana; Piccolo, Giovanna; Gorrini, Chiara; Rossi, Sabina; Montecchini, Sara; Dell'Anna, Maria Loretana; De Conto, Flora; Medici, Maria Cristina; Chezzi, Carlo; Arcangeletti, Maria Cristina

    2013-09-13

    Accurate identification of Plasmodium infections in non-endemic countries is of critical importance with regard to the administration of a targeted therapy having a positive impact on patient health and management and allowing the prevention of the risk of re-introduction of endemic malaria in such countries. Malaria is no longer endemic in Italy where it is the most commonly imported disease, with one of the highest rates of imported malaria among European non-endemic countries including France, the UK and Germany, and with a prevalence of 24.3% at the University Hospital of Parma. Molecular methods showed high sensitivity and specificity and changed the epidemiology of imported malaria in several non-endemic countries, highlighted a higher prevalence of Plasmodium ovale, Plasmodium vivax and Plasmodium malariae underestimated by microscopy and, not least, brought to light both the existence of two species of P. ovale (Plasmodium ovale curtisi and Plasmodium ovale wallikeri) and the infection in humans by Plasmodium knowlesi, otherwise not detectable by microscopy. In this retrospective study an evaluation of two real-time PCR assays able to identify P. ovale wallikeri, distinguishing it from P. ovale curtisi, and to detect P. knowlesi, respectively, was performed applying them on a subset of 398 blood samples belonging to patients with the clinical suspicion of malaria. These assays revealed an excellent analytical sensitivity and no cross-reactivity versus other Plasmodium spp. infecting humans, suggesting their usefulness for an accurate and complete diagnosis of imported malaria. Among the 128 patients with malaria, eight P. ovale curtisi and four P. ovale wallikeri infections were detected, while no cases of P. knowlesi infection were observed. Real-time PCR assays specific for P. ovale wallikeri and P. knowlesi were included in the panel currently used in the University Hospital of Parma for the diagnosis of imported malaria, accomplishing the goal of

  5. HMMCAS: a web tool for the identification and domain annotations of Cas proteins.

    Science.gov (United States)

    Chai, Guoshi; Yu, Min; Jiang, Lixu; Duan, Yaocong; Huang, Jian

    2017-02-07

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immune systems are discovered in many bacteria and most archaea. These systems are encoded by cas (CRISPR-associated) operons that have an extremely diverse architecture. The most crucial step in the depiction of cas operons composition is the identification of cas genes or Cas proteins. With the continuous increase of the newly sequenced archaeal and bacterial genomes, the recognition of new Cas proteins is becoming possible, which not only provides candidates for novel genome editing tools but also helps to understand the prokaryotic immune system better. Here we describe HMMCAS, a web service for the detection of CRISPR-associated structural and functional domains in protein sequences. HMMCAS uses hmmscan similarity search algorithm in HMMER3.1 to provide a fast, interactive service based on a comprehensive collection of hidden Markov models of Cas protein family. It can accurately identify the Cas proteins including those fusion proteins, for example the Cas1-Cas4 fusion protein in Candidatus Chloracidobacterium thermophilum B (Cab. thermophilum B). HMMCAS can also find putative cas operon and determine which type it belongs to. HMMCAS is freely available at http://i.uestc.edu.cn/hmmcas.

  6. Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis.

    Science.gov (United States)

    Ding, Hui; Feng, Peng-Mian; Chen, Wei; Lin, Hao

    2014-08-01

    The bacteriophage virion proteins play extremely important roles in the fate of host bacterial cells. Accurate identification of bacteriophage virion proteins is very important for understanding their functions and clarifying the lysis mechanism of bacterial cells. In this study, a new sequence-based method was developed to identify phage virion proteins. In the new method, the protein sequences were initially formulated by the g-gap dipeptide compositions. Subsequently, the analysis of variance (ANOVA) with incremental feature selection (IFS) was used to search for the optimal feature set. It was observed that, in jackknife cross-validation, the optimal feature set including 160 optimized features can produce the maximum accuracy of 85.02%. By performing feature analysis, we found that the correlation between two amino acids with one gap was more important than other correlations for phage virion protein prediction and that some of the 1-gap dipeptides were important and mainly contributed to the virion protein prediction. This analysis will provide novel insights into the function of phage virion proteins. On the basis of the proposed method, an online web-server, PVPred, was established and can be freely accessed from the website (http://lin.uestc.edu.cn/server/PVPred). We believe that the PVPred will become a powerful tool to study phage virion proteins and to guide the related experimental validations.

  7. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    Science.gov (United States)

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  8. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins.

    Science.gov (United States)

    Yang, Jing; He, Bao-Ji; Jang, Richard; Zhang, Yang; Shen, Hong-Bin

    2015-12-01

    Cysteine-rich proteins cover many important families in nature but there are currently no methods specifically designed for modeling the structure of these proteins. The accuracy of disulfide connectivity pattern prediction, particularly for the proteins of higher-order connections, e.g., >3 bonds, is too low to effectively assist structure assembly simulations. We propose a new hierarchical order reduction protocol called Cyscon for disulfide-bonding prediction. The most confident disulfide bonds are first identified and bonding prediction is then focused on the remaining cysteine residues based on SVR training. Compared with purely machine learning-based approaches, Cyscon improved the average accuracy of connectivity pattern prediction by 21.9%. For proteins with more than 5 disulfide bonds, Cyscon improved the accuracy by 585% on the benchmark set of PDBCYS. When applied to 158 non-redundant cysteine-rich proteins, Cyscon predictions helped increase (or decrease) the TM-score (or RMSD) of the ab initio QUARK modeling by 12.1% (or 14.4%). This result demonstrates a new avenue to improve the ab initio structure modeling for cysteine-rich proteins. http://www.csbio.sjtu.edu.cn/bioinf/Cyscon/ zhng@umich.edu or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Machine Learning Identification of Protein Properties Useful for Specific Applications

    KAUST Repository

    Khamis, Abdullah

    2016-03-31

    Proteins play critical roles in cellular processes of living organisms. It is therefore important to identify and characterize their key properties associated with their functions. Correlating protein’s structural, sequence and physicochemical properties of its amino acids (aa) with protein functions could identify some of the critical factors governing the specific functionality. We point out that not all functions of even well studied proteins are known. This, complemented by the huge increase in the number of newly discovered and predicted proteins, makes challenging the experimental characterization of the whole spectrum of possible protein functions for all proteins of interest. Consequently, the use of computational methods has become more attractive. Here we address two questions. The first one is how to use protein aa sequence and physicochemical properties to characterize a family of proteins. The second one focuses on how to use transcription factor (TF) protein’s domains to enhance accuracy of predicting TF DNA binding sites (TFBSs). To address the first question, we developed a novel method using computational representation of proteins based on characteristics of different protein regions (N-terminal, M-region and C-terminal) and combined these with the properties of protein aa sequences. We show that this description provides important biological insight about characterization of the protein functional groups. Using feature selection techniques, we identified key properties of proteins that allow for very accurate characterization of different protein families. We demonstrated efficiency of our method in application to a number of antimicrobial peptide families. To address the second question we developed another novel method that uses a combination of aa properties of DNA binding domains of TFs and their TFBS properties to develop machine learning models for predicting TFBSs. Feature selection is used to identify the most relevant characteristics

  10. Effective inter-residue contact definitions for accurate protein fold recognition

    Directory of Open Access Journals (Sweden)

    Yuan Chao

    2012-11-01

    Full Text Available Abstract Background Effective encoding of residue contact information is crucial for protein structure prediction since it has a unique role to capture long-range residue interactions compared to other commonly used scoring terms. The residue contact information can be incorporated in structure prediction in several different ways: It can be incorporated as statistical potentials or it can be also used as constraints in ab initio structure prediction. To seek the most effective definition of residue contacts for template-based protein structure prediction, we evaluated 45 different contact definitions, varying bases of contacts and distance cutoffs, in terms of their ability to identify proteins of the same fold. Results We found that overall the residue contact pattern can distinguish protein folds best when contacts are defined for residue pairs whose Cβ atoms are at 7.0 Å or closer to each other. Lower fold recognition accuracy was observed when inaccurate threading alignments were used to identify common residue contacts between protein pairs. In the case of threading, alignment accuracy strongly influences the fraction of common contacts identified among proteins of the same fold, which eventually affects the fold recognition accuracy. The largest deterioration of the fold recognition was observed for β-class proteins when the threading methods were used because the average alignment accuracy was worst for this fold class. When results of fold recognition were examined for individual proteins, we found that the effective contact definition depends on the fold of the proteins. A larger distance cutoff is often advantageous for capturing spatial arrangement of the secondary structures which are not physically in contact. For capturing contacts between neighboring β strands, considering the distance between Cα atoms is better than the Cβ−based distance because the side-chain of interacting residues on β strands sometimes point to

  11. Protein Identification Pipeline for the Homology Driven Proteomics

    Science.gov (United States)

    Junqueira, Magno; Spirin, Victor; Balbuena, Tiago Santana; Thomas, Henrik; Adzhubei, Ivan; Sunyaev, Shamil; Shevchenko, Andrej

    2008-01-01

    Homology-driven proteomics is a major tool to characterize proteomes of organisms with unsequenced genomes. This paper addresses practical aspects of automated homology–driven protein identifications by LC-MS/MS on a hybrid LTQ Orbitrap mass spectrometer. All essential software elements supporting the presented pipeline are either hosted at the publicly accessible web server, or are available for free download. PMID:18639657

  12. Direct Identification of Protein-Protein Interactions by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Vera, Andrés M; Carrión-Vázquez, Mariano

    2016-11-02

    Single-molecule force spectroscopy based on atomic force microscopy (AFM-SMFS) has allowed the measurement of the intermolecular forces involved in protein-protein interactions at the molecular level. While intramolecular interactions are routinely identified directly by the use of polyprotein fingerprinting, there is a lack of a general method to directly identify single-molecule intermolecular unbinding events. Here, we have developed an internally controlled strategy to measure protein-protein interactions by AFM-SMFS that allows the direct identification of dissociation force peaks while ensuring single-molecule conditions. Single-molecule identification is assured by polyprotein fingerprinting while the intermolecular interaction is reported by a characteristic increase in contour length released after bond rupture. The latter is due to the exposure to force of a third protein that covalently connects the interacting pair. We demonstrate this strategy with a cohesin-dockerin interaction. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of Tobacco Topping Responsive Proteins in Roots

    Directory of Open Access Journals (Sweden)

    Hongxiang eGuo

    2016-04-01

    Full Text Available Tobacco plant has many responses to topping, such as the increase in ability of nicotine synthesis and secondary growth of roots. Some topping responsive miRNAs and genes had been identified in our previous work, but it is not enough to elaborate mechanism of tobacco response to topping. Here, topping responsive proteins were screened from tobacco roots with two-dimensional electrophoresis. Of these proteins, calretulin (CRT and Auxin-responsive protein IAA9 were related to the secondary growth of roots, LRR disease resistance, heat shock protein 70 and farnesyl pyrophosphate synthase 1(FPPS)were involved in wounding stress response, and F-box protein played an important role in promoting the ability of nicotine synthesis after topping. In addition, there were five tobacco bHLH proteins (NtbHLH, NtMYC1a, NtMYC1b, NtMYC2a and NtMYC2b related to nicotine synthesis. It was suggested that NtMYC2 might be the main positive transcription factor and NtbHLH protein is a negative regulator in the JA-mediating activation of nicotine synthesis after topping. Tobacco topping activates some comprehensive biology processes involving IAA and JA signaling pathway, and the identification of these proteins will be helpful to understand the process of topping response.

  14. Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS).

    Science.gov (United States)

    Keilhauer, Eva C; Hein, Marco Y; Mann, Matthias

    2015-01-01

    Protein-protein interactions are fundamental to the understanding of biological processes. Affinity purification coupled to mass spectrometry (AP-MS) is one of the most promising methods for their investigation. Previously, complexes were purified as much as possible, frequently followed by identification of individual gel bands. However, todays mass spectrometers are highly sensitive, and powerful quantitative proteomics strategies are available to distinguish true interactors from background binders. Here we describe a high performance affinity enrichment-mass spectrometry method for investigating protein-protein interactions, in which no attempt at purifying complexes to homogeneity is made. Instead, we developed analysis methods that take advantage of specific enrichment of interactors in the context of a large amount of unspecific background binders. We perform single-step affinity enrichment of endogenously expressed GFP-tagged proteins and their interactors in budding yeast, followed by single-run, intensity-based label-free quantitative LC-MS/MS analysis. Each pull-down contains around 2000 background binders, which are reinterpreted from troubling contaminants to crucial elements in a novel data analysis strategy. First the background serves for accurate normalization. Second, interacting proteins are not identified by comparison to a single untagged control strain, but instead to the other tagged strains. Third, potential interactors are further validated by their intensity profiles across all samples. We demonstrate the power of our AE-MS method using several well-known and challenging yeast complexes of various abundances. AE-MS is not only highly efficient and robust, but also cost effective, broadly applicable, and can be performed in any laboratory with access to high-resolution mass spectrometers. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Accurate Prediction of Protein-Coding Genes with Discriminative Learning Techniques

    OpenAIRE

    Schweikert, Gabriele

    2011-01-01

    Zur Zeit werden die Genome einer Vielzahl von Organismen vollständig sequenziert. Die vorliegende Arbeit hatte daher zum Ziel, eine neue, gleichermaßen effiziente wie genaue Methode zu entwickeln, die es erlaubt, Protein-kodierende Gene mit Hilfe eines Computer- Programms zu finden. Betrachtet wurden eukaryotische Genome, bei denen die Offenen Leserahmen der Gene durch nicht-kodierende Introns unterbrochen werden. Im Gegensatz zu den meisten bereits bestehenden Ansätzen wurden ausschliesslich...

  16. Identification of contractile vacuole proteins in Trypanosoma cruzi.

    Science.gov (United States)

    Ulrich, Paul N; Jimenez, Veronica; Park, Miyoung; Martins, Vicente P; Atwood, James; Moles, Kristen; Collins, Dalis; Rohloff, Peter; Tarleton, Rick; Moreno, Silvia N J; Orlando, Ron; Docampo, Roberto

    2011-03-18

    Contractile vacuole complexes are critical components of cell volume regulation and have been shown to have other functional roles in several free-living protists. However, very little is known about the functions of the contractile vacuole complex of the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, other than a role in osmoregulation. Identification of the protein composition of these organelles is important for understanding their physiological roles. We applied a combined proteomic and bioinfomatic approach to identify proteins localized to the contractile vacuole. Proteomic analysis of a T. cruzi fraction enriched for contractile vacuoles and analyzed by one-dimensional gel electrophoresis and LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of expressed proteins of epimastigotes. We also identified different peptides that map to at least 39 members of the dispersed gene family 1 (DGF-1) providing evidence that many members of this family are simultaneously expressed in epimastigotes. Of the proteins present in the fraction we selected several homologues with known localizations in contractile vacuoles of other organisms and others that we expected to be present in these vacuoles on the basis of their potential roles. We determined the localization of each by expression as GFP-fusion proteins or with specific antibodies. Six of these putative proteins (Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter) predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our results demonstrate the utility of combining subcellular fractionation, proteomic analysis, and bioinformatic approaches for localization of organellar proteins that are difficult to detect with whole cell methodologies. The CV localization of the proteins investigated revealed potential novel roles of these organelles in phosphate metabolism

  17. LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach.

    Science.gov (United States)

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-09-01

    Constraint generation for 3d structure prediction and structure-based database searches benefit from fine-grained prediction of local structure. In this work, we present LOCUSTRA, a novel scheme for the multiclass prediction of local structure that uses two layers of support vector machines (SVM). Using a 16-letter structural alphabet from de Brevern et al. (Proteins: Struct., Funct., Bioinf. 2000, 41, 271-287), we assess its prediction ability for an independent test set of 222 proteins and compare our method to three-class secondary structure prediction and direct prediction of dihedral angles. The prediction accuracy is Q16=61.0% for the 16 classes of the structural alphabet and Q3=79.2% for a simple mapping to the three secondary classes helix, sheet, and coil. We achieve a mean phi(psi) error of 24.74 degrees (38.35 degrees) and a median RMSDA (root-mean-square deviation of the (dihedral) angles) per protein chain of 52.1 degrees. These results compare favorably with related approaches. The LOCUSTRA web server is freely available to researchers at http://www.fz-juelich.de/nic/cbb/service/service.php.

  18. Docking ligands into flexible and solvated macromolecules. 4. Are popular scoring functions accurate for this class of proteins?

    Science.gov (United States)

    Englebienne, Pablo; Moitessier, Nicolas

    2009-06-01

    In our previous report, we investigated the impact of protein flexibility and the presence of water molecules on the pose-prediction accuracy of major docking programs. To complete these investigations, we report herein a study of the impact of these two aspects on the accuracy of scoring functions. To this effect, we developed two sets of protein/ligand complexes made up of ligands cross-docked or cocrystallized with a large variety of proteins, featuring bridging water molecules and demonstrating protein flexibility. Efforts were made to reduce the correlation between the molecular weights of the selected ligands and their binding affinities, a major bias in some previously reported benchmark sets. Using these sets, 18 available scoring functions have been assessed for their accuracy to predict binding affinities and to rank-order compounds by their affinity to cocrystallized proteins. This study confirmed the good and similar accuracy of Xscore, GlideScore, DrugScore(CSD), GoldScore, PLP1, ChemScore, RankScore, and the eHiTS scoring function. Our next investigations demonstrated that most of the assessed scoring functions were much less accurate when the correct protein conformation was not provided. This study also revealed that considering the water molecules for scoring does not greatly affect the accuracy. Finally, this work sheds light on the high correlation between scoring functions and the poor increase in accuracy one can expect from consensus scoring.

  19. Evaluation of protein spectra cluster analysis for Streptococcus spp. identification from various swine clinical samples.

    Science.gov (United States)

    Matajira, Carlos E C; Moreno, Luisa Z; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Doto, Daniela S; Calderaro, Franco F; de Souza, Fernando N; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2017-03-01

    Traditional microbiological methods enable genus-level identification of Streptococcus spp. isolates. However, as the species of this genus show broad phenotypic variation, species-level identification or even differentiation within the genus is difficult. Herein we report the evaluation of protein spectra cluster analysis for the identification of Streptococcus species associated with disease in swine by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 250 S. suis-like isolates obtained from pigs with clinical signs of encephalitis, arthritis, pneumonia, metritis, and urinary or septicemic infection were studied. The isolates came from pigs in different Brazilian states from 2001 to 2014. The MALDI-TOF MS analysis identified 86% (215 of 250) as S. suis and 14% (35 of 250) as S. alactolyticus, S. dysgalactiae, S. gallinaceus, S. gallolyticus, S. gordonii, S. henryi, S. hyointestinalis, S. hyovaginalis, S. mitis, S. oralis, S. pluranimalium, and S. sanguinis. The MALDI-TOF MS identification was confirmed in 99.2% of the isolates by 16S rDNA sequencing, with MALDI-TOF MS misidentifying 2 S. pluranimalium as S. hyovaginalis. Isolates were also tested by a biochemical automated system that correctly identified all isolates of 8 of the 10 species in the database. Neither the isolates of the 3 species not in the database ( S. gallinaceus, S. henryi, and S. hyovaginalis) nor the isolates of 2 species that were in the database ( S. oralis and S. pluranimalium) could be identified. The topology of the protein spectra cluster analysis appears to sustain the species phylogenetic similarities, further supporting identification by MALDI-TOF MS examination as a rapid and accurate alternative to 16S rDNA sequencing.

  20. GOSSIP: a method for fast and accurate global alignment of protein structures.

    Science.gov (United States)

    Kifer, I; Nussinov, R; Wolfson, H J

    2011-04-01

    The database of known protein structures (PDB) is increasing rapidly. This results in a growing need for methods that can cope with the vast amount of structural data. To analyze the accumulating data, it is important to have a fast tool for identifying similar structures and clustering them by structural resemblance. Several excellent tools have been developed for the comparison of protein structures. These usually address the task of local structure alignment, an important yet computationally intensive problem due to its complexity. It is difficult to use such tools for comparing a large number of structures to each other at a reasonable time. Here we present GOSSIP, a novel method for a global all-against-all alignment of any set of protein structures. The method detects similarities between structures down to a certain cutoff (a parameter of the program), hence allowing it to detect similar structures at a much higher speed than local structure alignment methods. GOSSIP compares many structures in times which are several orders of magnitude faster than well-known available structure alignment servers, and it is also faster than a database scanning method. We evaluate GOSSIP both on a dataset of short structural fragments and on two large sequence-diverse structural benchmarks. Our conclusions are that for a threshold of 0.6 and above, the speed of GOSSIP is obtained with no compromise of the accuracy of the alignments or of the number of detected global similarities. A server, as well as an executable for download, are available at http://bioinfo3d.cs.tau.ac.il/gossip/.

  1. Enhanced detection method for corneal protein identification using shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Schlager John J

    2009-06-01

    Full Text Available Abstract Background The cornea is a specialized transparent connective tissue responsible for the majority of light refraction and image focus for the retina. There are three main layers of the cornea: the epithelium that is exposed and acts as a protective barrier for the eye, the center stroma consisting of parallel collagen fibrils that refract light, and the endothelium that is responsible for hydration of the cornea from the aqueous humor. Normal cornea is an immunologically privileged tissue devoid of blood vessels, but injury can produce a loss of these conditions causing invasion of other processes that degrade the homeostatic properties resulting in a decrease in the amount of light refracted onto the retina. Determining a measure and drift of phenotypic cornea state from normal to an injured or diseased state requires knowledge of the existing protein signature within the tissue. In the study of corneal proteins, proteomics procedures have typically involved the pulverization of the entire cornea prior to analysis. Separation of the epithelium and endothelium from the core stroma and performing separate shotgun proteomics using liquid chromatography/mass spectrometry results in identification of many more proteins than previously employed methods using complete pulverized cornea. Results Rabbit corneas were purchased, the epithelium and endothelium regions were removed, proteins processed and separately analyzed using liquid chromatography/mass spectrometry. Proteins identified from separate layers were compared against results from complete corneal samples. Protein digests were separated using a six hour liquid chromatographic gradient and ion-trap mass spectrometry used for detection of eluted peptide fractions. The SEQUEST database search results were filtered to allow only proteins with match probabilities of equal or better than 10-3 and peptides with a probability of 10-2 or less with at least two unique peptides isolated within

  2. Identification of Inhibitors of Biological Interactions Involving Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Daniela Marasco

    2015-04-01

    Full Text Available Protein–protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few “hot spots”, thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs.

  3. Identification of Potent ACE Inhibitory Peptides from Wild Almond Proteins.

    Science.gov (United States)

    Mirzapour, Mozhgan; Rezaei, Karamatollah; Sentandreu, Miguel Angel

    2017-10-01

    In this study, the production, fractionation, purification and identification of ACE (angiotensin-I-converting enzyme) inhibitory peptides from wild almond (Amygdalus scoparia) proteins were investigated. Wild almond proteins were hydrolyzed using 5 different enzymes (pepsin, trypsin, chymotrypsin, alcalase and flavourzyme) and assayed for their ACE inhibitory activities. The degree of ACE inhibiting activity obtained after hydrolysis was found to be in the following order: alcalase > chymotrypsin > trypsin/pepsin > flavourzyme. The hydrolysates obtained from alcalase (IC50 = 0.8 mg/mL) were fractionated by sequential ultrafiltration at 10 and 3 kDa cutoff values and the most active fraction (protein is a rich source of potential antihypertensive peptides and can be suggested for applications in functional foods and drinks with respect to hindrance and mitigation of hypertension after in vivo assessment. This study has shown the potential of wild almond proteins as good sources for producing ACE-inhibitory active peptides. According to this finding, peptides with higher ACE inhibitory activities could be released during the gastrointestinal digestion and contribute to the health- promoting activities of this natural protein source. © 2017 Institute of Food Technologists®.

  4. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.

    Directory of Open Access Journals (Sweden)

    Zhiheng Wang

    Full Text Available The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database.The DisoMCS is available at http://cal.tongji.edu.cn/disorder/.

  5. HEASARC Astronomical Archive: GLIESE2MAS - Gliese Catalog Stars with Accurate Coordinates and 2MASS Cross-Identifications

    Data.gov (United States)

    National Aeronautics and Space Administration — This table contains precise epoch 2000 coordinates and cross-identifications to sources in the 2MASS Point Source Catalog for nearly all stars in the Gliese,...

  6. An overview of protein identification studies in cassava.

    Science.gov (United States)

    Batista de Souza, Cláudia R; dos Reis, Sávio P; Castelo Branco Carvalho, Luiz J

    2015-01-01

    Cassava (Manihot esculenta Crantz) belongs to the Euphorbiaceae family and is originated from the Southern Amazon basin. The storage root is the most important product of cassava as food for more than 800 million people in Africa, Asia and Latin America. In this review, we present a retrospective of studies aiming the identification of cassava proteins, starting from the first investigations using SDS-PAGE and classical two-dimensional gel electrophoresis (2DE) to recent studies with advanced technologies such as high-resolution 2DE, mass spectrometry, and iTRAQ-based analysis that have contributed for characterization of cassava proteome. Several cassava proteins have been identified, including those involved in the storage root formation and post-harvest physiological deterioration processes.

  7. Proteomic identification of turkey (Meleagris gallopavo) seminal plasma proteins.

    Science.gov (United States)

    Slowinska, M; Nynca, J; Arnold, G J; Fröhlich, T; Jankowski, J; Kozlowski, K; Mostek, A; Ciereszko, A

    2017-09-01

    SDS-PAGE combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 2-dimensional electrophoresis (2DE) combined with matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (MALDI TOF/TOF) were applied to characterize the turkey seminal plasma proteome. LC-MS/MS led to the identification of 175 proteins, which were classified according to their function and to corresponding biochemical pathways. Using 2DE and MALDI TOF/TOF, 34 different turkey seminal plasma proteins could be identified, of which 20 were found in more than one spot, indicating different proteoforms of these proteins. For validation, antibodies against turkey albumin and ovoinhibitor as well as sperm acrosin were used in 2DE Western blots experiments. The bioinformatic analysis of the results indicates that turkey seminal plasma proteins may be involved in regulation of lipid metabolism [liver X receptor/retinoid X receptor (LXR/RXR) activation and farnesoid X receptor/retinoid X receptor (FXR/RXR) activation pathways)], endocytic entry of proteins and lipids at the plasma membrane (clathrin-mediated endocytosis pathway), and defense against pathogens (acute phase response signaling pathway) and energy production (glycolysis and gluconeogenesis). Moreover, a comparative meta-analysis of seminal plasma proteomes from other species indicated the presence of proteins specific for avian reproduction, but distinct differences between turkey and chicken seminal plasma proteomes were detected. The results of our study provide basic knowledge of the protein composition of turkey seminal plasma highlighting important physiological pathways which may play crucial roles in the sperm environment after ejaculation. This knowledge can be the basis to further develop procedures improving the reproduction of farmed turkeys. © 2017 Poultry Science Association Inc.

  8. Identification and validation of novel small proteins in Pseudomonas putida

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Ingemann Jensen, Sheila; Wulff, Tune

    2016-01-01

    Small proteins of fifty amino acids or less have been understudied due to difficulties that impede their annotation and detection. In order to obtain information on small open reading frames (sORFs) in P. putida, bioinformatic and proteomic approaches were used to identify putative small open rea...... and CysB involved in biofilm formation and cysteine biosynthesis, respectively. The work sheds light on the P. putida small proteome and small protein identification, a necessary first step towards gaining insights into their functions and possible evolutionary implications.......Small proteins of fifty amino acids or less have been understudied due to difficulties that impede their annotation and detection. In order to obtain information on small open reading frames (sORFs) in P. putida, bioinformatic and proteomic approaches were used to identify putative small open...... reading frames (sORFs) in the well-characterized strain KT2440. A plasmid-based system was established for sORF validation, enabling expression of C-terminal sequential peptide affinity (SPA) tagged variants and their detection via protein immunoblotting. Out of 22 tested putative sORFs, the expression...

  9. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences

    Directory of Open Access Journals (Sweden)

    Chen Ke

    2008-05-01

    Full Text Available Abstract Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is

  10. Identification of DNA-binding proteins using support vector machines and evolutionary profiles

    Directory of Open Access Journals (Sweden)

    Gromiha Michael M

    2007-11-01

    Full Text Available Abstract Background Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation, as these proteins play a crucial role in gene-regulation. In this paper, we developed various SVM modules for predicting DNA-binding domains and proteins. All models were trained and tested on multiple datasets of non-redundant proteins. Results SVM models have been developed on DNAaset, which consists of 1153 DNA-binding and equal number of non DNA-binding proteins, and achieved the maximum accuracy of 72.42% and 71.59% using amino acid and dipeptide compositions, respectively. The performance of SVM model improved from 72.42% to 74.22%, when evolutionary information in form of PSSM profiles was used as input instead of amino acid composition. In addition, SVM models have been developed on DNAset, which consists of 146 DNA-binding and 250 non-binding chains/domains, and achieved the maximum accuracy of 79.80% and 86.62% using amino acid composition and PSSM profiles. The SVM models developed in this study perform better than existing methods on a blind dataset. Conclusion A highly accurate method has been developed for predicting DNA-binding proteins using SVM and PSSM profiles. This is the first study in which evolutionary information in form of PSSM profiles has been used successfully for predicting DNA-binding proteins. A web-server DNAbinder has been developed for identifying DNA-binding proteins and domains from query amino acid sequences http://www.imtech.res.in/raghava/dnabinder/.

  11. Identification of anabolic steroids and derivatives using bioassay-guided fractionation,UHPLC/TOFMS analysis and accurate mass database searching

    NARCIS (Netherlands)

    Peters, R.J.B.; Rijk, J.C.W.; Bovee, T.F.H.; Nijrolder, A.W.J.M.; Lommen, A.; Nielen, M.W.F.

    2010-01-01

    Biological tests can be used to screen samples for large groups of compounds having a particular effect, but it is often difficult to identify a specific compound when a positive effect is observed. The identification of an unknown compound is a challenge for analytical chemistry in environmental

  12. Working with Proteins in silico: A Review of Online Available Tools for Basic Identification of Proteins

    Directory of Open Access Journals (Sweden)

    Caner Yavuz

    2017-01-01

    Full Text Available Increase in online available bioinformatics tools for protein research creates an important opportunity for scientists to reveal characteristics of the protein of interest by only starting from the predicted or known amino acid sequence without fully depending on experimental approaches. There are many sophisticated tools used for diverse purposes; however, there are not enough reviews covering the tips and tricks in selecting and using the correct tools as the literature mainly state the promotion of the new ones. In this review, with the aim of providing young scientists with no specific experience on protein work a reliable starting point for in silico analysis of the protein of interest, we summarized tools for annotation, identification of motifs and domains, determination isoelectric point, molecular weight, subcellular localization, and post-translational modifications by focusing on the important points to be considered while selecting from online available tools.

  13. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes.

    Science.gov (United States)

    Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid

    2012-11-01

    Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.

  14. Identification of Naegleria fowleri proteins linked to primary amoebic meningoencephalitis.

    Science.gov (United States)

    Jamerson, Melissa; Schmoyer, Jacqueline A; Park, Jay; Marciano-Cabral, Francine; Cabral, Guy A

    2017-03-01

    Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis, a rapidly fatal disease of the central nervous system. N. fowleri can exist in cyst, flagellate or amoebic forms, depending on environmental conditions. The amoebic form can invade the brain following introduction into the nasal passages. When applied intranasally to a mouse model, cultured N. fowleri amoebae exhibit low virulence. However, upon serial passage in mouse brain, the amoebae acquire a highly virulent state. In the present study, a proteomics approach was applied to the identification of N. fowleri amoeba proteins whose expression was associated with the highly virulent state in mice. Mice were inoculated intranasally with axenically cultured amoebae or with mouse-passaged amoebae. Examination by light and electron microscopy revealed no morphological differences. However, mouse-passaged amoebae were more virulent in mice as indicated by exhibiting a two log10 titre decrease in median infective dose 50 (ID50). Scatter plot analysis of amoebic lysates revealed a subset of proteins, the expression of which was associated with highly virulent amoebae. MS-MS indicated that this subset contained proteins that shared homology with those linked to cytoskeletal rearrangement and the invasion process. Invasion assays were performed in the presence of a select inhibitor to expand on the findings. The collective results suggest that N. fowleri gene products linked to cytoskeletal rearrangement and invasion may be candidate targets in the management of primary amoebic meningoencephalitis.

  15. Improved Identification and Relative Quantification of Sites of Peptide and Protein Oxidation for Hydroxyl Radical Footprinting

    Science.gov (United States)

    Li, Xiaoyan; Li, Zixuan; Xie, Boer; Sharp, Joshua S.

    2013-11-01

    Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein-ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric "oxidized" peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.

  16. Rapid and Accurate Identification by Real-Time PCR of Biotoxin-Producing Dinoflagellates from the Family Gymnodiniaceae

    Directory of Open Access Journals (Sweden)

    Kirsty F. Smith

    2014-03-01

    Full Text Available The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR assays targeting the large subunit ribosomal RNA (LSU rRNA gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  17. Identification of imidacloprid metabolites in onion (Allium cepa L.) using high-resolution mass spectrometry and accurate mass tools.

    Science.gov (United States)

    Thurman, E Michael; Ferrer, Imma; Zavitsanos, Paul; Zweigenbaum, Jerry A

    2013-09-15

    Imidacloprid is a potent and widely used insecticide on vegetable crops, such as onion (Allium cepa L.). Because of possible toxicity to beneficial insects, imidacloprid and several metabolites have raised safety concerns for pollenating insects, such as honey bees. Thus, imidacloprid metabolites continue to be an important subject for new methods that better understand its dissipation and fate in plants, such as onions. One month after a single addition of imidacloprid to soil containing onion plants, imidacloprid and its metabolites were extracted from pulverized onion with a methanol/water-buffer mixture and analyzed by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS) using a labeled imidacloprid internal standard and tandem mass spectrometric (MS/MS) analysis. Accurate mass tools were developed and applied to detect seven new metabolites of imidacloprid with the goal to better understand its fate in onion. The accurate mass tools include: database searching, diagnostic ions, chlorine mass filters, Mass Profiler software, and manual use of metabolic analogy. The new metabolites discovered included an amine reduction product (m/z 226.0854), and its methylated analogue (m/z 240.1010), and five other metabolites, all of unknown toxicity to insects. The accurate mass tools were combined with LC/QTOF-MS and were able to detect both known and new metabolites of imidacloprid using fragmentation studies of both parent and labeled standards. New metabolites and their structures were inferred from these MS/MS studies with accurate mass, which makes it possible to better understand imidacloprid metabolism in onion as well as new metabolite targets for toxicity studies. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Accurate identification of a preference for insertive versus receptive intercourse from static facial cues of gay men.

    Science.gov (United States)

    Tskhay, Konstantin O; Rule, Nicholas O

    2013-10-01

    In intercourse between men, one of the partners typically assumes the role of an insertive partner (top) while the other assumes a receptive role (bottom). Although some research suggests that the perceptions of potential partners' sexual roles in gay men's relationships can affect whether a man will adopt the role of top or bottom during sexual intercourse, it remains unclear whether sexual roles could be perceived accurately by naïve observers. In Study 1, we found that naïve observers were able to discern men's sexual roles from photos of their faces with accuracy that was significantly greater than chance guessing. Moreover, in Study 2, we determined that the relationship between men's perceived and actual sexual roles was mediated by perceived masculinity. Together, these results suggest that people rely on perceptions of characteristics relevant to stereotypical male-female gender roles and heterosexual relationships to accurately infer sexual roles in same-sex relationships. Thus, same-sex relationships and sexual behavior may be perceptually framed, understood, and possibly structured in ways similar to stereotypes about opposite-sex relationships, suggesting that people may rely on these inferences to form accurate perceptions.

  19. Aptamer-conjugated live human immune cell based biosensors for the accurate detection of C-reactive protein

    Science.gov (United States)

    Hwang, Jangsun; Seo, Youngmin; Jo, Yeonho; Son, Jaewoo; Choi, Jonghoon

    2016-10-01

    C-reactive protein (CRP) is a pentameric protein that is present in the bloodstream during inflammatory events, e.g., liver failure, leukemia, and/or bacterial infection. The level of CRP indicates the progress and prognosis of certain diseases; it is therefore necessary to measure CRP levels in the blood accurately. The normal concentration of CRP is reported to be 1-3 mg/L. Inflammatory events increase the level of CRP by up to 500 times; accordingly, CRP is a biomarker of acute inflammatory disease. In this study, we demonstrated the preparation of DNA aptamer-conjugated peripheral blood mononuclear cells (Apt-PBMCs) that specifically capture human CRP. Live PBMCs functionalized with aptamers could detect different levels of human CRP by producing immune complexes with reporter antibody. The binding behavior of Apt-PBMCs toward highly concentrated CRP sites was also investigated. The immune responses of Apt-PBMCs were evaluated by measuring TNF-alpha secretion after stimulating the PBMCs with lipopolysaccharides. In summary, engineered Apt-PBMCs have potential applications as live cell based biosensors and for in vitro tracing of CRP secretion sites.

  20. Identification of one B-cell epitope from NS1 protein of duck Tembusu virus with monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Jinfeng Ti

    Full Text Available This study describes the identification of one linear B-cell epitope on TMUV NS1 protein with monoclonal antibody (mAb 3G2 by indirect enzyme-linked immunosorbent assay (ELISA. In this study, NS1 protein was expressed in prokaryotic expression system and purified. One mAb against NS1 protein was generated from Balb/c mice immunized with recombinant protein NS1. A set of 35 partially-overlapping polypeptides covering the entire NS1 protein was expressed with PGEX-6P-1 vector and screened with mAb 3G2. One polypeptide against the mAb was acquired and identified by indirect ELISA and western-blot. To map the epitope accurately, one or two amino acid residues were removed from the carboxy and amino terminal of polypeptide sequentially. A series of truncated oligopeptides were expressed and purified. The minimal determinant of the linear B cell epitope was recognized and identified with mAb 3G2. The accurate linear B-cell epitope was 269DEKEIV274 located in NS1 protein. Furthermore, sequence alignment showed that the epitope was highly conserved and specific among TMUV strains and other flavivirus respectively. The linear B-cell epitope of TMUV NS1 protein could benefit the development of new vaccines and diagnostic assays.

  1. Disease candidate gene identification and prioritization using protein interaction networks

    Directory of Open Access Journals (Sweden)

    Aronow Bruce J

    2009-02-01

    Full Text Available Abstract Background Although most of the current disease candidate gene identification and prioritization methods depend on functional annotations, the coverage of the gene functional annotations is a limiting factor. In the current study, we describe a candidate gene prioritization method that is entirely based on protein-protein interaction network (PPIN analyses. Results For the first time, extended versions of the PageRank and HITS algorithms, and the K-Step Markov method are applied to prioritize disease candidate genes in a training-test schema. Using a list of known disease-related genes from our earlier study as a training set ("seeds", and the rest of the known genes as a test list, we perform large-scale cross validation to rank the candidate genes and also evaluate and compare the performance of our approach. Under appropriate settings – for example, a back probability of 0.3 for PageRank with Priors and HITS with Priors, and step size 6 for K-Step Markov method – the three methods achieved a comparable AUC value, suggesting a similar performance. Conclusion Even though network-based methods are generally not as effective as integrated functional annotation-based methods for disease candidate gene prioritization, in a one-to-one comparison, PPIN-based candidate gene prioritization performs better than all other gene features or annotations. Additionally, we demonstrate that methods used for studying both social and Web networks can be successfully used for disease candidate gene prioritization.

  2. Streptococcus dysgalactiae subsp. equisimilis Isolated From Infections in Dogs and Humans: Are Current Subspecies Identification Criteria accurate?

    Science.gov (United States)

    Ciszewski, Marcin; Zegarski, Kamil; Szewczyk, Eligia M

    2016-11-01

    Streptococcus dysgalactiae is a pyogenic species pathogenic both for humans and animals. Until recently, it has been considered an exclusive animal pathogen causing infections in wild as well as domestic animals. Currently, human infections are being reported with increasing frequency, and their clinical picture is often similar to the ones caused by Streptococcus pyogenes. Due to the fact that S. dysgalactiae is a heterogeneous species, it was divided into two subspecies: S. dysgalactiae subsp. equisimilis (SDSE) and S. dysgalactiae subsp. dysgalactiae (SDSD). The first differentiation criterion, described in 1996, was based on strain isolation source. Currently applied criteria, published in 1998, are based on hemolysis type and Lancefield group classification. In this study, we compared subspecies identification results for 36 strains isolated from clinical cases both in humans and animals. Species differentiation was based on two previously described criteria as well as MALDI-TOF and genetic analyses: RISA and 16S rRNA genes sequencing. Antimicrobial susceptibility profiles were also determined according to CLSI guidelines. The results presented in our study suggest that the subspecies differentiation criteria previously described in the above two literature positions seem to be inaccurate in analyzed group of strains, the hemolysis type on blood agar, and Lancefield classification should not be here longer considered as criteria in subspecies identification. The antimicrobial susceptibility tests indicate emerging of multiresistant human SDSE strains resistant also to vancomycin, linezolid and tigecycline, which might pose a substantial problem in treatment.

  3. ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction

    Science.gov (United States)

    2013-01-01

    Background Population stratification is a systematic difference in allele frequencies between subpopulations. This can lead to spurious association findings in the case–control genome wide association studies (GWASs) used to identify single nucleotide polymorphisms (SNPs) associated with disease-linked phenotypes. Methods such as self-declared ancestry, ancestry informative markers, genomic control, structured association, and principal component analysis are used to assess and correct population stratification but each has limitations. We provide an alternative technique to address population stratification. Results We propose a novel machine learning method, ETHNOPRED, which uses the genotype and ethnicity data from the HapMap project to learn ensembles of disjoint decision trees, capable of accurately predicting an individual’s continental and sub-continental ancestry. To predict an individual’s continental ancestry, ETHNOPRED produced an ensemble of 3 decision trees involving a total of 10 SNPs, with 10-fold cross validation accuracy of 100% using HapMap II dataset. We extended this model to involve 29 disjoint decision trees over 149 SNPs, and showed that this ensemble has an accuracy of ≥ 99.9%, even if some of those 149 SNP values were missing. On an independent dataset, predominantly of Caucasian origin, our continental classifier showed 96.8% accuracy and improved genomic control’s λ from 1.22 to 1.11. We next used the HapMap III dataset to learn classifiers to distinguish European subpopulations (North-Western vs. Southern), East Asian subpopulations (Chinese vs. Japanese), African subpopulations (Eastern vs. Western), North American subpopulations (European vs. Chinese vs. African vs. Mexican vs. Indian), and Kenyan subpopulations (Luhya vs. Maasai). In these cases, ETHNOPRED produced ensembles of 3, 39, 21, 11, and 25 disjoint decision trees, respectively involving 31, 502, 526, 242 and 271 SNPs, with 10-fold cross validation accuracy of

  4. ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction.

    Science.gov (United States)

    Hajiloo, Mohsen; Sapkota, Yadav; Mackey, John R; Robson, Paula; Greiner, Russell; Damaraju, Sambasivarao

    2013-02-22

    Population stratification is a systematic difference in allele frequencies between subpopulations. This can lead to spurious association findings in the case-control genome wide association studies (GWASs) used to identify single nucleotide polymorphisms (SNPs) associated with disease-linked phenotypes. Methods such as self-declared ancestry, ancestry informative markers, genomic control, structured association, and principal component analysis are used to assess and correct population stratification but each has limitations. We provide an alternative technique to address population stratification. We propose a novel machine learning method, ETHNOPRED, which uses the genotype and ethnicity data from the HapMap project to learn ensembles of disjoint decision trees, capable of accurately predicting an individual's continental and sub-continental ancestry. To predict an individual's continental ancestry, ETHNOPRED produced an ensemble of 3 decision trees involving a total of 10 SNPs, with 10-fold cross validation accuracy of 100% using HapMap II dataset. We extended this model to involve 29 disjoint decision trees over 149 SNPs, and showed that this ensemble has an accuracy of ≥ 99.9%, even if some of those 149 SNP values were missing. On an independent dataset, predominantly of Caucasian origin, our continental classifier showed 96.8% accuracy and improved genomic control's λ from 1.22 to 1.11. We next used the HapMap III dataset to learn classifiers to distinguish European subpopulations (North-Western vs. Southern), East Asian subpopulations (Chinese vs. Japanese), African subpopulations (Eastern vs. Western), North American subpopulations (European vs. Chinese vs. African vs. Mexican vs. Indian), and Kenyan subpopulations (Luhya vs. Maasai). In these cases, ETHNOPRED produced ensembles of 3, 39, 21, 11, and 25 disjoint decision trees, respectively involving 31, 502, 526, 242 and 271 SNPs, with 10-fold cross validation accuracy of 86.5% ± 2.4%, 95.6% ± 3

  5. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems.

    Directory of Open Access Journals (Sweden)

    Ram Samudrala

    2009-04-01

    Full Text Available The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates--effector proteins--are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the pattern of homologs in a range of other organisms, G+C content, amino acid composition, and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from the plant pathogen Pseudomonas syringae and validated on a set of effectors from the animal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium after eliminating effectors with detectable sequence similarity. We show that this approach can predict known secreted effectors with high specificity and sensitivity. Furthermore, by considering a large set of effectors from multiple organisms, we computationally identify a common putative secretion signal in the N-terminal 20 residues of secreted effectors. This signal can be used to discriminate 46 out of 68 total known effectors from both organisms, suggesting that it is a real, shared signal applicable to many type III secreted effectors. We use the method to make novel predictions of secreted effectors in S. Typhimurium, some of which have been experimentally validated. We also apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis, identifying the majority of known secreted proteins in addition to providing a number of novel predictions. This approach provides a new way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  6. Identification of Central Nervous System Proteins in Human Blood Serum and Plasma.

    Science.gov (United States)

    Miroshnichenko, Yu V; Petushkova, N A; Teryaeva, N B; Lisitsa, A V; Zgoda, V G; Belyaev, A Yu; Potapov, A A

    2015-11-01

    Mass-spectrometric identification of proteins in human blood plasma and serum was performed by comparing mass-spectra of fragmented peptides using Swiss-Prot and UniProtKB databases of amino acid sequences. After choosing the appropriate identification conditions we found that combination of spectrum search parameters are optimal for identification of CNS proteins. In the studied plasma and serum samples, 9 proteins involved into pathological processes in the nervous tissue were identified; 7 of them were identified in both plasma and serum.

  7. Accurate Protein Complex Retrieval by Affinity Enrichment Mass Spectrometry (AE-MS) Rather than Affinity Purification Mass Spectrometry (AP-MS)

    OpenAIRE

    Keilhauer, E.; Hein, M; Mann, M

    2015-01-01

    Protein?protein interactions are fundamental to the understanding of biological processes. Affinity purification coupled to mass spectrometry (AP-MS) is one of the most promising methods for their investigation. Previously, complexes were purified as much as possible, frequently followed by identification of individual gel bands. However, todays mass spectrometers are highly sensitive, and powerful quantitative proteomics strategies are available to distinguish true interactors from backgroun...

  8. EVEREST: automatic identification and classification of protein domains in all protein sequences

    Directory of Open Access Journals (Sweden)

    Linial Nathan

    2006-06-01

    Full Text Available Abstract Background Proteins are comprised of one or several building blocks, known as domains. Such domains can be classified into families according to their evolutionary origin. Whereas sequencing technologies have advanced immensely in recent years, there are no matching computational methodologies for large-scale determination of protein domains and their boundaries. We provide and rigorously evaluate a novel set of domain families that is automatically generated from sequence data. Our domain family identification process, called EVEREST (EVolutionary Ensembles of REcurrent SegmenTs, begins by constructing a library of protein segments that emerge in an all vs. all pairwise sequence comparison. It then proceeds to cluster these segments into putative domain families. The selection of the best putative families is done using machine learning techniques. A statistical model is then created for each of the chosen families. This procedure is then iterated: the aforementioned statistical models are used to scan all protein sequences, to recreate a library of segments and to cluster them again. Results Processing the Swiss-Prot section of the UniProt Knoledgebase, release 7.2, EVEREST defines 20,230 domains, covering 85% of the amino acids of the Swiss-Prot database. EVEREST annotates 11,852 proteins (6% of the database that are not annotated by Pfam A. In addition, in 43,086 proteins (20% of the database, EVEREST annotates a part of the protein that is not annotated by Pfam A. Performance tests show that EVEREST recovers 56% of Pfam A families and 63% of SCOP families with high accuracy, and suggests previously unknown domain families with at least 51% fidelity. EVEREST domains are often a combination of domains as defined by Pfam or SCOP and are frequently sub-domains of such domains. Conclusion The EVEREST process and its output domain families provide an exhaustive and validated view of the protein domain world that is automatically

  9. Choosing an Optimal Database for Protein Identification from Tandem Mass Spectrometry Data.

    Science.gov (United States)

    Kumar, Dhirendra; Yadav, Amit Kumar; Dash, Debasis

    2017-01-01

    Database searching is the preferred method for protein identification from digital spectra of mass to charge ratios (m/z) detected for protein samples through mass spectrometers. The search database is one of the major influencing factors in discovering proteins present in the sample and thus in deriving biological conclusions. In most cases the choice of search database is arbitrary. Here we describe common search databases used in proteomic studies and their impact on final list of identified proteins. We also elaborate upon factors like composition and size of the search database that can influence the protein identification process. In conclusion, we suggest that choice of the database depends on the type of inferences to be derived from proteomics data. However, making additional efforts to build a compact and concise database for a targeted question should generally be rewarding in achieving confident protein identifications.

  10. Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR.

    Science.gov (United States)

    Shams, M; Vial, L; Chapulliot, D; Nesme, X; Lavire, C

    2013-07-01

    Agrobacteria are common soil bacteria that interact with plants as commensals, plant growth promoting rhizobacteria or alternatively as pathogens. Indigenous agrobacterial populations are composites, generally with several species and/or genomic species and several strains per species. We thus developed a recA-based PCR approach to accurately identify and specifically detect agrobacteria at various taxonomic levels. Specific primers were designed for all species and/or genomic species of Agrobacterium presently known, including 11 genomic species of the Agrobacterium tumefaciens complex (G1-G9, G13 and G14, among which only G2, G4, G8 and G14 still received a Latin epithet: pusense, radiobacter, fabrum and nepotum, respectively), A. larrymoorei, A. rubi, R. skierniewicense, A. sp. 1650, and A. vitis, and for the close relative Allorhizobium undicola. Specific primers were also designed for superior taxa, Agrobacterium spp. and Rhizobiaceace. Primer specificities were assessed with target and non-target pure culture DNAs as well as with DNAs extracted from composite agrobacterial communities. In addition, we showed that the amplicon cloning-sequencing approach used with Agrobacterium-specific or Rhizobiaceae-specific primers is a way to assess the agrobacterial diversity of an indigenous agrobacterial population. Hence, the agrobacterium-specific primers designed in the present study enabled the first accurate and rapid identification of all species and/or genomic species of Agrobacterium, as well as their direct detection in environmental samples. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Accurate Identification of Common Pathogenic Nocardia Species: Evaluation of a Multilocus Sequence Analysis Platform and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    Science.gov (United States)

    Chen, Sharon C-A.; Fan, Xin; Zhang, Li; Li, Hai-Xia; Hou, Xin; Cheng, Jing-Wei; Kong, Fanrong; Zhao, Yu-Pei; Xu, Ying-Chun

    2016-01-01

    Species identification of Nocardia is not straightforward due to rapidly evolving taxonomy, insufficient discriminatory power of conventional phenotypic methods and also of single gene locus analysis including 16S rRNA gene sequencing. Here we evaluated the ability of a 5-locus (16S rRNA, gyrB, secA1, hsp65 and rpoB) multilocus sequence analysis (MLSA) approach as well as that of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in comparison with sequencing of the 5’-end 606 bp partial 16S rRNA gene to provide identification of 25 clinical isolates of Nocardia. The 5’-end 606 bp 16S rRNA gene sequencing successfully assigned 24 of 25 (96%) clinical isolates to species level, namely Nocardia cyriacigeorgica (n = 12, 48%), N. farcinica (n = 9, 36%), N. abscessus (n = 2, 8%) and N. otitidiscaviarum (n = 1, 4%). MLSA showed concordance with 16S rRNA gene sequencing results for the same 24 isolates. However, MLSA was able to identify the remaining isolate as N. wallacei, and clustered N. cyriacigeorgica into three subgroups. None of the clinical isolates were correctly identified to the species level by MALDI-TOF MS analysis using the manufacturer-provided database. A small “in-house” spectral database was established incorporating spectra of five clinical isolates representing the five species identified in this study. After complementation with the “in-house” database, of the remaining 20 isolates, 19 (95%) were correctly identified to species level (score ≥ 2.00) and one (an N. abscessus strain) to genus level (score ≥ 1.70 and Nocardia. MALDI-TOF MS can provide rapid and accurate identification but is reliant on a robust mass spectra database. PMID:26808813

  12. Accurate Identification of Common Pathogenic Nocardia Species: Evaluation of a Multilocus Sequence Analysis Platform and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Xiao, Meng; Pang, Lu; Chen, Sharon C-A; Fan, Xin; Zhang, Li; Li, Hai-Xia; Hou, Xin; Cheng, Jing-Wei; Kong, Fanrong; Zhao, Yu-Pei; Xu, Ying-Chun

    2016-01-01

    Species identification of Nocardia is not straightforward due to rapidly evolving taxonomy, insufficient discriminatory power of conventional phenotypic methods and also of single gene locus analysis including 16S rRNA gene sequencing. Here we evaluated the ability of a 5-locus (16S rRNA, gyrB, secA1, hsp65 and rpoB) multilocus sequence analysis (MLSA) approach as well as that of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in comparison with sequencing of the 5'-end 606 bp partial 16S rRNA gene to provide identification of 25 clinical isolates of Nocardia. The 5'-end 606 bp 16S rRNA gene sequencing successfully assigned 24 of 25 (96%) clinical isolates to species level, namely Nocardia cyriacigeorgica (n = 12, 48%), N. farcinica (n = 9, 36%), N. abscessus (n = 2, 8%) and N. otitidiscaviarum (n = 1, 4%). MLSA showed concordance with 16S rRNA gene sequencing results for the same 24 isolates. However, MLSA was able to identify the remaining isolate as N. wallacei, and clustered N. cyriacigeorgica into three subgroups. None of the clinical isolates were correctly identified to the species level by MALDI-TOF MS analysis using the manufacturer-provided database. A small "in-house" spectral database was established incorporating spectra of five clinical isolates representing the five species identified in this study. After complementation with the "in-house" database, of the remaining 20 isolates, 19 (95%) were correctly identified to species level (score ≥ 2.00) and one (an N. abscessus strain) to genus level (score ≥ 1.70 and Nocardia. MALDI-TOF MS can provide rapid and accurate identification but is reliant on a robust mass spectra database.

  13. Decision peptide-driven: a free software tool for accurate protein quantification using gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry.

    Science.gov (United States)

    Santos, Hugo M; Reboiro-Jato, Miguel; Glez-Peña, Daniel; Nunes-Miranda, J D; Fdez-Riverola, Florentino; Carvallo, R; Capelo, J L

    2010-09-15

    The decision peptide-driven tool implements a software application for assisting the user in a protocol for accurate protein quantification based on the following steps: (1) protein separation through gel electrophoresis; (2) in-gel protein digestion; (3) direct and inverse (18)O-labeling and (4) matrix assisted laser desorption ionization time of flight mass spectrometry, MALDI analysis. The DPD software compares the MALDI results of the direct and inverse (18)O-labeling experiments and quickly identifies those peptides with paralleled loses in different sets of a typical proteomic workflow. Those peptides are used for subsequent accurate protein quantification. The interpretation of the MALDI data from direct and inverse labeling experiments is time-consuming requiring a significant amount of time to do all comparisons manually. The DPD software shortens and simplifies the searching of the peptides that must be used for quantification from a week to just some minutes. To do so, it takes as input several MALDI spectra and aids the researcher in an automatic mode (i) to compare data from direct and inverse (18)O-labeling experiments, calculating the corresponding ratios to determine those peptides with paralleled losses throughout different sets of experiments; and (ii) allow to use those peptides as internal standards for subsequent accurate protein quantification using (18)O-labeling. In this work the DPD software is presented and explained with the quantification of protein carbonic anhydrase. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Identification of peptide and protein doping related drug compounds confiscated in Denmark between 2007-2013

    DEFF Research Database (Denmark)

    Hartvig, Rune Andersen; Holm, Niels Bjerre; Dalsgaard, Petur Weihe

    2014-01-01

    We present an overview of protein and peptide compounds confiscated in Denmark from late 2007 till late 2013 together with a description of a newly developed HRAM-LC-MS method used for identification. As examples of identification, we present data for the peptides AOD-9604, [D-Ala2, Gln8, Ala15...

  15. HotSpot Wizard: a web server for identification of hot spots in protein engineering

    National Research Council Canada - National Science Library

    Pavelka, Antonin; Chovancova, Eva; Damborsky, Jiri

    2009-01-01

    HotSpot Wizard is a web server for automatic identification of 'hot spots' for engineering of substrate specificity, activity or enantioselectivity of enzymes and for annotation of protein structures...

  16. Metabolite identification of triptolide by data-dependent accurate mass spectrometric analysis in combination with online hydrogen/deuterium exchange and multiple data-mining techniques.

    Science.gov (United States)

    Du, Fuying; Liu, Ting; Liu, Tian; Wang, Yongwei; Wan, Yakun; Xing, Jie

    2011-10-30

    Triptolide (TP), the primary active component of the herbal medicine Tripterygium wilfordii Hook F, has shown promising antileukemic and anti-inflammatory activity. The pharmacokinetic profile of TP indicates an extensive metabolic elimination in vivo; however, its metabolic data is rarely available partly because of the difficulty in identifying it due to the absence of appropriate ultraviolet chromophores in the structure and the presence of endogenous interferences in biological samples. In the present study, the biotransformation of TP was investigated by improved data-dependent accurate mass spectrometric analysis, using an LTQ/Orbitrap hybrid mass spectrometer in conjunction with the online hydrogen (H)/deuterium (D) exchange technique for rapid structural characterization. Accurate full-scan MS and MS/MS data were processed with multiple post-acquisition data-mining techniques, which were complementary and effective in detecting both common and uncommon metabolites from biological matrices. As a result, 38 phase I, 9 phase II and 8 N-acetylcysteine (NAC) metabolites of TP were found in rat urine. Accurate MS/MS data were used to support assignments of metabolite structures, and online H/D exchange experiments provided additional evidence for exchangeable hydrogen atoms in the structure. The results showed the main phase I metabolic pathways of TP are hydroxylation, hydrolysis and desaturation, and the resulting metabolites subsequently undergo phase II processes. The presence of NAC conjugates indicated the capability of TP to form reactive intermediate species. This study also demonstrated the effectiveness of LC/HR-MS(n) in combination with multiple post-acquisition data-mining methods and the online H/D exchange technique for the rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Identification of a hypothetical membrane protein interactor of ...

    Indian Academy of Sciences (India)

    Protein interaction; putative integral membrane protein; ribosomal phosphoprotein P0; surface expression; yeast two-hybrid. Abstract. The ribosomal phosphoprotein P0 of the human malarial parasite Plasmodium falciparum (PfP0) has been identified as a protective surface protein. In Drosophila, P0 protein functions in the ...

  18. Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou's general PseAAC.

    Science.gov (United States)

    Ahmad, Saeed; Kabir, Muhammad; Hayat, Maqsood

    2015-11-01

    Heat Shock Proteins (HSPs) are the substantial ingredients for cell growth and viability, which are found in all living organisms. HSPs manage the process of folding and unfolding of proteins, the quality of newly synthesized proteins and protecting cellular homeostatic processes from environmental stress. On the basis of functionality, HSPs are categorized into six major families namely: (i) HSP20 or sHSP (ii) HSP40 or J-proteins types (iii) HSP60 or GroEL/ES (iv) HSP70 (v) HSP90 and (vi) HSP100. Identification of HSPs family and sub-family through conventional approaches is expensive and laborious. It is therefore, highly desired to establish an automatic, robust and accurate computational method for prediction of HSPs quickly and reliably. Regard, a computational model is developed for the prediction of HSPs family. In this model, protein sequences are formulated using three discrete methods namely: Split Amino Acid Composition, Pseudo Amino Acid Composition, and Dipeptide Composition. Several learning algorithms are utilized to choice the best one for high throughput computational model. Leave one out test is applied to assess the performance of the proposed model. The empirical results showed that support vector machine achieved quite promising results using Dipeptide Composition feature space. The predicted outcomes of proposed model are 90.7% accuracy for HSPs dataset and 97.04% accuracy for J-protein types, which are higher than existing methods in the literature so far. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Identification and characterization of the surface proteins of Clostridium difficile

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated.

  20. Identification of Proteins Involved in Salinity Tolerance in Salicornia bigelovii

    KAUST Repository

    Salazar Moya, Octavio Ruben

    2017-11-01

    With a global growing demand in food production, agricultural output must increase accordingly. An increased use of saline soils and brackish water would contribute to the required increase in world food production. Abiotic stresses, such as salinity and drought, are also major limiters of crop growth globally - most crops are relatively salt sensitive and are significantly affected when exposed to salt in the range of 50 to 200 mM NaCl. Genomic resources from plants that naturally thrive in highly saline environments have the potential to be valuable in the generation of salt tolerant crops; however, these resources have been largely unexplored. Salicornia bigelovii is a plant native to Mexico and the United States that grows in salt marshes and coastal regions. It can thrive in environments with salt concentrations higher than seawater. In contrast to most crops, S. bigelovii is able to accumulate very high concentrations (in the order of 1.5 M) of Na+ and Cl- in its photosynthetically active succulent shoots. Part of this tolerance is likely to include the storage of Na+ in the vacuoles of the shoots, making S. bigelovii a good model for understanding mechanisms of Na+ compartmentalization in the vacuoles and a good resource for gene discovery. In this research project, phenotypic, genomic, transcriptomic, and proteomic approaches have been used for the identification of candidate genes involved in salinity tolerance in S. bigelovii. The genomes and transcriptomes of three Salicornia species have been sequenced. This information has been used to support the characterization of the salt-induced transcriptome of S. bigelovii shoots and the salt-induced proteome of various organellar membrane enriched fractions from S. bigelovii shoots, which led to the creation of organellar membrane proteomes. Yeast spot assays at different salt concentrations revealed several proteins increasing or decreasing yeast salt tolerance. This work aims to create the basis for

  1. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    Directory of Open Access Journals (Sweden)

    Liqi Li

    Full Text Available Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM in conjunction with integrated features from position-specific score matrix (PSSM, PROFEAT and Gene Ontology (GO. A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.

  2. Fast Photochemical Oxidation of Proteins Coupled to Multidimensional Protein Identification Technology (MudPIT): Expanding Footprinting Strategies to Complex Systems

    Science.gov (United States)

    Rinas, Aimee; Jones, Lisa M.

    2015-04-01

    Peptides containing the oxidation products of hydroxyl radical-mediated protein footprinting experiments are typically much less abundant than their unoxidized counterparts. This is inherent to the design of the experiment as excessive oxidation may lead to undesired conformational changes or unfolding of the protein, skewing the results. Thus, as the complexity of the systems studied using this method expands, the detection and identification of these oxidized species can be increasingly difficult with the limitations of data-dependent acquisition (DDA) and one-dimensional chromatography. Here we report the application of multidimensional protein identification technology (MudPIT) in combination with hydroxyl radical footprinting as a method to increase the identification of quantifiable peptides in these experiments. Using this method led to a 37% increase in unique peptide identifications as well as a 70% increase in protein group identifications over one-dimensional data-dependent acquisition on the same samples. Furthermore, we demonstrate the combination of these methods as a means to investigate megadalton complexes.

  3. Identification of potential antigenic proteins of Theileria lestoquardi.

    Science.gov (United States)

    Bakheit, Mohammed; Scholzen, Thomas; Ahmed, Jabbar S; Seitzer, Ulrike

    2006-10-01

    A PCR strategy was used to identify potential antigenic proteins of T. lestoquardi suitable for the development of an ELISA by searching for homologous proteins previously identified in other theilierial parasites to be antigenic.

  4. Identification of differentially expressed proteins in response to Pb ...

    African Journals Online (AJOL)

    use

    76 proteins, out of the 95 differentially expressed proteins, were subjected to MALDI-TOF-MS Of these,. 46 identities were identified by ... metabolisms such as photosynthesis, photorespiration and protein biosynthesis in C. roseus leaves were without ...... Wu X, Hong FS, Liu C, Su MY, Zheng L (2008). PbCl2 on the nitrogen.

  5. Identification of a hypothetical membrane protein interactor of ...

    Indian Academy of Sciences (India)

    Unknown

    lated, twelve clones that interacted strongly with both PfP0 and the Saccharomyces cerevisiae P0 (ScP0) protein .... amplified in the same liquid medium. About 0⋅5 .... Interactor protein genes and β-galactosidase activity of the clones. β galactosidase activity. (Miller units)a. Clone. No. Gene/protein name in. S. cerevisiae.

  6. Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis

    NARCIS (Netherlands)

    Zhu, Yafeng; G. Engström, Pär; Tellgren-Roth, Christian; Baudo, Charles; Kennell, Jack; Sun, Sheng; Billmyre, Blake Robert; Schröder, Markus S; Andersson, Anna; Holm, Tina; Sigurgeirsson, Benjamin; Wu, Guangxi; Sankaranarayanan, Sundar; Siddharthan, Rahul; Sanyal, Kaustuv; Lundeberg, Joakim; Nystedt, Björn; Boekhout, Teun; Dawson, Thomas L., Jr.; Lehtiö, Janne

    2017-01-01

    Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast

  7. Mass spectrometry based approach for identification and characterisation of fluorescent proteins from marine organisms

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna Iwona; Rogowska-Wrzesinska, Adelina; Wrzesinski, Krzysztof

    2011-01-01

    We present here a new analytical strategy for identification and characterisation of fluorescent proteins from marine organisms. By applying basic proteomics tools it is possible to screen large sample collections for fluorescent proteins of desired characteristics prior to gene cloning. Our...

  8. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  9. Identification of urinary protein biomarkers for tobacco smoking.

    Science.gov (United States)

    Haniff, Aj Nabill; Gam, Lay-Harn

    2016-01-01

    Smoking, passive smoking, and nonsmoking are conditions that give different degrees of stress to the body. In this study, a proteomic technique was used to analyze differentially urinary protein expression between these three groups of subjects. Urinary proteins were precipitated using ammonium sulfate followed by separation according to molecular weights using SDS-PAGE. The gel was stained by Coommassie blue, and the image of the gel was captured for the comparison study. The protein bands that were consistently detected but expressed at different intensity between the smokers and nonsmokers were targeted for further analysis. Three targeted protein bands were excised from the gel, consisting of a unique protein band of smokers and a pair of differentially expressed protein bands from smokers and nonsmokers. The proteins were digested in gel by trypsin. The tryptic peptides were analyzed with ultra performance liquid chromatography-tandem mass spectrometry. Protein identity was determined by the product ion spectrum in the MS/MS scan. Four unique proteins from the smokers, namely, pancreatic alpha amylase, proepidermal growth factor, protein 4.1, and prostatic acid phosphatase, were found to be potential urinary biomarkers to indicate smoking status of a person. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  10. Identification of Differentially Expressed Serum Proteins in Infectious Purpura Fulminans

    Directory of Open Access Journals (Sweden)

    Ting He

    2014-01-01

    Full Text Available Purpura fulminans (PF is a life-threatening hemorrhagic condition. Because of the rarity and randomness of the disease, no improvement in treatment has been made for a long time. In this study, we assessed the serum proteome response to PF by comparing serum proteins between healthy controls and PF patient. Liquid chromatography with tandem mass spectrometry (LC-MS/MS approach was used after depleting 6 abundant proteins of serum. In total, 262 proteins were confidently identified with 2 unique peptides, and 38 proteins were identified significantly up- (≥2 or downregulated (≤0.5 based on spectral counting ratios (SpCPF/N. In the 38 proteins with significant abundance changes, 11 proteins were previously known to be associated with burn or sepsis response, but 27 potentially novel proteins may be specifically associated with PF process. Two differentially expressed proteins, alpha-1-antitrypsin (SERPINA1 and alpha-2 antiplasmin (SERPINF2, were validated by Western blot. This is the first study where PF patient and healthy controls are compared in a proteomic study to elucidate proteins involved in the response to PF. This study provides an initial basis for future studies of PF, and the differentially expressed proteins might provide new therapeutic targets to decrease the mortality of PF.

  11. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind.

    Science.gov (United States)

    London, Nir; Ambroggio, Xavier

    2014-02-01

    Computational protein design efforts aim to create novel proteins and functions in an automated manner and, in the process, these efforts shed light on the factors shaping natural proteins. The focus of these efforts has progressed from the interior of proteins to their surface and the design of functions, such as binding or catalysis. Here we examine progress in the development of robust methods for the computational design of non-natural interactions between proteins and molecular targets such as other proteins or small molecules. This problem is referred to as the de novo computational design of interactions. Recent successful efforts in de novo enzyme design and the de novo design of protein-protein interactions open a path towards solving this problem. We examine the common themes in these efforts, and review recent studies aimed at understanding the nature of successes and failures in the de novo computational design of interactions. While several approaches culminated in success, the use of a well-defined structural model for a specific binding interaction in particular has emerged as a key strategy for a successful design, and is therefore reviewed with special consideration. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Identification of IgE-binding proteins in soy lecithin.

    Science.gov (United States)

    Gu, X; Beardslee, T; Zeece, M; Sarath, G; Markwell, J

    2001-11-01

    Soy lecithin is widely used as an emulsifier in processed foods, pharmaceuticals and cosmetics. Soy lecithin is composed principally of phospholipids; however, it has also been shown to contain IgE-binding proteins, albeit at a low level. A few clinical cases involving allergic reactions to soy lecithin have been reported. The purpose of this investigation is to better characterize the IgE-binding proteins typically found in lecithin. Soy lecithin proteins were isolated following solvent extraction of lipid components and then separated on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separated lecithin proteins were immunoblotted with sera from soy-sensitive individuals to determine the pattern of IgE-binding proteins. The identity of IgE-reactive bands was determined from their N-terminal sequence. The level of protein in six lecithin samples obtained from commercial suppliers ranged from 100 to 1,400 ppm. Lecithin samples showed similar protein patterns when examined by SDS-PAGE. Immunoblotting with sera from soy-sensitive individuals showed IgE binding to bands corresponding to 7, 12, 20, 39 and 57 kD. N-terminal analysis of these IgE-binding bands resulted in sequences for 3 components. The 12-kD band was identified as a methionine-rich protein (MRP) and a member of the 2S albumin class of soy proteins. The 20-kD band was found to be soybean Kunitz trypsin inhibitor. The 39-kD band was matched to a soy protein with unknown function. Soy lecithin contains a number of IgE-binding proteins; thus, it might represent a source of hidden allergens. These allergens are a more significant concern for soy-allergic individuals consuming lecithin products as a health supplement. In addition, the MRP and the 39-kD protein identified in this study represent newly identified IgE-binding proteins. Copyright 2001 S. Karger AG, Basel

  13. Identification of Pasteurella multocida CHAPS-soluble outer membrane proteins.

    Science.gov (United States)

    Tabatabai, Louisa B

    2008-03-01

    Fowl cholera continues to be of concern to the poultry industry, especially for turkey growers. This disease costs the turkey industry millions of dollars annually. In order to develop improved live attenuated vaccines or subunit vaccines, the outer-membrane proteins of Pasteurella multocida were examined with the use of proteomics. Of the 11 proteins total present in an outer-membrane subfraction of P. multocida, four additional proteins were identified, completing the composition of the detergent-soluble cross-protective protein fraction. These additional four proteins include protective bacterial surface antigen, OMA87 (Accession no. 15603857); heme-hemopexin receptor, HemR (Accession no. 15602441); lactate permease, LctP (Accession no. 15603717); and heptosyl transferase F, RfaF (Accession no. 15603709). Both the Oma87 and the HemR proteins would be of interest for subunit and modified live vaccine studies, respectively, because of their purported roles as virulence factors for P. multocida.

  14. Identification of toxin genes encoding Cyt proteins from standard ...

    African Journals Online (AJOL)

    Polymerase chain reaction-restriction fragment length polymorphism methods for identification of cyt subclasses from Bacillus thuringiensis were established. Eight of 68 standard and ten of 107 Argentine B. thuringiensis strains harbor at least one cyt gene. The combination of cyt1Aa/cyt2Ba genes was identified in four ...

  15. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    Science.gov (United States)

    2007-12-01

    mice. Infect Immun 70: 3330-3335. 48. Kaufman, L. & P. Standard. 1978. Immuno -identification of cultures of fungi pathogenic to man. Curr Microbiol 1...complex biological systems using micro-column liquid chromatography-electrospray tandem mass spectrometry. Analyst 121: 65R-76R. 88. Washburn, M., D

  16. Identification of proteins in fluid collected from nerve regeneration chambers

    Directory of Open Access Journals (Sweden)

    Ye Yilin

    2014-01-01

    Full Text Available We examined whether there are novel neurotrophic factors (NTFs in nerve regeneration conditioned fluid (NRCF. Nerve regeneration chamber models were established in the sciatic nerves of 25 New Zealand rabbits, and NRCF was extracted from the chambers l week postoperatively. Proteins in NRCF were separated by native polyacrylamide gel electrophoresis (PAGE, and Western blot and ELISA were used to identify the proteins. A novel NTF was identified in a protein fraction corresponding to 220 kDa.

  17. [Identification of glycosylphosphatidylinositol-anchored protein from Schistosoma japonicum].

    Science.gov (United States)

    Cao, Qin-Yan; Xue, Yan-Feng; Shen, Li

    2012-10-30

    To identify glycosylphosphatidylinositol (GPI) anchored protein of Schistosoma japonicum. Based on the gene sequence of Schistosoma mansoni GPI anchored protein Sm200 (GenBank Assess No: XM_002569560.1), bioinformatics analysis was performed to find out its homologous gene sequence in S. japonicum, then a selected partial coding sequence (SjGPIs, about 933 bp) from the homologous gene sequence were amplified, and cloned into PET-28a(+) vector. The recombinant plasmid pET-28a(+)SjGPIs were transformed into E. coli Top10 cells and induced with IPTG for protein expression. The recombinant protein SjGPIs was purified with Ni-NTA resin, and the purified recombinant SjGPIs protein was used as antigen to prepare antiserum in New Zealand rabbit. The antiserum was used to detect S. japonicum GPI-anchored protein. To identify a GPI-anchored protein, the detected protein were identified by phosphatidylinositol-specific phospholipase C (PI-PLC) digestion. White blood cells from S. japonicum-infected mice was examined whether they endocytosed GPI-anchored proteins by Western blotting. The homologous gene sequence of S. mansoni GPI Sm200 gene was found in S. japonicum genome. A 3 495 bp coding sequence was obtained, containing the complete C-terminal sequence. The selected gene sequence (SjGPIs) were amplified and the recombinant plasmid pET-28a(+)-SjGPIs was established. According to the analysis of C-terminal sequence, Western blotting and enzyme digestion of PI-PLC, a GPI-anchored protein was present in S. japonicum tegument (about 1M(r)200000), named SjGPI200. The protein was detected in white blood cells of infected mice. SjGPI200 protein exists in S. japonicum, and anchored to parasite tegument via GPI.

  18. Development of a strategy for the identification of surface proteins in the pathogenic microsporidian Nosema bombycis.

    Science.gov (United States)

    Zhao, Weixi; Hao, Youjin; Wang, Linglin; Zhou, Zeyang; Li, Zhi

    2015-06-01

    Parasite-host interactions mediated by cell surface proteins have been implicated as a critical step in infections caused by the microsporidian Nosema bombycis. Such cell surface proteins are considered as promising diagnostic markers and targets for drug development. However, little research has specifically addressed surface proteome identification in microsporidia due to technical barriers. Here, a combined strategy was developed to separate and identify the surface proteins of N. bombycis. Briefly, following (1) biotinylation of the spore surface, (2) extraction of total proteins with an optimized method and (3) streptavidin affinity purification of biotinylated proteins, 22 proteins were identified based on LC-MS/MS analysis. Among them, 5 proteins were confirmed to be localized on the surface of N. bombycis. A total of 8 proteins were identified as hypothetical extracellular proteins, whereas 7 other hypothetical proteins had no available function annotation. Furthermore, a protein with a molecular weight of 18·5 kDa was localized on the spore surface by western blotting and immunofluorescence analysis, even though it was predicted to be a nuclear protein by bioinformatics. Collectively, our work provides an effective strategy for isolating microsporidian surface protein components for both drug target identification and further diagnostic research on microsporidian disease control.

  19. Identification of Ultramodified Proteins Using Top-Down Mass Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaowen; Hengel, Shawna M.; Wu, Si; Tolic, Nikola; Pasa-Tolic, Ljiljana; Pevzner, Pavel A.

    2013-11-05

    Post-translational modifications (PTMs) play an important role in various biological processes through changing protein structure and function. Some ultramodified proteins (like histones) have multiple PTMs forming PTM patterns that define the functionality of a protein. While bottom-up mass spectrometry (MS) has been successful in identifying individual PTMs within short peptides, it is unable to identify PTM patterns spread along entire proteins in a coordinated fashion. In contrast, top-down MS analyzes intact proteins and reveals PTM patterns along the entire proteins. However, while recent advances in instrumentation have made top-down MS accessible to many laboratories, most computational tools for top-down MS focus on proteins with few PTMs and are unable to identify complex PTM patterns. We propose a new algorithm, MS-Align-E, that identifies both expected and unexpected PTMs in ultramodified proteins. We demonstrate that MS-Align-E identifies many protein forms of histone H4 and benchmark it against the currently accepted software tools.

  20. Identification of ultramodified proteins using top-down spectra

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaowen; Hengel, Shawna M.; Wu, Si; Tolic, Nikola; Pasa-Tolic, Ljiljana; Pevzner, Pavel A.

    2013-04-10

    Post-translational modifications (PTMs) play an important role in various biological processes through changing protein structure and function. Some ultramodified proteins (like histones) have multiple PTMs forming PTM patterns that define the functionality of a protein. While bottom-up mass spectrometry (MS) has been successful in identifying individual PTMs within short peptides, it is unable to identify PTM patterns spread along entire proteins in a coordinated fashion. In contrast, top-down MS analyzes intact proteins and reveals PTM patterns along the entire proteins. However, while recent advances in instrumentation have made top-down MS accessible to many laboratories, most computational tools for top-down MS focus on proteins with few PTMs and are unable to identify complex PTM patterns. We propose a new algorithm, MS-Align-E, that identifies both expected and unexpected PTMs in ultramodified proteins. We demonstrate that MS-Align-E identifies many protein forms of histone H4 and benchmark it against the currently accepted software tools.

  1. An accurate and reliable method for identification and quantification of fatty acids and trans fatty acids in food fats samples using gas chromatography

    Directory of Open Access Journals (Sweden)

    Jumat Salimon

    2017-05-01

    Full Text Available A method for the separation, identification and further quantification of fatty acids (FAs and trans fatty acids (TFAs by gas chromatography (GC using the combination of lipid extraction and derivatization with the base-catalysed method followed by trimethylsilyl-diazomethane (TMS-DM was developed. The proposed method was found to allow sensitive and accurate determination of a wide range of different types of FAs, including TFA isomers. The method was validated on real samples of dietary fat from hydrogenated edible oils (margarine and nine standard FAs as representatives of margarines. For this purpose, response linearity, limit of detection (LOD, limit of quantification (LOQ, precision and recovery (R% were all determined. Based on the results obtained, R-values from all the samples were revealed to be close to 100%, repeatability RSD ranged between 0.89% and 2.34%, and reproducibility RSD values ranged between 1.46% and 3.72%. The applicability of this method was demonstrated in four margarine samples and it was compared with the method used as reference. In general, the results proved that the proposed method is suitable for the analysis of FAs since it has shown higher effectiveness in TFA analysis than the classic methods. Thus, it could be an effective tool for analysing dietary fats and oils in complex mixtures of food products for the monitoring of low levels of FAs and TFA, and the control of labelling authenticity.

  2. Comprehensive Identification of Immunodominant Proteins of Brucella abortus and Brucella melitensis Using Antibodies in the Sera from Naturally Infected Hosts

    Directory of Open Access Journals (Sweden)

    Gamal Wareth

    2016-04-01

    Full Text Available Brucellosis is a debilitating zoonotic disease that affects humans and animals. The diagnosis of brucellosis is challenging, as accurate species level identification is not possible with any of the currently available serology-based diagnostic methods. The present study aimed at identifying Brucella (B. species-specific proteins from the closely related species B. abortus and B. melitensis using sera collected from naturally infected host species. Unlike earlier reported investigations with either laboratory-grown species or vaccine strains, in the present study, field strains were utilized for analysis. The label-free quantitative proteomic analysis of the naturally isolated strains of these two closely related species revealed 402 differentially expressed proteins, among which 63 and 103 proteins were found exclusively in the whole cell extracts of B. abortus and B. melitensis field strains, respectively. The sera from four different naturally infected host species, i.e., cattle, buffalo, sheep, and goat were applied to identify the immune-binding protein spots present in the whole protein extracts from the isolated B. abortus and B. melitensis field strains and resolved on two-dimensional gel electrophoresis. Comprehensive analysis revealed that 25 proteins of B. abortus and 20 proteins of B. melitensis were distinctly immunoreactive. Dihydrodipicolinate synthase, glyceraldehyde-3-phosphate dehydrogenase and lactate/malate dehydrogenase from B. abortus, amino acid ABC transporter substrate-binding protein from B. melitensis and fumarylacetoacetate hydrolase from both species were reactive with the sera of all the tested naturally infected host species. The identified proteins could be used for the design of serological assays capable of detecting pan-Brucella, B. abortus- and B. melitensis-specific antibodies.

  3. Identification of urinary proteins potentially associated with diabetic kidney disease

    Directory of Open Access Journals (Sweden)

    R K Marikanty

    2016-01-01

    Full Text Available Diabetic nephropathy (DN is the most common cause of chronic kidney disease. Although several parameters are used to evaluate renal damage, in many instances, there is no pathological change until damage is already advanced. Mass spectrometry-based proteomics is a novel tool to identify newer diagnostic markers. To identify urinary proteins associated with renal complications in diabetes, we collected urine samples from 10 type 2 diabetes patients each with normoalbuminuria, micro- and macro-albuminuria and compared their urinary proteome with that of 10 healthy individuals. Urinary proteins were concentrated, depleted of albumin and five other abundant plasma proteins and in-gel trypsin digested after prefractionation on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The peptides were analyzed using a nanoflow reverse phase liquid chromatography system coupled to linear trap quadrupole-Orbitrap mass spectrometer. We identified large number of proteins in each group, of which many were exclusively present in individual patient groups. A total of 53 proteins were common in all patients but were absent in the controls. The majority of the proteins were functionally binding, biologically involved in metabolic processes, and showed enrichment of alternative complement and blood coagulation pathways. In addition to identifying reported proteins such as α2-HS-glycoprotein and Vitamin D binding protein, we detected novel proteins such as CD59, extracellular matrix protein 1 (ECM1, factor H, and myoglobin in the urine of macroalbuminuria patients. ECM1 and factor H are known to influence mesangial cell proliferation, and CD59 causes microvascular damage by influencing membrane attack complex deposition, suggestive their biological relevance to DN. Thus, we have developed a proteome database where various proteins exclusively present in the patients may be further investigated for their role as stage-specific markers and possible therapeutic

  4. Identification, Purification and Characterization of Major Antigenic Proteins of Campylobacter jejuni

    Science.gov (United States)

    1991-01-01

    ELISA-We next examined the potential application of antibodies to C. jejuni proteins for identification and diagnosis of Campylobacter and/or Helico...Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development Approved for public release; distribution unlimited A~ cc it o:1...Purification, and Characterization of Major Antigenic Proteins of Campylobacter jejuni * (Received hor piub)lication. April 5, 1991) Zhiheng Pei*, Richard T

  5. Identification of fibrin clot-bound plasma proteins

    NARCIS (Netherlands)

    S. Talens (Simone); F.W.G. Leebeek (Frank); J.A.A. Demmers (Jeroen); D.C. Rijken (Dingeman)

    2012-01-01

    textabstractSeveral proteins are known to bind to a fibrin network and to change clot properties or function. In this study we aimed to get an overview of fibrin clot-bound plasma proteins. A plasma clot was formed by adding thrombin, CaCl2 and aprotinin to citrated platelet-poor plasma and unbound

  6. Immunological identification and isolation of phosphotyrosyl proteins in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Martensen, T.M.; Madoff, D.H.; Lane, M.D.

    1987-05-01

    Affinity-purified sheep anti-phosphotyrosine antibodies were utilized to probe for phosphotyrosyl proteins from cultured cells. Western blots of cell extract proteins separated by SDS PAGE were incubated with anti-Tyr-P antibodies followed by peroxidase labeled anti-sheep antibodies or ( SVI)protein G to decorate the immune complexes. Normal, retrovirus transformed, and preadipocyte fibroblasts showed a variety of phosphotyrosyl proteins. Specific binding was indicated by the ability of Tyr-P but not Ser-P or Thr-P to inhibit the immunolocalization. Anti-phosphotyrosine antibodies covalently coupled to Sepharose were used to isolate phosphotyrosyl proteins from cultured cells. The binding capacity of the gel was determined by the quantity of unlabeled phosphotyrosyl protein needed to displace (TSP)labeled phosphotyrosyl protein binding. (TSP)labeled insulin receptor from 3T3-11 adipocytes could be immuno-adsorbed in high yield. Desorption was achieved in good yields under native conditions by incubation with Tyr-P. Treatment of (TSP)insulin receptor with SDS prior to incubation with immobilized antibody did not inhibit immuno-adsorption or -elution. This feature enabled antiphosphotyrosine antibodies to distinguish phosphotyrosyl proteins whose modified residues appear to be inaccessible for antibody binding in the native state.

  7. Identification of vitreous proteins in retinopathy of prematurity.

    Science.gov (United States)

    Sugioka, Koji; Saito, Akio; Kusaka, Shunji; Kuniyoshi, Kazuki; Shimomura, Yoshikazu

    2017-07-01

    Retinopathy of prematurity (ROP) is a disorder of blood vessels in the retina developed in premature infants and the leading cause of the blindness in children. Proteomic analysis was performed to identify vitreous proteins specific to patients with ROP. Vitreous humor samples were obtained from three patients with ROP and two patients with congenital cataract, the latter included as a control group. The vitreous samples were separated by 2D-PAGE and the proteins running as definitive spots were identified by MALDI-TOF MS spectrometry. We identified 13 and 6 proteins in the vitreous from ROP and cataract patients, respectively. Albumin, transferrin, pigment epithelium-derived factor (PEDF) and transthyretin were found in both patient groups. In the samples from ROP patients, PEDF and transthyretin levels were lower than in those from cataract patients, and retinol binding protein 3 and prostaglandin D synthase were not detected. Of the 13 proteins, 9 proteins including α-2-macroglobulin, ceruloplasmin, α-fetoprotein, vitamin D-binding protein, α-1-antitrypsin, α-1-β-glycoprotein, hemopexin, apolipoprotein A-1 and A-lV were found in vitreous samples of only the ROP patients. PEDF has anti-angiogenic and neurotrophic functions. Whether PEDF is increased or decreased in diabetic retinopathy has been controversial but we observed lower PEDF in the ROP samples than in the controls. The proteins specific to or decreased in ROP, if confirmed in future studies, may provide clue to understanding its pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Identification and cloning of two insecticidal protein genes from ...

    African Journals Online (AJOL)

    Bacillus thuringiensis (Bt) is the most widely applied type of microbial pesticide due to its high specificity and environmental safety. The activity of Bt is largely attributed to the insecticidal crystal protein encoded by the cry genes. Different insecticidal crystal proteins of Bt have different bioactivity against distinct agricultural ...

  9. Detection and partial identification of proteins in pearls formed in ...

    African Journals Online (AJOL)

    However, more than 20 proteins have been identified in nacre, yet none have been detected in pearl thus far. This study aimed to detect and identify protein in pearl. Two batches of pearls formed in Hyriopsis cumingii (Lea) were purchased from two pearl farms. They were ground into a powder of >10,000 mesh followed by ...

  10. Effective identification of negative regulation patterns of protein kinases.

    Science.gov (United States)

    Chen, Qingfeng; Hu, Xiaoyan; Chen, Baoshan

    2013-06-01

    Recent studies point to the fact that protein kinases play an important role in the regulation of cellular pathways and show great potential in disease treatment. Thus, it is critical to discover characterized regulatory patterns of protein kinases in signaling pathway. There have been considerable efforts to explore the activities of protein kinases. However, the study of negative regulation patterns has been largely overlooked and undeveloped. This paper aims to identify inhibitory regulatory correlations of protein kinase according to negative association rule mining. Especially, mutual information is applied to sort out the items with strong dependency and the minimum support threshold is computed by support constraints to control rule generation. The obtained rules not only reveal the relationships between subunits of protein kinases and between subunits and stimuli, but also provide novel pharmacological insight into drug design for diseases.

  11. Purification and identification of sperm surface proteins and changes during epididymal maturation.

    Science.gov (United States)

    Belleannee, Clémence; Belghazi, Maya; Labas, Valérie; Teixeira-Gomes, Ana-Paula; Gatti, Jean Luc; Dacheux, Jean-Louis; Dacheux, Françoise

    2011-05-01

    Surface membrane proteins have a key role in the sequential interactions between spermatozoa and oocytes. The aim of this study was to characterize protein changes occurring during post-testicular differentiation using a new overall approach to study surface membrane proteins of spermatozoa. A dedicated protocol based on specific purification of surface membrane proteins labeled with sulfo-NHS-SS-biotin was developed for this purpose. Appropriate gel electrophoresis separation and purification methods combined with standard proteomic methods were then used to identify and quantify surface membrane proteins from immature and mature spermatozoa. Membrane-associated proteins were discriminated from integral membrane proteins by differential solubilization. Protein regionalization on the spermatozoon surface was achieved by comparative analysis of the surface protein extracts from the entire spermatozoa and from periacrosomal sperm plasma membranes. Identification of several known proteins and of new proteins related to the process of epididymal maturation showed the reliability of this protocol for specific purification of a subproteome and identification of new sperm membrane proteins. This approach opens up a new area in the search for male fertility markers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction.

    Science.gov (United States)

    Pan, Xiaoyong; Fan, Yong-Xian; Yan, Junchi; Shen, Hong-Bin

    2016-08-09

    Non-coding RNAs (ncRNAs) play crucial roles in many biological processes, such as post-transcription of gene regulation. ncRNAs mainly function through interaction with RNA binding proteins (RBPs). To understand the function of a ncRNA, a fundamental step is to identify which protein is involved into its interaction. Therefore it is promising to computationally predict RBPs, where the major challenge is that the interaction pattern or motif is difficult to be found. In this study, we propose a computational method IPMiner (Interaction Pattern Miner) to predict ncRNA-protein interactions from sequences, which makes use of deep learning and further improves its performance using stacked ensembling. One of the IPMiner's typical merits is that it is able to mine the hidden sequential interaction patterns from sequence composition features of protein and RNA sequences using stacked autoencoder, and then the learned hidden features are fed into random forest models. Finally, stacked ensembling is used to integrate different predictors to further improve the prediction performance. The experimental results indicate that IPMiner achieves superior performance on the tested lncRNA-protein interaction dataset with an accuracy of 0.891, sensitivity of 0.939, specificity of 0.831, precision of 0.945 and Matthews correlation coefficient of 0.784, respectively. We further comprehensively investigate IPMiner on other RNA-protein interaction datasets, which yields better performance than the state-of-the-art methods, and the performance has an increase of over 20 % on some tested benchmarked datasets. In addition, we further apply IPMiner for large-scale prediction of ncRNA-protein network, that achieves promising prediction performance. By integrating deep neural network and stacked ensembling, from simple sequence composition features, IPMiner can automatically learn high-level abstraction features, which had strong discriminant ability for RNA-protein detection. IPMiner achieved

  13. Identification of MFS proteins in sorghum using semantic similarity.

    Science.gov (United States)

    Sekhwal, Manoj Kumar; Sharma, Vinay; Sarin, Renu

    2013-06-01

    The antiporters, uniporters and symporters are the functional classes of MFS that play major role in ions homeostasis, regulation of pumps and channels, membrane structure, transporters activity in tolerance to abiotic stresses. Major facilitator superfamily (MFS) encodes Na(+)/H(+) antiporter that are considered as being sensors of the molecule transports. A large number of MFS proteins have been identified in several plants, rice, maize, Arabidopsis etc. However, the majority of proteins in sorghum are described as putative, uncharacterized till date. This suggested that identified proteins of MFS in sorghum are far from saturation. Hence, we developed gene ontology (GO) terms semantic similarity based method using GOSemSim measure of R package. As a result, total 2,568 high (100 %) semantic similar orthologous proteins from 7 plant species were obtained. These data were used to predict function of 257 putative uncharacterized proteins from 18 families of MFS in Sorghum. Consequently, the identified proteins belonged to the function of regulation of pumps and channels, membrane structure, transporters activity, ions homeostasis, transporter mechanisms and binding process. These identified functions appear to have a distinct mechanism of salt-stress adaptation in plants. The proposed method will help in further identifying new proteins that can help in the development of agronomically and economically important plants.

  14. Identification of novel amelogenin-binding proteins by proteomics analysis.

    Directory of Open Access Journals (Sweden)

    Takao Fukuda

    Full Text Available Emdogain (enamel matrix derivative, EMD is well recognized in periodontology. It is used in periodontal surgery to regenerate cementum, periodontal ligament, and alveolar bone. However, the precise molecular mechanisms underlying periodontal regeneration are still unclear. In this study, we investigated the proteins bound to amelogenin, which are suggested to play a pivotal role in promoting periodontal tissue regeneration. To identify new molecules that interact with amelogenin and are involved in osteoblast activation, we employed coupling affinity chromatography with proteomic analysis in fractionated SaOS-2 osteoblastic cell lysate. In SaOS-2 cells, many of the amelogenin-interacting proteins in the cytoplasm were mainly cytoskeletal proteins and several chaperone molecules of heat shock protein 70 (HSP70 family. On the other hand, the proteomic profiles of amelogenin-interacting proteins in the membrane fraction of the cell extracts were quite different from those of the cytosolic-fraction. They were mainly endoplasmic reticulum (ER-associated proteins, with lesser quantities of mitochondrial proteins and nucleoprotein. Among the identified amelogenin-interacting proteins, we validated the biological interaction of amelogenin with glucose-regulated protein 78 (Grp78/Bip, which was identified in both cytosolic and membrane-enriched fractions. Confocal co-localization experiment strongly suggested that Grp78/Bip could be an amelogenin receptor candidate. Further biological evaluations were examined by Grp78/Bip knockdown analysis with and without amelogenin. Within the limits of the present study, the interaction of amelogenin with Grp78/Bip contributed to cell proliferation, rather than correlate with the osteogenic differentiation in SaOS-2 cells. Although the biological significance of other interactions are not yet explored, these findings suggest that the differential effects of amelogenin-derived osteoblast activation could be of

  15. LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure Normal Arabidopsis Development[W

    Science.gov (United States)

    Perea-Resa, Carlos; Hernández-Verdeja, Tamara; López-Cobollo, Rosa; Castellano, María del Mar; Salinas, Julio

    2012-01-01

    In yeast and animals, SM-like (LSM) proteins typically exist as heptameric complexes and are involved in different aspects of RNA metabolism. Eight LSM proteins, LSM1 to 8, are highly conserved and form two distinct heteroheptameric complexes, LSM1-7 and LSM2-8,that function in mRNA decay and splicing, respectively. A search of the Arabidopsis thaliana genome identifies 11 genes encoding proteins related to the eight conserved LSMs, the genes encoding the putative LSM1, LSM3, and LSM6 proteins being duplicated. Here, we report the molecular and functional characterization of the Arabidopsis LSM gene family. Our results show that the 11 LSM genes are active and encode proteins that are also organized in two different heptameric complexes. The LSM1-7 complex is cytoplasmic and is involved in P-body formation and mRNA decay by promoting decapping. The LSM2-8 complex is nuclear and is required for precursor mRNA splicing through U6 small nuclear RNA stabilization. More importantly, our results also reveal that these complexes are essential for the correct turnover and splicing of selected development-related mRNAs and for the normal development of Arabidopsis. We propose that LSMs play a critical role in Arabidopsis development by ensuring the appropriate development-related gene expression through the regulation of mRNA splicing and decay. PMID:23221597

  16. An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2010-02-01

    Full Text Available Abstract Background ChIP-Seq, which combines chromatin immunoprecipitation (ChIP with high-throughput massively parallel sequencing, is increasingly being used for identification of protein-DNA interactions in vivo in the genome. However, to maximize the effectiveness of data analysis of such sequences requires the development of new algorithms that are able to accurately predict DNA-protein binding sites. Results Here, we present SIPeS (Site Identification from Paired-end Sequencing, a novel algorithm for precise identification of binding sites from short reads generated by paired-end solexa ChIP-Seq technology. In this paper we used ChIP-Seq data from the Arabidopsis basic helix-loop-helix transcription factor ABORTED MICROSPORES (AMS, which is expressed within the anther during pollen development, the results show that SIPeS has better resolution for binding site identification compared to two existing ChIP-Seq peak detection algorithms, Cisgenome and MACS. Conclusions When compared to Cisgenome and MACS, SIPeS shows better resolution for binding site discovery. Moreover, SIPeS is designed to calculate the mappable genome length accurately with the fragment length based on the paired-end reads. Dynamic baselines are also employed to effectively discriminate closely adjacent binding sites, for effective binding sites discovery, which is of particular value when working with high-density genomes.

  17. Systematic identification of proteins that elicit drug side effects

    DEFF Research Database (Denmark)

    Kuhn, Michael; Al Banchaabouchi, Mumna; Campillos, Monica

    2013-01-01

    Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large-scale analysis to systematically predict and characterize proteins...... that cause drug side effects. We integrated phenotypic data obtained during clinical trials with known drug-target relations to identify overrepresented protein-side effect combinations. Using independent data, we confirm that most of these overrepresentations point to proteins which, when perturbed, cause...... side effects. Of 1428 side effects studied, 732 were predicted to be predominantly caused by individual proteins, at least 137 of them backed by existing pharmacological or phenotypic data. We prove this concept in vivo by confirming our prediction that activation of the serotonin 7 receptor (HTR7...

  18. Analytical approaches for the characterization and identification of olive (Olea europaea) oil proteins.

    Science.gov (United States)

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2013-10-30

    Proteins in olive oil have been scarcely investigated probably due to the difficulty of working with such a lipidic matrix and the dramatically low abundance of proteins in this biological material. Additionally, this scarce information has generated contradictory results, thus requiring further investigations. This work treats this subject from a comprehensive point of view and proposes the use of different analytical approaches to delve into the characterization and identification of proteins in olive oil. Different extraction methodologies, including capture via combinational hexapeptide ligand libraries (CPLLs), were tried. A sequence of methodologies, starting with off-gel isoelectric focusing (IEF) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) or high-performance liquid chromatography (HPLC) using an ultraperformance liquid chromatography (UPLC) column, was applied to profile proteins from olive seed, pulp, and oil. Besides this, and for the first time, a tentative identification of oil proteins by mass spectrometry has been attempted.

  19. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.

    Science.gov (United States)

    Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian

    2015-06-01

    Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins. © 2015 Wiley Periodicals, Inc.

  20. Identification of immunogenic proteins of the cysticercoid of Hymenolepis diminuta

    Directory of Open Access Journals (Sweden)

    Anna Sulima

    2017-11-01

    Full Text Available Abstract Background A wide range of molecules are used by tapeworm metacestodes to establish successful infection in the hostile environment of the host. Reports indicating the proteins in the cestode-host interactions are limited predominantly to taeniids, with no previous data available for non-taeniid species. A non-taeniid, Hymenolepis diminuta, represents one of the most important model species in cestode biology and exhibits an exceptional developmental plasticity in its life-cycle, which involves two phylogenetically distant hosts, arthropod and vertebrate. Results We identified H. diminuta cysticercoid proteins that were recognized by sera of H. diminuta-infected rats using two-dimensional gel electrophoresis (2DE, 2D-immunoblotting, and LC-MS/MS mass spectrometry. Proteomic analysis of 42 antigenic spots revealed 70 proteins. The largest number belonged to structural proteins and to the heat-shock protein (HSP family. These results show a number of the antigenic proteins of the cysticercoid stage, which were present already in the insect host prior to contact with the mammal host. These are the first parasite antigens that the mammal host encounters after the infection, therefore they may represent some of the molecules important in host-parasite interactions at the early stage of infection. Conclusions These results could help in understanding how H. diminuta and other cestodes adapt to their diverse and complex parasitic life-cycles and show universal molecules used among diverse groups of cestodes to escape the host response to infection.

  1. Identification of Trypanosome Proteins in Plasma from African Sleeping Sickness Patients Infected with T. b. rhodesiense

    Science.gov (United States)

    Enyaru, John C.; Carr, Steven A.; Pearson, Terry W.

    2013-01-01

    Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a ‘deep-mining” proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification. PMID:23951171

  2. Large-scale identification of potential drug targets based on the topological features of human protein-protein interaction network.

    Science.gov (United States)

    Li, Zhan-Chao; Zhong, Wen-Qian; Liu, Zhi-Qing; Huang, Meng-Hua; Xie, Yun; Dai, Zong; Zou, Xiao-Yong

    2015-04-29

    Identifying potential drug target proteins is a crucial step in the process of drug discovery and plays a key role in the study of the molecular mechanisms of disease. Based on the fact that the majority of proteins exert their functions through interacting with each other, we propose a method to recognize target proteins by using the human protein-protein interaction network and graph theory. In the network, vertexes and edges are weighted by using the confidence scores of interactions and descriptors of protein primary structure, respectively. The novel network topological features are defined and employed to characterize protein using existing databases. A widely used minimum redundancy maximum relevance and random forests algorithm are utilized to select the optimal feature subset and construct model for the identification of potential drug target proteins at the proteome scale. The accuracies of training set and test set are 89.55% and 85.23%. Using the constructed model, 2127 potential drug target proteins have been recognized and 156 drug target proteins have been validated in the database of drug target. In addition, some new drug target proteins can be considered as targets for treating diseases of mucopolysaccharidosis, non-arteritic anterior ischemic optic neuropathy, Bernard-Soulier syndrome and pseudo-von Willebrand, etc. It is anticipated that the proposed method may became a powerful high-throughput virtual screening tool of drug target. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A new strategy for protein interface identification using manifold learning method.

    Science.gov (United States)

    Wang, Bing; Huang, De-Shuang; Jiang, Changjun

    2014-06-01

    Protein interactions play vital roles in biological processes. The study for protein interface will allow people to elucidate the mechanism of protein interaction. However, a large portion of protein interface data is incorrectly collected in current studies. In this paper, a novel strategy of dataset reconstruction using manifold learning method has been proposed for dealing with the noises in the interaction interface data whose definition is based on the residue distances among the different chains within protein complexes. Three support vector machine-based predictors are constructed using different protein features to identify the functional sites involved in the formation of protein interface. The experimental results achieved in this work demonstrate that our strategy can remove noises, and therefore improve the ability for identification of protein interfaces with 77.8% accuracy.

  4. Proteomic identification of secreted proteins of Propionibacterium acnes

    Science.gov (United States)

    2010-01-01

    Background The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that resides preferentially within sebaceous follicles; however, it also exhibits many traits of an opportunistic pathogen, playing roles in a variety of inflammatory diseases such as acne vulgaris. To date, the underlying disease-causing mechanisms remain ill-defined and knowledge of P. acnes virulence factors remains scarce. Here, we identified proteins secreted during anaerobic cultivation of a range of skin and clinical P. acnes isolates, spanning the four known phylogenetic groups. Results Culture supernatant proteins of P. acnes were separated by two-dimensional electrophoresis (2-DE) and all Coomassie-stained spots were subsequently identified by MALDI mass spectrometry (MALDI-MS). A set of 20 proteins was secreted in the mid-exponential growth phase by the majority of strains tested. Functional annotation revealed that many of these common proteins possess degrading activities, including glycoside hydrolases with similarities to endoglycoceramidase, β-N-acetylglucosaminidase and muramidase; esterases such as lysophospholipase and triacylglycerol lipase; and several proteases. Other secreted factors included Christie-Atkins-Munch-Petersen (CAMP) factors, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and several hypothetical proteins, a few of which are unique to P. acnes. Strain-specific differences were apparent, mostly in the secretion of putative adhesins, whose genes exhibit variable phase variation-like sequence signatures. Conclusions Our proteomic investigations have revealed that the P. acnes secretome harbors several proteins likely to play a role in host-tissue degradation and inflammation. Despite a large overlap between the secretomes of all four P. acnes phylotypes, distinct differences between predicted host-tissue interacting proteins were identified, providing potential insight into the differential virulence properties of P. acnes isolates

  5. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  6. Proteomic identification of secreted proteins of Propionibacterium acnes

    Directory of Open Access Journals (Sweden)

    Holland Carsten

    2010-08-01

    Full Text Available Abstract Background The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that resides preferentially within sebaceous follicles; however, it also exhibits many traits of an opportunistic pathogen, playing roles in a variety of inflammatory diseases such as acne vulgaris. To date, the underlying disease-causing mechanisms remain ill-defined and knowledge of P. acnes virulence factors remains scarce. Here, we identified proteins secreted during anaerobic cultivation of a range of skin and clinical P. acnes isolates, spanning the four known phylogenetic groups. Results Culture supernatant proteins of P. acnes were separated by two-dimensional electrophoresis (2-DE and all Coomassie-stained spots were subsequently identified by MALDI mass spectrometry (MALDI-MS. A set of 20 proteins was secreted in the mid-exponential growth phase by the majority of strains tested. Functional annotation revealed that many of these common proteins possess degrading activities, including glycoside hydrolases with similarities to endoglycoceramidase, β-N-acetylglucosaminidase and muramidase; esterases such as lysophospholipase and triacylglycerol lipase; and several proteases. Other secreted factors included Christie-Atkins-Munch-Petersen (CAMP factors, glyceraldehyde 3-phosphate dehydrogenase (GAPDH, and several hypothetical proteins, a few of which are unique to P. acnes. Strain-specific differences were apparent, mostly in the secretion of putative adhesins, whose genes exhibit variable phase variation-like sequence signatures. Conclusions Our proteomic investigations have revealed that the P. acnes secretome harbors several proteins likely to play a role in host-tissue degradation and inflammation. Despite a large overlap between the secretomes of all four P. acnes phylotypes, distinct differences between predicted host-tissue interacting proteins were identified, providing potential insight into the differential virulence

  7. Identification of Anaplasma marginale type IV secretion system effector proteins.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS. The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now.By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141 of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system.The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.

  8. Identification of cancer protein biomarkers using proteomic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mor, Gil G; Ward, David C; Bray-Ward, Patricia

    2015-03-10

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  9. Identification of cancer protein biomarkers using proteomic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2016-10-18

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  10. Identification of cancer protein biomarkers using proteomic techniques

    Science.gov (United States)

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2010-02-23

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  11. Systematic Identification of Machine-Learning Models Aimed to Classify Critical Residues for Protein Function from Protein Structure

    Directory of Open Access Journals (Sweden)

    Ricardo Corral-Corral

    2017-10-01

    Full Text Available Protein structure and protein function should be related, yet the nature of this relationship remains unsolved. Mapping the critical residues for protein function with protein structure features represents an opportunity to explore this relationship, yet two important limitations have precluded a proper analysis of the structure-function relationship of proteins: (i the lack of a formal definition of what critical residues are and (ii the lack of a systematic evaluation of methods and protein structure features. To address this problem, here we introduce an index to quantify the protein-function criticality of a residue based on experimental data and a strategy aimed to optimize both, descriptors of protein structure (physicochemical and centrality descriptors and machine learning algorithms, to minimize the error in the classification of critical residues. We observed that both physicochemical and centrality descriptors of residues effectively relate protein structure and protein function, and that physicochemical descriptors better describe critical residues. We also show that critical residues are better classified when residue criticality is considered as a binary attribute (i.e., residues are considered critical or not critical. Using this binary annotation for critical residues 8 models rendered accurate and non-overlapping classification of critical residues, confirming the multi-factorial character of the structure-function relationship of proteins.

  12. Systematic Identification of Machine-Learning Models Aimed to Classify Critical Residues for Protein Function from Protein Structure.

    Science.gov (United States)

    Corral-Corral, Ricardo; Beltrán, Jesús A; Brizuela, Carlos A; Del Rio, Gabriel

    2017-10-09

    Protein structure and protein function should be related, yet the nature of this relationship remains unsolved. Mapping the critical residues for protein function with protein structure features represents an opportunity to explore this relationship, yet two important limitations have precluded a proper analysis of the structure-function relationship of proteins: (i) the lack of a formal definition of what critical residues are and (ii) the lack of a systematic evaluation of methods and protein structure features. To address this problem, here we introduce an index to quantify the protein-function criticality of a residue based on experimental data and a strategy aimed to optimize both, descriptors of protein structure (physicochemical and centrality descriptors) and machine learning algorithms, to minimize the error in the classification of critical residues. We observed that both physicochemical and centrality descriptors of residues effectively relate protein structure and protein function, and that physicochemical descriptors better describe critical residues. We also show that critical residues are better classified when residue criticality is considered as a binary attribute (i.e., residues are considered critical or not critical). Using this binary annotation for critical residues 8 models rendered accurate and non-overlapping classification of critical residues, confirming the multi-factorial character of the structure-function relationship of proteins.

  13. Improved Recovery and Identification of Membrane Proteins from Rat Hepatic Cells using a Centrifugal Proteomic Reactor*

    Science.gov (United States)

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G.; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-01-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism. PMID:21749988

  14. Accurate Identification and Quantification of DNA Species by Next-Generation Sequencing in Adeno-Associated Viral Vectors Produced in Insect Cells.

    Science.gov (United States)

    Penaud-Budloo, Magalie; Lecomte, Emilie; Guy-Duché, Aurélien; Saleun, Sylvie; Roulet, Alain; Lopez-Roques, Céline; Tournaire, Benoît; Cogné, Benjamin; Léger, Adrien; Blouin, Véronique; Lindenbaum, Pierre; Moullier, Philippe; Ayuso, Eduard

    2017-06-01

    Recombinant adeno-associated viral (rAAV) vectors have proven excellent tools for the treatment of many genetic diseases and other complex diseases. However, the illegitimate encapsidation of DNA contaminants within viral particles constitutes a major safety concern for rAAV-based therapies. Moreover, the development of rAAV vectors for early-phase clinical trials has revealed the limited accuracy of the analytical tools used to characterize these new and complex drugs. Although most published data concerning residual DNA in rAAV preparations have been generated by quantitative PCR, we have developed a novel single-strand virus sequencing (SSV-Seq) method for quantification of DNA contaminants in AAV vectors produced in mammalian cells by next-generation sequencing (NGS). Here, we describe the adaptation of SSV-Seq for the accurate identification and quantification of DNA species in rAAV stocks produced in insect cells. We found that baculoviral DNA was the most abundant contaminant, representing less than 2.1% of NGS reads regardless of serotype (2, 8, or rh10). Sf9 producer cell DNA was detected at low frequency (≤0.03%) in rAAV lots. Advanced computational analyses revealed that (1) baculoviral sequences close to the inverted terminal repeats preferentially underwent illegitimate encapsidation, and (2) single-nucleotide variants were absent from the rAAV genome. The high-throughput sequencing protocol described here enables effective DNA quality control of rAAV vectors produced in insect cells, and is adapted to conform with regulatory agency safety requirements.

  15. PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases.

    Science.gov (United States)

    Floden, Evan W; Tommaso, Paolo D; Chatzou, Maria; Magis, Cedrik; Notredame, Cedric; Chang, Jia-Ming

    2016-07-08

    The PSI/TM-Coffee web server performs multiple sequence alignment (MSA) of proteins by combining homology extension with a consistency based alignment approach. Homology extension is performed with Position Specific Iterative (PSI) BLAST searches against a choice of redundant and non-redundant databases. The main novelty of this server is to allow databases of reduced complexity to rapidly perform homology extension. This server also gives the possibility to use transmembrane proteins (TMPs) reference databases to allow even faster homology extension on this important category of proteins. Aside from an MSA, the server also outputs topological prediction of TMPs using the HMMTOP algorithm. Previous benchmarking of the method has shown this approach outperforms the most accurate alignment methods such as MSAProbs, Kalign, PROMALS, MAFFT, ProbCons and PRALINE™. The web server is available at http://tcoffee.crg.cat/tmcoffee. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Ultraviolet fluorescence identification of protein, DNA, and bacteria

    Science.gov (United States)

    Hargis, Philip J., Jr.; Sobering, T. J.; Tisone, Gary C.; Wagner, John S.; Young, Steve A.; Radloff, R. J.

    1995-02-01

    Recent food poisoning incidents have highlighted the need for inexpensive instrumentation that can detect food pathogens. Instrumentation that detects the relatively strong ultraviolet (UV) fluorescence signal from the aromatic protein amino acids in bacteria could provide a solution to the problem of real-time pathogen measurements. The capabilities of UV fluorescence measurements have, however, been largely ignored because of the difficulty in identifying pathogens in the presence of interfering backgrounds. Implementation of fluorescence measurements thus requires methodologies that can distinguish fluorescence features associated with pathogens from those associated with proteins, harmless bacteria, skin, blood, hair follicles, pesticide residue, etc. We describe multispectral UV fluorescence measurements that demonstrate the feasibility of detecting and identifying protein, DNA, and bacteria using a relatively simple UV imaging fluorometer and a unique multivariate analysis algorithm.

  17. Identification of drought-responsive universal stress proteins in viridiplantae.

    Science.gov (United States)

    Isokpehi, Raphael D; Simmons, Shaneka S; Cohly, Hari H P; Ekunwe, Stephen I N; Begonia, Gregorio B; Ayensu, Wellington K

    2011-02-07

    Genes encoding proteins that contain the universal stress protein (USP) domain are known to provide bacteria, archaea, fungi, protozoa, and plants with the ability to respond to a plethora of environmental stresses. Specifically in plants, drought tolerance is a desirable phenotype. However, limited focused and organized functional genomic datasets exist on drought-responsive plant USP genes to facilitate their characterization. The overall objective of the investigation was to identify diverse plant universal stress proteins and Expressed Sequence Tags (ESTs) responsive to water-deficit stress. We hypothesize that cross-database mining of functional annotations in protein and gene transcript bioinformatics resources would help identify candidate drought-responsive universal stress proteins and transcripts from multiple plant species. Our bioinformatics approach retrieved, mined and integrated comprehensive functional annotation data on 511 protein and 1561 ESTs sequences from 161 viridiplantae taxa. A total of 32 drought-responsive ESTs from 7 plant genera Glycine, Hordeum, Manihot, Medicago, Oryza, Pinus and Triticum were identified. Two Arabidopsis USP genes At3g62550 and At3g53990 that encode ATP-binding motif were up-regulated in a drought microarray dataset. Further, a dataset of 80 simple sequence repeats (SSRs) linked to 20 singletons and 47 transcript assembles was constructed. Integrating the datasets on SSRs and drought-responsive ESTs identified three drought-responsive ESTs from bread wheat (BE604157), soybean (BM887317) and maritime pine (BX682209). The SSR sequence types were CAG, ATA and AT respectively. The datasets from cross-database mining provide organized resources for the characterization of USP genes as useful targets for engineering plant varieties tolerant to unfavorable environmental conditions.

  18. Identification of novel direct protein-protein interactions by irradiating living cells with femtosecond UV laser pulses.

    Science.gov (United States)

    Itri, Francesco; Monti, Daria Maria; Chino, Marco; Vinciguerra, Roberto; Altucci, Carlo; Lombardi, Angela; Piccoli, Renata; Birolo, Leila; Arciello, Angela

    2017-10-07

    The identification of protein-protein interaction networks in living cells is becoming increasingly fundamental to elucidate main biological processes and to understand disease molecular bases on a system-wide level. We recently described a method (LUCK, Laser UV Cross-linKing) to cross-link interacting protein surfaces in living cells by UV laser irradiation. By using this innovative methodology, that does not require any protein modification or cell engineering, here we demonstrate that, upon UV laser irradiation of HeLa cells, a direct interaction between GAPDH and alpha-enolase was "frozen" by a cross-linking event. We validated the occurrence of this direct interaction by co-immunoprecipitation and Immuno-FRET analyses. This represents a proof of principle of the LUCK capability to reveal direct protein interactions in their physiological environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Identification of disulfide bonds in protein proteolytic degradation products using de novo-protein unique sequence tags approach.

    Science.gov (United States)

    Shen, Yufeng; Tolić, Nikola; Purvine, Samuel O; Smith, Richard D

    2010-08-06

    Disulfide bonds are a form of post-translational modification that often determines protein structure(s) and function(s). In this work, we report a mass spectrometry method for identification of disulfides in degradation products of proteins, specifically endogenous peptides in the human blood plasma peptidome. LC-Fourier transform tandem mass spectrometry (FT MS/MS) was used for acquiring mass spectra that were de novo sequenced and then searched against the IPI human protein database. Through the use of unique sequence tags (UStags), we unambiguously correlated the spectra to specific database proteins. Examination of the UStags' prefix and/or suffix sequences that contain cysteine(s) in conjunction with sequences of the UStags-specified database proteins is shown to enable the unambigious determination of disulfide bonds. Using this method, we identified the intermolecular and intramolecular disulfides in human blood plasma peptidome peptides that have molecular weights of up to approximately 10 kDa.

  20. Proteomic identification of S-nitrosylated proteins in Arabidopsis

    DEFF Research Database (Denmark)

    Lindermayr, C.; Saalbach, G.; Durner, J.

    2005-01-01

    Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues...... to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S...

  1. Identification of Dominant Immunogenic Bacteria and Bacterial Proteins in Periodontitis

    DEFF Research Database (Denmark)

    Agerbæk, Mette Rylev; Haubek, Dorte; Birkelund, Svend

    Marginal periodontitis is considered an infectious disease that triggers host inflammatory responses resulting in destruction of the periodontium. A complex biofilm of bacteria is associated with periodontitis. Some species have been identified as putative pathogens such as Porphyromonas gingivalis...... (P.g) and Actinobacillus actinomycetemcomitans (A.a), but the identity of dominate immunogens of these bacteria is poorly elucidated. The aim of the study was to identify dominant immunogenic proteins of P.g and A.a in patients suffering from chronic and aggressive periodontitis by proteomic analysis...... will be able to identify immunodominant proteins and potentially important virulence factors of putative periodontal pathogens....

  2. Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometry.

    Science.gov (United States)

    Mirzaei, Hamid; Regnier, Fred

    2005-04-15

    It has been shown that oxidatively modified forms of proteins accumulate during oxidative stress, aging, and in some age-related diseases. One of the unique features of a wide variety of routes by which proteins are oxidized is the generation of carbonyl groups. This paper reports a method for the isolation of oxidized proteins, which involves (1) biotinylation of oxidized proteins with biotin hydrazide and (2) affinity enrichment using monomeric avidin affinity chromatography columns. The selectivity of the method was validated by adding in vitro oxidized biotinylated BSA to a yeast lysate and showing that the predominant protein recovered was BSA. This method was applied to the question of whether large doses of 2-nitropropane produce oxidized proteins. A study of rat liver homogenates showed that animals dosed with 2-nitropropane produced 17 times more oxidized protein than controls in 6 h. Tryptic digestion of these oxidized proteins followed by reversed-phase chromatography and tandem mass spectrometry led to the identification of 14 peptides and their parent proteins. Nine of the 14 identified peptides were found to carry 1 or 2 oxidation sites and 5 of the 9 peptides were biotinylated. The significance of this affinity method is that it allows the isolation of oxidized proteins from the rest of the proteome and facilitates their identification. In some cases, it is even possible to identify the site of oxidation.

  3. Need for accurate and standardized determination of amino acids and bioactive peptides for evaluating protein quality and potential health effects of foods and dietary supplements.

    Science.gov (United States)

    Gilani, G Sarwar; Xiao, Chaowu; Lee, Nora

    2008-01-01

    Accurate standardized methods for the determination of amino acid in foods are required to assess the nutritional safety and compositional adequacy of sole source foods such as infant formulas and enteral nutritionals, and protein and amino acid supplements and their hydrolysates, and to assess protein claims of foods. Protein digestibility-corrected amino acid score (PDCAAS), which requires information on amino acid composition, is the official method for assessing protein claims of foods and supplements sold in the United States. PDCAAS has also been adopted internationally as the most suitable method for routine evaluation of protein quality of foods by the Food and Agriculture Organization/World Health Organization. Standardized methods for analysis of amino acids by ion-exchange chromatography have been developed. However, there is a need to develop validated methods of amino acid analysis in foods using liquid chromatographic techniques, which have replaced ion-exchange methods for quantifying amino acids in most laboratories. Bioactive peptides from animal and plant proteins have been found to potentially impact human health. A wide range of physiological effects, including blood pressure-lowering effects, cholesterol-lowering ability, antithrombotic effects, enhancement of mineral absorption, and immunomodulatory effects have been described for bioactive peptides. There is considerable commercial interest in developing functional foods containing bioactive peptides. There is also a need to develop accurate standardized methods for the characterization (amino acid sequencing) and quantification of bioactive peptides and to carry out dose-response studies in animal models and clinical trials to assess safety, potential allergenicity, potential intolerance, and efficacy of bioactive peptides. Information from these studies is needed for determining the upper safe levels of bioactive peptides and as the basis for developing potential health claims for bioactive

  4. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information

    Directory of Open Access Journals (Sweden)

    Vullo Alessandro

    2007-06-01

    Full Text Available Abstract Background Structural properties of proteins such as secondary structure and solvent accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but also when homology information to known structures is available. Structural properties are also routinely used in protein analysis even when homology is available, largely because homology modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors of secondary structure and solvent accessibility are virtually always ab initio. Results Here we develop high-throughput machine learning systems for the prediction of protein secondary structure and solvent accessibility that exploit homology to proteins of known structure, where available, in the form of simple structural frequency profiles extracted from sets of PDB templates. We compare these systems to their state-of-the-art ab initio counterparts, and with a number of baselines in which secondary structures and solvent accessibilities are extracted directly from the templates. We show that structural information from templates greatly improves secondary structure and solvent accessibility prediction quality, and that, on average, the systems significantly enrich the information contained in the templates. For sequence similarity exceeding 30%, secondary structure prediction quality is approximately 90%, close to its theoretical maximum, and 2-class solvent accessibility roughly 85%. Gains are robust with respect to template selection noise, and significant for marginal sequence similarity and for short alignments, supporting the claim that these improved predictions may prove beneficial beyond the case in which clear homology is available. Conclusion The predictive system are publicly available at the address http://distill.ucd.ie.

  5. Simple and Effective Affinity Purification Procedures for Mass Spectrometry-Based Identification of Protein-Protein Interactions in Cell Signaling Pathways.

    Science.gov (United States)

    Kwan, Julian H M; Emili, Andrew

    2016-01-01

    Identification of protein-protein interactions can be a critical step in understanding the function and regulation of a particular protein and for exploring intracellular signaling cascades. Affinity purification coupled to mass spectrometry (APMS) is a powerful method for isolating and characterizing protein complexes. This approach involves the tagging and subsequent enrichment of a protein of interest along with any stably associated proteins that bind to it, followed by the identification of the interacting proteins using mass spectrometry. The protocol described here offers a quick and simple method for routine sample preparation for APMS analysis of suitably tagged human cell lines.

  6. Serum copeptin and cortisol do not accurately predict sickle cell anaemia vaso-occlusive crisis as C-reactive protein.

    Directory of Open Access Journals (Sweden)

    Kehinde Sola Akinlade

    Full Text Available OBJECTIVE: This study assessed the diagnostic performance and prognostic properties of C-reactive protein (CRP, copeptin and cortisol in individuals with sickle cell anaemia (SCA. DESIGN: Prospective case-control study. METHODS: Sixty consecutive SCA subjects (18-40 years comprising 30 subjects in the steady state and 30 subjects in vaso-occlusive crisis (VOC were recruited into this study. Thirty (30 apparently healthy individuals with HbAA genotype served as controls. ELISA was used for the determination of serum levels of copeptin, CRP and cortisol. Data obtained were statistically analyzed using the Student's t-test and Mann Whitney U as appropriate and P<0.05 was considered significant. RESULTS: SCA subjects in VOC had significantly lower copeptin level and significantly higher CRP level compared with controls. However, serum levels of copeptin, cortisol and CRP were significantly higher in SCA subjects in VOC compared with SCA subjects in steady state. Furthermore, CRP had the widest Area under the ROC curve (AUROC than copeptin and cortisol. No significant difference was observed in the levels of copeptin, CRP and cortisol when SCA subjects in VOC who were hospitalized for less ≤ 5 days were compared with subjects who had longer stays. CONCLUSION: It could be concluded that C-reactive protein has a superior diagnostic performance for vaso-occlusive crisis in individuals with sickle cell anaemia and that C-reactive protein, cortisol and copeptin are not good prognostic markers in SCA subjects in vaso-occlusive crisis.

  7. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0

    Science.gov (United States)

    The, Matthew; MacCoss, Michael J.; Noble, William S.; Käll, Lukas

    2016-11-01

    Percolator is a widely used software tool that increases yield in shotgun proteomics experiments and assigns reliable statistical confidence measures, such as q values and posterior error probabilities, to peptides and peptide-spectrum matches (PSMs) from such experiments. Percolator's processing speed has been sufficient for typical data sets consisting of hundreds of thousands of PSMs. With our new scalable approach, we can now also analyze millions of PSMs in a matter of minutes on a commodity computer. Furthermore, with the increasing awareness for the need for reliable statistics on the protein level, we compared several easy-to-understand protein inference methods and implemented the best-performing method—grouping proteins by their corresponding sets of theoretical peptides and then considering only the best-scoring peptide for each protein—in the Percolator package. We used Percolator 3.0 to analyze the data from a recent study of the draft human proteome containing 25 million spectra (PM:24870542). The source code and Ubuntu, Windows, MacOS, and Fedora binary packages are available from http://percolator.ms/ under an Apache 2.0 license.

  8. Protein social behavior makes a stronger signal for partner identification than surface geometry

    Science.gov (United States)

    Laine, Elodie

    2016-01-01

    ABSTRACT Cells are interactive living systems where proteins movements, interactions and regulation are substantially free from centralized management. How protein physico‐chemical and geometrical properties determine who interact with whom remains far from fully understood. We show that characterizing how a protein behaves with many potential interactors in a complete cross‐docking study leads to a sharp identification of its cellular/true/native partner(s). We define a sociability index, or S‐index, reflecting whether a protein likes or not to pair with other proteins. Formally, we propose a suitable normalization function that accounts for protein sociability and we combine it with a simple interface‐based (ranking) score to discriminate partners from non‐interactors. We show that sociability is an important factor and that the normalization permits to reach a much higher discriminative power than shape complementarity docking scores. The social effect is also observed with more sophisticated docking algorithms. Docking conformations are evaluated using experimental binding sites. These latter approximate in the best possible way binding sites predictions, which have reached high accuracy in recent years. This makes our analysis helpful for a global understanding of partner identification and for suggesting discriminating strategies. These results contradict previous findings claiming the partner identification problem being solvable solely with geometrical docking. Proteins 2016; 85:137–154. © 2016 Wiley Periodicals, Inc. PMID:27802579

  9. Rapid Identification and Characterization of Formulated Protein Products by Raman Spectroscopy Coupled with Discriminant Analysis.

    Science.gov (United States)

    Cao, Xiaolin; Zhou, Dan; Loussaert, James A; Meriage, David S; Levine, Joseph D; Gabrielson, John P; Wen, Zai-Qing

    2016-01-01

    The rapid identification of protein drug products for packaging and receiving can significantly reduce disposition cycle time, and thereby improve the efficiency and productivity of the supply chain to better meet the needs of patients. In this feasibility study, we demonstrate a novel methodology that combines Raman spectroscopy with discriminant analysis that can be used for rapid identification or verification of finished products. With this methodology, Raman spectra of formulated therapeutic proteins were collected non-invasively with the samples either in a quartz cuvette or in the original glass vials, and analyzed without subtraction of buffer or placebo solutions. The algorithm used for the discriminant analysis was Mahalanobis distance by principal component analysis with residuals. In addition to product identification, the methodology has the potential to be used for characterizing formulated proteins when exposed to external stresses based on the changes of Mahalanobis distances. The rapid identification of protein drug products for packaging and receiving can significantly reduce disposition cycle time, and thereby improve the efficiency and productivity of the supply chain. In this study, we demonstrate a novel methodology that combines Raman spectroscopy with discriminant analysis to rapidly identify formulated proteins non-invasively. © PDA, Inc. 2016.

  10. Identification of differentially expressed proteins in vitamin B 12

    Directory of Open Access Journals (Sweden)

    Swati Varshney

    2015-01-01

    Full Text Available Background: Vitamin B 12 (cobalamin is a water-soluble vitamin generally synthesized by microorganisms. Mammals cannot synthesize this vitamin but have evolved processes for absorption, transport and cellular uptake of this vitamin. Only about 30% of vitamin B 12 , which is bound to the protein transcobalamin (TC (Holo-TC [HoloTC] enters into the cell and hence is referred to as the biologically active form of vitamin B 12 . Vitamin B 12 deficiency leads to several complex disorders, including neurological disorders and anemia. We had earlier shown that vitamin B 12 deficiency is associated with coronary artery disease (CAD in Indian population. In the current study, using a proteomics approach we identified proteins that are differentially expressed in the plasma of individuals with low HoloTC levels. Materials and Methods: We used isobaric-tagging method of relative and absolute quantitation to identify proteins that are differently expressed in individuals with low HoloTC levels when compared to those with normal HoloTC level. Results: In two replicate isobaric tags for relative and absolute quantitation experiments several proteins involved in lipid metabolism, blood coagulation, cholesterol metabolic process, and lipoprotein metabolic process were found to be altered in individuals having low HoloTC levels. Conclusions: Our study indicates that low HoloTc levels could be a risk factor in the development of CAD.

  11. QTL identification of grain protein concentration and its genetic ...

    Indian Academy of Sciences (India)

    Our objective was to analyse the influence of genetic backgrounds on QTL detection for protein concentration (PC) and to reveal the molecular genetic associations between PC and both SC and grain weight (GWP). Two hundred and eighty-four (Pop1) and 265 (Pop2) F2:3 families were developed from two crosses ...

  12. Identification of serum protein biomarkers for utrophin based DMD therapy.

    Science.gov (United States)

    Guiraud, Simon; Edwards, Benjamin; Squire, Sarah E; Babbs, Arran; Shah, Nandini; Berg, Adam; Chen, Huijia; Davies, Kay E

    2017-03-02

    Despite promising therapeutic avenues, there is currently no effective treatment for Duchenne muscular dystrophy (DMD), a lethal monogenic disorder caused by the loss of the large cytoskeletal protein, dystrophin. A highly promising approach to therapy, applicable to all DMD patients irrespective to their genetic defect, is to modulate utrophin, a functional paralogue of dystrophin, able to compensate for the primary defects of DMD restoring sarcolemmal stability. One of the major difficulties in assessing the effectiveness of therapeutic strategies is to define appropriate outcome measures. In the present study, we utilised an aptamer based proteomics approach to profile 1,310 proteins in plasma of wild-type, mdx and Fiona (mdx overexpressing utrophin) mice. Comparison of the C57 and mdx sera revealed 83 proteins with statistically significant >2 fold changes in dystrophic serum abundance. A large majority of previously described biomarkers (ANP32B, THBS4, CAMK2A/B/D, CYCS, CAPNI) were normalised towards wild-type levels in Fiona animals. This work also identified potential mdx markers specific to increased utrophin (DUS3, TPI1) and highlights novel mdx biomarkers (GITR, MYBPC1, HSP60, SIRT2, SMAD3, CNTN1). We define a panel of putative protein mdx biomarkers to evaluate utrophin based strategies which may help to accelerate their translation to the clinic.

  13. Identification of proteins interacting with Arabidopsis ACD11

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Joensen, Jan; McKinney, Lea V

    2009-01-01

    The Arabidopsis ACD11 gene encodes a sphingosine transfer protein and was identified by the accelerated cell death phenotype of the loss of function acd11 mutant, which exhibits heightened expression of genes involved in the disease resistance hypersensitive response (HR). We used ACD11 as bait...

  14. Identification of differentially expressed proteins in response to Pb ...

    African Journals Online (AJOL)

    On the other hand, tricarboxylic acid (TCA) cycle, glycolysis, shikimate pathway, phytochelatin synthesis, redox homeostasis and signaling proteins were induced during recovery period. Such defense systems play an important role in maintaining the survival and growth of C. roseus under strong and sustained oxidative ...

  15. Identification of antigenic proteins of the nosocomial pathogen Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Sebastian Hoppe

    Full Text Available The continuous expansion of nosocomial infections around the globe has become a precarious situation. Key challenges include mounting dissemination of multiple resistances to antibiotics, the easy transmission and the growing mortality rates of hospital-acquired bacterial diseases. Thus, new ways to rapidly detect these infections are vital. Consequently, researchers around the globe pursue innovative approaches for point-of-care devices. In many cases the specific interaction of an antigen and a corresponding antibody is pivotal. However, the knowledge about suitable antigens is lacking. The aim of this study was to identify novel antigens as specific diagnostic markers. Additionally, these proteins might be aptly used for the generation of vaccines to improve current treatment options. Hence, a cDNA-based expression library was constructed and screened via microarrays to detect novel antigens of Klebsiella pneumoniae, a prominent agent of nosocomial infections well-known for its extensive antibiotics resistance, especially by extended-spectrum beta-lactamases (ESBL. After screening 1536 clones, 14 previously unknown immunogenic proteins were identified. Subsequently, each protein was expressed in full-length and its immunodominant character examined by ELISA and microarray analyses. Consequently, six proteins were selected for epitope mapping and three thereof possessed linear epitopes. After specificity analysis, homology survey and 3d structural modelling, one epitope sequence GAVVALSTTFA of KPN_00363, an ion channel protein, was identified harboring specificity for K. pneumoniae. The remaining epitopes showed ambiguous results regarding the specificity for K. pneumoniae. The approach adopted herein has been successfully utilized to discover novel antigens of Campylobacter jejuni and Salmonella enterica antigens before. Now, we have transferred this knowledge to the key nosocomial agent, K. pneumoniae. By identifying several novel antigens

  16. Identification and characterization of nonhistone chromatin proteins: human positive coactivator 4 as a candidate.

    Science.gov (United States)

    Kumari, Sujata; Das, Chandrima; Sikder, Sweta; Kumar, Manoj; Bachu, Mahesh; Ranga, Udaykumar; Kundu, Tapas K

    2015-01-01

    The highly dynamic nucleoprotein structure of eukaryotic genome is organized in an ordered fashion, the unit of which is the nucleosome. The nucleosome is composed of core histones and DNA of variable size wrapped around it. Apart from the histone proteins, several nonhistone proteins also interact with the complex consisting of the DNA, the core and linker histones conferring highly regulated fluidity on the chromatin and permitting fine tuning of its functions. The nonhistone proteins are multifunctional and accentuate diverse cellular outcomes. In spite of the technical challenges, the architectural role of the nonhistone proteins altering the topology of the chromatin has been studied extensively. To appreciate the significance of the chromatin for genome function, it is essential to examine the role of the nonhistone proteins in different physiological conditions. Here, taking the example of a highly abundant chromatin protein, PC4 (Positive coactivator 4), we describe strategies for the identification of the chromatin-associated proteins and their structural and functional characterization.

  17. 2-DE Separation and Identification of Oat (Avena sativa L.) Proteins and Their Prolamin Fractions.

    Science.gov (United States)

    Nałęcz, Dorota; Szerszunowicz, Iwona; Dziuba, Marta; Minkiewicz, Piotr

    2017-01-01

    At present two-dimensional polyacrylamide gel electrophoresis (2-DE) is the most widely used proteomic tool, which enables simultaneous separation of even thousands of proteins with a high degree of resolution. The quality of 2-DE separation depends on the type of biological material used as a protein source. The presence of interfering compounds (e.g., phenols, as it is the fact in plant material including oat seeds) impedes 2-DE run. With the use of this technique it is possible to analyze the complex protein mixtures, characteristic protein fractions, as well as individual proteins.The purpose of this chapter is to describe the 2-DE technique (the separate stages of the first and the second dimension) for determining the oat protein composition (oat seed proteome), separation and preliminary identification of oat prolamin fractions. Electrophoretically separated proteins are identified on the basis of pI markers (identifying the location of both ends of an IPG strip) and on 2D SDS-PAGE standards. The gel images of oat proteins are analyzed with the help of ImageMaster 2D Platinum 6.0 program (Amersham Bioscience, part of GE Healthcare, Uppsala, Sweden). It allows finding unique spot identifiers for the occurrence of oat prolamin fractions in oat total proteins. The characteristic spots of similar shape and intensity (anchoring spots) and characteristic groups of spots can be searched for the purpose of identification.

  18. Identification of Dirofilaria immitis proteins recognized by antibodies from infected dogs.

    Science.gov (United States)

    Sassi, A J; Geary, J F; Leroux, L P; Moorhead, A R; Satti, M; Mackenzie, C D; Geary, T G

    2014-06-01

    The identification of excreted-secreted (ES) proteins of filarial nematodes as potential diagnostic reagents is an important requirement for the development of methods to determine level of infection in the host, especially for human filariae. Dirofilaria immitis, the canine heartworm, is a widespread and important veterinary pathogen and is a useful model for filarial parasites of humans. An analysis of proteins released from adult D. immitis (the secretome) in culture is available. We sought to identify D. immitis ES proteins found in vivo to validate the in vitro secretome and to investigate them as potential diagnostic reagents. Cultures of D. immitis adults obtained from infected dogs were maintained for 72 hr with daily changes of media. Proteins were concentrated from spent media by standard methods and were passed through Protein-A columns containing purified IgG antibodies from heartworm-infected dogs. Following extensive washing, heartworm proteins recognized by the antibodies were eluted from these columns and submitted for analysis by tandem mass spectrometry (MS/MS). As a comparison, somatic proteins from adult D. immitis female parasites and microfilaria were also processed and analyzed by the same protocol. Six, 9, and 12 proteins were identified by MS/MS in the ES, adult female, and microfilaria samples, respectively. The identification of the most abundant parasite proteins present in the serum of infected hosts offers a rational approach to the development of new diagnostic assays that may be applicable across the Filarioidea.

  19. Multiplex PCR assay for direct identification of group B streptococcal alpha-protein-like protein genes.

    Science.gov (United States)

    Creti, Roberta; Fabretti, Francesca; Orefici, Graziella; von Hunolstein, Christina

    2004-03-01

    We developed a group B streptococcus multiplex PCR assay which allows, by direct analysis of the amplicon size, determination of the surface protein antigen genes of alpha-C protein, epsilon protein, Rib, Alp2, Alp3, and Alp4. The multiplex PCR assay offers a rapid and simple method of subtyping Streptococcus agalactiae based on surface protein genes.

  20. Evaluation of sample fractionation using micro-scale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment.

    Science.gov (United States)

    Thorsell, Annika; Portelius, Erik; Blennow, Kaj; Westman-Brinkmalm, Ann

    2007-01-01

    Mass spectrometric methods based on stable isotopes have shown great promise for identification and quantitation of complex mixtures. Stable isotope labelling by amino acids in cell culture (SILAC) is a straightforward and accurate procedure for quantitation of proteins from cell lines, that are cultured in media containing the natural amino acid or its isotopically labelled analogue, giving rise to either 'light' or 'heavy' proteins. The two cell populations are pooled and treated as a single sample, which allows the use of various protein purification methods without introducing errors into the quantitative analysis. The quantitation of the proteins is based on the intensities of the light and heavy peptides. The increased number of peptides in a quantitative experiment arising from peptide pairs implies that prefractionation is critical prior to liquid chromatography/mass spectrometric (LC/MS) analysis to minimise signal suppression effects and errors in measurements of the intensity ratios. In this study, the effect of a prefractionation step on identification and quantitation of proteins in a SILAC experiment was evaluated. We show that micro-scale liquid-phase isoelectric focusing in the Micro Rotofor separates proteins into well-defined fractions and reduces the sample complexity. Furthermore, the fractionation enhanced the number of identified proteins and improved their quantitation. Copyright (c) 2007 John Wiley & Sons, Ltd.

  1. Identification of Protocadherin 18-like Protein in Horse Molar Cementum

    OpenAIRE

    深澤, 加與子; 佐原, 紀行; 森山, 敬太; 久野, 知子; 藤井, 慈貴; 音琴, 淳一; 太田, 紀雄; 宇田川, 信之; 矢ケ﨑, 裕; 小澤, 英浩

    2005-01-01

    Cementum plays an important role in tooth regeneration; however, the organization system has not yet been clarified. We have studied odontoclastic resorption in human deciduous teeth, and found that the cementum completely covers the enamel tissues of horse molar teeth. In order to study the regeneration system ofcementum, an EDTA soluble fraction extracted from horse cementum was analyzed. The 30 kDa protein was isolated from the EDTA fraction of horse cementum by hydroxyapatite chromatograp...

  2. ModFOLD6: an accurate web server for the global and local quality estimation of 3D protein models.

    Science.gov (United States)

    Maghrabi, Ali H A; McGuffin, Liam J

    2017-04-29

    Methods that reliably estimate the likely similarity between the predicted and native structures of proteins have become essential for driving the acceptance and adoption of three-dimensional protein models by life scientists. ModFOLD6 is the latest version of our leading resource for Estimates of Model Accuracy (EMA), which uses a pioneering hybrid quasi-single model approach. The ModFOLD6 server integrates scores from three pure-single model methods and three quasi-single model methods using a neural network to estimate local quality scores. Additionally, the server provides three options for producing global score estimates, depending on the requirements of the user: (i) ModFOLD6_rank, which is optimized for ranking/selection, (ii) ModFOLD6_cor, which is optimized for correlations of predicted and observed scores and (iii) ModFOLD6 global for balanced performance. The ModFOLD6 methods rank among the top few for EMA, according to independent blind testing by the CASP12 assessors. The ModFOLD6 server is also continuously automatically evaluated as part of the CAMEO project, where significant performance gains have been observed compared to our previous server and other publicly available servers. The ModFOLD6 server is freely available at: http://www.reading.ac.uk/bioinf/ModFOLD/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. LUTE (Local Unpruned Tuple Expansion): Accurate Continuously Flexible Protein Design with General Energy Functions and Rigid Rotamer-Like Efficiency.

    Science.gov (United States)

    Hallen, Mark A; Jou, Jonathan D; Donald, Bruce R

    2017-06-01

    Most protein design algorithms search over discrete conformations and an energy function that is residue-pairwise, that is, a sum of terms that depend on the sequence and conformation of at most two residues. Although modeling of continuous flexibility and of non-residue-pairwise energies significantly increases the accuracy of protein design, previous methods to model these phenomena add a significant asymptotic cost to design calculations. We now remove this cost by modeling continuous flexibility and non-residue-pairwise energies in a form suitable for direct input to highly efficient, discrete combinatorial optimization algorithms such as DEE/A* or branch-width minimization. Our novel algorithm performs a local unpruned tuple expansion (LUTE), which can efficiently represent both continuous flexibility and general, possibly nonpairwise energy functions to an arbitrary level of accuracy using a discrete energy matrix. We show using 47 design calculation test cases that LUTE provides a dramatic speedup in both single-state and multistate continuously flexible designs.

  4. Identification of immunogenic and virulence-associated Campylobacter jejuni proteins.

    Science.gov (United States)

    Nielsen, Lene N; Luijkx, Thomas A; Vegge, Christina S; Johnsen, Christina Kofoed; Nuijten, Piet; Wren, Brendan W; Ingmer, Hanne; Krogfelt, Karen A

    2012-02-01

    With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes was transformed into the Escherichia coli expression strain BL21(DE3), resulting in 2,304 clones. This library was subsequently screened for immunogenic proteins using antibodies raised in rabbit against a clinical isolate of C. jejuni; this resulted in 52 highly reactive clones representing 25 different genes after sequencing. Selected candidate genes were inactivated in C. jejuni NCTC 11168, and the virulence was examined using INT 407 epithelial cell line and motility, biofilm, autoagglutination, and serum resistance assays. These investigations revealed C. jejuni antigen 0034c (Cj0034c) to be a novel virulence factor and support the usefulness of the method. Further, several antigens were tested as vaccine candidates in two mouse models, in which Cj0034c, Cj0404, and Cj0525c resulted in a reduction of invasion in spleen and liver after challenge.

  5. First identification of proteins involved in motility of Mycoplasma gallisepticum.

    Science.gov (United States)

    Indikova, Ivana; Vronka, Martin; Szostak, Michael P

    2014-10-17

    Mycoplasma gallisepticum, the most pathogenic mycoplasma in poultry, is able to glide over solid surfaces. Although this gliding motility was first observed in 1968, no specific protein has yet been shown to be involved in gliding. We examined M. gallisepticum strains and clonal variants for motility and found that the cytadherence proteins GapA and CrmA were required for gliding. Loss of GapA or CrmA resulted in the loss of motility and hemadsorption and led to drastic changes in the characteristic flask-shape of the cells. To identify further genes involved in motility, a transposon mutant library of M. gallisepticum was generated and screened for motility-deficient mutants, using a screening assay based on colony morphology. Motility-deficient mutants had transposon insertions in gapA and the neighbouring downstream gene crmA. In addition, insertions were seen in gene mgc2, immediately upstream of gapA, in two motility-deficient mutants. In contrast to the GapA/CrmA mutants, the mgc2 motility mutants still possessed the ability to hemadsorb. Complementation of these mutants with a mgc2-hexahistidine fusion gene restored the motile phenotype. This is the first report assigning specific M. gallisepticum proteins to involvement in gliding motility.

  6. Proteomic identification of target proteins in normal but nonfertilizing sperm.

    Science.gov (United States)

    Frapsauce, Cynthia; Pionneau, Cedric; Bouley, Julien; Delarouziere, Vanina; Berthaut, Isabelle; Ravel, Celia; Antoine, Jean-Marie; Soubrier, Florent; Mandelbaum, Jacqueline

    2014-08-01

    To identify the male molecular causes of failures of IVF (with a deficient binding of spermatozoa to the zona pellucida, without any obvious oocyte anomaly), which are undetected by classical sperm analysis. Case-control prospective study. University hospital. Proteomic profiles of spermatozoa in patients with a complete failure of fertilization and no spermatozoa bound to the zona pellucida were compared with those of controls (men with normal fertilization and cleavage rates after classical IVF for tubal indication). All samples were analyzed by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) after being divided into three fractions according to their isoelectric point. Differentially expressed proteins between infertile men and controls were identified by mass spectrometry. Seventeen proteins differentially expressed between cases and controls were found. Twelve of these proteins were identified by mass spectrometry, and two may influence gametes interaction: laminin receptor LR67 and L-xylulose reductase (P34H). This study shows that 2D-DIGE might be useful in finding potential targets for diagnosis and prognosis of idiopathic infertility in IVF. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species.

    Science.gov (United States)

    Soares, Renata; Franco, Catarina; Pires, Elisabete; Ventosa, Miguel; Palhinhas, Rui; Koci, Kamila; Martinho de Almeida, André; Varela Coelho, Ana

    2012-07-19

    Proteomic approaches are gaining increasing importance in the context of all fields of animal and veterinary sciences, including physiology, productive characterization, and disease/parasite tolerance, among others. Proteomic studies mainly aim the proteome characterization of a certain organ, tissue, cell type or organism, either in a specific condition or comparing protein differential expression within two or more selected situations. Due to the high complexity of samples, usually total protein extracts, proteomics relies heavily on separation procedures, being 2D-electrophoresis and HPLC the most common, as well as on protein identification using mass spectrometry (MS) based methodologies. Despite the increasing importance of MS in the context of animal and veterinary science studies, the usefulness of such tools is still poorly perceived by the animal science community. This is primarily due to the limited knowledge on mass spectrometry by animal scientists. Additionally, confidence and success in protein identification is hindered by the lack of information in public databases for most of farm animal species and their pathogens, with the exception of cattle (Bos taurus), pig (Sus scrofa) and chicken (Gallus gallus). In this article, we will briefly summarize the main methodologies available for protein identification using mass spectrometry providing a case study of specific applications in the field of animal science. We will also address the difficulties inherent to protein identification using MS, with particular reference to experiments using animal species poorly described in public databases. Additionally, we will suggest strategies to increase the rate of successful identifications when working with farm animal species. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Identification of a 5-protein biomarker molecular signature for predicting Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Martín Gómez Ravetti

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a progressive brain disease with a huge cost to human lives. The impact of the disease is also a growing concern for the governments of developing countries, in particular due to the increasingly high number of elderly citizens at risk. Alzheimer's is the most common form of dementia, a common term for memory loss and other cognitive impairments. There is no current cure for AD, but there are drug and non-drug based approaches for its treatment. In general the drug-treatments are directed at slowing the progression of symptoms. They have proved to be effective in a large group of patients but success is directly correlated with identifying the disease carriers at its early stages. This justifies the need for timely and accurate forms of diagnosis via molecular means. We report here a 5-protein biomarker molecular signature that achieves, on average, a 96% total accuracy in predicting clinical AD. The signature is composed of the abundances of IL-1alpha, IL-3, EGF, TNF-alpha and G-CSF. METHODOLOGY/PRINCIPAL FINDINGS: Our results are based on a recent molecular dataset that has attracted worldwide attention. Our paper illustrates that improved results can be obtained with the abundance of only five proteins. Our methodology consisted of the application of an integrative data analysis method. This four step process included: a abundance quantization, b feature selection, c literature analysis, d selection of a classifier algorithm which is independent of the feature selection process. These steps were performed without using any sample of the test datasets. For the first two steps, we used the application of Fayyad and Irani's discretization algorithm for selection and quantization, which in turn creates an instance of the (alpha-beta-k-Feature Set problem; a numerical solution of this problem led to the selection of only 10 proteins. CONCLUSIONS/SIGNIFICANCE: the previous study has provided an extremely

  9. bSiteFinder, an improved protein-binding sites prediction server based on structural alignment: more accurate and less time-consuming.

    Science.gov (United States)

    Gao, Jun; Zhang, Qingchen; Liu, Min; Zhu, Lixin; Wu, Dingfeng; Cao, Zhiwei; Zhu, Ruixin

    2016-01-01

    Protein-binding sites prediction lays a foundation for functional annotation of protein and structure-based drug design. As the number of available protein structures increases, structural alignment based algorithm becomes the dominant approach for protein-binding sites prediction. However, the present algorithms underutilize the ever increasing numbers of three-dimensional protein-ligand complex structures (bound protein), and it could be improved on the process of alignment, selection of templates and clustering of template. Herein, we built so far the largest database of bound templates with stringent quality control. And on this basis, bSiteFinder as a protein-binding sites prediction server was developed. By introducing Homology Indexing, Chain Length Indexing, Stability of Complex and Optimized Multiple-Templates Clustering into our algorithm, the efficiency of our server has been significantly improved. Further, the accuracy was approximately 2-10 % higher than that of other algorithms for the test with either bound dataset or unbound dataset. For 210 bound dataset, bSiteFinder achieved high accuracies up to 94.8 % (MCC 0.95). For another 48 bound/unbound dataset, bSiteFinder achieved high accuracies up to 93.8 % for bound proteins (MCC 0.95) and 85.4 % for unbound proteins (MCC 0.72). Our bSiteFinder server is freely available at http://binfo.shmtu.edu.cn/bsitefinder/, and the source code is provided at the methods page. An online bSiteFinder server is freely available at http://binfo.shmtu.edu.cn/bsitefinder/. Our work lays a foundation for functional annotation of protein and structure-based drug design. With ever increasing numbers of three-dimensional protein-ligand complex structures, our server should be more accurate and less time-consuming.Graphical Abstract bSiteFinder (http://binfo.shmtu.edu.cn/bsitefinder/) as a protein-binding sites prediction server was developed based on the largest database of bound templates so far with stringent quality

  10. Identification of proteins in the postsynaptic density fraction by mass spectrometry

    DEFF Research Database (Denmark)

    Walikonis, R S; Jensen, Ole Nørregaard; Mann, M

    2000-01-01

    Our understanding of the organization of postsynaptic signaling systems at excitatory synapses has been aided by the identification of proteins in the postsynaptic density (PSD) fraction, a subcellular fraction enriched in structures with the morphology of PSDs. In this study, we have completed...

  11. Replication of mycoplasmavirus MVL51 III identification of a progeny viral DNA-protein intermediate

    Energy Technology Data Exchange (ETDEWEB)

    Das, J.; Maniloff, J.

    1976-01-01

    Intracellular replication of the non-lytic single stranded circular DNA mycoplasmavirus MVL51 has been shown to involve three DNA intermediates: RFI, RFII and SSI. Growth in Eagle's basal medium, rather than richer tryptose medium, has allowed the identification of an intermediate between nascent progeny chromosomes (SSI) and mature virus. This intermediate is a protein associated form of SSI.

  12. Identification of Epstein-Barr Virus Replication Proteins in Burkitt’s Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Chris Traylen

    2015-10-01

    Full Text Available The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited. We have taken a global proteomics approach to identify viral proteins that are expressed during the EBV lytic replication cycle. We combined an enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling coupled to mass-spectrometry and identified viral and host proteins expressed during the OPEN ACCESS Pathogens 2015, 4 740 EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two components of the DNA replication machinery, the single strand DNA binding protein BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1. An additional 42 EBV lytic cycle proteins were also detected. This provides proteomic identification for many EBV lytic replication cycle proteins and also identifies post-translational modifications.

  13. Protein markers for identification of Yersinia pestis and their variation related to culture

    Energy Technology Data Exchange (ETDEWEB)

    Wunschel, David S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Engelmann, Heather E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Victry, Kristin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clowers, Brian H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sorensen, Christina M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valentine, Nancy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mahoney Fahey, Christine M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wietsma, Thomas W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wahl, Karen L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-11

    The detection of high consequence pathogens, such as Yersinia pestis, is well established in biodefense laboratories for bioterror situations. Laboratory protocols are well established using specified culture media and a growth temperature of 37 °C for expression of specific antigens. Direct detection of Y. pestis protein markers, without prior culture, depends on their expression. Unfortunately protein expression can be impacted by the culture medium which cannot be predicted ahead of time. Furthermore, higher biomass yields are obtained at the optimal growth temperature (i.e. 28 °C–30 °C) and therefore are more likely to be used for bulk production. Analysis of Y. pestis grown on several types of media at 30 °C showed that several protein markers were found to be differentially detected in different media. Analysis of the identified proteins against a comprehensive database provided an additional level of organism identification. Peptides corresponding to variable regions of some proteins could separate large groups of strains and aid in organism identification. This work illustrates the need to understand variability of protein expression for detection targets. The potential for relating expression changes of known proteins to specific media factors, even in nutrient rich and chemically complex culture medium, may provide the opportunity to draw forensic information from protein profiles.

  14. Characterization of quinone derived protein adducts and their selective identification using redox cycling based chemiluminescence assay.

    Science.gov (United States)

    Elgawish, Mohamed Saleh; Kishikawa, Naoya; Ohyama, Kaname; Kuroda, Naotaka

    2015-07-17

    The cytotoxic mechanism of many quinones has been correlated to covalent modification of cellular proteins. However, the identification of relevant proteins targets is essential but challenging goals. To better understand the quinones cytotoxic mechanism, human serum albumin (HSA) was incubated in vitro with different concentration of menadione (MQ). In this respect, the initial nucleophilic addition of proteins to quinone converts the conjugates to redox-cycling quinoproteins with altered conformation and secondary structure and extended life span than the short lived, free quinones. The conjugation of MQ with nucleophilic sites likewise, free cysteine as well as ɛ-amino group of lysine residue of HSA has been found to be in concentration dependent manner. The conventional methods for modified proteins identification in complex mixtures are complicated and time consuming. Herein, we describe a highly selective, sensitive, simple, and fast strategy for quinoproteins identification. The suggested strategy exploited the unique redox-cycling capability of quinoproteins in presence of a reductant, dithiothreitol (DTT), to generate reactive oxygen species (ROS) that gave sufficient chemiluminescence (CL) when mixed with luminol. The CL approach is highly selective and sensitive to detect the quinoproteins in ten-fold molar excess of native proteins without adduct enrichment. The approach was also coupled with gel filtration chromatography (GFC) and used to identify adducts in complex mixture of proteins in vitro as well as in rat plasma after MQ administration. Albumin was identified as the main protein in human and rat plasma forming adduct with MQ. Overall, the identification of quinoproteins will encourage further studies of toxicological impact of quinones on human health. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Small acid soluble proteins for rapid spore identification.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  16. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    Directory of Open Access Journals (Sweden)

    Daniel O Connor

    Full Text Available Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.

  17. ReFOLD: a server for the refinement of 3D protein models guided by accurate quality estimates.

    Science.gov (United States)

    Shuid, Ahmad N; Kempster, Robert; McGuffin, Liam J

    2017-04-10

    ReFOLD is a novel hybrid refinement server with integrated high performance global and local Accuracy Self Estimates (ASEs). The server attempts to identify and to fix likely errors in user supplied 3D models of proteins via successive rounds of refinement. The server is unique in providing output for multiple alternative refined models in a way that allows users to quickly visualize the key residue locations, which are likely to have been improved. This is important, as global refinement of a full chain model may not always be possible, whereas local regions, or individual domains, can often be much improved. Thus, users may easily compare the specific regions of the alternative refined models in which they are most interested e.g. key interaction sites or domains. ReFOLD was used to generate hundreds of alternative refined models for the CASP12 experiment, boosting our group's performance in the main tertiary structure prediction category. Our successful refinement of initial server models combined with our built-in ASEs were instrumental to our second place ranking on Template Based Modeling (TBM) and Free Modeling (FM)/TBM targets. The ReFOLD server is freely available at: http://www.reading.ac.uk/bioinf/ReFOLD/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Rapid identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Panda, A; Kurapati, S; Samantaray, J C; Myneedu, V P; Verma, A; Srinivasan, A; Ahmad, H; Behera, D; Singh, U B

    2013-01-01

    The purpose of this study was to evaluate the identification of Mycobacterium tuberculosis which is often plagued with ambiguity. It is a time consuming process requiring 4-8 weeks after culture positivity, thereby delaying therapeutic intervention. For a successful treatment and disease management, timely diagnosis is imperative. We evaluated a rapid, proteomic based technique for identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Freshly grown mycobacterial isolates were used. Acetonitrile/trifluoroacetic acid extraction procedure was carried out, following which cinnamic acid charged plates were subjected to identification by MALDI-TOF MS. A comparative analysis of 42 clinical mycobacterial isolates using the MALDI-TOF MS and conventional techniques was carried out. Among these, 97.61% were found to corroborate with the standard methods at genus level and 85.36% were accurate till the species level. One out of 42 was not in accord with the conventional assays because MALDI-TOF MS established it as Mycobacterium tuberculosis (log (score)>2.0) and conventional methods established it to be non-tuberculous Mycobacterium. MALDI-TOF MS was found to be an accurate, rapid, cost effective and robust system for identification of mycobacterial species. This innovative approach holds promise for early therapeutic intervention leading to better patient care.

  19. Rapid and accurate identification of isolates of Candida species by melting peak and melting curve analysis of the internally transcribed spacer region 2 fragment (ITS2-MCA)

    NARCIS (Netherlands)

    Decat, E.; van Mechelen, E.; Saerens, B.; Vermeulen, S.J.T.; Boekhout, T.; de Blaiser, S.; Vaneechoutte, M.; Deschaght, P.

    2013-01-01

    Rapid identification of clinically important yeasts can facilitate the initiation of anti-fungal therapy, since susceptibility is largely species-dependent. We evaluated melting peak and melting curve analysis of the internally transcribed spacer region 2 fragment (ITS2-MCA) as an identification

  20. Novel Accurate Bacterial Discrimination by MALDI-Time-of-Flight MS Based on Ribosomal Proteins Coding in S10-spc-alpha Operon at Strain Level S10-GERMS

    Science.gov (United States)

    Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki

    2013-08-01

    Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.

  1. Identification of Putative Vero Cell Protein(s) that Bind Specifically to ...

    African Journals Online (AJOL)

    Results: The 45 KDa, 43 KDa and 30 KDa plasma membrane proteins were identified as viral envelope targets. Competitive binding assay showed these proteins competing with dengue virus binding. MTT assay indicate that viability of vero cells increases in cultures pretreated with 45 KDa, 43 KDa and 30 KDa proteins ...

  2. Identification and characterization of cytosolic Hansenula polymorpha proteins belonging to the Hsp70 protein family

    NARCIS (Netherlands)

    Titorenko, Vladimir I.; Evers, Melchior E.; Diesel, Andre; Samyn, Bart; Beeumen, Josef van; Roggenkamp, Rainer; Kiel, Jan A.K.W.; Klei, Ida J. van der; Veenhuis, Marten

    We have isolated two members of the Hsp70 protein family from the yeast Hansenula polymorpha using affinity chromatography. Both proteins were located in the cytoplasm. One of these, designated Hsp72, was inducible in nature (e.g. by heat shock). The second protein (designated Hsc74) was

  3. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    Science.gov (United States)

    Nguyen, Hung T.; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois; Case, David A.

    2014-12-01

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb+ and Sr2+) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.

  4. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids.

    Science.gov (United States)

    Nguyen, Hung T; Pabit, Suzette A; Meisburger, Steve P; Pollack, Lois; Case, David A

    2014-12-14

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb(+) and Sr(2+)) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.

  5. Identification of a Staphylococcus aureus Efflux Pump Regulator Using a DNA-Protein Affinity Technique.

    Science.gov (United States)

    Truong-Bolduc, Que Chi; Hooper, David C

    2018-01-01

    In this chapter, we describe the step-by-step identification of a putative regulator protein and demonstrate the function of this protein as a repressor of the expression of a specific efflux pump, causing resistance to quinolones in Staphylococcus aureus. We show that the knockout gene mutant has an increase in transcript levels of the target efflux pump when compared to that of the S. aureus parental strain RN6390. We provide a detailed protocol that includes the identification of the DNA-binding transcriptional regulatory protein from S. aureus cell extracts using DNA sequences linked to magnetic beads. In addition, we describe the real-time qRT-PCR assays and MIC testing to evaluate the effects of the regulator on S. aureus drug resistance phenotype.

  6. Identification of proteins in the aqueous humor associated with cataract development using iTRAQ methodology.

    Science.gov (United States)

    Xiang, Minhong; Zhang, Xingru; Li, Qingsong; Wang, Hanmin; Zhang, Zhenyong; Han, Zhumei; Ke, Meiqing; Chen, Xingxing

    2017-05-01

    Proteins in the aqueous humor (AH) are important in the induction of cataract development. The identification of cataract-associated proteins assists in identifying patients and predisposed to the condition and improve treatment efficacy. Proteomics analysis has previously been used for identifying protein markers associated with eye diseases; however, few studies have examined the proteomic alterations in cataract development due to high myopia, glaucoma and diabetes. The present study, using the isobaric tagging for relative and absolute protein quantification methodology, aimed to examine cataract-associated proteins in the AH from patients with high myopia, glaucoma or diabetes, and controls. The results revealed that 445 proteins were identified in the AH groups, compared with the control groups, and 146, 264 and 130 proteins were differentially expressed in the three groups of patients, respectively. In addition, 44 of these proteins were determined to be cataract‑associated, and the alterations of five randomly selected proteins were confirmed using enzyme-linked immunosorbent assays. The biological functions of these 44 cataract-associated proteins were analyzed using Gen Ontology/pathways annotation, in addition to protein‑protein interaction network analysis. The results aimed to expand current knowledge of the pathophysiologic characteristics of cataract development and provided a panel of candidates for biomarkers of the disease, which may assist in further diagnosis and the monitoring of cataract development.

  7. Efficient identification of critical residues based only on protein structure by network analysis.

    Directory of Open Access Journals (Sweden)

    Michael P Cusack

    Full Text Available Despite the increasing number of published protein structures, and the fact that each protein's function relies on its three-dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new method is presented that relates critical residues for protein function with the most traversed residues in networks derived from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the prediction, thus reproducing a basic feature of the structure/function relationship of proteins.

  8. PDTD: a web-accessible protein database for drug target identification

    Directory of Open Access Journals (Sweden)

    Gao Zhenting

    2008-02-01

    Full Text Available Abstract Background Target identification is important for modern drug discovery. With the advances in the development of molecular docking, potential binding proteins may be discovered by docking a small molecule to a repository of proteins with three-dimensional (3D structures. To complete this task, a reverse docking program and a drug target database with 3D structures are necessary. To this end, we have developed a web server tool, TarFisDock (Target Fishing Docking http://www.dddc.ac.cn/tarfisdock, which has been used widely by others. Recently, we have constructed a protein target database, Potential Drug Target Database (PDTD, and have integrated PDTD with TarFisDock. This combination aims to assist target identification and validation. Description PDTD is a web-accessible protein database for in silico target identification. It currently contains >1100 protein entries with 3D structures presented in the Protein Data Bank. The data are extracted from the literatures and several online databases such as TTD, DrugBank and Thomson Pharma. The database covers diverse information of >830 known or potential drug targets, including protein and active sites structures in both PDB and mol2 formats, related diseases, biological functions as well as associated regulating (signaling pathways. Each target is categorized by both nosology and biochemical function. PDTD supports keyword search function, such as PDB ID, target name, and disease name. Data set generated by PDTD can be viewed with the plug-in of molecular visualization tools and also can be downloaded freely. Remarkably, PDTD is specially designed for target identification. In conjunction with TarFisDock, PDTD can be used to identify binding proteins for small molecules. The results can be downloaded in the form of mol2 file with the binding pose of the probe compound and a list of potential binding targets according to their ranking scores. Conclusion PDTD serves as a comprehensive and

  9. Identification of Arsenic Direct-Binding Proteins in Acute Promyelocytic Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-11-01

    Full Text Available The identification of arsenic direct-binding proteins is essential for determining the mechanism by which arsenic trioxide achieves its chemotherapeutic effects. At least two cysteines close together in the amino acid sequence are crucial to the binding of arsenic and essential to the identification of arsenic-binding proteins. In the present study, arsenic binding proteins were pulled down with streptavidin and identified using a liquid chromatograph-mass spectrometer (LC-MS/MS. More than 40 arsenic-binding proteins were separated, and redox-related proteins, glutathione S-transferase P1 (GSTP1, heat shock 70 kDa protein 9 (HSPA9 and pyruvate kinase M2 (PKM2, were further studied using binding assays in vitro. Notably, PKM2 has a high affinity for arsenic. In contrast to PKM2, GSTP1and HSPA9 did not combine with arsenic directly in vitro. These observations suggest that arsenic-mediated acute promyelocytic leukaemia (APL suppressive effects involve PKM2. In summary, we identified several arsenic binding proteins in APL cells and investigated the therapeutic mechanisms of arsenic trioxide for APL. Further investigation into specific signal pathways by which PKM2 mediates APL developments may lead to a better understanding of arsenic effects on APL.

  10. Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2008-04-01

    Full Text Available Abstract Background The identification and study of proteins from metagenomic datasets can shed light on the roles and interactions of the source organisms in their communities. However, metagenomic datasets are characterized by the presence of organisms with varying GC composition, codon usage biases etc., and consequently gene identification is challenging. The vast amount of sequence data also requires faster protein family classification tools. Results We present a computational improvement to a sequence clustering approach that we developed previously to identify and classify protein coding genes in large microbial metagenomic datasets. The clustering approach can be used to identify protein coding genes in prokaryotes, viruses, and intron-less eukaryotes. The computational improvement is based on an incremental clustering method that does not require the expensive all-against-all compute that was required by the original approach, while still preserving the remote homology detection capabilities. We present evaluations of the clustering approach in protein-coding gene identification and classification, and also present the results of updating the protein clusters from our previous work with recent genomic and metagenomic sequences. The clustering results are available via CAMERA, (http://camera.calit2.net. Conclusion The clustering paradigm is shown to be a very useful tool in the analysis of microbial metagenomic data. The incremental clustering method is shown to be much faster than the original approach in identifying genes, grouping sequences into existing protein families, and also identifying novel families that have multiple members in a metagenomic dataset. These clusters provide a basis for further studies of protein families.

  11. Nonculture-based identification of bacteria in milk by protein fingerprinting.

    Science.gov (United States)

    Barreiro, Juliana Regina; Braga, Patricia Aparecida Campos; Ferreira, Christina Ramires; Kostrzewa, Markus; Maier, Thomas; Wegemann, Beatrix; Böettcher, Viktoria; Eberlin, Marcos N; dos Santos, Marcos Veiga

    2012-08-01

    Traditional methods for bacterial identification include Gram staining, culturing, and biochemical assays for phenotypic characterization of the causative organism. These methods can be time-consuming because they require in vitro cultivation of the microorganisms. Recently, however, it has become possible to obtain chemical profiles for lipids, peptides, and proteins that are present in an intact organism, particularly now that new developments have been made for the efficient ionization of biomolecules. MS has therefore become the state-of-the-art technology for microorganism identification in microbiological clinical diagnosis. Here, we introduce an innovative sample preparation method for nonculture-based identification of bacteria in milk. The technique detects characteristic profiles of intact proteins (mostly ribosomal) with the recently introduced MALDI Sepsityper(TM) Kit followed by MALDI-MS. In combination with a dedicated bioinformatics software tool for databank matching, the method allows for almost real-time and reliable genus and species identification. We demonstrate the sensitivity of this protocol by experimentally contaminating pasteurized and homogenized whole milk samples with bacterial loads of 10(3) -10(8) colony-forming units (cfu) of laboratory strains of Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus. For milk samples contaminated with a lower bacterial load (10(4) cfu mL(-1) ), bacterial identification could be performed after initial incubation at 37°C for 4 h. The sensitivity of the method may be influenced by the bacterial species and count, and therefore, it must be optimized for the specific application. The proposed use of protein markers for nonculture-based bacterial identification allows for high-throughput detection of pathogens present in milk samples. This method could therefore be useful in the veterinary practice and in the dairy industry, such as for the diagnosis of subclinical mastitis and for the

  12. Cholesteryl ester transfer protein deficiency: Identification in the chinese

    Energy Technology Data Exchange (ETDEWEB)

    Akita, Harukuni; Chiba, Hitoshi; Hui, Shu-Ping; Takahashi, Yukihiro; Matsuno, Kazuhiko; Kobayashi, Kunihiko [Hokkaido Univ. School of Medicine, Sapporo (Japan)

    1995-11-20

    Cholesteryl ester transfer protein (CETP) regulates cholesterol content in high-density lipoproteins (HDL) through the exchange of cholesteryl ester in HDL and triglyceride in triglyceride-rich lipoproteins. Three types of CETP deficiency have so far been reported, all in Japanese individuals. Among them, two types of mutation in the CETP gene are relatively common: (1) a guanine to adenine mutation in the intron 14 splicing donor site (114A), and (2) an Asp 442 to Gly (D442G) mutation. The 114A mutation has an estimated allele frequency of 0.81% in the Japanese. It elevates the plasma HDL-cholesterol level strikingly: typically, >120 mg/dl for homozygotes and 80-110 mg/dl for heterozygotes. In contrast, the D442G mutation has a higher estimated allele frequency (4.62%), but has a mild effect on the HDL-cholesterol level: typically, >80 mg/dl for homozygotes and 50-100 mg/dl for heterozygotes. We screened Chinese individuals for the two CETP gene mutations. 7 refs., 1 tab.

  13. Identification and characterization of three immunodominant structural proteins of fowlpox virus.

    Science.gov (United States)

    Boulanger, Denise; Green, Philip; Jones, Brenda; Henriquet, Gwenn; Hunt, Lawrence G; Laidlaw, Stephen M; Monaghan, Paul; Skinner, Michael A

    2002-10-01

    Genes encoding fowlpox virus (FWPV) structural proteins have been identified mainly by sequence homology with those from vaccinia virus (VACV), but little is known about the encoded proteins. Production of monoclonal antibodies (MAbs) against Poxine and HP1-440 (Munich) clone FP9 allowed the identification of three immunodominant FWPV proteins: the 39-kDa core protein (encoded by FPV168, homologous to VACV A4L), a 30- and 35-kDa protein doublet, and an abundant 63-kDa protein. The 30- and 35-kDa proteins are nonglycosylated, antigenically related proteins present in the intracellular mature virus membrane and localizing closely with the viral factories. N-terminal sequencing identified the 35-kDa protein as encoded by FPV140 (the FWPV homolog of VACV H3L). The 63-kDa protein forms covalently linked dimers and oligomers. It remained mainly insoluble upon detergent treatment of purified virus but did not localize closely with the viral factory. N-terminal sequencing was unsuccessful, suggesting N-terminal blocking. CNBr digestion generated a peptide encoded by FPV191, predicted to encode one of two FWPV A-type inclusion (ATI) proteins. The characteristics of the 63-kDa protein were inconsistent with published observations on cowpox or VACV ATI proteins (it appears to be essential). The 63-kDa protein, however, shares characteristics with both VACV p4c virus occlusion and 14-kDa fusion proteins. Gene assignment at the poxvirus ATI locus (between VACV A24R and A28L) is complicated by sequence redundancies and variations, often due to deletions and multiple frameshift mutations. The identity of FPV191 in relation to genes at this locus is discussed.

  14. Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines.

    Directory of Open Access Journals (Sweden)

    Margaret Rohrbaugh

    Full Text Available Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern.We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31 gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl, a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology.These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins.

  15. Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging.

    Science.gov (United States)

    Baraibar, Martin A; Ladouce, Romain; Friguet, Bertrand

    2013-10-30

    Increased protein carbonyl content is a hallmark of cellular and organismal aging. Protein damage leading to the formation of carbonyl groups derives from direct oxidation of several amino acid side chains but can also derive through protein adducts formation with lipid peroxidation products and dicarbonyl glycating compounds. All these modifications have been implicated during oxidative stress, aging and age-related diseases. However, in most cases, the proteins targeted by these deleterious modifications as well as their consequences have not yet been clearly identified. Indeed, this is essential to determine whether and how these modified proteins are impacting on cellular function, on the development of the senescent phenotype and the pathogenesis of age-related diseases. In this context, protein modifications occurring during aging and upon oxidative stress as well as main proteomic methods for detecting, quantifying and identifying oxidized proteins are described. Relevant proteomics studies aimed at monitoring the extent of protein carbonylation and identifying the targeted proteins in the context of aging and oxidative stress are also presented. Proteomics approaches, i.e. fluorescent based 2D-gel electrophoresis and mass spectrometry methods, represent powerful tools for monitoring at the proteome level the extent of protein oxidative and related modifications and for identifying the targeted proteins. Accumulation of damaged macromolecules, including oxidatively damaged (carbonylated) proteins, is a hallmark of cellular and organismal aging. Since protein carbonyls are the most commonly used markers of protein oxidation, different methods have been developed for the detection and quantification of carbonylated proteins. The identification of these protein targets is of valuable interest in order to understand the mechanisms by which damaged proteins accumulate and potentially affect cellular functions during oxidative stress, cellular senescence and

  16. High-throughput identification of IMCD proteins using LC-MS/MS.

    Science.gov (United States)

    Pisitkun, Trairak; Bieniek, Jared; Tchapyjnikov, Dmitry; Wang, Guanghui; Wu, Wells W; Shen, Rong-Fong; Knepper, Mark A

    2006-04-13

    The inner medullary collecting duct (IMCD) is an important site of vasopressin-regulated water and urea transport. Here we have used protein mass spectrometry to investigate the proteome of the IMCD cell and how it is altered in response to long-term vasopressin administration in rats. IMCDs were isolated from inner medullas of rats, and IMCD proteins were identified by liquid chromatography/tandem mass spectrometry (LC-MS/MS). We present a WWW-based "IMCD Proteome Database" containing all IMCD proteins identified in this study (n = 704) and prior MS-based identification studies (n = 301). We used the isotope-coded affinity tag (ICAT) technique to identify IMCD proteins that change in abundance in response to vasopressin. Vasopressin analog (dDAVP) or vehicle was infused subcutaneously in Brattleboro rats for 3 days, and IMCDs were isolated for proteomic analysis. dDAVP and control samples were labeled with different cleavable ICAT reagents (mass difference 9 amu) and mixed. This was followed by one-dimensional SDS-PAGE separation, in-gel trypsin digestion, biotin-avidin affinity purification, and LC-MS/MS identification and quantification. Responses to vasopressin for a total of 165 proteins were quantified. Quantification, based on semiquantitative immunoblotting of 16 proteins for which antibodies were available, showed a high degree of correlation with ICAT results. In addition to aquaporin-2 and gamma-epithelial Na channel (gamma-ENaC), five of the immunoblotted proteins were substantially altered in abundance in response to dDAVP, viz., syntaxin-7, Rap1, GAPDH, heat shock protein (HSP)70, and cathepsin D. A 28-protein vasopressin signaling network was constructed using literature-based network analysis software focusing on the newly identified proteins, providing several new hypotheses for future studies.

  17. Protein feature based identification of cell cycle regulated proteins in yeast

    DEFF Research Database (Denmark)

    de Lichtenberg, Ulrik; Jensen, Thomas Skøt; Jensen, Lars Juhl

    2003-01-01

    DNA microarrays have been used extensively to identify cell cycle regulated genes in yeast; however, the overlap in the genes identified is surprisingly small. We show that certain protein features can be used to distinguish cell cycle regulated genes from other genes with high confidence (features...... include protein phosphorylation, glycosylation, subcellular location and instability/degradation). We demonstrate that co-expressed, periodic genes encode proteins which share combinations of features, and provide an overview of the proteome dynamics during the cycle. A large set of novel putative cell...... cycle regulated proteins were identified, many of which have no known function....

  18. Identification of In Planta Protein-Protein Interactions Using IP-MS.

    Science.gov (United States)

    Jamge, Suraj; Angenent, Gerco C; Bemer, Marian

    2018-01-01

    Gene regulation by transcription factors involves complex protein interaction networks, which include chromatin remodeling and modifying proteins as an integral part. Decoding these protein interactions is crucial for our understanding of chromatin-mediated gene regulation. Here, we describe a method for the immunoprecipitation of in planta nuclear protein complexes followed by mass spectrometry (IP-MS) to identify interactions between transcription factors and chromatin remodelers/modifiers in plants. In addition to a step-by-step bench protocol for immunoprecipitation and subsequent mass spectrometry, we provide guidelines and pointers on necessary controls and data analysis approaches.

  19. MASCOT HTML and XML parser: an implementation of a novel object model for protein identification data.

    Science.gov (United States)

    Yang, Chunguang G; Granite, Stephen J; Van Eyk, Jennifer E; Winslow, Raimond L

    2006-11-01

    Protein identification using MS is an important technique in proteomics as well as a major generator of proteomics data. We have designed the protein identification data object model (PDOM) and developed a parser based on this model to facilitate the analysis and storage of these data. The parser works with HTML or XML files saved or exported from MASCOT MS/MS ions search in peptide summary report or MASCOT PMF search in protein summary report. The program creates PDOM objects, eliminates redundancy in the input file, and has the capability to output any PDOM object to a relational database. This program facilitates additional analysis of MASCOT search results and aids the storage of protein identification information. The implementation is extensible and can serve as a template to develop parsers for other search engines. The parser can be used as a stand-alone application or can be driven by other Java programs. It is currently being used as the front end for a system that loads HTML and XML result files of MASCOT searches into a relational database. The source code is freely available at http://www.ccbm.jhu.edu and the program uses only free and open-source Java libraries.

  20. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.

    Science.gov (United States)

    Shi, Xu; Wang, Xiao; Shajahan, Ayesha; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua

    2015-01-01

    Identification of protein interaction network is a very important step for understanding the molecular mechanisms in cancer. Several methods have been developed to integrate protein-protein interaction (PPI) data with gene expression data for network identification. However, they often fail to model the dependency between genes in the network, which makes many important genes, especially the upstream genes, unidentified. It is necessary to develop a method to improve the network identification performance by incorporating the dependency between genes. We proposed an approach for identifying protein interaction network by incorporating mutual information (MI) into a Markov random field (MRF) based framework to model the dependency between genes. MI is widely used in information theory to measure the uncertainty between random variables. Different from traditional Pearson correlation test, MI is capable of capturing both linear and non-linear relationship between random variables. Among all the existing MI estimators, we choose to use k-nearest neighbor MI (kNN-MI) estimator which is proved to have minimum bias. The estimated MI is integrated with an MRF framework to model the gene dependency in the context of network. The maximum a posterior (MAP) estimation is applied on the MRF-based model to estimate the network score. In order to reduce the computational complexity of finding the optimal network, a probabilistic searching algorithm is implemented. We further increase the robustness and reproducibility of the results by applying a non-parametric bootstrapping method to measure the confidence level of the identified genes. To evaluate the performance of the proposed method, we test the method on simulation data under different conditions. The experimental results show an improved accuracy in terms of subnetwork identification compared to existing methods. Furthermore, we applied our method onto real breast cancer patient data; the identified protein interaction

  1. Hexapeptide libraries for enhanced protein PTM identification and relative abundance profiling in whole human saliva.

    Science.gov (United States)

    Bandhakavi, Sricharan; Van Riper, Susan K; Tawfik, Pierre N; Stone, Matthew D; Haddad, Tufia; Rhodus, Nelson L; Carlis, John V; Griffin, Timothy J

    2011-03-04

    Dynamic range compression (DRC) by hexapeptide libraries increases MS/MS-based identification of lower-abundance proteins in complex mixtures. However, two unanswered questions impede fully realizing DRC's potential in shotgun proteomics. First, does DRC enhance identification of post-translationally modified proteins? Second, can DRC be incorporated into a workflow enabling relative protein abundance profiling? We sought to answer both questions analyzing human whole saliva. Addressing question one, we coupled DRC with covalent glycopeptide enrichment and MS/MS. With DRC we identified ∼2 times more N-linked glycoproteins and their glycosylation sites than without DRC, dramatically increasing the known salivary glycoprotein catalog. Addressing question two, we compared differentially stable isotope-labeled saliva samples pooled from healthy and metastatic breast cancer women using a multidimensional peptide fractionation-based workflow, analyzing in parallel one sample portion with DRC and one portion without. Our workflow categorizes proteins with higher absolute abundance, whose relative abundance ratios are altered by DRC, from proteins of lower absolute abundance detected only after DRC. Within each of these salivary protein categories, we identified novel abundance changes putatively associated with breast cancer, demonstrating feasibility and benefits of DRC for relative abundance profiling. Collectively, our results bring us closer to realizing the full potential of DRC for proteomic studies.

  2. Hexapeptide libraries for enhanced protein PTM identification and relative abundance profiling in whole human saliva

    Science.gov (United States)

    Bandhakavi, Sricharan; Van Riper, Susan K; Tawfik, Pierre N; Stone, Matthew D; Haddad, Tufia; Rhodus, Nelson L.; Carlis, John V.; Griffin, Timothy J

    2011-01-01

    SUMMARY Dynamic range compression (DRC) by hexapeptide libraries increases MS/MS-based identification of lower-abundance proteins in complex mixtures. However, two unanswered questions impede fully realizing DRC’s potential in shotgun proteomics. First, does DRC enhance identification of post-translationally modified proteins? Second, can DRC be incorporated into a workflow enabling relative protein abundance profiling? We sought to answer both questions analyzing human whole saliva. Addressing question one, we coupled DRC with covalent glycopeptide enrichment and MS/MS. With DRC we identified ~2 times more N-linked glycoproteins and their glycosylation sites than without DRC, dramatically increasing the known salivary glycoprotein catalog. Addressing question two, we compared differentially stable isotope-labeled saliva samples pooled from healthy and metastatic breast cancer women using a multidimensional peptide fractionation-based workflow, analyzing in parallel one sample portion with DRC and one portion without. Our workflow categorizes proteins with higher absolute abundance, whose relative abundance ratios are altered by DRC, from proteins of lower absolute abundance detected only after DRC. Within each of these salivary protein categories we identified novel abundance changes putatively associated with breast cancer, demonstrating feasibility and benefits of DRC for relative abundance profiling. Collectively, our results bring us closer to realizing the full potential of DRC for proteomic studies. PMID:21142092

  3. Processed Meat Protein and Heat-Stable Peptide Marker Identification Using Microwave-Assisted Tryptic Digestion

    Directory of Open Access Journals (Sweden)

    Magdalena Montowska

    2016-01-01

    Full Text Available New approaches to rapid examination of proteins and peptides in complex food matrices are of great interest to the community of food scientists. The aim of the study is to examine the influence of microwave irradiation on the acceleration of enzymatic cleavage and enzymatic digestion of denatured proteins in cooked meat of five species (cattle, horse, pig, chicken and turkey and processed meat products (coarsely minced, smoked, cooked and semi-dried sausages. Severe protein aggregation occurred not only in heated meat under harsh treatment at 190 °C but also in processed meat products. All the protein aggregates were thoroughly hydrolyzed aft er 1 h of trypsin treatment with short exposure times of 40 and 20 s to microwave irradiation at 138 and 303 W. There were much more missed cleavage sites observed in all microwave-assisted digestions. Despite the incompleteness of microwave-assisted digestion, six unique peptide markers were detected, which allowed unambiguous identification of processed meat derived from the examined species. Although the microwave-assisted tryptic digestion can serve as a tool for rapid and high-throughput protein identification, great caution and pre-evaluation of individual samples is recommended in protein quantitation.

  4. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    Science.gov (United States)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  5. Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae

    Directory of Open Access Journals (Sweden)

    Krehenbrink Martin

    2008-01-01

    Full Text Available Abstract Background Proteins secreted by bacteria play an important role in infection of eukaryotic hosts. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. Proteins secreted during the infection process by some rhizobial strains can influence infection and modify the plant defence signalling pathways. The aim of this study was to systematically analyse protein secretion in the recently sequenced strain Rhizobium leguminosarum bv. viciae 3841. Results Similarity searches using defined protein secretion systems from other Gram-negative bacteria as query sequences revealed that R. l. bv. viciae 3841 has ten putative protein secretion systems. These are the general export pathway (GEP, a twin-arginine translocase (TAT secretion system, four separate Type I systems, one putative Type IV system and three Type V autotransporters. Mutations in genes encoding each of these (except the GEP were generated, but only mutations affecting the PrsDE (Type I and TAT systems were observed to affect the growth phenotype and the profile of proteins in the culture supernatant. Bioinformatic analysis and mass fingerprinting of tryptic fragments of culture supernatant proteins identified 14 putative Type I substrates, 12 of which are secreted via the PrsDE, secretion system. The TAT mutant was defective for the symbiosis, forming nodules incapable of nitrogen fixation. Conclusion None of the R. l. bv. viciae 3841 protein secretion systems putatively involved in the secretion of proteins to the extracellular space (Type I, Type IV, Type V is required for establishing the symbiosis with legumes. The PrsDE (Type I system was shown to be the major route of protein secretion in non-symbiotic cells and to secrete proteins of widely varied size and predicted function. This is in contrast to many Type I systems from other bacteria, which typically secrete specific substrates encoded by genes often localised in close proximity to

  6. Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae.

    Science.gov (United States)

    Krehenbrink, Martin; Downie, J Allan

    2008-01-29

    Proteins secreted by bacteria play an important role in infection of eukaryotic hosts. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. Proteins secreted during the infection process by some rhizobial strains can influence infection and modify the plant defence signalling pathways. The aim of this study was to systematically analyse protein secretion in the recently sequenced strain Rhizobium leguminosarum bv. viciae 3841. Similarity searches using defined protein secretion systems from other Gram-negative bacteria as query sequences revealed that R. l. bv. viciae 3841 has ten putative protein secretion systems. These are the general export pathway (GEP), a twin-arginine translocase (TAT) secretion system, four separate Type I systems, one putative Type IV system and three Type V autotransporters. Mutations in genes encoding each of these (except the GEP) were generated, but only mutations affecting the PrsDE (Type I) and TAT systems were observed to affect the growth phenotype and the profile of proteins in the culture supernatant. Bioinformatic analysis and mass fingerprinting of tryptic fragments of culture supernatant proteins identified 14 putative Type I substrates, 12 of which are secreted via the PrsDE, secretion system. The TAT mutant was defective for the symbiosis, forming nodules incapable of nitrogen fixation. None of the R. l. bv. viciae 3841 protein secretion systems putatively involved in the secretion of proteins to the extracellular space (Type I, Type IV, Type V) is required for establishing the symbiosis with legumes. The PrsDE (Type I) system was shown to be the major route of protein secretion in non-symbiotic cells and to secrete proteins of widely varied size and predicted function. This is in contrast to many Type I systems from other bacteria, which typically secrete specific substrates encoded by genes often localised in close proximity to the genes encoding the secretion system itself.

  7. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function.

    Directory of Open Access Journals (Sweden)

    Maura Brioschi

    Full Text Available Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF. The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14 and non-failing human hearts (n = 13 were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS, the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01. We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK, whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.

  8. Identification of Key Proteins in Human Epithelial Cells Responding to Bystander Signals From Irradiated Trout Skin

    Directory of Open Access Journals (Sweden)

    Hayley Furlong

    2015-07-01

    Full Text Available Radiation-induced bystander signaling has been found to occur in live rainbow trout fish (Oncorhynchus mykiss. This article reports identification of key proteomic changes in a bystander reporter cell line (HaCaT grown in low-dose irradiated tissue-conditioned media (ITCM from rainbow trout fish. In vitro explant cultures were generated from the skin of fish previously exposed to low doses (0.1 and 0.5 Gy of X-ray radiation in vivo. The ITCM was harvested from all donor explant cultures and placed on recipient HaCaT cells to observe any change in protein expression caused by the bystander signals. Proteomic methods using 2-dimensional (2D gel electrophoresis and mass spectroscopy were employed to screen for novel proteins expressed. The proteomic changes measured in HaCaT cells receiving the ITCM revealed that exposure to 0.5 Gy induced an upregulation of annexin A2 and cingulin and a downregulation of Rho-GDI2, F-actin-capping protein subunit beta, microtubule-associated protein RP/EB family member, and 14-3-3 proteins. The 0.1 Gy dose also induced a downregulation of Rho-GDI2, hMMS19, F-actin-capping protein subunit beta, and microtubule-associated protein RP/EB family member proteins. The proteins reported may influence apoptotic signaling, as the results were suggestive of an induction of cell communication, repair mechanisms, and dysregulation of growth signals.

  9. Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants.

    Science.gov (United States)

    Zhou, Xiao; Graumann, Katja; Wirthmueller, Lennart; Jones, Jonathan D G; Meier, Iris

    2014-06-09

    Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain-interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions. © 2014 Zhou et al.

  10. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction.

    Directory of Open Access Journals (Sweden)

    Pradeep R Dumpala

    Full Text Available Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05 difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri.

  11. Global analysis of gel mobility of proteins and its use in target identification.

    Science.gov (United States)

    Shirai, Atsuko; Matsuyama, Akihisa; Yashiroda, Yoko; Hashimoto, Atsushi; Kawamura, Yumi; Arai, Ritsuko; Komatsu, Yasuhiko; Horinouchi, Sueharu; Yoshida, Minoru

    2008-04-18

    SDS-PAGE is a basic method that has long been used for separation of proteins according to their molecular sizes. Despite its simplicity, it provides information on characteristics of proteins beyond their molecular masses because gel mobility of proteins often reflects their physicochemical properties and post-translational modifications. Here we report on a global analysis of gel mobility of the proteome, which we term the "mobilitome," covering 93.4% of the fission yeast proteome. To our surprise, more than 40% of proteins did not migrate to their calculated positions. Statistical analyses revealed that the discrepancy was largely dependent on the hydrophobicity of proteins. This experimental data set, with a high coverage rate of real mobility, made it feasible to identify proteins detected on the gel without using any specialized techniques. This approach enabled us to detect previously unknown post-translational modifications of a protein; for example, we revealed that eIF5A is novel substrate of a Sir2-related deacetylase Hst2. Furthermore, we concomitantly identified twelve acetylated and eight methylated proteins using specific anti-acetylated and anti-methylated lysine antibodies, most of which had not been known to be subject to the modifications. Thus, we propose the general usefulness of the mobilitome and electrophoresis-based methodology for the identification and characterization of proteins detected on the gel.

  12. The Effect of Edge Definition of Complex Networks on Protein Structure Identification

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2013-01-01

    Full Text Available The main objective of this study is to explore the contribution of complex network together with its different definitions of vertexes and edges to describe the structure of proteins. Protein folds into a specific conformation for its function depending on interactions between residues. Consequently, in many studies, a protein structure was treated as a complex system comprised of individual components residues, and edges were interactions between residues. What is the proper time for representing a protein structure as a network? To confirm the effect of different definitions of vertexes and edges in constructing the amino acid interaction networks, protein domains and the structural unit of proteins were described using this method. The identification performance of 2847 proteins with domain/domains proved that the structure of proteins was described well when was around 5.0–7.5 Å, and the optimal cutoff value for constructing the protein structure networks was 5.0 Å ( distances while the ideal community division method was community structure detection based on edge betweenness in this study.

  13. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions.

    Science.gov (United States)

    Li, Min; Zheng, Ruiqing; Zhang, Hanhui; Wang, Jianxin; Pan, Yi

    2014-06-01

    Identification of essential proteins is very important for understanding the minimal requirements for cellular life and also necessary for a series of practical applications, such as drug design. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which makes it possible to detect proteins' essentialities from the network level. Considering that most species already have a number of known essential proteins, we proposed a new priori knowledge-based scheme to discover new essential proteins from protein interaction networks. Based on the new scheme, two essential protein discovery algorithms, CPPK and CEPPK, were developed. CPPK predicts new essential proteins based on network topology and CEPPK detects new essential proteins by integrating network topology and gene expressions. The performances of CPPK and CEPPK were validated based on the protein interaction network of Saccharomyces cerevisiae. The experimental results showed that the priori knowledge of known essential proteins was effective for improving the predicted precision. The predicted precisions of CPPK and CEPPK clearly exceeded that of the other 10 previously proposed essential protein discovery methods: Degree Centrality (DC), Betweenness Centrality (BC), Closeness Centrality (CC), Subgraph Centrality (SC), Eigenvector Centrality (EC), Information Centrality (IC), Bottle Neck (BN), Density of Maximum Neighborhood Component (DMNC), Local Average Connectivity-based method (LAC), and Network Centrality (NC). Especially, CPPK achieved 40% improvement in precision over BC, CC, SC, EC, and BN, and CEPPK performed even better. CEPPK was also compared to four other methods (EPC, ORFL, PeC, and CoEWC) which were not node centralities and CEPPK was showed to achieve the best results. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Identification of proteins that form specific complexes with the highly conserved protein Translin in Schizosaccharomyces pombe.

    Science.gov (United States)

    Eliahoo, Elad; Litovco, Phyana; Ben Yosef, Ron; Bendalak, Keren; Ziv, Tamar; Manor, Haim

    2014-04-01

    Translin is a single-stranded DNA and RNA binding protein that has a high affinity for G-rich sequences. TRAX is a Translin paralog that associates with Translin. Both Translin and TRAX were highly conserved in eukaryotes. The nucleic acid binding form of Translin is a barrel-shaped homo-octamer. A Translin-TRAX hetero-octamer having a similar structure also binds nucleic acids. Previous reports suggested that Translin may be involved in chromosomal translocations, telomere metabolism and the control of mRNA transport and translation. More recent studies have indicated that Translin-TRAX hetero-octamers are involved in RNA silencing. To gain a further insight into the functions of Translin, we have undertaken to systematically search for proteins with which it forms specific complexes in living cells. Here we report the results of such a search conducted in the fission yeast Schizosaccharomyces pombe, a suitable model system. This search was carried out by affinity purification and immuno-precipitation techniques, combined with differential labeling of the intracellular proteins with the stable isotopes ¹⁵N and ¹⁴N. We identified for the first time two proteins containing an RNA Recognition Motif (RRM), which are specifically associated with the yeast Translin: (1) the pre-mRNA-splicing factor srp1 that belongs to the highly conserved SR family of proteins and (2) vip1, a protein conserved in fungi. Our data also support the presence of RNA in these intracellular complexes. Our experimental approach should be generally applicable to studies of weak intracellular protein-protein interactions and provides a clear distinction between false positive vs. truly interacting proteins. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Large-scale identification of human cerebrovascular proteins: Inter-tissue and intracerebral vascular protein diversity.

    Directory of Open Access Journals (Sweden)

    Soo Jung Lee

    Full Text Available The human cerebrovascular system is responsible for regulating demand-dependent perfusion and maintaining the blood-brain barrier (BBB. In addition, defects in the human cerebrovasculature lead to stroke, intracerebral hemorrhage, vascular malformations, and vascular cognitive impairment. The objective of this study was to discover new proteins of the human cerebrovascular system using expression data from the Human Protein Atlas, a large-scale project which allows public access to immunohistochemical analysis of human tissues. We screened 20,158 proteins in the HPA and identified 346 expression patterns correlating to blood vessels in human brain. Independent experiments showed that 51/52 of these distributions could be experimentally replicated across different brain samples. Some proteins (40% demonstrated endothelial cell (EC-enriched expression, while others were expressed primarily in vascular smooth muscle cells (VSMC; 18%; 39% of these proteins were expressed in both cell types. Most brain EC markers were tissue oligospecific; that is, they were expressed in endothelia in an average of 4.8 out of 9 organs examined. Although most markers expressed in endothelial cells of the brain were present in all cerebral capillaries, a significant number (21% were expressed only in a fraction of brain capillaries within each brain sample. Among proteins found in cerebral VSMC, virtually all were also expressed in peripheral VSMC and in non-vascular smooth muscle cells (SMC. Only one was potentially brain specific: VHL (Von Hippel-Lindau tumor suppressor. HRC (histidine rich calcium binding protein and VHL were restricted to VSMC and not found in non-vascular tissues such as uterus or gut. In conclusion, we define a set of brain vascular proteins that could be relevant to understanding the unique physiology and pathophysiology of the human cerebrovasculature. This set of proteins defines inter-organ molecular differences in the vasculature and

  16. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Pratul K.

    2015-11-24

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  17. Purification, identification and preliminary crystallographic studies of Pru du amandin, an allergenic protein from Prunus dulcis

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Vineet; Sethi, Dhruv K.; Salunke, Dinakar M., E-mail: dinakar@nii.res.in [National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2008-01-01

    The purification, identification, crystallization and preliminary crystallographic studies of an allergy-related protein, Pru du amandin, from P. dulcis nuts are reported. Food allergies appear to be one of the foremost causes of hypersensitivity reactions. Nut allergies account for most food allergies and are often permanent. The 360 kDa hexameric protein Pru du amandin, a known allergen, was purified from almonds (Prunus dulcis) by ammonium sulfate fractionation and ion-exchange chromatography. The protein was identified by a BLAST homology search against the nonredundant sequence database. Pru du amandin belongs to the 11S legumin family of seed storage proteins characterized by the presence of a cupin motif. Crystals were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 150.7, c = 164.9 Å.

  18. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    Science.gov (United States)

    Agarwal, Pratul K.

    2013-04-09

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  19. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.

    2004-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...... kinase A (PKA) phosphorylation sites. The neural network was trained with a positive set of 258 experimentally verified PKA phosphorylation sites. The predictions by NetPhosK were! validated using four novel PKA substrates: Necdin, RFX5, En-2, and Wee 1. The four proteins were phosphorylated by PKA...... in vitro and 13 PKA phosphorylation sites were identified by mass spectrometry. NetPhosK was 100% sensitive and 41% specific in predicting PKA sites in the four proteins. These results demonstrate the potential of using integrated computational and experimental methods for detailed investigations...

  20. Separating the Wheat from the Chaff: Unbiased Filtering of Background Tandem Mass Spectra Improves Protein Identification

    Science.gov (United States)

    Junqueira, Magno; Spirin, Victor; Balbuena, Tiago Santana; Waridel, Patrice; Surendranath, Vineeth; Kryukov, Grigoriy; Adzhubei, Ivan; Thomas, Henrik; Sunyaev, Shamil; Shevchenko, Andrej

    2009-01-01

    Only a small fraction of spectra acquired in LC-MS/MS runs matches peptides from target proteins upon database searches. The remaining, operationally termed background, spectra originate from a variety of poorly controlled sources and affect the throughput and confidence of database searches. Here, we report an algorithm and its software implementation that rapidly removes background spectra, regardless of their precise origin. The method estimates the dissimilarity distance between screened MS/MS spectra and unannotated spectra from a partially redundant background library compiled from several control and blank runs. Filtering MS/MS queries enhanced the protein identification capacity when searches lacked spectrum to sequence matching specificity. In sequence-similarity searches it reduced by, on average, 30-fold the number of orphan hits, which were not explicitly related to background protein contaminants and required manual validation. Removing high quality background MS/MS spectra, while preserving in the data set the genuine spectra from target proteins, decreased the false positive rate of stringent database searches and improved the identification of low-abundance proteins. PMID:18558732

  1. Systematic Evaluation of Protein Sequence Filtering Algorithms for Proteoform Identification Using Top-Down Mass Spectrometry.

    Science.gov (United States)

    Kou, Qiang; Wu, Si; Liu, Xiaowen

    2018-01-12

    Complex proteoforms contain various primary structural alterations resulting from variations in genes, RNA, and proteins. Top-down mass spectrometry is commonly used for analyzing complex proteoforms because it provides whole sequence information of the proteoforms. Proteoform identification by top-down mass spectral database search is a challenging computational problem because the types and/or locations of some alterations in target proteoforms are in general unknown. Although spectral alignment and mass graph alignment algorithms have been proposed for identifying proteoforms with unknown alterations, they are extremely slow to align millions of spectra against tens of thousand protein sequences in high throughput proteome level analyses. Many software tools in this area combine efficient protein sequence filtering algorithms and spectral alignment algorithms to speed up database search. As a result, the performance of these tools heavily relies on the sensitivity and efficiency of their filtering algorithms. Here we propose two efficient approximate spectrum filtering algorithms for proteoform identification. We evaluated the performances of the proposed algorithms and 4 existing ones on simulated and real top-down mass spectrometry data sets. Experiments showed that the proposed algorithms outperformed the existing ones for complex proteoform identification. In addition, combining the proposed filtering algorithms and mass graph alignment algorithms identified many proteoforms missed by ProSightPC in proteome-level proteoform analyses. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Identification of functionally diverse lipocalin proteins from sequence information using support vector machine.

    Science.gov (United States)

    Pugalenthi, Ganesan; Kandaswamy, Krishna Kumar; Suganthan, P N; Archunan, G; Sowdhamini, R

    2010-08-01

    Lipocalins are functionally diverse proteins that are composed of 120-180 amino acid residues. Members of this family have several important biological functions including ligand transport, cryptic coloration, sensory transduction, endonuclease activity, stress response activity in plants, odorant binding, prostaglandin biosynthesis, cellular homeostasis regulation, immunity, immunotherapy and so on. Identification of lipocalins from protein sequence is more challenging due to the poor sequence identity which often falls below the twilight zone. So far, no specific method has been reported to identify lipocalins from primary sequence. In this paper, we report a support vector machine (SVM) approach to predict lipocalins from protein sequence using sequence-derived properties. LipoPred was trained using a dataset consisting of 325 lipocalin proteins and 325 non-lipocalin proteins, and evaluated by an independent set of 140 lipocalin proteins and 21,447 non-lipocalin proteins. LipoPred achieved 88.61% accuracy with 89.26% sensitivity, 85.27% specificity and 0.74 Matthew's correlation coefficient (MCC). When applied on the test dataset, LipoPred achieved 84.25% accuracy with 88.57% sensitivity, 84.22% specificity and MCC of 0.16. LipoPred achieved better performance rate when compared with PSI-BLAST, HMM and SVM-Prot methods. Out of 218 lipocalins, LipoPred correctly predicted 194 proteins including 39 lipocalins that are non-homologous to any protein in the SWISSPROT database. This result shows that LipoPred is potentially useful for predicting the lipocalin proteins that have no sequence homologs in the sequence databases. Further, successful prediction of nine hypothetical lipocalin proteins and five new members of lipocalin family prove that LipoPred can be efficiently used to identify and annotate the new lipocalin proteins from sequence databases. The LipoPred software and dataset are available at http://www3.ntu.edu.sg/home/EPNSugan/index_files/lipopred.htm.

  3. Peptide array X-linking (PAX: a new peptide-protein identification approach.

    Directory of Open Access Journals (Sweden)

    Hirokazu Okada

    Full Text Available Many protein interaction domains bind short peptides based on canonical sequence consensus motifs. Here we report the development of a peptide array-based proteomics tool to identify proteins directly interacting with ligand peptides from cell lysates. Array-formatted bait peptides containing an amino acid-derived cross-linker are photo-induced to crosslink with interacting proteins from lysates of interest. Indirect associations are removed by high stringency washes under denaturing conditions. Covalently trapped proteins are subsequently identified by LC-MS/MS and screened by cluster analysis and domain scanning. We apply this methodology to peptides with different proline-containing consensus sequences and show successful identifications from brain lysates of known and novel proteins containing polyproline motif-binding domains such as EH, EVH1, SH3, WW domains. These results suggest the capacity of arrayed peptide ligands to capture and subsequently identify proteins by mass spectrometry is relatively broad and robust. Additionally, the approach is rapid and applicable to cell or tissue fractions from any source, making the approach a flexible tool for initial protein-protein interaction discovery.

  4. Chromatin Immunoprecipitation Assay for the Identification of Arabidopsis Protein-DNA Interactions In Vivo.

    Science.gov (United States)

    Komar, Dorota N; Mouriz, Alfonso; Jarillo, José A; Piñeiro, Manuel

    2016-01-14

    Intricate gene regulatory networks orchestrate biological processes and developmental transitions in plants. Selective transcriptional activation and silencing of genes mediate the response of plants to environmental signals and developmental cues. Therefore, insights into the mechanisms that control plant gene expression are essential to gain a deep understanding of how biological processes are regulated in plants. The chromatin immunoprecipitation (ChIP) technique described here is a procedure to identify the DNA-binding sites of proteins in genes or genomic regions of the model species Arabidopsis thaliana. The interactions with DNA of proteins of interest such as transcription factors, chromatin proteins or posttranslationally modified versions of histones can be efficiently analyzed with the ChIP protocol. This method is based on the fixation of protein-DNA interactions in vivo, random fragmentation of chromatin, immunoprecipitation of protein-DNA complexes with specific antibodies, and quantification of the DNA associated with the protein of interest by PCR techniques. The use of this methodology in Arabidopsis has contributed significantly to unveil transcriptional regulatory mechanisms that control a variety of plant biological processes. This approach allowed the identification of the binding sites of the Arabidopsis chromatin protein EBS to regulatory regions of the master gene of flowering FT. The impact of this protein in the accumulation of particular histone marks in the genomic region of FT was also revealed through ChIP analysis.

  5. Identification of conserved surface proteins as novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Chen, Xiabing; Xu, Zhuofei; Li, Lu; Chen, Huanchun; Zhou, Rui

    2012-12-01

    Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing great economic losses worldwide. Identification of conserved surface antigenic proteins is helpful for developing effective vaccines. In this study, a genome-wide strategy combined with bioinformatic and experimental approaches, was applied to discover and characterize surface-associated immunogenic proteins of A. pleuropneumoniae. Thirty nine genes encoding outer membrane proteins (OMPs) and lipoproteins were identified by comparative genomics and gene expression profiling as being-highly conserved and stably transcribed in the different serotypes of A. pleuropneumoniae reference strains. Twelve of these conserved proteins were successfully expressed in Escherichia coli and their immunogenicity was estimated by homologous challenge in the mouse model, and then three of these proteins (APJL_0126, HbpA and OmpW) were further tested in the natural host (swine) by homologous and heterologous challenges. The results showed that these proteins could induce high titers of antibodies, but vaccination with each protein individually elicited low protective immunity against A. pleuropneumoniae. This study gives novel insights into immunogenicity of the conserved OMPs and lipoproteins of A. pleuropneumoniae. Although none of the surface proteins characterized in this study could individually induce effective protective immunity against A. pleuropneumoniae, they are potential candidates for subunit vaccines in combination with Apx toxins.

  6. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila.

    Directory of Open Access Journals (Sweden)

    Wenhan Zhu

    2011-03-01

    Full Text Available A large number of proteins transferred by the Legionella pneumophila Dot/Icm system have been identified by various strategies. With no exceptions, these strategies are based on one or more characteristics associated with the tested proteins. Given the high level of diversity exhibited by the identified proteins, it is possible that some substrates have been missed in these screenings. In this study, we took a systematic method to survey the L. pneumophila genome by testing hypothetical orfs larger than 300 base pairs for Dot/Icm-dependent translocation. 798 of the 832 analyzed orfs were successfully fused to the carboxyl end of β-lactamase. The transfer of the fusions into mammalian cells was determined using the β-lactamase reporter substrate CCF4-AM. These efforts led to the identification of 164 proteins positive in translocation. Among these, 70 proteins are novel substrates of the Dot/Icm system. These results brought the total number of experimentally confirmed Dot/Icm substrates to 275. Sequence analysis of the C-termini of these identified proteins revealed that Lpg2844, which contains few features known to be important for Dot/Icm-dependent protein transfer can be translocated at a high efficiency. Thus, our efforts have identified a large number of novel substrates of the Dot/Icm system and have revealed the diverse features recognizable by this protein transporter.

  7. [Isolation and identification of proteins with anti-tumor and fibrinolysogen kinase activities from Eisenia foetida].

    Science.gov (United States)

    Zhao, Rui; Ji, Jian-Guo; Tong, Yuan-Peng; Chen, Qian; Pu, Hai; Ru, Bing-Gen

    2002-09-01

    Proteins from Eisenia foetida possess many biological activities. A group of proteins precipitated by ethanol were isolated and purified by Sephadex G-75 and HiPrep 16/60 DEAE columns, then identified by one- or two- dimensional electrophoresis and mass spectrometry. 2D gel experiments displayed that the pI of proteins from Eisenia foetida were mainly from 3.0 to 4.0. Anti-tumor and kinase activities were determined by in vitro experiments. The enthanol fraction D2(8) showed both of the activities. These ethanol-precipitated proteins were identified further by native polyacrylamide electrophoresis, the protein spots were cut off from gels and digested by trypsin, the peptide mass fingerprints (PMFs) were determined by mass spectrometry. PMF, molecular weight, amino acid composition and N-terminus of 6 proteins were characterized, and band 9 was identified as D2(8). The results suggested that there exist proteins in Eisenia foetida possessed both anti-tumor and fibrinolysogen kinase activities. These methods can be used for identification of the natural bioactive proteins.

  8. Preliminary identification of secreted proteins by Leptospira interrogans serovar Kennewicki strain Pomona Fromm

    Energy Technology Data Exchange (ETDEWEB)

    Ricardi, L.M.P.; Portaro, F.C.; Abreu, P.A.E.; Barbosa, A.S. [Instituto Butantan, Sao Paulo, SP (Brazil); Morais, Z.M.; Vasconcellos, S.A. [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    Full text: This project aimed to identify secreted proteins by pathogenic Leptospira interrogans serovar Kennewicki strain Pomona Fromm (LPF) by proteomic analyses. The strain LPF, whose virulence was maintained by passages in hamsters, were cultured in EMJH medium. The supernatants were centrifuged, dialyzed and subjected to lyophilization. Protein samples were resolved first by IEF at pH 3 to 10, immobilized pH gradient 13-cm strips. Strips were then processed for the second-dimension separation on SDS-polyacrylamide gels. Proteins from gel spots were subjected to reduction, cysteine-alkylation, and in-gel tryptic digestion, and analyzed by LC/MS/MS spectrometry. Liquid chromatography-based separation followed by automated tandem mass spectrometry was also used to identify secreted proteins. In silico analyses were performed using the PSORTbV.3.0 program and SignalP server. One major obstacle to secretome studies is the difficulty to obtain extracts of secreted proteins without citoplasmatic contamination. In addition, the extraction of low concentration proteins from large volumes of culture media, which are rich in salts, BSA and other compounds, frequently interfere with most proteomics techniques. For these reasons, several experimental approaches were used to optimize the protocol applied. In spite of this fact, our analysis resulted in the identification of 200 proteins with high confidence. Only 5 of 63 secreted proteins predicted by in silico analysis were found. Other classes identified included proteins that possess signal peptide but whose cellular localization prediction is unknown or may have multiple localization sites, and proteins that lack signal peptide and are thus thought to be secreted via non conventional mechanisms or resulting from cytoplasmic contamination by cell lysis. Many of these are hypothetical proteins with no putative conserved domains detected. To our knowledge, this is the first study to identify secreted proteins by

  9. Visual analysis of DNA microarray data for accurate molecular identification of non-albicans Candida isolates from patients with candidemia episodes.

    Science.gov (United States)

    De Luca Ferrari, Michela; Ribeiro Resende, Mariângela; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Gonoi, Tohru; Mikami, Yuzuru; Tominaga, Kenichiro; Kamei, Katsuhiko; Zaninelli Schreiber, Angelica; Trabasso, Plinio; Moretti, Maria Luiza

    2013-11-01

    The performance of a visual slide-based DNA microarray for the identification of non-albicans Candida spp. was evaluated. Among 167 isolates that had previously been identified by Vitek 2, the agreement between DNA microarray and sequencing results was 97.6%. This DNA microarray platform showed excellent performance.

  10. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  11. Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria

    Directory of Open Access Journals (Sweden)

    Brinkman Fiona SL

    2005-11-01

    Full Text Available Abstract Background Identification of a bacterial protein's subcellular localization (SCL is important for genome annotation, function prediction and drug or vaccine target identification. Subcellular fractionation techniques combined with recent proteomics technology permits the identification of large numbers of proteins from distinct bacterial compartments. However, the fractionation of a complex structure like the cell into several subcellular compartments is not a trivial task. Contamination from other compartments may occur, and some proteins may reside in multiple localizations. New computational methods have been reported over the past few years that now permit much more accurate, genome-wide analysis of the SCL of protein sequences deduced from genomes. There is a need to compare such computational methods with laboratory proteomics approaches to identify the most effective current approach for genome-wide localization characterization and annotation. Results In this study, ten subcellular proteome analyses of bacterial compartments were reviewed. PSORTb version 2.0 was used to computationally predict the localization of proteins reported in these publications, and these computational predictions were then compared to the localizations determined by the proteomics study. By using a combined approach, we were able to identify a number of contaminants and proteins with dual localizations, and were able to more accurately identify membrane subproteomes. Our results allowed us to estimate the precision level of laboratory subproteome studies and we show here that, on average, recent high-precision computational methods such as PSORTb now have a lower error rate than laboratory methods. Conclusion We have performed the first focused comparison of genome-wide proteomic and computational methods for subcellular localization identification, and show that computational methods have now attained a level of precision that is exceeding that of high

  12. A rapid and accurate method for determining protein content in dairy products based on asynchronous-injection alternating merging zone flow-injection spectrophotometry.

    Science.gov (United States)

    Liang, Qin-Qin; Li, Yong-Sheng

    2013-12-01

    An accurate and rapid method and a system to determine protein content using asynchronous-injection alternating merging zone flow-injection spectrophotometry based on reaction between coomassie brilliant blue G250 (CBBG) and protein was established. Main merit of our approach is that it can avoid interferences of other nitric-compounds in samples, such as melamine and urea. Optimized conditions are as follows: Concentrations of CBBG, polyvinyl alcohol (PVA), NaCl and HCl are 150 mg/l, 30 mg/l, 0.1 mol/l and 1.0% (v/v), respectively; volumes of the sample and reagent are 150 μl and 30 μl, respectively; length of a reaction coil is 200 cm; total flow rate is 2.65 ml/min. The linear range of the method is 0.5-15 mg/l (BSA), its detection limit is 0.05 mg/l, relative standard deviation is less than 1.87% (n=11), and analytical speed is 60 samples per hour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Identification and characterisation of the epididymal proteins in the lizard, Eutropis carinata (Reptilia, Squamata) (Schneider, 1801).

    Science.gov (United States)

    Medini, R; Bhagya, M; Samson, S

    2018-04-01

    Lizards are seasonal breeders. Cyclic reproductive nature makes lizard as a useful model for the study of the reproductively active protein secretions in the epididymis. During breeding season, the epididymides of the lizard secret proteins that mixes with the spermatozoa and create a favourable environment for sperm maturation. In this spectrum, the aim of this study is to identify and characterize proteins which are present in the lumen of the epididymis of the lizard, E. carinata during the active phase of reproduction. The identification and analysis of the proteins are done through the proteomic approaches. The epididymal luminal fluid sample was taken from the reproductively active and inactive phase and these are subjected to the size exclusion chromatography. Two major peaks (peak 1 and peak 2) were obtained in the epididymal luminal fluid sample taken during the reproductively active phase. On the other hand, the sample from the reproductively inactive phase showed one peak (peak 1) whereas, peak 2 is not present during this phase. The peak 2 belong to reproductively active phase was later subjected to the proteomic analysis. Appropriate gel electrophoresis separation and purification methods are combined with LC-MS/MS in order to identify and characterize the proteins that are presented during the reproductively active phase. Further, in this work, nine proteins are identified including three enzymes and three heat shock proteins. Among the identified proteins, bioinformatics analysis predicts that majority of them are localized in the cytoplasm. In addition to this, an observation is made in the endoplasmic reticulum where it is seen that a close protein-protein interaction network of three molecular chaperones are involved in protein processing. Overall, this paper opens up a new dimension search for epididymal markers for the first time in reptiles, particularly lizards. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Accurate recapture identification for genetic mark–recapture studies with error-tolerant likelihood-based match calling and sample clustering

    Science.gov (United States)

    Sethi, Suresh; Linden, Daniel; Wenburg, John; Lewis, Cara; Lemons, Patrick R.; Fuller, Angela K.; Hare, Matthew P.

    2016-01-01

    Error-tolerant likelihood-based match calling presents a promising technique to accurately identify recapture events in genetic mark–recapture studies by combining probabilities of latent genotypes and probabilities of observed genotypes, which may contain genotyping errors. Combined with clustering algorithms to group samples into sets of recaptures based upon pairwise match calls, these tools can be used to reconstruct accurate capture histories for mark–recapture modelling. Here, we assess the performance of a recently introduced error-tolerant likelihood-based match-calling model and sample clustering algorithm for genetic mark–recapture studies. We assessed both biallelic (i.e. single nucleotide polymorphisms; SNP) and multiallelic (i.e. microsatellite; MSAT) markers using a combination of simulation analyses and case study data on Pacific walrus (Odobenus rosmarus divergens) and fishers (Pekania pennanti). A novel two-stage clustering approach is demonstrated for genetic mark–recapture applications. First, repeat captures within a sampling occasion are identified. Subsequently, recaptures across sampling occasions are identified. The likelihood-based matching protocol performed well in simulation trials, demonstrating utility for use in a wide range of genetic mark–recapture studies. Moderately sized SNP (64+) and MSAT (10–15) panels produced accurate match calls for recaptures and accurate non-match calls for samples from closely related individuals in the face of low to moderate genotyping error. Furthermore, matching performance remained stable or increased as the number of genetic markers increased, genotyping error notwithstanding.

  15. Multi-Segment Direct Inject nano-ESI-LTQ-FT-ICR-MS/MS For Protein Identification

    Directory of Open Access Journals (Sweden)

    Neal Rachel E

    2011-07-01

    Full Text Available Abstract Reversed phase high performance liquid chromatography (HPLC interfaced to electrospray tandem mass spectrometry (MS/MS is commonly used for the identification of peptides from proteolytically cleaved proteins embedded in a polyacrylamide gel matrix as well as for metabolomics screening. HPLC separations are time consuming (30-60 min average, costly (columns and mobile phase reagents, and carry the risk of column carry over between samples. The use of a chip-based nano-ESI platform (Advion NanoMate based on replaceable nano-tips for sample introduction eliminates sample cross-contamination, provides unchanging sample matrix, and enhances spray stability with attendant increases in reproducibility. Recent papers have established direct infusion nano-ESI-MS/MS utilizing the NanoMate for protein identification of gel spots based on full range MS scans with data dependent MS/MS. In a full range scan, discontinuous ion suppression due to sample matrix can impair identification of putative mass features of interest in both the proteomic and metabolomic workflows. In the current study, an extension of an established direct inject nano-ESI-MS/MS method is described that utilizes the mass filtering capability of an ion-trap for ion packet separation into four narrow mass ranges (50 amu overlap with segment specific dynamic data dependent peak inclusion for MS/MS fragmentation (total acquisition time of 3 minutes. Comparison of this method with a more traditional nanoLC-MS/MS based protocol utilizing solvent/sample stream splitting to achieve nanoflow demonstrated comparable results for protein identification from polyacrylamide gel matrices. The advantages of this method include full automation, lack of cross-contamination, low cost, and high throughput.

  16. Identification of Protein Thiazolidination as a Novel Molecular Signature for Oxidative Stress and Formaldehyde Exposure.

    Science.gov (United States)

    Liu, Jingjing; Chan, K K Jason; Chan, Wan

    2016-11-21

    Chemical modifications of proteins have been well-documented to play important roles in normal cell physiology such as cell signaling and protein functions. They have also been demonstrated to be one of the milestones in the pathophysiology of many human diseases such as cancer, age-related pathology, and neurodegenerative disorders. Here, we report the initial identification of a novel protein modification, cysteine thiazolidination, through reaction with endogenous and exogenous formaldehyde with cysteine residues in proteins. Using an isotope-dilution liquid chromatography-tandem mass spectrometric (LC-MS(3)) method, we initiated the study by quantitating thioproline in formaldehyde-treated Escherichia coli (E. coli) protein. The study was then extended to quantitate thioproline in protein obtained from formaldehyde- and oxidant-exposed E. coli. Furthermore, N(6)-formyllysine, a well-defined formylation product between formaldehyde and lysine, was exploited in a comparative study to evaluate the relative reactivity and amount of cysteine thiazolidination in the reaction of formaldehyde with proteins. It is anticipated that cysteine thiazolidination may serve as a novel biomarker for oxidative stress and formaldehyde exposure.

  17. Identification of methyllysine peptides binding to chromobox protein homolog 6 chromodomain in the human proteome.

    Science.gov (United States)

    Li, Nan; Stein, Richard S L; He, Wei; Komives, Elizabeth; Wang, Wei

    2013-10-01

    Methylation is one of the important post-translational modifications that play critical roles in regulating protein functions. Proteomic identification of this post-translational modification and understanding how it affects protein activity remain great challenges. We tackled this problem from the aspect of methylation mediating protein-protein interaction. Using the chromodomain of human chromobox protein homolog 6 as a model system, we developed a systematic approach that integrates structure modeling, bioinformatics analysis, and peptide microarray experiments to identify lysine residues that are methylated and recognized by the chromodomain in the human proteome. Given the important role of chromobox protein homolog 6 as a reader of histone modifications, it was interesting to find that the majority of its interacting partners identified via this approach function in chromatin remodeling and transcriptional regulation. Our study not only illustrates a novel angle for identifying methyllysines on a proteome-wide scale and elucidating their potential roles in regulating protein function, but also suggests possible strategies for engineering the chromodomain-peptide interface to enhance the recognition of and manipulate the signal transduction mediated by such interactions.

  18. Comparative Evaluation of Small Molecular Additives and Their Effects on Peptide/Protein Identification.

    Science.gov (United States)

    Gao, Jing; Zhong, Shaoyun; Zhou, Yanting; He, Han; Peng, Shuying; Zhu, Zhenyun; Liu, Xing; Zheng, Jing; Xu, Bin; Zhou, Hu

    2017-06-06

    Detergents and salts are widely used in lysis buffers to enhance protein extraction from biological samples, facilitating in-depth proteomic analysis. However, these detergents and salt additives must be efficiently removed from the digested samples prior to LC-MS/MS analysis to obtain high-quality mass spectra. Although filter-aided sample preparation (FASP), acetone precipitation (AP), followed by in-solution digestion, and strong cation exchange-based centrifugal proteomic reactors (CPRs) are commonly used for proteomic sample processing, little is known about their efficiencies at removing detergents and salt additives. In this study, we (i) developed an integrative workflow for the quantification of small molecular additives in proteomic samples, developing a multiple reaction monitoring (MRM)-based LC-MS approach for the quantification of six additives (i.e., Tris, urea, CHAPS, SDS, SDC, and Triton X-100) and (ii) systematically evaluated the relationships between the level of additive remaining in samples following sample processing and the number of peptides/proteins identified by mass spectrometry. Although FASP outperformed the other two methods, the results were complementary in terms of peptide/protein identification, as well as the GRAVY index and amino acid distributions. This is the first systematic and quantitative study of the effect of detergents and salt additives on protein identification. This MRM-based approach can be used for an unbiased evaluation of the performance of new sample preparation methods. Data are available via ProteomeXchange under identifier PXD005405.

  19. Software tools for identification, visualization and analysis of protein tunnels and channels.

    Science.gov (United States)

    Brezovsky, Jan; Chovancova, Eva; Gora, Artur; Pavelka, Antonin; Biedermannova, Lada; Damborsky, Jiri

    2013-01-01

    Protein structures contain highly complex systems of voids, making up specific features such as surface clefts or grooves, pockets, protrusions, cavities, pores or channels, and tunnels. Many of them are essential for the migration of solvents, ions and small molecules through proteins, and their binding to the functional sites. Analysis of these structural features is very important for understanding of structure-function relationships, for the design of potential inhibitors or proteins with improved functional properties. Here we critically review existing software tools specialized in rapid identification, visualization, analysis and design of protein tunnels and channels. The strengths and weaknesses of individual tools are reported together with examples of their applications for the analysis and engineering of various biological systems. This review can assist users with selecting a proper software tool for study of their biological problem as well as highlighting possible avenues for further development of existing tools. Development of novel descriptors representing not only geometry, but also electrostatics, hydrophobicity or dynamics, is needed for reliable identification of biologically relevant tunnels and channels. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Isolation and Identification of Concanavalin A Binding Glycoproteins from Human Seminal Plasma: A Step Towards Identification of Male Infertility Marker Proteins

    Directory of Open Access Journals (Sweden)

    Anil Kumar Tomar

    2011-01-01

    Full Text Available Human seminal plasma contains a large array of proteins of clinical importance which are essentially needed to maintain the reproductive physiology of spermatozoa and for successful fertilization. Thus, isolation and identification of seminal plasma proteins is of paramount significance for their biophysical characterization and functional analysis in reproductive physiological processes. In this study, we have isolated Concanavalin-A binding glycoproteins from human seminal plasma and subsequently identified them by MALDI-TOF/MS analysis. The major proteins, as identified in this study, are Aminopeptidase N, lactoferrin, prostatic acid phosphatase, zinc-alpha-2-glycoprotein, prostate specific antigen, progestagen-associated endometrial protein, Izumo sperm-egg fusion protein and prolactin inducible protein. This paper also reports preliminary studies to identify altered expression of these proteins in oligospermia and azoospermia in comparison to normospermia. In oligospermia, five proteins were found to be downregulated while in azoospermia, four proteins were downregulated and two proteins were upregulated. Thus, this study is of immense biomedical interest towards identification of potential male infertility marker proteins in seminal plasma.

  1. In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein

    DEFF Research Database (Denmark)

    Folador, Edson Luiz; de Carvalho, Paulo Vinícius Sanches Daltro; Silva, Wanderson Marques

    2016-01-01

    according wet-lab studies. The non-host homologous essential proteins are attractive targets for therapeutic and diagnostic proposes. They allow for searching of small molecule inhibitors of binding interactions enabling modern drug discovery. Overall, the predicted Cp PPI networks form a valuable...

  2. A Bimolecular Fluorescence Complementation Tool for Identification of Protein-Protein Interactions in Candida albicans.

    Science.gov (United States)

    Subotić, Ana; Swinnen, Erwin; Demuyser, Liesbeth; De Keersmaecker, Herlinde; Mizuno, Hideaki; Tournu, Hélène; Van Dijck, Patrick

    2017-10-05

    Investigation of protein-protein interactions (PPI) in Candida albicans is essential for understanding the regulation of the signal transduction network that triggers its pathogenic lifestyle. Unique features of C. albicans, such as its alternative codon usage and incomplete meiosis, have enforced the optimization of standard genetic methods as well as development of novel approaches. Since the existing methods for detection of PPI are limited for direct visualization of the interacting complex in vivo, we have established a bimolecular fluorescence complementation (BiFC) assay in C. albicans, a powerful technique for studying PPI. We have developed an optimized set of plasmids that allows for N- and C-terminal tagging of proteins with split yeast-enhanced monomeric Venus fragments, so that all eight combinations of fusion orientations can be analyzed. With the use of our BiFC assay we demonstrate three interaction complexes in vivo, which were also confirmed by two-hybrid analysis. Our Candida-optimized BiFC assay represents a useful molecular tool for PPI studies and shows great promise in expanding our knowledge of molecular mechanisms of protein functions. Copyright © 2017 Subotic et al.

  3. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins

    Directory of Open Access Journals (Sweden)

    Whittington Jessica

    2007-07-01

    accumulation may be relevant in elucidation of the progression of pathogenicity, identification of therapeutics and diagnostic markers, and vaccine development. This study also adds to the continuously growing list of identified Bacillus anthracis secretome proteins.

  4. Identification of maturation and protein synthesis related proteins from porcine oocytes during in vitro maturation

    Directory of Open Access Journals (Sweden)

    Seo Kang

    2011-06-01

    Full Text Available Abstract Background In vitro maturation (IVM of mammalian oocytes is divided into the GV (germinal vesicle stage, MI (metaphase I stage and MII (metaphase II stage stages, and only fully mature oocytes have acquired the ability to be fertilized and initiate zygotic development. These observations have been mostly based on morphological evaluations, but the molecular events governing these processes are not fully understood. The aim of the present study was to better understand the processes involved in the molecular regulation of IVM using 2-DE analysis followed by mass spectrometry to identify proteins that are differentially expressed during oocyte IVM. Result A total of 16 up-regulated and 12 down-regulated proteins were identified. To investigate the IVM process, we specifically focused on the proteins that were up-regulated during the MII stage when compared with the GV stage, which included PRDX 2, GST, SPSY, myomegalin, PED4D, PRKAB 1, and DTNA. These up-regulated proteins were functionally involved in redox regulation and the cAMP-dependent pathway, which are essential for the intracellular signaling involved in oocyte maturation. Interestingly, the PDE4D and its partner, myomegalin, during the MII stage was consistently confirmed up-regulation by western blot analyses. Conclusion These results could be used to better understand some aspects of the molecular mechanisms underlying porcine oocyte maturation. This study identified some regulatory proteins that may have important roles in the molecular events involved in porcine oocyte maturation, particularly with respect to the regulation of oocyte meiotic resumption, MII arrest and oocyte activation. In addition, this study may have beneficial applications not only to basic science with respect to the improvement of oocyte culture conditions but also to mammalian reproductive biotechnology with potential implications.

  5. Identification of G-Protein-Coupled-Receptors (GPCRs) in Pulmonary Artery Smooth Muscle Cells as Novel Therapeutic Targets

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0372 TITLE: Identification of G-Protein-Coupled Receptors (GPCRs) in Pulmonary Artery Smooth Muscle Cells as...DATES COVERED 2 Sep 2015 - 1Sep2016 4. TITLE AND SUBTITLE Identification of G-Protein-Coupled Receptors (GPCRs) in Pulmonary Artery Smooth Muscle Cells ...smooth muscle cells (PASMCs). The underlying idea of this project is that the currently limited treatments for PAH represent an unmet medical need

  6. Proteomic identification of novel differentiation plasma protein markers in hypobaric hypoxia-induced rat model.

    Directory of Open Access Journals (Sweden)

    Yasmin Ahmad

    Full Text Available Hypobaric hypoxia causes complex changes in the expression of genes, including stress related genes and corresponding proteins that are necessary to maintain homeostasis. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of complex and dynamic changes that occur during the hypobaric hypoxia.In this study we investigated the temporal plasma protein alterations of rat induced by hypobaric hypoxia at a simulated altitude of 7620 m (25,000 ft, 282 mm Hg in a hypobaric chamber. Total plasma proteins collected at different time points (0, 6, 12 and 24 h, separated by two-dimensional electrophoresis (2-DE and identified using matrix assisted laser desorption ionization time of flight (MALDI-TOF/TOF. Biological processes that were enriched in the plasma proteins during hypobaric hypoxia were identified using Gene Ontology (GO analysis. According to their properties and obvious alterations during hypobaric hypoxia, changes of plasma concentrations of Ttr, Prdx-2, Gpx -3, Apo A-I, Hp, Apo-E, Fetub and Nme were selected to be validated by Western blot analysis.Bioinformatics analysis of 25 differentially expressed proteins showed that 23 had corresponding candidates in the database. The expression patterns of the eight selected proteins observed by Western blot were in agreement with 2-DE results, thus confirming the reliability of the proteomic analysis. Most of the proteins identified are related to cellular defense mechanisms involving anti-inflammatory and antioxidant activity. Their presence reflects the consequence of serial cascades initiated by hypobaric hypoxia.This study provides information about the plasma proteome changes induced in response to hypobaric hypoxia and thus identification of the candidate proteins which can act as novel biomarkers.

  7. Proteomic investigation of falciparum and vivax malaria for identification of surrogate protein markers.

    Directory of Open Access Journals (Sweden)

    Sandipan Ray

    Full Text Available This study was conducted to analyze alterations in the human serum proteome as a consequence of infection by malaria parasites Plasmodium falciparum and P. vivax to obtain mechanistic insights about disease pathogenesis, host immune response, and identification of potential protein markers. Serum samples from patients diagnosed with falciparum malaria (FM (n = 20, vivax malaria (VM (n = 17 and healthy controls (HC (n = 20 were investigated using multiple proteomic techniques and results were validated by employing immunoassay-based approaches. Specificity of the identified malaria related serum markers was evaluated by means of analysis of leptospirosis as a febrile control (FC. Compared to HC, 30 and 31 differentially expressed and statistically significant (p<0.05 serum proteins were identified in FM and VM respectively, and almost half (46.2% of these proteins were commonly modulated due to both of the plasmodial infections. 13 proteins were found to be differentially expressed in FM compared to VM. Functional pathway analysis involving the identified proteins revealed the modulation of different vital physiological pathways, including acute phase response signaling, chemokine and cytokine signaling, complement cascades and blood coagulation in malaria. A panel of identified proteins consists of six candidates; serum amyloid A, hemopexin, apolipoprotein E, haptoglobin, retinol-binding protein and apolipoprotein A-I was used to build statistical sample class prediction models. By employing PLS-DA and other classification methods the clinical phenotypic classes (FM, VM, FC and HC were predicted with over 95% prediction accuracy. Individual performance of three classifier proteins; haptoglobin, apolipoprotein A-I and retinol-binding protein in diagnosis of malaria was analyzed using receiver operating characteristic (ROC curves. The discrimination of FM, VM, FC and HC groups on the basis of differentially expressed serum proteins demonstrates

  8. Direct identification of Functional Amyloid Proteins by Label-Free Quantitative Mass Spectrometry

    DEFF Research Database (Denmark)

    Danielsen, Heidi Nolsøe; Hansen, Susan Hove; Herbst, Florian-Alexander

    2017-01-01

    represents a major bottleneck in the search for new functional amyloid systems. Here we present a label-free quantitative mass spectrometry method that allows identification of amyloid proteins directly in cell lysates. The method takes advantage of the extreme structural stability and polymeric nature...... of functional amyloids and the ability of concentrated formic acid to depolymerize the amyloids. An automated data processing pipeline that provides a short list of amyloid protein candidates was developed based on an amyloid-specific sigmoidal abundance signature in samples treated with increasing...... concentrations of formic acid. The method was evaluated using the Escherichiacoli curli and the Pseudomonas Fap system. It confidently identified the major amyloid subunit for both systems, as well as the minor subunit for the curli system. A few non-amyloid proteins also displayed the sigmoidal abundance...

  9. Phytochemical-mediated Protein Expression Profiling and the Potential Applications in Therapeutic Drug Target Identifications.

    Science.gov (United States)

    Wong, Fai-Chu; Tan, Siok-Thing; Chai, Tsun-Thai

    2016-07-29

    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents.

  10. Automating proteome analysis: improvements in throughput, quality and accuracy of protein identification by peptide mass fingerprinting.

    Science.gov (United States)

    Canelle, Ludovic; Pionneau, Cédric; Marie, Arul; Bousquet, Jordane; Bigeard, Jean; Lutomski, Didier; Kadri, Tewfik; Caron, Michel; Joubert-Caron, Raymonde

    2004-01-01

    The use of robots has major effects on maximizing the proteomic workflow required in an increasing number of high-throughput projects and on increasing the quality of the data. In peptide mass finger printing (PMF), automation of steps downstream of two-dimensional gel electrophoresis is essential. To achieve this goal, the workflow must be fluid. We have developed tools using macros written in Microsoft Excel and Word to complete the automation of our platform. Additionally, because sample preparation is crucial for identification of proteins by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, we optimized a sandwich method usable by any robot for spotting digests on a MALDI target. This procedure enables further efficient automated washing steps directly on the MALDI target. The success rate of PMF identification was evaluated for the automated sandwich method, and for the dried-droplet method implemented on the robot as recommended by the manufacturer. Of the two methods, the sandwich method achieved the highest identification success rate and sequence coverage of proteins. 2004 John Wiley & Sons, Ltd.

  11. Proteomic Identification of Altered Cerebral Proteins in the Complex Regional Pain Syndrome Animal Model

    Directory of Open Access Journals (Sweden)

    Francis Sahngun Nahm

    2014-01-01

    Full Text Available Background. Complex regional pain syndrome (CRPS is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP model, a novel experimental model of CRPS. Materials and Methods. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Conclusion. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  12. Identification of ZASP, a novel protein associated to Zona occludens-2

    Energy Technology Data Exchange (ETDEWEB)

    Lechuga, Susana; Alarcon, Lourdes; Solano, Jesus [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico, D.F. 07360 (Mexico); Huerta, Miriam; Lopez-Bayghen, Esther [Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (Cinvestav), Mexico, D.F. 07360 (Mexico); Gonzalez-Mariscal, Lorenza, E-mail: lorenza@fisio.cinvestav.mx [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico, D.F. 07360 (Mexico)

    2010-11-15

    With the aim of discovering new molecular interactions of the tight junction protein ZO-2, a two-hybrid screen was performed on a human kidney cDNA library using as bait the middle segment of ZO-2. Through this assay we identified a 24-kDa novel protein herein named ZASP for ZO-2 associated speckle protein. ZO-2/ZASP interaction further confirmed by pull down and immunoprecipitation experiments, requires the presence of the intact PDZ binding motif SQV of ZASP and the third PDZ domain of ZO-2. ZASP mRNA and protein are present in the kidney and in several epithelial cell lines. Endogenous ZASP is expressed primarily in nuclear speckles in co-localization with splicing factor SC-35. Nocodazole treatment and wash out reveals that ZASP disappears from the nucleus during mitosis in accordance with speckle disassembly during metaphase. ZASP amino acid sequence exhibits a canonical nuclear exportation signal and in agreement the protein exits the nucleus through a process mediated by exportin/CRM1. ZASP over-expression blocks the inhibitory activity of ZO-2 on cyclin D1 gene transcription and protein expression. The identification of ZASP helps to unfold the complex nuclear molecular arrays that form on ZO-2 scaffolds.

  13. PPINGUIN: Peptide Profiling Guided Identification of Proteins improves quantitation of iTRAQ ratios

    Directory of Open Access Journals (Sweden)

    Bauer Chris

    2012-02-01

    Full Text Available Abstract Background Recent development of novel technologies paved the way for quantitative proteomics. One of the most important among them is iTRAQ, employing isobaric tags for relative or absolute quantitation. Despite large progress in technology development, still many challenges remain for derivation and interpretation of quantitative results. One of these challenges is the consistent assignment of peptides to proteins. Results We have developed Peptide Profiling Guided Identification of Proteins (PPINGUIN, a statistical analysis workflow for iTRAQ data addressing the problem of ambiguous peptide quantitations. Motivated by the assumption that peptides uniquely derived from the same protein are correlated, our method employs clustering as a very early step in data processing prior to protein inference. Our method increases experimental reproducibility and decreases variability of quantitations of peptides assigned to the same protein. Giving further support to our method, application to a type 2 diabetes dataset identifies a list of protein candidates that is in very good agreement with previously performed transcriptomics meta analysis. Making use of quantitative properties of signal patterns identified, PPINGUIN can reveal new isoform candidates. Conclusions Regarding the increasing importance of quantitative proteomics we think that this method will be useful in practical applications like model fitting or functional enrichment analysis. We recommend to use this method if quantitation is a major objective of research.

  14. PPINGUIN: Peptide Profiling Guided Identification of Proteins improves quantitation of iTRAQ ratios.

    Science.gov (United States)

    Bauer, Chris; Kleinjung, Frank; Rutishauser, Dorothea; Panse, Christian; Chadt, Alexandra; Dreja, Tanja; Al-Hasani, Hadi; Reinert, Knut; Schlapbach, Ralph; Schuchhardt, Johannes

    2012-02-16

    Recent development of novel technologies paved the way for quantitative proteomics. One of the most important among them is iTRAQ, employing isobaric tags for relative or absolute quantitation. Despite large progress in technology development, still many challenges remain for derivation and interpretation of quantitative results. One of these challenges is the consistent assignment of peptides to proteins. We have developed Peptide Profiling Guided Identification of Proteins (PPINGUIN), a statistical analysis workflow for iTRAQ data addressing the problem of ambiguous peptide quantitations. Motivated by the assumption that peptides uniquely derived from the same protein are correlated, our method employs clustering as a very early step in data processing prior to protein inference. Our method increases experimental reproducibility and decreases variability of quantitations of peptides assigned to the same protein. Giving further support to our method, application to a type 2 diabetes dataset identifies a list of protein candidates that is in very good agreement with previously performed transcriptomics meta analysis. Making use of quantitative properties of signal patterns identified, PPINGUIN can reveal new isoform candidates. Regarding the increasing importance of quantitative proteomics we think that this method will be useful in practical applications like model fitting or functional enrichment analysis. We recommend to use this method if quantitation is a major objective of research.

  15. Identification of Aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta.

    Science.gov (United States)

    Onofre, Janette; Gaytán, Meztlli O; Peña-Cardeña, Arlen; García-Gomez, Blanca I; Pacheco, Sabino; Gómez, Isabel; Bravo, Alejandra; Soberón, Mario

    2017-12-01

    Bacillus thuringiensis Cry2Ab toxin has been used in combination with Cry1Ac for resistance management on the Bt-cotton that is widely planted worldwide. However, little is known regarding Cry2Ab mode of action. Particularly, there is a gap of knowledge on the identification of insect midgut proteins that bind Cry2Ab and mediate toxicity. In the case of Cry1Ab toxin, a transmembrane cadherin protein and glycosyl-phosphatidylinositol (GPI) anchored proteins like aminopeptidase-N1 (APN1) or alkaline-phosphatase (ALP) from Manduca sexta, have been shown to be important for oligomer formation and insertion into the membrane. Binding competition experiments showed that Cry2Ab toxin does not share binding sites with Cry1Ab toxin in M. sexta brush border membrane vesicles (BBMV). Also, that Cry2Ab shows reduced binding to the Cry1Ab binding molecules cadherin, APN1 or ALP. Finally, ligand blot experiments and protein sequence by LC-MS/MS identified APN2 isoform as a Cry2Ab binding protein. Cloning and expression of APN2 confirmed that APN2 is a Cry2Ab binding protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Development of a Rapid and Accurate Identification Method for Citrobacter Species Isolated from Pork Products Using a Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Kwak, Hye-Lim; Han, Sun-Kyung; Park, Sunghoon; Park, Si Hong; Shim, Jae-Yong; Oh, Mihwa; Ricke, Steven C; Kim, Hae-Yeong

    2015-09-01

    Previous detection methods for Citrobacter are considered time consuming and laborious. In this study, we have developed a rapid and accurate detection method for Citrobacter species in pork products, using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). A total of 35 Citrobacter strains were isolated from 30 pork products and identified by both MALDI-TOF MS and 16S rRNA gene sequencing approaches. All isolates were identified to the species level by the MALDI-TOF MS, while 16S rRNA gene sequencing results could not discriminate them clearly. These results confirmed that MALDI-TOF MS is a more accurate and rapid detection method for the identification of Citrobacter species.

  17. Identification of new protein-protein and protein-DNA interactions linked with wood formation in Populus trichocarpa.

    Science.gov (United States)

    Petzold, H Earl; Rigoulot, Stephen B; Zhao, Chengsong; Chanda, Bidisha; Sheng, Xiaoyan; Zhao, Mingzhe; Jia, Xiaoyan; Dickerman, Allan W; Beers, Eric P; Brunner, Amy M

    2017-10-10

    Cellular processes, such as signal transduction and cell wall deposition, are organized by macromolecule interactions. Experimentally determined protein-protein interactions (PPIs) and protein-DNA interactions (PDIs) relevant to woody plant development are sparse. To begin to develop a Populus trichocarpa Torr. & A. Gray wood interactome, we applied the yeast-two-hybrid (Y2H) assay in different ways to enable the discovery of novel PPIs and connected networks. We first cloned open reading frames (ORFs) for 361 genes markedly upregulated in secondary xylem compared with secondary phloem and performed a binary Y2H screen with these proteins. By screening a xylem cDNA library for interactors of a subset of these proteins and then recapitulating the process by using a subset of the interactors as baits, we ultimately identified 165 PPIs involving 162 different ORFs. Thirty-eight transcription factors (TFs) included in our collection of P. trichocarpa wood ORFs were used in a Y1H screen for binding to promoter regions of three genes involved in lignin biosynthesis resulting in 40 PDIs involving 20 different TFs. The network incorporating both the PPIs and PDIs included 14 connected subnetworks, with the largest having 132 members. Protein-protein interactions and PDIs validated previous reports and also identified new candidate wood formation proteins and modules through their interactions with proteins and promoters known to be involved in secondary cell wall synthesis. Selected examples are discussed including a PPI between Mps one binder (MOB1) and a mitogen-activated protein kinase kinase kinase kinase (M4K) that was further characterized by assays confirming the PPI as well as its effect on subcellular localization. Mapping of published transcriptomic data showing developmentally detailed expression patterns across a secondary stem onto the network supported that the PPIs and PDIs are relevant to wood formation, and also illustrated that wood

  18. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  19. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  20. Redox proteomics: Methods for the identification and enrichment of redox-modified proteins and their applications.

    Science.gov (United States)

    Lennicke, Claudia; Rahn, Jette; Heimer, Nadine; Lichtenfels, Rudolf; Wessjohann, Ludger A; Seliger, Barbara

    2016-01-01

    PTMs are defined as covalent additions to functional groups of amino acid residues in proteins like phosphorylation, glycosylation, S-nitrosylation, acetylation, methylation, lipidation, SUMOylation as well as oxidation. Oxidation of proteins has been characterized as a double-edged sword. While oxidative modifications, in particular of cysteine residues, are widely involved in the regulation of cellular homeostasis, oxidative stress resulting in the oxidation of biomolecules along with the disruption of their biological functions can be associated with the development of diseases, such as cancer, diabetes, and neurodegenerative diseases, respectively. This is also the case for advanced glycation end products, which result from chemical reactions of keto compounds such as oxidized sugars with proteins. The role of oxidative modifications under physiological and pathophysiological conditions remains largely unknown. Recently, novel technologies have been established that allow the enrichment, identification, and characterization of specific oxidative PTMs (oxPTMs). This is essential to develop strategies to prevent and treat diseases that are associated with oxidative stress. Therefore this review will focus on (i) the methods and technologies, which are currently applied for the detection, identification, and quantification of oxPTMs including the design of high throughput approaches and (ii) the analyses of oxPTMs related to physiological and pathological conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1

    Directory of Open Access Journals (Sweden)

    Patarroyo Manuel E

    2011-10-01

    Full Text Available Abstract Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1 and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of

  2. Imbalance in chemical space: How to facilitate the identification of protein-protein interaction inhibitors

    Science.gov (United States)

    Kuenemann, Mélaine A.; Labbé, Céline M.; Cerdan, Adrien H.; Sperandio, Olivier

    2016-04-01

    Protein-protein interactions (PPIs) play vital roles in life and provide new opportunities for therapeutic interventions. In this large data analysis, 3,300 inhibitors of PPIs (iPPIs) were compared to 17 reference datasets of collectively ~566,000 compounds (including natural compounds, existing drugs, active compounds on conventional targets, etc.) using a chemoinformatics approach. Using this procedure, we showed that comparable classes of PPI targets can be formed using either the similarity of their ligands or the shared properties of their binding cavities, constituting a proof-of-concept that not only can binding pockets be used to group PPI targets, but that these pockets certainly condition the properties of their corresponding ligands. These results demonstrate that matching regions in both chemical space and target space can be found. Such identified classes of targets could lead to the design of PPI-class-specific chemical libraries and therefore facilitate the development of iPPIs to the stage of drug candidates.

  3. In silico re-identification of properties of drug target proteins.

    Science.gov (United States)

    Kim, Baeksoo; Jo, Jihoon; Han, Jonghyun; Park, Chungoo; Lee, Hyunju

    2017-05-31

    Computational approaches in the identification of drug targets are expected to reduce time and effort in drug development. Advances in genomics and proteomics provide the opportunity to uncover properties of druggable genomes. Although several studies have been conducted for distinguishing drug targets from non-drug targets, they mainly focus on the sequences and functional roles of proteins. Many other properties of proteins have not been fully investigated. Using the DrugBank (version 3.0) database containing nearly 6,816 drug entries including 760 FDA-approved drugs and 1822 of their targets and human UniProt/Swiss-Prot databases, we defined 1578 non-redundant drug target and 17,575 non-drug target proteins. To select these non-redundant protein datasets, we built four datasets (A, B, C, and D) by considering clustering of paralogous proteins. We first reassessed the widely used properties of drug target proteins. We confirmed and extended that drug target proteins (1) are likely to have more hydrophobic, less polar, less PEST sequences, and more signal peptide sequences higher and (2) are more involved in enzyme catalysis, oxidation and reduction in cellular respiration, and operational genes. In this study, we proposed new properties (essentiality, expression pattern, PTMs, and solvent accessibility) for effectively identifying drug target proteins. We found that (1) drug targetability and protein essentiality are decoupled, (2) druggability of proteins has high expression level and tissue specificity, and (3) functional post-translational modification residues are enriched in drug target proteins. In addition, to predict the drug targetability of proteins, we exploited two machine learning methods (Support Vector Machine and Random Forest). When we predicted drug targets by combining previously known protein properties and proposed new properties, an F-score of 0.8307 was obtained. When the newly proposed properties are integrated, the prediction performance

  4. Identification of Protein-Protein Interactions Involved in Pectin Biosynthesis in the golgi Apparatus

    DEFF Research Database (Denmark)

    Lund, Christian Have

    The plant cell wall surrounds every plant cell and is an essential component that is involved in diverse functions including plant development, morphology, resistance towards plant pathogens etc. The plant cell wall is not only important for the plant. The cell wall has many industrial applications...... for instance as food additives, nutraceutical, for paper and energy production. Pectin is a cell wall glycan that crucial for every plant growing on land. Pectin is said to be one of the most complex glycans on earth and it is hypothesized that at least 67 enzymatic reactions are involved in its biosynthesis...... the diverse pectin structures for industrial, agronomic and biomedical uses. Increasing evidence suggests that complex formation is important in governing functional coordination of proteins involved in cell wall biosynthesis. In Arabidopsis thaliana, a homogalacturonan (HG) synthase core complex between...

  5. Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid▿

    Science.gov (United States)

    Dubé, Audrey; Bisaillon, Martin; Perreault, Jean-Pierre

    2009-01-01

    Peach latent mosaic viroid (PLMVd) is a small, single-stranded, circular RNA pathogen that infects Prunus persica trees. As with all other known viroids, the PLMVd genome does not encode any proteins. Consequently, it must interact with host cellular factors in order to ensure its life cycle. With the objective of identifying cellular proteins that interact with PLMVd, Northwestern hybridizations were performed using partially purified peach leaf extracts. Mass spectrometric analysis of the detected RNA-protein complexes led to the identification of six putative RNA-binding proteins. One of these was found to be elongation factor 1-alpha (eEF1A), and because of its known involvement in the replication and translation of various RNA viruses, further characterizations were performed. Initially, the existence of this interaction received support from an experiment that immunoprecipitated the eEF1A from a crude extract of infected peach leaves, coupled with reverse transcription-PCR detection of the PLMVd. Subsequently, eEF1A interaction with PLMVd strands of both polarities was confirmed in vitro by electrophoresis mobility shift assays, fluorescence spectroscopy, and the prediction of an altered PLMVd RNase mapping profile in the presence of the protein. The potential contribution of eEF1A to the molecular biology of PLMVd, including for viroid replication, is discussed. PMID:19759139

  6. Bottom–up protein identifications from microliter quantities of individual human tear samples. Important steps towards clinical relevance.

    Directory of Open Access Journals (Sweden)

    Peter Raus

    2015-12-01

    With 375 confidently identified proteins in the healthy adult tear, the obtained results are comprehensive and in large agreement with previously published observations on pooled samples of multiple patients. We conclude that, to a limited extent, bottom–up tear protein identifications from individual patients may have clinical relevance.

  7. Large-scale proteomic identification of S100 proteins in breast cancer tissues

    Directory of Open Access Journals (Sweden)

    Cancemi Patrizia

    2010-09-01

    Full Text Available Abstract Background Attempts to reduce morbidity and mortality in breast cancer is based on efforts to identify novel biomarkers to support prognosis and therapeutic choices. The present study has focussed on S100 proteins as a potentially promising group of markers in cancer development and progression. One reason of interest in this family of proteins is because the majority of the S100 genes are clustered on a region of human chromosome 1q21 that is prone to genomic rearrangements. Moreover, there is increasing evidence that S100 proteins are often up-regulated in many cancers, including breast, and this is frequently associated with tumour progression. Methods Samples of breast cancer tissues were obtained during surgical intervention, according to the bioethical recommendations, and cryo-preserved until used. Tissue extracts were submitted to proteomic preparations for 2D-IPG. Protein identification was performed by N-terminal sequencing and/or peptide mass finger printing. Results The majority of the detected S100 proteins were absent, or present at very low levels, in the non-tumoral tissues adjacent to the primary tumor. This finding strengthens the role of S100 proteins as putative biomarkers. The proteomic screening of 100 cryo-preserved breast cancer tissues showed that some proteins were ubiquitously expressed in almost all patients while others appeared more sporadic. Most, if not all, of the detected S100 members appeared reciprocally correlated. Finally, from the perspective of biomarkers establishment, a promising finding was the observation that patients which developed distant metastases after a three year follow-up showed a general tendency of higher S100 protein expression, compared to the disease-free group. Conclusions This article reports for the first time the comparative proteomic screening of several S100 protein members among a large group of breast cancer patients. The results obtained strongly support the hypothesis

  8. Large-scale proteomic identification of S100 proteins in breast cancer tissues.

    Science.gov (United States)

    Cancemi, Patrizia; Di Cara, Gianluca; Albanese, Nadia Ninfa; Costantini, Francesca; Marabeti, Maria Rita; Musso, Rosa; Lupo, Carmelo; Roz, Elena; Pucci-Minafra, Ida

    2010-09-03

    Attempts to reduce morbidity and mortality in breast cancer is based on efforts to identify novel biomarkers to support prognosis and therapeutic choices. The present study has focussed on S100 proteins as a potentially promising group of markers in cancer development and progression. One reason of interest in this family of proteins is because the majority of the S100 genes are clustered on a region of human chromosome 1q21 that is prone to genomic rearrangements. Moreover, there is increasing evidence that S100 proteins are often up-regulated in many cancers, including breast, and this is frequently associated with tumour progression. Samples of breast cancer tissues were obtained during surgical intervention, according to the bioethical recommendations, and cryo-preserved until used. Tissue extracts were submitted to proteomic preparations for 2D-IPG. Protein identification was performed by N-terminal sequencing and/or peptide mass finger printing. The majority of the detected S100 proteins were absent, or present at very low levels, in the non-tumoral tissues adjacent to the primary tumor. This finding strengthens the role of S100 proteins as putative biomarkers. The proteomic screening of 100 cryo-preserved breast cancer tissues showed that some proteins were ubiquitously expressed in almost all patients while others appeared more sporadic. Most, if not all, of the detected S100 members appeared reciprocally correlated. Finally, from the perspective of biomarkers establishment, a promising finding was the observation that patients which developed distant metastases after a three year follow-up showed a general tendency of higher S100 protein expression, compared to the disease-free group. This article reports for the first time the comparative proteomic screening of several S100 protein members among a large group of breast cancer patients. The results obtained strongly support the hypothesis that a significant deregulation of multiple S100 protein members is

  9. Unrestricted Mass Spectrometric Data Analysis for Identification, Localization, and Quantification of Oxidative Protein Modifications

    DEFF Research Database (Denmark)

    Rykær, Martin; Svensson, Birte; Davies, Michael J

    2017-01-01

    Oxidation generates multiple diverse post-translational modifications resulting in changes in protein structure and function associated with a wide range of diseases. Of these modifications, carbonylations have often been used as hallmarks of oxidative damage. However, accumulating evidence...... modifications based on so-called "dependent peptides". The strategy involves unrestricted database searches with rigorous filtering focusing on oxidative modifications. The approach was applied to bovine serum albumin and human serum proteins subjected to metal ion-catalyzed oxidation, resulting...... in the identification of a wide range of different oxidative modifications. The most common modification in the oxidized samples is hydroxylation, but carbonylation, decarboxylation, and dihydroxylation are also abundant, while carbonylation showed the largest increase in abundance relative to nonoxidized samples. Site...

  10. Identification of Tyrosine Phosphorylated Proteins by SH2 Domain Affinity Purification and Mass Spectrometry.

    Science.gov (United States)

    Buhs, Sophia; Gerull, Helwe; Nollau, Peter

    2017-01-01

    Phosphotyrosine signaling plays a major role in the control of many important biological functions such as cell proliferation and apoptosis. Deciphering of phosphotyrosine-dependent signaling is therefore of great interest paving the way for the understanding of physiological and pathological processes of signal transduction. On the basis of the specific binding of SH2 domains to phosphotyrosine residues, we here present an experimental workflow for affinity purification and subsequent identification of tyrosine phosphorylated proteins by mass spectrometry. In combination with SH2 profiling, a broadly applicable platform for the characterization of phosphotyrosine profiles in cell extracts, our pull down strategy enables researchers by now to identify proteins in signaling cascades which are differentially phosphorylated and selectively recognized by distinct SH2 domains.

  11. Identification of Host Proteins Predictive of Early Stage Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Charles M. Bark

    2017-07-01

    Full Text Available The objective of this study was to identify blood-based protein biomarkers of early stage Mycobacterium tuberculosis (Mtb infection. We utilized plasma and serum specimens from TB patients and their contacts (age ≥ 12 enrolled in a household contact study in Uganda. In the discovery phase cross-sectional samples from 104 HIV-uninfected persons classified as either active TB, latent Mtb infection (LTBI, tuberculin skin test (TST converters, or persistent TST-negative were analyzed. Two hundred eighty-nine statistically significant (false discovery rate corrected p  0.85. Panel performance was confirmed with an independent validation set of longitudinal samples from 16 subjects. These candidate protein biomarkers may allow for the identification of recently Mtb infected individuals at highest risk for developing active TB and most likely to benefit from preventive therapy.

  12. The Dictyostelium discoideum cellulose synthase: Structure/function analysis and identification of interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Richard L. Blanton

    2004-02-19

    OAK-B135 The major accomplishments of this project were: (1) the initial characterization of dcsA, the gene for the putative catalytic subunit of cellulose synthase in the cellular slime mold Dictyostelium discoideum; (2) the detection of a developmentally regulated event (unidentified, but perhaps a protein modification or association with a protein partner) that is required for cellulose synthase activity (i.e., the dcsA product is necessary, but not sufficient for cellulose synthesis); (3) the continued exploration of the developmental context of cellulose synthesis and DcsA; (4) the isolation of a GFP-DcsA-expressing strain (work in progress); and (5) the identification of Dictyostelium homologues for plant genes whose products play roles in cellulose biosynthesis. Although our progress was slow and many of our results negative, we did develop a number of promising avenues of investigation that can serve as the foundation for future projects.

  13. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  14. Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules'.

    Science.gov (United States)

    Draper, John; Enot, David P; Parker, David; Beckmann, Manfred; Snowdon, Stuart; Lin, Wanchang; Zubair, Hassan

    2009-07-21

    Metabolomics experiments using Mass Spectrometry (MS) technology measure the mass to charge ratio (m/z) and intensity of ionised molecules in crude extracts of complex biological samples to generate high dimensional metabolite 'fingerprint' or metabolite 'profile' data. High resolution MS instruments perform routinely with a mass accuracy of ionised. In reality the annotation process is confounded by the fact that many ionisation products will be not only molecular isotopes but also salt/solvent adducts and neutral loss fragments of original metabolites. This report describes an annotation strategy that will allow searching based on all potential ionisation products predicted to form during electrospray ionisation (ESI). Metabolite 'structures' harvested from publicly accessible databases were converted into a common format to generate a comprehensive archive in MZedDB. 'Rules' were derived from chemical information that allowed MZedDB to generate a list of adducts and neutral loss fragments putatively able to form for each structure and calculate, on the fly, the exact molecular weight of every potential ionisation product to provide targets for annotation searches based on accurate mass. We demonstrate that data matrices representing populations of ionisation products generated from different biological matrices contain a large proportion (sometimes > 50%) of molecular isotopes, salt adducts and neutral loss fragments. Correlation analysis of ESI-MS data features confirmed the predicted relationships of m/z signals. An integrated isotope enumerator in MZedDB allowed verification of exact isotopic pattern distributions to corroborate experimental data. We conclude that although ultra-high accurate mass instruments provide major insight into the chemical diversity of biological extracts, the facile annotation of a large proportion of signals is not possible by simple, automated query of current databases using computed molecular formulae. Parameterising MZedDB to

  15. Double-phase (131)I whole body scan and (131)I SPECT-CT images in patients with differentiated thyroid cancer: their effectiveness for accurate identification.

    Science.gov (United States)

    Wakabayashi, Hiroshi; Nakajima, Kenichi; Fukuoka, Makoto; Inaki, Anri; Nakamura, Ayane; Kayano, Daiki; Kinuya, Seigo

    2011-11-01

    This study aims to determine whether a (131)I double-phase whole body scan (WBS) and SPECT-CT images have added value over a single-phase WBS image in identifying benign and malignant lesions in patients with well-differentiated thyroid cancer (DTC) at their first radioactive iodine (RAI) treatment. This study included 42 DTC patients who underwent their first radioablation. Post-therapeutic WBS images were acquired after 3 days (early phase) and 7 days (delayed phase). Following early-phase WBS, SPECT-CT images were obtained. The images were reviewed independently of the clinical data by 2 board-certified observers with a 6-point scoring system (benign to malignant -3 to +3). The double-phase WBS and SPECT-CT images showed 115 radioiodine-avid localizations (81 benign and 34 malignant accumulations). Confidence levels of benign accumulations were significantly higher with SPECT-CT (average score -2.40 ± 1.06) compared to those of the early-phase WBS (average score -1.39 ± 1.88) (p images (average score -1.49 ± 1.19) (p confidence score in the early-phase WBS image, the confidence level of the delayed-phase WBS was higher compared to that of the early-phase WBS images (p = 0.0012). The confidence levels of malignant accumulations were significantly higher with SPECT-CT images (average score 2.37 ± 0.96) compared to the early-phase WBS (average score 1.44 ± 1.21) (p images (average score 1.50 ± 1.13) (p image was superior to the early-phase WBS image in enhancing the confidence level and accurately localizing the lesions. The delayed-phase WBS image contributed to the accurate diagnosis of benign lesions with a low confidence level in the early-phase WBS image.

  16. A proteomic approach to the identification of tegumental proteins of male and female Schistosoma bovis worms.

    Science.gov (United States)

    Pérez-Sánchez, Ricardo; Valero, María Luz; Ramajo-Hernández, Alicia; Siles-Lucas, Mar; Ramajo-Martín, Vicente; Oleaga, Ana

    2008-10-01

    Schistosoma bovis, a parasite of ruminants, can live for years in the bloodstream in spite of the immune response of its host. The parasite tegument covers the entire surface of the worm and plays a key role in the host-parasite relationship. The parasite molecules involved in host immune response evasion mechanisms must be expressed on the tegument surface and are potential targets for immune or drug intervention. The purpose of the present work was to identify the tegumental proteomes of male and female S. bovis worms, in particular the proteins expressed on the outermost layers of the tegument structure. Adult worms of each sex were treated separately with trypsin in order to digest their tegumental proteins, after which the peptides released were analysed by LC-MS/MS for identification. This experimental approach afforded valuable information about the protein composition of the tegument of adult S. bovis worms. A range of tegumental proteins was identified, most of which had not been identified previously in this species. Although an absolute purification of the proteins expressed on the outermost layers of the tegument structure was not achieved, it is likely that present among the proteins identified are some of the molecules most closely associated with the tegument surface. Our study also suggests that there may be differences in the protein composition of the tegument of male and female schistosomes. Finally, the presence of actin and GAPDH on the surface of male and female worms and the presence of enolase exclusively on the surface of male worms were verified by confocal microscopy.

  17. Isolation and Identification of Alicyclobacillus with High Dipicolinic Acid and Heat Resistant Proteins from Mango Juice

    Directory of Open Access Journals (Sweden)

    Hamid Reza Akhbariyoon

    2016-10-01

    Full Text Available Background and Objectives: Microbial spoilage of juices and industries related with Alicyclobacillus are considerable international issues. This spore-forming bacterium causes changes in juices odor and taste. The isolation and identification of Alicyclobacillus contamination in juice producing and packaging industries has an essential role in the prevention and control of this type of spoilage bacterium in HACCP (Hazard analysis and critical control points manner.Materials and Methods: A thermo-acidophilic, non-pathogenic and sporeforming bacterium was isolated from mango juice. Preliminary identification of the isolates was based on morphological, biochemical and physiological properties. Identification at species level was made by PCR amplification. The influence of temperature in the range of 25-65°C in the growth of bacterium and in the range of 80-120°C in spore-resistant and heat resistant proteins was investigated and compared with other spore producing bacteria.Results and Conclusion: Phylogenetic analysis of the 16S rRNA gene sequencing indicated that the isolated strain constituted a distinct lineage in the Alicyclobacillus cluster and submitted to NCBI with access number Alicyclobacillus HRM-5 KM983424.1. The spores resisted 110°C for 3 h, and produced 28% dipicolinic acid more comparable to Bacillus licheniformis. Also they could produce 0.69 mg heat resistance protein after 1.5 h treatment in 100°C. The results showed that this strain could have biotechnological applications.Conflict of interests: The authors declare no conflict of interest.

  18. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng

    2015-02-27

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.

  19. Extraction, purification and identification of antifreeze proteins from cold acclimated malting barley (Hordeum vulgare L.).

    Science.gov (United States)

    Ding, Xiangli; Zhang, Hui; Chen, Haiying; Wang, Li; Qian, Haifeng; Qi, Xiguang

    2015-05-15

    Antifreeze proteins from cold-acclimated malting barley were extracted by infiltration-centrifugation. The infiltration time was optimised, and its extraction effect was evaluated. The effect of cold acclimation on the accumulation of barley antifreeze proteins (BaAFPs) was assessed by comparing the thermal hysteresis activities (THA) of proteins extracted from both cold acclimated and non-cold acclimated barley grain. Ultra-filtration, ammonium precipitation and column chromatography were used successively to purify the BaAFPs, and MALDI-TOF-MS/MS was used for protein identification. The results showed that infiltration-centrifugation was more targeted than the traditional method, and 10h was the optimal infiltration time. THA was observed only after cold acclimation implied that AFPs only began to accumulate after cold acclimation. After purification, BaAFP-I was obtained at an electrophoresis level and its THA was 1.04°C (18.0 mg ml(-1)). The mass fingerprinting and sequencing results indicated the homology of the BaAFP-I to alpha-amylase inhibitor BDAI-1 (Hordeum vulgare). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Surfomics: shaving live organisms for a fast proteomic identification of surface proteins.

    Science.gov (United States)

    Olaya-Abril, Alfonso; Jiménez-Munguía, Irene; Gómez-Gascón, Lidia; Rodríguez-Ortega, Manuel J

    2014-01-31

    Surface proteins play a critical role in the interaction between cells and their environment, as they take part in processes like signaling, adhesion, transport, etc. In pathogenic microorganisms, they can also participate in virulence or cytotoxicity. As these proteins have the highest chances to be recognized by the immune system, they are often the targets for the discovery of new vaccines. In addition, they can serve for the development of serological-based tools to diagnose infectious diseases. First-generation proteomic strategies for the identification of surface proteins rely on the biochemical fractionation and/or enrichment of this group of molecules or organelles containing them. However, in the last years, a novel second-generation approach has been developed, consisting of the digestion of live, intact cells with proteases, so that surface-exposed moieties (i.e. the "surfome" of a cell) are "shaved" and analyzed by LC/MS/MS. Here we review such a strategy, firstly set up and developed in Gram-positive bacteria, and further applied to Gram-negative bacteria, unicellular fungi, and also pluricellular organisms. We also discuss the advantages and inconvenients of the approach, and the still unresolved question about the intriguing presence of proteins predicted as cytoplasmic in the surfomes. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Accelerated identification of proteins by mass spectrometry by employing covalent pre-gel staining with Uniblue A.

    Directory of Open Access Journals (Sweden)

    Marco A Mata-Gómez

    Full Text Available BACKGROUND: The identification of proteins by mass spectrometry is a standard method in biopharmaceutical quality control and biochemical research. Prior to identification by mass spectrometry, proteins are usually pre-separated by electrophoresis. However, current protein staining and de-staining protocols are tedious and time consuming, and therefore prolong the sample preparation time for mass spectrometry. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a 1-minute covalent pre-gel staining protocol for proteins, which does not require de-staining before the mass spectrometry analysis. We investigated the electrophoretic properties of derivatized proteins and peptides and studied their behavior in mass spectrometry. Further, we elucidated the preferred reaction of proteins with Uniblue A and demonstrate the integration of the peptide derivatization into typical informatics tools. CONCLUSIONS AND SIGNIFICANCE: The Uniblue A staining method drastically speeds up the sample preparation for the mass spectrometry based identification of proteins. The application of this chemo-proteomic strategy will be advantageous for routine quality control of proteins and for time-critical tasks in protein analysis.

  2. Accurate estimation of haplotype frequency from pooled sequencing data and cost-effective identification of rare haplotype carriers by overlapping pool sequencing.

    Science.gov (United States)

    Cao, Chang-Chang; Sun, Xiao

    2015-02-15

    A variety of hypotheses have been proposed for finding the missing heritability of complex diseases in genome-wide association studies. Studies have focused on the value of haplotype to improve the power of detecting associations with disease. To facilitate haplotype-based association analysis, it is necessary to accurately estimate haplotype frequencies of pooled samples. Taking advantage of databases that contain prior haplotypes, we present Ehapp based on the algorithm for solving the system of linear equations to estimate the frequencies of haplotypes from pooled sequencing data. Effects of various factors in sequencing on the performance are evaluated using simulated data. Our method could estimate the frequencies of haplotypes with only about 3% average relative difference for pooled sequencing of the mixture of 10 haplotypes with total coverage of 50×. When unknown haplotypes exist, our method maintains excellent performance for haplotypes with actual frequencies >0.05. Comparisons with present method on simulated data in conjunction with publicly available Illumina sequencing data indicate that our method is state of the art for many sequencing study designs. We also demonstrate the feasibility of applying overlapping pool sequencing to identify rare haplotype carriers cost-effectively. Ehapp (in Perl) for the Linux platforms is available online (http://bioinfo.seu.edu.cn/Ehapp/). xsun@seu.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Identification of nuclear and cytoplasmic mRNA targets for the shuttling protein SF2/ASF.

    Science.gov (United States)

    Sanford, Jeremy R; Coutinho, Pedro; Hackett, Jamie A; Wang, Xin; Ranahan, William; Caceres, Javier F

    2008-10-08

    The serine and arginine-rich protein family (SR proteins) are highly conserved regulators of pre-mRNA splicing. SF2/ASF, a prototype member of the SR protein family, is a multifunctional RNA binding protein with roles in pre-mRNA splicing, mRNA export and mRNA translation. These observations suggest the intriguing hypothesis that SF2/ASF may couple splicing and translation of specific mRNA targets in vivo. Unfortunately the paucity of endogenous mRNA targets for SF2/ASF has hindered testing of this hypothesis. Here, we identify endogenous mRNAs directly cross-linked to SF2/ASF in different sub-cellular compartments. Cross-Linking Immunoprecipitation (CLIP) captures the in situ specificity of protein-RNA interaction and allows for the simultaneous identification of endogenous RNA targets as well as the locations of binding sites within the RNA transcript. Using the CLIP method we identified 326 binding sites for SF2/ASF in RNA transcripts from 180 protein coding genes. A purine-rich consensus motif was identified in binding sites located within exon sequences but not introns. Furthermore, 72 binding sites were occupied by SF2/ASF in different sub-cellular fractions suggesting that these binding sites may influence the splicing or translational control of endogenous mRNA targets. We demonstrate that ectopic expression of SF2/ASF regulates the splicing and polysome association of transcripts derived from the SFRS1, PABC1, NETO2 and ENSA genes. Taken together the data presented here indicate that SF2/ASF has the capacity to co-regulate the nuclear and cytoplasmic processing of specific mRNAs and provide further evidence that the nuclear history of an mRNA may influence its cytoplasmic fate.

  4. Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos

    Directory of Open Access Journals (Sweden)

    Stabel Silvia

    2002-04-01

    Full Text Available Abstract Background The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro. Results We generated recombinant 124-v-Mos using the baculovirus expression system in Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B (PTP1B, alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTP1B and casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos targets serine and threonine residues for phosphorylation in casein at a 1:1 ratio but auto-phosphorylation occurs predominantly on serine residues. Conclusion The mos substrates identified in this study represent a basis to approach the identification of the mos-consensus phosphorylation motif, important for the development of specific inhibitors of the Mos protein kinase.

  5. Automated Design of Probes for rRNA-Targeted Fluorescence In Situ Hybridization Reveals the Advantages of Using Dual Probes for Accurate Identification

    Science.gov (United States)

    Yilmaz, L. Safak; Corcoran, Andrew M.; Ökten, Hatice E.; Noguera, Daniel R.

    2014-01-01

    Fluorescence in situ hybridization (FISH) is a common technique for identifying cells in their natural environment and is often used to complement next-generation sequencing approaches as an integral part of the full-cycle rRNA approach. A major challenge in FISH is the design of oligonucleotide probes with high sensitivity and specificity to their target group. The rapidly expanding number of rRNA sequences has increased awareness of the number of potential nontargets for every FISH probe, making the design of new FISH probes challenging using traditional methods. In this study, we conducted a systematic analysis of published probes that revealed that many have insufficient coverage or specificity for their intended target group. Therefore, we developed an improved thermodynamic model of FISH that can be applied at any taxonomic level, used the model to systematically design probes for all recognized genera of bacteria and archaea, and identified potential cross-hybridizations for the selected probes. This analysis resulted in high-specificity probes for 35.6% of the genera when a single probe was used in the absence of competitor probes and for 60.9% when up to two competitor probes were used. Requiring the hybridization of two independent probes for positive identification further increased specificity. In this case, we could design highly specific probe sets for up to 68.5% of the genera without the use of competitor probes and 87.7% when up to two competitor probes were used. The probes designed in this study, as well as tools for designing new probes, are available online (http://DECIPHER.cee.wisc.edu). PMID:24928876

  6. Accurate and Practical Identification of 20 Fusarium Species by Seven-Locus Sequence Analysis and Reverse Line Blot Hybridization, and an In Vitro Antifungal Susceptibility Study▿†

    Science.gov (United States)

    Wang, He; Xiao, Meng; Kong, Fanrong; Chen, Sharon; Dou, Hong-Tao; Sorrell, Tania; Li, Ruo-Yu; Xu, Ying-Chun

    2011-01-01

    Eleven reference and 25 clinical isolates of Fusarium were subject to multilocus DNA sequence analysis to determine the species and haplotypes of the fusarial isolates from Beijing and Shandong, China. Seven loci were analyzed: the translation elongation factor 1 alpha gene (EF-1α); the nuclear rRNA internal transcribed spacer (ITS), large subunit (LSU), and intergenic spacer (IGS) regions; the second largest subunit of the RNA polymerase gene (RPB2); the calmodulin gene (CAM); and the mitochondrial small subunit (mtSSU) rRNA gene. We also evaluated an IGS-targeted PCR/reverse line blot (RLB) assay for species/haplotype identification of Fusarium. Twenty Fusarium species and seven species complexes were identified. Of 25 clinical isolates (10 species), the Gibberella (Fusarium) fujikuroi species complex was the commonest (40%) and was followed by the Fusarium solani species complex (FSSC) (36%) and the F. incarnatum-F. equiseti species complex (12%). Six FSSC isolates were identified to the species level as FSSC-3+4, and three as FSSC-5. Twenty-nine IGS, 27 EF-1α, 26 RPB2, 24 CAM, 18 ITS, 19 LSU, and 18 mtSSU haplotypes were identified; 29 were unique, and haplotypes for 24 clinical strains were novel. By parsimony informative character analysis, the IGS locus was the most phylogenetically informative, and the rRNA gene regions were the least. Results by RLB were concordant with multilocus sequence analysis for all isolates. Amphotericin B was the most active drug against all species. Voriconazole MICs were high (>8 μg/ml) for 15 (42%) isolates, including FSSC. Analysis of larger numbers of isolates is required to determine the clinical utility of the seven-locus sequence analysis and RLB assay in species classification of fusaria. PMID:21389150

  7. Identification of similar regions of protein structures using integrated sequence and structure analysis tools

    Directory of Open Access Journals (Sweden)

    Heiland Randy

    2006-03-01

    Full Text Available Abstract Background Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site http://www.sblest.org/ and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest. Results Users are able to submit their own queries or use a structure already in the PDB. Currently the databases that a user can query include the popular structural datasets ASTRAL 40 v1.69, ASTRAL 95 v1.69, CLUSTER50, CLUSTER70 and CLUSTER90 and PDBSELECT25. The results can be downloaded directly from the site and include function prediction, analysis of the most conserved environments and automated annotation of query proteins. These results reflect both the hits found with PSI-BLAST, HMMer and with S-BLEST. We have evaluated how well annotation transfer can be performed on SCOP ID's, Gene Ontology (GO ID's and EC Numbers. The method is very efficient and totally automated, generally taking around fifteen minutes for a 400 residue protein. Conclusion With structural genomics initiatives determining structures with little, if any, functional characterization

  8. Identification of similar regions of protein structures using integrated sequence and structure analysis tools.

    Science.gov (United States)

    Peters, Brandon; Moad, Charles; Youn, Eunseog; Buffington, Kris; Heiland, Randy; Mooney, Sean

    2006-03-09

    Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site http://www.sblest.org/ and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest. Users are able to submit their own queries or use a structure already in the PDB. Currently the databases that a user can query include the popular structural datasets ASTRAL 40 v1.69, ASTRAL 95 v1.69, CLUSTER50, CLUSTER70 and CLUSTER90 and PDBSELECT25. The results can be downloaded directly from the site and include function prediction, analysis of the most conserved environments and automated annotation of query proteins. These results reflect both the hits found with PSI-BLAST, HMMer and with S-BLEST. We have evaluated how well annotation transfer can be performed on SCOP ID's, Gene Ontology (GO) ID's and EC Numbers. The method is very efficient and totally automated, generally taking around fifteen minutes for a 400 residue protein. With structural genomics initiatives determining structures with little, if any, functional characterization, development of protein structure and function analysis tools are a

  9. Identification of Surface Protein Biomarkers of Listeria monocytogenes via Bioinformatics and Antibody-Based Protein Detection Tools

    Science.gov (United States)

    Zhang, Cathy X. Y.; Brooks, Brian W.; Huang, Hongsheng; Pagotto, Franco

    2016-01-01

    ABSTRACT The Gram-positive bacterium Listeria monocytogenes causes a significant percentage of the fatalities among foodborne illnesses in humans. Surface proteins specifically expressed in a wide range of L. monocytogenes serotypes under selective enrichment culture conditions could serve as potential biomarkers for detection and isolation of this pathogen via antibody-based methods. Our study aimed to identify such biomarkers. Interrogation of the L. monocytogenes serotype 4b strain F2365 genome identified 130 putative or known surface proteins. The homologues of four surface proteins, LMOf2365_0578, LMOf2365_0581, LMOf2365_0639, and LMOf2365_2117, were assessed as biomarkers due to the presence of conserved regions among strains of L. monocytogenes which are variable among other Listeria species. Rabbit polyclonal antibodies against the four recombinant proteins revealed the expression of only LMOf2365_0639 on the surface of serotype 4b strain LI0521 cells despite PCR detection of mRNA transcripts for all four proteins in the organism. Three of 35 monoclonal antibodies (MAbs) to LMOf2365_0639, MAbs M3643, M3644, and M3651, specifically recognized 42 (91.3%) of 46 L. monocytogenes lineage I and II isolates grown in nonselective brain heart infusion medium. While M3644 and M3651 reacted with 14 to 15 (82.4 to 88.2%) of 17 L. monocytogenes lineage I and II isolates, M3643 reacted with 22 (91.7%) of 24 lineage I, II, and III isolates grown in selective enrichment media (UVM1, modified Fraser, Palcam, and UVM2 media). The three MAbs exhibited only weak reactivities (the optical densities at 414 nm were close to the cutoff value) to some other Listeria species grown in selective enrichment media. Collectively, the data indicate the potential of LMOf2365_0639 as a surface biomarker of L. monocytogenes, with the aid of specific MAbs, for pathogen detection, identification, and isolation in clinical, environmental, and food samples. IMPORTANCE L. monocytogenes is

  10. Identification of salivary mucin MUC7 binding proteins from Streptococcus gordonii

    Directory of Open Access Journals (Sweden)

    Thornton David J

    2009-08-01

    Full Text Available Abstract Background The salivary mucin MUC7 (previously known as MG2 can adhere to various strains of streptococci that are primary colonizers and predominant microorganisms of the oral cavity. Although there is a growing interest in interaction between oral pathogens and salivary mucins, studies reporting the specific binding sites on the bacteria are rather limited. Identification and characterization of the specific interacting proteins on the bacterial cell surface, termed adhesins, are crucial to further understand host-pathogen interactions. Results We demonstrate here, using purified MUC7 to overlay blots of SDS-extracts of Streptococcus gordonii cell surface proteins, 4 MUC7-binding bands, with apparent molecular masses of 62, 78, 84 and 133 kDa from the Streptococcus gordonii strain, PK488. Putative adhesins were identified by in-gel digestion and subsequent nanoLC-tandem mass spectrometry analysis of resultant peptides. The 62 kDa and 84 kDa bands were identified as elongation factor (EF Tu and EF-G respectively. The 78 kDa band was a hppA gene product; the 74 kDa oligopeptide-binding lipoprotein. The 133 kDa band contained two proteins; alpha enolase and DNA-directed RNA polymerase, beta' subunit. Some of these proteins, for example alpha enolase are expected to be intracellular, however, flow cytometric analysis confirmed its location on the bacterial surface. Conclusion Our data demonstrated that S. gordonii expressed a number of putative MUC7 recognizing proteins and these contribute to MUC7 mucin binding of this streptococcal strain.

  11. Rapid identification of novel immunodominant proteins and characterization of a specific linear epitope of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sebastian Hoppe

    Full Text Available Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium's pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is

  12. Identification of an exported heat shock protein 70 in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Grover Manish

    2013-01-01

    Full Text Available Host cell remodelling is a hallmark of malaria pathogenesis. It involves protein folding, unfolding and trafficking events and thus participation of chaperones such as Hsp70s and Hsp40s is well speculated. Until recently, only Hsp40s were thought to be the sole representative of the parasite chaperones in the exportome. However, based on the re-annotated Plasmodium falciparum genome sequence, a putative candidate for exported Hsp70 has been reported, which otherwise was known to be a pseudogene. We raised a specific antiserum against a C-terminal peptide uniquely present in PfHsp70-x. Immunoblotting and immunofluorescence-based approaches in combination with sub-cellular fractionation by saponin and streptolysin-O have been taken to determine the expression and localization of PfHsp70-x in infected erythrocyte. The re-annotated sequence of PfHsp70-x reveals it to be a functional protein with an endoplasmic reticulum signal peptide. It gets maximally expressed at the schizont stage of intra-erythrocytic life cycle. Majority of the protein localizes to the parasitophorous vacuole and some of it gets exported to the erythrocyte compartment where it associates with Maurer’s clefts. The identification of an exported parasite Hsp70 chaperone presents us with the fact that the parasite has evolved customized chaperones which might be playing crucial roles in aspects of trafficking and host cell remodelling.

  13. Identification of archaeal proteins that affect the exosome function in vitro

    Directory of Open Access Journals (Sweden)

    Palhano Fernando L

    2010-05-01

    Full Text Available Abstract Background The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.

  14. Identification of a tripartite import signal in the Ewing Sarcoma protein (EWS)

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Debra J.; Morse, Robert; Todd, Adrian G. [Clinical Neurobiology, IBCS, Peninsula College of Medicine and Dentistry, Exeter EX1 2LU (United Kingdom); Eggleton, Paul [Inflammation and Musculoskeletal Disease, IBCS, Peninsula College of Medicine and Dentistry, Exeter EX1 2LU (United Kingdom); MRC Immunochemistry Unit, University of Oxford, Oxford OX1 3QU (United Kingdom); Lorson, Christian L. [Department of Veterinary Pathobiology, Bond Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO 65211 (United States); Young, Philip J., E-mail: philip.young@pms.ac.uk [Clinical Neurobiology, IBCS, Peninsula College of Medicine and Dentistry, Exeter EX1 2LU (United Kingdom)

    2009-12-25

    The Ewing Sarcoma (EWS) protein is a ubiquitously expressed RNA processing factor that localises predominantly to the nucleus. However, the mechanism through which EWS enters the nucleus remains unclear, with differing reports identifying three separate import signals within the EWS protein. Here we have utilized a panel of truncated EWS proteins to clarify the reported nuclear localisation signals. We describe three C-terminal domains that are important for efficient EWS nuclear localization: (1) the third RGG-motif; (2) the last 10 amino acids (known as the PY-import motif); and (3) the zinc-finger motif. Although these three domains are involved in nuclear import, they are not independently capable of driving the efficient import of a GFP-moiety. However, collectively they form a complex tripartite signal that efficiently drives GFP-import into the nucleus. This study helps clarify the EWS import signal, and the identification of the involvement of both the RGG- and zinc-finger motifs has wide reaching implications.

  15. Identification of novel anti cancer agents by applying insilico methods for inhibition of TSPO protein.

    Science.gov (United States)

    Bhargavi, Manan; Sivan, Sree Kanth; Potlapally, Sarita Rajender

    2017-06-01

    Cancer is a genomic disease characterised as impaired cellular energy metabolism. Cancer cells derive most of their energy from oxidative phosphorylation unlike normal ones during cell progression TSPO protein present in external mitochondrial membrane, is involved in various cellular functions like Cell proliferation, mitochondrial respiration, synthesis of steroids and also participates in import of cholesterol into the inner mitochondrial membrane from outside of the membrane of mitochondria. The 3D model of TSPO protein is built using comparative homology modelling techniques and validated by proSA, Ramachandran plot and ERRAT in the present work. Active site prediction is carried out using SiteMap and literature, which allows the prediction of the important binding pockets for the identification of putative active site. New molecular entities as TSPO inhibitors were obtained from Virtual screening using MS Spectrum databank in Schrodinger suite and were prioritised based on Glide Score. Docking was performed using Autodock to identify molecules with different scaffolds and were prioritised based on binding energy and RMSD values. Qikprop is used to calculate pharmacokinetic properties of the screened molecules which are found to be in permissible range as possible novel inhibitors of TSPO protein to supress cell proliferation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Identification of germ cell-specific VASA and IFITM3 proteins in human ovarian endometriosis.

    Science.gov (United States)

    Fraunhoffer, Nicolas A; Meilerman Abuelafia, Analía; Stella, Inés; Galliano, Silvia; Barrios, Marcela; Vitullo, Alfredo D

    2015-10-07

    Endometriosis is a gynaecological disorder that affects 6-10 % of female population. It is characterized by the presence of endometrial tissue outside the uterus, most often in the pelvic peritoneum or ovaries. Recent studies have indicated that mesenchymal endometrial stem cells might get involved in endometriosis progression. Although germ line stem cells have been proved to exist in the ovary, their involvement in ovarian endometriosis has not been investigated. In this preliminary report we aimed to identify germinal stem cell markers in ovarian endometriosis. Ten paraffin-embedded ovarian endometriosis samples were screened for germ cell-specific proteins DDX4 (VASA) and IFITM3, and its relation with stem cell marker OCT4, proliferation marker PCNA and estrogen receptor alpha (ESR1), by immunohistochemistry, immunofluorescence and PCR. DDX4 and IFITM3 proteins were expressed in isolated cells and clusters of cells in the cortical region of ovarian endometriotic cysts. DDX4 and IFITM3 co-localized in cells from endometriotic stroma, and DDX4/IFITM3-expressing cells were positive for ESR1, OCT4 and PCNA. No cells expressing neither DDX4 nor IFITM3 were detected in normal endometrial tissue. The identification of germ cell-specific proteins DDX4 and IFITM3 provides the first evidence of ovarian-sourced cells in ovarian endometriotic lesions and opens up new directions towards understanding the still confusing pathogenesis of endometriosis.

  17. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages

    Directory of Open Access Journals (Sweden)

    David J. Simpson

    2016-01-01

    Full Text Available Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs. These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.

  18. A novel mechanism-based mammalian cell assay for the identification of SH2-domain-specific protein-protein inhibitors.

    Science.gov (United States)

    Rickles, R J; Henry, P A; Guan, W; Azimioara, M; Shakespeare, W C; Violette, S; Zoller, M J

    1998-10-01

    Many intracellular signal-transduction pathways are regulated by specific protein-protein interactions. These interactions are mediated by structural domains within signaling proteins that modulate a protein's cellular location, stability or activity. For example, Src-homology 2 (SH2) domains mediate protein-protein interactions through short contiguous amino acid motifs containing phosphotyrosine. As SH2 domains have been recognized as key regulatory molecules in a variety of cellular processes, they have become attractive drug targets. We have developed a novel mechanism-based cellular assay to monitor specific SH2-domain-dependent protein-protein interactions. The assay is based on a two-hybrid system adapted to function in mammalian cells where the SH2 domain ligand is phosphorylated, and binding to a specific SH2 domain can be induced and easily monitored. As examples, we have generated a series of mammalian cell lines that can be used to monitor SH2-domain-dependent activity of the signaling proteins ZAP-70 and Src. We are utilizing these cell lines to screen for immunosuppressive and anti-osteoclastic compounds, respectively, and demonstrate here the utility of this system for the identification of small-molecule, cell-permeant SH2 domain inhibitors. A mechanism-based mammalian cell assay has been developed to identify inhibitors of SH2-domain-dependent protein-protein interactions. Mechanism-based assays similar to that described here might have general use as screens for cell-permeant, nontoxic inhibitors of protein-protein interactions.

  19. P185-M Protein Identification and Validation of Results in Workflows that Integrate over Various Instruments, Datasets, Search Engines

    Science.gov (United States)

    Hufnagel, P.; Glandorf, J.; Körting, G.; Jabs, W.; Schweiger-Hufnagel, U.; Hahner, S.; Lubeck, M.; Suckau, D.

    2007-01-01

    Analysis of complex proteomes often results in long protein lists, but falls short in measuring the validity of identification and quantification results on a greater number of proteins. Biological and technical replicates are mandatory, as is the combination of the MS data from various workflows (gels, 1D-LC, 2D-LC), instruments (TOF/TOF, trap, qTOF or FTMS), and search engines. We describe a database-driven study that combines two workflows, two mass spectrometers, and four search engines with protein identification following a decoy database strategy. The sample was a tryptically digested lysate (10,000 cells) of a human colorectal cancer cell line. Data from two LC-MALDI-TOF/TOF runs and a 2D-LC-ESI-trap run using capillary and nano-LC columns were submitted to the proteomics software platform ProteinScape. The combined MALDI data and the ESI data were searched using Mascot (Matrix Science), Phenyx (GeneBio), ProteinSolver (Bruker and Protagen), and Sequest (Thermo) against a decoy database generated from IPI-human in order to obtain one protein list across all workflows and search engines at a defined maximum false-positive rate of 5%. ProteinScape combined the data to one LC-MALDI and one LC-ESI dataset. The initial separate searches from the two combined datasets generated eight independent peptide lists. These were compiled into an integrated protein list using the ProteinExtractor algorithm. An initial evaluation of the generated data led to the identification of approximately 1200 proteins. Result integration on a peptide level allowed discrimination of protein isoforms that would not have been possible with a mere combination of protein lists.

  20. MAGGIE Component 1: Identification and Purification of Native and Recombinant Multiprotein Complexes and Modified Proteins from Pyrococcus furiosus

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. [University of Georgia; W. W. Adams, Michael

    2014-01-07

    Virtualy all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes (PCs), the composition of which is largely unknown. Structural genomics efforts have demonstrated that less than 25% of the genes in a given prokaryotic genome will yield stable, soluble proteins when expressed using a one-ORF-at-a-time approach. We proposed that much of the remaining 75% of the genes encode proteins that are part of multiprotein complexes or are modified post-translationally, for example, with metals. The problem is that PCs and metalloproteins (MPs) cannot be accurately predicted on a genome-wide scale. The only solution to this dilemma is to experimentally determine PCs and MPs in biomass of a model organism and to develop analytical tools that can then be applied to the biomass of any other organism. In other words, organisms themselves must be analyzed to identify their PCs and MPs: “native proteomes” must be determined. This information can then be utilized to design multiple ORF expression systems to produce recombinant forms of PCs and MPs. Moreover, the information and utility of this approach can be enhanced by using a hyperthermophile, one that grows optimally at 100°C, as a model organism. By analyzing the native proteome at close to 100 °C below the optimum growth temperature, we will trap reversible and dynamic complexes, thereby enabling their identification, purification, and subsequent characterization. The model organism for the current study is Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100°C. It is grown up to 600-liter scale and kg quantities of biomass are available. In this project we identified native PCs and MPs using P. furiosus biomass (with MS/MS analyses to identify proteins by component 4). In addition, we provided samples of abundant native PCs and MPs for structural characterization (using SAXS by component 5). We also designed and evaluated generic bioinformatics and

  1. Combining metal oxide affinity chromatography (MOAC and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Weckwerth Wolfram

    2005-11-01

    Full Text Available Abstract Background Protein phosphorylation is accepted as a major regulatory pathway in plants. More than 1000 protein kinases are predicted in the Arabidopsis proteome, however, only a few studies look systematically for in vivo protein phosphorylation sites. Owing to the low stoichiometry and low abundance of phosphorylated proteins, phosphorylation site identification using mass spectrometry imposes difficulties. Moreover, the often observed poor quality of mass spectra derived from phosphopeptides results frequently in uncertain database hits. Thus, several lines of evidence have to be combined for a precise phosphorylation site identification strategy. Results Here, a strategy is presented that combines enrichment of phosphoproteins using a technique termed metaloxide affinity chromatography (MOAC and selective ion trap mass spectrometry. The complete approach involves (i enrichment of proteins with low phosphorylation stoichiometry out of complex mixtures using MOAC, (ii gel separation and detection of phosphorylation using specific fluorescence staining (confirmation of enrichment, (iii identification of phosphoprotein candidates out of the SDS-PAGE using liquid chromatography coupled to mass spectrometry, and (iv identification of phosphorylation sites of these enriched proteins using automatic detection of H3PO4 neutral loss peaks and data-dependent MS3-fragmentation of the corresponding MS2-fragment. The utility of this approach is demonstrated by the identification of phosphorylation sites in Arabidopsis thaliana seed proteins. Regulatory importance of the identified sites is indicated by conservation of the detected sites in gene families such as ribosomal proteins and sterol dehydrogenases. To demonstrate further the wide applicability of MOAC, phosphoproteins were enriched from Chlamydomonas reinhardtii cell cultures. Conclusion A novel phosphoprotein enrichment procedure MOAC was applied to seed proteins of A. thaliana and to

  2. Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Peterslund, Niels Anker; Graversen, Jonas Heilskov

    2002-01-01

    The hemoglobin scavenger receptor (HbSR/CD163) is an interleukin-6- and glucocorticoid-regulated macrophage/monocyte receptor for uptake of haptoglobin-hemoglobin complexes. Moreover, there are strong indications that HbSR serves an anti-inflammatory function. Immunoprecipitation and immunoblotting...... enabled identification of a soluble plasma form of HbSR (sHbSR) having an electrophoretic mobility equal to that of recombinant HbSR consisting of the extracellular domain (scavenger receptor cysteine-rich 1-9). A sandwich enzyme-linked immunosorbent assay was established and used to measure the s...... a level of sHbSR above the range of healthy persons. Patients with myelomonocytic leukemias and pneumonia/sepsis exhibited the highest levels (up to 67.3 mg/L). In conclusion, sHbSR is an abundant plasma protein potentially valuable in monitoring patients with infections and myelomonocytic leukemia....

  3. Identification of proteins in painting cross-sections by immunofluorescence microscopy.

    Science.gov (United States)

    Vagnini, M; Pitzurra, L; Cartechini, L; Miliani, C; Brunetti, B G; Sgamellotti, A

    2008-09-01

    Immunofluorescence microscopy offers a highly specific analytical tool for unambiguous recognition and mapping of proteins in complex matrices. In the present work, the analytical potentials of immunofluorescence microscopy have been exploited to provide recognition of proteinaceous binders in painting cross-sections. An optimised analytical protocol is proposed for the identification of ovalbumin and of bovine serum albumin as markers of egg white and casein, respectively. The study has been carried out on laboratory model samples simulating both easel and mural paintings. The obtained results demonstrated the effectiveness of the method, suggesting the potential future use of immunofluorescence microscopy as a routine diagnostic tool in conservation science. Possible developments of the proposed methodology in order to improve the specificity of the method and its detection sensitivity are presented and discussed.

  4. Optimizing High-Resolution Mass Spectrometry for the Identification of Low-Abundance Post-Translational Modifications of Intact Proteins.

    Science.gov (United States)

    Kilpatrick, Lisa E; Kilpatrick, Eric L

    2017-09-01

    Intact protein analysis by liquid chromatography-mass spectrometry (LC-MS) is now possible due to the improved capabilities of mass spectrometers yielding greater resolution, mass accuracy, and extended mass ranges. Concurrent measurement of post-translational modifications (PTMs) during LC-MS of intact proteins is advantageous while monitoring critical proteoform status, such as for clinical samples or during production of reference materials. However, difficulties exist for PTM identification when the protein is large or contains multiple modification sites. In this work, analyses of low-abundance proteoforms of proteins of clinical or therapeutic interest, including C-reactive protein, vitamin D-binding protein, transferrin, and immunoglobulin G (NISTmAb), were performed on an Orbitrap Elite mass spectrometer. This work investigated the effect of various instrument parameters including source temperatures, in-source CID, microscan type and quantity, resolution, and automatic gain control on spectral quality. The signal-to-noise ratio was found to be a suitable spectral attribute which facilitated identification of low abundance PTMs. Source temperature and CID voltage were found to require specific optimization for each protein. This study identifies key instrumental parameters requiring optimization for improved detection of a variety of PTMs by LC-MS and establishes a methodological framework to ensure robust proteoform identifications, the first step in their ultimate quantification.

  5. Identification and characterization of WhiB-like family proteins of the Bifidobacterium genus.

    Science.gov (United States)

    Averina, Olga V; Zakharevich, Natalia V; Danilenko, Valery N

    2012-08-01

    Bifidobacteria are strictly anaerobic bacteria, that are an important component of human microbiote due to their probiotic characteristics. They are frequently exposed to a variety of stresses, therefore, identification of genes implicated in stress responses in bifidobacteria is critical for biomedicine and maintenance of industrial strains. The WhiB-like family proteins unique for Actinobacteria are transcriptional regulators involved in major cellular processes, including stress responses. The aim of this study was the identification of WhiB-like family proteins of the Bifidobacterium genus of the Actinobacteria class and functional characterization of conservative whiB-like genes. The DNA sequence database of 36 strains revealed a family of WhiB-encoding genes. It were identified the wblE orthologs in all Bifidobacteria species and the whiB2 orthologs in all bifidobacterial strains except of all strains of Bifidobacterium animalis subsp. lactis and Bifidobacterium gallicum. Some strains, in particular, those of the Bifidobacterium longum group, contain additional whiB-like genes of different length and a low degree of similarity in sequences. The wblE and whiB2 genes of the Bifidobacterium genus are evolutionary conservative and ancient genes. The real-time PCR analysis showed that transcription of wblE is induced by a variety of stress conditions such as heat shock, osmotic, oxidative stresses, by antibiotic tetracycline and bile salt treatment, the nutrient starvation and entry into late stationary phase. The wblE gene may play a significant role in general stress responses in bifidobacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens.

    Science.gov (United States)

    Shoaf-Sweeney, Kari D; Larson, Charles L; Tang, Xiaoting; Konkel, Michael E

    2008-11-01

    Campylobacter jejuni is one of the leading bacterial causes of food-borne gastroenteritis. Infection with C. jejuni is frequently acquired through the consumption of undercooked poultry or foods cross-contaminated with raw poultry. Given the importance of poultry as a reservoir for Campylobacter organisms, investigators have performed studies to understand the protective role of maternal antibodies in the ecology of Campylobacter colonization of poultry. In a previous study, chicks with maternal antibodies generated against the S3B strain of C. jejuni provided protection against Campylobacter colonization (O. Sahin, N. Luo, S. Huang, and Q. Zhang, Appl. Environ. Microbiol. 69:5372-5379, 2003). We obtained serum samples, collectively referred to as the C. jejuni S3B-SPF sera, from the previous study. These sera were determined to contain maternal antibodies that reacted against C. jejuni whole-cell lysates as judged by enzyme-linked immunosorbent assay. The antigens recognized by the C. jejuni S3B-SPF antibodies were identified by immunoblot analysis, coupled with mass spectrometry, of C. jejuni outer membrane protein extracts. This approach led to the identification of C. jejuni proteins recognized by the maternal antibodies, including the flagellin proteins and CadF adhesin. In vitro assays revealed that the C. jejuni S3B-SPF sera retarded the motility of the C. jejuni S3B homologous strain but did not retard the motility of a heterologous strain of C. jejuni (81-176). This finding provides a possible mechanism explaining why maternal antibodies confer enhanced protection against challenge with a homologous strain compared to a heterologous strain. Collectively, this study provides a list of C. jejuni proteins against which protective antibodies are generated in hens and passed to chicks.

  7. Proteomic identification of responsive proteins of Vibrio parahaemolyticus under high hydrostatic pressure.

    Science.gov (United States)

    Fu, Ling-Lin; Wang, Rui; Wang, Yanbo; Lin, Junda

    2014-10-01

    High hydrostatic pressure (HHP) processing is currently being used as a treatment for certain foods to inhibit spoilage organisms and control the presence of foodborne pathogens. In this study proteome profiles were performed by two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF identification to determine the effects of HHP (50, 100, 150 and 200 MPa, each for 10 min) on Vibrio parahaemolyticus ATCC 17802 (∼8 log CFU mL⁻¹) in order to understand how it responds to mechanical stress injury. Multiple comparisons of 2-DE revealed that the majority of changes in protein abundance occurred in a pressure-dependent fashion. A total of 18 differentially expressed protein spots were successfully identified by MALDI-TOF/TOF analysis. Moreover, quantitative RT-PCR and immunoblotting also substantiated the changes of transcriptional and translational levels of representative proteins. Our results suggested that V. parahaemolyticus may respond to HHP treatment through suppression of membrane stability and functionality (PfaC, Alr2, MltA, PLA2 and PatH), depression of biosynthesis and cellular processes (NadB, PyrB and ArgB), decreased levels of transcription (RpoD) and translation (RpsA, RplJ and PheS), and effective activation of protein folding and stress-related elements (GroES, DnaK and GroEL). This study may provide insight into the nature of the cellular targets of high pressure and in high-pressure resistance mechanisms in V. parahaemolyticus. © 2014 Society of Chemical Industry.

  8. Proteome analysis of barley seeds: Identification of major proteins from two-dimensional gels (pl 4-7)

    DEFF Research Database (Denmark)

    Østergaard, O.; Finnie, Christine; Laugesen, S.

    2004-01-01

    -soluble proteins in extracts of mature barley (Hordeum vulgare) seeds and to follow their fate during germination. About 1200 and 600 spots of p/ 4-7 were detected on 2-D gels by silver staining and colloidal Coomassie Brilliant Blue staining, respectively. About 300 spots were selected for in-gel digestion...... followed by matrix-assisted laser desorption/ionization-mass spectrometry-peptide map fingerprint analysis. Database searches using measured peptide masses resulted in 198 identifications of 103 proteins in 177 spots. These include housekeeping enzymes, chaperones, defence proteins (including enzyme...... inhibitors), and proteins related to desiccation and oxidative stress. Sixty-four of the identifications were made using expressed sequence tags (ESTs). Numerous spots in the 2-D gel pattern changed during germination (micromalting) and an intensely stained area which contained large amounts of the serpin...

  9. Effect of cleavage enzyme, search algorithm and decoy database on mass spectrometric identification of wheat gluten proteins.

    Science.gov (United States)

    Vensel, William H; Dupont, Frances M; Sloane, Stacia; Altenbach, Susan B

    2011-07-01

    While tandem mass spectrometry (MS/MS) is routinely used to identify proteins from complex mixtures, certain types of proteins present unique challenges for MS/MS analyses. The major wheat gluten proteins, gliadins and glutenins, are particularly difficult to distinguish by MS/MS. Each of these groups contains many individual proteins with similar sequences that include repetitive motifs rich in proline and glutamine. These proteins have few cleavable tryptic sites, often resulting in only one or two tryptic peptides that may not provide sufficient information for identification. Additionally, there are less than 14,000 complete protein sequences from wheat in the current NCBInr release. In this paper, MS/MS methods were optimized for the identification of the wheat gluten proteins. Chymotrypsin and thermolysin as well as trypsin were used to digest the proteins and the collision energy was adjusted to improve fragmentation of chymotryptic and thermolytic peptides. Specialized databases were constructed that included protein sequences derived from contigs from several assemblies of wheat expressed sequence tags (ESTs), including contigs assembled from ESTs of the cultivar under study. Two different search algorithms were used to interrogate the database and the results were analyzed and displayed using a commercially available software package (Scaffold). We examined the effect of protein database content and size on the false discovery rate. We found that as database size increased above 30,000 sequences there was a decrease in the number of proteins identified. Also, the type of decoy database influenced the number of proteins identified. Using three enzymes, two search algorithms and a specialized database allowed us to greatly increase the number of detected peptides and distinguish proteins within each gluten protein group. Published by Elsevier Ltd.

  10. Sialome of a generalist lepidopteran herbivore: identification of transcripts and proteins from Helicoverpa armigera labial salivary glands.

    Directory of Open Access Journals (Sweden)

    Maria de la Paz Celorio-Mancera

    Full Text Available Although the importance of insect saliva in insect-host plant interactions has been acknowledged, there is very limited information on the nature and complexity of the salivary proteome in lepidopteran herbivores. We inspected the labial salivary transcriptome and proteome of Helicoverpa armigera, an important polyphagous pest species. To identify the majority of the salivary proteins we have randomly sequenced 19,389 expressed sequence tags (ESTs from a normalized cDNA library of salivary glands. In parallel, a non-cytosolic enriched protein fraction was obtained from labial salivary glands and subjected to two-dimensional gel electrophoresis (2-DE and de novo peptide sequencing. This procedure allowed comparison of peptides and EST sequences and enabled us to identify 65 protein spots from the secreted labial saliva 2DE proteome. The mass spectrometry analysis revealed ecdysone, glucose oxidase, fructosidase, carboxyl/cholinesterase and an uncharacterized protein previously detected in H. armigera midgut proteome. Consistently, their corresponding transcripts are among the most abundant in our cDNA library. We did find redundancy of sequence identification of saliva-secreted proteins suggesting multiple isoforms. As expected, we found several enzymes responsible for digestion and plant offense. In addition, we identified non-digestive proteins such as an arginine kinase and abundant proteins of unknown function. This identification of secreted salivary gland proteins allows a more comprehensive understanding of insect feeding and poses new challenges for the elucidation of protein function.

  11. ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry.

    Science.gov (United States)

    Zamdborg, Leonid; LeDuc, Richard D; Glowacz, Kevin J; Kim, Yong-Bin; Viswanathan, Vinayak; Spaulding, Ian T; Early, Bryan P; Bluhm, Eric J; Babai, Shannee; Kelleher, Neil L

    2007-07-01

    ProSight PTM 2.0 (http://prosightptm2.scs.uiuc.edu) is the next generation of the ProSight PTM web-based system for the identification and characterization of proteins using top down tandem mass spectrometry. It introduces an entirely new data-driven interface, integrated Sequence Gazer for protein characterization, support for fixed modifications, terminal modifications and improved support for multiple precursor ions (multiplexing). Furthermore, it supports data import and export for local analysis and collaboration.

  12. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context.

    Science.gov (United States)

    Zhou, Jiyun; Xu, Ruifeng; He, Yulan; Lu, Qin; Wang, Hongpeng; Kong, Bing

    2016-06-10

    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community.

  13. Identification of QTL Affecting Protein and Amino Acid Contents in Rice

    Directory of Open Access Journals (Sweden)

    Ming ZHONG

    2011-09-01

    Full Text Available The phenotypes of protein and amino acid contents were measured in an F9 recombinant inbred line population derived from a cross between Zhenshan 97B and Delong 208. A total of 48 and 64 QTLs were identified in 2004 and 2005, respectively. The contribution of each QTL to the phenotypic variation ranged from 4.0% to 43.7%. Most QTLs co-localized, forming 29 QTL clusters on the chromosomes with three major ones detected in both years, which were mapped on chromosomes 1, 7 and 9, respectively. The two QTL clusters for amino acid content, qAa1 and qAa7, influenced almost all the traits with the allele from Zhenshan 97B, and the third QTL cluster for amino acid content, qAa9, increased the lysine content with the allele from Delong 208. A wide coincidence was found between the QTL detected under this study and the loci involved in amino acid metabolism pathways in nitrogen assimilation and transport, or protein biosynthesis. The results would facilitate the identification of candidate genes and could be used in marker-assisted selection for the favorable allele in rice quality improvement.

  14. Entamoeba invadens: Identification of a SERCA protein and effect of SERCA inhibitors on encystation.

    Science.gov (United States)

    Martínez-Higuera, Aarón; Herrera-Martínez, Mayra; Chávez-Munguía, Bibiana; Valle-Solís, Martha; Muñiz-Lino, Marcos A; Cázares-Apátiga, Javier; Rodríguez, Mario A

    2015-12-01

    Calcium has an important role on signaling of different cellular processes, including growth and differentiation. Signaling by calcium also has an essential function in pathogenesis and differentiation of the protozoan parasites Entamoeba histolytica and Entamoeba invadens. However, the proteins of these parasites that regulate the cytoplasmic concentration of this ion are poorly studied. In eukaryotic cells, the calcium-ATPase of the SERCA type plays an important role in calcium homeostasis by catalyzing the active efflux of calcium from cytoplasm to endoplasmic reticulum. Here, we reported the identification of SERCA of E. invadens (EiSERCA). This protein contains a putative sequence for endoplasmic reticulum retention and all domains involved in calcium transport identified in mammalian SERCA. By immunofluorescence assays, an antibody against SERCA of E. histolytica detected EiSERCA in a vesicular network in the cytoplasm of E. invadens trophozoites, co-localizing with calreticulin. Interestingly, EiSERCA was redistributed close to plasma membrane during encystation, suggesting that this pump could participate in regulate the calcium concentration during this process. In addition, thapsigargin and cyclopiazonic acid, both specific inhibitors of SERCA, affected the number and structure of cysts, supporting the hypothesis that calcium flux mediated by SERCA has an important role in the life cycle of Entamoeba. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds.

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Zheng, Mingyue; Huang, Tao; Cai, Yu-Dong

    2016-12-01

    Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.

  16. ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry

    National Research Council Canada - National Science Library

    Zamdborg, Leonid; LeDuc, Richard D; Glowacz, Kevin J; Kim, Yong-Bin; Viswanathan, Vinayak; Spaulding, Ian T; Early, Bryan P; Bluhm, Eric J; Babai, Shannee; Kelleher, Neil L

    2007-01-01

    ProSight PTM 2.0 (http://prosightptm2.scs.uiuc.edu) is the next generation of the ProSight PTM web-based system for the identification and characterization of proteins using top down tandem mass spectrometry...

  17. Enhanced protein identification using graphite-modified MALDI plates for offline LC-MALDI-MS/MS bottom-up proteomics.

    Science.gov (United States)

    Maus, Anthony; Mignon, Rudolph; Basile, Franco

    2018-01-08

    The use of offline liquid chromatography-matrix assisted laser desorption/ionization (LC-MALDI) tandem mass spectrometry (MS/MS) for bottom-up proteomics offers advantages in terms of cost, ease of use, and the time-decoupled nature of the separation step and the mass analysis. A method was developed to improve the capabilities of LC-MALDI-MS/MS in terms of protein identification in a bottom-up proteomic workflow. Enhanced protein identification is achieved by an increase in the MALDI signal intensity of the precursor peptides brought about by coating the MALDI plate with a thin film of graphite powder. Using the Escherichia coli proteome, it is demonstrated that the graphite-modified MALDI plates used in an offline LC-MALDI-MS/MS bottom-up protocol led to a 50-135% increase in the number of peptide identifications, and a concomitant 21%-105% increase in the number of proteins inferred. We identify factors that lead to improvements in peptide sequence identifications and in the number of unique proteins identified when compared to using an unmodified MALDI plate. These improvements are achieved using a low cost approach that it is easy to implement, requires no hardware/protocol modification, it is compatible with LC and adds no additional analysis time. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The identification of protein biomarkers distinguishing virus transmission competent and refractive insect populations by coupling genetics with quantitative intact proteomics

    Science.gov (United States)

    Control of insects that vector pathogens is a massive challenge to human health and agriculture. Yellow dwarf viruses (YDV) cause economically significant disease in cereal crops (barley, wheat, rye, maize) worldwide and are vectored by aphids. The identification of vector proteins mediating virus ...

  19. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  20. Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ikumi Fujita

    Full Text Available The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1(+ have revealed that the long N-terminal region (1-456 a.a. [amino acids] of Rap1 (full length: 693 a.a. is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457-693 a.a. containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.

  1. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  2. Identification and analysis of the acetylated status of poplar proteins reveals analogous N-terminal protein processing mechanisms with other eukaryotes.

    Science.gov (United States)

    Liu, Chang-Cai; Zhu, Hang-Yong; Dong, Xiu-Mei; Ning, De-Li; Wang, Hong-Xia; Li, Wei-Hua; Yang, Chuan-Ping; Wang, Bai-Chen

    2013-01-01

    The N-terminal protein processing mechanism (NPM) including N-terminal Met excision (NME) and N-terminal acetylation (N(α)-acetylation) represents a common protein co-translational process of some eukaryotes. However, this NPM occurred in woody plants yet remains unknown. To reveal the NPM in poplar, we investigated the N(α)-acetylation status of poplar proteins during dormancy by combining tandem mass spectrometry with TiO2 enrichment of acetylated peptides. We identified 58 N-terminally acetylated (N(α)-acetylated) proteins. Most proteins (47, >81%) are subjected to N(α)-acetylation following the N-terminal removal of Met, indicating that N(α)-acetylation and NME represent a common NPM of poplar proteins. Furthermore, we confirm that poplar shares the analogous NME and N(α)-acetylation (NPM) to other eukaryotes according to analysis of N-terminal features of these acetylated proteins combined with genome-wide identification of the involving methionine aminopeptidases (MAPs) and N-terminal acetyltransferase (Nat) enzymes in poplar. The N(α)-acetylated reactions and the involving enzymes of these poplar proteins are also identified based on those of yeast and human, as well as the subcellular location information of these poplar proteins. This study represents the first extensive investigation of N(α)-acetylation events in woody plants, the results of which will provide useful resources for future unraveling the regulatory mechanisms of N(α)-acetylation of proteins in poplar.

  3. Structural identification of the lipopolysaccharide-binding capability of a cupin-family protein from Helicobacter pylori.

    Science.gov (United States)

    Sim, Dae-Won; Kim, Ji-Hun; Kim, Hye-Yeon; Jang, Jung-Hwa; Lee, Woo Cheol; Kim, Eun-Hee; Park, Pyo-Jam; Lee, Kwang-Ho; Won, Hyung-Sik

    2016-09-01

    We solved the crystal structure of a functionally uncharacterized protein, HP0902, from Helicobacter pylori. Its structure demonstrated an all-β cupin fold that cannot bind metal ions due to the absence of a metal-binding histidine that is conserved in many metallo-cupins. In contrast, isothermal titration calorimetry and NMR titration demonstrated that HP0902 is able to bind bacterial endotoxin lipopolysaccharides (LPS) through its surface-exposed loops, where metal-binding sites are usually found in other metallo-cupins. This report constitutes the first identification of an LPS-interacting protein, both in the cupin family and in H. pylori. Furthermore, identification of the ability of HP0902 to bind LPS uncovers a putative role for this protein in H. pylori pathogenicity. © 2016 Federation of European Biochemical Societies.

  4. On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry.

    Science.gov (United States)

    Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Sabbatini, Luigia; Palmisano, Francesco

    2015-05-01

    The simultaneous identification of lipids and proteins by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) after direct on-plate processing of micro-samples supported on colloidal graphite is demonstrated. Taking advantages of large surface area and thermal conductivity, graphite provided an ideal substrate for on-plate proteolysis and lipid extraction. Indeed proteins could be efficiently digested on-plate within 15 min, providing sequence coverages comparable to those obtained by conventional in-solution overnight digestion. Interestingly, detection of hydrophilic phosphorylated peptides could be easily achieved without any further enrichment step. Furthermore, lipids could be simultaneously extracted/identified without any additional treatment/processing step as demonstrated for model complex samples such as milk and egg. The present approach is simple, efficient, of large applicability and offers great promise for protein and lipid identification in very small samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms

    DEFF Research Database (Denmark)

    Maeda, K.; Finnie, Christine; Svensson, Birte

    2004-01-01

    Barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 differ in temporal and spatial distribution and in kinetic properties. Target proteins of HvTrxh1 and HvTrxh2 were identified in mature seeds and in seeds after 72 h of germination. Improvement of the established method for identification of thior......Barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 differ in temporal and spatial distribution and in kinetic properties. Target proteins of HvTrxh1 and HvTrxh2 were identified in mature seeds and in seeds after 72 h of germination. Improvement of the established method for identification...... of thioredoxin-targeted proteins based on two-dimensional electrophoresis and fluorescence labelling of thiol groups was achieved by application of a highly sensitive Cy5 maleimide dye and large-format two-dimensional gels, resulting in a 10-fold increase in the observed number of labelled protein spots....... The technique also provided information about accessible thiol groups in the proteins identified in the barley seed proteome. In total, 16 different putative target proteins were identified from 26 spots using tryptic in-gel digestion, matrix-assisted laser-desorption ionization-time-of-flight MS and database...

  6. A computational method for prediction of excretory proteins and application to identification of gastric cancer markers in urine.

    Directory of Open Access Journals (Sweden)

    Celine S Hong

    2011-02-01

    Full Text Available A novel computational method for prediction of proteins excreted into urine is presented. The method is based on the identification of a list of distinguishing features between proteins found in the urine of healthy people and proteins deemed not to be urine excretory. These features are used to train a classifier to distinguish the two classes of proteins. When used in conjunction with information of which proteins are differentially expressed in diseased tissues of a specific type versus control tissues, this method can be used to predict potential urine markers for the disease. Here we report the detailed algorithm of this method and an application to identification of urine markers for gastric cancer. The performance of the trained classifier on 163 proteins was experimentally validated using antibody arrays, achieving >80% true positive rate. By applying the classifier on differentially expressed genes in gastric cancer vs normal gastric tissues, it was found that endothelial lipase (EL was substantially suppressed in the urine samples of 21 gastric cancer patients versus 21 healthy individuals. Overall, we have demonstrated that our predictor for urine excretory proteins is highly effective and could potentially serve as a powerful tool in searches for disease biomarkers in urine in general.

  7. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations

    National Research Council Canada - National Science Library

    Li, Liqi; Cui, Xiang; Yu, Sanjiu; Zhang, Yuan; Luo, Zhong; Yang, Hua; Zhou, Yue; Zheng, Xiaoqi

    2014-01-01

    .... Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40...

  8. The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: clinical applications in the cardiovascular diseases.

    Science.gov (United States)

    Gianazza, Erica; Tremoli, Elena; Banfi, Cristina

    2014-12-01

    Selected reaction monitoring, also known as multiple reaction monitoring, is a powerful targeted mass spectrometry approach for a confident quantitation of proteins/peptides in complex biological samples. In recent years, its optimization and application have become pivotal and of great interest in clinical research to derive useful outcomes for patient care. Thus, selected reaction monitoring/multiple reaction monitoring is now used as a highly sensitive and selective method for the evaluation of protein abundances and biomarker verification with potential applications in medical screening. This review describes technical aspects for the development of a robust multiplex assay and discussing its recent applications in cardiovascular proteomics: verification of promising disease candidates to select only the highest quality peptides/proteins for a preclinical validation, as well as quantitation of protein isoforms and post-translational modifications.

  9. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kandaswamy, Krishna Kumar [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck, 23538 Luebeck (Germany); Pugalenthi, Ganesan [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hartmann, Enno; Kalies, Kai-Uwe [Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Luebeck, 23538 Luebeck (Germany); Moeller, Steffen [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Suganthan, P.N. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Martinetz, Thomas, E-mail: martinetz@inb.uni-luebeck.de [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany)

    2010-01-15

    Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).

  10. Specific, sensitive and accurate quantification of albumin, retinol binding protein and transferrin in human urine and serum by zone immunoelectrophoresis assay (ZIA).

    Science.gov (United States)

    Vesterberg, O

    1994-05-01

    For zone immunoelectrophoresis assay (ZIA) glass tubes, ID 2 mm and 90 mm high, are filled to 2/3 with buffer containing agarose and antibodies against the protein to be quantified, each sample being pipetted on top of separate agarose gel rods. On electrophoresis at 35-150 V for several hours, the sample proteins enter the gel with resultant immunoprecipitates, visualized by staining. The extension of each immunoprecipitation zone from the upper gel surface (measured with a ruler) is directly proportional to the amount of protein in each sample and can easily be quantitated by comparison with a linear calibration curve. ZIA can be used for quantification of several proteins in blood serum and plasma as well as in urine, as is illustrated for albumin, retinol-binding protein (RBP) and transferrin. The recovery of the pure proteins added to urine is often close to 100%. ZIA has many advantages: (i) simple apparatus and procedure (no gel punching nor cooling), (ii) minimal antiserum consumption (1 mL may allow > 1000 assays), (iii) electrophoresis can be performed within a few hours or overnight, (iv) low coefficient of variation (often < 4%), (v) linear calibration curves, (vi) low detection limit (< 20 ng/mL), (vii) wide concentration ranges, (viii) no kits nor unique antisera preparation are required, and (ix) good agreement with the results from other methods.

  11. Separation and identification of Musa acuminate Colla (banana) leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X

    2013-12-19

    To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.

  12. Shotgun redox proteomics: identification and quantitation of carbonylated proteins in the UVB-resistant marine bacterium, Photobacterium angustum S14.

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    Full Text Available UVB oxidizes proteins through the generation of reactive oxygen species. One consequence of UVB irradiation is carbonylation, the irreversible formation of a carbonyl group on proline, lysine, arginine or threonine residues. In this study, redox proteomics was performed to identify carbonylated proteins in the UVB resistant marine bacterium Photobacterium angustum. Mass-spectrometry was performed with either biotin-labeled or dinitrophenylhydrazide (DNPH derivatized proteins. The DNPH redox proteomics method enabled the identification of 62 carbonylated proteins (5% of 1221 identified proteins in cells exposed to UVB or darkness. Eleven carbonylated proteins were quantified and the UVB/dark abundance ratio was determined at both the protein and peptide levels. As a result we determined which functional classes of proteins were carbonylated, which residues were preferentially modified, and what the implications of the carbonylation were for protein function. As the first large scale, shotgun redox proteomics analysis examining carbonylation to be performed on bacteria, our study provides a new level of understanding about the effects of UVB on cellular proteins, and provides a methodology for advancing studies in other biological systems.

  13. Shotgun redox proteomics: identification and quantitation of carbonylated proteins in the UVB-resistant marine bacterium, Photobacterium angustum S14.

    Science.gov (United States)

    Matallana-Surget, Sabine; Cavicchioli, Ricardo; Fauconnier, Charles; Wattiez, Ruddy; Leroy, Baptiste; Joux, Fabien; Raftery, Mark J; Lebaron, Philippe

    2013-01-01

    UVB oxidizes proteins through the generation of reactive oxygen species. One consequence of UVB irradiation is carbonylation, the irreversible formation of a carbonyl group on proline, lysine, arginine or threonine residues. In this study, redox proteomics was performed to identify carbonylated proteins in the UVB resistant marine bacterium Photobacterium angustum. Mass-spectrometry was performed with either biotin-labeled or dinitrophenylhydrazide (DNPH) derivatized proteins. The DNPH redox proteomics method enabled the identification of 62 carbonylated proteins (5% of 1221 identified proteins) in cells exposed to UVB or darkness. Eleven carbonylated proteins were quantified and the UVB/dark abundance ratio was determined at both the protein and peptide levels. As a result we determined which functional classes of proteins were carbonylated, which residues were preferentially modified, and what the implications of the carbonylation were for protein function. As the first large scale, shotgun redox proteomics analysis examining carbonylation to be performed on bacteria, our study provides a new level of understanding about the effects of UVB on cellular proteins, and provides a methodology for advancing studies in other biological systems.

  14. Genes optimized by evolution for accurate and fast translation encode in Archaea and Bacteria a broad and characteristic spectrum of protein functions

    Directory of Open Access Journals (Sweden)

    Merkl Rainer

    2010-11-01

    Full Text Available Abstract Background In many microbial genomes, a strong preference for a small number of codons can be observed in genes whose products are needed by the cell in large quantities. This codon usage bias (CUB improves translational accuracy and speed and is one of several factors optimizing cell growth. Whereas CUB and the overrepresentation of individual proteins have been studied in detail, it is still unclear which high-level metabolic categories are subject to translational optimization in different habitats. Results In a systematic study of 388 microbial species, we have identified for each genome a specific subset of genes characterized by a marked CUB, which we named the effectome. As expected, gene products related to protein synthesis are abundant in both archaeal and bacterial effectomes. In addition, enzymes contributing to energy production and gene products involved in protein folding and stabilization are overrepresented. The comparison of genomes from eleven habitats shows that the environment has only a minor effect on the composition of the effectomes. As a paradigmatic example, we detailed the effectome content of 37 bacterial genomes that are most likely exposed to strongest selective pressure towards translational optimization. These effectomes accommodate a broad range of protein functions like enzymes related to glycolysis/gluconeogenesis and the TCA cycle, ATP synthases, aminoacyl-tRNA synthetases, chaperones, proteases that degrade misfolded proteins, protectants against oxidative damage, as well as cold shock and outer membrane proteins. Conclusions We made clear that effectomes consist of specific subsets of the proteome being involved in several cellular functions. As expected, some functions are related to cell growth and affect speed and quality of protein synthesis. Additionally, the effectomes contain enzymes of central metabolic pathways and cellular functions sustaining microbial life under stress situations. These

  15. Mass spectrometric identification of proteins in complex post-genomic projects. Soluble proteins of the metabolically versatile, denitrifying 'Aromatoleum' sp. strain EbN1.

    Science.gov (United States)

    Hufnagel, Peter; Rabus, Ralf

    2006-01-01

    The rapidly developing proteomics technologies help to advance the global understanding of physiological and cellular processes. The lifestyle of a study organism determines the type and complexity of a given proteomic project. The complexity of this study is characterized by a broad collection of pathway-specific subproteomes, reflecting the metabolic versatility as well as the regulatory potential of the aromatic-degrading, denitrifying bacterium 'Aromatoleum' sp. strain EbN1. Differences in protein profiles were determined using a gel-based approach. Protein identification was based on a progressive application of MALDI-TOF-MS, MALDI-TOF-MS/MS and LC-ESI-MS/MS. This progression was result-driven and automated by software control. The identification rate was increased by the assembly of a project-specific list of background signals that was used for internal calibration of the MS spectra, and by the combination of two search engines using a dedicated MetaScoring algorithm. In total, intelligent bioinformatics could increase the identification yield from 53 to 70% of the analyzed 5,050 gel spots; a total of 556 different proteins were identified. MS identification was highly reproducible: most proteins were identified more than twice from parallel 2DE gels with an average sequence coverage of >50% and rather restrictive score thresholds (Mascot >or=95, ProFound >or=2.2, MetaScore >or=97). The MS technologies and bioinformatics tools that were implemented and integrated to handle this complex proteomic project are presented. In addition, we describe the basic principles and current developments of the applied technologies and provide an overview over the current state of microbial proteome research. Copyright (c) 2006 S. Karger AG, Basel.

  16. Identification of Giardia lamblia DHHC proteins and the role of protein S-palmitoylation in the encystation process.

    Science.gov (United States)

    Merino, María C; Zamponi, Nahuel; Vranych, Cecilia V; Touz, María C; Rópolo, Andrea S

    2014-07-01

    Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.

  17. Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the Encystation Process

    Science.gov (United States)

    Merino, María C.; Zamponi, Nahuel; Vranych, Cecilia V.; Touz, María C.; Rópolo, Andrea S.

    2014-01-01

    Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation. PMID:25058047

  18. Identification of learning-induced changes in protein networks in the hippocampi of a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Ferreira, E; Shaw, D M; Oddo, S

    2016-07-05

    Memory loss is the most profound clinical manifestation in Alzheimer's disease (AD); however, the molecular mechanisms underlying these deficits are poorly understood. Identification of the molecular pathways involved in the onset of cognitive deficits may lead to the identification of key events in the pathogenesis of AD. Using isobaric tags for relative and absolute quantitation (iTRAQ) and proteomic methods, here we identified learning-induced changes in the hippocampal proteome of non-transgenic (NonTg) and 3 × Tg-AD mice, a widely used animal model of AD. We found that expression of 192 proteins was differentially regulated by learning in NonTg mice. Notably, of these 192 proteins, only 28 were also differentially regulated by learning in 3 × Tg-AD mice, whereas the levels of 164 proteins were uniquely changed in NonTg mice but not in 3 × Tg-AD mice. These data suggest that during learning, 3 × Tg-AD mice fail to differentially regulate 164 proteins. Gene ontology and protein interaction analyses indicated that these proteins were overrepresented in RNA processing, specifically RNA transport, splicing and mRNA translation initiation pathways. These findings suggest that mRNA-processing events that take place during learning and memory are significantly altered in 3 × Tg-AD mice.

  19. Analysis of Sus scrofa liver proteome and identification of proteins differentially expressed between genders, and conventional and genetically enhanced lines.

    Science.gov (United States)

    Golovan, Serguei P; Hakimov, Hatam A; Verschoor, Chris P; Walters, Sandra; Gadish, Moshe; Elsik, Christine; Schenkel, Flavio; Chiu, David K Y; Forsberg, Cecil W

    2008-09-01

    Porcine liver proteome iTRAQ analysis enabled the confident identification of 880 proteins with a rate of false positive identifications of less than 5%. Proteins involved in energy metabolism, catabolism, protein biosynthesis, electron transport, and other oxidoreductase reactions were highly enriched confirming the central role of liver as the major chemical and energy factory. Comparative analysis with human and mouse liver proteomes demonstrated that 80% of proteins were common to all three liver proteomes. In addition, it was also demonstrated that both sex of the animal and introduction of a novel phytase transgene into the genome each affected around 5% of total liver proteome. After controlling the false discovery rate (FDRonly four proteins (EPHX1, CAT, PAH, ST13) were shown to be differentially expressed between genders (Males/Females) and two proteins (SELENBP2, TAGLN) were differentially expressed between two lines (Transgenic/Conventional pigs). Current analysis is the largest proteome analysis for pig and complements the more extensive human and mouse proteome projects.

  20. Identification of the gene encoding Brain Cell Membrane Protein 1 (BCMP1, a putative four-transmembrane protein distantly related to the Peripheral Myelin Protein 22 / Epithelial Membrane Proteins and the Claudins

    Directory of Open Access Journals (Sweden)

    Christophe Daniel

    2001-07-01

    Full Text Available Abstract Background A partial cDNA clone from dog thyroid presenting a very significant similarity with an uncharacterized mouse EST sequence was isolated fortuitously. We report here the identification of the complete mRNA and of the gene, the product of which was termed "brain cell membrane protein 1" (BCMP1. Results The 4 kb-long mRNA sequence exhibited an open-reading frame of only 543 b followed by a 3.2 kb-long 3' untranslated region containing several AUUUA instability motifs. Analysis of the encoded protein sequence identified the presence of four putative transmembrane domains. Similarity searches in protein domain databases identified partial sequence conservations with peripheral myelin protein 22 (PMP22/ epithelial membrane proteins (EMPs and Claudins, defining the encoded protein as representative of the existence of a novel subclass in this protein family. Northern-blot analysis of the expression of the corresponding mRNA in adult dog tissues revealed the presence of a huge amount of the 4 kb transcript in the brain. An EGFP-BCMP1 fusion protein expressed in transfected COS-7 cells exhibited a membranous localization as expected. The sequences encoding BCMP1 were assigned to chromosome X in dog, man and rat using radiation hybrid panels and were partly localized in the currently available human genome sequence. Conclusions We have identified the existence in several mammalian species of a gene encoding a putative four-transmembrane protein, BCMP1, wich defines a novel subclass in this family of proteins. In dog at least, the corresponding mRNA is highly present in brain cells. The chromosomal localization of the gene in man makes of it a likely candidate gene for X-linked mental retardation.

  1. Identification of a novel protein-protein interaction motif mediating interaction of GPCR-associated sorting proteins with G protein-coupled receptors

    DEFF Research Database (Denmark)

    Bornert, Olivier; Møller, Thor Christian; Boeuf, Julien

    2013-01-01

    GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward the degra......GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward...... the degradation pathway. This protein belongs to the recently identified GPCR-associated sorting proteins (GASPs) family that comprises ten members for which structural and functional details are poorly documented. We present here a detailed structure-function relationship analysis of the molecular interaction...... between GASPs and a panel of GPCRs. In a first step, GST-pull down experiments revealed that all the tested GASPs display significant interactions with a wide range of GPCRs. Importantly, the different GASP members exhibiting the strongest interaction properties were also characterized by the presence...

  2. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  3. Sequence Identification, Recombinant Production, and Analysis of the Self-Assembly of Egg Stalk Silk Proteins from Lacewing Chrysoperla carnea

    Directory of Open Access Journals (Sweden)

    Martin Neuenfeldt

    2017-06-01

    Full Text Available Egg stalk silks of the common green lacewing Chrysoperla carnea likely comprise at least three different silk proteins. Based on the natural spinning process, it was hypothesized that these proteins self-assemble without shear stress, as adult lacewings do not use a spinneret. To examine this, the first sequence identification and determination of the gene expression profile of several silk proteins and various transcript variants thereof was conducted, and then the three major proteins were recombinantly produced in Escherichia coli encoded by their native complementary DNA (cDNA sequences. Circular dichroism measurements indicated that the silk proteins in aqueous solutions had a mainly intrinsically disordered structure. The largest silk protein, which we named ChryC1, exhibited a lower critical solution temperature (LCST behavior and self-assembled into fibers or film morphologies, depending on the conditions used. The second silk protein, ChryC2, self-assembled into nanofibrils and subsequently formed hydrogels. Circular dichroism and Fourier transform infrared spectroscopy confirmed conformational changes of both proteins into beta sheet rich structures upon assembly. ChryC3 did not self-assemble into any morphology under the tested conditions. Thereby, through this work, it could be shown that recombinant lacewing silk proteins can be produced and further used for studying the fiber formation of lacewing egg stalks.

  4. Sequence Identification, Recombinant Production, and Analysis of the Self-Assembly of Egg Stalk Silk Proteins from Lacewing Chrysoperla carnea.

    Science.gov (United States)

    Neuenfeldt, Martin; Scheibel, Thomas

    2017-06-13

    Egg stalk silks of the common green lacewing Chrysoperla carnea likely comprise at least three different silk proteins. Based on the natural spinning process, it was hypothesized that these proteins self-assemble without shear stress, as adult lacewings do not use a spinneret. To examine this, the first sequence identification and determination of the gene expression profile of several silk proteins and various transcript variants thereof was conducted, and then the three major proteins were recombinantly produced in Escherichia coli encoded by their native complementary DNA (cDNA) sequences. Circular dichroism measurements indicated that the silk proteins in aqueous solutions had a mainly intrinsically disordered structure. The largest silk protein, which we named ChryC1, exhibited a lower critical solution temperature (LCST) behavior and self-assembled into fibers or film morphologies, depending on the conditions used. The second silk protein, ChryC2, self-assembled into nanofibrils and subsequently formed hydrogels. Circular dichroism and Fourier transform infrared spectroscopy confirmed conformational changes of both proteins into beta sheet rich structures upon assembly. ChryC3 did not self-assemble into any morphology under the tested conditions. Thereby, through this work, it could be shown that recombinant lacewing silk proteins can be produced and further used for studying the fiber formation of lacewing egg stalks.

  5. In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae.

    Science.gov (United States)

    Caro, L H; Tettelin, H; Vossen, J H; Ram, A F; van den Ende, H; Klis, F M

    1997-12-01

    Use of the Von Heijne algorithm allowed the identification of 686 open reading frames (ORFs) in the genome of Saccharomyces cerevisiae that encode proteins with a potential N-terminal signal sequence for entering the secretory pathway. On further analysis, 51 of these proteins contain a potential glycosyl-phosphatidylinositol (GPI)-attachment signal. Seven additional ORFs were found to belong to this group. Upon examination of the possible GPI-attachment sites, it was found that in yeast the most probable amino acids for GPI-attachment as asparagine and glycine. In yeast, GPI-proteins are found at the cell surface, either attached to the plasma-membrane or as an intrinsic part of the cell wall. It was noted that plasma-membrane GPI-proteins possess a dibasic residue motif just before their predicted GPI-attachment site. Based on this, and on homologies between proteins, families of plasma-membrane and cell wall proteins were assigned, revealing 20 potential plasma-membrane and 38 potential cell wall proteins. For members of three plasma-membrane protein families, a function has been described. On the other hand, most of the cell wall proteins seem to be structural components of the wall, responsive to different growth conditions. The GPI-attachment site of yeast slightly differs from mammalian cells. This might be of use in the development of anti-fungal drugs.

  6. Discovery of Chromatin-Associated Proteins via Sequence-Specific Capture and Mass Spectrometric Protein Identification in Saccharomyces cerevisiae

    OpenAIRE

    Kennedy-Darling, Julia; Guillen-Ahlers, Hector; Shortreed, Michael R.; Scalf, Mark; Frey, Brian L.; Kendziorski, Christina; Olivier, Michael; Gasch, Audrey P.; Smith, Lloyd M.

    2014-01-01

    DNA?protein interactions play critical roles in the control of genome expression and other fundamental processes. An essential element in understanding how these systems function is to identify their molecular components. We present here a novel strategy, Hybridization Capture of Chromatin Associated Proteins for Proteomics (HyCCAPP), to identify proteins that are interacting with any given region of the genome. This technology identifies and quantifies the proteins that are specifically inte...

  7. Binomial probability distribution model-based protein identification algorithm for tandem mass spectrometry utilizing peak intensity information.

    Science.gov (United States)

    Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu

    2013-01-04

    Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .

  8. Characterisation of the Proteome of Leptospira interrogans Serovar Canicola as a Resource for the Identification of Common Serovar Immunogenic Proteins

    Directory of Open Access Journals (Sweden)

    P. C. Humphryes

    2014-01-01

    Full Text Available Over 230 serovars of Leptospira interrogans have been identified; however few have been completely characterised. The aim of this study was to characterise the proteome of serovar Canicola and to compare this against the serovars of Copenhageni and Pomona. 2D-LC/MS analysis identified 1653 Leptospira proteins in serovar Canicola; 60 of these proteins were common to Copenhageni and Pomona, 16 of which are known to be immunogenic. This study provides the first reported proteome for serovar Canicola and suggests that proteomic comparison of different serovars could be used as a tool for identification of novel target molecules for vaccine development.

  9. The Search Engine for Multi-Proteoform Complexes: An Online Tool for the Identification and Stoichiometry Determination of Protein Complexes.

    Science.gov (United States)

    Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L

    2016-12-08

    Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  10. Impact of injection solvent composition on protein identification in column-switching chip-liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Houbart, V; Cobraiville, G; Nys, G; Merville, M-P; Fillet, M

    2016-05-06

    In shotgun proteomics, the gold standard technique is reversed-phase liquid chromatography coupled to mass spectrometry. Many researches have been carried out to study the effects on identification performances of chromatographic parameters such as the stationary phase and column dimensions, mobile phase composition and flow rate, as well as the gradient slope and length. However, little attention is usually paid to the injection solvent composition. In this study, we investigated the effect of the injection solvent on protein identification parameters (number of distinct peptides, amino acid coverage and MS/MS search score) as well as sensitivity. Tryptic peptides from six different proteins, covering a wide range of physicochemical properties, were employed as training set. Design of experiments was employed as a tool to highlight the factors related to the composition of the injection solvent that significantly influenced the obtained results. Optimal results for the training set were applied to analysis of more complex samples. The experiments pointed out optimising the composition of the injection solvent had a strong beneficial effect on all the considered responses. On the basis of these results, an approach to determine optimal conditions was proposed to maximise the protein identification performances and detection sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Identification of transient hub proteins and the possible structural basis for their multiple interactions.

    Science.gov (United States)

    Higurashi, Miho; Ishida, Takashi; Kinoshita, Kengo

    2008-01-01

    Proteins that can interact with multiple partners play central roles in the network of protein-protein interactions. They are called hub proteins, and recently it was suggested that an abundance of intrinsically disordered regions on their surfaces facilitates their binding to multiple partners. However, in those studies, the hub proteins were identified as proteins with multiple partners, regardless of whether the interactions were transient or permanent. As a result, a certain number of hub proteins are subunits of stable multi-subunit proteins, such as supramolecules. It is well known that stable complexes and transient complexes have different structural features, and thus the statistics based on the current definition of hub proteins will hide the true nature of hub proteins. Therefore, in this paper, we first describe a new approach to identify proteins with multiple partners dynamically, using the Protein Data Bank, and then we performed statistical analyses of the structural features of these proteins. We refer to the proteins as transient hub proteins or sociable proteins, to clarify the difference with hub proteins. As a result, we found that the main difference between sociable and nonsociable proteins is not the abundance of disordered regions, in contrast to the previous studies, but rather the structural flexibility of the entire protein. We also found greater predominance of charged and polar residues in sociable proteins than previously reported.

  12. Identification of c-di-AMP-Binding Proteins Using Magnetic Beads.

    Science.gov (United States)

    Kampf, Jan; Gundlach, Jan; Herzberg, Christina; Treffon, Katrin; Stülke, Jörg

    2017-01-01

    To identify cytosolic proteins that bind to cyclic di-AMP, a biotinylated analog of the nucleotide is used for protein pull-down experiments. In this approach, biotinylated c-di-AMP is coupled to Streptactin-covered beads. After protein separation using standard SDS-PAGE, the protein(s) of interest are identified by mass spectrometric analyses.

  13. Solubilization and identification of hen eggshell membrane proteins during different times of chicken embryo development using the proteomic approach.

    Science.gov (United States)

    Kaweewong, Kritsda; Garnjanagoonchorn, Wunwiboon; Jirapakkul, Wannee; Roytrakul, Sittiruk

    2013-04-01

    A fertilized chicken egg is a unit of life. During hatching, transport of nutrients, including calcium, have been reported from the egg components to the developing embryo. Calcium is mobilized from the eggshell with the involvement of Ca(2+)-binding proteins. In addition, other unknown proteins may also play some important roles during embryo developing process. Therefore identification and prediction of biological functions of eggshell membrane (ESM) proteins during chick embryo development was conducted by proteome analysis. Comparison of different lysis solutions indicated that the highest ability to extract ESM proteins could be obtained with 1 % sodium dodecyl sulfate in 5 mM Tris-HCl buffer pH 8.8 containing 0.1 % 2-mercaptoethanol. In this study fertilized Cornish chicken eggs were incubated at 37 °C in humidified incubators for up to 21 days. At selected times (days 1, 9, 15 and 21), samples were taken and the ESMs were carefully separated by hand, washed with distilled water, and air-dried at room temperature. The ESM proteins were then solubilized and analyzed by proteome analysis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis combined with high performance liquid chromatography and mass spectrometry revealed 62 proteins in the ESM; only keratin is known ESM protein, 8 of which are egg white proteins and related while 53 others have not previously been reported. Some differences in the types of proteins and their molecular functions were noted in ESM at different incubation times. One protein which was present only at days 15 and 21 of egg incubation was identified as a calcium binding protein i.e. EGF like repeats and discoidin I like domain 3 (EDIL3 homologous protein).

  14. Use of antibodies against the P36 protein of Mycoplasma hyopneumoniae for the identification of M. hyopneumoniae strains.

    Science.gov (United States)

    Stipkovits, L; Nicolet, J; Haldimann, A; Frey, J

    1991-12-01

    Mycoplasma hyopneumoniae, the principal aetiological agent of porcine enzootic pneumonia, synthesizes a 36 kDa protein (P36) which is an early and strong immunogenic factor in experimentally and naturally infected swine. Polyclonal antibodies were made against the recombinant P36 protein in rabbits and used for the identification of M. hyopneumoniae by the immunoblot technique. The proteins from the M. hyopneumoniae reference strains and from 13 M. hyopneumoniae field strains isolated from naturally infected pigs in Switzerland, Hungary, France and Canada were analysed by the immunoblot technique using anti-P36 antibodies. All 13 field strains and the three reference J strains of M. hyopneumoniae, received from different collections and laboratories, exhibited a strong reaction with a protein of 36 kDa indicating that the P36 protein is a common M. hyopneumoniae antigen. None of the different porcine Mycoplasma species including M. flocculare, M. hyorhinis, M. hyosynoviae, A. axanthum, A. laidlawii and A. granularum showed any reaction on the immunoblot with the anti-P36 antibodies. In addition, we have found no reaction with anti-P36 antibodies using 47 different Mycoplasma or Acholeplasma species isolated from human, mice, rat, poultry, ruminant, dog and cat. In conclusion we have shown that P36 is a protein that is a common antigen of M. hyopneumoniae strains and is not found in other Mycoplasma or Acholeplasma species tested. Because of its high specificity, P36 protein, or antibodies made against this protein can be used for the identification of M. hyopneumoniae strains.

  15. Riboproteomics: A versatile approach for the identification of host protein interaction network in plant pathogenic noncoding RNAs.

    Directory of Open Access Journals (Sweden)

    Sonali Chaturvedi

    Full Text Available Pathogenic or non-pathogenic small (17 to 30 nt and long (>200 nt non-coding RNAs (ncRNAs have been implicated in the regulation of gene expression at transcriptional, post-transcriptional and epigenetic level by interacting with host proteins. However, lack of suitable experimental system precludes the identification and evaluation of the functional significance of host proteins interacting with ncRNAs. In this study, we present a first report on the application of riboproteomics to identify host proteins interacting with small, highly pathogenic, noncoding satellite RNA (sat-RNA associated with Cucumber mosaic virus, the helper virus (HV. RNA affinity beads containing sat-RNA transcripts of (+ or (--sense covalently coupled to cyanogen bromide activated sepharose beads were incubated with total protein extracts from either healthy or HV-infected Nicotiana benthamiana leaves. RNA-protein complexes bound to the beads were eluted and subjected to MudPIT analysis. Bioinformatics programs PANTHER classification and WoLF-PSORT were used to further classify the identified host proteins in each case based on their functionality and subcellular distribution. Finally, we observed that the host protein network interacting with plus and minus-strand transcripts of sat-RNA, in the presence or absence of HV is distinct, and the global interactome of host proteins interacting with satRNA in either of the orientations is very different.

  16. Identification and evaluation of potential forensic marker proteins in vaginal fluid by liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Igoh, Akihisa; Doi, Yusuke; Sakurada, Koichi

    2015-09-01

    Vaginal fluid is one of the most common body fluids found at crime scenes. Discriminating vaginal fluid from other body fluids is important in forensic science; however, few potential protein markers have been reported to date. Proteomic methods for identifying protein markers have gained attention, although few reports have applied this technology to forensic protein markers. Therefore, to identify characteristic vaginal proteins, we examined various body fluids (nasal secretions, saliva, urine, semen, vaginal fluids, and sweat) using liquid chromatography/electrospray ionization time-of-flight mass spectrometry and peptide mass fingerprinting. We identified three components (average molecular mass values 17,237 ± 2, 18,063 ± 2, and 15,075 ± 1) detectable only in vaginal samples: two human small proline-rich protein 3 (SPRR3) isoforms and a human fatty acid-binding protein 5 (FABP5) with an acetylated (+42) N-terminal region lacking the initiator methionine residue (-131). Using ELISA, these yielded markedly high average values in vaginal fluids. The mass spectra of these proteins were not detected in infant saliva but were detected in the vaginal fluid throughout the menstrual cycle. The results of forensic analysis (detection limit, mixed body fluid samples, casework samples, and blind samples) suggest that these proteins are potential forensic markers. In conclusion, high SPRR3 and FABP5 expression levels, which may be used as potential markers for vaginal fluid identification in forensic science, were detected in vaginal fluids from healthy adults.

  17. Identification of apoptotic proteins in thyroid gland from patients with Graves' disease and Hashimoto's thyroiditis.

    Science.gov (United States)

    Bossowski, A; Czarnocka, B; Bardadin, K; Stasiak-Barmuta, A; Urban, M; Dadan, J; Ratomski, K; Bossowska, A

    2008-03-01

    Apoptosis, i.e. natural programmed cell death, is a physiological phenomenon indispensable for normal functioning of the organism. The signal to apoptosis can be started practically in any cell. Disturbances in the apoptosis regulation determine the essential link of the pathogenesis of many diseases, including autoimmune thyroid disorders. The aim of the study was to assess the expression of Fas/FasL and caspase eight in the tissues of the thyroid gland in patients with Graves' disease (GD), non-toxic nodular goiter (NTNG) and Hashimoto's thyroiditis (HT). The analysis of Fas/FasL expression was performed by western blot and immunohistochemical investigation with DAB-visualization and Mayer's hematoxylin staining. Caspase-8 expression in thyroid follicular cells was assayed by western blot method. Identification of the proapoptotic proteins FasL and Fas exhibited their pronounced expression in the thyroid tissue in GD patients (++; ++) and HT (+++; +++) as compared to the NTNG group (0/+; 0/+). Among the study groups, the expression of caspase-8 was revealed in band 55 kDa from patients with autoimmune thyroid diseases. In GD patients, the percentage of thyrocytes with FasL expression correlated positively with TRAb (R = 0.58, p thyroid hormones and the percentage of thyrocytes with Fas and FasL expression. In conclusion, our findings suggest that the changes in the expression of apoptotic molecules on the surface of T lymphocytes and thyroid follicular cells in patients with autoimmune thyroid disorders reflect their substantial involvement in the pathogenesis of GD and HT. In addition, analysis of Fas/FasL and caspase-