WorldWideScience

Sample records for accurate protein identification

  1. Rapid identification of sequences for orphan enzymes to power accurate protein annotation.

    Science.gov (United States)

    Ramkissoon, Kevin R; Miller, Jennifer K; Ojha, Sunil; Watson, Douglas S; Bomar, Martha G; Galande, Amit K; Shearer, Alexander G

    2013-01-01

    The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the "back catalog" of enzymology--"orphan enzymes," those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme "back catalog" is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology's "back catalog" another powerful tool to drive accurate genome annotation.

  2. Towards an accurate bioimpedance identification

    Science.gov (United States)

    Sanchez, B.; Louarroudi, E.; Bragos, R.; Pintelon, R.

    2013-04-01

    This paper describes the local polynomial method (LPM) for estimating the time-invariant bioimpedance frequency response function (FRF) considering both the output-error (OE) and the errors-in-variables (EIV) identification framework and compare it with the traditional cross— and autocorrelation spectral analysis techniques. The bioimpedance FRF is measured with the multisine electrical impedance spectroscopy (EIS) technique. To show the overwhelming accuracy of the LPM approach, both the LPM and the classical cross— and autocorrelation spectral analysis technique are evaluated through the same experimental data coming from a nonsteady-state measurement of time-varying in vivo myocardial tissue. The estimated error sources at the measurement frequencies due to noise, σnZ, and the stochastic nonlinear distortions, σZNL, have been converted to Ω and plotted over the bioimpedance spectrum for each framework. Ultimately, the impedance spectra have been fitted to a Cole impedance model using both an unweighted and a weighted complex nonlinear least square (CNLS) algorithm. A table is provided with the relative standard errors on the estimated parameters to reveal the importance of which system identification frameworks should be used.

  3. Towards an accurate bioimpedance identification

    International Nuclear Information System (INIS)

    This paper describes the local polynomial method (LPM) for estimating the time-invariant bioimpedance frequency response function (FRF) considering both the output-error (OE) and the errors-in-variables (EIV) identification framework and compare it with the traditional cross— and autocorrelation spectral analysis techniques. The bioimpedance FRF is measured with the multisine electrical impedance spectroscopy (EIS) technique. To show the overwhelming accuracy of the LPM approach, both the LPM and the classical cross— and autocorrelation spectral analysis technique are evaluated through the same experimental data coming from a nonsteady-state measurement of time-varying in vivo myocardial tissue. The estimated error sources at the measurement frequencies due to noise, σnZ, and the stochastic nonlinear distortions, σZNL, have been converted to Ω and plotted over the bioimpedance spectrum for each framework. Ultimately, the impedance spectra have been fitted to a Cole impedance model using both an unweighted and a weighted complex nonlinear least square (CNLS) algorithm. A table is provided with the relative standard errors on the estimated parameters to reveal the importance of which system identification frameworks should be used.

  4. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features

    Science.gov (United States)

    Li, Yuan; Wang, Mingjun; Wang, Huilin; Tan, Hao; Zhang, Ziding; Webb, Geoffrey I.; Song, Jiangning

    2014-07-01

    Lysine acetylation is a reversible post-translational modification, playing an important role in cytokine signaling, transcriptional regulation, and apoptosis. To fully understand acetylation mechanisms, identification of substrates and specific acetylation sites is crucial. Experimental identification is often time-consuming and expensive. Alternative bioinformatics methods are cost-effective and can be used in a high-throughput manner to generate relatively precise predictions. Here we develop a method termed as SSPKA for species-specific lysine acetylation prediction, using random forest classifiers that combine sequence-derived and functional features with two-step feature selection. Feature importance analysis indicates functional features, applied for lysine acetylation site prediction for the first time, significantly improve the predictive performance. We apply the SSPKA model to screen the entire human proteome and identify many high-confidence putative substrates that are not previously identified. The results along with the implemented Java tool, serve as useful resources to elucidate the mechanism of lysine acetylation and facilitate hypothesis-driven experimental design and validation.

  5. Fast and Accurate Identification of Cross-Linked Peptides for the Structural Analysis of Large Protein Complexes and Elucidation of Interaction Networks. / Tahir, Salman; Bukowski-Wills, Jimi-Carlo; Rasmussen, Morten; Rappsilber, Juri

    DEFF Research Database (Denmark)

    Rasmussen, Morten

    Fast and Accurate Identification of Cross-Linked Peptides for the structural analysis of large protein complexes and to elucidate interaction networks. Salman Tahir Jimi-Carlo Bukowski-Wills; Morten Rasmussen; Juri RappsilberWellcome Trust Centre for Cell Biology, Edinburgh , United Kingdom   Novel...

  6. Accurate pose estimation for forensic identification

    Science.gov (United States)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  7. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology

    Science.gov (United States)

    Ju, Ying

    2016-01-01

    Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram), have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics. PMID:27478823

  8. Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology

    Directory of Open Access Journals (Sweden)

    Jieru Zhang

    2016-01-01

    Full Text Available Cancerlectins are cancer-related proteins that function as lectins. They have been identified through computational identification techniques, but these techniques have sometimes failed to identify proteins because of sequence diversity among the cancerlectins. Advanced machine learning identification methods, such as support vector machine and basic sequence features (n-gram, have also been used to identify cancerlectins. In this study, various protein fingerprint features and advanced classifiers, including ensemble learning techniques, were utilized to identify this group of proteins. We improved the prediction accuracy of the original feature extraction methods and classification algorithms by more than 10% on average. Our work provides a basis for the computational identification of cancerlectins and reveals the power of hybrid machine learning techniques in computational proteomics.

  9. Combinatorial Approaches to Accurate Identification of Orthologous Genes

    OpenAIRE

    Shi, Guanqun

    2011-01-01

    The accurate identification of orthologous genes across different species is a critical and challenging problem in comparative genomics and has a wide spectrum of biological applications including gene function inference, evolutionary studies and systems biology. During the past several years, many methods have been proposed for ortholog assignment based on sequence similarity, phylogenetic approaches, synteny information, and genome rearrangement. Although these methods share many commonly a...

  10. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    Directory of Open Access Journals (Sweden)

    Xin Deng

    2015-07-01

    Full Text Available Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  11. Optical identifications of radio sources with accurate positions using the UKST IIIa-J plates

    International Nuclear Information System (INIS)

    Three radio identification programmes are described which are drawn from radio samples with accurate radio positions (< 2'' arc rms). Optical identifications are being made on the basis of radio-optical positional coincidence alone, without regard to colour or morphology, using the UKST IIIa-J sky survey to a limiting magnitude of 22.5. Some preliminary results are presented. (Auth.)

  12. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics

    Science.gov (United States)

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru

    2016-01-01

    Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research. PMID:27571061

  13. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics.

    Science.gov (United States)

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru

    2016-01-01

    Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research. PMID:27571061

  14. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Zheng-Wei Li

    2016-08-01

    Full Text Available Protein-protein interactions (PPIs occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research.

  15. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics.

    Science.gov (United States)

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Gui, Jie; Nie, Ru

    2016-01-01

    Protein-protein interactions (PPIs) occur at almost all levels of cell functions and play crucial roles in various cellular processes. Thus, identification of PPIs is critical for deciphering the molecular mechanisms and further providing insight into biological processes. Although a variety of high-throughput experimental techniques have been developed to identify PPIs, existing PPI pairs by experimental approaches only cover a small fraction of the whole PPI networks, and further, those approaches hold inherent disadvantages, such as being time-consuming, expensive, and having high false positive rate. Therefore, it is urgent and imperative to develop automatic in silico approaches to predict PPIs efficiently and accurately. In this article, we propose a novel mixture of physicochemical and evolutionary-based feature extraction method for predicting PPIs using our newly developed discriminative vector machine (DVM) classifier. The improvements of the proposed method mainly consist in introducing an effective feature extraction method that can capture discriminative features from the evolutionary-based information and physicochemical characteristics, and then a powerful and robust DVM classifier is employed. To the best of our knowledge, it is the first time that DVM model is applied to the field of bioinformatics. When applying the proposed method to the Yeast and Helicobacter pylori (H. pylori) datasets, we obtain excellent prediction accuracies of 94.35% and 90.61%, respectively. The computational results indicate that our method is effective and robust for predicting PPIs, and can be taken as a useful supplementary tool to the traditional experimental methods for future proteomics research.

  16. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics.

    Science.gov (United States)

    Stanley, Jeffrey R; Adkins, Joshua N; Slysz, Gordon W; Monroe, Matthew E; Purvine, Samuel O; Karpievitch, Yuliya V; Anderson, Gordon A; Smith, Richard D; Dabney, Alan R

    2011-08-15

    Current algorithms for quantifying peptide identification confidence in the accurate mass and time (AMT) tag approach assume that the AMT tags themselves have been correctly identified. However, there is uncertainty in the identification of AMT tags, because this is based on matching LC-MS/MS fragmentation spectra to peptide sequences. In this paper, we incorporate confidence measures for the AMT tag identifications into the calculation of probabilities for correct matches to an AMT tag database, resulting in a more accurate overall measure of identification confidence for the AMT tag approach. The method is referenced as Statistical Tools for AMT Tag Confidence (STAC). STAC additionally provides a uniqueness probability (UP) to help distinguish between multiple matches to an AMT tag and a method to calculate an overall false discovery rate (FDR). STAC is freely available for download, as both a command line and a Windows graphical application.

  17. Neural Network Based Accurate Biometric Recognition and Identification of Human Iris Patterns

    OpenAIRE

    M. Gopikrishnan; T.Santhanam

    2010-01-01

    Problem statement: A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by the individual. Iris recognition is regarded as the most reliable and accurate biometric identification system available. Approach: Most commercial iris recognition systems use patented algorithms developed by Daugman and these algorithms are able to produce perfect recognition rates. However, published results have usually been produced under favor...

  18. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance

    Science.gov (United States)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y.; Drake, Steven K.; Gucek, Marjan; Suffredini, Anthony F.; Sacks, David B.; Yu, Yi-Kuo

    2016-02-01

    Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple `fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

  19. A Statistical Method for Assessing Peptide Identification Confidence in Accurate Mass and Time Tag Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Jeffrey R.; Adkins, Joshua N.; Slysz, Gordon W.; Monroe, Matthew E.; Purvine, Samuel O.; Karpievitch, Yuliya V.; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2011-07-15

    High-throughput proteomics is rapidly evolving to require high mass measurement accuracy for a variety of different applications. Increased mass measurement accuracy in bottom-up proteomics specifically allows for an improved ability to distinguish and characterize detected MS features, which may in turn be identified by, e.g., matching to entries in a database for both precursor and fragmentation mass identification methods. Many tools exist with which to score the identification of peptides from LC-MS/MS measurements or to assess matches to an accurate mass and time (AMT) tag database, but these two calculations remain distinctly unrelated. Here we present a statistical method, Statistical Tools for AMT tag Confidence (STAC), which extends our previous work incorporating prior probabilities of correct sequence identification from LC-MS/MS, as well as the quality with which LC-MS features match AMT tags, to evaluate peptide identification confidence. Compared to existing tools, we are able to obtain significantly more high-confidence peptide identifications at a given false discovery rate and additionally assign confidence estimates to individual peptide identifications. Freely available software implementations of STAC are available in both command line and as a Windows graphical application.

  20. Energy functions for protein design I: Efficient and accurate continuum electrostatics and solvation

    OpenAIRE

    Pokala, Navin; Handel, Tracy M.

    2004-01-01

    Electrostatics and solvation energies are important for defining protein stability, structural specificity, and molecular recognition. Because these energies are difficult to compute quickly and accurately, they are often ignored or modeled very crudely in computational protein design. To address this problem, we have developed a simple, fast, and accurate approximation for calculating Born radii in the context of protein design calculations. When these approximate Born radii are used with th...

  1. Post-Electrophoretic Identification of Oxidized Proteins

    Directory of Open Access Journals (Sweden)

    Conrad Craig

    2000-01-01

    Full Text Available The oxidative modification of proteins has been shown to play a major role in a number of human diseases. However, the ability to identify specific proteins that are most susceptible to oxidative modifications is difficult. Separation of proteins using polyacrylamide gel electrophoresis (PAGE offers the analytical potential for the recovery, amino acid sequencing, and identification of thousands of individual proteins from cells and tissues. We have developed a method to allow underivatized proteins to be electroblotted onto PVDF membranes before derivatization and staining. Since both the protein and oxidation proteins are quantifiable, the specific oxidation index of each protein can be determined. The optimal sequence and conditions for the staining process are (a electrophoresis, (b electroblotting onto PVDF membranes, (c derivatization of carbonyls with 2,4-DNP, (d immunostaining with anti DNP antibody, and (e protein staining with colloidal gold.

  2. Novel methods for accurate identification, isolation, and genomic analysis of symptomatic microenvironments in atherosclerotic arteries.

    Science.gov (United States)

    Slevin, Mark; Baldellou, Maribel; Hill, Elspeth; Alexander, Yvonne; McDowell, Garry; Murgatroyd, Christopher; Carroll, Michael; Degens, Hans; Krupinski, Jerzy; Rovira, Norma; Chowdhury, Mohammad; Serracino-Inglott, Ferdinand; Badimon, Lina

    2014-01-01

    A challenge facing surgeons is identification and selection of patients for carotid endarterectomy or coronary artery bypass/surgical intervention. While some patients with atherosclerosis develop unstable plaques liable to undergo thrombosis, others form more stable plaques and are asymptomatic. Identification of the cellular signaling mechanisms associated with production of the inflammatory, hemorrhagic lesions of mature heterogenic plaques will help significantly in our understanding of the differences in microenvironment associated with development of regions susceptible to rupture and thrombosis and may help to predict the risk of plaque rupture and guide surgical intervention to patients who will most benefit. Here, we demonstrate detailed and novel methodologies for successful and, more importantly, accurate and reproducible extraction, sampling, and analysis of micro-regions in stable and unstable coronary/carotid arteries. This information can be applied to samples from other origins and so should be useful for scientists working with micro-isolation techniques in all fields of biomedical science. PMID:24510873

  3. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    Science.gov (United States)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  4. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  5. Identification of extracellularly phosphorylated membrane proteins.

    Science.gov (United States)

    Burghoff, Sandra; Willberg, Wibke; Schrader, Jürgen

    2015-10-01

    Ecto-protein kinases phosphorylate extracellular membrane proteins and exhibit similarities to casein kinases and protein kinases A and C. However, the identification of their protein substrates still remains a challenge because a clear separation from intracellular phosphoproteins is difficult. Here, we describe a straightforward method for the identification of extracellularly phosphorylated membrane proteins in human umbilical vein endothelial cells (HUVECs) and K562 cells which used the protease bromelain to selectively remove ectoproteins from intact cells and combined this with the subsequent analysis using IMAC and LC-MS/MS. A "false-positive" strategy in which cells without protease treatment served as controls was applied. Using this approach we identified novel phosphorylation sites on five ectophosphoproteins (NOTCH1, otopetrin 1, regulator of G-protein signalling 13 (RGS13), protein tyrosine phosphatase receptor type D isoform 3 (PTPRD), usherin isoform B (USH2A)). Use of bromelain appears to be a reliable technique for the further identification of phosphorylated surface-exposed peptides when extracellular adenosine-5'-triphosphate is elevated during purinergic signalling. PMID:26152529

  6. A Novel PCR-Based Approach for Accurate Identification of Vibrio parahaemolyticus.

    Science.gov (United States)

    Li, Ruichao; Chiou, Jiachi; Chan, Edward Wai-Chi; Chen, Sheng

    2016-01-01

    A PCR-based assay was developed for more accurate identification of Vibrio parahaemolyticus through targeting the bla CARB-17 like element, an intrinsic β-lactamase gene that may also be regarded as a novel species-specific genetic marker of this organism. Homologous analysis showed that bla CARB-17 like genes were more conservative than the tlh, toxR and atpA genes, the genetic markers commonly used as detection targets in identification of V. parahaemolyticus. Our data showed that this bla CARB-17-specific PCR-based detection approach consistently achieved 100% specificity, whereas PCR targeting the tlh and atpA genes occasionally produced false positive results. Furthermore, a positive result of this test is consistently associated with an intrinsic ampicillin resistance phenotype of the test organism, presumably conferred by the products of bla CARB-17 like genes. We envision that combined analysis of the unique genetic and phenotypic characteristics conferred by bla CARB-17 shall further enhance the detection specificity of this novel yet easy-to-use detection approach to a level superior to the conventional methods used in V. parahaemolyticus detection and identification. PMID:26858713

  7. Mechanism for accurate, protein-assisted DNA annealing by Deinococcus radiodurans DdrB.

    Science.gov (United States)

    Sugiman-Marangos, Seiji N; Weiss, Yoni M; Junop, Murray S

    2016-04-19

    Accurate pairing of DNA strands is essential for repair of DNA double-strand breaks (DSBs). How cells achieve accurate annealing when large regions of single-strand DNA are unpaired has remained unclear despite many efforts focused on understanding proteins, which mediate this process. Here we report the crystal structure of a single-strand annealing protein [DdrB (DNA damage response B)] in complex with a partially annealed DNA intermediate to 2.2 Å. This structure and supporting biochemical data reveal a mechanism for accurate annealing involving DdrB-mediated proofreading of strand complementarity. DdrB promotes high-fidelity annealing by constraining specific bases from unauthorized association and only releases annealed duplex when bound strands are fully complementary. To our knowledge, this mechanism provides the first understanding for how cells achieve accurate, protein-assisted strand annealing under biological conditions that would otherwise favor misannealing.

  8. CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO

    Energy Technology Data Exchange (ETDEWEB)

    Guerry, Paul; Duong, Viet Dung; Herrmann, Torsten, E-mail: torsten.herrmann@ens-lyon.fr [Université de Lyon (UMR 5280 CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), Institut des Sciences Analytiques, Centre de RMN à très Hauts Champs (France)

    2015-08-15

    UNIO is a comprehensive software suite for protein NMR structure determination that enables full automation of all NMR data analysis steps involved—including signal identification in NMR spectra, sequence-specific backbone and side-chain resonance assignment, NOE assignment and structure calculation. Within the framework of the second round of the community-wide stringent blind NMR structure determination challenge (CASD-NMR 2), we participated in two categories of CASD-NMR 2, namely using either raw NMR spectra or unrefined NOE peak lists as input. A total of 15 resulting NMR structure bundles were submitted for 9 out of 10 blind protein targets. All submitted UNIO structures accurately coincided with the corresponding blind targets as documented by an average backbone root mean-square deviation to the reference proteins of only 1.2 Å. Also, the precision of the UNIO structure bundles was virtually identical to the ensemble of reference structures. By assessing the quality of all UNIO structures submitted to the two categories, we find throughout that only the UNIO–ATNOS/CANDID approach using raw NMR spectra consistently yielded structure bundles of high quality for direct deposition in the Protein Data Bank. In conclusion, the results obtained in CASD-NMR 2 are another vital proof for robust, accurate and unsupervised NMR data analysis by UNIO for real-world applications.

  9. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.

    Science.gov (United States)

    Estrada, T; Zhang, B; Cicotti, P; Armen, R S; Taufer, M

    2012-07-01

    We present a scalable and accurate method for classifying protein-ligand binding geometries in molecular docking. Our method is a three-step process: the first step encodes the geometry of a three-dimensional (3D) ligand conformation into a single 3D point in the space; the second step builds an octree by assigning an octant identifier to every single point in the space under consideration; and the third step performs an octree-based clustering on the reduced conformation space and identifies the most dense octant. We adapt our method for MapReduce and implement it in Hadoop. The load-balancing, fault-tolerance, and scalability in MapReduce allow screening of very large conformation spaces not approachable with traditional clustering methods. We analyze results for docking trials for 23 protein-ligand complexes for HIV protease, 21 protein-ligand complexes for Trypsin, and 12 protein-ligand complexes for P38alpha kinase. We also analyze cross docking trials for 24 ligands, each docking into 24 protein conformations of the HIV protease, and receptor ensemble docking trials for 24 ligands, each docking in a pool of HIV protease receptors. Our method demonstrates significant improvement over energy-only scoring for the accurate identification of native ligand geometries in all these docking assessments. The advantages of our clustering approach make it attractive for complex applications in real-world drug design efforts. We demonstrate that our method is particularly useful for clustering docking results using a minimal ensemble of representative protein conformational states (receptor ensemble docking), which is now a common strategy to address protein flexibility in molecular docking. PMID:22658682

  10. An accurate and efficient identification of children with psychosocial problems by means of computerized adaptive testing

    Directory of Open Access Journals (Sweden)

    Reijneveld Symen A

    2011-08-01

    Full Text Available Abstract Background Questionnaires used by health services to identify children with psychosocial problems are often rather short. The psychometric properties of such short questionnaires are mostly less than needed for an accurate distinction between children with and without problems. We aimed to assess whether a short Computerized Adaptive Test (CAT can overcome the weaknesses of short written questionnaires when identifying children with psychosocial problems. Method We used a Dutch national data set obtained from parents of children invited for a routine health examination by Preventive Child Healthcare with 205 items on behavioral and emotional problems (n = 2,041, response 84%. In a random subsample we determined which items met the requirements of an Item Response Theory (IRT model to a sufficient degree. Using those items, item parameters necessary for a CAT were calculated and a cut-off point was defined. In the remaining subsample we determined the validity and efficiency of a Computerized Adaptive Test using simulation techniques, with current treatment status and a clinical score on the Total Problem Scale (TPS of the Child Behavior Checklist as criteria. Results Out of 205 items available 190 sufficiently met the criteria of the underlying IRT model. For 90% of the children a score above or below cut-off point could be determined with 95% accuracy. The mean number of items needed to achieve this was 12. Sensitivity and specificity with the TPS as a criterion were 0.89 and 0.91, respectively. Conclusion An IRT-based CAT is a very promising option for the identification of psychosocial problems in children, as it can lead to an efficient, yet high-quality identification. The results of our simulation study need to be replicated in a real-life administration of this CAT.

  11. Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

    Science.gov (United States)

    Little, James L.; Williams, Antony J.; Pshenichnov, Alexey; Tkachenko, Valery

    2012-01-01

    In many cases, an unknown to an investigator is actually known in the chemical literature, a reference database, or an internet resource. We refer to these types of compounds as "known unknowns." ChemSpider is a very valuable internet database of known compounds useful in the identification of these types of compounds in commercial, environmental, forensic, and natural product samples. The database contains over 26 million entries from hundreds of data sources and is provided as a free resource to the community. Accurate mass mass spectrometry data is used to query the database by either elemental composition or a monoisotopic mass. Searching by elemental composition is the preferred approach. However, it is often difficult to determine a unique elemental composition for compounds with molecular weights greater than 600 Da. In these cases, searching by the monoisotopic mass is advantageous. In either case, the search results are refined by sorting the number of references associated with each compound in descending order. This raises the most useful candidates to the top of the list for further evaluation. These approaches were shown to be successful in identifying "known unknowns" noted in our laboratory and for compounds of interest to others.

  12. Protein expression strategies for identification of novel target proteins.

    Science.gov (United States)

    Schuster, M; Wasserbauer, E; Einhauer, A; Ortner, C; Jungbauer, A; Hammerschmid, F; Werner, G

    2000-04-01

    Identification of new target proteins is a novel paradigm in drug discovery. A major bottleneck of this strategy is the rapid and simultaneous expression of proteins from differential gene expression to identify eligible candidates. By searching for a generic system enabling high throughput expression analysis and purification of unknown cDNAs, we evaluated the YEpFLAG-1 yeast expression system. We have selected cDNAs encoding model proteins (eukaryotic initiation factor-5A [eIF-5A] and Homo sapiens differentiation-dependent protein-A4) and cDNA encoding an unknown protein (UP-1) for overexpression in Saccharomyces cerevisiae using fusions with a peptide that changes its conformation in the presence of Ca2+ ions, the FLAG tag (Eastman Kodak, Rochester, NY). The cDNAs encoding unknown proteins originating from a directionally cloned cDNA library were expressed in all three possible reading frames. The expressed proteins were detected by an antibody directed against the FLAG tag and/or by antibodies against the model proteins. The alpha-leader sequence, encoding a yeast mating pheromone, upstream of the gene fusion site facilitates secretion into the culture supernatant. EIF-5A could be highly overexpressed and was secreted into the culture supernatant. In contrast, the Homo sapiens differentiation-dependent protein-A4 as well as the protein UP-1, whose cDNA did not match to any known gene, could not be detected in the culture supernatant. The expression product of the correct frame remained in the cells, whereas the FLAG-tagged proteins secreted into the supernatant were short, out-of-frame products. The presence of transmembrane domains or patches of hydrophobic amino acids may preclude secretion of these proteins into the culture supernatant. Subsequently, isolation and purification of the various proteins was accomplished by affinity chromatography or affinity extraction using magnetizable beads coated with the anti-FLAG monoclonal antibody. The purity of

  13. Accurate identification and compensation of geometric errors of 5-axis CNC machine tools using double ball bar

    Science.gov (United States)

    Lasemi, Ali; Xue, Deyi; Gu, Peihua

    2016-05-01

    Five-axis CNC machine tools are widely used in manufacturing of parts with free-form surfaces. Geometric errors of machine tools have significant effects on the quality of manufactured parts. This research focuses on development of a new method to accurately identify geometric errors of 5-axis CNC machines, especially the errors due to rotary axes, using the magnetic double ball bar. A theoretical model for identification of geometric errors is provided. In this model, both position-independent errors and position-dependent errors are considered as the error sources. This model is simplified by identification and removal of the correlated and insignificant error sources of the machine. Insignificant error sources are identified using the sensitivity analysis technique. Simulation results reveal that the simplified error identification model can result in more accurate estimations of the error parameters. Experiments on a 5-axis CNC machine tool also demonstrate significant reduction in the volumetric error after error compensation.

  14. Fast and accurate protein substructure searching with simulated annealing and GPUs

    Directory of Open Access Journals (Sweden)

    Stivala Alex D

    2010-09-01

    Full Text Available Abstract Background Searching a database of protein structures for matches to a query structure, or occurrences of a structural motif, is an important task in structural biology and bioinformatics. While there are many existing methods for structural similarity searching, faster and more accurate approaches are still required, and few current methods are capable of substructure (motif searching. Results We developed an improved heuristic for tableau-based protein structure and substructure searching using simulated annealing, that is as fast or faster and comparable in accuracy, with some widely used existing methods. Furthermore, we created a parallel implementation on a modern graphics processing unit (GPU. Conclusions The GPU implementation achieves up to 34 times speedup over the CPU implementation of tableau-based structure search with simulated annealing, making it one of the fastest available methods. To the best of our knowledge, this is the first application of a GPU to the protein structural search problem.

  15. Accurate refinement of docked protein complexes using evolutionary information and deep learning.

    Science.gov (United States)

    Akbal-Delibas, Bahar; Farhoodi, Roshanak; Pomplun, Marc; Haspel, Nurit

    2016-06-01

    One of the major challenges for protein docking methods is to accurately discriminate native-like structures from false positives. Docking methods are often inaccurate and the results have to be refined and re-ranked to obtain native-like complexes and remove outliers. In a previous work, we introduced AccuRefiner, a machine learning based tool for refining protein-protein complexes. Given a docked complex, the refinement tool produces a small set of refined versions of the input complex, with lower root-mean-square-deviation (RMSD) of atomic positions with respect to the native structure. The method employs a unique ranking tool that accurately predicts the RMSD of docked complexes with respect to the native structure. In this work, we use a deep learning network with a similar set of features and five layers. We show that a properly trained deep learning network can accurately predict the RMSD of a docked complex with 1.40 Å error margin on average, by approximating the complex relationship between a wide set of scoring function terms and the RMSD of a docked structure. The network was trained on 35000 unbound docking complexes generated by RosettaDock. We tested our method on 25 different putative docked complexes produced also by RosettaDock for five proteins that were not included in the training data. The results demonstrate that the high accuracy of the ranking tool enables AccuRefiner to consistently choose the refinement candidates with lower RMSD values compared to the coarsely docked input structures.

  16. Hash: a program to accurately predict protein H{sup {alpha}} shifts from neighboring backbone shifts

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianyang, E-mail: zengjy@gmail.com [Tsinghua University, Institute for Interdisciplinary Information Sciences (China); Zhou Pei [Duke University Medical Center, Department of Biochemistry (United States); Donald, Bruce Randall [Duke University, Department of Computer Science (United States)

    2013-01-15

    Chemical shifts provide not only peak identities for analyzing nuclear magnetic resonance (NMR) data, but also an important source of conformational information for studying protein structures. Current structural studies requiring H{sup {alpha}} chemical shifts suffer from the following limitations. (1) For large proteins, the H{sup {alpha}} chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments, mainly due to the fast transverse relaxation rate of C{sup {alpha}} that restricts the signal sensitivity. (2) Previous chemical shift prediction approaches either require homologous models with high sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates. When neither sequence homologues nor structural coordinates are available, we must resort to other information to predict H{sup {alpha}} chemical shifts. Predicting accurate H{sup {alpha}} chemical shifts using other obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby backbone atoms, we propose a novel machine learning algorithm, called Hash, to predict H{sup {alpha}} chemical shifts. Hash combines a new fragment-based chemical shift search approach with a non-parametric regression model, called the generalized additive model, to effectively solve the prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a reliable source of information for predicting accurate H{sup {alpha}} chemical shifts. Our testing results on different possible combinations of input data indicate that Hash has a wide rage of potential NMR applications in structural and biological studies of proteins.

  17. Accurate refinement of docked protein complexes using evolutionary information and deep learning.

    Science.gov (United States)

    Akbal-Delibas, Bahar; Farhoodi, Roshanak; Pomplun, Marc; Haspel, Nurit

    2016-06-01

    One of the major challenges for protein docking methods is to accurately discriminate native-like structures from false positives. Docking methods are often inaccurate and the results have to be refined and re-ranked to obtain native-like complexes and remove outliers. In a previous work, we introduced AccuRefiner, a machine learning based tool for refining protein-protein complexes. Given a docked complex, the refinement tool produces a small set of refined versions of the input complex, with lower root-mean-square-deviation (RMSD) of atomic positions with respect to the native structure. The method employs a unique ranking tool that accurately predicts the RMSD of docked complexes with respect to the native structure. In this work, we use a deep learning network with a similar set of features and five layers. We show that a properly trained deep learning network can accurately predict the RMSD of a docked complex with 1.40 Å error margin on average, by approximating the complex relationship between a wide set of scoring function terms and the RMSD of a docked structure. The network was trained on 35000 unbound docking complexes generated by RosettaDock. We tested our method on 25 different putative docked complexes produced also by RosettaDock for five proteins that were not included in the training data. The results demonstrate that the high accuracy of the ranking tool enables AccuRefiner to consistently choose the refinement candidates with lower RMSD values compared to the coarsely docked input structures. PMID:26846813

  18. Identification of SUMO target proteins by quantitative proteomics

    DEFF Research Database (Denmark)

    Andersen, Jens S; Matic, Ivan; Vertegaal, Alfred C O

    2009-01-01

    The identification of target proteins for small ubiquitin-like modifiers (SUMOs) is a critical step towards a detailed understanding of the cellular functions of SUMOs. Substrate protein identification for SUMOs is hampered by the low abundance of SUMO targets, the finding that only a small fract...

  19. Rapid and accurate prediction and scoring of water molecules in protein binding sites.

    Directory of Open Access Journals (Sweden)

    Gregory A Ross

    Full Text Available Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.

  20. HMM-FRAME: accurate protein domain classification for metagenomic sequences containing frameshift errors

    Directory of Open Access Journals (Sweden)

    Sun Yanni

    2011-05-01

    Full Text Available Abstract Background Protein domain classification is an important step in metagenomic annotation. The state-of-the-art method for protein domain classification is profile HMM-based alignment. However, the relatively high rates of insertions and deletions in homopolymer regions of pyrosequencing reads create frameshifts, causing conventional profile HMM alignment tools to generate alignments with marginal scores. This makes error-containing gene fragments unclassifiable with conventional tools. Thus, there is a need for an accurate domain classification tool that can detect and correct sequencing errors. Results We introduce HMM-FRAME, a protein domain classification tool based on an augmented Viterbi algorithm that can incorporate error models from different sequencing platforms. HMM-FRAME corrects sequencing errors and classifies putative gene fragments into domain families. It achieved high error detection sensitivity and specificity in a data set with annotated errors. We applied HMM-FRAME in Targeted Metagenomics and a published metagenomic data set. The results showed that our tool can correct frameshifts in error-containing sequences, generate much longer alignments with significantly smaller E-values, and classify more sequences into their native families. Conclusions HMM-FRAME provides a complementary protein domain classification tool to conventional profile HMM-based methods for data sets containing frameshifts. Its current implementation is best used for small-scale metagenomic data sets. The source code of HMM-FRAME can be downloaded at http://www.cse.msu.edu/~zhangy72/hmmframe/ and at https://sourceforge.net/projects/hmm-frame/.

  1. Polyphenol Identification Based on Systematic and Robust High-Resolution Accurate Mass Spectroscopy Fragmentation

    NARCIS (Netherlands)

    Hooft, van der J.J.J.; Vervoort, J.J.M.; Bino, R.J.; Beekwilder, M.J.; Vos, de R.C.H.

    2011-01-01

    High-mass resolution multi-stage mass spectrometry (MSn) fragmentation was tested for differentiation and identification of metabolites, using a series of 121 polyphenolic molecules. The MSn fragmentation approach is based on the systematic breakdown of compounds, forming a so-called spectral tree.

  2. An accurate and efficient identification of children with psychosocial problems by means of computerized adaptive testing

    NARCIS (Netherlands)

    Vogels, Antonius G. C.; Jacobusse, Gert W.; Reijneveld, Symen A.

    2011-01-01

    Background: Questionnaires used by health services to identify children with psychosocial problems are often rather short. The psychometric properties of such short questionnaires are mostly less than needed for an accurate distinction between children with and without problems. We aimed to assess w

  3. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F;

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... spectrometry. The determined molecular masses are often sufficient for identification. If not, the proteins are subjected to mass spectrometric peptide mapping followed by database searches. Apart from protein identification, the protocol also yields information on posttranslational modifications. The protocol...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  4. Bacteremia with Streptococcus bovis and Streptococcus salivarius: clinical correlates of more accurate identification of isolates.

    Science.gov (United States)

    Ruoff, K L; Miller, S I; Garner, C V; Ferraro, M J; Calderwood, S B

    1989-01-01

    Two biotypes of Streptococcus bovis can be identified by laboratory testing and can be distinguished from the phenotypically similar organism Streptococcus salivarius. We assessed the clinical relevance of careful identification of these organisms in 68 patients with streptococcal bacteremia caused by these similar species. S. bovis was more likely to be clinically significant when isolated from blood (89%) than was S. salivarius (23%). There was a striking association between S. bovis I bacteremia and underlying endocarditis (94%) compared with that of S. bovis II bacteremia (18%). Bacteremia with S. bovis I was also highly correlated with an underlying colonic neoplasm (71% of patients overall, 100% of those with thorough colonic examinations) compared with bacteremia due to S. bovis II or S. salivarius (17% overall, 25% of patients with thorough colonic examinations). We conclude that careful identification of streptococcal bacteremic isolates as S. bovis biotype I provides clinically important information and should be more widely applied. PMID:2915024

  5. Mitotic Protein CSPP1 Interacts with CENP-H Protein to Coordinate Accurate Chromosome Oscillation in Mitosis.

    Science.gov (United States)

    Zhu, Lijuan; Wang, Zhikai; Wang, Wenwen; Wang, Chunli; Hua, Shasha; Su, Zeqi; Brako, Larry; Garcia-Barrio, Minerva; Ye, Mingliang; Wei, Xuan; Zou, Hanfa; Ding, Xia; Liu, Lifang; Liu, Xing; Yao, Xuebiao

    2015-11-01

    Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochores. During chromosome alignment, kinetochore-bound microtubules undergo dynamic cycles between growth and shrinkage, leading to an oscillatory movement of chromosomes along the spindle axis. Although kinetochore protein CENP-H serves as a molecular control of kinetochore-microtubule dynamics, the mechanistic link between CENP-H and kinetochore microtubules (kMT) has remained less characterized. Here, we show that CSPP1 is a kinetochore protein essential for accurate chromosome movements in mitosis. CSPP1 binds to CENP-H in vitro and in vivo. Suppression of CSPP1 perturbs proper mitotic progression and compromises the satisfaction of spindle assembly checkpoint. In addition, chromosome oscillation is greatly attenuated in CSPP1-depleted cells, similar to what was observed in the CENP-H-depleted cells. Importantly, CSPP1 depletion enhances velocity of kinetochore movement, and overexpression of CSPP1 decreases the speed, suggesting that CSPP1 promotes kMT stability during cell division. Specific perturbation of CENP-H/CSPP1 interaction using a membrane-permeable competing peptide resulted in a transient mitotic arrest and chromosome segregation defect. Based on these findings, we propose that CSPP1 cooperates with CENP-H on kinetochores to serve as a novel regulator of kMT dynamics for accurate chromosome segregation.

  6. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    Science.gov (United States)

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  7. Optimizing odor identification testing as quick and accurate diagnostic tool for Parkinson's disease

    Science.gov (United States)

    Mahlknecht, Philipp; Pechlaner, Raimund; Boesveldt, Sanne; Volc, Dieter; Pinter, Bernardette; Reiter, Eva; Müller, Christoph; Krismer, Florian; Berendse, Henk W.; van Hilten, Jacobus J.; Wuschitz, Albert; Schimetta, Wolfgang; Högl, Birgit; Djamshidian, Atbin; Nocker, Michael; Göbel, Georg; Gasperi, Arno; Kiechl, Stefan; Willeit, Johann; Poewe, Werner

    2016-01-01

    ABSTRACT Introduction The aim of this study was to evaluate odor identification testing as a quick, cheap, and reliable tool to identify PD. Methods Odor identification with the 16‐item Sniffin' Sticks test (SS‐16) was assessed in a total of 646 PD patients and 606 controls from three European centers (A, B, and C), as well as 75 patients with atypical parkinsonism or essential tremor and in a prospective cohort of 24 patients with idiopathic rapid eye movement sleep behavior disorder (center A). Reduced odor sets most discriminative for PD were determined in a discovery cohort derived from a random split of PD patients and controls from center A using L1‐regularized logistic regression. Diagnostic accuracy was assessed in the rest of the patients/controls as validation cohorts. Results Olfactory performance was lower in PD patients compared with controls and non‐PD patients in all cohorts (each P 3 years of disease duration were excluded from analysis. All 8 incident PD cases among patients with idiopathic rapid eye movement sleep behavior disorder were predicted with the SS‐16 and the SS‐8 (sensitivity, 100%; positive predictive value, 61.5%). Conclusions Odor identification testing provides excellent diagnostic accuracy in the distinction of PD patients from controls and diagnostic mimics. A reduced set of eight odors could be used as a quick tool in the workup of patients presenting with parkinsonism and for PD risk indication. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society PMID:27159493

  8. Application of the antibiotic batumin for accurate and rapid identification of staphylococcal small colony variants

    Directory of Open Access Journals (Sweden)

    Churkina Larisa N

    2012-07-01

    Full Text Available Abstract Background Staphylococcus aureus is a major human pathogen causing significant morbidity and mortality. The S. aureus colonies in osteomyelitis, in patients with cystic fibrosis and patients with endoprosthesis rejection frequently have an atypical morphology, i.e. staphylococcal small-colony variants, which form a naturally occurring subpopulation of clinically important staphylococci. Identification of these small colony variants is difficult, because of the loss of typical phenotypic characteristics of these variants. We wanted to improve and simplify the diagnosis of staphylococcal infection using a diagnostic preparation, consisting of 5 μg batumin paper disks. Batumin possesses a unique selective activity against all studied Staphylococcus spp., whereas all other species tested thus far are batumin resistant. We assessed the efficacy of the batumin diagnostic preparation to identify staphylococcal small colony variants, isolated from osteomyelitis patients. Findings With the batumin diagnostic preparation, all 30 tested staphylococcal small-colony variants had a growth inhibition zone around the disk of minimum 25 mm, accordant with the inhibition zones of the parent strains, isolated from the same patients. Conclusions The batumin diagnostic preparation correctly identified the small-colony variants of S. aureus, S. haemolyticus and S. epidermidis as belonging to the genus Staphylococcus, which differ profoundly from parental strains and are difficult to identify with standard methods. Identification of staphylococcal small-colony variants with the batumin diagnostic preparation is technically simple and can facilitate practical laboratory work.

  9. Retrival experience as an accurate indicator of person identification in line-ups

    Directory of Open Access Journals (Sweden)

    María José Contreras

    2011-07-01

    Full Text Available Responses in eyewitness identification of a person in a line-up may be based on two types of recovery experiences, remember and know experiences. Remember responses involve eyewitness identification of the target person as an episodic memory task, because it implies retrieving information about the target person in the place and at the time of the event. Know responses, in contrast, engage recognition based on familiarity or perceptual facilitation, that is, as a semantic memory task. To explore the relation between retrieval experiences and recognition accuracy, 86 participants took part in a recognition task with two conditions: one with an interpolated target absent line-up and the other only with the target present line-up. Accuracy of recognition and retrieval experience was measured. The results showed that, having previously participated in a target-absent line-up, increased omissions, while the number of hits decreased. Furthermore, participants’ know responses were associated to false recognition, whilst remember responses were associated to hits in recognition. Thus, asking eyewitnesses to inform about the kind of retrieval experience in which they based their recognition responses, may serve as a reliable indicator of accuracy in recognition. Future studies are needed to investigate whether this is also the case in natural settings.

  10. The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Pletscher-Frankild, Sune; Fanini, Lucia;

    2013-01-01

    -based approach to named entity recognition, which we here use to identify names of species and other taxa in text. The tool, SPECIES, is more than an order of magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard corpus and on a new corpus...... of 800 abstracts, which were manually annotated after the development of the tool. The corpus comprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of organism names are hard to detect and which are easy. Finally, we have tagged organism...

  11. Identification of mitochondrial proteins of malaria parasite using analysis of variance.

    Science.gov (United States)

    Ding, Hui; Li, Dongmei

    2015-02-01

    As a parasitic protozoan, Plasmodium falciparum (P. falciparum) can cause malaria. The mitochondrial proteins of malaria parasite play important roles in the discovery of anti-malarial drug targets. Thus, accurate identification of mitochondrial proteins of malaria parasite is a key step for understanding their functions and finding potential drug targets. In this work, we developed a sequence-based method to identify the mitochondrial proteins of malaria parasite. At first, we extended adjoining dipeptide composition to g-gap dipeptide composition for discretely formulating the protein sequences. Subsequently, the analysis of variance (ANOVA) combined with incremental feature selection (IFS) was used to pick out the optimal features. Finally, the jackknife cross-validation was used to evaluate the performance of the proposed model. Evaluation results showed that the maximum accuracy of 97.1% could be achieved by using 101 optimal 5-gap dipeptides. The comparison with previous methods demonstrated that our method was accurate and efficient.

  12. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    Science.gov (United States)

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  13. FAMSA: Fast and accurate multiple sequence alignment of huge protein families

    Science.gov (United States)

    Deorowicz, Sebastian; Debudaj-Grabysz, Agnieszka; Gudyś, Adam

    2016-01-01

    Rapid development of modern sequencing platforms has contributed to the unprecedented growth of protein families databases. The abundance of sets containing hundreds of thousands of sequences is a formidable challenge for multiple sequence alignment algorithms. The article introduces FAMSA, a new progressive algorithm designed for fast and accurate alignment of thousands of protein sequences. Its features include the utilization of the longest common subsequence measure for determining pairwise similarities, a novel method of evaluating gap costs, and a new iterative refinement scheme. What matters is that its implementation is highly optimized and parallelized to make the most of modern computer platforms. Thanks to the above, quality indicators, i.e. sum-of-pairs and total-column scores, show FAMSA to be superior to competing algorithms, such as Clustal Omega or MAFFT for datasets exceeding a few thousand sequences. Quality does not compromise on time or memory requirements, which are an order of magnitude lower than those in the existing solutions. For example, a family of 415519 sequences was analyzed in less than two hours and required no more than 8 GB of RAM. FAMSA is available for free at http://sun.aei.polsl.pl/REFRESH/famsa. PMID:27670777

  14. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Institute of Physics and Engineering, (Russian Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  15. Evaluating Peptide Mass Fingerprinting-based Protein Identification

    Institute of Scientific and Technical Information of China (English)

    Senthilkumar Damodaran; Troy D. Wood; Priyadharsini Nagarajan; Richard A. Rabin

    2007-01-01

    Identification of proteins by mass spectrometry (MS) is an essential step in pro- teomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when high- throughput MS/MS instrumentation is not readily available. At present, a vast majority of proteomic studies employ PMF. However, there are huge disparities in criteria used to identify proteins using PMF. Therefore, to reduce incorrect protein identification using PMF, and also to increase confidence in PMF-based protein identification without accompanying MS/MS analysis, definitive guiding principles are essential. To this end, we propose a value-based scoring system that provides guidance on evaluating when PMF-based protein identification can be deemed sufficient without accompanying amino acid sequence data from MS/MS analysis.

  16. A tri-stage cluster identification model for accurate analysis of seismic catalogs

    Directory of Open Access Journals (Sweden)

    S. J. Nanda

    2013-02-01

    Full Text Available In this paper we propose a tri-stage cluster identification model that is a combination of a simple single iteration distance algorithm and an iterative K-means algorithm. In this study of earthquake seismicity, the model considers event location, time and magnitude information from earthquake catalog data to efficiently classify events as either background or mainshock and aftershock sequences. Tests on a synthetic seismicity catalog demonstrate the efficiency of the proposed model in terms of accuracy percentage (94.81% for background and 89.46% for aftershocks. The close agreement between lambda and cumulative plots for the ideal synthetic catalog and that generated by the proposed model also supports the accuracy of the proposed technique. There is flexibility in the model design to allow for proper selection of location and magnitude ranges, depending upon the nature of the mainshocks present in the catalog. The effectiveness of the proposed model also is evaluated by the classification of events in three historic catalogs: California, Japan and Indonesia. As expected, for both synthetic and historic catalog analysis it is observed that the density of events classified as background is almost uniform throughout the region, whereas the density of aftershock events are higher near the mainshocks.

  17. A novel approach for latent print identification using accurate overlays to prioritize reference prints.

    Science.gov (United States)

    Gantz, Daniel T; Gantz, Donald T; Walch, Mark A; Roberts, Maria Antonia; Buscaglia, JoAnn

    2014-12-01

    A novel approach to automated fingerprint matching and scoring that produces accurate locally and nonlinearly adjusted overlays of a latent print onto each reference print in a corpus is described. The technology, which addresses challenges inherent to latent prints, provides the latent print examiner with a prioritized ranking of candidate reference prints based on the overlays of the latent onto each candidate print. In addition to supporting current latent print comparison practices, this approach can make it possible to return a greater number of AFIS candidate prints because the ranked overlays provide a substantial starting point for latent-to-reference print comparison. To provide the image information required to create an accurate overlay of a latent print onto a reference print, "Ridge-Specific Markers" (RSMs), which correspond to short continuous segments of a ridge or furrow, are introduced. RSMs are reliably associated with any specific local section of a ridge or a furrow using the geometric information available from the image. Latent prints are commonly fragmentary, with reduced clarity and limited minutiae (i.e., ridge endings and bifurcations). Even in the absence of traditional minutiae, latent prints contain very important information in their ridges that permit automated matching using RSMs. No print orientation or information beyond the RSMs is required to generate the overlays. This automated process is applied to the 88 good quality latent prints in the NIST Special Database (SD) 27. Nonlinear overlays of each latent were produced onto all of the 88 reference prints in the NIST SD27. With fully automated processing, the true mate reference prints were ranked in the first candidate position for 80.7% of the latents tested, and 89.8% of the true mate reference prints ranked in the top ten positions. After manual post-processing of those latents for which the true mate reference print was not ranked first, these frequencies increased to 90

  18. Accurate microRNA target prediction correlates with protein repression levels

    Directory of Open Access Journals (Sweden)

    Simossis Victor A

    2009-09-01

    Full Text Available Abstract Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT

  19. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry

    Science.gov (United States)

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification. PMID:27313979

  20. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry.

    Science.gov (United States)

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification.

  1. Rapid and Accurate Identification of Animal Species in Natural Leather Goods by Liquid Chromatography/Mass Spectrometry.

    Science.gov (United States)

    Izuchi, Yukari; Takashima, Tsuneo; Hatano, Naoya

    2016-01-01

    The demand for leather goods has grown globally in recent years. Industry revenue is forecast to reach $91.2 billion by 2018. There is an ongoing labelling problem in the leather items market, in that it is currently impossible to identify the species that a given piece of leather is derived from. To address this issue, we developed a rapid and simple method for the specific identification of leather derived from cattle, horses, pigs, sheep, goats, and deer by analysing peptides produced by the trypsin-digestion of proteins contained in leather goods using liquid chromatography/mass spectrometry. We determined species-specific amino acid sequences by liquid chromatography/tandem mass spectrometry analysis using the Mascot software program and demonstrated that collagen α-1(I), collagen α-2(I), and collagen α-1(III) from the dermal layer of the skin are particularly useful in species identification. PMID:27313979

  2. Identification of outer membrane proteins of Yersinia pestis through biotinylation

    NARCIS (Netherlands)

    Smither, S.J.; Hill, J.; Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Titball, R.W.

    2007-01-01

    The outer membrane of Gram-negative bacteria contains proteins that might be good targets for vaccines, antimicrobials or detection systems. The identification of surface located proteins using traditional methods is often difficult. Yersinia pestis, the causative agent of plague, was labelled with

  3. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.

    Science.gov (United States)

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-02-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674

  4. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.

    Science.gov (United States)

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-02-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/.

  5. Dealing with the identification of protein species in ancient amphorae.

    Science.gov (United States)

    Dallongeville, Sophie; Garnier, Nicolas; Casasola, Dario Bernal; Bonifay, Michel; Rolando, Christian; Tokarski, Caroline

    2011-03-01

    This manuscript deals with the identification of protein residues in amphorae, including particularly identification of protein species. The work described was performed on fishes, the anchovy (Engraulis encrasicolus) and bonito (Sarda sarda) species frequently found in the Mediterranean area. Based on proteomic techniques, the analytical strategy was adapted to analysis of protein residues from tiny ceramic fragments. The major difficulty was to extract proteins and limit their hydrolysis during the sample preparation; consequently, multiple soft extraction techniques were evaluated. The most valuable results were obtained using a solution containing high amounts of denaturing agents, urea and thiourea, reducing agent, dithiothreitol, and detergent, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The analysis using nano liquid chromatography-nano electrospray ionization double quadrupole time-of-flight mass spectrometry resulted in the identification of up to 200 proteins for the anchovy and bonito species, among which 73 peptides were found to be fish-specific. Because bonito and anchovy species are not documented and fully sequenced in genomic databases, the preliminary protein identification was realized via sequence homology to other fish sequenced species. Amino acid substitutions of peptides were assigned on the basis of the interpretation of tandem mass spectrometry spectra using de novo sequencing; these peptides, not reported up to now in databases, constitute species-specific markers. The method developed was finally applied to an archaeological sample replica impregnated with a mixture of fish tissue from both species; this experiment successfully led to the identification of 17 fish proteins, including 33 fish-specific peptides. This work shows that the analytical method developed has great potential for the identification of protein species in complex archaeological samples. PMID:20890751

  6. Stable isotope, site-specific mass tagging for protein identification

    Science.gov (United States)

    Chen, Xian

    2006-10-24

    Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.

  7. Proteomics: Protein Identification Using Online Databases

    Science.gov (United States)

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  8. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating the s...

  9. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1.

    Directory of Open Access Journals (Sweden)

    Jennifer L Schehr

    Full Text Available Expression of programmed-death ligand 1 (PD-L1 in non-small cell lung cancer (NSCLC is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT.To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP technology.Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33-100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples.Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria, thus improving the

  10. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1

    Science.gov (United States)

    Schultz, Zachery D.; Warrick, Jay W.; Guckenberger, David J.; Pezzi, Hannah M.; Sperger, Jamie M.; Heninger, Erika; Saeed, Anwaar; Leal, Ticiana; Mattox, Kara; Traynor, Anne M.; Campbell, Toby C.; Berry, Scott M.; Beebe, David J.; Lang, Joshua M.

    2016-01-01

    Background Expression of programmed-death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs) may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM) positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT)). Methods To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP) technology. Results Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33–100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples. Conclusions Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria

  11. Simple Protein Complex Purification and Identification Method Suitable for High- throughput Mapping of Protein Interaction Networks

    Energy Technology Data Exchange (ETDEWEB)

    Markillie, Lye Meng; Lin, Chiann Tso; Adkins, Joshua N.; Auberry, Deanna L.; Hill, Eric A.; Hooker, Brian S.; Moore, Priscilla A.; Moore, Ronald J.; Shi, Liang; Wiley, H. S.; Kery, Vladimir

    2005-04-11

    Most of the current methods for purification and identification of protein complexes use endogenous expression of affinity tagged bait, tandem affinity tag purification of protein complexes followed by specific elution of complexes from beads, gel separation, in-gel digestion and mass spectrometric analysis of protein interactors. We propose a single affinity tag in vitro pulldown assay with denaturing elution, trypsin digestion in organic solvent and LC ESI MS/MS protein identification using SEQUEST analysis. Our method is simple, easy to scale up and automate thus suitable for high throughput mapping of protein interaction networks and functional proteomics.

  12. Identification of Ina proteins from Fusarium acuminatum

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  13. Identification of Osteocyte-Selective Proteins

    OpenAIRE

    Guo, Dayong; Keightley, Andrew; Guthrie, Jill; Veno, Patricia A.; Harris, Stephen E.; Bonewald, Lynda F.

    2010-01-01

    Since little is known regarding osteocytes, cells embedded within the mineralized bone matrix, a proteomics approach was used to discover proteins more highly expressed in osteocytes than in osteoblasts to determine osteocyte specific function. Two proteomic profiles obtained by two different proteomic approaches using total cell lysates from the osteocyte cell line MLO-Y4 and the osteoblast cell line MC3T3 revealed unique differences. Three protein clusters, one related to glycolysis, (Phosp...

  14. Identification of kinetically hot residues in proteins.

    OpenAIRE

    M. C. Demirel; Atilgan, A. R.; Jernigan, R. L.; Erman, B; Bahar, I

    1998-01-01

    A number of recent studies called attention to the presence of kinetically important residues underlying the formation and stabilization of folding nuclei in proteins, and to the possible existence of a correlation between conserved residues and those participating in the folding nuclei. Here, we use the Gaussian network model (GNM), which recently proved useful in describing the dynamic characteristics of proteins for identifying the kinetically hot residues in folded structures. These are t...

  15. BioID Identification of Lamin-Associated Proteins.

    Science.gov (United States)

    Mehus, Aaron A; Anderson, Ruthellen H; Roux, Kyle J

    2016-01-01

    A- and B-type lamins support the nuclear envelope, contribute to heterochromatin organization, and regulate a myriad of nuclear processes. The mechanisms by which lamins function in different cell types and the mechanisms by which lamin mutations cause over a dozen human diseases (laminopathies) remain unclear. The identification of proteins associated with lamins is likely to provide fundamental insight into these mechanisms. BioID (proximity-dependent biotin identification) is a unique and powerful method for identifying protein-protein and proximity-based interactions in living cells. BioID utilizes a mutant biotin ligase from bacteria that is fused to a protein of interest (bait). When expressed in living cells and stimulated with excess biotin, this BioID-fusion protein promiscuously biotinylates directly interacting and vicinal endogenous proteins. Following biotin-affinity capture, the biotinylated proteins can be identified using mass spectrometry. BioID thus enables screening for physiologically relevant protein associations that occur over time in living cells. BioID is applicable to insoluble proteins such as lamins that are often refractory to study by other methods and can identify weak and/or transient interactions. We discuss the use of BioID to elucidate novel lamin-interacting proteins and its applications in a broad range of biological systems, and provide detailed protocols to guide new applications.

  16. BioID Identification of Lamin-Associated Proteins.

    Science.gov (United States)

    Mehus, Aaron A; Anderson, Ruthellen H; Roux, Kyle J

    2016-01-01

    A- and B-type lamins support the nuclear envelope, contribute to heterochromatin organization, and regulate a myriad of nuclear processes. The mechanisms by which lamins function in different cell types and the mechanisms by which lamin mutations cause over a dozen human diseases (laminopathies) remain unclear. The identification of proteins associated with lamins is likely to provide fundamental insight into these mechanisms. BioID (proximity-dependent biotin identification) is a unique and powerful method for identifying protein-protein and proximity-based interactions in living cells. BioID utilizes a mutant biotin ligase from bacteria that is fused to a protein of interest (bait). When expressed in living cells and stimulated with excess biotin, this BioID-fusion protein promiscuously biotinylates directly interacting and vicinal endogenous proteins. Following biotin-affinity capture, the biotinylated proteins can be identified using mass spectrometry. BioID thus enables screening for physiologically relevant protein associations that occur over time in living cells. BioID is applicable to insoluble proteins such as lamins that are often refractory to study by other methods and can identify weak and/or transient interactions. We discuss the use of BioID to elucidate novel lamin-interacting proteins and its applications in a broad range of biological systems, and provide detailed protocols to guide new applications. PMID:26778550

  17. Mass spectrometry allows direct identification of proteins in large genomes

    DEFF Research Database (Denmark)

    Küster, B; Mortensen, Peter V.; Andersen, Jens S.;

    2001-01-01

    Proteome projects seek to provide systematic functional analysis of the genes uncovered by genome sequencing initiatives. Mass spectrometric protein identification is a key requirement in these studies but to date, database searching tools rely on the availability of protein sequences derived from...... of noncoding DNA sequence, identified peptides localize coding sequences (exons) in a confined region of the genome, which contains the cognate gene. The approach does not require prior information about putative ORFs as predicted by computerized gene finding algorithms. The method scales to the complete human...... genome and allows identification, mapping, cloning and assistance in gene prediction of any protein for which minimal mass spectrometric information can be obtained. Several novel proteins from Arabidopsis thaliana and human have been discovered in this way....

  18. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.

    2013-09-03

    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  19. Identification of stromal proteins overexpressed in nodular sclerosis Hodgkin lymphoma

    Directory of Open Access Journals (Sweden)

    de Leval Laurence

    2011-10-01

    Full Text Available Abstract Hodgkin lymphoma (HL represents a category of lymphoid neoplasms with unique features, notably the usual scarcity of tumour cells in involved tissues. The most common subtype of classical HL, nodular sclerosis HL, characteristically comprises abundant fibrous tissue stroma. Little information is available about the protein composition of the stromal environment from HL. Moreover, the identification of valid protein targets, specifically and abundantly expressed in HL, would be of utmost importance for targeted therapies and imaging, yet the biomarkers must necessarily be accessible from the bloodstream. To characterize HL stroma and to identify potentially accessible proteins, we used a chemical proteomic approach, consisting in the labelling of accessible proteins and their subsequent purification and identification by mass spectrometry. We performed an analysis of potentially accessible proteins in lymph node biopsies from HL and reactive lymphoid tissues, and in total, more than 1400 proteins were identified in 7 samples. We have identified several extracellular matrix proteins overexpressed in HL, such as versican, fibulin-1, periostin, and other proteins such as S100-A8. These proteins were validated by immunohistochemistry on a larger series of biopsy samples, and bear the potential to become targets for antibody-based anti-cancer therapies.

  20. Identification of a putative protein profile associating with tamoxifen therapy resistance in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Umar, Arzu; Kang, Hyuk; Timmermans, A. M.; Look, Maxime P.; Meijer-van Gelder, M. E.; den Bakker, Michael A.; Jaitly, Navdeep; Martens, John W.; Luider, Theo M.; Foekens, John A.; Pasa-Tolic, Ljiljana

    2009-06-01

    Tamoxifen-resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that associate with tamoxifen-resistance is a first step towards better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy-resistance in breast cancer, using nanoLC coupled with FTICR MS. Comparative proteome analysis was performed on ~5,500 pooled tumor cells (corresponding to ~550 ng protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data sets (n=24 and n=27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag (AMT) reference databases.

  1. Identification of essential proteins based on edge clustering coefficient.

    Science.gov (United States)

    Wang, Jianxin; Li, Min; Wang, Huan; Pan, Yi

    2012-01-01

    Identification of essential proteins is key to understanding the minimal requirements for cellular life and important for drug design. The rapid increase of available protein-protein interaction (PPI) data has made it possible to detect protein essentiality on network level. A series of centrality measures have been proposed to discover essential proteins based on network topology. However, most of them tended to focus only on the location of single protein, but ignored the relevance between interactions and protein essentiality. In this paper, a new centrality measure for identifying essential proteins based on edge clustering coefficient, named as NC, is proposed. Different from previous centrality measures, NC considers both the centrality of a node and the relationship between it and its neighbors. For each interaction in the network, we calculate its edge clustering coefficient. A node’s essentiality is determined by the sum of the edge clustering coefficients of interactions connecting it and its neighbors. The new centrality measure NC takes into account the modular nature of protein essentiality. NC is applied to three different types of yeast protein-protein interaction networks, which are obtained from the DIP database, the MIPS database and the BioGRID database, respectively. The experimental results on the three different networks show that the number of essential proteins discovered by NC universally exceeds that discovered by the six other centrality measures: DC, BC, CC, SC, EC, and IC. Moreover, the essential proteins discovered by NC show significant cluster effect. PMID:22084147

  2. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.

    Science.gov (United States)

    El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant

    2016-01-01

    A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein

  3. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing

    Science.gov (United States)

    Poleksic, Aleksandar; Yao, Yuan; Tong, Hanghang; Meng, Patrick; Xie, Lei

    2016-01-01

    Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and

  4. Identification & Characterization of Fungal Ice Nucleation Proteins

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  5. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    Science.gov (United States)

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions.

  6. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    Science.gov (United States)

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. PMID:24375512

  7. Toward more accurate ancestral protein genotype-phenotype reconstructions with the use of species tree-aware gene trees.

    Science.gov (United States)

    Groussin, Mathieu; Hobbs, Joanne K; Szöllősi, Gergely J; Gribaldo, Simonetta; Arcus, Vickery L; Gouy, Manolo

    2015-01-01

    The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not been investigated. Here, we show with simulations that utilizing information on species history using a model that accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This underscores the importance of the tree topology in the inference of putative ancestors. We validate our in silico predictions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial phylum. With this particular protein, our experimental results demonstrate that information on the species phylogeny results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments with different proteins are necessary to statistically quantify the impact of using species tree-aware gene trees on ancestral protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in future studies of protein resurrections to accurately define the genotype-phenotype space in which proteins diversify.

  8. Accurate and rapid identification of the Burkholderia pseudomallei near-neighbour, Burkholderia ubonensis, using real-time PCR.

    Directory of Open Access Journals (Sweden)

    Erin P Price

    Full Text Available Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc, a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown's medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown's agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown's-positive colonies that are not B. pseudomallei.

  9. Identification of chikungunya virus interacting proteins in mammalian cells

    Indian Academy of Sciences (India)

    Mandar S Paingankar; Vidya A Arankalle

    2014-06-01

    Identification and characterization of virus host interactions is an essential step for the development of novel antiviral strategies. Very few studies have been targeted towards identification of chikungunya virus (CHIKV) interacting host proteins. In current study, virus overlay protein binding assay (VOPBA) and matrix-assisted laser desorption/ionization time of flight analysis (MALDI TOF/TOF) were employed for the identification of CHIKV binding proteins in mammalian cells. HSP70 and actin were identified as virus binding proteins in HEK-293T and Vero-E6 cells, whereas STAT-2 was identified as an additional protein in Vero-E6 cells. Pre-incubation with anti-HSP70 antibody and miRNA silencing of HSP70 significantly reduced the CHIKV production in HEK-293T and Vero-E6 cells at early time points. These results suggest that CHIKV exploits the housekeeping molecules such as actin, HSP70 and STAT-2 to establish infection in the mammalian cells.

  10. Bioinformatics pipeline for functional identification and characterization of proteins

    Science.gov (United States)

    Skarzyńska, Agnieszka; Pawełkowicz, Magdalena; Krzywkowski, Tomasz; Świerkula, Katarzyna; PlÄ der, Wojciech; Przybecki, Zbigniew

    2015-09-01

    The new sequencing methods, called Next Generation Sequencing gives an opportunity to possess a vast amount of data in short time. This data requires structural and functional annotation. Functional identification and characterization of predicted proteins could be done by in silico approches, thanks to a numerous computational tools available nowadays. However, there is a need to confirm the results of proteins function prediction using different programs and comparing the results or confirm experimentally. Here we present a bioinformatics pipeline for structural and functional annotation of proteins.

  11. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles.

    Science.gov (United States)

    Dobrovolskaia, Marina A; Neun, Barry W; Man, Sonny; Ye, Xiaoying; Hansen, Matthew; Patri, Anil K; Crist, Rachael M; McNeil, Scott E

    2014-10-01

    Proteins bound to nanoparticle surfaces are known to affect particle clearance by influencing immune cell uptake and distribution to the organs of the mononuclear phagocytic system. The composition of the protein corona has been described for several types of nanomaterials, but the role of the corona in nanoparticle biocompatibility is not well established. In this study we investigate the role of nanoparticle surface properties (PEGylation) and incubation times on the protein coronas of colloidal gold nanoparticles. While neither incubation time nor PEG molecular weight affected the specific proteins in the protein corona, the total amount of protein binding was governed by the molecular weight of PEG coating. Furthermore, the composition of the protein corona did not correlate with nanoparticle hematocompatibility. Specialized hematological tests should be used to deduce nanoparticle hematotoxicity. From the clinical editor: It is overall unclear how the protein corona associated with colloidal gold nanoparticles may influence hematotoxicity. This study warns that PEGylation itself may be insufficient, because composition of the protein corona does not directly correlate with nanoparticle hematocompatibility. The authors suggest that specialized hematological tests must be used to deduce nanoparticle hematotoxicity.

  12. Identification of surface proteins in Enterococcus faecalis V583

    Directory of Open Access Journals (Sweden)

    Eijsink Vincent GH

    2011-03-01

    Full Text Available Abstract Background Surface proteins are a key to a deeper understanding of the behaviour of Gram-positive bacteria interacting with the human gastro-intestinal tract. Such proteins contribute to cell wall synthesis and maintenance and are important for interactions between the bacterial cell and the human host. Since they are exposed and may play roles in pathogenicity, surface proteins are interesting targets for drug design. Results Using methods based on proteolytic "shaving" of bacterial cells and subsequent mass spectrometry-based protein identification, we have identified surface-located proteins in Enterococcus faecalis V583. In total 69 unique proteins were identified, few of which have been identified and characterized previously. 33 of these proteins are predicted to be cytoplasmic, whereas the other 36 are predicted to have surface locations (31 or to be secreted (5. Lipid-anchored proteins were the most dominant among the identified surface proteins. The seemingly most abundant surface proteins included a membrane protein with a potentially shedded extracellular sulfatase domain that could act on the sulfate groups in mucin and a lipid-anchored fumarate reductase that could contribute to generation of reactive oxygen species. Conclusions The present proteome analysis gives an experimental impression of the protein landscape on the cell surface of the pathogenic bacterium E. faecalis. The 36 identified secreted (5 and surface (31 proteins included several proteins involved in cell wall synthesis, pheromone-regulated processes, and transport of solutes, as well as proteins with unknown function. These proteins stand out as interesting targets for further investigation of the interaction between E. faecalis and its environment.

  13. VORFFIP-driven dock: V-D2OCK, a fast and accurate protein docking strategy.

    Directory of Open Access Journals (Sweden)

    Joan Segura

    Full Text Available The experimental determination of the structure of protein complexes cannot keep pace with the generation of interactomic data, hence resulting in an ever-expanding gap. As the structural details of protein complexes are central to a full understanding of the function and dynamics of the cell machinery, alternative strategies are needed to circumvent the bottleneck in structure determination. Computational protein docking is a valid and valuable approach to model the structure of protein complexes. In this work, we describe a novel computational strategy to predict the structure of protein complexes based on data-driven docking: VORFFIP-driven dock (V-D2OCK. This new approach makes use of our newly described method to predict functional sites in protein structures, VORFFIP, to define the region to be sampled during docking and structural clustering to reduce the number of models to be examined by users. V-D2OCK has been benchmarked using a validated and diverse set of protein complexes and compared to a state-of-art docking method. The speed and accuracy compared to contemporary tools justifies the potential use of VD2OCK for high-throughput, genome-wide, protein docking. Finally, we have developed a web interface that allows users to browser and visualize V-D2OCK predictions from the convenience of their web-browsers.

  14. Identification and Validation of ISG15 Target Proteins.

    Science.gov (United States)

    Durfee, Larissa A; Huibregtse, Jon M

    2010-01-01

    ISG15 is an interferon-induced ubiquitin-like protein (Ubl) that has antiviral properties. The core E1, E2 and E3 enzymes for conjugation of human ISG15 are Ube1L, UbcH8 and Herc5, all of which are induced at the transcriptional level by Type 1 interferon signaling. Several proteomics studies have, together, identified over 300 cellular proteins as ISG15 targets. These targets include a broad range of constitutively expressed proteins and approximately 15 interferon-induced proteins. This chapter provides an overview of the target identification process and the validation of these targets. We also discuss the limited number of examples where the biochemical effect of ISG15 conjugation on target proteins has been characterized. PMID:21222286

  15. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  16. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  17. Using protein markers of embryo and seed storage proteins in identification of four pistachio cultivars

    Directory of Open Access Journals (Sweden)

    Ali Akbar Ehsanpour

    2010-12-01

    Full Text Available Identification of protein marker for Pistachio cultivars, as a valuable source of food is important. In this study, the protein patterns of embryo from four pistachio cultivars including Akbari, Ahmad Aghaei, Fandoghi and Kaleghouchi were analyzed using SDS-PAGE. The presence of protein bands about 90 and 45 killo dalton (kd in protein pattern of embryonic axes in cultivars Kaleghouchi and Akbari respectively and the absence of protein bands with approximate molecular weight 30 and 20 kd in protein pattern of cotyledons in cultivars Kaleghouchi and Akbari respectively can be used as protein markers for these pistachio cultivars. On the other hand, the maximum expression level of bands 45 kd in protein pattern of cotyledons could be indicative of a protein marker for cultivar Ahmad Aghaei.

  18. Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners

    OpenAIRE

    Carlo Baldassi; Marco Zamparo; Christoph Feinauer; Andrea Procaccini; Riccardo Zecchina; Martin Weigt; Andrea Pagnani

    2014-01-01

    International audience In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direc...

  19. Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis.

    Science.gov (United States)

    Ding, Hui; Feng, Peng-Mian; Chen, Wei; Lin, Hao

    2014-08-01

    The bacteriophage virion proteins play extremely important roles in the fate of host bacterial cells. Accurate identification of bacteriophage virion proteins is very important for understanding their functions and clarifying the lysis mechanism of bacterial cells. In this study, a new sequence-based method was developed to identify phage virion proteins. In the new method, the protein sequences were initially formulated by the g-gap dipeptide compositions. Subsequently, the analysis of variance (ANOVA) with incremental feature selection (IFS) was used to search for the optimal feature set. It was observed that, in jackknife cross-validation, the optimal feature set including 160 optimized features can produce the maximum accuracy of 85.02%. By performing feature analysis, we found that the correlation between two amino acids with one gap was more important than other correlations for phage virion protein prediction and that some of the 1-gap dipeptides were important and mainly contributed to the virion protein prediction. This analysis will provide novel insights into the function of phage virion proteins. On the basis of the proposed method, an online web-server, PVPred, was established and can be freely accessed from the website (http://lin.uestc.edu.cn/server/PVPred). We believe that the PVPred will become a powerful tool to study phage virion proteins and to guide the related experimental validations.

  20. Identification of protein superfamily from structure- based sequence motif

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure-based sequence motif of the distant proteins in evolution, protein tyrosine phosphatases (PTP) Ⅰ and Ⅱ superfamilies, as an example, has been defined by the structural comparison, structure-based sequence alignment and analyses on substitution patterns of residues in common sequence conserved regions. And the phosphatases Ⅰ and Ⅱ can be correctly identified together by the structure-based PTP sequence motif from SWISS-PROT and TrEBML databases. The results show that the correct rates of identification are over 98%. This is the first time to identify PTP Ⅰ and Ⅱ together by this motif.

  1. Machine Learning Identification of Protein Properties Useful for Specific Applications

    KAUST Repository

    Khamis, Abdullah

    2016-03-31

    Proteins play critical roles in cellular processes of living organisms. It is therefore important to identify and characterize their key properties associated with their functions. Correlating protein’s structural, sequence and physicochemical properties of its amino acids (aa) with protein functions could identify some of the critical factors governing the specific functionality. We point out that not all functions of even well studied proteins are known. This, complemented by the huge increase in the number of newly discovered and predicted proteins, makes challenging the experimental characterization of the whole spectrum of possible protein functions for all proteins of interest. Consequently, the use of computational methods has become more attractive. Here we address two questions. The first one is how to use protein aa sequence and physicochemical properties to characterize a family of proteins. The second one focuses on how to use transcription factor (TF) protein’s domains to enhance accuracy of predicting TF DNA binding sites (TFBSs). To address the first question, we developed a novel method using computational representation of proteins based on characteristics of different protein regions (N-terminal, M-region and C-terminal) and combined these with the properties of protein aa sequences. We show that this description provides important biological insight about characterization of the protein functional groups. Using feature selection techniques, we identified key properties of proteins that allow for very accurate characterization of different protein families. We demonstrated efficiency of our method in application to a number of antimicrobial peptide families. To address the second question we developed another novel method that uses a combination of aa properties of DNA binding domains of TFs and their TFBS properties to develop machine learning models for predicting TFBSs. Feature selection is used to identify the most relevant characteristics

  2. Physicochemical property distributions for accurate and rapid pairwise protein homology detection

    Directory of Open Access Journals (Sweden)

    Oehmen Christopher S

    2010-03-01

    Full Text Available Abstract Background The challenge of remote homology detection is that many evolutionarily related sequences have very little similarity at the amino acid level. Kernel-based discriminative methods, such as support vector machines (SVMs, that use vector representations of sequences derived from sequence properties have been shown to have superior accuracy when compared to traditional approaches for the task of remote homology detection. Results We introduce a new method for feature vector representation based on the physicochemical properties of the primary protein sequence. A distribution of physicochemical property scores are assembled from 4-mers of the sequence and normalized based on the null distribution of the property over all possible 4-mers. With this approach there is little computational cost associated with the transformation of the protein into feature space, and overall performance in terms of remote homology detection is comparable with current state-of-the-art methods. We demonstrate that the features can be used for the task of pairwise remote homology detection with improved accuracy versus sequence-based methods such as BLAST and other feature-based methods of similar computational cost. Conclusions A protein feature method based on physicochemical properties is a viable approach for extracting features in a computationally inexpensive manner while retaining the sensitivity of SVM protein homology detection. Furthermore, identifying features that can be used for generic pairwise homology detection in lieu of family-based homology detection is important for applications such as large database searches and comparative genomics.

  3. Accurate design of megadalton-scale two-component icosahedral protein complexes.

    Science.gov (United States)

    Bale, Jacob B; Gonen, Shane; Liu, Yuxi; Sheffler, William; Ellis, Daniel; Thomas, Chantz; Cascio, Duilio; Yeates, Todd O; Gonen, Tamir; King, Neil P; Baker, David

    2016-07-22

    Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization of co-assembling, two-component, 120-subunit icosahedral protein nanostructures with molecular weights (1.8 to 2.8 megadaltons) and dimensions (24 to 40 nanometers in diameter) comparable to those of small viral capsids. Electron microscopy, small-angle x-ray scattering, and x-ray crystallography show that 10 designs spanning three distinct icosahedral architectures form materials closely matching the design models. In vitro assembly of icosahedral complexes from independently purified components occurs rapidly, at rates comparable to those of viral capsids, and enables controlled packaging of molecular cargo through charge complementarity. The ability to design megadalton-scale materials with atomic-level accuracy and controllable assembly opens the door to a new generation of genetically programmable protein-based molecular machines. PMID:27463675

  4. Identification of Tobacco Topping Responsive Proteins in Roots

    Directory of Open Access Journals (Sweden)

    Hongxiang eGuo

    2016-04-01

    Full Text Available Tobacco plant has many responses to topping, such as the increase in ability of nicotine synthesis and secondary growth of roots. Some topping responsive miRNAs and genes had been identified in our previous work, but it is not enough to elaborate mechanism of tobacco response to topping. Here, topping responsive proteins were screened from tobacco roots with two-dimensional electrophoresis. Of these proteins, calretulin (CRT and Auxin-responsive protein IAA9 were related to the secondary growth of roots, LRR disease resistance, heat shock protein 70 and farnesyl pyrophosphate synthase 1(FPPS)were involved in wounding stress response, and F-box protein played an important role in promoting the ability of nicotine synthesis after topping. In addition, there were five tobacco bHLH proteins (NtbHLH, NtMYC1a, NtMYC1b, NtMYC2a and NtMYC2b related to nicotine synthesis. It was suggested that NtMYC2 might be the main positive transcription factor and NtbHLH protein is a negative regulator in the JA-mediating activation of nicotine synthesis after topping. Tobacco topping activates some comprehensive biology processes involving IAA and JA signaling pathway, and the identification of these proteins will be helpful to understand the process of topping response.

  5. Identification of AOSC-binding proteins in neurons

    Institute of Scientific and Technical Information of China (English)

    LIU Ming; NIE Qin; XIN Xianliang; GENG Meiyu

    2008-01-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer's Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  6. Identification of repetitive units in protein structures with ReUPred.

    Science.gov (United States)

    Hirsh, Layla; Piovesan, Damiano; Paladin, Lisanna; Tosatto, Silvio C E

    2016-06-01

    Over the last decade, numerous studies have demonstrated the fundamental importance of tandem repeat (TR) proteins in many biological processes. A plethora of new repeat structures have also been solved. The recently published RepeatsDB provides information on TR proteins. However, a detailed structural characterization of repetitive elements is largely missing, as repeat unit annotation is manually curated and currently covers only 3 % of the bona fide TR proteins. Repeat Protein Unit Predictor (ReUPred) is a novel method for the fast automatic prediction of repeat units and repeat classification using an extensive Structure Repeat Unit Library (SRUL) derived from RepeatsDB. ReUPred uses an iterative structural search against the SRUL to find repetitive units. On a test set of solenoid proteins, ReUPred is able to correctly detect 92 % of the proteins. Unlike previous methods, it is also able to correctly classify solenoid repeats in 89 % of cases. It also outperforms two recent state-of-the-art methods for the repeat unit identification problem. The accurate prediction of repeat units increases the number of annotated repeat units by an order of magnitude compared to the sequence-based Pfam classification. ReUPred is implemented in Python for Linux and freely available from the URL: http://protein.bio.unipd.it/reupred/ . PMID:26898549

  7. Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction.

    Directory of Open Access Journals (Sweden)

    Tatjana Braun

    2015-12-01

    Full Text Available Recent work has shown that the accuracy of ab initio structure prediction can be significantly improved by integrating evolutionary information in form of intra-protein residue-residue contacts. Following this seminal result, much effort is put into the improvement of contact predictions. However, there is also a substantial need to develop structure prediction protocols tailored to the type of restraints gained by contact predictions. Here, we present a structure prediction protocol that combines evolutionary information with the resolution-adapted structural recombination approach of Rosetta, called RASREC. Compared to the classic Rosetta ab initio protocol, RASREC achieves improved sampling, better convergence and higher robustness against incorrect distance restraints, making it the ideal sampling strategy for the stated problem. To demonstrate the accuracy of our protocol, we tested the approach on a diverse set of 28 globular proteins. Our method is able to converge for 26 out of the 28 targets and improves the average TM-score of the entire benchmark set from 0.55 to 0.72 when compared to the top ranked models obtained by the EVFold web server using identical contact predictions. Using a smaller benchmark, we furthermore show that the prediction accuracy of our method is only slightly reduced when the contact prediction accuracy is comparatively low. This observation is of special interest for protein sequences that only have a limited number of homologs.

  8. PETs: A Stable and Accurate Predictor of Protein-Protein Interacting Sites Based on Extremely-Randomized Trees.

    Science.gov (United States)

    Xia, Bin; Zhang, Hong; Li, Qianmu; Li, Tao

    2015-12-01

    Protein-protein interaction (PPI) plays crucial roles in the performance of various biological processes. A variety of methods are dedicated to identify whether proteins have interaction residues, but it is often more crucial to recognize each amino acid. In practical applications, the stability of a prediction model is as important as its accuracy. However, random sampling, which is widely used in previous prediction models, often brings large difference between each training model. In this paper, a Predictor of protein-protein interaction sites based on Extremely-randomized Trees (PETs) is proposed to improve the prediction accuracy while maintaining the prediction stability. In PETs, a cluster-based sampling strategy is proposed to ensure the model stability: first, the training dataset is divided into subsets using specific features; second, the subsets are clustered using K-means; and finally the samples are selected from each cluster. Using the proposed sampling strategy, samples which have different types of significant features could be selected independently from different clusters. The evaluation shows that PETs is able to achieve better accuracy while maintaining a good stability. The source code and toolkit are available at https://github.com/BinXia/PETs.

  9. Urinary Excretion of Liver Type Fatty Acid Binding Protein Accurately Reflects the Degree of Tubulointerstitial Damage

    OpenAIRE

    Yokoyama, Takeshi; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hoshino, Seiko; Yasuda, Takashi; Kimura, Kenjiro

    2009-01-01

    To investigate the relationship between liver-type fatty acid-binding protein (L-FABP), a biomarker of chronic kidney disease, in the kidney and the degree of tubulointerstitial damage, folic acid (FA)-induced nephropathy was studied in a mouse model system. As renal L-FABP is not expressed in wild-type mice, human L-FABP (hL-FABP) transgenic mice were used in this study. hL-FABP is expressed in the renal proximal tubules of the transgenic mice that were injected intraperitoneally with FA in ...

  10. Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation

    Directory of Open Access Journals (Sweden)

    Wincker Patrick

    2009-12-01

    Full Text Available Abstract Background Microsporidia are obligate intracellular eukaryotic parasites with genomes ranging in size from 2.3 Mbp to more than 20 Mbp. The extremely small (2.9 Mbp and highly compact (~1 gene/kb genome of the human parasite Encephalitozoon cuniculi has been fully sequenced. The aim of this study was to characterize noncoding motifs that could be involved in regulation of gene expression in E. cuniculi and to show whether these motifs are conserved among the phylum Microsporidia. Results To identify such signals, 5' and 3'RACE-PCR experiments were performed on different E. cuniculi mRNAs. This analysis confirmed that transcription overrun occurs in E. cuniculi and may result from stochastic recognition of the AAUAAA polyadenylation signal. Such experiments also showed highly reduced 5'UTR's (E. cuniculi genes presented a CCC-like motif immediately upstream from the coding start. To characterize other signals involved in differential transcriptional regulation, we then focused our attention on the gene family coding for ribosomal proteins. An AAATTT-like signal was identified upstream from the CCC-like motif. In rare cases the cytosine triplet was shown to be substituted by a GGG-like motif. Comparative genomic studies confirmed that these different signals are also located upstream from genes encoding ribosomal proteins in other microsporidian species including Antonospora locustae, Enterocytozoon bieneusi, Anncaliia algerae (syn. Brachiola algerae and Nosema ceranae. Based on these results a systematic analysis of the ~2000 E. cuniculi coding DNA sequences was then performed and brings to highlight that 364 translation initiation codons (18.29% of total CDSs had been badly predicted. Conclusion We identified various signals involved in the maturation of E. cuniculi mRNAs. Presence of such signals, in phylogenetically distant microsporidian species, suggests that a common regulatory mechanism exists among the microsporidia. Furthermore

  11. Identification of Candidate Genes related to Bovine Marbling using Protein-Protein Interaction Networks

    OpenAIRE

    Lim, Dajeong; Kim, Nam-Kuk; Park, Hye-Sun; Lee, Seung-Hwan; Cho, Yong-Min; Oh, Sung Jong; Kim, Tae-Hun; Kim, Heebal

    2011-01-01

    Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The present study systemically analyzed genes associated with bovine marbling score and identified their relationships. The candidate nodes were obtained using MedScan text-mining tools and linked by protein-protein intera...

  12. Identification of major immunogenic proteins of Mycoplasma synoviae isolates.

    Science.gov (United States)

    Bercic, Rebeka Lucijana; Slavec, Brigita; Lavric, Miha; Narat, Mojca; Bidovec, Andrej; Dovc, Peter; Bencina, Dusan

    2008-02-01

    Mycoplasma synoviae isolates differ in patterns of immunogenic proteins, but most of them have not been identified yet. The main aim of this study was their identification in two closely related M. synoviae isolates, ULB 02/P4 and ULB 02/OV6, recovered recently from chickens in Slovenia. N-terminal sequencing identified 17 M. synoviae proteins. Amongst them were 14 major, highly expressed but previously unidentified proteins, including enzymes, chaperones and putative lipoproteins. ULB 02/P4 proteins with increasing molecular weight (M(w)) in the region above the lipoprotein MSPB (approximately 40 kDa) were elongation factor EF-Tu, enolase, NADH oxidase, haemagglutinin MSPA, ATP synthase beta chain, trigger factor, pyruvate kinase and chaperone DnaK. Enolase (approximately 47 kDa) seemed to be immunogenic for chickens infected with M. synoviae, whereas EF-Tu, which might cross-react with antibodies to the P1 adhesin of Mycoplasma pneumoniae, was not. ULB 02/OV6 synthesized several immunogenic proteins and those with M(w) of approximately 70, 78, 82, 90, 110 and 160 kDa, cross-reacted with antibodies to Mycoplasma gallisepticum. They remain to be identified, because besides putative lipoproteins, protein bands of 78, 82, 85 and 110 kDa contained also dehydrogenase PdhD, elongation factor EF-G, enzyme PtsG and putative neuraminidase, respectively. PMID:17720337

  13. Amplified protein detection and identification through DNA-conjugated M13 bacteriophage.

    Science.gov (United States)

    Lee, Ju Hun; Domaille, Dylan W; Cha, Jennifer N

    2012-06-26

    Sensitive protein detection and accurate identification continues to be in great demand for disease screening in clinical and laboratory settings. For these diagnostics to be of clinical value, it is necessary to develop sensors that have high sensitivity but favorable cost-to-benefit ratios. However, many of these sensing platforms are thermally unstable or require significant materials synthesis, engineering, or fabrication. Recently, we demonstrated that naturally occurring M13 bacteriophage can serve as biological scaffolds for engineering protein diagnostics. These viruses have five copies of the pIII protein, which can bind specifically to target antigens, and thousands of pVIII coat proteins, which can be genetically or chemically modified to react with signal-producing materials, such as plasmon-shifting gold nanoparticles (Au NPs). In this report, we show that DNA-conjugated M13 bacteriophage can act as inexpensive protein sensors that can rapidly induce a color change in the presence of a target protein yet also offer the ability to identify the detected antigen in a separate step. Many copies of a specific DNA oligonucleotide were appended to each virus to create phage-DNA conjugates that can hybridize with DNA-conjugated gold nanoparticles. In the case of a colorimetric positive result, the identity of the antigen can also be easily determined by using a DNA microarray. This saves precious resources by establishing a rapid, quantitative method to first screen for the presence of antigen followed by a highly specific typing assay if necessary.

  14. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins.

    Science.gov (United States)

    Lewis, Lauren A; Radulović, Željko M; Kim, Tae K; Porter, Lindsay M; Mulenga, Albert

    2015-04-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted.

  15. HEASARC Astronomical Archive: GLIESE2MAS - Gliese Catalog Stars with Accurate Coordinates and 2MASS Cross-Identifications

    Data.gov (United States)

    National Aeronautics and Space Administration — This table contains precise epoch 2000 coordinates and cross-identifications to sources in the 2MASS Point Source Catalog for nearly all stars in the Gliese,...

  16. Identification and phylogenetic analysis of Dictyostelium discoideum kinesin proteins

    Directory of Open Access Journals (Sweden)

    Glöckner Gernot

    2003-11-01

    Full Text Available Abstract Background Kinesins constitute a large superfamily of motor proteins in eukaryotic cells. They perform diverse tasks such as vesicle and organelle transport and chromosomal segregation in a microtubule- and ATP-dependent manner. In recent years, the genomes of a number of eukaryotic organisms have been completely sequenced. Subsequent studies revealed and classified the full set of members of the kinesin superfamily expressed by these organisms. For Dictyostelium discoideum, only five kinesin superfamily proteins (Kif's have already been reported. Results Here, we report the identification of thirteen kinesin genes exploiting the information from the raw shotgun reads of the Dictyostelium discoideum genome project. A phylogenetic tree of 390 kinesin motor domain sequences was built, grouping the Dictyostelium kinesins into nine subfamilies. According to known cellular functions or strong homologies to kinesins of other organisms, four of the Dictyostelium kinesins are involved in organelle transport, six are implicated in cell division processes, two are predicted to perform multiple functions, and one kinesin may be the founder of a new subclass. Conclusion This analysis of the Dictyostelium genome led to the identification of eight new kinesin motor proteins. According to an exhaustive phylogenetic comparison, Dictyostelium contains the same subset of kinesins that higher eukaryotes need to perform mitosis. Some of the kinesins are implicated in intracellular traffic and a small number have unpredictable functions.

  17. Identification of Proteins that Modify Cataract of the Eye Lens

    Science.gov (United States)

    Hoehenwarter, Wolfgang; Tang, Yajun; Ackermann, Renate; Pleissner, Klaus-Peter; Schmid, Monika; Stein, Robert; Zimny-Arndt, Ursula; Kumar, Nalin M.; Jungblut, Peter R.

    2010-01-01

    The occurrence of a nuclear cataract in the eye lens due to disruption of theα3Cx46 connexin gene, Gja3, is dependent on strain background in a mouse model, implicating factors that modify the pathology. The differences upon cataractogenesis in the urea soluble proteins of the lens of two mouse strains, C57BL/6J and 129/SvJ, were analyzed by a comparative proteomics approach. Determination of the complete proteome of an organ offers the opportunity to characterize at a molecular level, differences in gene expression and post-translational modifications occurring during pathology and between individuals. The abundance of 63 protein species was altered between the strains. A unique aspect of this study is the identification of chaperonin subunit 6A, mortalin, ERp29 and syntaxin binding protein 6 in the eye lens. DNA polymorphisms resulting in non-conservative amino acid changes that led to altered physicochemical properties of the proteins were detected for mortalin, chaperonin subunit 6A, annexin A1 and possibly gamma N crystallin. The results show HSP27/25 and/or ERp29 are the likely major modifying factors for cataractogenesis. Extension of the results suggests that small heat shock proteins have a major role for influencing cataract formation in humans. PMID:19003866

  18. Identification of Proteins with Potential Osteogenic Activity Present in the Water-Soluble Matrix Proteins from Crassostrea gigas Nacre Using a Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Daniel V. Oliveira

    2012-01-01

    Full Text Available Nacre, when implanted in vivo in bones of dogs, sheep, mice, and humans, induces a biological response that includes integration and osteogenic activity on the host tissue that seems to be activated by a set of proteins present in the nacre water-soluble matrix (WSM. We describe here an experimental approach that can accurately identify the proteins present in the WSM of shell mollusk nacre. Four proteins (three gigasin-2 isoforms and a cystatin A2 were for the first time identified in WSM of Crassostrea gigas nacre using 2DE and LC-MS/MS for protein identification. These proteins are thought to be involved in bone remodeling processes and could be responsible for the biocompatibility shown between bone and nacre grafts. These results represent a contribution to the study of shell biomineralization process and opens new perspectives for the development of new nacre biomaterials for orthopedic applications.

  19. Identification of a novel Rev-interacting cellular protein

    Directory of Open Access Journals (Sweden)

    Werner Thomas

    2005-04-01

    Full Text Available Abstract Background Human cell types respond differently to infection by human immunodeficiency virus (HIV. Defining specific interactions between host cells and viral proteins is essential in understanding how viruses exploit cellular functions and the innate strategies underlying cellular control of HIV replication. The HIV Rev protein is a post-transcriptional inducer of HIV gene expression and an important target for interaction with cellular proteins. Identification of Rev-modulating cellular factors may eventually contribute to the design of novel antiviral therapies. Results Yeast-two hybrid screening of a T-cell cDNA library with Rev as bait led to isolation of a novel human cDNA product (16.4.1. 16.4.1-containing fusion proteins showed predominant cytoplasmic localization, which was dependent on CRM1-mediated export from the nucleus. Nuclear export activity of 16.4.1 was mapped to a 60 amino acid region and a novel transport signal identified. Interaction of 16.4.1 with Rev in human cells was shown in a mammalian two-hybrid assay and by colocalization of Rev and 16.4.1 in nucleoli, indicating that Rev can recruit 16.4.1 to the nucleus/nucleoli. Rev-dependent reporter expression was inhibited by overexpressing 16.4.1 and stimulated by siRNAs targeted to 16.4.1 sequences, demonstrating that 16.4.1 expression influences the transactivation function of Rev. Conclusion These results suggest that 16.4.1 may act as a modulator of Rev activity. The experimental strategies outlined in this study are applicable to the identification and biological characterization of further novel Rev-interacting cellular factors.

  20. Rapid and accurate identification of Mycobacterium tuberculosis complex and common non-tuberculous mycobacteria by multiplex real-time PCR targeting different housekeeping genes.

    Science.gov (United States)

    Nasr Esfahani, Bahram; Rezaei Yazdi, Hadi; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Zarkesh Esfahani, Hamid

    2012-11-01

    Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T (m)) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100 % for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100 %, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.

  1. Identification of anabolic steroids and derivatives using bioassay-guided fractionation,UHPLC/TOFMS analysis and accurate mass database searching

    NARCIS (Netherlands)

    Peters, R.J.B.; Rijk, J.C.W.; Bovee, T.F.H.; Nijrolder, A.W.J.M.; Lommen, A.; Nielen, M.W.F.

    2010-01-01

    Biological tests can be used to screen samples for large groups of compounds having a particular effect, but it is often difficult to identify a specific compound when a positive effect is observed. The identification of an unknown compound is a challenge for analytical chemistry in environmental an

  2. Rapid and accurate identification of Streptococcus equi subspecies by MALDI-TOF MS

    DEFF Research Database (Denmark)

    Kudirkiene, Egle; Welker, Martin; Knudsen, Nanna Reumert;

    2015-01-01

    phenotypic and sequence similarity between three subspecies their discrimination remains difficult. In this study, we aimed to design and validate a novel, Superspectra based, MALDI-TOF MS approach for reliable, rapid and cost-effective identification of SEE and SEZ, the most frequent S. equi subspecies.......3±7.5%). This result may be attributed to the highly clonal population structure of SEE, as opposed to the diversity of SEZ seen in horses. Importantly strains with atypical colony appearance both within SEE and SEZ did not affect correct identification of the strains by MALDI-TOF MS. Atypical colony variants...... with spectra analyses using the SARAMIS database. Additionally, first results on subtyping of SEZ indicated that a more refined discrimination, for example for epidemiological surveys, may be possible...

  3. Rapid and Accurate Identification by Real-Time PCR of Biotoxin-Producing Dinoflagellates from the Family Gymnodiniaceae

    Directory of Open Access Journals (Sweden)

    Kirsty F. Smith

    2014-03-01

    Full Text Available The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR assays targeting the large subunit ribosomal RNA (LSU rRNA gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  4. Identification of hot regions in protein-protein interactions by sequential pattern mining

    Directory of Open Access Journals (Sweden)

    Lin Chien-Chieh

    2007-05-01

    Full Text Available Abstract Background Identification of protein interacting sites is an important task in computational molecular biology. As more and more protein sequences are deposited without available structural information, it is strongly desirable to predict protein binding regions by their sequences alone. This paper presents a pattern mining approach to tackle this problem. It is observed that a functional region of protein structures usually consists of several peptide segments linked with large wildcard regions. Thus, the proposed mining technology considers large irregular gaps when growing patterns, in order to find the residues that are simultaneously conserved but largely separated on the sequences. A derived pattern is called a cluster-like pattern since the discovered conserved residues are always grouped into several blocks, which each corresponds to a local conserved region on the protein sequence. Results The experiments conducted in this work demonstrate that the derived long patterns automatically discover the important residues that form one or several hot regions of protein-protein interactions. The methodology is evaluated by conducting experiments on the web server MAGIIC-PRO based on a well known benchmark containing 220 protein chains from 72 distinct complexes. Among the tested 218 proteins, there are 900 sequential blocks discovered, 4.25 blocks per protein chain on average. About 92% of the derived blocks are observed to be clustered in space with at least one of the other blocks, and about 66% of the blocks are found to be near the interface of protein-protein interactions. It is summarized that for about 83% of the tested proteins, at least two interacting blocks can be discovered by this approach. Conclusion This work aims to demonstrate that the important residues associated with the interface of protein-protein interactions may be automatically discovered by sequential pattern mining. The detected regions possess high

  5. Improved Identification and Relative Quantification of Sites of Peptide and Protein Oxidation for Hydroxyl Radical Footprinting

    Science.gov (United States)

    Li, Xiaoyan; Li, Zixuan; Xie, Boer; Sharp, Joshua S.

    2013-11-01

    Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein-ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric "oxidized" peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.

  6. Automatic Identification of Antibodies in the Protein Data Bank

    Institute of Scientific and Technical Information of China (English)

    LI Xun; WANG Renxiao

    2009-01-01

    An automatic method has been developed for identifying antibody entries in the protein data bank (PDB). Our method, called KIAb (Keyword-based Identification of Antibodies), parses PDB-format files to search for particular keywords relevant to antibodies, and makes judgment accordingly. Our method identified 780 entries as antibodies on the entire PDB. Among them, 767 entries were confirmed by manual inspection, indicating a high success rate of 98.3%. Our method recovered basically all of the entries compiled in the Summary of Antibody Crystal Structures (SACS) database. It also identified a number of entries missed by SACS. Our method thus provides a more com-plete mining of antibody entries in PDB with a very low false positive rate.

  7. Identification of hot-spot residues in protein-protein interactions by computational docking

    Directory of Open Access Journals (Sweden)

    Fernández-Recio Juan

    2008-10-01

    Full Text Available Abstract Background The study of protein-protein interactions is becoming increasingly important for biotechnological and therapeutic reasons. We can define two major areas therein: the structural prediction of protein-protein binding mode, and the identification of the relevant residues for the interaction (so called 'hot-spots'. These hot-spot residues have high interest since they are considered one of the possible ways of disrupting a protein-protein interaction. Unfortunately, large-scale experimental measurement of residue contribution to the binding energy, based on alanine-scanning experiments, is costly and thus data is fairly limited. Recent computational approaches for hot-spot prediction have been reported, but they usually require the structure of the complex. Results We have applied here normalized interface propensity (NIP values derived from rigid-body docking with electrostatics and desolvation scoring for the prediction of interaction hot-spots. This parameter identifies hot-spot residues on interacting proteins with predictive rates that are comparable to other existing methods (up to 80% positive predictive value, and the advantage of not requiring any prior structural knowledge of the complex. Conclusion The NIP values derived from rigid-body docking can reliably identify a number of hot-spot residues whose contribution to the interaction arises from electrostatics and desolvation effects. Our method can propose residues to guide experiments in complexes of biological or therapeutic interest, even in cases with no available 3D structure of the complex.

  8. Template-based identification of protein-protein interfaces using eFindSitePPI.

    Science.gov (United States)

    Maheshwari, Surabhi; Brylinski, Michal

    2016-01-15

    Protein-protein interactions orchestrate virtually all cellular processes, therefore, their exhaustive exploration is essential for the comprehensive understanding of cellular networks. A reliable identification of interfacial residues is vital not only to infer the function of individual proteins and their assembly into biological complexes, but also to elucidate the molecular and physicochemical basis of interactions between proteins. With the exponential growth of protein sequence data, computational approaches for detecting protein interface sites have drawn an increased interest. In this communication, we discuss the major features of eFindSite(PPI), a recently developed template-based method for interface residue prediction available at http://brylinski.cct.lsu.edu/efindsiteppi. We describe the requirements and installation procedures for the stand-alone version, and explain the content and format of output data. Furthermore, the functionality of the eFindSite(PPI) web application that is designed to provide a simple and convenient access for the scientific community is presented with illustrative examples. Finally, we discuss common problems encountered in predicting protein interfaces and set forth directions for the future development of eFindSite(PPI). PMID:26235816

  9. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry.

    Science.gov (United States)

    Hogenboom, A C; van Leerdam, J A; de Voogt, P

    2009-01-16

    The European Reach legislation will possibly drive producers to develop newly designed chemicals that will be less persistent, bioaccumulative or toxic. If this innovation leads to an increased use of more hydrophilic chemicals it may result in higher mobilities of chemicals in the aqueous environment. As a result, the drinking water companies may face stronger demands on removal processes as the hydrophilic compounds inherently are more difficult to remove. Monitoring efforts will also experience a shift in focus to more water-soluble compounds. Screening source waters on the presence of (emerging) contaminants is an essential step in the control of the water cycle from source to tap water. In this article, some of our experiences are presented with the hybrid linear ion trap (LTQ) FT Orbitrap mass spectrometer, in the area of chemical water analysis. A two-pronged strategy in mass spectrometric research was employed: (i) exploring effluent, surface, ground- and drinking-water samples searching for accurate masses corresponding to target compounds (and their product ions) known from, e.g. priority lists or the scientific literature and (ii) full-scan screening of water samples in search of 'unknown' or unexpected masses, followed by MS(n) experiments to elucidate the structure of the unknowns. Applications of both approaches to emerging water contaminants are presented and discussed. Results are presented for target analysis search for pharmaceuticals, benzotriazoles, illicit drugs and for the identification of unknown compounds in a groundwater sample and in a polar extract of a landfill soil sample (a toxicity identification evaluation bioassay sample). The applications of accurate mass screening and identification described in this article demonstrate that the LC-LTQ FT Orbitrap MS is well equipped to meet the challenges posed by newly emerging polar contaminants. PMID:18771771

  10. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems.

    Directory of Open Access Journals (Sweden)

    Ram Samudrala

    2009-04-01

    Full Text Available The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates--effector proteins--are not. We have used a novel computational approach to confidently identify new secreted effectors by integrating protein sequence-based features, including evolutionary measures such as the pattern of homologs in a range of other organisms, G+C content, amino acid composition, and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from the plant pathogen Pseudomonas syringae and validated on a set of effectors from the animal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium after eliminating effectors with detectable sequence similarity. We show that this approach can predict known secreted effectors with high specificity and sensitivity. Furthermore, by considering a large set of effectors from multiple organisms, we computationally identify a common putative secretion signal in the N-terminal 20 residues of secreted effectors. This signal can be used to discriminate 46 out of 68 total known effectors from both organisms, suggesting that it is a real, shared signal applicable to many type III secreted effectors. We use the method to make novel predictions of secreted effectors in S. Typhimurium, some of which have been experimentally validated. We also apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis, identifying the majority of known secreted proteins in addition to providing a number of novel predictions. This approach provides a new way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  11. Accurate high-throughput identification of parallel G-quadruplex topology by a new tetraaryl-substituted imidazole.

    Science.gov (United States)

    Hu, Ming-Hao; Chen, Shuo-Bin; Wang, Yu-Qing; Zeng, You-Mei; Ou, Tian-Miao; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2016-09-15

    G-quadruplex nucleic acids are four-stranded DNA or RNA secondary structures that are formed in guanine-rich sequences. These structures exhibit extensive structural polymorphism and play a pivotal role in the control of a variety of cellular processes. To date, diverse approaches for high-throughput identification of G-quadruplex structures have been successfully developed, but high-throughput methods for further characterization of their topologies are still lacking. In this study, we report a new tetra-arylimidazole probe psIZCM-1, which was found to display significant and distinctive changes in both the absorption and the fluorescence spectra in the presence of parallel G-quadruplexes but show insignificant changes upon interactions with anti-parallel G-quadruplexes or other non-quadruplex oligonucleotides. In view of this dual-output feature, we used psIZCM-1 to identify the parallel G-quadruplexes from a large set of 314 oligonucleotides (including 300 G-quadruplex-forming oligonucleotides and 14 non-quadruplex oligonucleotides) via a microplate reader and accordingly established a high-throughput method for the characterization of parallel G-quadruplex topologies. The accuracy of this method was greater than 95%, which was much higher than that of the commercial probe NMM. To make the approach more practical, we further combined psIZCM-1 with another G-quadruplex probe IZCM-7 to realize the high-throughput classification of parallel, anti-parallel G-quadruplexes and non-quadruplex structures.

  12. Identification and validation of reference genes for accurate normalization of real-time quantitative PCR data in kiwifruit.

    Science.gov (United States)

    Ferradás, Yolanda; Rey, Laura; Martínez, Óscar; Rey, Manuel; González, Ma Victoria

    2016-05-01

    Identification and validation of reference genes are required for the normalization of qPCR data. We studied the expression stability produced by eight primer pairs amplifying four common genes used as references for normalization. Samples representing different tissues, organs and developmental stages in kiwifruit (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev.) were used. A total of 117 kiwifruit samples were divided into five sample sets (mature leaves, axillary buds, stigmatic arms, fruit flesh and seeds). All samples were also analysed as a single set. The expression stability of the candidate primer pairs was tested using three algorithms (geNorm, NormFinder and BestKeeper). The minimum number of reference genes necessary for normalization was also determined. A unique primer pair was selected for amplifying the 18S rRNA gene. The primer pair selected for amplifying the ACTIN gene was different depending on the sample set. 18S 2 and ACT 2 were the candidate primer pairs selected for normalization in the three sample sets (mature leaves, fruit flesh and stigmatic arms). 18S 2 and ACT 3 were the primer pairs selected for normalization in axillary buds. No primer pair could be selected for use as the reference for the seed sample set. The analysis of all samples in a single set did not produce the selection of any stably expressing primer pair. Considering data previously reported in the literature, we validated the selected primer pairs amplifying the FLOWERING LOCUS T gene for use in the normalization of gene expression in kiwifruit.

  13. Accurate high-throughput identification of parallel G-quadruplex topology by a new tetraaryl-substituted imidazole.

    Science.gov (United States)

    Hu, Ming-Hao; Chen, Shuo-Bin; Wang, Yu-Qing; Zeng, You-Mei; Ou, Tian-Miao; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2016-09-15

    G-quadruplex nucleic acids are four-stranded DNA or RNA secondary structures that are formed in guanine-rich sequences. These structures exhibit extensive structural polymorphism and play a pivotal role in the control of a variety of cellular processes. To date, diverse approaches for high-throughput identification of G-quadruplex structures have been successfully developed, but high-throughput methods for further characterization of their topologies are still lacking. In this study, we report a new tetra-arylimidazole probe psIZCM-1, which was found to display significant and distinctive changes in both the absorption and the fluorescence spectra in the presence of parallel G-quadruplexes but show insignificant changes upon interactions with anti-parallel G-quadruplexes or other non-quadruplex oligonucleotides. In view of this dual-output feature, we used psIZCM-1 to identify the parallel G-quadruplexes from a large set of 314 oligonucleotides (including 300 G-quadruplex-forming oligonucleotides and 14 non-quadruplex oligonucleotides) via a microplate reader and accordingly established a high-throughput method for the characterization of parallel G-quadruplex topologies. The accuracy of this method was greater than 95%, which was much higher than that of the commercial probe NMM. To make the approach more practical, we further combined psIZCM-1 with another G-quadruplex probe IZCM-7 to realize the high-throughput classification of parallel, anti-parallel G-quadruplexes and non-quadruplex structures. PMID:27104587

  14. Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems

    Energy Technology Data Exchange (ETDEWEB)

    Samudrala, Ram; Heffron, Fred; McDermott, Jason E.

    2009-04-24

    The type III secretion system is an essential component for virulence in many Gram-negative bacteria. Though components of the secretion system apparatus are conserved, its substrates, effector proteins, are not. We have used a machine learning approach to identify new secreted effectors. The method integrates evolutionary measures, such as the pattern of homologs in a range of other organisms, and sequence-based features, such as G+C content, amino acid composition and the N-terminal 30 residues of the protein sequence. The method was trained on known effectors from Salmonella typhimurium and validated on a corresponding set of effectors from Pseudomonas syringae, after eliminating effectors with detectable sequence similarity. The method was able to identify all of the known effectors in P. syringae with a specificity of 84% and sensitivity of 82%. The reciprocal validation, training on P. syringae and validating on S. typhimurium, gave similar results with a specificity of 86% when the sensitivity level was 87%. These results show that type III effectors in disparate organisms share common features. We found that maximal performance is attained by including an N-terminal sequence of only 30 residues, which agrees with previous studies indicating that this region contains the secretion signal. We then used the method to define the most important residues in this putative secretion signal. Finally, we present novel predictions of secreted effectors in S. typhimurium, some of which have been experimentally validated, and apply the method to predict secreted effectors in the genetically intractable human pathogen Chlamydia trachomatis. This approach is a novel and effective way to identify secreted effectors in a broad range of pathogenic bacteria for further experimental characterization and provides insight into the nature of the type III secretion signal.

  15. Identification of a novel resi-dent centrosomal protein

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    One human autoimmune serum was identified to react withcentrosomes by immunofluorescence. We applied the affinity purification of membrane-bound antibody technique and demonstrated that the antibodies present in this antiserum reacted with a 31/29 ku centrosomal antigen. Immunofluorescence showed that this antigen is located at centrosome in a cell-cycle independent manner, and thereby it belongs to the family of centrosomal residents. We then uti- lized this autoimmune serum and antibodies against centrin and gamma-tubulin to investigate changes of centrosome cycle kinetics during premature chromosome condensation (PCC) artificially induced in V79-8 cells. We show here that centrosomal proteins continue to express when cells are syn-chronized at G1/S boundary and S phase by Hydroxyurea (HU). During this time, the addition of caffeine causes cells with unreplicated genome to go into mitosis, and induces the separation of the replicated centrosomes. These results sug-gest that the coordination of DNA synthesis and centrosome replication in the normal cell cycle can be uncoupled. Cells ensure that centrosome duplicates once, and only once dur-ing each DNA synthesis cycle through the tight and subtle coordination of cell cycle engine molecules, and thereby the assembly of bipolar spindle and the accurate transmission of genetic information.

  16. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry

    DEFF Research Database (Denmark)

    Ho, Yuen; Gruhler, Albrecht; Heilbut, Adrian;

    2002-01-01

    as a test case, an example of this approach, which we term high-throughput mass spectrometric protein complex identification (HMS-PCI). Beginning with 10% of predicted yeast proteins as baits, we detected 3,617 associated proteins covering 25% of the yeast proteome. Numerous protein complexes were......The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects...... binary interactions through activation of reporter gene expression. With the advent of ultrasensitive mass spectrometric protein identification methods, it is feasible to identify directly protein complexes on a proteome-wide scale. Here we report, using the budding yeast Saccharomyces cerevisiae...

  17. Accurate single-day titration of adenovirus vectors based on equivalence of protein VII nuclear dots and infectious particles

    OpenAIRE

    Walkiewicz, Marcin P.; Morral, Nuria; Engel, Daniel A.

    2009-01-01

    Protein VII is an abundant component of adenovirus particles and is tightly associated with the viral DNA. It enters the nucleus along with the infecting viral genome and remains bound throughout early phase. Protein VII can be visualized by immunofluorescent staining as discrete dots in the infected cell nucleus. Comparison between protein VII staining and expression of the 72 kDa DNA binding protein revealed a one-to-one correspondence between protein VII dots and infectious viral genomes. ...

  18. Identification of peptide and protein doping related drug compounds confiscated in Denmark between 2007-2013

    DEFF Research Database (Denmark)

    Hartvig, Rune Andersen; Holm, Niels Bjerre; Dalsgaard, Petur Weihe;

    2014-01-01

    We present an overview of protein and peptide compounds confiscated in Denmark from late 2007 till late 2013 together with a description of a newly developed HRAM-LC-MS method used for identification. As examples of identification, we present data for the peptides AOD-9604, [D-Ala2, Gln8, Ala15, ...

  19. Identification of Candidate Genes related to Bovine Marbling using Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Dajeong Lim, Nam-Kuk Kim, Hye-Sun Park, Seung-Hwan Lee, Yong-Min Cho, Sung Jong Oh, Tae-Hun Kim, Heebal Kim

    2011-01-01

    Full Text Available Complex traits are determined by the combined effects of many loci and are affected by gene networks or biological pathways. Systems biology approaches have an important role in the identification of candidate genes related to complex diseases or traits at the system level. The present study systemically analyzed genes associated with bovine marbling score and identified their relationships. The candidate nodes were obtained using MedScan text-mining tools and linked by protein-protein interaction (PPI from the Human Protein Reference Database (HPRD. To determine key node of marbling, the degree and betweenness centrality (BC were used. The hub nodes and biological pathways of our network are consistent with the previous reports about marbling traits, and also suggest unknown candidate genes associated with intramuscular fat. Five nodes were identified as hub genes, which was consistent with the network analysis using quantitative reverse-transcription PCR (qRT-PCR. Key nodes of the PPI network have positive roles (PPARγ, C/EBPα, and RUNX1T1 and negative roles (RXRA, CAMK2A in the development of intramuscular fat by several adipogenesis-related pathways. This study provides genetic information for identifying candidate genes for the marbling trait in bovine.

  20. Identification of proteins in the postsynaptic density fraction by mass spectrometry

    DEFF Research Database (Denmark)

    Walikonis, R S; Jensen, Ole Nørregaard; Mann, M;

    2000-01-01

    previously known to be constituents of the PSD fraction and 24 that had previously been associated with the PSD by other methods. The newly identified proteins include the heavy chain of myosin-Va (dilute myosin), a motor protein thought to be involved in vesicle trafficking, and the mammalian homolog of the......Our understanding of the organization of postsynaptic signaling systems at excitatory synapses has been aided by the identification of proteins in the postsynaptic density (PSD) fraction, a subcellular fraction enriched in structures with the morphology of PSDs. In this study, we have completed the...... identification of most major proteins in the PSD fraction with the use of an analytical method based on mass spectrometry coupled with searching of the protein sequence databases. At least one protein in each of 26 prominent protein bands from the PSD fraction has now been identified. We found 7 proteins not...

  1. PSSP-RFE: accurate prediction of protein structural class by recursive feature extraction from PSI-BLAST profile, physical-chemical property and functional annotations.

    Directory of Open Access Journals (Sweden)

    Liqi Li

    Full Text Available Protein structure prediction is critical to functional annotation of the massively accumulated biological sequences, which prompts an imperative need for the development of high-throughput technologies. As a first and key step in protein structure prediction, protein structural class prediction becomes an increasingly challenging task. Amongst most homological-based approaches, the accuracies of protein structural class prediction are sufficiently high for high similarity datasets, but still far from being satisfactory for low similarity datasets, i.e., below 40% in pairwise sequence similarity. Therefore, we present a novel method for accurate and reliable protein structural class prediction for both high and low similarity datasets. This method is based on Support Vector Machine (SVM in conjunction with integrated features from position-specific score matrix (PSSM, PROFEAT and Gene Ontology (GO. A feature selection approach, SVM-RFE, is also used to rank the integrated feature vectors through recursively removing the feature with the lowest ranking score. The definitive top features selected by SVM-RFE are input into the SVM engines to predict the structural class of a query protein. To validate our method, jackknife tests were applied to seven widely used benchmark datasets, reaching overall accuracies between 84.61% and 99.79%, which are significantly higher than those achieved by state-of-the-art tools. These results suggest that our method could serve as an accurate and cost-effective alternative to existing methods in protein structural classification, especially for low similarity datasets.

  2. Towards an accurate bioimpedance identification

    OpenAIRE

    Sánchez Terrones, Benjamín; Louarroudi, E.; Bragós Bardia, Ramon; Pintelon, Rik

    2013-01-01

    This paper describes the local polynomial method (LPM) for estimating the time- invariant bioimpedance frequency response function (FRF) considering both the output-error (OE) and the errors-in-variables (EIV) identi cation framework and compare it with the traditional cross and autocorrelation spectral analysis techniques. The bioimpedance FRF is measured with the multisine electrical impedance spectroscopy (EIS) technique. To show the overwhelming accuracy of the LPM approach, both t...

  3. Identification of Associated Proteins by Immunoprecipitation and Mass Spectrometry Analysis.

    Science.gov (United States)

    Cao, Xiumei; Yan, Jianshe

    2016-01-01

    Protein-protein interactions play central roles in intercellular and intracellular signal transduction. Impairment of protein-protein interactions causes many diseases such as cancer, cardiomyopathies, diabetes, microbial infections, and genetic and neurodegenerative disorders. Immunoprecipitation is a technique in which a target protein of interest bound by an antibody is used to pull down the protein complex out of cell lysates, which can be identified by mass spectrometry. Here, we describe the protocol to immunoprecipitate and identify the components of the protein complexes of ElmoE in Dictyostelium discoideum cells. PMID:27271899

  4. Identification and characterization of the surface proteins of Clostridium difficile

    International Nuclear Information System (INIS)

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated

  5. Identification and characterization of the surface proteins of Clostridium difficile

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated.

  6. Identification and characterization of secreted proteins in Eimeria tenella

    Science.gov (United States)

    Ramlee, Intan Azlinda; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2015-09-01

    Eimeria tenella is a protozoan parasite that causes coccidiosis, an economically important disease in the poultry industry. The characterization of proteins that are secreted by parasites have been shown to play important roles in parasite invasion and are considered to be potential control agents. In this study, 775 proteins potentially secreted by E. tenella were identified. These proteins were further filtered to remove mitochondrial proteins. Out of 763 putative secreted proteins, 259 proteins possess transmembrane domains while another 150 proteins have GPI (Glycosylphosphatidylinositol) anchors. Homology search revealed that 315 and 448 proteins have matches with known and hypothetical proteins in the database, respectively. Within this data set, previously characterized secretory proteins such as micronemes, rhoptry kinases and dense granules were detected.

  7. IDENTIFICATION OF IMMUNOGENS OF 'MYCOPLASMA PNEUMONIAE' BY PROTEIN BLOTTING

    Science.gov (United States)

    Proteins of Mycoplasma pneumoniae were separated by SDS-polyacrylamide gel electrophoresis and transferred to a nitrocellulose sheet by blotting. Sera obtained from infected hamsters and immunized rabbits were then incubated with the nitrocellulose strips. Proteins which are capa...

  8. Proteomics - a novel approach to the identification and characterisation of plasmodesmatal proteins

    International Nuclear Information System (INIS)

    The development of proteomic methods, such as 2-dimensional gel electrophoresis (2-DE), has established a high resolution means of identifying and characterising proteins from a given protein mixture. The biochemical composition of plasmodesmata, the intercellular channels between plant cells, is poorly described despite extensive attempts to identify protemaceous plasmodesmatal components. These attempts have been confounded by the large number of proteins in the cell wall. We have exploited the anatomy of the alga Chara corallina to separate tissues with (nodal cells) and tissues without (internodal cells) plasmodesmata. Proteins specific to the cytoplasmic and wall protein extracts of nodal and internodal tissue were identified by comparison of 2-DE gels of these extracts. In particular, a 95 kDa protein was identified as specific to the nodal cells in both 1-dimensional and 2-dimensional comparisons of cytoplasmic nodal and internodal protein extracts. This protein was analysed by electron spray ionization time of flight tandem mass spectroscopy (ESI-TOF MS/MS) and the sequence obtained showed similarity to plant lipoxygenases. Further proteins of interest were identified in 2-DE resolution of extracts from the nodal cytoplasm, including two 49 kDa proteins and two 46 kDa proteins, and from the nodal cell walls, including a cluster of proteins around 30 kDa. Thus, a proteomic strategy for the identification and characterisation of proteins specific to different cell types in Chara corallina has been developed, with potential application to the identification and characterisation of plasmodesmatal proteins

  9. Identification of lectin-binding proteins in Chlamydia species.

    OpenAIRE

    Swanson, A F; Kuo, C. C.

    1990-01-01

    Lectin-binding proteins of chlamydiae were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. All three Chlamydia species tested expressed two proteins when whole-elementary-body lysates were reacted with the biotinylated lectin Dolichos biflorus agglutinin. The protein with a molecular mass of 18 kilodaltons (kDa) responded strongly compared with a higher-molecular-mass protein that varied from 27 to 32 kDa with each chlamydia strain tested. Among six l...

  10. Identification and Immunogenicity of Group A Streptococcus Culture Supernatant Proteins

    OpenAIRE

    Lei, Benfang; Mackie, Stacy; Lukomski, Slawomir; Musser, James M.

    2000-01-01

    Extracellular proteins made by group A Streptococcus (GAS) play critical roles in the pathogenesis of human infections caused by this bacterium. Although many extracellular GAS proteins have been identified and characterized, there has been no systematic analysis of culture supernatant proteins. Proteins present in the culture supernatant of strains of serotype M1 (MGAS 5005) and M3 (MGAS 315) mutants lacking production of the major extracellular cysteine protease were separated by two-dimens...

  11. Identification of a Protein that Purifies with the Scrapie Prion

    Science.gov (United States)

    Bolton, David C.; McKinley, Michael P.; Prusiner, Stanley B.

    1982-12-01

    Purification of prions from scrapie-infected hamster brain yielded a protein that was not found in a similar fraction from uninfected brain. The protein migrated with an apparent molecular size of 27,000 to 30,000 daltons in sodium dodecyl sulfate polyacrylamide gels. The resistance of this protein to digestion by proteinase K distinguished it from proteins of similar molecular weight found in normal hamster brain. Initial results suggest that the amount of this protein correlates with the titer of the agent.

  12. Identification of protein-protein interactions by standard gal4p-based yeast two-hybrid screening.

    Science.gov (United States)

    Wagemans, Jeroen; Lavigne, Rob

    2015-01-01

    Yeast two-hybrid (Y2H) screening permits identification of completely new protein interaction partners for a protein of interest, in addition to confirming binary protein-protein interactions. After discussing the general advantages and drawbacks of Y2H and existing alternatives, this chapter provides a detailed protocol for traditional Gal4p-based Y2H library screens in Saccharomyces cerevisiae AH109. This includes bait transformation, bait auto-activation testing, prey library transformation, Y2H evaluation, and subsequent identification of the prey plasmids. Moreover, a one-on-one mating protocol to confirm interactions between suspected partners is given. Finally, a quantitative α-galactosidase assay protocol to compare interaction strengths is provided.

  13. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries.

    Science.gov (United States)

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology. PMID:26060076

  14. Development of a strategy for the identification of surface proteins in the pathogenic microsporidian Nosema bombycis.

    Science.gov (United States)

    Zhao, Weixi; Hao, Youjin; Wang, Linglin; Zhou, Zeyang; Li, Zhi

    2015-06-01

    Parasite-host interactions mediated by cell surface proteins have been implicated as a critical step in infections caused by the microsporidian Nosema bombycis. Such cell surface proteins are considered as promising diagnostic markers and targets for drug development. However, little research has specifically addressed surface proteome identification in microsporidia due to technical barriers. Here, a combined strategy was developed to separate and identify the surface proteins of N. bombycis. Briefly, following (1) biotinylation of the spore surface, (2) extraction of total proteins with an optimized method and (3) streptavidin affinity purification of biotinylated proteins, 22 proteins were identified based on LC-MS/MS analysis. Among them, 5 proteins were confirmed to be localized on the surface of N. bombycis. A total of 8 proteins were identified as hypothetical extracellular proteins, whereas 7 other hypothetical proteins had no available function annotation. Furthermore, a protein with a molecular weight of 18·5 kDa was localized on the spore surface by western blotting and immunofluorescence analysis, even though it was predicted to be a nuclear protein by bioinformatics. Collectively, our work provides an effective strategy for isolating microsporidian surface protein components for both drug target identification and further diagnostic research on microsporidian disease control. PMID:25811320

  15. Comprehensive Identification of Immunodominant Proteins of Brucella abortus and Brucella melitensis Using Antibodies in the Sera from Naturally Infected Hosts

    Directory of Open Access Journals (Sweden)

    Gamal Wareth

    2016-04-01

    Full Text Available Brucellosis is a debilitating zoonotic disease that affects humans and animals. The diagnosis of brucellosis is challenging, as accurate species level identification is not possible with any of the currently available serology-based diagnostic methods. The present study aimed at identifying Brucella (B. species-specific proteins from the closely related species B. abortus and B. melitensis using sera collected from naturally infected host species. Unlike earlier reported investigations with either laboratory-grown species or vaccine strains, in the present study, field strains were utilized for analysis. The label-free quantitative proteomic analysis of the naturally isolated strains of these two closely related species revealed 402 differentially expressed proteins, among which 63 and 103 proteins were found exclusively in the whole cell extracts of B. abortus and B. melitensis field strains, respectively. The sera from four different naturally infected host species, i.e., cattle, buffalo, sheep, and goat were applied to identify the immune-binding protein spots present in the whole protein extracts from the isolated B. abortus and B. melitensis field strains and resolved on two-dimensional gel electrophoresis. Comprehensive analysis revealed that 25 proteins of B. abortus and 20 proteins of B. melitensis were distinctly immunoreactive. Dihydrodipicolinate synthase, glyceraldehyde-3-phosphate dehydrogenase and lactate/malate dehydrogenase from B. abortus, amino acid ABC transporter substrate-binding protein from B. melitensis and fumarylacetoacetate hydrolase from both species were reactive with the sera of all the tested naturally infected host species. The identified proteins could be used for the design of serological assays capable of detecting pan-Brucella, B. abortus- and B. melitensis-specific antibodies.

  16. Comprehensive Identification of Immunodominant Proteins of Brucella abortus and Brucella melitensis Using Antibodies in the Sera from Naturally Infected Hosts.

    Science.gov (United States)

    Wareth, Gamal; Eravci, Murat; Weise, Christoph; Roesler, Uwe; Melzer, Falk; Sprague, Lisa D; Neubauer, Heinrich; Murugaiyan, Jayaseelan

    2016-01-01

    Brucellosis is a debilitating zoonotic disease that affects humans and animals. The diagnosis of brucellosis is challenging, as accurate species level identification is not possible with any of the currently available serology-based diagnostic methods. The present study aimed at identifying Brucella (B.) species-specific proteins from the closely related species B. abortus and B. melitensis using sera collected from naturally infected host species. Unlike earlier reported investigations with either laboratory-grown species or vaccine strains, in the present study, field strains were utilized for analysis. The label-free quantitative proteomic analysis of the naturally isolated strains of these two closely related species revealed 402 differentially expressed proteins, among which 63 and 103 proteins were found exclusively in the whole cell extracts of B. abortus and B. melitensis field strains, respectively. The sera from four different naturally infected host species, i.e., cattle, buffalo, sheep, and goat were applied to identify the immune-binding protein spots present in the whole protein extracts from the isolated B. abortus and B. melitensis field strains and resolved on two-dimensional gel electrophoresis. Comprehensive analysis revealed that 25 proteins of B. abortus and 20 proteins of B. melitensis were distinctly immunoreactive. Dihydrodipicolinate synthase, glyceraldehyde-3-phosphate dehydrogenase and lactate/malate dehydrogenase from B. abortus, amino acid ABC transporter substrate-binding protein from B. melitensis and fumarylacetoacetate hydrolase from both species were reactive with the sera of all the tested naturally infected host species. The identified proteins could be used for the design of serological assays capable of detecting pan-Brucella, B. abortus- and B. melitensis-specific antibodies. PMID:27144565

  17. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events

    Science.gov (United States)

    Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B.; Ben-Hur, Asa; Boucher, Christina

    2016-01-01

    Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The P class contains tandem P-type motif sequences, and the PLS class contains alternating P, L and S type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a PLS-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the PLS class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for PLS-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805

  18. aPPRove: An HMM-Based Method for Accurate Prediction of RNA-Pentatricopeptide Repeat Protein Binding Events.

    Science.gov (United States)

    Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B; Ben-Hur, Asa; Boucher, Christina

    2016-01-01

    Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The [Formula: see text] class contains tandem [Formula: see text]-type motif sequences, and the [Formula: see text] class contains alternating [Formula: see text], [Formula: see text] and [Formula: see text] type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a [Formula: see text]-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the [Formula: see text] class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for [Formula: see text]-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805

  19. Identification of Differentially Expressed Serum Proteins in Infectious Purpura Fulminans

    Directory of Open Access Journals (Sweden)

    Ting He

    2014-01-01

    Full Text Available Purpura fulminans (PF is a life-threatening hemorrhagic condition. Because of the rarity and randomness of the disease, no improvement in treatment has been made for a long time. In this study, we assessed the serum proteome response to PF by comparing serum proteins between healthy controls and PF patient. Liquid chromatography with tandem mass spectrometry (LC-MS/MS approach was used after depleting 6 abundant proteins of serum. In total, 262 proteins were confidently identified with 2 unique peptides, and 38 proteins were identified significantly up- (≥2 or downregulated (≤0.5 based on spectral counting ratios (SpCPF/N. In the 38 proteins with significant abundance changes, 11 proteins were previously known to be associated with burn or sepsis response, but 27 potentially novel proteins may be specifically associated with PF process. Two differentially expressed proteins, alpha-1-antitrypsin (SERPINA1 and alpha-2 antiplasmin (SERPINF2, were validated by Western blot. This is the first study where PF patient and healthy controls are compared in a proteomic study to elucidate proteins involved in the response to PF. This study provides an initial basis for future studies of PF, and the differentially expressed proteins might provide new therapeutic targets to decrease the mortality of PF.

  20. Identification of host proteins, Spata3 and Dkk2, interacting with Toxoplasma gondii micronemal protein MIC3.

    Science.gov (United States)

    Wang, Yifan; Fang, Rui; Yuan, Yuan; Pan, Ming; Hu, Min; Zhou, Yanqin; Shen, Bang; Zhao, Junlong

    2016-07-01

    As an obligate intracellular protozoan, Toxoplasma gondii is a successful pathogen infecting a variety of animals, including humans. As an adhesin involving in host invasion, the micronemal protein MIC3 plays important roles in host cell attachment, as well as modulation of host EGFR signaling cascade. However, the specific host proteins that interact with MIC3 are unknown and the identification of such proteins will increase our understanding of how MIC3 exerts its functions. This study was designed to identify host proteins interacting with MIC3 by yeast two-hybrid screens. Using MIC3 as bait, a library expressing mouse proteins was screened, uncovering eight mouse proteins that showed positive interactions with MIC3. Two of which, spermatogenesis-associated protein 3 (Spata3) and dickkopf-related protein 2 (Dkk2), were further confirmed to interact with MIC3 by additional protein-protein interaction tests. The results also revealed that the tandem repeat EGF domains of MIC3 were critical in mediating the interactions with the identified host proteins. This is the first study to show that MIC3 interacts with host proteins that are involved in reproduction, growth, and development. The results will provide a clearer understanding of the functions of adhesion-associated micronemal proteins in T. gondii.

  1. Modification of resolution in capillary electrophoresis for protein profiling in identification of genetic modification in foods

    OpenAIRE

    Latoszek, A.; Cifuentes, Alejandro

    2011-01-01

    The capillary electrophoresis with UV detection was employed for protein profiling in extracts from maize and soybeans. Modifications of back-ground electrolyte and coating the capillary wall with polybrene was employed in order to decrease the protein adsorption on the capillary walls. The obtained protein profiles were compared for transgenic and non-transgenic variants, showing in some cases significant changes that might be employed for identification of genetic modifications ...

  2. A nested mixture model for protein identification using mass spectrometry

    CERN Document Server

    Li, Qunhua; Stephens, Matthew; 10.1214/09-AOAS316

    2010-01-01

    Mass spectrometry provides a high-throughput way to identify proteins in biological samples. In a typical experiment, proteins in a sample are first broken into their constituent peptides. The resulting mixture of peptides is then subjected to mass spectrometry, which generates thousands of spectra, each characteristic of its generating peptide. Here we consider the problem of inferring, from these spectra, which proteins and peptides are present in the sample. We develop a statistical approach to the problem, based on a nested mixture model. In contrast to commonly used two-stage approaches, this model provides a one-stage solution that simultaneously identifies which proteins are present, and which peptides are correctly identified. In this way our model incorporates the evidence feedback between proteins and their constituent peptides. Using simulated data and a yeast data set, we compare and contrast our method with existing widely used approaches (PeptideProphet/ProteinProphet) and with a recently publis...

  3. Identification of new centrosome proteins by autoimmune patient sera

    Institute of Scientific and Technical Information of China (English)

    XIA Liang; LI Yan; YANG Dong; WANG LiMin; HE Fang; ZHOU ChunYuan; LI YongZhe; ZENG ChangQing; He DaCheng

    2007-01-01

    Compared to other subcellular organelles, centrosome proteome can hardly be studied, due to the difficulties in separation and purification of centrosome. Auto-antisera from 6 autoimmune patients, which recognized centrosome specifically in immunofluorescence, were used to identify the corresponding centrosomal proteins. The sera were first tested by Western blot on whole cell lysate, and all bound antibodies were then eluted from each single band in Western blot membrane to assure which antibody was responsible for the centrosome specific immunofluorescence staining. The corresponding proteins were obtained by immunoprecipitation and identified by mass spectrometry. Six centrosomal proteins, including 2 known centrosomal proteins and 4 proteins with unknown localization or reportedly non-centrosomal localization, were identified. These proteins apparently involve in cell cycle regulation, signal transduction pathways, molecular chaperons, and metabolism enzymes, which may reflect the expected functional diversity of centrosome.

  4. Identification of an epitope of SARS-coronavirus nucleocapsid protein

    Institute of Scientific and Technical Information of China (English)

    YING LIN; JIN WANG; HONG XIA WANG; HUA LIANG JIANG; JIAN HUA SHEN; YOU HUA XIE; YUAN WANG; GANG PEI; BEI FEN SHEN; JIA RUI WU; BING SUN; XU SHEN; RUI FU YANG; YI XUE LI; YONG YONG JI; YOU YU HE; MUDE SHI; WEI LU; TIE LIU SHI

    2003-01-01

    The nucleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a majorvirion structural protein. In this study, two epitopes (N1 and N2) of the N protein of SARS-CoV werepredicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodieswere isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-inducedpolyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SARS-CoV. Furthermore, itwas confirmed that N1 peptide-specific IgG antibodies were detectable in the sera of severe acute respiratorysyndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified andN protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.

  5. Identification of proteins in fluid collected from nerve regeneration chambers

    Directory of Open Access Journals (Sweden)

    Ye Yilin

    2014-01-01

    Full Text Available We examined whether there are novel neurotrophic factors (NTFs in nerve regeneration conditioned fluid (NRCF. Nerve regeneration chamber models were established in the sciatic nerves of 25 New Zealand rabbits, and NRCF was extracted from the chambers l week postoperatively. Proteins in NRCF were separated by native polyacrylamide gel electrophoresis (PAGE, and Western blot and ELISA were used to identify the proteins. A novel NTF was identified in a protein fraction corresponding to 220 kDa.

  6. Identification of Major Outer Surface Proteins of Streptococcus agalactiae

    OpenAIRE

    Hughes, Martin J. G.; Moore, Joanne C.; Lane, Jonathan D.; Wilson, Rebecca; Pribul, Philippa K.; Younes, Zabin N.; Dobson, Richard J; Everest, Paul; Reason, Andrew J.; Redfern, Joanne M.; Greer, Fiona M.; Paxton, Thanai; Panico, Maria; Morris, Howard R; Feldman, Robert G.

    2002-01-01

    To identify the major outer surface proteins of Streptococcus agalactiae (group B streptococcus), a proteomic analysis was undertaken. An extract of the outer surface proteins was separated by two-dimensional electrophoresis. The visualized spots were identified through a combination of peptide sequencing and reverse genetic methodologies. Of the 30 major spots identified as S. agalactiae specific, 27 have been identified. Six of these proteins, previously unidentified in S. agalactiae, were ...

  7. Identification of three novel Toxoplasma gondii rhoptry proteins

    OpenAIRE

    Camejo, Ana; Gold, Daniel A.; Lu, Diana; McFetridge, Kiva; Julien, Lindsay; Yang, Ninghan; Jensen, Kirk D. C.; Jeroen P J Saeij

    2013-01-01

    The rhoptries are key secretory organelles from apicomplexan parasites that contain proteins involved in invasion and modulation of the host cell. Some rhoptry proteins are restricted to the posterior bulb (ROPs) and others to the anterior neck (RONs). As many rhoptry proteins have been shown to be key players in Toxoplasma invasion and virulence, it is important to identify, understand and characterize the biological function of the components of the rhoptries. In this report, we identified ...

  8. An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2010-02-01

    Full Text Available Abstract Background ChIP-Seq, which combines chromatin immunoprecipitation (ChIP with high-throughput massively parallel sequencing, is increasingly being used for identification of protein-DNA interactions in vivo in the genome. However, to maximize the effectiveness of data analysis of such sequences requires the development of new algorithms that are able to accurately predict DNA-protein binding sites. Results Here, we present SIPeS (Site Identification from Paired-end Sequencing, a novel algorithm for precise identification of binding sites from short reads generated by paired-end solexa ChIP-Seq technology. In this paper we used ChIP-Seq data from the Arabidopsis basic helix-loop-helix transcription factor ABORTED MICROSPORES (AMS, which is expressed within the anther during pollen development, the results show that SIPeS has better resolution for binding site identification compared to two existing ChIP-Seq peak detection algorithms, Cisgenome and MACS. Conclusions When compared to Cisgenome and MACS, SIPeS shows better resolution for binding site discovery. Moreover, SIPeS is designed to calculate the mappable genome length accurately with the fragment length based on the paired-end reads. Dynamic baselines are also employed to effectively discriminate closely adjacent binding sites, for effective binding sites discovery, which is of particular value when working with high-density genomes.

  9. Proteomics of Soil and Sediment: Protein Identification by De Novo Sequencing of Mass Spectra Complements Traditional Database Searching

    Science.gov (United States)

    Miller, S.; Rizzo, A. I.; Waldbauer, J.

    2015-12-01

    Proteomics has the potential to elucidate the metabolic pathways and taxa responsible for in situ biogeochemical transformations. However, low rates of protein identification from high resolution mass spectra have been a barrier to the development of proteomics in complex environmental samples. Much of the difficulty lies in the computational challenge of linking mass spectra to their corresponding proteins. Traditional database search methods for matching peptide sequences to mass spectra are often inadequate due to the complexity of environmental proteomes and the large database search space, as we demonstrate with soil and sediment proteomes generated via a range of extraction methods. One alternative to traditional database searching is de novo sequencing, which identifies peptide sequences without the need for a database. BLAST can then be used to match de novo sequences to similar genetic sequences. Assigning confidence to putative identifications has been one hurdle for the implementation of de novo sequencing. We found that accurate de novo sequences can be screened by quality score and length. Screening criteria are verified by comparing the results of de novo sequencing and traditional database searching for well-characterized proteomes from simple biological systems. The BLAST hits of screened sequences are interrogated for taxonomic and functional information. We applied de novo sequencing to organic topsoil and marine sediment proteomes. Peak-rich proteomes, which can result from various extraction techniques, yield thousands of high-confidence protein identifications, an improvement over previous proteomic studies of soil and sediment. User-friendly software tools for de novo metaproteomics analysis have been developed. This "De Novo Analysis" Pipeline is also a faster method of data analysis than constructing a tailored sequence database for traditional database searching.

  10. Optimization of Data-Dependent Parameters for LC-MS/MS Protein Identification

    OpenAIRE

    Orlando, R; Johnson, D

    2011-01-01

    A typical bottom-up protein identification workflow involves proteolytic digestion followed by identification of the resulting peptides by LC-MS/MS using data-dependent acquisition (DDA). Recent developments in chromatography, such as uHPLC and superficially porous Fused-core particles, offer significantly improved peptide resolutions. The narrow peak widths, often only several seconds, can permit a 15 minute LC run to have a similar peak capacity as a 60 minute run using a traditional HPLC a...

  11. Identification of SNARE proteins in fish-Tilapia Oreochromis niloticus

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaohang; LAM Patrick P L; LIN Xuezheng; LIU Chenlin; BIAN Ji; GAISANO Herbert

    2007-01-01

    SNARE proteins are a group of membrane-associated proteins involved in exocytosis, secretion and membrane trafficking events in eukaryotic cells. Research on SNARE protein biology has become a more attractive field in recent years, which is applied to marine biology specifically to the fish Tilapia (Oreochromis niloticus). Plasma membrane fractions of different tissues of Tilapia, including brain, liver-pancreas, intestine, skin and muscle, were extracted, and immuno-decorated with isoform-specific antibodies to the SNARE families and associated proteins. The presence of Syntaxins -1A, 2 and 3, SNAP-23 and SNAP-25, VAMP-2, Munc-18-1 and Munc-13 in the brain was identified, which were differentially distributed in the other organ tissues of the fish Tilapia. The distinct distribution of SNARE and associated proteins will serve as the basis for further investigation into their special secretory function in these tissues of the fish.

  12. Identification of new centrosome proteins by autoimmune patient sera

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Compared to other subcellular organelles, centrosome proteome can hardly be studied, due to the dif- ficulties in separation and purification of centrosome. Auto-antisera from 6 autoimmune patients, which recognized centrosome specifically in immunofluorescence, were used to identify the corresponding centrosomal proteins. The sera were first tested by Western blot on whole cell lysate, and all bound antibodies were then eluted from each single band in Western blot membrane to assure which antibody was responsible for the centrosome specific immunofluorescence staining. The corresponding pro- teins were obtained by immunoprecipitation and identified by mass spectrometry. Six centrosomal proteins, including 2 known centrosomal proteins and 4 proteins with unknown localization or report- edly non-centrosomal localization, were identified. These proteins apparently involve in cell cycle regulation, signal transduction pathways, molecular chaperons, and metabolism enzymes, which may reflect the expected functional diversity of centrosome.

  13. Analytical approaches for the characterization and identification of olive (Olea europaea) oil proteins.

    Science.gov (United States)

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2013-10-30

    Proteins in olive oil have been scarcely investigated probably due to the difficulty of working with such a lipidic matrix and the dramatically low abundance of proteins in this biological material. Additionally, this scarce information has generated contradictory results, thus requiring further investigations. This work treats this subject from a comprehensive point of view and proposes the use of different analytical approaches to delve into the characterization and identification of proteins in olive oil. Different extraction methodologies, including capture via combinational hexapeptide ligand libraries (CPLLs), were tried. A sequence of methodologies, starting with off-gel isoelectric focusing (IEF) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) or high-performance liquid chromatography (HPLC) using an ultraperformance liquid chromatography (UPLC) column, was applied to profile proteins from olive seed, pulp, and oil. Besides this, and for the first time, a tentative identification of oil proteins by mass spectrometry has been attempted.

  14. Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis

    DEFF Research Database (Denmark)

    Roepstorff, P; Larsen, Martin Røssel

    2001-01-01

    more than 425.000 protein sequences. However, the cellular functions are determined by the set of proteins expressed in the cell--the proteome. Two-dimensional gel electrophoresis, mass spectrometry and bioinformatics have become important tools in correlating the proteome with the genome. The current...... dominant strategies for identification of proteins from gels based on peptide mass spectrometric fingerprinting and partial sequencing by mass spectrometry are described. After identification of the proteins the next challenge in proteome analysis is characterization of their post-translational...... modifications. The general problems associated with characterization of these directly from gel separated proteins are described and the current state of art for the determination of phosphorylation, glycosylation and proteolytic processing is illustrated....

  15. A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination.

    Science.gov (United States)

    Li, Xiaowei; Liu, Taigang; Tao, Peiying; Wang, Chunhua; Chen, Lanming

    2015-12-01

    Structural class characterizes the overall folding type of a protein or its domain. Many methods have been proposed to improve the prediction accuracy of protein structural class in recent years, but it is still a challenge for the low-similarity sequences. In this study, we introduce a feature extraction technique based on auto cross covariance (ACC) transformation of position-specific score matrix (PSSM) to represent a protein sequence. Then support vector machine-recursive feature elimination (SVM-RFE) is adopted to select top K features according to their importance and these features are input to a support vector machine (SVM) to conduct the prediction. Performance evaluation of the proposed method is performed using the jackknife test on three low-similarity datasets, i.e., D640, 1189 and 25PDB. By means of this method, the overall accuracies of 97.2%, 96.2%, and 93.3% are achieved on these three datasets, which are higher than those of most existing methods. This suggests that the proposed method could serve as a very cost-effective tool for predicting protein structural class especially for low-similarity datasets.

  16. An automated stochastic approach to the identification of the protein specificity determinants and functional subfamilies

    Directory of Open Access Journals (Sweden)

    Rakhmaninova Aleksandra B

    2010-07-01

    Full Text Available Abstract Background Recent progress in sequencing and 3 D structure determination techniques stimulated development of approaches aimed at more precise annotation of proteins, that is, prediction of exact specificity to a ligand or, more broadly, to a binding partner of any kind. Results We present a method, SDPclust, for identification of protein functional subfamilies coupled with prediction of specificity-determining positions (SDPs. SDPclust predicts specificity in a phylogeny-independent stochastic manner, which allows for the correct identification of the specificity for proteins that are separated on a phylogenetic tree, but still bind the same ligand. SDPclust is implemented as a Web-server http://bioinf.fbb.msu.ru/SDPfoxWeb/ and a stand-alone Java application available from the website. Conclusions SDPclust performs a simultaneous identification of specificity determinants and specificity groups in a statistically robust and phylogeny-independent manner.

  17. The need for improved identification and accurate classification of stages 3-5 Chronic Kidney Disease in primary care: retrospective cohort study.

    Directory of Open Access Journals (Sweden)

    Poorva Jain

    Full Text Available BACKGROUND: Around ten percent of the population have been reported as having Chronic Kidney Disease (CKD, which is associated with increased cardiovascular mortality. Few previous studies have ascertained the chronicity of CKD. In the UK, a payment for performance (P4P initiative incentivizes CKD (stages 3-5 recognition and management in primary care, but the impact of this has not been assessed. METHODS AND FINDINGS: Using data from 426 primary care practices (population 2,707,130, the age standardised prevalence of stages 3-5 CKD was identified using two consecutive estimated Glomerular Filtration Rates (eGFRs seven days apart. Additionally the accuracy of practice CKD registers and the relationship between accurate identification of CKD and the achievement of P4P indicators was determined. Between 2005 and 2009, the prevalence of stages 3-5 CKD increased from 0.3% to 3.9%. In 2009, 30,440 patients (1.1% unadjusted fulfilled biochemical criteria for CKD but were not on a practice CKD register (uncoded CKD and 60,705 patients (2.2% unadjusted were included on a practice CKD register but did not fulfil biochemical criteria (miscoded CKD. For patients with confirmed CKD, inclusion in a practice register was associated with increasing age, male sex, diabetes, hypertension, cardiovascular disease and increasing CKD stage (p<0.0001. Uncoded CKD patients compared to miscoded patients were less likely to achieve performance indicators for blood pressure (OR 0.84, 95% CI 0.82-0.86 p<0.001 or recorded albumin-creatinine ratio (OR 0.73, 0.70-0.76, p<0.001. CONCLUSIONS: The prevalence of stages 3-5 CKD, using two laboratory reported eGFRs, was lower than estimates from previous studies. Clinically significant discrepancies were identified between biochemically defined CKD and appearance on practice registers, with misclassification associated with sub-optimal care for some people with CKD.

  18. Identification and Characterization of Proteins Associated with Plant Tolerance to Heat Stress

    Institute of Scientific and Technical Information of China (English)

    Bingru Huang; Chenping Xu

    2008-01-01

    Heat stress is a major abiotic stress limiting plant growth and productivity in many areas of the world. Understanding mechanisms of plant adaptation to heat stress would facilitate the development of heat-tolerant cultivars for improving productivity in warm climatic regions. Protein metabolism involving protein synthesis and degradation is one of the most sensitive processes to heat stress. Changes in the level and expression pattern of some proteins may play an important role in plant adaptation to heat stress. The identification of stress-responsive proteins and pathways has been facilitated by an increasing number of tools and resources, including two-dimensional electrophoresis and mass spectrometry, and the rapidly expanding nucleotide and amino acid sequence databases. Heat stress may induce or enhance protein expression or cause protein degradation. The induction of heat-responsive proteins, particularly heat shock proteins (HSPs), plays a key role in plant tolerance to heat stress. Protein degradation involving various proteases is also important in regulating plant responses to heat stress. This review provides an overview of recent research on proteomic profiling for the identification of heat-responsive proteins associated with heat tolerance, heat induction and characteristics of HSPs, and protein degradation in relation to plant responses to heat stress.

  19. Proteomic identification of proteins in exosomes of patients with atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    JIANG Mei; QUAN Jing; ZHANG Heng; DING Qian-qian; XIANG Meng; MENG Dan; SUN Ning; CHEN Si-feng

    2016-01-01

    AIM:Atherosclerosis primarily involved systemic arteries .Luminal surface , a monolayer of endothelial cells , of artery directly exposes to blood and is susceptible to active substances in the blood .Exosomes contain significantly amount of proteins and RNAs .Ex-osomes can be good and bad for cells , depending on their component .Thus, exosomes may contribute to atherosclerosis by affecting endothelial cells .This study analyzed the relationship of exosome proteins and atherosclerosis .METHODS: Fifty-six patients and healthy subjects were recruited and divided into two comparisons:healthy subjects vs atherosclerosis ( HS vs AS) , and hypertension vs hypertension plus atherosclerosis ( HT vs HT+AS) .Serum exosomes were decoded by protein mass spectrometry .The protein profile and function were analyzed by gene ontology ( GO) .RESULTS:It was found that five child terms repeatedly appeared in “response to stimulus” and “immune system process” of BP of the two categories ( HS vs AS and AS vs HT+AS):“positive regulation of innate immune response”,“immune response-activating signal transduction”,”activation of innate immune response”,“innate immune re-sponse-activating signal transduction” and “innate immune response activating cell surface receptor signaling pathway ”.Two child terms repeatedly showed in “binding” of MF of the two categories:“antigen binding” and “enzyme binding”.Two proteins, PSMA6 and PSMA7, were repeatedly shown in the two categories .CONCLUSION:GO analysis was utilized for structure hierarchy “tree” to illustrate these proteins involved in various terms in BP , CC and MF.The PPI analysis supplied proteins which may play potentially im-portant roles in AS process .Innate immune system and blood coagulation pathway contribute to AS formation .The proteins, PSMA6, PSMA7 and Annexin A2, may can be the new target proteins for prevention and treatment of AS .

  20. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry.

    Science.gov (United States)

    Stauber, Jonathan; MacAleese, Luke; Franck, Julien; Claude, Emmanuelle; Snel, Marten; Kaletas, Basak Kükrer; Wiel, Ingrid M V D; Wisztorski, Maxence; Fournier, Isabelle; Heeren, Ron M A

    2010-03-01

    MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for the detection and localization of drugs, proteins, and lipids on-tissue. Nevertheless, this approach can only perform identification of low mass molecules as lipids, pharmaceuticals, and peptides. In this article, a combination of approaches for the detection and imaging of proteins and their identification directly on-tissue is described after tryptic digestion. Enzymatic digestion protocols for different kinds of tissues--formalin fixed paraffin embedded (FFPE) and frozen tissues--are combined with MALDI-ion mobility mass spectrometry (IM-MS). This combination enables localization and identification of proteins via their related digested peptides. In a number of cases, ion mobility separates isobaric ions that cannot be identified by conventional MALDI time-of-flight (TOF) mass spectrometry. The amount of detected peaks per measurement increases (versus conventional MALDI-TOF), which enables mass and time selected ion images and the identification of separated ions. These experiments demonstrate the feasibility of direct proteins identification by ion-mobility-TOF IMS from tissue. The tissue digestion combined with MALDI-IM-TOF-IMS approach allows a proteomics "bottom-up" strategy with different kinds of tissue samples, especially FFPE tissues conserved for a long time in hospital sample banks. The combination of IM with IMS marks the development of IMS approaches as real proteomic tools, which brings new perspectives to biological studies.

  1. Identification of proteins interacting with Arabidopsis ACD11

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Joensen, Jan; McKinney, Lea V;

    2009-01-01

    The Arabidopsis ACD11 gene encodes a sphingosine transfer protein and was identified by the accelerated cell death phenotype of the loss of function acd11 mutant, which exhibits heightened expression of genes involved in the disease resistance hypersensitive response (HR). We used ACD11 as bait...... in a yeast two-hybrid screen of an Arabidopsis cDNA library to identify ACD11 interacting proteins. One interactor identified is a protein of unknown function with an RNA recognition motif (RRM) designated BPA1 (binding partner of ACD11). Co-immunoprecipitation experiments confirmed the ACD11-BPA1...

  2. PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases.

    Science.gov (United States)

    Floden, Evan W; Tommaso, Paolo D; Chatzou, Maria; Magis, Cedrik; Notredame, Cedric; Chang, Jia-Ming

    2016-07-01

    The PSI/TM-Coffee web server performs multiple sequence alignment (MSA) of proteins by combining homology extension with a consistency based alignment approach. Homology extension is performed with Position Specific Iterative (PSI) BLAST searches against a choice of redundant and non-redundant databases. The main novelty of this server is to allow databases of reduced complexity to rapidly perform homology extension. This server also gives the possibility to use transmembrane proteins (TMPs) reference databases to allow even faster homology extension on this important category of proteins. Aside from an MSA, the server also outputs topological prediction of TMPs using the HMMTOP algorithm. Previous benchmarking of the method has shown this approach outperforms the most accurate alignment methods such as MSAProbs, Kalign, PROMALS, MAFFT, ProbCons and PRALINE™. The web server is available at http://tcoffee.crg.cat/tmcoffee. PMID:27106060

  3. Identification and characterization of Vibrio cholerae surface proteins by radioiodination

    International Nuclear Information System (INIS)

    Whole cells and isolated outer membrane from Vibrio cholerae (Classical, Inaba) were radiolabeled with Iodogen or Iodo-beads as catalyst. Radiolabeling of whole cells was shown to be surface specific by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis of whole cells and cell fractions. Surface-labeled whole cells regularly showed 16 distinguishable protein species, of which nine were found in radiolabeled outer membrane preparations obtained by a lithium chloride- lithium acetate procedure. Eight of these proteins were found in outer membranes prepared by sucrose density gradient centrifugation and Triton X-100 extraction of radiolabeled whole cells. The mobility of several proteins was shown to be affected by temperature, and the major protein species exposed on the cell surface was shown to consist of at least two different peptides

  4. Identification of Drought-Responsive Universal Stress Proteins in Viridiplantae

    OpenAIRE

    Isokpehi, Raphael D.; Simmons, Shaneka S.; Cohly, Hari H. P.; Ekunwe, Stephen I.N.; Begonia, Gregorio B.; Ayensu, Wellington K.

    2011-01-01

    Genes encoding proteins that contain the universal stress protein (USP) domain are known to provide bacteria, archaea, fungi, protozoa, and plants with the ability to respond to a plethora of environmental stresses. Specifically in plants, drought tolerance is a desirable phenotype. However, limited focused and organized functional genomic datasets exist on drought-responsive plant USP genes to facilitate their characterization. The overall objective of the investigation was to identify diver...

  5. Serum copeptin and cortisol do not accurately predict sickle cell anaemia vaso-occlusive crisis as C-reactive protein.

    Directory of Open Access Journals (Sweden)

    Kehinde Sola Akinlade

    Full Text Available OBJECTIVE: This study assessed the diagnostic performance and prognostic properties of C-reactive protein (CRP, copeptin and cortisol in individuals with sickle cell anaemia (SCA. DESIGN: Prospective case-control study. METHODS: Sixty consecutive SCA subjects (18-40 years comprising 30 subjects in the steady state and 30 subjects in vaso-occlusive crisis (VOC were recruited into this study. Thirty (30 apparently healthy individuals with HbAA genotype served as controls. ELISA was used for the determination of serum levels of copeptin, CRP and cortisol. Data obtained were statistically analyzed using the Student's t-test and Mann Whitney U as appropriate and P<0.05 was considered significant. RESULTS: SCA subjects in VOC had significantly lower copeptin level and significantly higher CRP level compared with controls. However, serum levels of copeptin, cortisol and CRP were significantly higher in SCA subjects in VOC compared with SCA subjects in steady state. Furthermore, CRP had the widest Area under the ROC curve (AUROC than copeptin and cortisol. No significant difference was observed in the levels of copeptin, CRP and cortisol when SCA subjects in VOC who were hospitalized for less ≤ 5 days were compared with subjects who had longer stays. CONCLUSION: It could be concluded that C-reactive protein has a superior diagnostic performance for vaso-occlusive crisis in individuals with sickle cell anaemia and that C-reactive protein, cortisol and copeptin are not good prognostic markers in SCA subjects in vaso-occlusive crisis.

  6. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0

    Science.gov (United States)

    The, Matthew; MacCoss, Michael J.; Noble, William S.; Käll, Lukas

    2016-08-01

    Percolator is a widely used software tool that increases yield in shotgun proteomics experiments and assigns reliable statistical confidence measures, such as q values and posterior error probabilities, to peptides and peptide-spectrum matches (PSMs) from such experiments. Percolator's processing speed has been sufficient for typical data sets consisting of hundreds of thousands of PSMs. With our new scalable approach, we can now also analyze millions of PSMs in a matter of minutes on a commodity computer. Furthermore, with the increasing awareness for the need for reliable statistics on the protein level, we compared several easy-to-understand protein inference methods and implemented the best-performing method—grouping proteins by their corresponding sets of theoretical peptides and then considering only the best-scoring peptide for each protein—in the Percolator package. We used Percolator 3.0 to analyze the data from a recent study of the draft human proteome containing 25 million spectra (PM:24870542). The source code and Ubuntu, Windows, MacOS, and Fedora binary packages are available from http://percolator.ms/ under an Apache 2.0 license.

  7. Biomarkers for ragwort poisoning in horses: identification of protein targets

    Directory of Open Access Journals (Sweden)

    Beynon Robert J

    2008-08-01

    Full Text Available Abstract Background Ingestion of the poisonous weed ragwort (Senecio jacobea by horses leads to irreversible liver damage. The principal toxins of ragwort are the pyrrolizidine alkaloids that are rapidly metabolised to highly reactive and cytotoxic pyrroles, which can escape into the circulation and bind to proteins. In this study a non-invasive in vitro model system has been developed to investigate whether pyrrole toxins induce specific modifications of equine blood proteins that are detectable by proteomic methods. Results One dimensional gel electrophoresis revealed a significant alteration in the equine plasma protein profile following pyrrole exposure and the formation of a high molecular weight protein aggregate. Using mass spectrometry and confirmation by western blotting the major components of this aggregate were identified as fibrinogen, serum albumin and transferrin. Conclusion These findings demonstrate that pyrrolic metabolites can modify equine plasma proteins. The high molecular weight aggregate may result from extensive inter- and intra-molecular cross-linking of fibrinogen with the pyrrole. This model has the potential to form the basis of a novel proteomic strategy aimed at identifying surrogate protein biomarkers of ragwort exposure in horses and other livestock.

  8. Identification of cancer protein biomarkers using proteomic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2016-10-18

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  9. Identification of cancer protein biomarkers using proteomic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mor, Gil G; Ward, David C; Bray-Ward, Patricia

    2015-03-10

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  10. Identification of cancer protein biomarkers using proteomic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mor, Gil G. (Cheshire, CT); Ward, David C. (Las Vegas, NV); Bray-Ward, Patricia (Las Vegas, NV)

    2010-02-23

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  11. High sensitivity identification of membrane proteins by MALDI TOF-MASS spectrometry using polystyrene beads.

    Science.gov (United States)

    Bensalem, Noura; Masscheleyn, Sandrine; Mozo, Julien; Vallée, Benoit; Brouillard, Franck; Trudel, Stéphanie; Ricquier, Daniel; Edelman, Aleksander; Guerrera, Ida Chiara; Miroux, Bruno

    2007-04-01

    Membrane proteins play a large variety of functions in life and represent 30% of all genomes sequenced. Due to their hydrophobic nature, they are tightly bound to their biological membrane, and detergents are always required to extract and isolate them before identification by mass spectrometry (MS). The latter, however remains difficult. Peptide mass fingerprinting methods using techniques such as MALDI-TOF MS, for example, have become an important analytical tool in the identification of proteins. However, PMF of membrane proteins is a real challenge for at least three reasons. First, membrane proteins are naturally present at low levels; second, most of the detergents strongly inhibit proteases and have deleterious effects on MALDI spectra; and third, despite the presence of detergent, membrane proteins are unstable and often aggregate. We took the mitochondrial uncoupling protein 1 (UCP1) as a model and showed that differential acetonitrile extraction of tryptic peptides combined with the use of polystirene Bio-Beads triggered high resolution of the MALDI-TOF identification of mitochondrial membrane proteins solubilized either with Triton-X100 or CHAPS detergents. PMID:17355127

  12. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  13. Identification of Anaplasma marginale type IV secretion system effector proteins.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available BACKGROUND: Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS. The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now. RESULTS: By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141 of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system. CONCLUSIONS: The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.

  14. Proteomic identification of secreted proteins of Propionibacterium acnes

    Directory of Open Access Journals (Sweden)

    Holland Carsten

    2010-08-01

    Full Text Available Abstract Background The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that resides preferentially within sebaceous follicles; however, it also exhibits many traits of an opportunistic pathogen, playing roles in a variety of inflammatory diseases such as acne vulgaris. To date, the underlying disease-causing mechanisms remain ill-defined and knowledge of P. acnes virulence factors remains scarce. Here, we identified proteins secreted during anaerobic cultivation of a range of skin and clinical P. acnes isolates, spanning the four known phylogenetic groups. Results Culture supernatant proteins of P. acnes were separated by two-dimensional electrophoresis (2-DE and all Coomassie-stained spots were subsequently identified by MALDI mass spectrometry (MALDI-MS. A set of 20 proteins was secreted in the mid-exponential growth phase by the majority of strains tested. Functional annotation revealed that many of these common proteins possess degrading activities, including glycoside hydrolases with similarities to endoglycoceramidase, β-N-acetylglucosaminidase and muramidase; esterases such as lysophospholipase and triacylglycerol lipase; and several proteases. Other secreted factors included Christie-Atkins-Munch-Petersen (CAMP factors, glyceraldehyde 3-phosphate dehydrogenase (GAPDH, and several hypothetical proteins, a few of which are unique to P. acnes. Strain-specific differences were apparent, mostly in the secretion of putative adhesins, whose genes exhibit variable phase variation-like sequence signatures. Conclusions Our proteomic investigations have revealed that the P. acnes secretome harbors several proteins likely to play a role in host-tissue degradation and inflammation. Despite a large overlap between the secretomes of all four P. acnes phylotypes, distinct differences between predicted host-tissue interacting proteins were identified, providing potential insight into the differential virulence

  15. Identification of giant Mimivirus protein functions using RNA interference

    Directory of Open Access Journals (Sweden)

    Haitham eSobhy

    2015-04-01

    Full Text Available Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans. We knocked down Mimivirus genes using short interfering RNA (siRNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as 3 genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate 4 proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases.

  16. Identification of three novel Toxoplasma gondii rhoptry proteins

    Science.gov (United States)

    Camejo, Ana; Gold, Daniel A.; Lu, Diana; McFetridge, Kiva; Julien, Lindsay; Yang, Ninghan; Jensen, Kirk D. C.; Saeij, Jeroen P.J

    2013-01-01

    The rhoptries are key secretory organelles from apicomplexan parasites that contain proteins involved in invasion and modulation of the host cell. Some rhoptry proteins are restricted to the posterior bulb (ROPs) and others to the anterior neck (RONs). As many rhoptry proteins have been shown to be key players in Toxoplasma invasion and virulence, it is important to identify, understand and characterize the biological function of the components of the rhoptries. In this report, we identified putative novel rhoptry candidate genes by identifying Toxoplasma genes with similar cyclical expression profiles as known rhoptry protein encoding genes across its cell cycle. Using this approach we identified two new rhoptry bulb (ROP47 and ROP48) and one new rhoptry neck protein (RON12). ROP47 is secreted and traffics to the host cell nucleus, RON12 was not detected at the moving junction during invasion. Deletion of ROP47 or ROP48 in a type II strain did not show major influence in in vitro growth or virulence in mice. PMID:24070999

  17. Systematic identification of proteins that elicit drug side effects

    DEFF Research Database (Denmark)

    Kuhn, Michael; Al Banchaabouchi, Mumna; Campillos, Monica;

    2013-01-01

    Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large-scale analysis to systematically predict and characterize proteins that...... responsible for hyperesthesia in mice, which, in turn, can be prevented by a drug that selectively inhibits HTR7. Taken together, we show that a large fraction of complex drug side effects are mediated by individual proteins and create a reference for such relations.......Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large-scale analysis to systematically predict and characterize proteins that...... cause drug side effects. We integrated phenotypic data obtained during clinical trials with known drug-target relations to identify overrepresented protein-side effect combinations. Using independent data, we confirm that most of these overrepresentations point to proteins which, when perturbed, cause...

  18. Large-format imaging plate and weissenberg camera for accurate protein crystallographic data collection using synchrotron radiation.

    Science.gov (United States)

    Sakabe, K; Sasaki, K; Watanabe, N; Suzuki, M; Wang, Z G; Miyahara, J; Sakabe, N

    1997-05-01

    Off-line and on-line protein data-collection systems using an imaging plate as a detector are described and their components reported. The off-line scanner IPR4080 was developed for a large-format imaging plate ;BASIII' of dimensions 400 x 400 mm and 400 x 800 mm. The characteristics of this scanner are a dynamic range of 10(5) photons pixel(-1), low background noise and high sensitivity. A means of reducing electronic noise and a method for finding the origin of the noise are discussed in detail. A dedicated screenless Weissenberg camera matching IPR4080 with synchrotron radiation was developed and installed on beamline BL6B at the Photon Factory. This camera can attach one or two sheets of 400 x 800 mm large-format imaging plate inside the film cassette by evacuation. The positional reproducibility of the imaging plate on the cassette is so good that the data can be processed by batch job. Data of 93% completeness up to 1.6 A resolution were collected on a single axis rotation and the value of R(merge) becomes 4% from a tetragonal lysozyme crystal using a set of two imaging-plate sheets. Comparing two types of imaging plates, the signal-to-noise ratio of the ST-VIP-type imaging plate is 25% better than that of the BASIII-type imaging plate for protein data collection using 1.0 and 0.7 A X-rays. A new on-line protein data-collection system with imaging plates is specially designed to use synchrotron radiation X-rays at maximum efficiency.

  19. Proteome identification of proteins interacting with histone methyltransferase SET8

    Institute of Scientific and Technical Information of China (English)

    Yi Qin; Huafang Ouyang; Jing Liu; Youhua Xie

    2013-01-01

    SET8 (also known as PR-Set7/9,SETD8,KMT5A),a member of the SET domain containing methyltransferase family,which specifically catalyzes mono-methylation of K20 on histone H4 (H4K20me1),has been implicated in multiple biological processes,such as gene transcriptional regulation,cell cycle control,genomic integrity maintenance and development.In this study,we used GST-SET8 fusion protein as bait to search for SET8 interaction partners to elucidate physiological functions of SET8.In combination with mass spectrometry,we identified 40 proteins that potentially interact with SET8.DDX21,a nucleolar protein,was further confirmed to associate with SET8.Furthermore,we discovered a novel function of SET8 in the regulation of rRNA transcription.

  20. Identification of outer membrane proteins of Mycobacterium tuberculosis.

    Science.gov (United States)

    Song, Houhui; Sandie, Reatha; Wang, Ying; Andrade-Navarro, Miguel A; Niederweis, Michael

    2008-11-01

    The cell wall of mycobacteria includes an unusual outer membrane of extremely low permeability. While Escherichia coli uses more than 60 proteins to functionalize its outer membrane, only two mycobacterial outer membrane proteins (OMPs) are known. The porin MspA of Mycobacterium smegmatis provided the proof of principle that integral mycobacterial OMPs share the beta-barrel structure, the absence of hydrophobic alpha-helices and the presence of a signal peptide with OMPs of gram-negative bacteria. These properties were exploited in a multi-step bioinformatic approach to predict OMPs of M. tuberculosis. A secondary structure analysis was performed for 587 proteins of M. tuberculosis predicted to be exported. Scores were calculated for the beta-strand content and the amphiphilicity of the beta-strands. Reference OMPs of gram-negative bacteria defined threshold values for these parameters that were met by 144 proteins of unknown function of M. tuberculosis. Two of them were verified as OMPs by a novel two-step experimental approach. Rv1698 and Rv1973 were detected only in the total membrane fraction of M. bovis BCG in Western blot experiments, while proteinase K digestion of whole cells showed the surface accessibility of these proteins. These findings established that Rv1698 and Rv1973 are indeed localized in the outer membrane and tripled the number of known OMPs of M. tuberculosis. Significantly, these results provide evidence for the usefulness of the bioinformatic approach to predict mycobacterial OMPs and indicate that M. tuberculosis likely has many OMPs with beta-barrel structure. Our findings pave the way to identify the set of proteins which functionalize the outer membrane of M. tuberculosis. PMID:18439872

  1. Proteomic identification of S-nitrosylated proteins in Arabidopsis

    DEFF Research Database (Denmark)

    Lindermayr, C.; Saalbach, G.; Durner, J.

    2005-01-01

    Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues to be ...... to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S...

  2. Identification of Two RNA-binding Proteins Associated with Human Telomerase RNA

    OpenAIRE

    Le, Siyuan; Sternglanz, Rolf; Greider, Carol W

    2000-01-01

    Telomerase plays a crucial role in telomere maintenance in vivo. To understand telomerase regulation, we have been characterizing components of the enzyme. To date several components of the mammalian telomerase holoenzyme have been identified: the essential RNA component (human telomerase RNA [hTR]), the catalytic subunit human telomerase reverse transcriptase (hTERT), and telomerase-associated protein 1. Here we describe the identification of two new proteins that interact with hTR: hStau an...

  3. Identification and Characterization of a Highly Conserved Crenarchaeal Protein Lysine Methyltransferase with Broad Substrate Specificity

    OpenAIRE

    Chu, Yindi; Zhang, Zhenfeng; Wang, Qian; Luo, Yuanming; Huang, Li

    2012-01-01

    Protein lysine methylation occurs extensively in the Crenarchaeota, a major kingdom in the Archaea. However, the enzymes responsible for this type of posttranslational modification have not been found. Here we report the identification and characterization of the first crenarchaeal protein lysine methyltransferase, designated aKMT, from the hyperthermophilic crenarchaeon Sulfolobus islandicus. The enzyme was capable of transferring methyl groups to selected lysine residues in a substrate prot...

  4. Identification and characterization of N-glycosylated proteins using proteomics

    DEFF Research Database (Denmark)

    Selby, David S; Larsen, Martin R; Calvano, Cosima Damiana;

    2008-01-01

    Glycoproteins constitute a large fraction of the proteome. The fundamental role of protein glycosylation in cellular development, growth, and differentiation, tissue development, and in host-pathogen interactions is by now widely accepted. Proteome-wide characterization of glycoproteins is a comp...

  5. Screening and identification of proteins interacting with nucleostemin

    Institute of Scientific and Technical Information of China (English)

    Hai-Xia Yang; Geng-Lin Jin; Ling Meng; Jian-Zhi Zhang; Wen-Bin Liu; Cheng-Chao Shou

    2005-01-01

    AIM: To identify the proteins interacting with nucleostemin (NS), thereby gaining an insight into the function of NS.METHODS: Yeast two-hybrid assay was performed to screen a human placenta cDNA library with the full length of NS as a bait. X-Gal assay and β-galactosidase filter assay were subsequently conducted to check the positive clones and the gene was identified by DNA sequencing.To further confirm the interaction of two proteins, the DNA fragment coding NS and the DNA fragment isolated from the positive clone were inserted into the mammalian expression vector pcDNA3 and pcDNA3-myc, respectively.Then, two plasmids were cotransfected into the COS-7 cells by DEAE-dextron. The total protein from the cotransfected cells was extracted and coimmunoprecipitation and Western blot were performed with suitable antibodies sequentially.RESULTS: Two positive clones that interacted with NS were obtained from human placenta cDNA library. One was an alpha isoform of human protein phosphatase 2 regulatory subunit B (B56) (PPP2R5A) and the other was a novel gene being highly homologous to the gene associated with spondylo paralysis. The co-immunoprecipitation also showed that NS specifically interacted with PPP2R5A.CONCLUSION: NS and PPP2R5A interact in yeast and mammalian cells, respectively, which is helpful for addressing the function of NS in cancer development and progression.

  6. Identification of antigenic proteins of the nosocomial pathogen Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Sebastian Hoppe

    Full Text Available The continuous expansion of nosocomial infections around the globe has become a precarious situation. Key challenges include mounting dissemination of multiple resistances to antibiotics, the easy transmission and the growing mortality rates of hospital-acquired bacterial diseases. Thus, new ways to rapidly detect these infections are vital. Consequently, researchers around the globe pursue innovative approaches for point-of-care devices. In many cases the specific interaction of an antigen and a corresponding antibody is pivotal. However, the knowledge about suitable antigens is lacking. The aim of this study was to identify novel antigens as specific diagnostic markers. Additionally, these proteins might be aptly used for the generation of vaccines to improve current treatment options. Hence, a cDNA-based expression library was constructed and screened via microarrays to detect novel antigens of Klebsiella pneumoniae, a prominent agent of nosocomial infections well-known for its extensive antibiotics resistance, especially by extended-spectrum beta-lactamases (ESBL. After screening 1536 clones, 14 previously unknown immunogenic proteins were identified. Subsequently, each protein was expressed in full-length and its immunodominant character examined by ELISA and microarray analyses. Consequently, six proteins were selected for epitope mapping and three thereof possessed linear epitopes. After specificity analysis, homology survey and 3d structural modelling, one epitope sequence GAVVALSTTFA of KPN_00363, an ion channel protein, was identified harboring specificity for K. pneumoniae. The remaining epitopes showed ambiguous results regarding the specificity for K. pneumoniae. The approach adopted herein has been successfully utilized to discover novel antigens of Campylobacter jejuni and Salmonella enterica antigens before. Now, we have transferred this knowledge to the key nosocomial agent, K. pneumoniae. By identifying several novel antigens

  7. Identification of Antigenic Proteins of the Nosocomial Pathogen Klebsiella pneumoniae

    Science.gov (United States)

    Hoppe, Sebastian; Bier, Frank F.; von Nickisch-Rosenegk, Markus

    2014-01-01

    The continuous expansion of nosocomial infections around the globe has become a precarious situation. Key challenges include mounting dissemination of multiple resistances to antibiotics, the easy transmission and the growing mortality rates of hospital-acquired bacterial diseases. Thus, new ways to rapidly detect these infections are vital. Consequently, researchers around the globe pursue innovative approaches for point-of-care devices. In many cases the specific interaction of an antigen and a corresponding antibody is pivotal. However, the knowledge about suitable antigens is lacking. The aim of this study was to identify novel antigens as specific diagnostic markers. Additionally, these proteins might be aptly used for the generation of vaccines to improve current treatment options. Hence, a cDNA-based expression library was constructed and screened via microarrays to detect novel antigens of Klebsiella pneumoniae, a prominent agent of nosocomial infections well-known for its extensive antibiotics resistance, especially by extended-spectrum beta-lactamases (ESBL). After screening 1536 clones, 14 previously unknown immunogenic proteins were identified. Subsequently, each protein was expressed in full-length and its immunodominant character examined by ELISA and microarray analyses. Consequently, six proteins were selected for epitope mapping and three thereof possessed linear epitopes. After specificity analysis, homology survey and 3d structural modelling, one epitope sequence GAVVALSTTFA of KPN_00363, an ion channel protein, was identified harboring specificity for K. pneumoniae. The remaining epitopes showed ambiguous results regarding the specificity for K. pneumoniae. The approach adopted herein has been successfully utilized to discover novel antigens of Campylobacter jejuni and Salmonella enterica antigens before. Now, we have transferred this knowledge to the key nosocomial agent, K. pneumoniae. By identifying several novel antigens and their linear

  8. Web and database software for identification of intact proteins using "top down" mass spectrometry.

    Science.gov (United States)

    Taylor, Gregory K; Kim, Yong-Bin; Forbes, Andrew J; Meng, Fanyu; McCarthy, Ryan; Kelleher, Neil L

    2003-08-15

    For the identification and characterization of proteins harboring posttranslational modifications (PTMs), a "top down" strategy using mass spectrometry has been forwarded recently but languishes without tailored software widely available. We describe a Web-based software and database suite called ProSight PTM constructed for large-scale proteome projects involving direct fragmentation of intact protein ions. Four main components of ProSight PTM are a database retrieval algorithm (Retriever), MySQL protein databases, a file/data manager, and a project tracker. Retriever performs probability-based identifications from absolute fragment ion masses, automatically compiled sequence tags, or a combination of the two, with graphical rendering and browsing of the results. The database structure allows known and putative protein forms to be searched, with prior or predicted PTM knowledge used during each search. Initial functionality is illustrated with a 36-kDa yeast protein identified from a processed cell extract after automated data acquisition using a quadrupole-FT hybrid mass spectrometer. A +142-Da delta(m) on glyceraldehyde-3-phosphate dehydrogenase was automatically localized between Asp90 and Asp192, consistent with its two cystine residues (149 and 153) alkylated by acrylamide (+71 Da each) during the gel-based sample preparation. ProSight PTM is the first search engine and Web environment for identification of intact proteins (https://prosightptm.scs.uiuc.edu/). PMID:14632120

  9. Web and database software for identification of intact proteins using "top down" mass spectrometry.

    Science.gov (United States)

    Taylor, Gregory K; Kim, Yong-Bin; Forbes, Andrew J; Meng, Fanyu; McCarthy, Ryan; Kelleher, Neil L

    2003-08-15

    For the identification and characterization of proteins harboring posttranslational modifications (PTMs), a "top down" strategy using mass spectrometry has been forwarded recently but languishes without tailored software widely available. We describe a Web-based software and database suite called ProSight PTM constructed for large-scale proteome projects involving direct fragmentation of intact protein ions. Four main components of ProSight PTM are a database retrieval algorithm (Retriever), MySQL protein databases, a file/data manager, and a project tracker. Retriever performs probability-based identifications from absolute fragment ion masses, automatically compiled sequence tags, or a combination of the two, with graphical rendering and browsing of the results. The database structure allows known and putative protein forms to be searched, with prior or predicted PTM knowledge used during each search. Initial functionality is illustrated with a 36-kDa yeast protein identified from a processed cell extract after automated data acquisition using a quadrupole-FT hybrid mass spectrometer. A +142-Da delta(m) on glyceraldehyde-3-phosphate dehydrogenase was automatically localized between Asp90 and Asp192, consistent with its two cystine residues (149 and 153) alkylated by acrylamide (+71 Da each) during the gel-based sample preparation. ProSight PTM is the first search engine and Web environment for identification of intact proteins (https://prosightptm.scs.uiuc.edu/).

  10. An experimental strategy for the identification of AMPylation targets from complex protein samples.

    Science.gov (United States)

    Pieles, Kathrin; Glatter, Timo; Harms, Alexander; Schmidt, Alexander; Dehio, Christoph

    2014-05-01

    AMPylation is a posttranslational modification (PTM) that has recently caught much attention in the context of bacterial infections as pathogens were shown to secrete Fic proteins that AMPylate Rho GTPases and thus interfere with host cell signaling processes. Although Fic proteins are widespread and found in all kingdoms of life, only a small number of AMPylation targets are known to date. A major obstacle to target identification is the limited availability of generic strategies allowing sensitive and robust identification of AMPylation events. Here, we present an unbiased MS-based approach utilizing stable isotope-labeled ATP. The ATP isotopes are transferred onto target proteins in crude cell lysates by in vitro AMPylation introducing specific reporter ion clusters that allow detection of AMPylated peptides in complex biological samples by MS analysis. Applying this strategy on the secreted Fic protein Bep2 of Bartonella rochalimae, we identified the filamenting protein vimentin as an AMPylation target that was confirmed by independent assays. Vimentin represents a new class of target proteins and its identification emphasizes our method as a valuable tool to systematically uncover AMPylation targets. Furthermore, the approach can be generically adapted to study targets of other PTMs that allow incorporation of isotopically labeled substrates.

  11. Rapid and accurate identification of isolates of Candida species by melting peak and melting curve analysis of the internally transcribed spacer region 2 fragment (ITS2-MCA)

    NARCIS (Netherlands)

    Decat, E.; van Mechelen, E.; Saerens, B.; Vermeulen, S.J.T.; Boekhout, T.; de Blaiser, S.; Vaneechoutte, M.; Deschaght, P.

    2013-01-01

    Rapid identification of clinically important yeasts can facilitate the initiation of anti-fungal therapy, since susceptibility is largely species-dependent. We evaluated melting peak and melting curve analysis of the internally transcribed spacer region 2 fragment (ITS2-MCA) as an identification too

  12. Identification of a 5-protein biomarker molecular signature for predicting Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Martín Gómez Ravetti

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a progressive brain disease with a huge cost to human lives. The impact of the disease is also a growing concern for the governments of developing countries, in particular due to the increasingly high number of elderly citizens at risk. Alzheimer's is the most common form of dementia, a common term for memory loss and other cognitive impairments. There is no current cure for AD, but there are drug and non-drug based approaches for its treatment. In general the drug-treatments are directed at slowing the progression of symptoms. They have proved to be effective in a large group of patients but success is directly correlated with identifying the disease carriers at its early stages. This justifies the need for timely and accurate forms of diagnosis via molecular means. We report here a 5-protein biomarker molecular signature that achieves, on average, a 96% total accuracy in predicting clinical AD. The signature is composed of the abundances of IL-1alpha, IL-3, EGF, TNF-alpha and G-CSF. METHODOLOGY/PRINCIPAL FINDINGS: Our results are based on a recent molecular dataset that has attracted worldwide attention. Our paper illustrates that improved results can be obtained with the abundance of only five proteins. Our methodology consisted of the application of an integrative data analysis method. This four step process included: a abundance quantization, b feature selection, c literature analysis, d selection of a classifier algorithm which is independent of the feature selection process. These steps were performed without using any sample of the test datasets. For the first two steps, we used the application of Fayyad and Irani's discretization algorithm for selection and quantization, which in turn creates an instance of the (alpha-beta-k-Feature Set problem; a numerical solution of this problem led to the selection of only 10 proteins. CONCLUSIONS/SIGNIFICANCE: the previous study has provided an extremely

  13. Novel Accurate Bacterial Discrimination by MALDI-Time-of-Flight MS Based on Ribosomal Proteins Coding in S10-spc-alpha Operon at Strain Level S10-GERMS

    Science.gov (United States)

    Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki

    2013-08-01

    Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.

  14. Multiplex PCR Assay for Direct Identification of Group B Streptococcal Alpha-Protein-Like Protein Genes

    OpenAIRE

    Creti, Roberta; Fabretti, Francesca; Orefici, Graziella; von Hunolstein, Christina

    2004-01-01

    We developed a group B streptococcus multiplex PCR assay which allows, by direct analysis of the amplicon size, determination of the surface protein antigen genes of alpha-C protein, epsilon protein, Rib, Alp2, Alp3, and Alp4. The multiplex PCR assay offers a rapid and simple method of subtyping Streptococcus agalactiae based on surface protein genes.

  15. Identification of a cell membrane protein that binds alveolar surfactant.

    OpenAIRE

    Strayer, D. S.

    1991-01-01

    Alveolar surfactants are complex mixtures of proteins and phospholipids produced by type II alveolar cells and responsible for lowering pulmonary surface tension. The process by which surfactant is produced and exported and by which its production by pulmonary cells is regulated are not well understood. This study was designed to identify a cellular receptor for surfactant constituents. To do so, monoclonal anti-idiotypic antibodies directed against antibodies to porcine and rabbit surfactant...

  16. Identification of Genes Coding for Exported Proteins of Actinobacillus actinomycetemcomitans

    OpenAIRE

    Mintz, Keith P.; Fives-Taylor, Paula M.

    1999-01-01

    Random fusions of genomic DNA fragments to a partial gene encoding a signal sequence-deficient bacterial alkaline phosphatase were utilized to screen for exported proteins of Actinobacillus actinomycetemcomitans in Escherichia coli. Twenty-four PhoA+ clones were isolated and sequenced. Membrane localization signals in the form of signal sequences were deduced from most of these sequences. Several of the deduced amino acid sequences were found to be homologous to known exported or membrane-ass...

  17. Latest methods of fluorescence-based protein crystal identification

    International Nuclear Information System (INIS)

    Fluorescence, whether intrinsic or by using trace fluorescent labeling, can be a powerful aid in macromolecule crystallization. Its use in screening for crystals is discussed here. Successful protein crystallization screening experiments are dependent upon the experimenter being able to identify positive outcomes. The introduction of fluorescence techniques has brought a powerful and versatile tool to the aid of the crystal grower. Trace fluorescent labeling, in which a fluorescent probe is covalently bound to a subpopulation (<0.5%) of the protein, enables the use of visible fluorescence. Alternatively, one can avoid covalent modification and use UV fluorescence, exploiting the intrinsic fluorescent amino acids present in most proteins. By the use of these techniques, crystals that had previously been obscured in the crystallization drop can readily be identified and distinguished from amorphous precipitate or salt crystals. Additionally, lead conditions that may not have been obvious as such under white-light illumination can be identified. In all cases review of the screening plate is considerably accelerated, as the eye can quickly note objects of increased intensity

  18. Characterization of quinone derived protein adducts and their selective identification using redox cycling based chemiluminescence assay.

    Science.gov (United States)

    Elgawish, Mohamed Saleh; Kishikawa, Naoya; Ohyama, Kaname; Kuroda, Naotaka

    2015-07-17

    The cytotoxic mechanism of many quinones has been correlated to covalent modification of cellular proteins. However, the identification of relevant proteins targets is essential but challenging goals. To better understand the quinones cytotoxic mechanism, human serum albumin (HSA) was incubated in vitro with different concentration of menadione (MQ). In this respect, the initial nucleophilic addition of proteins to quinone converts the conjugates to redox-cycling quinoproteins with altered conformation and secondary structure and extended life span than the short lived, free quinones. The conjugation of MQ with nucleophilic sites likewise, free cysteine as well as ɛ-amino group of lysine residue of HSA has been found to be in concentration dependent manner. The conventional methods for modified proteins identification in complex mixtures are complicated and time consuming. Herein, we describe a highly selective, sensitive, simple, and fast strategy for quinoproteins identification. The suggested strategy exploited the unique redox-cycling capability of quinoproteins in presence of a reductant, dithiothreitol (DTT), to generate reactive oxygen species (ROS) that gave sufficient chemiluminescence (CL) when mixed with luminol. The CL approach is highly selective and sensitive to detect the quinoproteins in ten-fold molar excess of native proteins without adduct enrichment. The approach was also coupled with gel filtration chromatography (GFC) and used to identify adducts in complex mixture of proteins in vitro as well as in rat plasma after MQ administration. Albumin was identified as the main protein in human and rat plasma forming adduct with MQ. Overall, the identification of quinoproteins will encourage further studies of toxicological impact of quinones on human health. PMID:26044383

  19. Identification of proteins bound to a thioaptamer probe on a proteomics array

    International Nuclear Information System (INIS)

    A rapid method to screen and identify unknown bound proteins to specific nucleic acid probes anchored on ProteinChip array surfaces from crude biological samples has been developed in this paper. It was demonstrated with screening specific binding proteins from LPS-stimulated mouse 70Z/3 pre-B cell nuclear extracts by direct coupling of thioaptamer XBY-S2 to the pre-activated ProteinChip array surfaces. With pre-fractionation of crude nuclear extracts by ion exchange method, specific 'on-chip' captured proteins have been obtained that were pure enough to do 'on-chip' digestion and the subsequent identification of the 'on-chip' bound proteins by microsequencing of the trypsin digested peptide fragments through tandem MS. Five mouse heterogeneous nuclear ribonucleoproteins (hnRNPs) A1, A2/B1, A3, A/B, and D0 were identified. To verify those bound hnRNPs, a novel thioaptamer/antibody sandwich assay provides highly sensitive and selective identification of proteins on ProteinChip arrays

  20. Identification of Thylakoid Membrane Protein Complexes by Using a BN-Chip/MS Approach

    Institute of Scientific and Technical Information of China (English)

    Longquan Fan; Yinghong Pan

    2012-01-01

    Thylakoid membrane protein complexes of wheat (Triticum aestivum Linn.)play crucial roles in growth and crop production.Knowledge of the composition and structure of protein complexes,as well as protein interactions,will result in a much deeper understanding of metabolic pathways and cellular processes than protein identities alone,especially if the complexes can be separated in the native forms.Whereas the analysis of membrane protein complexes is a significant challenge due to their hydrophobic properties and relatively low abundance.A rapid and efficient method of identifying membrane protein complexes will greatly facilitate the investigation of agriculture.The present work developed an BN-Chip/MS approach for exhaustive separation and identification of protein complexes,by combining using blue-native polyacrylamide gel electrophoresis (BN-PAGE) and chip-based high-performance liquid chromatography quadruple time-of-flight tandem mass spectrometry (HPLC-Chip/ESI-QT-OF-MS,Chip/MS).By using this approach,seventy-five nonredundant proteins of wheat thylakoid membrane complexes were identified from digested 13 bands of BN-gel.When the protocol of BN separation was not used,only 37 nonredundant proteins had been identified and among of them 9 proteins were uniquely identi? ed.This BN-Chip/MS approach is rapid and efficient for identifying protein complexes in wheat thylakoid membranes,and also providing reliable foundations for further functional research of wheat chloroplast and for identifying protein complexes of other species.

  1. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    Science.gov (United States)

    Connor, Daniel O; Zantow, Jonas; Hust, Michael; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2016-01-01

    Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae. PMID:26859666

  2. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    Directory of Open Access Journals (Sweden)

    Daniel O Connor

    Full Text Available Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.

  3. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hung T. [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Case, David A., E-mail: case@biomaps.rutgers.edu [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2014-12-14

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb{sup +} and Sr{sup 2+}) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein–Zernike equations, with results from the Kovalenko–Hirata closure being closest to experiment for the cases studied here.

  4. Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking.

    Science.gov (United States)

    Ogura, Toshihiko; Iwasaki, Kenji; Sato, Chikara

    2003-09-01

    In single-particle analysis, a three-dimensional (3-D) structure of a protein is constructed using electron microscopy (EM). As these images are very noisy in general, the primary process of this 3-D reconstruction is the classification of images according to their Euler angles, the images in each classified group then being averaged to reduce the noise level. In our newly developed strategy of classification, we introduce a topology representing network (TRN) method. It is a modified method of a growing neural gas network (GNG). In this system, a network structure is automatically determined in response to the images input through a growing process. After learning without a masking procedure, the GNG creates clear averages of the inputs as unit coordinates in multi-dimensional space, which are then utilized for classification. In the process, connections are automatically created between highly related units and their positions are shifted where the inputs are distributed in multi-dimensional space. Consequently, several separated groups of connected units are formed. Although the interrelationship of units in this space are not easily understood, we succeeded in solving this problem by converting the unit positions into two-dimensional (2-D) space, and by further optimizing the unit positions with the simulated annealing (SA) method. In the optimized 2-D map, visualization of the connections of units provided rich information about clustering. As demonstrated here, this method is clearly superior to both the multi-variate statistical analysis (MSA) and the self-organizing map (SOM) as a classification method and provides a first reliable classification method which can be used without masking for very noisy images. PMID:14572474

  5. Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa

    OpenAIRE

    Shitashiro, Maiko; Tanaka, Hirohide; Hong, Chang Soo; Kuroda, Akio; Takiguchi, Noboru; Ohtake, Hisao; Kato, Junichi

    2005-01-01

    The involvement of the chemotaxis gene cluster 1 (cheYZABW) and cheR in repellent responses of Pseudomonas aeruginosa to trichloroethylene (TCE) is described and three methyl-accepting chemotaxis proteins (MCPs) for TCE are identified. TCE chemotaxis assays of a number of deletion-insertion mutants of P. aeruginosa PAO1 revealed that the chemotaxis gene cluster 1 and cheR are required for negative chemotaxis to TCE. Mutant strains which contained deletions in pctA, pctB and pctC showed decrea...

  6. Advances in identification and validation of protein targets of natural products without chemical modification.

    Science.gov (United States)

    Chang, J; Kim, Y; Kwon, H J

    2016-05-01

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates. PMID:26964663

  7. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.;

    2004-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...... kinase A (PKA) phosphorylation sites. The neural network was trained with a positive set of 258 experimentally verified PKA phosphorylation sites. The predictions by NetPhosK were! validated using four novel PKA substrates: Necdin, RFX5, En-2, and Wee 1. The four proteins were phosphorylated by PKA...

  8. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E;

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...... kinase A (PKA) phosphorylation sites. The neural network was trained with a positive set of 258 experimentally verified PKA phosphorylation sites. The predictions by NetPhosK were validated using four novel PKA substrates: Necdin, RFX5, En-2, and Wee 1. The four proteins were phosphorylated by PKA...

  9. Mass spectrometry based approach for identification and characterisation of fluorescent proteins from marine organisms

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna Iwona; Rogowska-Wrzesinska, Adelina; Wrzesinski, Krzysztof;

    2011-01-01

    We present here a new analytical strategy for identification and characterisation of fluorescent proteins from marine organisms. By applying basic proteomics tools it is possible to screen large sample collections for fluorescent proteins of desired characteristics prior to gene cloning. Our...... methodology which includes isolation, spectral characterisation, stability testing, gel-based separation and mass spectrometric identification was optimised on samples collected during the Danish Galathea 3 expedition. Four corals of the Fungia, Sarcophyton and Acropora species emitting green fluorescence...... were tested. Each of the fluorescent extracts behaves differently under denaturing conditions but complete fluorescence loss was not observed. Optimised electrophoretic conditions yielded effective separation of active fluorescent proteins in both 1DE and 2DE. Mass spectrometric analysis...

  10. Mass spectrometry based approach for identification and characterisation of fluorescent proteins from marine organisms

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina; Wrzesinski, Krzysztof;

    2011-01-01

    We present here a new analytical strategy for identification and characterisation of fluorescent proteins from marine organisms. By applying basic proteomics tools it is possible to screen large sample collections for fluorescent proteins of desired characteristics prior to gene cloning. Our...... methodology which includes isolation, spectral characterisation, stability testing, gel-based separation and mass spectrometric identification was optimised on samples collected during the Danish Galathea 3 expedition. Four corals of the Fungia, Sarcophyton and Acropora species emitting green fluorescence...... were tested. Each of the fluorescent extracts behaves differently under denaturing conditions but complete fluorescence loss was not observed. Optimised electrophoretic conditions yielded effective separation of active fluorescent proteins in both 1DE and 2DE. Mass spectrometric analysis of the...

  11. Small acid soluble proteins for rapid spore identification.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  12. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, J.S.G.; Trust, T.J.

    1988-02-01

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase /sup 125/I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to /sup 125/I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein.

  13. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography.

    Directory of Open Access Journals (Sweden)

    Kevin Wang

    Full Text Available Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC, rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins.

  14. PDTD: a web-accessible protein database for drug target identification

    Directory of Open Access Journals (Sweden)

    Gao Zhenting

    2008-02-01

    Full Text Available Abstract Background Target identification is important for modern drug discovery. With the advances in the development of molecular docking, potential binding proteins may be discovered by docking a small molecule to a repository of proteins with three-dimensional (3D structures. To complete this task, a reverse docking program and a drug target database with 3D structures are necessary. To this end, we have developed a web server tool, TarFisDock (Target Fishing Docking http://www.dddc.ac.cn/tarfisdock, which has been used widely by others. Recently, we have constructed a protein target database, Potential Drug Target Database (PDTD, and have integrated PDTD with TarFisDock. This combination aims to assist target identification and validation. Description PDTD is a web-accessible protein database for in silico target identification. It currently contains >1100 protein entries with 3D structures presented in the Protein Data Bank. The data are extracted from the literatures and several online databases such as TTD, DrugBank and Thomson Pharma. The database covers diverse information of >830 known or potential drug targets, including protein and active sites structures in both PDB and mol2 formats, related diseases, biological functions as well as associated regulating (signaling pathways. Each target is categorized by both nosology and biochemical function. PDTD supports keyword search function, such as PDB ID, target name, and disease name. Data set generated by PDTD can be viewed with the plug-in of molecular visualization tools and also can be downloaded freely. Remarkably, PDTD is specially designed for target identification. In conjunction with TarFisDock, PDTD can be used to identify binding proteins for small molecules. The results can be downloaded in the form of mol2 file with the binding pose of the probe compound and a list of potential binding targets according to their ranking scores. Conclusion PDTD serves as a comprehensive and

  15. MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species.

    Science.gov (United States)

    Kim, Young Jin; Kim, Si Hyun; Park, Hyun-Jung; Park, Hae-Geun; Park, Dongchul; Song, Sae Am; Lee, Hee Joo; Yong, Dongeun; Choi, Jun Yong; Kook, Joong-Ki; Kim, Hye Ran; Shin, Jeong Hwan

    2016-08-01

    All 50 Clostridium difficile strains were definitely identified by Vitek2 system, Rapid ID 32A system, and MALDI-TOF. For 18 non-difficile Clostridium strains, the identification results were correct in 0, 2, and 17 strains by Vitek2, Rapid ID 32A, and MALDI-TOF, respectively. MALDI-TOF could be used as the primary tool for identification of Clostridium species. PMID:27296834

  16. MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species.

    Science.gov (United States)

    Kim, Young Jin; Kim, Si Hyun; Park, Hyun-Jung; Park, Hae-Geun; Park, Dongchul; Song, Sae Am; Lee, Hee Joo; Yong, Dongeun; Choi, Jun Yong; Kook, Joong-Ki; Kim, Hye Ran; Shin, Jeong Hwan

    2016-08-01

    All 50 Clostridium difficile strains were definitely identified by Vitek2 system, Rapid ID 32A system, and MALDI-TOF. For 18 non-difficile Clostridium strains, the identification results were correct in 0, 2, and 17 strains by Vitek2, Rapid ID 32A, and MALDI-TOF, respectively. MALDI-TOF could be used as the primary tool for identification of Clostridium species.

  17. Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2008-04-01

    Full Text Available Abstract Background The identification and study of proteins from metagenomic datasets can shed light on the roles and interactions of the source organisms in their communities. However, metagenomic datasets are characterized by the presence of organisms with varying GC composition, codon usage biases etc., and consequently gene identification is challenging. The vast amount of sequence data also requires faster protein family classification tools. Results We present a computational improvement to a sequence clustering approach that we developed previously to identify and classify protein coding genes in large microbial metagenomic datasets. The clustering approach can be used to identify protein coding genes in prokaryotes, viruses, and intron-less eukaryotes. The computational improvement is based on an incremental clustering method that does not require the expensive all-against-all compute that was required by the original approach, while still preserving the remote homology detection capabilities. We present evaluations of the clustering approach in protein-coding gene identification and classification, and also present the results of updating the protein clusters from our previous work with recent genomic and metagenomic sequences. The clustering results are available via CAMERA, (http://camera.calit2.net. Conclusion The clustering paradigm is shown to be a very useful tool in the analysis of microbial metagenomic data. The incremental clustering method is shown to be much faster than the original approach in identifying genes, grouping sequences into existing protein families, and also identifying novel families that have multiple members in a metagenomic dataset. These clusters provide a basis for further studies of protein families.

  18. Identification and characterization of cytosolic Hansenula polymorpha proteins belonging to the Hsp70 protein family

    NARCIS (Netherlands)

    Titorenko, Vladimir I.; Evers, Melchior E.; Diesel, Andre; Samyn, Bart; Beeumen, Josef van; Roggenkamp, Rainer; Kiel, Jan A.K.W.; Klei, Ida J. van der; Veenhuis, Marten

    1996-01-01

    We have isolated two members of the Hsp70 protein family from the yeast Hansenula polymorpha using affinity chromatography. Both proteins were located in the cytoplasm. One of these, designated Hsp72, was inducible in nature (e.g. by heat shock). The second protein (designated Hsc74) was constitutiv

  19. PredPPCrys: accurate prediction of sequence cloning, protein production, purification and crystallization propensity from protein sequences using multi-step heterogeneous feature fusion and selection.

    Directory of Open Access Journals (Sweden)

    Huilin Wang

    Full Text Available X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed 'PredPPCrys' using the support vector machine (SVM. Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I. Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II, which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization

  20. New technologies in proteomics: automated excision and digestion of fluorescently stained protein gel spots and identification of proteins by MALDI-QTOF mass spectrometry

    International Nuclear Information System (INIS)

    This presentation is an overview of the techniques and systems we use for large-scale proteomics in plants. This includes a variety of 2D gel electrophoresis methods, and automation of spot-cutting, in-gel digestion, nanoLC-MS/MS tandem mass spectrometry and SEQUEST based protein identification. Examples and applications of several new technologies will also be shown, including the use of a robotic spot cutter in conjunction with high sensitivity fluorescent protein staining and the identification of proteins by redundant peptide identification in a high-throughput fashion using a hybrid MALDI-Qtof mass spectrometer

  1. PILOT_PROTEIN: identification of unmodified and modified proteins via high-resolution mass spectrometry and mixed-integer linear optimization.

    Science.gov (United States)

    Baliban, Richard C; Dimaggio, Peter A; Plazas-Mayorca, Mariana D; Garcia, Benjamin A; Floudas, Christodoulos A

    2012-09-01

    A novel protein identification framework, PILOT_PROTEIN, has been developed to construct a comprehensive list of all unmodified proteins that are present in a living sample. It uses the peptide identification results from the PILOT_SEQUEL algorithm to initially determine all unmodified proteins within the sample. Using a rigorous biclustering approach that groups incorrect peptide sequences with other homologous sequences, the number of false positives reported is minimized. A sequence tag procedure is then incorporated along with the untargeted PTM identification algorithm, PILOT_PTM, to determine a list of all modification types and sites for each protein. The unmodified protein identification algorithm, PILOT_PROTEIN, is compared to the methods SEQUEST, InsPecT, X!Tandem, VEMS, and ProteinProspector using both prepared protein samples and a more complex chromatin digest. The algorithm demonstrates superior protein identification accuracy with a lower false positive rate. All materials are freely available to the scientific community at http://pumpd.princeton.edu. PMID:22788846

  2. An approach to large scale identification of non-obvious structural similarities between proteins

    Directory of Open Access Journals (Sweden)

    Cherkasov Artem

    2004-05-01

    Full Text Available Abstract Background A new sequence independent bioinformatics approach allowing genome-wide search for proteins with similar three dimensional structures has been developed. By utilizing the numerical output of the sequence threading it establishes putative non-obvious structural similarities between proteins. When applied to the testing set of proteins with known three dimensional structures the developed approach was able to recognize structurally similar proteins with high accuracy. Results The method has been developed to identify pathogenic proteins with low sequence identity and high structural similarity to host analogues. Such protein structure relationships would be hypothesized to arise through convergent evolution or through ancient horizontal gene transfer events, now undetectable using current sequence alignment techniques. The pathogen proteins, which could mimic or interfere with host activities, would represent candidate virulence factors. The developed approach utilizes the numerical outputs from the sequence-structure threading. It identifies the potential structural similarity between a pair of proteins by correlating the threading scores of the corresponding two primary sequences against the library of the standard folds. This approach allowed up to 64% sensitivity and 99.9% specificity in distinguishing protein pairs with high structural similarity. Conclusion Preliminary results obtained by comparison of the genomes of Homo sapiens and several strains of Chlamydia trachomatis have demonstrated the potential usefulness of the method in the identification of bacterial proteins with known or potential roles in virulence.

  3. Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines.

    Directory of Open Access Journals (Sweden)

    Margaret Rohrbaugh

    Full Text Available BACKGROUND: Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31 gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl, a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology. CONCLUSIONS/SIGNIFICANCE: These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these

  4. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate

    DEFF Research Database (Denmark)

    Grønborg, Mads; Kristiansen, Troels Zakarias; Stensballe, Allan;

    2002-01-01

    proteins from untreated cells or those treated with calyculin A, a serine/threonine phosphatase inhibitor. Mass spectrometry-based analysis of bands from one-dimensional gels that were specifically observed in calyculin A-treated samples resulted in identification of several known serine...

  5. Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening.

    Science.gov (United States)

    Han, Jin-Hee; Li, Jian; Wang, Bo; Lee, Seong-Kyun; Nyunt, Myat Htut; Na, Sunghun; Park, Jeong-Hyun; Han, Eun-Taek

    2015-08-01

    Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (> 326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.

  6. The Effect of Edge Definition of Complex Networks on Protein Structure Identification

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2013-01-01

    Full Text Available The main objective of this study is to explore the contribution of complex network together with its different definitions of vertexes and edges to describe the structure of proteins. Protein folds into a specific conformation for its function depending on interactions between residues. Consequently, in many studies, a protein structure was treated as a complex system comprised of individual components residues, and edges were interactions between residues. What is the proper time for representing a protein structure as a network? To confirm the effect of different definitions of vertexes and edges in constructing the amino acid interaction networks, protein domains and the structural unit of proteins were described using this method. The identification performance of 2847 proteins with domain/domains proved that the structure of proteins was described well when was around 5.0–7.5 Å, and the optimal cutoff value for constructing the protein structure networks was 5.0 Å ( distances while the ideal community division method was community structure detection based on edge betweenness in this study.

  7. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction.

    Directory of Open Access Journals (Sweden)

    Pradeep R Dumpala

    Full Text Available Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05 difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri.

  8. Normalization with genes encoding ribosomal proteins but not GAPDH provides an accurate quantification of gene expressions in neuronal differentiation of PC12 cells

    Directory of Open Access Journals (Sweden)

    Lim Qing-En

    2010-01-01

    Full Text Available Abstract Background Gene regulation at transcript level can provide a good indication of the complex signaling mechanisms underlying physiological and pathological processes. Transcriptomic methods such as microarray and quantitative real-time PCR require stable reference genes for accurate normalization of gene expression. Some but not all studies have shown that housekeeping genes (HGKs, β-actin (ACTB and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, which are routinely used for normalization, may vary significantly depending on the cell/tissue type and experimental conditions. It is currently unclear if these genes are stably expressed in cells undergoing drastic morphological changes during neuronal differentiation. Recent meta-analysis of microarray datasets showed that some but not all of the ribosomal protein genes are stably expressed. To test the hypothesis that some ribosomal protein genes can serve as reference genes for neuronal differentiation, a genome-wide analysis was performed and putative reference genes were identified based on stability of expressions. The stabilities of these potential reference genes were then analyzed by reverse transcription quantitative real-time PCR in six differentiation conditions. Results Twenty stably expressed genes, including thirteen ribosomal protein genes, were selected from microarray analysis of the gene expression profiles of GDNF and NGF induced differentiation of PC12 cells. The expression levels of these candidate genes as well as ACTB and GAPDH were further analyzed by reverse transcription quantitative real-time PCR in PC12 cells differentiated with a variety of stimuli including NGF, GDNF, Forskolin, KCl and ROCK inhibitor, Y27632. The performances of these candidate genes as stable reference genes were evaluated with two independent statistical approaches, geNorm and NormFinder. Conclusions The ribosomal protein genes, RPL19 and RPL29, were identified as suitable reference genes

  9. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    Science.gov (United States)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  10. Identification of Protein-Protein Interactions by Detecting Correlated Mutation at the Interface.

    Science.gov (United States)

    Guo, Fei; Ding, Yijie; Li, Zhao; Tang, Jijun

    2015-09-28

    Protein-protein interactions play key roles in a multitude of biological processes, such as de novo drug design, immune response, and enzymatic activity. It is of great interest to understand how proteins in a complex interact with each other. Here, we present a novel method for identifying protein-protein interactions, based on typical co-evolutionary information. Correlated mutation analysis can be used to predict interface residues. In this paper, we propose a non-redundant database to detect correlated mutation at the interface. First, we construct structure alignments for one input protein, based on all aligned proteins in the database. Evolutionary distance matrices, one for each input protein, can be calculated through geometric similarity and evolutionary information. Then, we use evolutionary distance matrices to estimate correlation coefficient between each pair of fragments from two input proteins. Finally, we extract interacting residues with high values of correlation coefficient, which can be grouped as interacting patches. Experiments illustrate that our method achieves better results than some existing co-evolution-based methods. Applied to SK/RR interaction between sensor kinase and response regulator proteins, our method has accuracy and coverage values of 53% and 45%, which improves upon accuracy and coverage values of 50% and 30% for DCA method. We evaluate interface prediction on four protein families, and our method has overall accuracy and coverage values of 34% and 30%, which improves upon overall accuracy and coverage values of 27% and 21% for PIFPAM. Our method has overall accuracy and coverage values of 59% and 63% on Benchmark v4.0, and 50% and 49% on CAPRI targets. Comparing to existing methods, our method improves overall accuracy value by at least 2%. PMID:26284382

  11. Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae

    Directory of Open Access Journals (Sweden)

    Krehenbrink Martin

    2008-01-01

    Full Text Available Abstract Background Proteins secreted by bacteria play an important role in infection of eukaryotic hosts. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. Proteins secreted during the infection process by some rhizobial strains can influence infection and modify the plant defence signalling pathways. The aim of this study was to systematically analyse protein secretion in the recently sequenced strain Rhizobium leguminosarum bv. viciae 3841. Results Similarity searches using defined protein secretion systems from other Gram-negative bacteria as query sequences revealed that R. l. bv. viciae 3841 has ten putative protein secretion systems. These are the general export pathway (GEP, a twin-arginine translocase (TAT secretion system, four separate Type I systems, one putative Type IV system and three Type V autotransporters. Mutations in genes encoding each of these (except the GEP were generated, but only mutations affecting the PrsDE (Type I and TAT systems were observed to affect the growth phenotype and the profile of proteins in the culture supernatant. Bioinformatic analysis and mass fingerprinting of tryptic fragments of culture supernatant proteins identified 14 putative Type I substrates, 12 of which are secreted via the PrsDE, secretion system. The TAT mutant was defective for the symbiosis, forming nodules incapable of nitrogen fixation. Conclusion None of the R. l. bv. viciae 3841 protein secretion systems putatively involved in the secretion of proteins to the extracellular space (Type I, Type IV, Type V is required for establishing the symbiosis with legumes. The PrsDE (Type I system was shown to be the major route of protein secretion in non-symbiotic cells and to secrete proteins of widely varied size and predicted function. This is in contrast to many Type I systems from other bacteria, which typically secrete specific substrates encoded by genes often localised in close proximity to

  12. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function.

    Directory of Open Access Journals (Sweden)

    Maura Brioschi

    Full Text Available Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF. The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14 and non-failing human hearts (n = 13 were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS, the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01. We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK, whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.

  13. PPINGUIN: Peptide Profiling Guided Identification of Proteins improves quantitation of iTRAQ ratios

    OpenAIRE

    Bauer, Chris; Kleinjung, Frank; Rutishauser, Dorothea; Panse, Christian; Chadt, Alexandra; Dreja, Tanja; Al-Hasani, Hadi; Reinert, Knut; Schlapbach, Ralph; Schuchhardt, Johannes

    2012-01-01

    BACKGROUND: Recent development of novel technologies paved the way for quantitative proteomics. One of the most important among them is iTRAQ, employing isobaric tags for relative or absolute quantitation. Despite large progress in technology development, still many challenges remain for derivation and interpretation of quantitative results. One of these challenges is the consistent assignment of peptides to proteins. RESULTS: We have developed Peptide Profiling Guided Identification of Pr...

  14. Identification and localization of the structural proteins of anguillid herpesvirus 1

    OpenAIRE

    van Beurden Steven J; Leroy Baptiste; Wattiez Ruddy; Haenen Olga LM; Boeren Sjef; Vervoort Jacques JM; Peeters Ben PH; Rottier Peter JM; Engelsma Marc Y; Vanderplasschen Alain F

    2011-01-01

    Abstract Many of the known fish herpesviruses have important aquaculture species as their natural host, and may cause serious disease and mortality. Anguillid herpesvirus 1 (AngHV-1) causes a hemorrhagic disease in European eel, Anguilla anguilla. Despite their importance, fundamental molecular knowledge on fish herpesviruses is still limited. In this study we describe the identification and localization of the structural proteins of AngHV-1. Purified virions were fractionated into a capsid-t...

  15. Residues Coevolution Guides the Systematic Identification of Alternative Functional Conformations in Proteins.

    Science.gov (United States)

    Sfriso, Pedro; Duran-Frigola, Miquel; Mosca, Roberto; Emperador, Agustí; Aloy, Patrick; Orozco, Modesto

    2016-01-01

    We present here a new approach for the systematic identification of functionally relevant conformations in proteins. Our fully automated pipeline, based on discrete molecular dynamics enriched with coevolutionary information, is able to capture alternative conformational states in 76% of the proteins studied, providing key atomic details for understanding their function and mechanism of action. We also demonstrate that, given its sampling speed, our method is well suited to explore structural transitions in a high-throughput manner, and can be used to determine functional conformational transitions at the entire proteome level. PMID:26688214

  16. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water

    Energy Technology Data Exchange (ETDEWEB)

    Dalvit, Claudio; Pevarello, Paolo; Tato, Marco; Veronesi, Marina; Vulpetti, Anna; Sundstroem, Michael [Pharmacia (Italy)

    2000-09-15

    A powerful screening by NMR methodology (WaterLOGSY), based on transfer of magnetization from bulk water, for the identification of compounds that interact with target biomolecules (proteins, RNA and DNA fragments) is described. The method exploits efficiently the large reservoir of H{sub 2}O magnetization. The high sensitivity of the technique reduces the amount of biomolecule and ligands needed for the screening, which constitutes an important requirement for high throughput screening by NMR of large libraries of compounds. Application of the method to a compound mixture against the cyclin-dependent kinase 2 (cdk2) protein is presented.

  17. Identification of Pentatricopeptide Repeat Proteins in the Model Organism Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Sam Manna

    2013-01-01

    Full Text Available Pentatricopeptide repeat (PPR proteins are RNA binding proteins with functions in organelle RNA metabolism. They are found in all eukaryotes but have been most extensively studied in plants. We report on the identification of 12 PPR-encoding genes in the genome of the protist Dictyostelium discoideum, with potential homologs in other members of the same lineage and some predicted novel functions for the encoded gene products in protists. For one of the gene products, we show that it localizes to the mitochondria, and we also demonstrate that antisense inhibition of its expression leads to slower growth, a phenotype associated with mitochondrial dysfunction.

  18. Bioinformatics-Based Identification of Chemosensory Proteins in African Malaria Mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Zhengxi Li; Zuorui Shen; Jingjiang Zhou; Lin Field

    2003-01-01

    Chemosensory proteins (CSPs) are identifiable by four spatially conserved Cysteine residues in their primary structure or by two disulfide bridges in their tertiary structure according to the previously identified olfactory specific-D related proteins. A genomics- and bioinformatics-based approach is taken in the present study to identify the putative CSPs in the malaria-carrying mosquito, Anopheles gambiae. The results show that five out of the nine annotated candidates are the most possible Anopheles CSPs of A. gambiae. This study lays the foundation for further functional identification of Anopheles CSPs, though all of these candidates need additional experimental verification.

  19. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Institute of Scientific and Technical Information of China (English)

    Beuy; Joob; Viroj; Wiwanitkit

    2014-01-01

    The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present.Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus.The in-depth analysis of the viral protein to find the binding site,active pocket is needed.Here,the authors analyzed the envelope glycoprotein GP2 from Ebola virus.Identification of active pocket and protein draggability within envelope glycoprotein GP2 from Ebola virus was done.According to this assessment,7 active pockets with varied draggability could be identified.

  20. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Institute of Scientific and Technical Information of China (English)

    Beuy Joob; Viroj Wiwanitkit

    2014-01-01

    The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present. Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus. The in-depth analysis of the viral protein to find the binding site, active pocket is needed. Here, the authors analyzed the envelope glycoprotein GP2 from Ebola virus. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus was done. According to this assessment, 7 active pockets with varied druggability could be identified.

  1. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Pratul K.

    2015-11-24

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  2. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    Science.gov (United States)

    Agarwal, Pratul K.

    2013-04-09

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  3. Identification of proteins that interact with murine cytomegalovirus early protein M112-113 in brain

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; LIU Xing-lou; SHU Sai-nan; HUANG Yong-jian; FANG Feng

    2011-01-01

    Background Murine cytomegalovirus (MCMV) early protein M112-113 is involved in viral DNA replication and believed to play a crucial role in the viral pathogenesis.To investigate the biological function of M112-113 protein in the pathogenesis of the brain disorders caused by cytomegalovirus (CMV),a screening for proteins interacting with M112-113 was performed by a yeast two-hybrid system.Methods Bait plasmid pGBKT7-M112-113 was constructed and transformed into AH109 yeast.After confirmation of the expression of MCMV M112-113 in yeast,the bait yeast was mated with a prey yeast containing mouse brain cDNA library plasmid to screen the proteins interacting with M112-113.Interactions between M112-113 and the obtained proteins were verified by yeast two-hybrid assay and chemiluminescent co-immunoprecipitaion.Results Two proteins interacting with M112-113 were identified,including metastasis-associated 1 (MTA1) and zinc finger,CCHC domain containing 18 (ZCCHC18).M112-113 protein could interact with MTA1 or ZCCHC18 in yeast and mammalian cells.Conclusion The interactions of M112-113 with MTA1 or ZCCHC18 may be related to the pathogenesis of MCMV-associated disease in central nervous system.

  4. Identification of Late Embryogenesis Abundant (LEA Protein Putative Interactors Using Phage Display

    Directory of Open Access Journals (Sweden)

    Allan Bruce Downie

    2012-05-01

    Full Text Available Arabidopsis thaliana seeds without functional SEED MATURATION PROTEIN1 (SMP1, a boiling soluble protein predicted to be of intrinsic disorder, presumed to be a LATE EMBRYOGENESIS ABUNDANT (LEA family protein based on sequence homology, do not enter secondary dormancy after 3 days at 40 °C. We hypothesized that SMP1 may protect a heat labile protein involved in the promotion of secondary dormancy. Recombinant SMP1 and GmPM28, its soybean (Glycine max, LEA4 homologue, protected the labile GLUCOSE-6-PHOSPHATE DEHYROGENASE enzyme from heat stress, as did a known protectant, Bovine Serum Albumin, whether the LEA protein was in solution or attached to the bottom of microtiter plates. Maintenance of a biological function for both recombinant LEA proteins when immobilized encouraged a biopanning approach to screen for potential protein interactors. Phage display with two Arabidopsis seed, T7 phage, cDNA libraries, normalized for transcripts present in the mature, dehydrated, 12-, 24-, or 36-h imbibed seeds, were used in biopans against recombinant SMP1 and GmPM28. Phage titer increased considerably over four rounds of biopanning for both LEA proteins, but not for BSA, at both 25 and at 41 °C, regardless of the library used. The prevalence of multiple, independent clones encoding portions of specific proteins repeatedly retrieved from different libraries, temperatures and baits, provides evidence suggesting these LEA proteins are discriminating which proteins they protect, a novel finding. The identification of putative LEA-interacting proteins provides targets for reverse genetic approaches to further dissect the induction of secondary dormancy in seeds in response to heat stress.

  5. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila.

    Directory of Open Access Journals (Sweden)

    Wenhan Zhu

    Full Text Available A large number of proteins transferred by the Legionella pneumophila Dot/Icm system have been identified by various strategies. With no exceptions, these strategies are based on one or more characteristics associated with the tested proteins. Given the high level of diversity exhibited by the identified proteins, it is possible that some substrates have been missed in these screenings. In this study, we took a systematic method to survey the L. pneumophila genome by testing hypothetical orfs larger than 300 base pairs for Dot/Icm-dependent translocation. 798 of the 832 analyzed orfs were successfully fused to the carboxyl end of β-lactamase. The transfer of the fusions into mammalian cells was determined using the β-lactamase reporter substrate CCF4-AM. These efforts led to the identification of 164 proteins positive in translocation. Among these, 70 proteins are novel substrates of the Dot/Icm system. These results brought the total number of experimentally confirmed Dot/Icm substrates to 275. Sequence analysis of the C-termini of these identified proteins revealed that Lpg2844, which contains few features known to be important for Dot/Icm-dependent protein transfer can be translocated at a high efficiency. Thus, our efforts have identified a large number of novel substrates of the Dot/Icm system and have revealed the diverse features recognizable by this protein transporter.

  6. Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria

    Directory of Open Access Journals (Sweden)

    Brinkman Fiona SL

    2005-11-01

    Full Text Available Abstract Background Identification of a bacterial protein's subcellular localization (SCL is important for genome annotation, function prediction and drug or vaccine target identification. Subcellular fractionation techniques combined with recent proteomics technology permits the identification of large numbers of proteins from distinct bacterial compartments. However, the fractionation of a complex structure like the cell into several subcellular compartments is not a trivial task. Contamination from other compartments may occur, and some proteins may reside in multiple localizations. New computational methods have been reported over the past few years that now permit much more accurate, genome-wide analysis of the SCL of protein sequences deduced from genomes. There is a need to compare such computational methods with laboratory proteomics approaches to identify the most effective current approach for genome-wide localization characterization and annotation. Results In this study, ten subcellular proteome analyses of bacterial compartments were reviewed. PSORTb version 2.0 was used to computationally predict the localization of proteins reported in these publications, and these computational predictions were then compared to the localizations determined by the proteomics study. By using a combined approach, we were able to identify a number of contaminants and proteins with dual localizations, and were able to more accurately identify membrane subproteomes. Our results allowed us to estimate the precision level of laboratory subproteome studies and we show here that, on average, recent high-precision computational methods such as PSORTb now have a lower error rate than laboratory methods. Conclusion We have performed the first focused comparison of genome-wide proteomic and computational methods for subcellular localization identification, and show that computational methods have now attained a level of precision that is exceeding that of high

  7. Preliminary identification of secreted proteins by Leptospira interrogans serovar Kennewicki strain Pomona Fromm

    Energy Technology Data Exchange (ETDEWEB)

    Ricardi, L.M.P.; Portaro, F.C.; Abreu, P.A.E.; Barbosa, A.S. [Instituto Butantan, Sao Paulo, SP (Brazil); Morais, Z.M.; Vasconcellos, S.A. [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    Full text: This project aimed to identify secreted proteins by pathogenic Leptospira interrogans serovar Kennewicki strain Pomona Fromm (LPF) by proteomic analyses. The strain LPF, whose virulence was maintained by passages in hamsters, were cultured in EMJH medium. The supernatants were centrifuged, dialyzed and subjected to lyophilization. Protein samples were resolved first by IEF at pH 3 to 10, immobilized pH gradient 13-cm strips. Strips were then processed for the second-dimension separation on SDS-polyacrylamide gels. Proteins from gel spots were subjected to reduction, cysteine-alkylation, and in-gel tryptic digestion, and analyzed by LC/MS/MS spectrometry. Liquid chromatography-based separation followed by automated tandem mass spectrometry was also used to identify secreted proteins. In silico analyses were performed using the PSORTbV.3.0 program and SignalP server. One major obstacle to secretome studies is the difficulty to obtain extracts of secreted proteins without citoplasmatic contamination. In addition, the extraction of low concentration proteins from large volumes of culture media, which are rich in salts, BSA and other compounds, frequently interfere with most proteomics techniques. For these reasons, several experimental approaches were used to optimize the protocol applied. In spite of this fact, our analysis resulted in the identification of 200 proteins with high confidence. Only 5 of 63 secreted proteins predicted by in silico analysis were found. Other classes identified included proteins that possess signal peptide but whose cellular localization prediction is unknown or may have multiple localization sites, and proteins that lack signal peptide and are thus thought to be secreted via non conventional mechanisms or resulting from cytoplasmic contamination by cell lysis. Many of these are hypothetical proteins with no putative conserved domains detected. To our knowledge, this is the first study to identify secreted proteins by

  8. Identification of the lipid droplet targeting domain of the Cidea protein[S

    OpenAIRE

    Christianson, Jennifer L.; Boutet, Emilie; Puri, Vishwajeet; Chawla, Anil; Czech, Michael P.

    2010-01-01

    Cidea, the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) domain-containing protein, is targeted to lipid droplets in mouse adipocytes, where it inhibits triglyceride hydrolysis and promotes lipid storage. In mice, Cidea may prevent lipolysis by binding and shielding lipid droplets from lipase association. Here we demonstrate that human Cidea localizes with lipid droplets in both adipocyte and nonadipocyte cell lines, and we ascribe specific functions to its protein domai...

  9. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Science.gov (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  10. Multi-Segment Direct Inject nano-ESI-LTQ-FT-ICR-MS/MS For Protein Identification

    Directory of Open Access Journals (Sweden)

    Neal Rachel E

    2011-07-01

    Full Text Available Abstract Reversed phase high performance liquid chromatography (HPLC interfaced to electrospray tandem mass spectrometry (MS/MS is commonly used for the identification of peptides from proteolytically cleaved proteins embedded in a polyacrylamide gel matrix as well as for metabolomics screening. HPLC separations are time consuming (30-60 min average, costly (columns and mobile phase reagents, and carry the risk of column carry over between samples. The use of a chip-based nano-ESI platform (Advion NanoMate based on replaceable nano-tips for sample introduction eliminates sample cross-contamination, provides unchanging sample matrix, and enhances spray stability with attendant increases in reproducibility. Recent papers have established direct infusion nano-ESI-MS/MS utilizing the NanoMate for protein identification of gel spots based on full range MS scans with data dependent MS/MS. In a full range scan, discontinuous ion suppression due to sample matrix can impair identification of putative mass features of interest in both the proteomic and metabolomic workflows. In the current study, an extension of an established direct inject nano-ESI-MS/MS method is described that utilizes the mass filtering capability of an ion-trap for ion packet separation into four narrow mass ranges (50 amu overlap with segment specific dynamic data dependent peak inclusion for MS/MS fragmentation (total acquisition time of 3 minutes. Comparison of this method with a more traditional nanoLC-MS/MS based protocol utilizing solvent/sample stream splitting to achieve nanoflow demonstrated comparable results for protein identification from polyacrylamide gel matrices. The advantages of this method include full automation, lack of cross-contamination, low cost, and high throughput.

  11. enDNA-Prot: Identification of DNA-Binding Proteins by Applying Ensemble Learning

    Directory of Open Access Journals (Sweden)

    Ruifeng Xu

    2014-01-01

    Full Text Available DNA-binding proteins are crucial for various cellular processes, such as recognition of specific nucleotide, regulation of transcription, and regulation of gene expression. Developing an effective model for identifying DNA-binding proteins is an urgent research problem. Up to now, many methods have been proposed, but most of them focus on only one classifier and cannot make full use of the large number of negative samples to improve predicting performance. This study proposed a predictor called enDNA-Prot for DNA-binding protein identification by employing the ensemble learning technique. Experiential results showed that enDNA-Prot was comparable with DNA-Prot and outperformed DNAbinder and iDNA-Prot with performance improvement in the range of 3.97–9.52% in ACC and 0.08–0.19 in MCC. Furthermore, when the benchmark dataset was expanded with negative samples, the performance of enDNA-Prot outperformed the three existing methods by 2.83–16.63% in terms of ACC and 0.02–0.16 in terms of MCC. It indicated that enDNA-Prot is an effective method for DNA-binding protein identification and expanding training dataset with negative samples can improve its performance. For the convenience of the vast majority of experimental scientists, we developed a user-friendly web-server for enDNA-Prot which is freely accessible to the public.

  12. Proteomics meets blood banking: identification of protein targets for the improvement of platelet quality.

    Science.gov (United States)

    Schubert, Peter; Devine, Dana V

    2010-01-01

    Proteomics has brought new perspectives to the fields of hematology and transfusion medicine in the last decade. The steady improvement of proteomic technology is propelling novel discoveries of molecular mechanisms by studying protein expression, post-translational modifications and protein interactions. This review article focuses on the application of proteomics to the identification of molecular mechanisms leading to the deterioration of blood platelets during storage - a critical aspect in the provision of platelet transfusion products. Several proteomic approaches have been employed to analyse changes in the platelet protein profile during storage and the obtained data now need to be translated into platelet biochemistry in order to connect the results to platelet function. Targeted biochemical applications then allow the identification of points for intervention in signal transduction pathways. Once validated and placed in a transfusion context, these data will provide further understanding of the underlying molecular mechanisms leading to platelet storage lesion. Future aspects of proteomics in blood banking will aim to make use of protein markers identified for platelet storage lesion development to monitor proteome changes when alterations such as the use of additive solutions or pathogen reduction strategies are put in place in order to improve platelet quality for patients.

  13. Identification and characterization of RBM44 as a novel intercellular bridge protein.

    Directory of Open Access Journals (Sweden)

    Tokuko Iwamori

    Full Text Available Intercellular bridges are evolutionarily conserved structures that connect differentiating germ cells. We previously reported the identification of TEX14 as the first essential intercellular bridge protein, the demonstration that intercellular bridges are required for male fertility, and the finding that intercellular bridges utilize components of the cytokinesis machinery to form. Herein, we report the identification of RNA binding motif protein 44 (RBM44 as a novel germ cell intercellular bridge protein. RBM44 was identified by proteomic analysis after intercellular bridge enrichment using TEX14 as a marker protein. RBM44 is highly conserved between mouse and human and contains an RNA recognition motif of unknown function. RBM44 mRNA is enriched in testis, and immunofluorescence confirms that RBM44 is an intercellular bridge component. However, RBM44 only partially localizes to TEX14-positive intercellular bridges. RBM44 is expressed most highly in pachytene and secondary spermatocytes, but disappears abruptly in spermatids. We discovered that RBM44 interacts with itself and TEX14 using yeast two-hybrid, mammalian two-hybrid, and immunoprecipitation. To define the in vivo function of RBM44, we generated a targeted deletion of Rbm44 in mice. Rbm44 null male mice produce somewhat increased sperm, and show enhanced fertility of unknown etiology. Thus, although RBM44 localizes to intercellular bridges during meiosis, RBM44 is not required for fertility in contrast to TEX14.

  14. Generation and Identification of Monoclonal Antibody Against Porcine Adipocyte Plasma Membrane Proteins

    Institute of Scientific and Technical Information of China (English)

    CAO Jin-ling; CHEN Jian-jie; WANG Zhi-rui; WANG Jun-dong

    2007-01-01

    Production of monoclonal antibody against porcine adipocyte plasma membrane proteins to explore a new way of controlling body fat deposition and improving carcass quality is discussed in this article. Membrane proteins of pig adipocyte plasma membrane proteins were extracted with the help of sucrose density gradient centrifugation, and two kinds of proteins were obtained. The monoclonal antibody (designated 3B2 and 3F3) of IgGl and IgG2b subclass against adipocyte membrane proteins were produced by immunization, with adipocyte membrane proteins as an antigen, and its titer was 1:105 detected by enzyme-linked immunoadsorbent assay (ELISA). The cell strains were identified by analyzing the number of chromosomes, the heat stability, the acid and alkali, the types and subtypes of immnoglobulin, and its peculiarities and affinities. Through identification, the chromosome number of hybridoma cell strains was from 80 to 100 and the strains formed good hybridomas colonies. The strains' affinity constants were 4.63×109 and 3.75×109 (mol L-1)-1, respectively. At the same time, the McAb secreted was stable to environmental factors, such as, temperature, acid, alkali and so on. The monoclonal antibodies had been obtained and their specificity to porcine adipocyte plasma membrane proteins had been identified.

  15. Identification of an immunogenic protein of Giardia lamblia using monoclonal antibodies generated from infected mice

    Directory of Open Access Journals (Sweden)

    Jael Quintero

    2013-08-01

    Full Text Available The humoral immune response plays an important role in the clearance of Giardia lamblia. However, our knowledge about the specific antigens of G. lamblia that induce a protective immune response is limited. The purpose of this study was to identify and characterise the immunogenic proteins of G. lamblia in a mouse model. We generated monoclonal antibodies (moAbs specific to G. lamblia (1B10, 2C9.D11, 3C10.E5, 3D10, 5G8.B5, 5F4, 4C7, 3C5 and 3C6 by fusing splenocytes derived from infected mice. Most of these moAbs recognised a band of ± 71 kDa (5G8 protein and this protein was also recognised by serum from the infected mice. We found that the moAbs recognised conformational epitopes of the 5G8 protein and that this antigen is expressed on the cell surface and inside trophozoites. Additionally, antibodies specific to the 5G8 protein induced strong agglutination (> 70-90% of trophozoites. We have thus identified a highly immunogenic antigen of G. lamblia that is recognised by the immune system of infected mice. In summary, this study describes the identification and partial characterisation of an immunogenic protein of G. lamblia. Additionally, we generated a panel of moAbs specific for this protein that will be useful for the biochemical and immunological characterisation of this immunologically interesting Giardia molecule.

  16. Identification of Newly Synthesized Proteins by Echinococcus granulosus Protoscoleces upon Induction of Strobilation.

    Directory of Open Access Journals (Sweden)

    João Antonio Debarba

    2015-09-01

    Full Text Available The proteins responsible for the key molecular events leading to the structural changes between the developmental stages of Echinococcus granulosus remain unknown. In this work, azidohomoalanine (AHA-specific labeling was used to identify proteins expressed by E. granulosus protoscoleces (PSCs upon the induction of strobilar development.The in vitro incorporation of AHA with different tags into newly synthesized proteins (NSPs by PSCs was analyzed using SDS-PAGE and confocal microscopy. The LC-MS/MS analysis of AHA-labeled NSPs by PSCs undergoing strobilation allowed for the identification of 365 proteins, of which 75 were differentially expressed in comparison between the presence or absence of strobilation stimuli and 51 were expressed exclusively in either condition. These proteins were mainly involved in metabolic, regulatory and signaling processes.After the controlled-labeling of proteins during the induction of strobilar development, we identified modifications in protein expression. The changes in the metabolism and the activation of control and signaling pathways may be important for the correct parasite development and be target for further studies.

  17. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins

    Directory of Open Access Journals (Sweden)

    Whittington Jessica

    2007-07-01

    accumulation may be relevant in elucidation of the progression of pathogenicity, identification of therapeutics and diagnostic markers, and vaccine development. This study also adds to the continuously growing list of identified Bacillus anthracis secretome proteins.

  18. Development of a Rapid and Accurate Identification Method for Citrobacter Species Isolated from Pork Products Using a Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Kwak, Hye-Lim; Han, Sun-Kyung; Park, Sunghoon; Park, Si Hong; Shim, Jae-Yong; Oh, Mihwa; Ricke, Steven C; Kim, Hae-Yeong

    2015-09-01

    Previous detection methods for Citrobacter are considered time consuming and laborious. In this study, we have developed a rapid and accurate detection method for Citrobacter species in pork products, using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). A total of 35 Citrobacter strains were isolated from 30 pork products and identified by both MALDI-TOF MS and 16S rRNA gene sequencing approaches. All isolates were identified to the species level by the MALDI-TOF MS, while 16S rRNA gene sequencing results could not discriminate them clearly. These results confirmed that MALDI-TOF MS is a more accurate and rapid detection method for the identification of Citrobacter species.

  19. A method for in vivo identification of bacterial small RNA-binding proteins.

    Science.gov (United States)

    Osborne, Jonathan; Djapgne, Louise; Tran, Bao Quoc; Goo, Young Ah; Oglesby-Sherrouse, Amanda G

    2014-12-01

    Small bacterial regulatory RNAs (sRNAs) have gained immense appreciation over the last decade for their roles in mediating posttranscriptional gene regulation of numerous physiological processes. Several proteins contribute to sRNA stability and regulation, most notably the Hfq RNA-binding protein. However, not all sRNAs rely on Hfq for their stability. It is therefore likely that other proteins contribute to the stability and function of certain bacterial sRNAs. Here, we describe a methodology for identifying in vivo-binding proteins of sRNAs, developed using the iron-responsive PrrF and PrrH sRNAs of Pseudomonas aeruginosa. RNA was isolated from iron-depleted cultures, which were irradiated to cross-link nucleoprotein complexes. Subsequently, PrrF- and PrrH-protein complexes were enriched using cDNA "bait", and enriched RNA-protein complexes were analyzed by tandem mass spectrometry to identify PrrF and PrrH associated proteins. This method identified Hfq as a potential PrrF- and PrrH-binding protein. Interestingly, Hfq was identified more often in samples probed with the PrrF cDNA "bait" as compared to the PrrH cDNA "bait", suggesting Hfq has a stronger binding affinity for the PrrF sRNAs in vivo. Hfq binding to the PrrF and PrrH sRNAs was validated by electrophoretic mobility shift assays with purified Hfq protein from P. aeruginosa. As such, this study demonstrates that in vivo cross-linking coupled with sequence-specific affinity chromatography and tandem mass spectrometry (SSAC-MS/MS) is an effective methodology for unbiased identification of bacterial sRNA-binding proteins.

  20. Proteomic identification of novel differentiation plasma protein markers in hypobaric hypoxia-induced rat model.

    Directory of Open Access Journals (Sweden)

    Yasmin Ahmad

    Full Text Available BACKGROUND: Hypobaric hypoxia causes complex changes in the expression of genes, including stress related genes and corresponding proteins that are necessary to maintain homeostasis. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of complex and dynamic changes that occur during the hypobaric hypoxia. METHODS: In this study we investigated the temporal plasma protein alterations of rat induced by hypobaric hypoxia at a simulated altitude of 7620 m (25,000 ft, 282 mm Hg in a hypobaric chamber. Total plasma proteins collected at different time points (0, 6, 12 and 24 h, separated by two-dimensional electrophoresis (2-DE and identified using matrix assisted laser desorption ionization time of flight (MALDI-TOF/TOF. Biological processes that were enriched in the plasma proteins during hypobaric hypoxia were identified using Gene Ontology (GO analysis. According to their properties and obvious alterations during hypobaric hypoxia, changes of plasma concentrations of Ttr, Prdx-2, Gpx -3, Apo A-I, Hp, Apo-E, Fetub and Nme were selected to be validated by Western blot analysis. RESULTS: Bioinformatics analysis of 25 differentially expressed proteins showed that 23 had corresponding candidates in the database. The expression patterns of the eight selected proteins observed by Western blot were in agreement with 2-DE results, thus confirming the reliability of the proteomic analysis. Most of the proteins identified are related to cellular defense mechanisms involving anti-inflammatory and antioxidant activity. Their presence reflects the consequence of serial cascades initiated by hypobaric hypoxia. CONCLUSION/SIGNIFICANCE: This study provides information about the plasma proteome changes induced in response to hypobaric hypoxia and thus identification of the candidate proteins which can act as novel biomarkers.

  1. Hidden Markov Models Incorporating Fuzzy Measures and Integrals for Protein Sequence Identification and Alignment

    Institute of Scientific and Technical Information of China (English)

    Niranjan P.Bidargaddi; Madlhu Chetty; Joarder Kamruzzaman

    2008-01-01

    Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forwardand backward variables, we propose a fuzzy Baum-Welch parameter estimation al-gorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.

  2. Phytochemical-mediated Protein Expression Profiling and the Potential Applications in Therapeutic Drug Target Identifications.

    Science.gov (United States)

    Wong, Fai-Chu; Tan, Siok-Thing; Chai, Tsun-Thai

    2016-07-29

    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents. PMID:26193174

  3. Identification of maturation and protein synthesis related proteins from porcine oocytes during in vitro maturation

    Directory of Open Access Journals (Sweden)

    Seo Kang

    2011-06-01

    Full Text Available Abstract Background In vitro maturation (IVM of mammalian oocytes is divided into the GV (germinal vesicle stage, MI (metaphase I stage and MII (metaphase II stage stages, and only fully mature oocytes have acquired the ability to be fertilized and initiate zygotic development. These observations have been mostly based on morphological evaluations, but the molecular events governing these processes are not fully understood. The aim of the present study was to better understand the processes involved in the molecular regulation of IVM using 2-DE analysis followed by mass spectrometry to identify proteins that are differentially expressed during oocyte IVM. Result A total of 16 up-regulated and 12 down-regulated proteins were identified. To investigate the IVM process, we specifically focused on the proteins that were up-regulated during the MII stage when compared with the GV stage, which included PRDX 2, GST, SPSY, myomegalin, PED4D, PRKAB 1, and DTNA. These up-regulated proteins were functionally involved in redox regulation and the cAMP-dependent pathway, which are essential for the intracellular signaling involved in oocyte maturation. Interestingly, the PDE4D and its partner, myomegalin, during the MII stage was consistently confirmed up-regulation by western blot analyses. Conclusion These results could be used to better understand some aspects of the molecular mechanisms underlying porcine oocyte maturation. This study identified some regulatory proteins that may have important roles in the molecular events involved in porcine oocyte maturation, particularly with respect to the regulation of oocyte meiotic resumption, MII arrest and oocyte activation. In addition, this study may have beneficial applications not only to basic science with respect to the improvement of oocyte culture conditions but also to mammalian reproductive biotechnology with potential implications.

  4. PPINGUIN: Peptide Profiling Guided Identification of Proteins improves quantitation of iTRAQ ratios

    Directory of Open Access Journals (Sweden)

    Bauer Chris

    2012-02-01

    Full Text Available Abstract Background Recent development of novel technologies paved the way for quantitative proteomics. One of the most important among them is iTRAQ, employing isobaric tags for relative or absolute quantitation. Despite large progress in technology development, still many challenges remain for derivation and interpretation of quantitative results. One of these challenges is the consistent assignment of peptides to proteins. Results We have developed Peptide Profiling Guided Identification of Proteins (PPINGUIN, a statistical analysis workflow for iTRAQ data addressing the problem of ambiguous peptide quantitations. Motivated by the assumption that peptides uniquely derived from the same protein are correlated, our method employs clustering as a very early step in data processing prior to protein inference. Our method increases experimental reproducibility and decreases variability of quantitations of peptides assigned to the same protein. Giving further support to our method, application to a type 2 diabetes dataset identifies a list of protein candidates that is in very good agreement with previously performed transcriptomics meta analysis. Making use of quantitative properties of signal patterns identified, PPINGUIN can reveal new isoform candidates. Conclusions Regarding the increasing importance of quantitative proteomics we think that this method will be useful in practical applications like model fitting or functional enrichment analysis. We recommend to use this method if quantitation is a major objective of research.

  5. Identification of ZASP, a novel protein associated to Zona occludens-2

    International Nuclear Information System (INIS)

    With the aim of discovering new molecular interactions of the tight junction protein ZO-2, a two-hybrid screen was performed on a human kidney cDNA library using as bait the middle segment of ZO-2. Through this assay we identified a 24-kDa novel protein herein named ZASP for ZO-2 associated speckle protein. ZO-2/ZASP interaction further confirmed by pull down and immunoprecipitation experiments, requires the presence of the intact PDZ binding motif SQV of ZASP and the third PDZ domain of ZO-2. ZASP mRNA and protein are present in the kidney and in several epithelial cell lines. Endogenous ZASP is expressed primarily in nuclear speckles in co-localization with splicing factor SC-35. Nocodazole treatment and wash out reveals that ZASP disappears from the nucleus during mitosis in accordance with speckle disassembly during metaphase. ZASP amino acid sequence exhibits a canonical nuclear exportation signal and in agreement the protein exits the nucleus through a process mediated by exportin/CRM1. ZASP over-expression blocks the inhibitory activity of ZO-2 on cyclin D1 gene transcription and protein expression. The identification of ZASP helps to unfold the complex nuclear molecular arrays that form on ZO-2 scaffolds.

  6. Identification of ZASP, a novel protein associated to Zona occludens-2

    Energy Technology Data Exchange (ETDEWEB)

    Lechuga, Susana; Alarcon, Lourdes; Solano, Jesus [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico, D.F. 07360 (Mexico); Huerta, Miriam; Lopez-Bayghen, Esther [Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (Cinvestav), Mexico, D.F. 07360 (Mexico); Gonzalez-Mariscal, Lorenza, E-mail: lorenza@fisio.cinvestav.mx [Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico, D.F. 07360 (Mexico)

    2010-11-15

    With the aim of discovering new molecular interactions of the tight junction protein ZO-2, a two-hybrid screen was performed on a human kidney cDNA library using as bait the middle segment of ZO-2. Through this assay we identified a 24-kDa novel protein herein named ZASP for ZO-2 associated speckle protein. ZO-2/ZASP interaction further confirmed by pull down and immunoprecipitation experiments, requires the presence of the intact PDZ binding motif SQV of ZASP and the third PDZ domain of ZO-2. ZASP mRNA and protein are present in the kidney and in several epithelial cell lines. Endogenous ZASP is expressed primarily in nuclear speckles in co-localization with splicing factor SC-35. Nocodazole treatment and wash out reveals that ZASP disappears from the nucleus during mitosis in accordance with speckle disassembly during metaphase. ZASP amino acid sequence exhibits a canonical nuclear exportation signal and in agreement the protein exits the nucleus through a process mediated by exportin/CRM1. ZASP over-expression blocks the inhibitory activity of ZO-2 on cyclin D1 gene transcription and protein expression. The identification of ZASP helps to unfold the complex nuclear molecular arrays that form on ZO-2 scaffolds.

  7. Identification of ZASP, a novel protein associated to Zona occludens-2.

    Science.gov (United States)

    Lechuga, Susana; Alarcón, Lourdes; Solano, Jesús; Huerta, Miriam; Lopez-Bayghen, Esther; González-Mariscal, Lorenza

    2010-11-15

    With the aim of discovering new molecular interactions of the tight junction protein ZO-2, a two-hybrid screen was performed on a human kidney cDNA library using as bait the middle segment of ZO-2. Through this assay we identified a 24-kDa novel protein herein named ZASP for ZO-2 associated speckle protein. ZO-2/ZASP interaction further confirmed by pull down and immunoprecipitation experiments, requires the presence of the intact PDZ binding motif SQV of ZASP and the third PDZ domain of ZO-2. ZASP mRNA and protein are present in the kidney and in several epithelial cell lines. Endogenous ZASP is expressed primarily in nuclear speckles in co-localization with splicing factor SC-35. Nocodazole treatment and wash out reveals that ZASP disappears from the nucleus during mitosis in accordance with speckle disassembly during metaphase. ZASP amino acid sequence exhibits a canonical nuclear exportation signal and in agreement the protein exits the nucleus through a process mediated by exportin/CRM1. ZASP over-expression blocks the inhibitory activity of ZO-2 on cyclin D1 gene transcription and protein expression. The identification of ZASP helps to unfold the complex nuclear molecular arrays that form on ZO-2 scaffolds.

  8. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review.

    Science.gov (United States)

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-02-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  9. Proteomic Identification of Altered Cerebral Proteins in the Complex Regional Pain Syndrome Animal Model

    Directory of Open Access Journals (Sweden)

    Francis Sahngun Nahm

    2014-01-01

    Full Text Available Background. Complex regional pain syndrome (CRPS is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP model, a novel experimental model of CRPS. Materials and Methods. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Conclusion. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  10. CYP450 phenotyping and metabolite identification of quinine by accurate mass UPLC-MS analysis: a possible metabolic link to blackwater fever

    OpenAIRE

    Marcsisin, Sean R; Jin, Xiannu; Bettger, Theresa; McCulley, Nicholas; Sousa, Jason C; Shanks, G Dennis; Tekwani, Babu L.; Sahu, Rajnish; Reichard, Gregory A; Sciotti, Richard J; Melendez, Victor; Pybus, Brandon S

    2013-01-01

    Background The naturally occurring alkaloid drug, quinine is commonly used for the treatment of severe malaria. Despite centuries of use, its metabolism is still not fully understood, and may play a role in the haemolytic disorders associated with the drug. Methods Incubations of quinine with CYPs 1A2, 2C9, 2C19, 2D6, and 3A4 were conducted, and the metabolites were characterized by accurate mass UPLC-MSE analysis. Reactive oxygen species generation was also measured in human erythrocytes inc...

  11. Identification of Pneumococcal Surface Protein A as a Lactoferrin-Binding Protein of Streptococcus pneumoniae

    OpenAIRE

    Hammerschmidt, Sven; Bethe, Gesina; H. Remane, Petra; Chhatwal, Gursharan S.

    1999-01-01

    Lactoferrin (Lf), an iron-sequestering glycoprotein, predominates in mucosal secretions, where the level of free extracellular iron (10−18 M) is not sufficient for bacterial growth. This represents a mechanism of resistance to bacterial infections by prevention of colonization of the host by pathogens. In this study we were able to show that Streptococcus pneumoniae specifically recognizes and binds the iron carrier protein human Lf (hLf). Pretreatment of pneumococci with proteases reduced hL...

  12. Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  13. Stealth proteins: in silico identification of a novel protein family rendering bacterial pathogens invisible to host immune defense.

    Directory of Open Access Journals (Sweden)

    Peter Sperisen

    2005-11-01

    Full Text Available There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion.

  14. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1

    Directory of Open Access Journals (Sweden)

    Patarroyo Manuel E

    2011-10-01

    Full Text Available Abstract Background Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1 and examine its antigenicity in natural P. vivax infections. Methods The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions This study shows the identification and characterization of

  15. Accurate prediction of the binding free energy and analysis of the mechanism of the interaction of replication protein A (RPA) with ssDNA.

    Science.gov (United States)

    Carra, Claudio; Cucinotta, Francis A

    2012-06-01

    The eukaryotic replication protein A (RPA) has several pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Moreover, RPA seems to have a crucial role in organizing the sequential assembly of DNA processing proteins along single stranded DNA (ssDNA). The strong RPA affinity for ssDNA, K(A) between 10(-9)-10(-10) M, is characterized by a low cooperativity with minor variation for changes on the nucleotide sequence. Recently, new data on RPA interactions was reported, including the binding free energy of the complex RPA70AB with dC(8) and dC(5), which has been estimated to be -10 ± 0.4 kcal mol(-1) and -7 ± 1 kcal mol(-1), respectively. In view of these results we performed a study based on molecular dynamics aimed to reproduce the absolute binding free energy of RPA70AB with the dC(5) and dC(8) oligonucleotides. We used several tools to analyze the binding free energy, rigidity, and time evolution of the complex. The results obtained by MM-PBSA method, with the use of ligand free geometry as a reference for the receptor in the separate trajectory approach, are in excellent agreement with the experimental data, with ±4 kcal mol(-1) error. This result shows that the MM-PB(GB)SA methods can provide accurate quantitative estimates of the binding free energy for interacting complexes when appropriate geometries are used for the receptor, ligand and complex. The decomposition of the MM-GBSA energy for each residue in the receptor allowed us to correlate the change of the affinity of the mutated protein with the ΔG(gas+sol) contribution of the residue considered in the mutation. The agreement with experiment is optimal and a strong change in the binding free energy can be considered as the dominant factor in the loss for the binding affinity resulting from mutation. PMID:22116609

  16. Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2010-05-01

    Full Text Available Abstract Background Often high-quality MS/MS spectra of tryptic peptides do not match to any database entry because of only partially sequenced genomes and therefore, protein identification requires de novo peptide sequencing. To achieve protein identification of the economically important but still unsequenced plant pathogenic oomycete Plasmopara halstedii, we first evaluated the performance of three different de novo peptide sequencing algorithms applied to a protein digests of standard proteins using a quadrupole TOF (QStar Pulsar i. Results The performance order of the algorithms was PEAKS online > PepNovo > CompNovo. In summary, PEAKS online correctly predicted 45% of measured peptides for a protein test data set. All three de novo peptide sequencing algorithms were used to identify MS/MS spectra of tryptic peptides of an unknown 57 kDa protein of P. halstedii. We found ten de novo sequenced peptides that showed homology to a Phytophthora infestans protein, a closely related organism of P. halstedii. Employing a second complementary approach, verification of peptide prediction and protein identification was performed by creation of degenerate primers for RACE-PCR and led to an ORF of 1,589 bp for a hypothetical phosphoenolpyruvate carboxykinase. Conclusions Our study demonstrated that identification of proteins within minute amounts of sample material improved significantly by combining sensitive LC-MS methods with different de novo peptide sequencing algorithms. In addition, this is the first study that verified protein prediction from MS data by also employing a second complementary approach, in which RACE-PCR led to identification of a novel elicitor protein in P. halstedii.

  17. Bottom–up protein identifications from microliter quantities of individual human tear samples. Important steps towards clinical relevance.

    Directory of Open Access Journals (Sweden)

    Peter Raus

    2015-12-01

    With 375 confidently identified proteins in the healthy adult tear, the obtained results are comprehensive and in large agreement with previously published observations on pooled samples of multiple patients. We conclude that, to a limited extent, bottom–up tear protein identifications from individual patients may have clinical relevance.

  18. Abstract 5324: Pan-cancer identification of mutated pathways and protein complexes

    DEFF Research Database (Denmark)

    Leiserson, Mark D.; Vandin, Fabio; Wu, Hsin-Ta;

    2014-01-01

    -exome sequencing and copy number aberration data from 3299 samples of twelve tumor types from TCGA Pan-Cancer project. Both algorithms identified gene sets that overlap well-known cancer pathways (e.g. TP53, MAPK, and RAS signaling pathways), as well as genes and complexes with less characterized roles in cancer...... of tumors, prioritizing genes and mutations in the long tail for further experimental studies.Citation Format: Mark D. Leiserson, Fabio Vandin, Hsin-Ta Wu, Jason R. Dobson, Benjamin R. Raphael. Pan-cancer identification of mutated pathways and protein complexes. [abstract]. In: Proceedings of the 105th...

  19. Identification of new hematopoietic cell subsets with a polyclonal antibody library specific for neglected proteins.

    Directory of Open Access Journals (Sweden)

    Monica Moro

    Full Text Available The identification of new markers, the expression of which defines new phenotipically and functionally distinct cell subsets, is a main objective in cell biology. We have addressed the issue of identifying new cell specific markers with a reverse proteomic approach whereby approximately 1700 human open reading frames encoding proteins predicted to be transmembrane or secreted have been selected in silico for being poorly known, cloned and expressed in bacteria. These proteins have been purified and used to immunize mice with the aim of obtaining polyclonal antisera mostly specific for linear epitopes. Such a library, made of about 1600 different polyclonal antisera, has been obtained and screened by flow cytometry on cord blood derived CD34+CD45dim cells and on peripheral blood derived mature lymphocytes (PBLs. We identified three new proteins expressed by fractions of CD34+CD45dim cells and eight new proteins expressed by fractions of PBLs. Remarkably, we identified proteins the presence of which had not been demonstrated previously by transcriptomic analysis. From the functional point of view, looking at new proteins expressed on CD34+CD45dim cells, we identified one cell surface protein (MOSC-1 the expression of which on a minority of CD34+ progenitors marks those CD34+CD45dim cells that will go toward monocyte/granulocyte differentiation. In conclusion, we show a new way of looking at the membranome by assessing expression of generally neglected proteins with a library of polyclonal antisera, and in so doing we have identified new potential subsets of hematopoietic progenitors and of mature PBLs.

  20. Identification of a 251 gene expression signature that can accurately detect M. tuberculosis in patients with and without HIV co-infection.

    Directory of Open Access Journals (Sweden)

    Noor Dawany

    Full Text Available BACKGROUND: Co-infection with tuberculosis (TB is the leading cause of death in HIV-infected individuals. However, diagnosis of TB, especially in the presence of an HIV co-infection, can be limiting due to the high inaccuracy associated with the use of conventional diagnostic methods. Here we report a gene signature that can identify a tuberculosis infection in patients co-infected with HIV as well as in the absence of HIV. METHODS: We analyzed global gene expression data from peripheral blood mononuclear cell (PBMC samples of patients that were either mono-infected with HIV or co-infected with HIV/TB and used support vector machines to identify a gene signature that can distinguish between the two classes. We then validated our results using publically available gene expression data from patients mono-infected with TB. RESULTS: Our analysis successfully identified a 251-gene signature that accurately distinguishes patients co-infected with HIV/TB from those infected with HIV only, with an overall accuracy of 81.4% (sensitivity = 76.2%, specificity = 86.4%. Furthermore, we show that our 251-gene signature can also accurately distinguish patients with active TB in the absence of an HIV infection from both patients with a latent TB infection and healthy controls (88.9-94.7% accuracy; 69.2-90% sensitivity and 90.3-100% specificity. We also demonstrate that the expression levels of the 251-gene signature diminish as a correlate of the length of TB treatment. CONCLUSIONS: A 251-gene signature is described to (a detect TB in the presence or absence of an HIV co-infection, and (b assess response to treatment following anti-TB therapy.

  1. Bio-guided identification of proteins for the diagnosis of cysticercosis in swine.

    Science.gov (United States)

    Nativel, Priscilla; Rahantamalala, Anjanirina; Ramiandrisoa, Sitraka; Rasoamampianinaa, Virginie; Duchateau, Magalie; Chamot-Rooke, Julia; Guebey, Remy; Rasamoelina-Andriamanivo, Harentsoaniaina; Jambou, Ronan

    2016-04-15

    Neurocysticercosis (NCC) is one of the most prevalent parasitic infection of the brain and the most common cause of seizures in adults in tropical countries. Cysticercosis is caused by larvae of Taenia solium, a human tapeworm. Pig or humans are infected by ingestion of eggs in food contaminated by human feces. Diagnosis and treatment of pigs is a pillar of the control of the disease in a country. However current diagnostic tests are based on ELISA and/or Western blot using native antigens needing laboratory facilities not available in rural areas. Development of a pen side diagnostic test for swines, makes sense. Immunochromatographic test should be adapted for this purpose. To design it we started a bio-guided identification of new proteins in cysticercus fluid. Proteins were analyzed using ion exchange chromatography and 2D separation and were selected by Western blot analysis using sera from infected/non infected pigs. Spots from the Coomassie-stained gel corresponding to these proteins were then analyzed by mass spectroscopy and proteins were identified using a bank of Expressed Sequence Tags (EST) of T. solium. Eighteen new proteins of interest were identified and nine were selected for further development. PMID:26995717

  2. Identification of differentially regulated antioxidant proteins by redox proteomics in irradiated mouse liver

    International Nuclear Information System (INIS)

    Since radiation treatment has been reappraised in the treatment of hepatic tumors, radiation response in liver is emerging as a new interesting area of investigation. The main issue is how to minimize radiation-induced hepatotoxicity. In this study, identification of the repertoire of the proteins was analyzed by a proteomics approach regarding cellular responses of liver tissue to ionizing radiation. C3H/HeJ mice were given 10 Gy radiation and liver tissues were analyzed by 2-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). At least twenty-eight proteins showed significant alteration following radiation. The increased proteins include cytochrome c, glutathione S transferase pi (GSTP), NADH dehydrogenase and peroxiredoxin VI (Prx VI), whereas the proteins such as peroxisomal bifunctional enzyme, phosphatidylethanolamin and ras relative protein decreased after radiation treatment. Mainly GSTP and Prx VI including thiol group seem to be implicated into radiation response in liver. Further study is warranted to elucidate their role in radiation-induced hepatotoxicity

  3. Identification and analysis of copine/BONZAI proteins among evolutionarily diverse plant species.

    Science.gov (United States)

    Zou, Baohong; Hong, Xuexue; Ding, Yuan; Wang, Xiang; Liu, He; Hua, Jian

    2016-08-01

    Copines are evolutionarily conserved calcium-dependent membrane-binding proteins with potentially critical biological functions. In plants, the function of these proteins has not been analyzed except for in Arabidopsis thaliana where they play critical roles in development and disease resistance. To facilitate functional studies of copine proteins in crop plants, genome-wide identification, curation, and phylogeny analysis of copines in 16 selected plant species were conducted. All the identified 32 plant copines have conserved features of the two C2 domains (C2A and C2B) and the von Willebrand factor A (vWA) domain. Different from animal and protozoa copines, plant copines have glycine at the second residue potentially acquiring a unique protein myristoylation modification. Phylogenetic analysis suggests that copine was present as one copy when evolving from green algae to basal flowering plants, and duplicated before the divergence of monocots and dicots. In addition, gene expression and protein localization study of rice copines suggests both conserved and different properties of copines in dicots and monocots. This study will contribute to uncovering the role of copine genes in different plant species. PMID:27484220

  4. Imbalance in chemical space: How to facilitate the identification of protein-protein interaction inhibitors

    Science.gov (United States)

    Kuenemann, Mélaine A.; Labbé, Céline M.; Cerdan, Adrien H.; Sperandio, Olivier

    2016-04-01

    Protein-protein interactions (PPIs) play vital roles in life and provide new opportunities for therapeutic interventions. In this large data analysis, 3,300 inhibitors of PPIs (iPPIs) were compared to 17 reference datasets of collectively ~566,000 compounds (including natural compounds, existing drugs, active compounds on conventional targets, etc.) using a chemoinformatics approach. Using this procedure, we showed that comparable classes of PPI targets can be formed using either the similarity of their ligands or the shared properties of their binding cavities, constituting a proof-of-concept that not only can binding pockets be used to group PPI targets, but that these pockets certainly condition the properties of their corresponding ligands. These results demonstrate that matching regions in both chemical space and target space can be found. Such identified classes of targets could lead to the design of PPI-class-specific chemical libraries and therefore facilitate the development of iPPIs to the stage of drug candidates.

  5. Identification of Protein-Protein Interactions via a Novel Matrix-Based Sequence Representation Model with Amino Acid Contact Information.

    Science.gov (United States)

    Ding, Yijie; Tang, Jijun; Guo, Fei

    2016-01-01

    Identification of protein-protein interactions (PPIs) is a difficult and important problem in biology. Since experimental methods for predicting PPIs are both expensive and time-consuming, many computational methods have been developed to predict PPIs and interaction networks, which can be used to complement experimental approaches. However, these methods have limitations to overcome. They need a large number of homology proteins or literature to be applied in their method. In this paper, we propose a novel matrix-based protein sequence representation approach to predict PPIs, using an ensemble learning method for classification. We construct the matrix of Amino Acid Contact (AAC), based on the statistical analysis of residue-pairing frequencies in a database of 6323 protein-protein complexes. We first represent the protein sequence as a Substitution Matrix Representation (SMR) matrix. Then, the feature vector is extracted by applying algorithms of Histogram of Oriented Gradient (HOG) and Singular Value Decomposition (SVD) on the SMR matrix. Finally, we feed the feature vector into a Random Forest (RF) for judging interaction pairs and non-interaction pairs. Our method is applied to several PPI datasets to evaluate its performance. On the S . c e r e v i s i a e dataset, our method achieves 94 . 83 % accuracy and 92 . 40 % sensitivity. Compared with existing methods, and the accuracy of our method is increased by 0 . 11 percentage points. On the H . p y l o r i dataset, our method achieves 89 . 06 % accuracy and 88 . 15 % sensitivity, the accuracy of our method is increased by 0 . 76 % . On the H u m a n PPI dataset, our method achieves 97 . 60 % accuracy and 96 . 37 % sensitivity, and the accuracy of our method is increased by 1 . 30 % . In addition, we test our method on a very important PPI network, and it achieves 92 . 71 % accuracy. In the Wnt-related network, the accuracy of our method is increased by 16 . 67 % . The source code and all datasets are available

  6. The Identification of Novel Protein-Protein Interactions in Liver that Affect Glucagon Receptor Activity.

    Directory of Open Access Journals (Sweden)

    Junfeng Han

    Full Text Available Glucagon regulates glucose homeostasis by controlling glycogenolysis and gluconeogenesis in the liver. Exaggerated and dysregulated glucagon secretion can exacerbate hyperglycemia contributing to type 2 diabetes (T2D. Thus, it is important to understand how glucagon receptor (GCGR activity and signaling is controlled in hepatocytes. To better understand this, we sought to identify proteins that interact with the GCGR to affect ligand-dependent receptor activation. A Flag-tagged human GCGR was recombinantly expressed in Chinese hamster ovary (CHO cells, and GCGR complexes were isolated by affinity purification (AP. Complexes were then analyzed by mass spectrometry (MS, and protein-GCGR interactions were validated by co-immunoprecipitation (Co-IP and Western blot. This was followed by studies in primary hepatocytes to assess the effects of each interactor on glucagon-dependent glucose production and intracellular cAMP accumulation, and then in immortalized CHO and liver cell lines to further examine cell signaling. Thirty-three unique interactors were identified from the AP-MS screening of GCGR expressing CHO cells in both glucagon liganded and unliganded states. These studies revealed a particularly robust interaction between GCGR and 5 proteins, further validated by Co-IP, Western blot and qPCR. Overexpression of selected interactors in mouse hepatocytes indicated that two interactors, LDLR and TMED2, significantly enhanced glucagon-stimulated glucose production, while YWHAB inhibited glucose production. This was mirrored with glucagon-stimulated cAMP production, with LDLR and TMED2 enhancing and YWHAB inhibiting cAMP accumulation. To further link these interactors to glucose production, key gluconeogenic genes were assessed. Both LDLR and TMED2 stimulated while YWHAB inhibited PEPCK and G6Pase gene expression. In the present study, we have probed the GCGR interactome and found three novel GCGR interactors that control glucagon

  7. A comparative analysis of computational approaches and algorithms for protein subcomplex identification.

    Science.gov (United States)

    Zaki, Nazar; Mora, Antonio

    2014-01-01

    High-throughput AP-MS methods have allowed the identification of many protein complexes. However, most post-processing methods of this type of data have been focused on detection of protein complexes and not its subcomplexes. Here, we review the results of some existing methods that may allow subcomplex detection and propose alternative methods in order to detect subcomplexes from AP-MS data. We assessed and drew comparisons between the use of overlapping clustering methods, methods based in the core-attachment model and our own prediction strategy (TRIBAL). The hypothesis behind TRIBAL is that subcomplex-building information may be concealed in the multiple edges generated by an interaction repeated in different contexts in raw data. The CACHET method offered the best results when the evaluation of the predicted subcomplexes was carried out using both the hypergeometric and geometric scores. TRIBAL offered the best performance when using a strict meet-min score.

  8. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  9. The Dictyostelium discoideum cellulose synthase: Structure/function analysis and identification of interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Richard L. Blanton

    2004-02-19

    OAK-B135 The major accomplishments of this project were: (1) the initial characterization of dcsA, the gene for the putative catalytic subunit of cellulose synthase in the cellular slime mold Dictyostelium discoideum; (2) the detection of a developmentally regulated event (unidentified, but perhaps a protein modification or association with a protein partner) that is required for cellulose synthase activity (i.e., the dcsA product is necessary, but not sufficient for cellulose synthesis); (3) the continued exploration of the developmental context of cellulose synthesis and DcsA; (4) the isolation of a GFP-DcsA-expressing strain (work in progress); and (5) the identification of Dictyostelium homologues for plant genes whose products play roles in cellulose biosynthesis. Although our progress was slow and many of our results negative, we did develop a number of promising avenues of investigation that can serve as the foundation for future projects.

  10. Identification of Protein-Protein Interactions Involved in Pectin Biosynthesis in the golgi Apparatus

    DEFF Research Database (Denmark)

    Lund, Christian Have

    for instance as food additives, nutraceutical, for paper and energy production. Pectin is a cell wall glycan that crucial for every plant growing on land. Pectin is said to be one of the most complex glycans on earth and it is hypothesized that at least 67 enzymatic reactions are involved in its biosynthesis....... To date, only seven glycosyltransferase (GT) genes have been identified and characterized comprising only four biosynthetic activities within pectin biosynthesis. Therefore, increased knowledge about pectin biosynthesis is of great importance if we in the future wants to fully manipulate and exploit...... the diverse pectin structures for industrial, agronomic and biomedical uses. Increasing evidence suggests that complex formation is important in governing functional coordination of proteins involved in cell wall biosynthesis. In Arabidopsis thaliana, a homogalacturonan (HG) synthase core complex between...

  11. Identification of soybean proteins from a single cell type: The root hair

    Energy Technology Data Exchange (ETDEWEB)

    Brechenmacher, Laurent; Nguyen, Tran H.; Hixson, Kim K.; Libault, Marc; Aldrich, Joshua T.; Pasa-Tolic, Ljiljana; Stacey, Gary

    2012-11-01

    Root hairs are a terminally differentiated single cell type, mainly involved in water and nutrient uptake from the soil. The soybean root hair cell represents an excellent model for the study of single cell systems biology. In this study, we identified 5702 proteins, with at least two peptides, from soybean root hairs using an accurate mass and time tag approach, establishing the most comprehensive proteome reference map of this single cell type. We also showed that trypsin is the most appropriate enzyme for soybean proteomic studies by performing an in silico digestion of the soybean proteome database using different proteases. Although the majority of proteins identified in this study are involved in basal metabolism, the function of others are more related to root hair formation/function and include proteins involved in nutrient uptake (transporters) or vesicular trafficking (cytoskeleton and RAB proteins). Interestingly, some of these proteins appear to be specifically expressed in root hairs and constitute very good candidates for further studies to elucidate unique features of this single cell model.

  12. Computational identification of protein methylation sites through bi-profile Bayes feature extraction.

    Directory of Open Access Journals (Sweden)

    Jianlin Shao

    Full Text Available Protein methylation is one type of reversible post-translational modifications (PTMs, which plays vital roles in many cellular processes such as transcription activity, DNA repair. Experimental identification of methylation sites on proteins without prior knowledge is costly and time-consuming. In silico prediction of methylation sites might not only provide researches with information on the candidate sites for further determination, but also facilitate to perform downstream characterizations and site-specific investigations. In the present study, a novel approach based on Bi-profile Bayes feature extraction combined with support vector machines (SVMs was employed to develop the model for Prediction of Protein Methylation Sites (BPB-PPMS from primary sequence. Methylation can occur at many residues including arginine, lysine, histidine, glutamine, and proline. For the present, BPB-PPMS is only designed to predict the methylation status for lysine and arginine residues on polypeptides due to the absence of enough experimentally verified data to build and train prediction models for other residues. The performance of BPB-PPMS is measured with a sensitivity of 74.71%, a specificity of 94.32% and an accuracy of 87.98% for arginine as well as a sensitivity of 70.05%, a specificity of 77.08% and an accuracy of 75.51% for lysine in 5-fold cross validation experiments. Results obtained from cross-validation experiments and test on independent data sets suggest that BPB-PPMS presented here might facilitate the identification and annotation of protein methylation. Besides, BPB-PPMS can be extended to build predictors for other types of PTM sites with ease. For public access, BPB-PPMS is available at http://www.bioinfo.bio.cuhk.edu.hk/bpbppms.

  13. The proteomics of colorectal cancer: identification of a protein signature associated with prognosis.

    Directory of Open Access Journals (Sweden)

    Donna O'Dwyer

    Full Text Available Colorectal cancer is one of the commonest types of cancer and there is requirement for the identification of prognostic biomarkers. In this study protein expression profiles have been established for colorectal cancer and normal colonic mucosa by proteomics using a combination of two dimensional gel electrophoresis with fresh frozen sections of paired Dukes B colorectal cancer and normal colorectal mucosa (n = 28, gel image analysis and high performance liquid chromatography-tandem mass spectrometry. Hierarchical cluster analysis and principal components analysis showed that the protein expression profiles of colorectal cancer and normal colonic mucosa clustered into distinct patterns of protein expression. Forty-five proteins were identified as showing at least 1.5 times increased expression in colorectal cancer and the identity of these proteins was confirmed by liquid chromatography-tandem mass spectrometry. Fifteen proteins that showed increased expression were validated by immunohistochemistry using a well characterised colorectal cancer tissue microarray containing 515 primary colorectal cancer, 224 lymph node metastasis and 50 normal colonic mucosal samples. The proteins that showed the greatest degree of overexpression in primary colorectal cancer compared with normal colonic mucosa were heat shock protein 60 (p<0.001, S100A9 (p<0.001 and translationally controlled tumour protein (p<0.001. Analysis of proteins individually identified 14-3-3β as a prognostic biomarker (χ² = 6.218, p = 0.013, HR = 0.639, 95%CI 0.448-0.913. Hierarchical cluster analysis identified distinct phenotypes associated with survival and a two-protein signature consisting of 14-3-3β and aldehyde dehydrogenase 1 was identified as showing prognostic significance (χ² = 7.306, p = 0.007, HR = 0.504, 95%CI 0.303-0.838 and that remained independently prognostic (p = 0.01, HR = 0.416, 95%CI 0.208-0.829 in a multivariate model.

  14. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Pei

    2015-02-27

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.

  15. Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos

    Directory of Open Access Journals (Sweden)

    Stabel Silvia

    2002-04-01

    Full Text Available Abstract Background The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro. Results We generated recombinant 124-v-Mos using the baculovirus expression system in Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B (PTP1B, alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTP1B and casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos targets serine and threonine residues for phosphorylation in casein at a 1:1 ratio but auto-phosphorylation occurs predominantly on serine residues. Conclusion The mos substrates identified in this study represent a basis to approach the identification of the mos-consensus phosphorylation motif, important for the development of specific inhibitors of the Mos protein kinase.

  16. Identification of similar regions of protein structures using integrated sequence and structure analysis tools

    Directory of Open Access Journals (Sweden)

    Heiland Randy

    2006-03-01

    Full Text Available Abstract Background Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site http://www.sblest.org/ and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest. Results Users are able to submit their own queries or use a structure already in the PDB. Currently the databases that a user can query include the popular structural datasets ASTRAL 40 v1.69, ASTRAL 95 v1.69, CLUSTER50, CLUSTER70 and CLUSTER90 and PDBSELECT25. The results can be downloaded directly from the site and include function prediction, analysis of the most conserved environments and automated annotation of query proteins. These results reflect both the hits found with PSI-BLAST, HMMer and with S-BLEST. We have evaluated how well annotation transfer can be performed on SCOP ID's, Gene Ontology (GO ID's and EC Numbers. The method is very efficient and totally automated, generally taking around fifteen minutes for a 400 residue protein. Conclusion With structural genomics initiatives determining structures with little, if any, functional characterization

  17. Identification of salivary mucin MUC7 binding proteins from Streptococcus gordonii

    Directory of Open Access Journals (Sweden)

    Thornton David J

    2009-08-01

    Full Text Available Abstract Background The salivary mucin MUC7 (previously known as MG2 can adhere to various strains of streptococci that are primary colonizers and predominant microorganisms of the oral cavity. Although there is a growing interest in interaction between oral pathogens and salivary mucins, studies reporting the specific binding sites on the bacteria are rather limited. Identification and characterization of the specific interacting proteins on the bacterial cell surface, termed adhesins, are crucial to further understand host-pathogen interactions. Results We demonstrate here, using purified MUC7 to overlay blots of SDS-extracts of Streptococcus gordonii cell surface proteins, 4 MUC7-binding bands, with apparent molecular masses of 62, 78, 84 and 133 kDa from the Streptococcus gordonii strain, PK488. Putative adhesins were identified by in-gel digestion and subsequent nanoLC-tandem mass spectrometry analysis of resultant peptides. The 62 kDa and 84 kDa bands were identified as elongation factor (EF Tu and EF-G respectively. The 78 kDa band was a hppA gene product; the 74 kDa oligopeptide-binding lipoprotein. The 133 kDa band contained two proteins; alpha enolase and DNA-directed RNA polymerase, beta' subunit. Some of these proteins, for example alpha enolase are expected to be intracellular, however, flow cytometric analysis confirmed its location on the bacterial surface. Conclusion Our data demonstrated that S. gordonii expressed a number of putative MUC7 recognizing proteins and these contribute to MUC7 mucin binding of this streptococcal strain.

  18. Rapid identification of novel immunodominant proteins and characterization of a specific linear epitope of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sebastian Hoppe

    Full Text Available Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium's pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is

  19. Rapid Identification of Novel Immunodominant Proteins and Characterization of a Specific Linear Epitope of Campylobacter jejuni

    Science.gov (United States)

    Hoppe, Sebastian; Bier, Frank F.; Nickisch-Rosenegk, Markus v.

    2013-01-01

    Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium’s pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is desirable to simplify

  20. Identification of pancreatic cancer invasion-related proteins by proteomic analysis

    Directory of Open Access Journals (Sweden)

    Clynes Martin

    2009-02-01

    Full Text Available Abstract Background Markers of pancreatic cancer invasion were investigated in two clonal populations of the cell line, MiaPaCa-2, Clone #3 (high invasion and Clone #8 (low invasion using proteomic profiling of an in vitro model of pancreatic cancer. Materials and methods Using 2D-DIGE followed by MALDI-TOF MS, two clonal sub-populations of the pancreatic cancer cell line, MiaPaCa-2 with high and low invasive capacities were incubated on matrigel 24 hours prior to analysis to stimulate cell-ECM contact and mimic in vivo interaction with the basement membrane. Results Sixty proteins were identified as being differentially expressed (> 1.2 fold change and p ≤ 0.05 between Clone #3 and Clone #8. Proteins found to have higher abundance levels in the highly invasive Clone #3 compared to the low invasive Clone #8 include members of the chaperone activity proteins and cytoskeleton constituents whereas metabolism-associated and catalytic proteins had lower abundance levels. Differential protein expression levels of ALDH1A1, VIM, STIP1 and KRT18 and GAPDH were confirmed by immunoblot. Using RNAi technology, STIP1 knockdown significantly reduced invasion and proliferation of the highly invasive Clone #3. Knockdown of another target, VIM by siRNA in Clone #3 cells also resulted in decreased invasion abilities of Clone #3. Elevated expression of STIP1 was observed in pancreatic tumour tissue compared to normal pancreas, whereas ALDH1A1 stained at lower levels in pancreatic tumours, as detected by immunohistochemistry. Conclusion Identification of targets which play a role in the highly invasive phenotype of pancreatic cancer may help to understand the biological behaviour, the rapid progression of this cancer and may be of importance in the development of new therapeutic strategies for pancreatic cancer.

  1. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages

    Science.gov (United States)

    Simpson, David J.; Sacher, Jessica C.; Szymanski, Christine M.

    2016-01-01

    Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages. PMID:26761028

  2. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages

    Directory of Open Access Journals (Sweden)

    David J. Simpson

    2016-01-01

    Full Text Available Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs. These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.

  3. Identification of archaeal proteins that affect the exosome function in vitro

    Directory of Open Access Journals (Sweden)

    Palhano Fernando L

    2010-05-01

    Full Text Available Abstract Background The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.

  4. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages.

    Science.gov (United States)

    Simpson, David J; Sacher, Jessica C; Szymanski, Christine M

    2016-01-11

    Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.

  5. Combining metal oxide affinity chromatography (MOAC and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Weckwerth Wolfram

    2005-11-01

    Full Text Available Abstract Background Protein phosphorylation is accepted as a major regulatory pathway in plants. More than 1000 protein kinases are predicted in the Arabidopsis proteome, however, only a few studies look systematically for in vivo protein phosphorylation sites. Owing to the low stoichiometry and low abundance of phosphorylated proteins, phosphorylation site identification using mass spectrometry imposes difficulties. Moreover, the often observed poor quality of mass spectra derived from phosphopeptides results frequently in uncertain database hits. Thus, several lines of evidence have to be combined for a precise phosphorylation site identification strategy. Results Here, a strategy is presented that combines enrichment of phosphoproteins using a technique termed metaloxide affinity chromatography (MOAC and selective ion trap mass spectrometry. The complete approach involves (i enrichment of proteins with low phosphorylation stoichiometry out of complex mixtures using MOAC, (ii gel separation and detection of phosphorylation using specific fluorescence staining (confirmation of enrichment, (iii identification of phosphoprotein candidates out of the SDS-PAGE using liquid chromatography coupled to mass spectrometry, and (iv identification of phosphorylation sites of these enriched proteins using automatic detection of H3PO4 neutral loss peaks and data-dependent MS3-fragmentation of the corresponding MS2-fragment. The utility of this approach is demonstrated by the identification of phosphorylation sites in Arabidopsis thaliana seed proteins. Regulatory importance of the identified sites is indicated by conservation of the detected sites in gene families such as ribosomal proteins and sterol dehydrogenases. To demonstrate further the wide applicability of MOAC, phosphoproteins were enriched from Chlamydomonas reinhardtii cell cultures. Conclusion A novel phosphoprotein enrichment procedure MOAC was applied to seed proteins of A. thaliana and to

  6. Cy5 maleimide labelling for sensitive detection of free thiols in native protein extracts: identification of seed proteins targeted by barley thioredoxin h isoforms

    DEFF Research Database (Denmark)

    Maeda, K.; Finnie, Christine; Svensson, Birte

    2004-01-01

    Barley thioredoxin h isoforms HvTrxh1 and HvTrxh2 differ in temporal and spatial distribution and in kinetic properties. Target proteins of HvTrxh1 and HvTrxh2 were identified in mature seeds and in seeds after 72 h of germination. Improvement of the established method for identification of thior...

  7. MAGGIE Component 1: Identification and Purification of Native and Recombinant Multiprotein Complexes and Modified Proteins from Pyrococcus furiosus

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. [University of Georgia; W. W. Adams, Michael

    2014-01-07

    Virtualy all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes (PCs), the composition of which is largely unknown. Structural genomics efforts have demonstrated that less than 25% of the genes in a given prokaryotic genome will yield stable, soluble proteins when expressed using a one-ORF-at-a-time approach. We proposed that much of the remaining 75% of the genes encode proteins that are part of multiprotein complexes or are modified post-translationally, for example, with metals. The problem is that PCs and metalloproteins (MPs) cannot be accurately predicted on a genome-wide scale. The only solution to this dilemma is to experimentally determine PCs and MPs in biomass of a model organism and to develop analytical tools that can then be applied to the biomass of any other organism. In other words, organisms themselves must be analyzed to identify their PCs and MPs: “native proteomes” must be determined. This information can then be utilized to design multiple ORF expression systems to produce recombinant forms of PCs and MPs. Moreover, the information and utility of this approach can be enhanced by using a hyperthermophile, one that grows optimally at 100°C, as a model organism. By analyzing the native proteome at close to 100 °C below the optimum growth temperature, we will trap reversible and dynamic complexes, thereby enabling their identification, purification, and subsequent characterization. The model organism for the current study is Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100°C. It is grown up to 600-liter scale and kg quantities of biomass are available. In this project we identified native PCs and MPs using P. furiosus biomass (with MS/MS analyses to identify proteins by component 4). In addition, we provided samples of abundant native PCs and MPs for structural characterization (using SAXS by component 5). We also designed and evaluated generic bioinformatics and

  8. Dihedral-based segment identification and classification of biopolymers I: proteins.

    Science.gov (United States)

    Nagy, Gabor; Oostenbrink, Chris

    2014-01-27

    A new structure classification scheme for biopolymers is introduced, which is solely based on main-chain dihedral angles. It is shown that by dividing a biopolymer into segments containing two central residues, a local classification can be performed. The method is referred to as DISICL, short for Dihedral-based Segment Identification and Classification. Compared to other popular secondary structure classification programs, DISICL is more detailed as it offers 18 distinct structural classes, which may be simplified into a classification in terms of seven more general classes. It was designed with an eye to analyzing subtle structural changes as observed in molecular dynamics simulations of biomolecular systems. Here, the DISICL algorithm is used to classify two databases of protein structures, jointly containing more than 10 million segments. The data is compared to two alternative approaches in terms of the amount of classified residues, average occurrence and length of structural elements, and pair wise matches of the classifications by the different programs. In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400542n), the analysis of polynucleotides is described and applied. Overall, DISICL represents a potentially useful tool to analyze biopolymer structures at a high level of detail.

  9. Dihedral-Based Segment Identification and Classification of Biopolymers I: Proteins

    Science.gov (United States)

    2013-01-01

    A new structure classification scheme for biopolymers is introduced, which is solely based on main-chain dihedral angles. It is shown that by dividing a biopolymer into segments containing two central residues, a local classification can be performed. The method is referred to as DISICL, short for Dihedral-based Segment Identification and Classification. Compared to other popular secondary structure classification programs, DISICL is more detailed as it offers 18 distinct structural classes, which may be simplified into a classification in terms of seven more general classes. It was designed with an eye to analyzing subtle structural changes as observed in molecular dynamics simulations of biomolecular systems. Here, the DISICL algorithm is used to classify two databases of protein structures, jointly containing more than 10 million segments. The data is compared to two alternative approaches in terms of the amount of classified residues, average occurrence and length of structural elements, and pair wise matches of the classifications by the different programs. In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400542n), the analysis of polynucleotides is described and applied. Overall, DISICL represents a potentially useful tool to analyze biopolymer structures at a high level of detail. PMID:24364820

  10. Iterative Non-m/z-sharing Rule for Confident and Sensitive Protein Identification of Non-shotgun Proteomics

    Institute of Scientific and Technical Information of China (English)

    YUN Dong; HE Fuchu; LU Haojie; WANG Haijian; ZHANG Yang; CHENG Gang; JIN Hong; YU Yanbao; XU Yawei; YANG Pengyuan

    2009-01-01

    Selecting reasonable matches from the database search results is crucial to mass spectrometry-based proteomics identification. However, the current score-based filter solution and decoy database methods are not effective enough to prevent all false positive and false negative selections. In this study, a systematic search strategy named iterative non-m/z-sharing (INMZS) analysis was proposed to address the problem. In the strategy, all search results were screened based on the share status of corresponding matched m/z, only the proteins that matched with exclusive m/z information were reserved for the confident matches. The researchers did further iterative search to improve the identification of minor components in a spot. Finally, identifications were confirmed by decoy database evaluation for the final phase of protein identification. Simulation and application tests of INMZS were implemented on a large human liver data set and standard protein cocktails. The result shows that INMZS plus decoy database evaluation is efficient in ensuring the confidence and sensitivity of 2-DE or similar non-shotgun based proteome identification.

  11. Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome

    Science.gov (United States)

    Leppert, Tami; Anex, Deon S.; Hilmer, Jonathan K.; Matsunami, Nori; Baird, Lisa; Stevens, Jeffery; Parsawar, Krishna; Durbin-Johnson, Blythe P.; Rocke, David M.; Nelson, Chad; Fairbanks, Daniel J.; Wilson, Andrew S.; Rice, Robert H.; Woodward, Scott R.; Bothner, Brian; Hart, Bradley R.; Leppert, Mark

    2016-01-01

    Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts. PMID:27603779

  12. Identification of small molecule binding sites within proteins using phage display technology.

    Energy Technology Data Exchange (ETDEWEB)

    Rodi, D. J.; Agoston, G. E.; Manon, R.; Lapcevich, R.; Green, S. J.; Makowski, L.; Biosciences Division; EntreMed Inc.; Florida State Univ.

    2001-11-01

    Affinity selection of peptides displayed on phage particles was used as the basis for mapping molecular contacts between small molecule ligands and their protein targets. Analysis of the crystal structures of complexes between proteins and small molecule ligands revealed that virtually all ligands of molecular weight 300 Da or greater have a continuous binding epitope of 5 residues or more. This observation led to the development of a technique for binding site identification which involves statistical analysis of an affinity-selected set of peptides obtained by screening of libraries of random, phage-displayed peptides against small molecules attached to solid surfaces. A random sample of the selected peptides is sequenced and used as input for a similarity scanning program which calculates cumulative similarity scores along the length of the putative receptor. Regions of the protein sequence exhibiting the highest similarity with the selected peptides proved to have a high probability of being involved in ligand binding. This technique has been employed successfully to map the contact residues in multiple known targets of the anticancer drugs paclitaxel (Taxol), docetaxel (Taxotere) and 2-methoxyestradiol and the glycosaminoglycan hyaluronan, and to identify a novel paclitaxel receptor [1]. These data corroborate the observation that the binding properties of peptides displayed on the surface of phage particles can mimic the binding properties of peptides in naturally occurring proteins. It follows directly that structural context is relatively unimportant for determining the binding properties of these disordered peptides. This technique represents a novel, rapid, high resolution method for identifying potential ligand binding sites in the absence of three-dimensional information and has the potential to greatly enhance the speed of development of novel small molecule pharmaceuticals.

  13. Protein A gold identification of ureaplasmas on the bovine zona pellucida.

    Science.gov (United States)

    Britton, A P; Miller, R B; Ruhnke, H L; Johnson, W M

    1989-01-01

    The object of this study was to develop a prefixation protein A gold labelling technique for Ureaplasma diversum and to apply this to bovine embryos. Sixteen hour cultures of Ureaplasma diversum strain 2312 were incubated with either specific antiserum or nonimmune serum, followed by exposure to protein A gold and negative staining. The ureaplasmas which were incubated with specific antiserum were labelled with gold particles while those ureaplasmas which were incubated with nonimmune serum were not labelled. Twenty-three unhatched, day 7 bovine embryos were then incubated in either embryo culture medium (ECM) alone, ECM with sterile ureaplasma broth added or ECM with 1.7 X 10(6) colony forming units of Ureaplasma diversum strain 2312 per embryo. After 16 hours, the embryos were washed twice and incubated with either specific antiserum or nonimmune serum. The embryos were then incubated with medium containing protein A gold and examined by electron microscopy. No ureaplasmas were identified on the zona pellucida of the control embryos. Ureaplasmas were identified on the outer surface of the zona pellucida of 13 of the 17 embryos which had been exposed to the organism. Of these, the embryos which were incubated with specific antiserum had labelled ureaplasmas while the embryos which were incubated with nonimmune serum had unlabelled ureaplasmas on the zona pellucida. It was concluded that the protein A gold method was a suitable technique for the identification of ureaplasmas in EM preparations. The presence of ureaplasmas on the outer surface of the bovine zona pellucida following in vitro exposure to the organism was confirmed.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. PMID:2469532

  14. Identification of protein biochemical functions by similarity search using the molecular surface database eF-site

    OpenAIRE

    Kinoshita, Kengo; Nakamura, Haruki

    2003-01-01

    The identification of protein biochemical functions based on their three-dimensional structures is strongly required in the post-genome-sequencing era. We have developed a new method to identify and predict protein biochemical functions using the similarity information of molecular surface geometries and electrostatic potentials on the surfaces. Our prediction system consists of a similarity search method based on a clique search algorithm and the molecular surface database eF-site (electrost...

  15. The identification of protein biomarkers distinguishing virus transmission competent and refractive insect populations by coupling genetics with quantitative intact proteomics

    Science.gov (United States)

    Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are vectored by aphids. The identification of vector proteins mediating virus transmission is critical to develop agriculturally-sustainable virus management practices and to understand viral str...

  16. The identification of protein biomarkers distinguishing virus transmission competent and refractive insect populations by coupling genetics with quantitative intact proteomics

    Science.gov (United States)

    Control of insects that vector pathogens is a massive challenge to human health and agriculture. Yellow dwarf viruses (YDV) cause economically significant disease in cereal crops (barley, wheat, rye, maize) worldwide and are vectored by aphids. The identification of vector proteins mediating virus ...

  17. Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro.

    Science.gov (United States)

    Muñoz-Félix, José M; Cuesta, Cristina; Perretta-Tejedor, Nuria; Subileau, Mariela; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-09-01

    Upregulated synthesis of extracellular matrix (ECM) proteins by myofibroblasts is a common phenomenon in the development of fibrosis. Although the role of TGF-β in fibrosis development has been extensively studied, the involvement of other members of this superfamily of cytokines, the bone morphogenetic proteins (BMPs) in organ fibrosis has given contradictory results. BMP9 is the main ligand for activin receptor-like kinase-1 (ALK1) TGF-β1 type I receptor and its effect on fibrosis development is unknown. Our purpose was to study the effect of BMP9 in ECM protein synthesis in fibroblasts, as well as the involved receptors and signaling pathways. In cultured mice fibroblasts, BMP9 induces an increase in collagen, fibronectin and connective tissue growth factor expression, associated with Smad1/5/8, Smad2/3 and Erk1/2 activation. ALK5 inhibition with SB431542 or ALK1/2/3/6 with dorsomorphin-1, inhibition of Smad3 activation with SIS3, and inhibition of the MAPK/Erk1/2 with U0126, demonstrates the involvement of these pathways in BMP9-induced ECM synthesis in MEFs. Whereas BMP9 induced Smad1/5/8 phosphorylation through ALK1, it also induces Smad2/3 phosphorylation through ALK5 but only in the presence of ALK1. Summarizing, this is the first study that accurately identifies BMP9 as a profibrotic factor in fibroblasts that promotes ECM protein expression through ALK1 and ALK5 receptors. PMID:27208502

  18. MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences.

    Science.gov (United States)

    Malhis, Nawar; Jacobson, Matthew; Gsponer, Jörg

    2016-07-01

    Molecular recognition features, MoRFs, are short segments within longer disordered protein regions that bind to globular protein domains in a process known as disorder-to-order transition. MoRFs have been found to play a significant role in signaling and regulatory processes in cells. High-confidence computational identification of MoRFs remains an important challenge. In this work, we introduce MoRFchibi SYSTEM that contains three MoRF predictors: MoRFCHiBi, a basic predictor best suited as a component in other applications, MoRFCHiBi_ Light, ideal for high-throughput predictions and MoRFCHiBi_ Web, slower than the other two but best for high accuracy predictions. Results show that MoRFchibi SYSTEM provides more than double the precision of other predictors. MoRFchibi SYSTEM is available in three different forms: as HTML web server, RESTful web server and downloadable software at: http://www.chibi.ubc.ca/faculty/joerg-gsponer/gsponer-lab/software/morf_chibi/. PMID:27174932

  19. Entamoeba invadens: Identification of a SERCA protein and effect of SERCA inhibitors on encystation.

    Science.gov (United States)

    Martínez-Higuera, Aarón; Herrera-Martínez, Mayra; Chávez-Munguía, Bibiana; Valle-Solís, Martha; Muñiz-Lino, Marcos A; Cázares-Apátiga, Javier; Rodríguez, Mario A

    2015-12-01

    Calcium has an important role on signaling of different cellular processes, including growth and differentiation. Signaling by calcium also has an essential function in pathogenesis and differentiation of the protozoan parasites Entamoeba histolytica and Entamoeba invadens. However, the proteins of these parasites that regulate the cytoplasmic concentration of this ion are poorly studied. In eukaryotic cells, the calcium-ATPase of the SERCA type plays an important role in calcium homeostasis by catalyzing the active efflux of calcium from cytoplasm to endoplasmic reticulum. Here, we reported the identification of SERCA of E. invadens (EiSERCA). This protein contains a putative sequence for endoplasmic reticulum retention and all domains involved in calcium transport identified in mammalian SERCA. By immunofluorescence assays, an antibody against SERCA of E. histolytica detected EiSERCA in a vesicular network in the cytoplasm of E. invadens trophozoites, co-localizing with calreticulin. Interestingly, EiSERCA was redistributed close to plasma membrane during encystation, suggesting that this pump could participate in regulate the calcium concentration during this process. In addition, thapsigargin and cyclopiazonic acid, both specific inhibitors of SERCA, affected the number and structure of cysts, supporting the hypothesis that calcium flux mediated by SERCA has an important role in the life cycle of Entamoeba.

  20. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context.

    Science.gov (United States)

    Zhou, Jiyun; Xu, Ruifeng; He, Yulan; Lu, Qin; Wang, Hongpeng; Kong, Bing

    2016-01-01

    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community. PMID:27282833

  1. Identification of Secretory Proteins in Mycobacterium tuberculosis Using Pseudo Amino Acid Composition.

    Science.gov (United States)

    Yang, Huan; Tang, Hua; Chen, Xin-Xin; Zhang, Chang-Jian; Zhu, Pan-Pan; Ding, Hui; Chen, Wei; Lin, Hao

    2016-01-01

    Tuberculosis is killing millions of lives every year and on the blacklist of the most appalling public health problems. Recent findings suggest that secretory protein of Mycobacterium tuberculosis may serve the purpose of developing specific vaccines and drugs due to their antigenicity. Responding to global infectious disease, we focused on the identification of secretory proteins in Mycobacterium tuberculosis. A novel method called MycoSec was designed by incorporating g-gap dipeptide compositions into pseudo amino acid composition. Analysis of variance-based technique was applied in the process of feature selection and a total of 374 optimal features were obtained and used for constructing the final predicting model. In the jackknife test, MycoSec yielded a good performance with the area under the receiver operating characteristic curve of 0.93, demonstrating that the proposed system is powerful and robust. For user's convenience, the web server MycoSec was established and an obliging manual on how to use it was provided for getting around any trouble unnecessary. PMID:27597968

  2. Influence of pigments and protein aging on protein identification in historically representative casein-based paints using enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Ren, Fang; Atlasevich, Natalya; Baade, Brian; Loike, John; Arslanoglu, Julie

    2016-01-01

    A systematic study on the influence of pigments and sample aging on casein identification was performed on 30 reconstructed paints. The protein in all the paints was extracted into solution for analysis. The amount of protein that can be retrieved for solution-based analysis in each of the reconstructed paints was studied with a well-developed NanoOrange method before and after artificial aging. The results showed that in the paints with calcium phosphate (in bone black) and copper carbonate, hydroxide, or acetate (in verdigris and azurite), the amount of protein that can be retrieved for liquid-phase analysis is much smaller than the other paints, indicating that the protein degradation was accelerated significantly in those paints. Carbon (in vine black), calcium carbonate (in natural chalk), and calcium sulfate (terra alba gypsum and ground alabaster) did not affect much the amount of protein that can be retrieved in the paints compared to non-pigmented binder, meaning that the protein degradation rate was not affected much by those pigments. Artificial aging was observed to decrease the amount of retrievable protein in all the reconstructed paints that were studied. The enzyme-linked immunosorbent assay (ELISA) method was applied to the 28 reconstructed paints (except two verdigris paints) to assess the protein identification. The ELISA responses from the different paints were compared at fixed protein concentrations. Natural chalk, bone black, raw sienna, stack lead white, and cochineal red-violet lake had the lowest ELISA signal in this study, which indicated that the binding sites (epitopes) on the target protein in these paints are likely to deteriorate more than those in the other paints. Artificial aging did not influence the ELISA response as much as the pigments when the protein concentration was kept the same for the paints that were studied. PMID:26472321

  3. Accurate Robot Simulation Through System Identification

    OpenAIRE

    Kyriacou, T; Nehmzow, U.; Inglesias, R.; Billings, S. A.

    2008-01-01

    Robot simulators are useful tools for developing robot behaviours. They provide a fast and efficient means to test robot control code at the convenience of the office desk. In all but the simplest cases though, due to the complexities of the physical systems modelled in the simulator, there are considerable differences between the behaviour of the robot in the simulator and that in the real world environment. In this paper we present a novel method to create a robot simulator using real...

  4. Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ikumi Fujita

    Full Text Available The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1(+ have revealed that the long N-terminal region (1-456 a.a. [amino acids] of Rap1 (full length: 693 a.a. is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457-693 a.a. containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.

  5. Broad Coverage Identification of Multiple Proteolytic Cleavage Site Sequences in Complex High Molecular Weight Proteins Using Quantitative Proteomics as a Complement to Edman Sequencing*

    OpenAIRE

    Doucet, Alain; Christopher M Overall

    2010-01-01

    Proteolytic processing modifies the pleiotropic functions of many large, complex, and modular proteins and can generate cleavage products with new biological activity. The identification of exact proteolytic cleavage sites in the extracellular matrix laminins, fibronectin, and other extracellular matrix proteins is not only important for understanding protein turnover but is needed for the identification of new bioactive cleavage products. Several such products have recently been recognized t...

  6. Genes optimized by evolution for accurate and fast translation encode in Archaea and Bacteria a broad and characteristic spectrum of protein functions

    Directory of Open Access Journals (Sweden)

    Merkl Rainer

    2010-11-01

    Full Text Available Abstract Background In many microbial genomes, a strong preference for a small number of codons can be observed in genes whose products are needed by the cell in large quantities. This codon usage bias (CUB improves translational accuracy and speed and is one of several factors optimizing cell growth. Whereas CUB and the overrepresentation of individual proteins have been studied in detail, it is still unclear which high-level metabolic categories are subject to translational optimization in different habitats. Results In a systematic study of 388 microbial species, we have identified for each genome a specific subset of genes characterized by a marked CUB, which we named the effectome. As expected, gene products related to protein synthesis are abundant in both archaeal and bacterial effectomes. In addition, enzymes contributing to energy production and gene products involved in protein folding and stabilization are overrepresented. The comparison of genomes from eleven habitats shows that the environment has only a minor effect on the composition of the effectomes. As a paradigmatic example, we detailed the effectome content of 37 bacterial genomes that are most likely exposed to strongest selective pressure towards translational optimization. These effectomes accommodate a broad range of protein functions like enzymes related to glycolysis/gluconeogenesis and the TCA cycle, ATP synthases, aminoacyl-tRNA synthetases, chaperones, proteases that degrade misfolded proteins, protectants against oxidative damage, as well as cold shock and outer membrane proteins. Conclusions We made clear that effectomes consist of specific subsets of the proteome being involved in several cellular functions. As expected, some functions are related to cell growth and affect speed and quality of protein synthesis. Additionally, the effectomes contain enzymes of central metabolic pathways and cellular functions sustaining microbial life under stress situations. These

  7. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes

    International Nuclear Information System (INIS)

    Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).

  8. Separation and identification of Musa acuminate Colla (banana) leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Lu, Y; Qi, Y X; Zhang, H; Zhang, H Q; Pu, J J; Xie, Y X

    2013-12-19

    To establish a proteomic reference map of Musa acuminate Colla (banana) leaf, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 44 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. Three spots that were not identified by MALDI-TOF MS analysis were identified by searching against the NCBInr, SwissProt, and expressed sequence tag (EST) databases. We identified 41 unique proteins. The majority of the identified leaf proteins were found to be involved in energy metabolism. The results indicate that 2D-PAGE is a sensitive and powerful technique for the separation and identification of Musa leaf proteins. A summary of the identified proteins and their putative functions is discussed.

  9. Identification of C-type lectin-domain proteins (CTLDPs) in silkworm Bombyx mori.

    Science.gov (United States)

    Rao, Xiang-Jun; Shahzad, Toufeeq; Liu, Su; Wu, Peng; He, Yan-Ting; Sun, Wei-Jia; Fan, Xiang-Yun; Yang, Yun-Fan; Shi, Qiao; Yu, Xiao-Qiang

    2015-12-01

    C-type lectins (CTLs) represent a large family of proteins that can bind carbohydrate moieties normally in a calcium-dependent manner. CTLs play important roles in mediating cell adhesion and the recognition of pathogens in the immune system. In the present study, we have identified 23 CTL genes in domestic silkworm Bombyx mori. CTL-domain proteins (CTLDPs) are classified into three groups based on the number of carbohydrate-recognition domains (CRDs) and the domain architectures. These include twelve CTL-S (Single-CRD), six immulectins (Dual-CRD) and five CTL-X (CRD with other domains). We studied their phylogenetic features, analyzed the conserved residues, predicted tertiary structures, and examined the tissue expression profile and immune inducibility. Through bioinformatics analysis, we have putatively identified ten secretory and two cytoplasmic CTL-S; four secretory and two cytoplasmic immulectins; one secretory, one cytoplasmic and three transmembrane forms of CTL-X. Most B. mori CTLDPs form monophyletic groups with orthologs from Lepidoptera, Diptera, Coleoptera and Hymenoptera species. Immulectins of B. mori and Manduca sexta evolved from common ancestor genes perhaps due to gene duplication events of CTL-S ancestor genes. Homology modeling revealed that the overall structures of B. mori CTL domains are analogous to those of humans with a variable loop region. We examined the expression profile of CTLDP genes in naïve and immune-stimulated tissues. The expression and induction of CTLDP genes were related to the tissues and microorganisms. Together, our gene identification, sequence comparison, phylogenetic analysis, homology modeling and expression analysis laid a good foundation for the further studies of B. mori CTLDPs and comparative genomics. PMID:26187302

  10. Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein).

    Science.gov (United States)

    Reinhard, M; Jouvenal, K; Tripier, D; Walter, U

    1995-08-15

    VASP (vasodilator-stimulated phosphoprotein), an established substrate of cAMP- and cGMP-dependent protein kinases in vitro and in living cells, is associated with focal adhesions, microfilaments, and membrane regions of high dynamic activity. Here, the identification of an 83-kDa protein (p83) that specifically binds VASP in blot overlays of different cell homogenates is reported. With VASP overlays as a detection tool, p83 was purified from porcine platelets and used to generate monospecific polyclonal antibodies. VASP binding to purified p83 in solid-phase binding assays and the closely matching subcellular localization in double-label immunofluorescence analyses demonstrated that both proteins also directly interact as native proteins in vitro and possibly in living cells. The subcellular distribution, the biochemical properties, as well as microsequencing data revealed that porcine platelet p83 is related to chicken gizzard zyxin and most likely represents the mammalian equivalent of the chicken protein. The VASP-p83 interaction may contribute to the targeting of VASP to focal adhesions, microfilaments, and dynamic membrane regions. Together with our recent identification of VASP as a natural ligand of the profilin poly-(L-proline) binding site, our present results suggest that, by linking profilin to zyxin/p83, VASP may participate in spatially confined profilin-regulated F-actin formation.

  11. Protein-energy malnutrition in the rehabilitation setting: Evidence to improve identification.

    Science.gov (United States)

    Marshall, Skye

    2016-04-01

    Methods of identifying malnutrition in the rehabilitation setting require further examination so that patient outcomes may be improved. The purpose of this narrative review was to: (1) examine the defining characteristics of malnutrition, starvation, sarcopenia and cachexia; (2) review the validity of nutrition screening tools and nutrition assessment tools in the rehabilitation setting; and (3) determine the prevalence of malnutrition in the rehabilitation setting by geographical region and method of diagnosis. A narrative review was conducted drawing upon international literature. Starvation represents one form of malnutrition. Inadequate energy and protein intake are the critical factor in the aetiology of malnutrition, which is distinct from sarcopenia and cachexia. Eight nutrition screening tools and two nutrition assessment tools have been evaluated for criterion validity in the rehabilitation setting, and consideration must be given to the resources of the facility and the patient group in order to select the appropriate tool. The prevalence of malnutrition in the rehabilitation setting ranges from 14-65% worldwide with the highest prevalence reported in rural, European and Australian settings. Malnutrition is highly prevalent in the rehabilitation setting, and consideration must be given to the patient group when determining the most appropriate method of identification so that resources may be used efficaciously and the chance of misdiagnosis minimised. PMID:26921933

  12. Reliable Identification of Cross-Linked Products in Protein Interaction Studies by 13C-Labeled p-Benzoylphenylalanine

    Science.gov (United States)

    Pettelkau, Jens; Ihling, Christian H.; Frohberg, Petra; van Werven, Lars; Jahn, Olaf; Sinz, Andrea

    2014-09-01

    We describe the use of the 13C-labeled artificial amino acid p-benzoyl-L-phenylalanine (Bpa) to improve the reliability of cross-linked product identification. Our strategy is exemplified for two protein-peptide complexes. These studies indicate that in many cases the identification of a cross-link without additional stable isotope labeling would result in an ambiguous assignment of cross-linked products. The use of a 13C-labeled photoreactive amino acid is considered to be preferred over the use of deuterated cross-linkers as retention time shifts in reversed phase chromatography can be ruled out. The observation of characteristic fragment ions additionally increases the reliability of cross-linked product assignment. Bpa possesses a broad reactivity towards different amino acids and the derived distance information allows mapping of spatially close amino acids and thus provides more solid structural information of proteins and protein complexes compared to the longer deuterated amine-reactive cross-linkers, which are commonly used for protein 3D-structure analysis and protein-protein interaction studies.

  13. Another turn of the screw in shaving Gram-positive bacteria: Optimization of proteomics surface protein identification in Streptococcus pneumoniae.

    Science.gov (United States)

    Olaya-Abril, Alfonso; Gómez-Gascón, Lidia; Jiménez-Munguía, Irene; Obando, Ignacio; Rodríguez-Ortega, Manuel J

    2012-06-27

    Bacterial surface proteins are of outmost importance as they play critical roles in the interaction between cells and their environment. In addition, they can be targets of either vaccines or antibodies. Proteomic analysis through "shaving" live cells with proteases has become a successful approach for a fast and reliable identification of surface proteins. However, this protocol has not been able to reach the goal of excluding cytoplasmic contamination, as cell lysis is an inherent process during culture and experimental manipulation. In this work, we carried out the optimization of the "shaving" strategy for the Gram-positive human pathogen Streptococcus pneumoniae, a bacterium highly susceptible to autolysis, and set up the conditions for maximizing the identification of surface proteins containing sorting or exporting signals, and for minimizing cytoplasmic contamination. We also demonstrate that cell lysis is an inherent process during culture and experimental manipulation, and that a low level of lysis is enough to contaminate a "surfome" preparation with peptides derived from cytoplasmic proteins. When the optimized conditions were applied to several clinical isolates, we found the majority of the proteins described to induce protection against pneumococcal infection. In addition, we found other proteins whose protection capacity has not been yet tested. In addition, we show the utility of this approach for providing antigens that can be used in serological tests for the diagnosis of pneumococcal disease.

  14. Identification of the gene encoding Brain Cell Membrane Protein 1 (BCMP1, a putative four-transmembrane protein distantly related to the Peripheral Myelin Protein 22 / Epithelial Membrane Proteins and the Claudins

    Directory of Open Access Journals (Sweden)

    Christophe Daniel

    2001-07-01

    Full Text Available Abstract Background A partial cDNA clone from dog thyroid presenting a very significant similarity with an uncharacterized mouse EST sequence was isolated fortuitously. We report here the identification of the complete mRNA and of the gene, the product of which was termed "brain cell membrane protein 1" (BCMP1. Results The 4 kb-long mRNA sequence exhibited an open-reading frame of only 543 b followed by a 3.2 kb-long 3' untranslated region containing several AUUUA instability motifs. Analysis of the encoded protein sequence identified the presence of four putative transmembrane domains. Similarity searches in protein domain databases identified partial sequence conservations with peripheral myelin protein 22 (PMP22/ epithelial membrane proteins (EMPs and Claudins, defining the encoded protein as representative of the existence of a novel subclass in this protein family. Northern-blot analysis of the expression of the corresponding mRNA in adult dog tissues revealed the presence of a huge amount of the 4 kb transcript in the brain. An EGFP-BCMP1 fusion protein expressed in transfected COS-7 cells exhibited a membranous localization as expected. The sequences encoding BCMP1 were assigned to chromosome X in dog, man and rat using radiation hybrid panels and were partly localized in the currently available human genome sequence. Conclusions We have identified the existence in several mammalian species of a gene encoding a putative four-transmembrane protein, BCMP1, wich defines a novel subclass in this family of proteins. In dog at least, the corresponding mRNA is highly present in brain cells. The chromosomal localization of the gene in man makes of it a likely candidate gene for X-linked mental retardation.

  15. In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae.

    Science.gov (United States)

    Caro, L H; Tettelin, H; Vossen, J H; Ram, A F; van den Ende, H; Klis, F M

    1997-12-01

    Use of the Von Heijne algorithm allowed the identification of 686 open reading frames (ORFs) in the genome of Saccharomyces cerevisiae that encode proteins with a potential N-terminal signal sequence for entering the secretory pathway. On further analysis, 51 of these proteins contain a potential glycosyl-phosphatidylinositol (GPI)-attachment signal. Seven additional ORFs were found to belong to this group. Upon examination of the possible GPI-attachment sites, it was found that in yeast the most probable amino acids for GPI-attachment as asparagine and glycine. In yeast, GPI-proteins are found at the cell surface, either attached to the plasma-membrane or as an intrinsic part of the cell wall. It was noted that plasma-membrane GPI-proteins possess a dibasic residue motif just before their predicted GPI-attachment site. Based on this, and on homologies between proteins, families of plasma-membrane and cell wall proteins were assigned, revealing 20 potential plasma-membrane and 38 potential cell wall proteins. For members of three plasma-membrane protein families, a function has been described. On the other hand, most of the cell wall proteins seem to be structural components of the wall, responsive to different growth conditions. The GPI-attachment site of yeast slightly differs from mammalian cells. This might be of use in the development of anti-fungal drugs.

  16. Identification and mapping of DNA binding proteins target sequences in long genomic regions by two-dimensional EMSA.

    Science.gov (United States)

    Chernov, Igor P; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D

    2006-07-01

    Specific binding of nuclear proteins, in particular transcription factors, to target DNA sequences is a major mechanism of genome functioning and gene expression regulation in eukaryotes. Therefore, identification and mapping specific protein target sites (PTS) is necessary for understanding genomic regulation. Here we used a novel two-dimensional electrophoretic mobility shift assay (2D-EMSA) procedure for identification and mapping of 52 PTS within a 563-kb human genome region located between the FXYD5 and TZFP genes. The PTS occurred with approximately equal frequency within unique and repetitive genomic regions. PTS belonging to unique sequences tended to group together within gene introns and close to their 5' and 3' ends, whereas PTS located within repeats were evenly distributed between transcribed and intragenic regions. PMID:16869519

  17. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  18. A Novel IgM-capture enzyme-linked immunosorbent assay using recombinant Vag8 fusion protein for the accurate and early diagnosis of Bordetella pertussis infection.

    Science.gov (United States)

    Otsuka, Nao; Gotoh, Kensei; Nishimura, Naoko; Ozaki, Takao; Nakamura, Yukitsugu; Haga, Kiyohito; Yamazaki, Makoto; Gondaira, Fumio; Okada, Kenji; Miyaji, Yusuke; Toyoizumi-Ajisaka, Hiromi; Shibayama, Keigo; Arakawa, Yoshichika; Kamachi, Kazunari

    2016-05-01

    An ELISA that measures anti-PT IgG antibody has been used widely for the serodiagnosis of pertussis; however, the IgG-based ELISA is inadequate for patients during the acute phase of the disease because of the slow response of anti-PT IgG antibodies. To solve this problem, we developed a novel IgM-capture ELISA that measures serum anti-Bordetella pertussis Vag8 IgM levels for the accurate and early diagnosis of pertussis. First, we confirmed that Vag8 was highly expressed in all B. pertussis isolates tested (n = 30), but little or none in other Bordetella species, and that DTaP vaccines did not induce anti-Vag8 IgG antibodies in mice (i.e. the antibody level could be unaffected by the vaccination). To determine the immune response to Vag8 in B. pertussis infection, anti-Vag8 IgM levels were compared between 38 patients (acute phase of pertussis) and 29 healthy individuals using the anti-Vag8 IgM-capture ELISA. The results revealed that the anti-Vag8 IgM levels were significantly higher in the patients compared with the healthy individuals (P < 0.001). ROC analysis also showed that the anti-Vag8 IgM-capture ELISA has higher diagnostic accuracy (AUC, 0.92) than a commercial anti-PT IgG ELISA kit. Moreover, it was shown that anti-Vag8 IgM antibodies were induced earlier than anti-PT IgG antibodies on sequential patients' sera. These data indicate that our novel anti-Vag8 IgM-capture ELISA is a potentially useful tool for making the accurate and early diagnosis of B. pertussis infection.

  19. Channel catfish (Ictalurus punctatus Rafinesque, 1818) tetraspanin membrane protein family: Identification, characterization, and expression analysis of CD63 cDNA

    Science.gov (United States)

    CD63, known as lysosome associated membrane protein 3 (LAMP-3), is a member of the tetraspanin integral membrane protein family. This protein plays many important roles in immuno-physiological functions. In this communication, we report the identification, characterization, and expression analysis...

  20. Identification of a novel protein-protein interaction motif mediating interaction of GPCR-associated sorting proteins with G protein-coupled receptors

    DEFF Research Database (Denmark)

    Bornert, Olivier; Møller, Thor Christian; Boeuf, Julien;

    2013-01-01

    GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward the degra......GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward...... the degradation pathway. This protein belongs to the recently identified GPCR-associated sorting proteins (GASPs) family that comprises ten members for which structural and functional details are poorly documented. We present here a detailed structure-function relationship analysis of the molecular interaction...... between GASPs and a panel of GPCRs. In a first step, GST-pull down experiments revealed that all the tested GASPs display significant interactions with a wide range of GPCRs. Importantly, the different GASP members exhibiting the strongest interaction properties were also characterized by the presence...

  1. Identification of the Major ACE-Inhibitory Peptides Produced by Enzymatic Hydrolysis of a Protein Concentrate from Cuttlefish Wastewater

    OpenAIRE

    Isabel Rodríguez Amado; José Antonio Vázquez; Pilar González; Diego Esteban-Fernández; Mónica Carrera; Carmen Piñeiro

    2014-01-01

    The aim of this work was the purification and identification of the major angiotensin converting enzyme (ACE) inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate recovered from a cuttlefish industrial manufacturing effluent. This process consisted on the ultrafiltration of cuttlefish softening wastewater, with a 10 kDa cut-off membrane, followed by the hydrolysis with alcalase of the retained fraction. Alcalase produced ACE inhibitors reaching the highest activity (I...

  2. Target Identification by Chromatographic Co-elution: Monitoring of Drug-Protein Interactions without Immobilization or Chemical Derivatization*

    OpenAIRE

    Chan, Janet N. Y.; Vuckovic, Dajana; Sleno, Lekha; Olsen, Jonathan B.; Pogoutse, Oxana; Havugimana, Pierre; Hewel, Johannes A.; Bajaj, Navgeet; Wang, Yale; Musteata, Marcel F.; Nislow, Corey; Emili, Andrew

    2012-01-01

    Bioactive molecules typically mediate their biological effects through direct physical association with one or more cellular proteins. The detection of drug-target interactions is therefore essential for the characterization of compound mechanism of action and off-target effects, but generic label-free approaches for detecting binding events in biological mixtures have remained elusive. Here, we report a method termed target identification by chromatographic co-elution (TICC) for routinely mo...

  3. Single-Copy Green Fluorescent Protein Gene Fusions Allow Accurate Measurement of Salmonella Gene Expression In Vitro and during Infection of Mammalian Cells

    OpenAIRE

    Hautefort, Isabelle; Proença, Maria José; Hinton, Jay C. D.

    2003-01-01

    We developed a reliable and flexible green fluorescent protein (GFP)-based system for measuring gene expression in individual bacterial cells. Until now, most systems have relied upon plasmid-borne gfp gene fusions, risking problems associated with plasmid instability. We show that a recently developed GFP variant, GFP+, is suitable for assessing bacterial gene expression. Various gfp+ transcriptional fusions were constructed and integrated as single copies into the chromosome of Salmonella e...

  4. IDENTIFICATION OF T-CELL EPITOPES IN STRUCTURAL PROTEINS OF TICK BORNE ENCEPHALITIS VIRUS FOR VACCINE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Dharmendra Kumar Chaudhary

    2012-05-01

    Full Text Available Tickborne encephalitis (TBE is a human viral infectious disease caused by tickborne encephalitis virus (TBEV. It is transmitted by the bite of an infected tick and also initiated the swelling of brain (encephalitis and spinal cord. There is a pressing need to develop potent and sufficient amount of drugs and vaccines for control of TBE. We have selected the structural proteins such as anchored core protein C, core protein C, premembrane, matrix and envelope proteins of TBEV for identification of T-cell epitopes using immunoinformatics tools. These epitopes were showed the highest binding affinity with major histocompatibility complex (MHC class I and II molecules. These finding may be used as an immunodiagnostic agent and also development of peptide based novel vaccines

  5. Isolation of Two Strong Poly (U) Binding Proteins from Moderate Halophile Halomonas eurihalina and Their Identification as Cold Shock Proteins

    OpenAIRE

    Usha Kumari Garapati; Tangirala Suryanarayana

    2012-01-01

    Cold shock proteins (Csp) are known to be expressed in response to sudden decrease in temperature. They are thought to be involved in a number of cellular processes viz., RNA chaperone activity, translation, transcription, nucleoid condensation. During our studies on ribosomal protein S1 in moderate halophile Halomonas eurihalina, we observed the presence of two strong poly (U) binding proteins in abundance in cell extracts from cells grown under normal growth conditions. The proteins can be ...

  6. Impact of injection solvent composition on protein identification in column-switching chip-liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Houbart, V; Cobraiville, G; Nys, G; Merville, M-P; Fillet, M

    2016-05-01

    In shotgun proteomics, the gold standard technique is reversed-phase liquid chromatography coupled to mass spectrometry. Many researches have been carried out to study the effects on identification performances of chromatographic parameters such as the stationary phase and column dimensions, mobile phase composition and flow rate, as well as the gradient slope and length. However, little attention is usually paid to the injection solvent composition. In this study, we investigated the effect of the injection solvent on protein identification parameters (number of distinct peptides, amino acid coverage and MS/MS search score) as well as sensitivity. Tryptic peptides from six different proteins, covering a wide range of physicochemical properties, were employed as training set. Design of experiments was employed as a tool to highlight the factors related to the composition of the injection solvent that significantly influenced the obtained results. Optimal results for the training set were applied to analysis of more complex samples. The experiments pointed out optimising the composition of the injection solvent had a strong beneficial effect on all the considered responses. On the basis of these results, an approach to determine optimal conditions was proposed to maximise the protein identification performances and detection sensitivity.

  7. The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.

    Science.gov (United States)

    Cavdar Koc, E; Burkhart, W; Blackburn, K; Moseley, A; Spremulli, L L

    2001-06-01

    Identification of all the protein components of the small subunit (28 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 28 S subunits followed by analysis of the resultant peptides by liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptide sequence information was used to search the human EST data bases and complete coding sequences of the proteins were assembled. The human mitochondrial ribosome has 29 distinct proteins in the small subunit. Fourteen of this group of proteins are homologs of the Escherichia coli 30 S ribosomal proteins S2, S5, S6, S7, S9, S10, S11, S12, S14, S15, S16, S17, S18, and S21. All of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. Surprisingly, three variants of ribosomal protein S18 are found in the mammalian and D. melanogaster mitochondrial ribosomes while C. elegans has two S18 homologs. The S18 homologs tend to be more closely related to chloroplast S18s than to prokaryotic S18s. No mitochondrial homologs to prokaryotic ribosomal proteins S1, S3, S4, S8, S13, S19, and S20 could be found in the peptides obtained from the whole 28 S subunit digests or by analysis of the available data bases. The remaining 15 proteins present in mammalian mitochondrial 28 S subunits (MRP-S22 through MRP-S36) are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of these proteins have a clear homolog in D. melanogaster while all but three can be found in the genome of C. elegans. Five of the mitochondrial specific ribosomal proteins have homologs in S. cerevisiae.

  8. Identification and analysis of the acetylated status of poplar proteins reveals analogous N-terminal protein processing mechanisms with other eukaryotes.

    Directory of Open Access Journals (Sweden)

    Chang-Cai Liu

    Full Text Available BACKGROUND: The N-terminal protein processing mechanism (NPM including N-terminal Met excision (NME and N-terminal acetylation (N(α-acetylation represents a common protein co-translational process of some eukaryotes. However, this NPM occurred in woody plants yet remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: To reveal the NPM in poplar, we investigated the N(α-acetylation status of poplar proteins during dormancy by combining tandem mass spectrometry with TiO2 enrichment of acetylated peptides. We identified 58 N-terminally acetylated (N(α-acetylated proteins. Most proteins (47, >81% are subjected to N(α-acetylation following the N-terminal removal of Met, indicating that N(α-acetylation and NME represent a common NPM of poplar proteins. Furthermore, we confirm that poplar shares the analogous NME and N(α-acetylation (NPM to other eukaryotes according to analysis of N-terminal features of these acetylated proteins combined with genome-wide identification of the involving methionine aminopeptidases (MAPs and N-terminal acetyltransferase (Nat enzymes in poplar. The N(α-acetylated reactions and the involving enzymes of these poplar proteins are also identified based on those of yeast and human, as well as the subcellular location information of these poplar proteins. CONCLUSIONS/SIGNIFICANCE: This study represents the first extensive investigation of N(α-acetylation events in woody plants, the results of which will provide useful resources for future unraveling the regulatory mechanisms of N(α-acetylation of proteins in poplar.

  9. Identification of oxidized protein hydrolase as a potential prodrug target in prostate cancer

    International Nuclear Information System (INIS)

    Esterases are often overexpressed in cancer cells and can have chiral specificities different from that of the corresponding normal tissues. For this reason, ester prodrugs could be a promising approach in chemotherapy. In this study, we focused on the identification and characterization of differentially expressed esterases between non-tumorigenic and tumorigenic prostate epithelial cells. Cellular lysates from LNCaP, DU 145, and PC3 prostate cancer cell lines, tumorigenic RWPE-2 prostate epithelial cells, and non-tumorigenic RWPE-1 prostate epithelial cells were separated by native polyacrylamide gel electrophoresis (n-PAGE) and the esterase activity bands visualized using α-naphthyl acetate or α-naphthyl-N-acetylalaninate (ANAA) chiral esters and Fast Blue RR salt. The esterases were identified using nanospray LC/MS-MS tandem mass spectrometry and confirmed by Western blotting, native electroblotting, inhibition assays, and activity towards a known specific substrate. The serine protease/esterase oxidized protein hydrolase (OPH) was overexpressed in COS-7 cells to verify our results. The major esterase observed with the ANAA substrates within the n-PAGE activity bands was identified as OPH. OPH (EC 3.4.19.1) is a serine protease/esterase and a member of the prolyl oligopeptidase family. We found that LNCaP lysates contained approximately 40% more OPH compared to RWPE-1 lysates. RWPE-2, DU145 and PC3 cell lysates had similar levels of OPH activity. OPH within all of the cell lysates tested had a chiral preference for the S-isomer of ANAA. LNCaP cells were stained more intensely with ANAA substrates than RWPE-1 cells and COS-7 cells overexpressing OPH were found to have a higher activity towards the ANAA and AcApNA than parent COS-7 cells. These data suggest that prodrug derivatives of ANAA and AcApNA could have potential as chemotherapeutic agents for the treatment of prostate cancer tumors that overexpress OPH

  10. Identification of Foodborne Bacteria by High Energy Collision-Induced Dissociation of Their Protein Biomarkers by MALDI Tandem-Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Development of methods for rapid identification of foodborne bacteria is an important area of analytical science and food safety. MALDI-TOF-MS has been utilized to rapidly identify pathogens including foodborne bacteria. Identification typically involves detection of high copy cytosolic proteins i...

  11. Elevated pressure improves the extraction and identification of proteins recovered from formalin-fixed, paraffin-embedded tissue surrogates.

    Directory of Open Access Journals (Sweden)

    Carol B Fowler

    Full Text Available BACKGROUND: Proteomic studies of formalin-fixed paraffin-embedded (FFPE tissues are frustrated by the inability to extract proteins from archival tissue in a form suitable for analysis by 2-D gel electrophoresis or mass spectrometry. This inability arises from the difficulty of reversing formaldehyde-induced protein adducts and cross-links within FFPE tissues. We previously reported the use of elevated hydrostatic pressure as a method for efficient protein recovery from a hen egg-white lysozyme tissue surrogate, a model system developed to study formalin fixation and histochemical processing. PRINCIPAL FINDINGS: In this study, we demonstrate the utility of elevated hydrostatic pressure as a method for efficient protein recovery from FFPE mouse liver tissue and a complex multi-protein FFPE tissue surrogate comprised of hen egg-white lysozyme, bovine carbonic anhydrase, bovine ribonuclease A, bovine serum albumin, and equine myoglobin (55∶15∶15∶10∶5 wt%. Mass spectrometry of the FFPE tissue surrogates retrieved under elevated pressure showed that both the low and high-abundance proteins were identified with sequence coverage comparable to that of the surrogate mixture prior to formaldehyde treatment. In contrast, non-pressure-extracted tissue surrogate samples yielded few positive and many false peptide identifications. Studies with soluble formalin-treated bovine ribonuclease A demonstrated that pressure modestly inhibited the rate of reversal (hydrolysis of formaldehyde-induced protein cross-links. Dynamic light scattering studies suggest that elevated hydrostatic pressure and heat facilitate the recovery of proteins free of formaldehyde adducts and cross-links by promoting protein unfolding and hydration with a concomitant reduction in the average size of the protein aggregates. CONCLUSIONS: These studies demonstrate that elevated hydrostatic pressure treatment is a promising approach for improving the recovery of proteins from FFPE

  12. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S; Lacey, Jeffrey A.; Gentillon, Cynthia A.

    2016-08-09

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  13. Bovine and rodent tamm-horsfall protein (THP) genes: cloning, structural analysis, and promoter identification.

    Science.gov (United States)

    Yu, H; Papa, F; Sukhatme, V P

    1994-01-01

    We have isolated bovine and rodent cDNA and genomic clones encoding the kidney-specific Tamm-Horsfall protein (THP). In both species the gene contains 11 exons, the first of which is noncoding. Exon/intron junctions were analyzed and all were shown to follow the AG/GT rule. A kidney-specific DNase I hypersensitive site was mapped onto a rodent genomic fragment for which the sequence is highly conserved in three species (rat, cow, and human) over a stretch of 350 base pairs. Primer extension and RNase protection analysis identified a transcription start site at the 3' end of this conserved region. A TATA box is located at 32 nucleotides upstream of the start site in the bovine gene and 34 nucleotides upstream in the rodent gene. An inverted CCAAT motif occurs at 65 and 66 nucleotides upstream of the start site in the bovine and rodent genes, respectively. Other highly conserved regions were noted in this 350 bp region and these are likely to be binding sites for transcription factors. A functional assay based on an in vitro transcription system confirmed that the conserved region is an RNA Pol II promoter. The in vitro system accurately initiated transcription from the in vivo start site and was highly sensitive to inhibition by alpha-amanitin at a concentration of 2.5 micrograms/ml. These studies set the stage for the further definition of cis-acting sequences and trans-factors regulating expression of the THP gene, a model for kidney-specific gene expression.

  14. Isolation of two strong poly (U binding proteins from moderate halophile Halomonas eurihalina and their identification as cold shock proteins.

    Directory of Open Access Journals (Sweden)

    Usha Kumari Garapati

    Full Text Available Cold shock proteins (Csp are known to be expressed in response to sudden decrease in temperature. They are thought to be involved in a number of cellular processes viz., RNA chaperone activity, translation, transcription, nucleoid condensation. During our studies on ribosomal protein S1 in moderate halophile Halomonas eurihalina, we observed the presence of two strong poly (U binding proteins in abundance in cell extracts from cells grown under normal growth conditions. The proteins can be isolated in a single step using Poly (U cellulose chromatography. The proteins were identified as major cold shock proteins belonging to Csp A family by MALDI-TOF and bioinformatic analysis. Csp 12 kDa was found in both exponential and stationary phases whereas Csp 8 kDa is found only in exponential phase.

  15. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects

    OpenAIRE

    Zhang Yong-Jun; Dong Shuang-Lin; Fang Shao-Qing; Zhang Lan; He Peng; Xu Ya-Long; Li Fei

    2009-01-01

    Abstract Background Insect odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play an important role in chemical communication of insects. Gene discovery of these proteins is a time-consuming task. In recent years, expressed sequence tags (ESTs) of many insect species have accumulated, thus providing a useful resource for gene discovery. Results We have developed a computational pipeline to identify OBP and CSP genes from insect ESTs. In total, 752,841 insect ESTs were examined ...

  16. Structure based design towards the identification of novel binding sites and inhibitors for the chikungunya virus envelope proteins.

    Science.gov (United States)

    Rashad, Adel A; Keller, Paul A

    2013-07-01

    Chikungunya virus is an emerging arbovirus that is widespread in tropical regions and is spreading quickly to temperate climates with recent epidemics in Africa, Asia, Europe and the Americas. It is having an increasingly major impact on humans with potentially life-threatening and debilitating arthritis. Thus far, neither vaccines nor medications are available to treat or control the virus and therefore, the development of medicinal chemistry is a vital and immediate issue that needs to be addressed. The viral envelope proteins play a major role during infection through mediation of binding and fusion with the infected cell surfaces. The possible binding target sites of the chikungunya virus envelope proteins have not previously been investigated; we describe here for the first time the identification of novel sites for potential binding on the chikungunya glycoprotein complexes and the identification of possible antagonists for these sites through virtual screening using two successive docking scores; FRED docking for fast precise screening, with the top hits then subjected to a ranking scoring using the AUTODOCK algorithm. Both the immature and the mature forms of the chikungunya envelope proteins were included in the study to increase the probability of finding positive and reliable hits. Some small molecules have been identified as good in silico chikungunya virus envelope proteins inhibitors and these could be good templates for drug design targeting this virus.

  17. Expression and Identification of Inclusion Forming-related Domain of NS80 Nonstructural Protein of Grass Carp Reovirus

    Institute of Scientific and Technical Information of China (English)

    Chao FAN; Lan-lan ZHANG; Cheng-feng LEI; Qin FANG

    2009-01-01

    Grass carp reovirus (GCRV), a double stranded RNA virus that infects aquatic animals, often with disastrous effects, belongs to the genus Aquareovirus and family Reoviridea. Similar to other reoviruses, genome replication of GCRV in infected cells occurs in cytoplasmic inclusion bodies, also called viral factories. Sequences analysis revealed the nonstructural protein NS80, encoded by GCRV segment 4, has a high similarity with uNS in MRV(Mammalian orthoreoviruses), which may be associated with viral factory formation. To understand the function of the uNS80 protein in virus replication, the initial expression and identification of the immunogenicity of the GCRV NS80 protein inclusion forming-related region (335.742) was investigated in this study. It is shown that the over-expressed fusion protein was produced by inducing with IPTG at 28oC. In addition, serum specific rabbit antibody was obtained by using super purified recombinant NS80(335.742) protein as antigen. Moreover, the expressed protein was able to bind to anti-his-tag monoclonal antibody (mouse) and NS80(335-742) specific rabbit antibody. Further western blot analysis indicates that the antiserum could detect NS80 or NS80C protein expression in GCRV infected cells. This data provides a foundation for further investigation of the role of NS80 in viral inclusion formation and virion assembly.

  18. Matrix-assisted laser desorption/ionization coupled with quadrupole/orthogonal acceleration time-of-flight mass spectrometry for protein discovery, identification, and structural analysis.

    Science.gov (United States)

    Baldwin, M A; Medzihradszky, K F; Lock, C M; Fisher, B; Settineri, T A; Burlingame, A L

    2001-04-15

    The design and operation of a novel UV-MALDI ionization source on a commercial QqoaTOF mass spectrometer (Applied Biosystem/MDS Sciex QSTAR Pulsar) is described. Samples are loaded on a 96-well target plate, the movement of which is under software control and can be readily automated. Unlike conventional high-energy MALDI-TOF, the ions are produced with low energies (5-10 eV) in a region of relatively low vacuum (8 mTorr). Thus, they are cooled by extensive low-energy collisions before selection in the quadrupole mass analyzer (Q1), potentially giving a quasi-continuous ion beam ideally suited to the oaTOF used for mass analysis of the fragment ions, although ion yields from individual laser shots may vary widely. Ion dissociation is induced by collisions with argon in an rf-only quadrupole cell, giving typical low-energy CID spectra for protonated peptide ions. Ions separated in the oaTOF are registered by a four-anode detector and time-to-digital converter and accumulated in "bins" that are 625 ps wide. Peak shapes depend upon the number of ion counts in adjacent bins. As expected, the accuracy of mass measurement is shown to be dependent upon the number of ions recorded for a particular peak. With internal calibration, mass accuracy better than 10 ppm is attainable for peaks that contain sufficient ions to give well-defined Gaussian profiles. By virtue of its high resolution, capability for accurate mass measurements, and sensitivity in the low-femotomole range, this instrument is ideally suited to protein identification for proteomic applications by generation of peptide tags, manual sequence interpretation, identification of modifications such as phosphorylation, and protein structural elucidation. Unlike the multiply charged ions typical of electrospray ionization, the singly charged MALDI-generated peptide ions show a linear dependence of optimal collision energy upon molecular mass, which is advantageous for automated operation. It is shown that the novel

  19. Metallomics approach for the identification of the iron transport protein transferrin in the blood of harbour seals (Phoca vitulina).

    Science.gov (United States)

    Grebe, Mechthild; Pröfrock, Daniel; Kakuschke, Antje; Broekaert, Jose A C; Prange, Andreas

    2010-10-01

    The health status of marine mammals such as harbour seals (Phoca vitulina) represents an indirect but powerful way for the assessment of environmental changes. The present work illustrates the first investigation and characterisation of Tf isolated from blood samples of North Sea harbour seals with a view to using changes in Tf isoform patterns as an additional parameter in extended studies of their health status. Therefore, an HPLC-ICP-MS approach has been developed which allows the highly resolved separation and fractionation of up to eight different Tf isoforms, as well as their sensitive and specific detection on the basis of their characteristic iron content. Molecule-specific detection techniques such as nanoLC-ESI-QTRAP-MS or MALDI-TOF-MS were used as complementary techniques to unambiguously identify the isolated proteins as Tf via cross species protein identification and to further characterise the molecular weight as well as the sialic acid content, which is responsible for the elution behaviour of the different isoforms during their ion exchange separation. A molecular mass above 80 kDa has been measured for the different seal Tf isoforms, which is in good agreement with the known molecular mass in other mammalian species, while the estimated pI of the different isoforms indicates some differences in comparison to other species. A number of homologies to known Tf sequences have been observed, which finally allows the cross species protein identification. The combined metallomics orientated analytical approach, which includes the complementary application of element and molecule-specific detection techniques, opens up interesting possibilities for the fast and targeted isolation and identification of a diagnostically relevant metal containing protein from an un-sequenced mammalian species prior to its utilisation in extended studies.

  20. 3dLOGO: a web server for the identification, analysis and use of conserved protein substructures.

    Science.gov (United States)

    Via, Allegra; Peluso, Daniele; Gherardini, Pier Federico; de Rinaldis, Emanuele; Colombo, Teresa; Ausiello, Gabriele; Helmer-Citterich, Manuela

    2007-07-01

    3dLOGO is a web server for the identification and analysis of conserved protein 3D substructures. Given a set of residues in a PDB (Protein Data Bank) chain, the server detects the matching substructure(s) in a set of user-provided protein structures, generates a multiple structure alignment centered on the input substructures and highlights other residues whose structural conservation becomes evident after the defined superposition. Conserved residues are proposed to the user for highlighting functional areas, deriving refined structural motifs or building sequence patterns. Residue structural conservation can be visualized through an expressly designed Java application, 3dProLogo, which is a 3D implementation of a sequence logo. The 3dLOGO server, with related documentation, is available at http://3dlogo.uniroma2.it/ PMID:17488847

  1. Identification of Semaphorin 5A Interacting Protein by Applying Apriori Knowledge and Peptide Complementarity Related to Protein Evolution and Structure

    Institute of Scientific and Technical Information of China (English)

    Anguraj Sadanandam; Michelle L. Varney; Rakesh K. Singh

    2008-01-01

    In the post-genomic era, various computational methods that predict proteinprotein interactions at the genome level are available; however, each method has its own advantages and disadvantages, resulting in false predictions. Here we developed a unique integrated approach to identify interacting partner(s) of Semaphorin 5A (SEMA5A), beginning with seven proteins sharing similar ligand interacting residues as putative binding partners. The methods include Dwyer and Root-Bernstein/Dillon theories of protein evolution, hydropathic complementarity of protein structure, pattern of protein functions among molecules, information on domain-domain interactions, co-expression of genes and protein evolution. Among the set of seven proteins selected as putative SEMA5A interacting partners, we found the functions of Plexin B3 and Neuropilin-2 to be associated with SEMA5A.We modeled the semaphorin domain structure of Plexin B3 and found that it shares similarity with SEMA5A. Moreover, a virtual expression database search and RT-PCR analysis showed co-expression of SEMA5A and Plexin B3 and these proteins were found to have co-evolved. In addition, we confirmed the interaction of SEMA5A with Plexin B3 in co-immunoprecipitation studies. Overall, these studies demonstrate that an integrated method of prediction can be used at the genome level for discovering many unknown protein binding partners with known ligand binding domains.

  2. Accurate measurement of {sup 3}J{sub HNHα} couplings in small or disordered proteins from WATERGATE-optimized TROSY spectra

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Julien; Ying, Jinfa; Bax, Ad, E-mail: bax@nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Laboratory of Chemical Physics (United States)

    2016-01-15

    Provided that care is taken in adjusting the WATERGATE element of a {sup 1}H–{sup 15}N TROSY-HSQC experiment, such that neither the water magnetization nor the {sup 1}H{sup α} protons are inverted by its final 180° pulse, {sup 3}J{sub HNHα} couplings can be measured directly from splittings in the {sup 1}H dimension of the spectrum. With band-selective {sup 1}H decoupling, very high {sup 15}N resolution can be achieved. A complete set of {sup 3}J{sub HNHα} values, ranging from 3.4 to 10.1 Hz was measured for the 56-residue third domain of IgG-binding protein G (GB3). Using the H–N–C{sup α}–H{sup α} dihedral angles extracted from a RDC-refined structure of GB3, {sup 3}J{sub HNHα} values predicted by a previously parameterized Karplus equation agree to within a root-mean-square deviation (rmsd) of 0.37 Hz with the experimental data. Values measured for the Alzheimer’s implicated Aβ{sup 1−40} peptide fit to within an rmsd of 0.45 Hz to random coil {sup 3}J{sub HNHα} values.

  3. Identification of poly(rC) binding protein 2 (PCBP2) as a target protein of immunosuppressive agent 15-deoxyspergualin.

    Science.gov (United States)

    Murahashi, Masataka; Simizu, Siro; Morioka, Masahiko; Umezawa, Kazuo

    2016-08-01

    15-Deoxyspergualin (DSG) is an immunosuppressive agent being clinically used. Unlike tacrolimus and cyclosporine A, it does not inhibit the calcineurin pathway, and its mechanism of action and target molecule have not been elucidated. Therefore, we previously prepared biotinylated derivative of DSG (BDSG) to fish up the target protein. In the present research, we identified poly(rC) binding protein 2 (PCBP2) as a DSG-binding protein using this probe. DSG was confirmed to bind to PCBP2 by pull-down assay. Intracellular localization of PCBP2 was changed from the nucleus to the cytoplasm by DSG treatment. DSG inhibited the cell growth, and over-expression of PCBP2 reduced the anti-proliferative activity of DSG. PCBP2 is known to regulate various proteins including STAT1/2. Thus, we found PCBP2 as the first target protein of DSG that can explain the immunosuppressive activity. PMID:27261432

  4. Identification of Putative ORF5 Protein of Porcine Circovirus Type 2 and Functional Analysis of GFP-Fused ORF5 Protein.

    Directory of Open Access Journals (Sweden)

    Qizhuang Lv

    Full Text Available Porcine circovirus type 2 (PCV2 is the essential infectious agent responsible for causing porcine circovirus-associated diseases in pigs. To date, eleven RNAs and five viral proteins of PCV2 have been detected. Here, we identified a novel viral gene within the PCV2 genome, termed ORF5, that exists at both the transcriptional and translational level during productive infection of PCV2 in porcine alveolar macrophages 3D4/2 (PAMs. Northern blot analysis was used to demonstrate that the ORF5 gene measures 180 bp in length and overlaps completely with ORF1 when read in the same direction. Site-directed mutagenesis was used to show that the ORF5 protein is not essential for PCV2 replication. To investigate the biological functions of the novel protein, we constructed a recombinant eukaryotic expression plasmid capable of expressing PCV2 ORF5. The results show that the GFP-tagged PCV2 ORF5 protein localizes to the endoplasmic reticulum (ER, is degraded via the proteasome, inhibits PAM growth and prolongs the S-phase of the cell cycle. Further studies show that the GFP-tagged PCV2 ORF5 protein induces ER stress and activates NF-κB, which was further confirmed by a significant upregulation in IL-6, IL-8 and COX-2 expression. In addition, five cellular proteins (GPNMB, CYP1A1, YWHAB, ZNF511 and SRSF3 were found to interact with ORF5 via yeast two-hybrid assay. These findings provide novel information on the identification and functional analysis of the PCV2 ORF5 protein and are likely to be of benefit in elucidating the molecular mechanisms of PCV2 pathogenicity. However, additional experiments are needed to validate the expression and function of the ORF5 protein during PCV2 infection in vitro before any definitive conclusion can be drawn.

  5. Electrical Detection of C-Reactive Protein Using a Single Free-Standing, Thermally Controlled Piezoresistive Microcantilever for Highly Reproducible and Accurate Measurements

    Directory of Open Access Journals (Sweden)

    Long-Sun Huang

    2013-07-01

    Full Text Available This study demonstrates a novel method for electrical detection of C-reactive protein (CRP as a means of identifying an infection in the body, or as a cardiovascular disease risk assay. The method uses a single free-standing, thermally controlled piezoresistive microcantilever biosensor. In a commonly used sensing arrangement of conventional dual cantilevers in the Wheatstone bridge circuit, reference and gold-coated sensing cantilevers that inherently have heterogeneous surface materials and different multilayer structures may yield independent responses to the liquid environmental changes of chemical substances, flow field and temperature, leading to unwanted signal disturbance for biosensing targets. In this study, the single free-standing microcantilever for biosensing applications is employed to resolve the dual-beam problem of individual responses in chemical solutions and, in a thermally controlled system, to maintain its sensor performance due to the sensitive temperature effect. With this type of single temperature-controlled microcantilever sensor, the electrical detection of various CRP concentrations from 1 µg/mL to 200 µg/mL was performed, which covers the clinically relevant range. Induced surface stresses were measured at between 0.25 N/m and 3.4 N/m with high reproducibility. Moreover, the binding affinity (KD of CRP and anti-CRP interaction was found to be 18.83 ± 2.99 µg/mL, which agreed with results in previous reported studies. This biosensing technique thus proves valuable in detecting inflammation, and in cardiovascular disease risk assays.

  6. Global Identification of Protein Post-translational Modifications in a Single-Pass Database Search

    OpenAIRE

    Shortreed, Michael R.; Wenger, Craig D.; Frey, Brian L.; Sheynkman, Gloria M.; Scalf, Mark; Keller, Mark P.; Attie, Alan D; Smith, Lloyd M.

    2015-01-01

    Bottom-up proteomics database search algorithms used for peptide identification cannot comprehensively identify post-translational modifications (PTMs) in a single-pass because of high false discovery rates (FDRs). A new approach to database searching enables global PTM (G-PTM) identification by exclusively looking for curated PTMs, thereby avoiding the FDR penalty experienced during conventional variable modification searches. We identified over 2200 unique, high-confidence modified peptides...

  7. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Ferdous Rastgar Jazii; Zahra Najafi; Reza Malekzadeh; Thomas P Conrads; Abed Ali Ziaee; Christian Abnet; Mansour Yazdznbod; Ali Asghar Karkhane; Ghasem H Salekdeh

    2006-01-01

    AIM: To assess the proteome of normal versus tumor tissue in squamous cell carcinoma of the esophagus(SCCE) in Iranian patients and compare our results with former reports by using proteomics.METHODS: Protein was extracted from normal and tumor tissues. Two dimensional electrophoresis was carried out and spots with differential expression were identified with mass spectrometry. RNA extraction and RT-PCR along with immunodetection were performed.RESULTS: Fourteen proteins were found whose expression levels differed in tumor compared to normal tissues. Mass spectrometric analysis resulted in the identification of β-tropomyosin (TMβ), myosin light chain 2 (and its isoform), myosin regulatory light chain 2,peroxyredoxin 2, annexin I and an unknown polypeptide as the down regulated polypeptides in tumor tissue. Heat shock protein 70 (HSP70), TPM4-ALK fusion oncoprotein 2, myosin light polypeptide 6, keratin I, GH16431p and calreticulin were the up-regulated polypeptides found in tumor tissue. Several of these proteins, such as TMβ,HSP70, annexin I, calreticulin, TPM4-ALK and isoforms of myosins, have been well recognized in tumorigenesis of esophageal or other types of cancers.CONCLUSION: Our study not only supports the involvement of some of the formerly reported proteins in SCCE but also introduces additional proteins found to be lost in SCCF, including TMβ.

  8. Identification of an abundant 56 kDa protein implicated in food allergy as granule-bound starch synthase.

    Science.gov (United States)

    Krishnan, Hari B; Chen, Ming-Hsuan

    2013-06-01

    Rice, the staple food of south and east Asian counties, is considered to be hypoallergenic. However, several clinical studies have documented rice-induced allergy in sensitive patients. Rice proteins with molecular weights of 14-16, 26, 33, and 56 kDa have been identified as allergens. Recently, it was documented that the 56 kDa rice allergen was responsible for rice-induced anaphylaxis. The 14-16 kDa allergens have been identified as α-amylase inhibitors; the 26 kDa protein has been identified as α-globulin; and the 33 kDa protein has been identified as glyoxalase I. However, the identity of the 56 kDa rice allergen has not yet been determined. In this study, we demonstrate that serum from patients allergic to maize shows IgE binding to a 56 kDa protein that was present in both maize and rice but not in the oil seeds soybean and peanut. The 56 kDa IgE-binding protein was abundant in the rice endosperm. We have purified this protein from rice endosperm and demonstrated its reactivity to IgE antibodies from the serum of maize-allergic patients. The purified protein was subjected to matrix-assisted laser desorption ionization-time of flight-tandem mass spectrometry analysis, resulting in identification of this rice allergen as granule-bound starch synthase, a product of the Waxy gene. Immunoblot analysis using protein extracts from a waxy mutant of rice revealed the absence of the 56 kDa IgE-binding protein. Our results demonstrate that the 56 kDa rice allergen is granule-bound starch synthase and raise the possibility of using waxy mutants of rice as a potential source of the hypoallergenic diet for patients sensitized to the 56 kDa rice allergen.

  9. Identification of metal-binding to proteins in seed samples using RF-HPLC-UV, GFAAS and MALDI-TOF-MS.

    Science.gov (United States)

    Rigueira, Leila M B; Lana, Diogo A P D; Dos Santos, Daniel M; Pimenta, Adriano M; Augusti, Rodinei; Costa, Leticia M

    2016-11-15

    An extraction procedure using Tris-HCl buffer solution was employed in order to extract water-soluble proteins from seed samples of oat, wheat and soybean. Initially, the total protein concentration was determined by the Bradford method in each solution, after the extraction procedure. The soybean sample showed a higher concentration of total protein compared to the others. The protein extracts obtained were separated by reverse-phase chromatography (RP-HPLC-UV). The protein fractions were collected and analyzed by graphite furnace atomic absorption spectrometry (GFAAS) and matrix-assisted laser desorption/ionization (MALDI-TOF-MS) for determination of Cu, Fe, Mn and Zn and identification of proteins, respectively. The combination of techniques such as RP-HPLC-UV, GFAAS and MALDI-TOF-MS allowed the identification of several proteins bound to metals present in the seed samples. PMID:27283712

  10. Identification of a mammalian mitochondrial homolog of ribosomal protein S7.

    Science.gov (United States)

    Cavdar Koc, E; Blackburn, K; Burkhart, W; Spremulli, L L

    1999-12-01

    Bovine mitochondrial small subunit ribosomal proteins were separated by two-dimensional electrophoresis. The region containing the most basic protein(s) was excised and the protein(s) present subjected to in-gel digestion with trypsin. Electrospray tandem mass spectrometry was used to provide sequence information on some of the peptide products. Searches of the human EST database using the sequence of the longest peptide analyzed indicated that this peptide was from the mammalian mitochondrial homolog of prokaryotic ribosomal protein S7 (MRP S7(human)). MRP S7(human) is a 28-kDa protein with a pI of 10. Significant homology to bacterial S7 is observed especially in the C-terminal half of the protein. Surprisingly, MRP S7(human) shows less homology to the corresponding mitochondrial proteins from plants and fungi than to bacterial S7.

  11. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein

    DEFF Research Database (Denmark)

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu;

    2012-01-01

    and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose...

  12. Identification and in silico analysis of helical lipid binding regions in proteins belonging to the amphitropic protein family

    Indian Academy of Sciences (India)

    Rob C A Keller

    2014-12-01

    The role of protein–lipid interactions is increasingly recognized to be of importance in numerous biological processes. Bioinformatics is being increasingly used as a helpful tool in studying protein–lipid interactions. Especially recently developed approaches recognizing lipid binding regions in proteins can be implemented. In this study one of those bioinformatics approaches specialized in identifying lipid binding helical regions in proteins is expanded. The approach is explored further by features which can be easily obtained manually. Some interesting examples of members of the amphitropic protein family have been investigated in order to demonstrate the additional features of this bioinformatics approach. The results in this study seem to indicate interesting characteristics of amphitropic proteins and provide insight into the mechanistic functioning and overall understanding of this intriguing class of proteins. Additionally, the results demonstrate that the presented bioinformatics approach might be either an interesting starting point in protein–lipid interactions studies or a good tool for selecting new focus points for more detailed experimental research of proteins with known overall protein–lipid binding abilities.

  13. Identification and evaluation of metastasis-related proteins, oxysterol binding protein-like 5 and calumenin, in lung tumors.

    Science.gov (United States)

    Nagano, Kazuya; Imai, Sunao; Zhao, Xiluli; Yamashita, Takuya; Yoshioka, Yasuo; Abe, Yasuhiro; Mukai, Yohei; Kamada, Haruhiko; Nakagawa, Shinsaku; Tsutsumi, Yasuo; Tsunoda, Shin-Ichi

    2015-07-01

    Metastasis is an important prognosis factor in lung cancer, therefore, it is imperative to identify target molecules and elucidate molecular mechanism of metastasis for developing new therapeutics and diagnosis methods. We searched for metastasis-related proteins by utilizing a novel antibody proteome technology developed in our laboratory that facilitated efficient screening of useful target proteins. Two-dimensional differential in-gel electrophoresis (2D-DIGE) analysis identified sixteen proteins, which were highly expressed in metastatic lung cancer cells, as protein candidates. Monoclonal single-chain variable fragments (scFvs) binding to candidates were isolated from a scFv-displaying phage library by affinity selection. Tissue microarray analysis of scFvs binding to candidates revealed that oxysterol binding protein-like 5 (OSBPL5) and calumenin (CALU) were expressed at a significantly higher levels in the lung tissues of metastasis-positive cases than that in the metastasis-negative cases (OSBPL5; p=0.0156, CALU; p=0.0055). Furthermore, 80% of OSBPL5 and CALU double-positive cases were positive for lymph node metastasis. Consistent with these observations, overexpression of OSBPL5 and CALU promoted invasiveness of lung cancer cells. Conversely, knockdown of these proteins using respective siRNAs reversed the invasiveness of the lung cancer cells. Moreover, these proteins were expressed in lung tumor tissues, but not in normal lung tissues. In conclusion, OSBPL5 and CALU are related to metastatic potential of lung cancer cells, and they could be useful targets for cancer diagnosis and also for development of drugs against metastasis.

  14. Proteomic identification of carbonylated proteins in the kidney of trichloroethene-exposed MRL+/+ mice

    OpenAIRE

    Fan, Xiuzhen; WANG, GANGDUO; English, Robert D.; Khan, M. Firoze

    2013-01-01

    Trichloroethene (TCE), a common environmental and occupational pollutant, is associated with multi-organ toxicity. Kidney is one of major target organs affected as a result of TCE exposure. Our previous studies have shown that exposure to TCE causes increased protein oxidation (protein carbonylation) in the kidneys of autoimmune-prone MRL +/+ mice, and suggested a potential role of protein oxidation in TCE-mediated nephrotoxicity. To assess the impact of chronic TCE exposure on protein oxidat...

  15. Identification of Major Sporulation Proteins of Myxococcus xanthus Using a Proteomic Approach▿

    OpenAIRE

    Dahl, John L.; Tengra, Farah K; Dutton, David; Yan, Jinyuan; Andacht, Tracy M.; Coyne, Lia; Windell, Veronica; Garza, Anthony G.

    2007-01-01

    Myxococcus xanthus is a soil-dwelling, gram-negative bacterium that during nutrient deprivation is capable of undergoing morphogenesis from a vegetative rod to a spherical, stress-resistant spore inside a domed-shaped, multicellular fruiting body. To identify proteins required for building stress-resistant M. xanthus spores, we compared the proteome of liquid-grown vegetative cells with the proteome of mature fruiting body spores. Two proteins, protein S and protein S1, were differentially ex...

  16. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    Science.gov (United States)

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  17. Structure-sequence based analysis for identification of conserved regions in proteins

    Science.gov (United States)

    Zemla, Adam T; Zhou, Carol E; Lam, Marisa W; Smith, Jason R; Pardes, Elizabeth

    2013-05-28

    Disclosed are computational methods, and associated hardware and software products for scoring conservation in a protein structure based on a computationally identified family or cluster of protein structures. A method of computationally identifying a family or cluster of protein structures in also disclosed herein.

  18. Identification of frog photoreceptor plasma and disk membrane proteins by radioiodination

    Energy Technology Data Exchange (ETDEWEB)

    Witt, P.L.; Bownds, M.D.

    1987-03-24

    Several functions have been identified for the plasma membrane of the rod outer segment, including control of light-dependent changes in sodium conductance and a sodium-calcium exchange mechanism. However, little is known about its constituent proteins. Intact rod outer segments substantially free of contaminants were prepared in the dark and purified on a density gradient of Percoll. Surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination, and intact rod outer segments were reisolated. Membrane proteins were identified by polyacrylamide gel electrophoresis and autoradiography. The surface proteins labeled included rhodopsin, the major membrane protein, and 12 other proteins. To compare the protein composition of plasma membrane with that of the internal disk membrane, purified rod outer segments were lysed by hypotonic disruption or freeze-thawing, and plasma plus disk membranes were radioiodinated. In these membrane preparations, rhodopsin was the major iodinated constituent, with 12 other proteins also labeled. Autoradiographic evidence indicated some differences in protein composition between disk and plasma membranes. A quantitative comparison of the two samples showed that labeling of two proteins, 24 kilodaltons (kDa) and 13 kDa, was enriched in the plasma membrane, while labeling of a 220-kDa protein was enriched in the disk membrane. These plasma membrane proteins may be associated with important functions such as the light-sensitive conductance and the sodium-calcium exchanger.

  19. Proteomics Identification of Differentially Expressed Leaf Proteins in Response to Setosphaeria turcica Infection in Resistant Maize

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-li; SI Bing-wen; FAN Cheng-ming; LI Hong-jie; WANG Xiao-ming

    2014-01-01

    Northern corn leaf blight (NCLB), caused by the heterothallic ascomycete fungus Setosphaeria turcica, is a destructive foliar disease of maize and represents a serious threat to maize production worldwide. A comparative proteomic study was conducted to explore the molecular mechanisms underlying the defense responses of the maize resistant line A619 Ht2 to S. turcica race 13. Leaf proteins were extracted from mock and S. turcica-infected leaves after inoculated for 72 h and analyzed for differentially expressed proteins using two-dimensional electrophoresis and mass spectrometry identiifcation. 137 proteins showed reproducible differences in abundance by more than 2-fold at least, including 50 up-regulated proteins and 87 down-regulated proteins. 48 protein spots were successfully identiifed by MS analysis, which included 10 unique, 6 up-regulated, 20 down-regulated and 12 disappeared protein spots. These identiifed proteins were classiifed into 9 functional groups and involved in multiple functions, particularly in energy metabolism (46%), protein destination and storage (12%), and disease defense (18%). Some defense-related proteins were upregulated such asβ-glucosidase, SOD, polyamines oxidase, HSC 70 and PPIases; while the expressions of photosynthesis- and metabolism-related proteins were down-regulated, by inoculation with S. turcica. The results indicated that a complex regulatory network was functioned in interaction between the resistant line A619 Ht2 and S. turcica. The resistance processes of A619 Ht2 mainly resided on directly releasing defense proteins, modulation of primary metabolism, affecting photosyntesis and carbohydrate metabolism.

  20. Enhancements to the Rosetta Energy Function Enable Improved Identification of Small Molecules that Inhibit Protein-Protein Interactions.

    Directory of Open Access Journals (Sweden)

    Andrea Bazzoli

    Full Text Available Protein-protein interactions are among today's most exciting and promising targets for therapeutic intervention. To date, identifying small-molecules that selectively disrupt these interactions has proven particularly challenging for virtual screening tools, since these have typically been optimized to perform well on more "traditional" drug discovery targets. Here, we test the performance of the Rosetta energy function for identifying compounds that inhibit protein interactions, when these active compounds have been hidden amongst pools of "decoys." Through this virtual screening benchmark, we gauge the effect of two recent enhancements to the functional form of the Rosetta energy function: the new "Talaris" update and the "pwSHO" solvation model. Finally, we conclude by developing and validating a new weight set that maximizes Rosetta's ability to pick out the active compounds in this test set. Looking collectively over the course of these enhancements, we find a marked improvement in Rosetta's ability to identify small-molecule inhibitors of protein-protein interactions.

  1. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling.

    Science.gov (United States)

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina

    2015-07-24

    The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the "lipolysome." Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome.

  2. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling.

    Science.gov (United States)

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina

    2015-07-24

    The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the "lipolysome." Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome. PMID:25953897

  3. Identification of a novel conserved HLA-A*0201-restricted epitope from the spike protein of SARS-CoV

    Directory of Open Access Journals (Sweden)

    Ni Bing

    2009-12-01

    Full Text Available Abstract Background The spike (S protein is a major structural glycoprotein of coronavirus (CoV, the causal agent of severe acute respiratory syndrome (SARS. The S protein is a potent target for SARS-specific cell-mediated immune responses. However, the mechanism CoV pathogenesis in SARS and the role of special CTLs in virus clearance are still largely uncharacterized. Here, we describe a study that leads to the identification of a novel HLA-A*0201-restricted epitope from conserved regions of S protein. Results First, different SARS-CoV sequences were analyzed to predict eight candidate peptides from conserved regions of the S protein based upon HLA-A*0201 binding and proteosomal cleavage. Four of eight candidate peptides were tested by HLA-A*0201 binding assays. Among the four candidate peptides, Sp8 (S958-966, VLNDILSRL induced specific CTLs both ex vivo in PBLs of healthy HLA-A2+ donors and in HLA-A2.1/Kb transgenic mice immunized with a plasmid encoding full-length S protein. The immunized mice released IFN-γ and lysed target cells upon stimulation with Sp8 peptide-pulsed autologous dendritic cells in comparison to other candidates. Conclusion These results suggest that Sp8 is a naturally processed epitope. We propose that Sp8 epitope should help in the characterization of mechanisms of virus control and immunopathology in SARS-CoV infection.

  4. Identification of Proteins in Human Cytomegalovirus (HCMV) Particles: the HCMV Proteome

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Streblow, Daniel N.; Monroe, Matthew E.; Smith, Patricia; Auberry, Kenneth J.; Pasa-Tolic, Liljiana; Wang, Dai; Camp, David G.; Rodland, Karin D.; Wiley, H S.; Britt, William; Shenk, Thomas; Smith, Richard D.; Nelson, Jay

    2004-10-15

    Human cytomegalovirus (HCMV), a member of the herpes virus family, is a large complex enveloped virus composed of both viral and cellular gene products. While the sequence of the HCMV genome has been known for over a decade, the full set of viral and cellular proteins that compose the HCMV virion are unknown. To approach this problem we have utilized gel-free two-dimensional capillary liquid chromatography-tandem mass spectrometry (MS/MS) and Fourier transform ion cyclotron resonance MS to identify and determine the relative abundances of viral and cellular proteins in purified HCMV AD169 virions and dense bodies. Analysis of the proteins from purified HCMV virion preparations has indicated that the particle contains significantly more viral proteins than previously known. In this study, we identified 71 HCMV-encoded proteins that included 12 proteins encoded by known viral open reading frames (ORFs) previously not associated with virions and 12 proteins from novel viral ORFs. Analysis of the relative abundance of HCMV proteins indicated that the predominant virion protein was the pp65 tegument protein and that gM rather than gB was the most abundant glycoprotein. We have also identified over 70 host cellular proteins in HCMV virions, which include cellular structural proteins, enzymes, and chaperones. In addition, analysis of HCMV dense bodies indicated that these viral particles are composed of 29 viral proteins with a reduced quantity of cellular proteins in comparison to HCMV virions. This study provides the first comprehensive quantitative analysis of the viral and cellular proteins that compose infectious particles of a large complex virus.

  5. Identification of Cry1Ac and Cry2Ab proteins in transgenic cotton seeds available in Gujarat (India by ELISA method

    Directory of Open Access Journals (Sweden)

    Alka Dohare

    2014-02-01

    Full Text Available Along with the increase market of the transgenic crops, the demand for testing GMOs and for certifying non-GMO foodstuffs has increased dramatically. Within the arena of expanding techniques for identification and quantification of transgenic crops, two major approaches for detecting GMOs are still applicable on large scale, namely ELISA based protein detection and PCR based gene identification. In present study, ELISA techniques was adopted to identify the specific Cry1Ac and Cry2Ab proteins in some transgenic cotton plants seed samples viz., Gujarat cotton hybrid – 6 (BG II, Gujarat cotton hybrid – 8 (BG II and Gujarat cotton hybrid – 10 (BG II from the Gujarat state of India. The study reveals the presence of both Cry1Ac and Cry2Ab proteins in the transgenic seed samples and also demonstrated that the technique of ELISA for identification of Cry1Ac and Cry2Ab proteins is quite handy and easily adoptable.

  6. Simplified sample preparation method for protein identification by matrix-assisted laser desorption/ionization mass spectrometry: in-gel digestion on the probe surface

    DEFF Research Database (Denmark)

    Stensballe, A; Jensen, Ole Nørregaard

    2001-01-01

    Identification and detailed characterization of complex mixtures of proteins separated by polyacrylamide gel electrophoresis (PAGE) require optimized and robust methods for interfacing electrophoretic techniques to mass spectrometry. Peptide mapping by matrix-assisted laser desorption/ionization-......Identification and detailed characterization of complex mixtures of proteins separated by polyacrylamide gel electrophoresis (PAGE) require optimized and robust methods for interfacing electrophoretic techniques to mass spectrometry. Peptide mapping by matrix-assisted laser desorption...... for protein identification similar to that obtained by the traditional protocols for in-gel digestion and MALDI peptide mass mapping of human proteins, i.e. approximately 60%. The overall performance of the novel on-probe digestion method is comparable with that of the standard in-gel sample preparation...

  7. Identification and RNA segment assignment of six structural proteins of Scylla serrata reovirus.

    Science.gov (United States)

    Yuan, Yangyang; Fan, Dongyang; Zhang, Zhao; Yang, Jifang; Liu, Jingwen; Chen, Jigang

    2016-08-01

    Scylla serrata reovirus (SsRV) is one of the most prevalent viral pathogens of the mud crab (S. serrata). The virus represents an unassigned novel genus in the Reoviridae family, and contains 12 double-stranded RNA genomic segments. Previous analysis of virion proteins concluded that SsRV contains at least eight structural proteins, ranging from 25 to 160 kDa. Here, tandem time-of-flight mass spectrometry and Western blotting were used to re-identify the structural proteins. The results indicate that proteins encoded by SsRV segments S1, S3, S6, S9, S11, and S12 are structural proteins.

  8. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2009-10-01

    identification of pTyr proteins and signaling pathways associated with HCC metastasis could provide useful information for selecting new molecular intervention targets. Moreover, FER might serve as a novel drug target in future HCC therapy.

  9. Identification and characterization of cow's milk proteins from the rat intestinal lymph using a proteomic strategy.

    Science.gov (United States)

    Li, Xundou; Wei, Lilong; Jia, Lulu; Li, Menglin; Zhu, Lisi; Liu, Liu; Gao, Youhe

    2013-09-01

    Food proteins were considered to be absorbed into the body after being digested to amino acids, dipeptides, and tripeptides. However, there are studies indicating that some proteins can pass through the intestinal epithelium under normal physiological conditions, perhaps not in sufficient quantities to be of nutritional importance, but in quantities that may be antigenically or biologically active. In the present study, rat intestinal lymph samples were collected using a modified lymph fistula rat model in fasting and cow's milk postprandial states. Low molecular weight proteins were enriched by ultrafiltration and differential solubilization, separated by 1D-SDS-PAGE, digested in-gel based on molecular weight, and identified using nano-LC-MS/MS. In the postprandial rat intestinal lymph, nine bovine-specific proteins (false discovery rate ≤1%) were identified in different molecular weight regions. Most proteins identified in lymph were highly abundant proteins in the milk, such as β-lactoglobulin and caseins. Seven of the nine identified bovine-specific proteins are allergens in milk. This strategy can be used to search for proteins that can enter the intestinal lymph and analyze their common features. Understanding the common features of these proteins might help to develop protein drugs taken orally, so that therapeutic proteins might embody fusion domains for cross-barrier transport or translocation.

  10. Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines.

    Directory of Open Access Journals (Sweden)

    Guilian Xu

    Full Text Available Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y and glial (CCF-STTG1 lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48 residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress.

  11. Identification and quantification of host proteins in the vesicular fluid of porcine Taenia solium cysticerci.

    Science.gov (United States)

    Navarrete-Perea, José; Moguel, Bárbara; Mendoza-Hernández, Guillermo; Fragoso, Gladis; Sciutto, Edda; Bobes, Raúl J; Laclette, Juan P

    2014-08-01

    The host-parasite relationship in cestode infections is complex. One feature of this bidirectional molecular communication is the uptake of host proteins by the parasite. Here we describe the presence of several host proteins in the vesicular fluid of Taenia solium cysticerci dissected from the central nervous system and the skeletal muscle of naturally infected pigs. Using two-dimensional electrophoresis we compared the protein patterns of vesicular fluids of cysticerci vs. the sera of cysticercotic pigs. We found that the vesicular fluids of both groups of cysts showed 17 protein spots matching with the pig's sera spots. After mass spectrometry sequencing of these spots, five host proteins were identified: hemoglobin, albumin, serpin A3-8, haptoglobin, rho GTPase-activating protein 36-like. Three of the 17 spots corresponded to host protein fragments: hemoglobin, albumin and serpin A3-8. IgG heavy and light chains were also identified by Western blot using a specific antibody. Quantitative estimations indicated that the host proteins represented 11-13% of the protein content in the vesicular fluids. We also calculated the relative abundance of these host proteins in the vesicular fluids; all were represented in similar relative abundances as in host sera. This suggests that uptake of host proteins by cysticerci proceeds through an unspecific mechanism such as non-specific fluid pinocytosis.

  12. [Identification of the immunogenic outer membrane proteins of relapsing fever Borrelia].

    Science.gov (United States)

    Tabuchi, Norihiko; Murakami, Noritaka; Fukunaga, Masahito

    2013-01-01

    Borrelia duttonii, a causative agent of relapsing fever, is transmitted between the distinct microenvironments of the vector tick, Ornithodoros moubata, and a mammalian host. We identified the total and membrane fraction proteins of B. duttonii strain Ly isolated from a patient in Tanzania by using two-dimensional gel electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The analyses of the total and membrane fractions from bacterial cultures incubated at 37°C identified 68 and 15 proteins, respectively. Since spirochaete clearance in mice is associated with an immunoglobulin M (IgM) and immunoglobulin G3 (IgG3)-mediated response, immunoblot analyses were used to identify the proteins reactive with IgM and IgG3 of gerbil serum against B. duttonii strain Ly. The outcome showed that six proteins (antigen p83/100, membrane-associated protein P66 (P66), flagellar filament outer layer protein, hypothetical protein BDU_412, vlp protein gamma subfamily (γ-Vlp) and flagellin (FlaB)) were identified against IgM, and four (antigen p83/100, P66, γ-Vlp and FlaB) of the six proteins also reacted with IgG3. It is believed that these proteins are immunodominant antigens for the host immune response. Some of these immunogenic proteins might be used as molecular diagnostic tools in the study of relapsing fever in Tanzania.

  13. Identification of an amyloidogenic peptide from the Bap protein of Staphylococcus epidermidis.

    Science.gov (United States)

    Lembré, Pierre; Vendrely, Charlotte; Martino, Patrick Di

    2014-01-01

    Biofilm associated proteins (Bap) are involved in the biofilm formation process of several bacterial species. The sequence STVTVT is present in Bap proteins expressed by many Staphylococcus species, Acinetobacter baumanii and Salmonella enterica. The peptide STVTVTF derived from the C-repeat of the Bap protein from Staphylococcus epidermidis was selected through the AGGRESCAN, PASTA, and TANGO software prediction of protein aggregation and formation of amyloid fibers. We characterized the self-assembly properties of the peptide STVTVTF by different methods: in the presence of the peptide, we observed an increase in the fluorescence intensity of Thioflavin T; many intermolecular β-sheets and fibers were spontaneously formed in peptide preparations as observed by infrared spectroscopy and atomic force microscopy analyses. In conclusion, a 7 amino acids peptide derived from the C-repeat of the Bap protein was sufficient for the spontaneous formation of amyloid fibers. The possible involvement of this amyloidogenic sequence in protein-protein interactions is discussed.

  14. Screening and Identification of Antigenic Proteins from the Hard Tick Dermacentor silvarum (Acari: Ixodidae).

    Science.gov (United States)

    Zhang, Tiantian; Cui, Xuejiao; Zhang, Jincheng; Wang, Hui; Wu, Meng; Zeng, Hua; Cao, Yuanyuan; Liu, Jingze; Hu, Yonghong

    2015-12-01

    In order to explore tick proteins as potential targets for further developing vaccine against ticks, the total proteins of unfed female Dermacentor silvarum were screened with anti-D. silvarum serum produced from rabbits. The results of western blot showed that 3 antigenic proteins of about 100, 68, and 52 kDa were detected by polyclonal antibodies, which means that they probably have immunogenicity. Then, unfed female tick proteins were separated by 12% SDS-PAGE, and target proteins (100, 68, and 52 kDa) were cut and analyzed by LC-MS/MS, respectively. The comparative results of peptide sequences showed that they might be vitellogenin (Vg), heat shock protein 60 (Hsp60), and fructose-1, 6-bisphosphate aldolase (FBA), respectively. These data will lay the foundation for the further validation of antigenic proteins to prevent infestation and diseases transmitted by D. silvarum. PMID:26797451

  15. Identification of an amyloidogenic peptide from the Bap protein of Staphylococcus epidermidis.

    Science.gov (United States)

    Lembré, Pierre; Vendrely, Charlotte; Martino, Patrick Di

    2014-01-01

    Biofilm associated proteins (Bap) are involved in the biofilm formation process of several bacterial species. The sequence STVTVT is present in Bap proteins expressed by many Staphylococcus species, Acinetobacter baumanii and Salmonella enterica. The peptide STVTVTF derived from the C-repeat of the Bap protein from Staphylococcus epidermidis was selected through the AGGRESCAN, PASTA, and TANGO software prediction of protein aggregation and formation of amyloid fibers. We characterized the self-assembly properties of the peptide STVTVTF by different methods: in the presence of the peptide, we observed an increase in the fluorescence intensity of Thioflavin T; many intermolecular β-sheets and fibers were spontaneously formed in peptide preparations as observed by infrared spectroscopy and atomic force microscopy analyses. In conclusion, a 7 amino acids peptide derived from the C-repeat of the Bap protein was sufficient for the spontaneous formation of amyloid fibers. The possible involvement of this amyloidogenic sequence in protein-protein interactions is discussed. PMID:24354773

  16. Large-scale identification of membrane proteins with properties favorable for crystallization.

    Science.gov (United States)

    Kim, Jared; Kagawa, Allison; Kurasaki, Kellie; Ataie, Niloufar; Cho, Il Kyu; Li, Qing X; Ng, Ho Leung

    2015-11-01

    Membrane protein crystallography is notoriously difficult due to challenges in protein expression and issues of degradation and structural stability. We have developed a novel method for large-scale screening of native sources for integral membrane proteins that have intrinsic biochemical properties favorable for crystallization. Highly expressed membrane proteins that are thermally stable and nonaggregating in detergent solutions were identified by mass spectrometry from Escherichia coli, Saccharomyces cerevisiae, and Sus scrofa cerebrum. Many of the membrane proteins identified had been crystallized previously, supporting the promise of the approach. Most identified proteins have known functions and include high-value targets such as transporters and ATPases. To validate the method, we recombinantly expressed and purified the yeast protein, Yop1, which is responsible for endoplasmic reticulum curvature. We demonstrate that Yop1 can be purified with the detergent dodecylmaltoside without aggregating.

  17. Protein profile of human hepatocarcinoma cell line SMMC-7721: Identification and functional analysis

    Institute of Scientific and Technical Information of China (English)

    Yi Feng; Zhong-Min Tian; Ming-Xi Wan; Zhao-Bin Zheng

    2007-01-01

    AIM: To investigate the protein profile of human hepatocarcinoma cell line SMMC-7721, to analyze the specific functions of abundant expressed proteins in the processes of hepatocarcinoma genesis, growth and metastasis, to identify the hepatocarcinoma-specific biomarkers for the early prediction in diagnosis, and to explore the new drug targets for liver cancer therapy.METHODS: Total proteins from human hepatocarcinomacell line SMMC-7721 were separated by two-dimensional electrophoresis (2DE). The silver-stained gel was analyzed by 2DE software Image Master 2D Elite.Interesting protein spots were identified by peptide mass fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)and database searching.RESULTS: We obtained protein profile of human hepatocarcinoma cell line SMMC-7721. Among the twenty-one successfully identified proteins, mitofilin,endoplasmic reticulum protein ERp29, ubiquinol-cytochrome C reductase complex core protein Ⅰ,peroxisomal enoyl CoA hydratase, peroxiredoxin-4 and probable 3-oxoacid CoA transferase 1 precursor were the six novel proteins identified in human hepatocarcinoma cells or tissues. Specific functions of the identified heat-shock proteins were analyzed in detail, and the results suggested that these proteins might promote tumorigenesis via inhibiting cell death induced by several cancer-related stresses or via inhibiting apoptosis at multiple points in the apoptotic signal pathway. Other identified chaperones and cancer-related proteins were also analyzed.CONCLUSION: Based on the protein profile of SMMC-7721 cells, functional analysis suggests that the identified chaperones and cancer-related proteins have their own pathways to contribute to the tumorigenesis, tumor growth and metastasis of liver cancer. Furthermore, proteomic analysis is indicated to be feasible in the cancer study.

  18. Pox proteomics: mass spectrometry analysis and identification of Vaccinia virion proteins

    Directory of Open Access Journals (Sweden)

    Vemulapalli Srilakshmi

    2006-03-01

    Full Text Available Abstract Background Although many vaccinia virus proteins have been identified and studied in detail, only a few studies have attempted a comprehensive survey of the protein composition of the vaccinia virion. These projects have identified the major proteins of the vaccinia virion, but little has been accomplished to identify the unknown or less abundant proteins. Obtaining a detailed knowledge of the viral proteome of vaccinia virus will be important for advancing our understanding of orthopoxvirus biology, and should facilitate the development of effective antiviral drugs and formulation of vaccines. Results In order to accomplish this task, purified vaccinia virions were fractionated into a soluble protein enriched fraction (membrane proteins and lateral bodies and an insoluble protein enriched fraction (virion cores. Each of these fractions was subjected to further fractionation by either sodium dodecyl sulfate-polyacrylamide gel electophoresis, or by reverse phase high performance liquid chromatography. The soluble and insoluble fractions were also analyzed directly with no further separation. The samples were prepared for mass spectrometry analysis by digestion with trypsin. Tryptic digests were analyzed by using either a matrix assisted laser desorption ionization time of flight tandem mass spectrometer, a quadrupole ion trap mass spectrometer, or a quadrupole-time of flight mass spectrometer (the latter two instruments were equipped with electrospray ionization sources. Proteins were identified by searching uninterpreted tandem mass spectra against a vaccinia virus protein database created by our lab and a non-redundant protein database. Conclusion Sixty three vaccinia proteins were identified in the virion particle. The total number of peptides found for each protein ranged from 1 to 62, and the sequence coverage of the proteins ranged from 8.2% to 94.9%. Interestingly, two vaccinia open reading frames were confirmed as being expressed

  19. Identification of intermediate species in protein-folding by quantitative analysis of amplitudes in time-domain fluorescence spectroscopy

    Indian Academy of Sciences (India)

    Anoop M Saxena; G Krishnamoorthy; Jayant B Udgaonkar; N Periasamy

    2007-03-01

    In protein-folding studies it is often required to differentiate a system with only two-states, namely the native (N) and unfolded (U) forms of the protein present at any condition of the solvent, from a situation wherein intermediate state(s) could also be present. This differentiation of a two-state from a multi-state structural transition is non-trivial when studied by the several steady-state spectroscopic methods that are popular in protein-folding studies. In contrast to the steady-state methods, time-resolved fluorescence has the capability to reveal the presence of heterogeneity of structural forms due to the `fingerprint’ nature of fluorescence lifetimes of various forms. In this work, we establish this method by quantitative analysis of amplitudes associated with fluorescence lifetimes in multiexponential decays. First, we show that we can estimate, accurately, the relative population of species from two-component mixtures of non-interacting molecules such as fluorescent dyes, peptides and proteins. Subsequently, we demonstrate, by analysing the amplitudes of fluorescence lifetimes which are controlled by fluorescence resonance energy transfer (FRET), that the equilibrium folding-unfolding transition of the small singledomain protein barstar is not a two-step process.

  20. Identification of Immunoreactive Leishmania infantum Protein Antigens to Asymptomatic Dog Sera through Combined Immunoproteomics and Bioinformatics Analysis

    Science.gov (United States)

    Samiotaki, Martina; Panayotou, George; Karagouni, Evdokia

    2016-01-01

    Leishmania infantum is the etiologic agent of zoonotic visceral leishmaniasis (VL) in countries in the Mediterranean basin, where dogs are the domestic reservoirs and represent important elements in the transmission of the disease. Since the major focal areas of human VL exhibit a high prevalence of seropositive dogs, the control of canine VL could reduce the infection rate in humans. Efforts toward this have focused on the improvement of diagnostic tools, as well as on vaccine development. The identification of parasite antigens including suitable major histocompatibility complex (MHC) class I- and/or II-restricted epitopes is very important since disease protection is characterized by strong and long-lasting CD8+ T and CD4+ Th1 cell-dominated immunity. In the present study, total protein extract from late-log phase L. infantum promastigotes was analyzed by two-dimensional western blots and probed with sera from asymptomatic and symptomatic dogs. A total of 42 protein spots were found to differentially react with IgG from asymptomatic dogs, while 17 of these identified by Coommasie stain were extracted and analyzed. Of these, 21 proteins were identified by mass spectrometry; they were mainly involved in metabolism and stress responses. An in silico analysis predicted that the chaperonin HSP60, dihydrolipoamide dehydrogenase, enolase, cyclophilin 2, cyclophilin 40, and one hypothetical protein contain promiscuous MHCI and/or MHCII epitopes. Our results suggest that the combination of immunoproteomics and bioinformatics analyses is a promising method for the identification of novel candidate antigens for vaccine development or with potential use in the development of sensitive diagnostic tests. PMID:26906226

  1. A Multifaceted Study of Scedosporium boydii Cell Wall Changes during Germination and Identification of GPI-Anchored Proteins.

    Directory of Open Access Journals (Sweden)

    Sarah Ghamrawi

    Full Text Available Scedosporium boydii is a pathogenic filamentous fungus that causes a wide range of human infections, notably respiratory infections in patients with cystic fibrosis. The development of new therapeutic strategies targeting S. boydii necessitates a better understanding of the physiology of this fungus and the identification of new molecular targets. In this work, we studied the conidium-to-germ tube transition using a variety of techniques including scanning and transmission electron microscopy, atomic force microscopy, two-phase partitioning, microelectrophoresis and cationized ferritin labeling, chemical force spectroscopy, lectin labeling, and nanoLC-MS/MS for cell wall GPI-anchored protein analysis. We demonstrated that the cell wall undergoes structural changes with germination accompanied with a lower hydrophobicity, electrostatic charge and binding capacity to cationized ferritin. Changes during germination also included a higher accessibility of some cell wall polysaccharides to lectins and less CH3/CH3 interactions (hydrophobic adhesion forces mainly due to glycoproteins. We also extracted and identified 20 GPI-anchored proteins from the cell wall of S. boydii, among which one was detected only in the conidial wall extract and 12 only in the mycelial wall extract. The identified sequences belonged to protein families involved in virulence in other fungi like Gelp/Gasp, Crhp, Bglp/Bgtp families and a superoxide dismutase. These results highlighted the cell wall remodeling during germination in S. boydii with the identification of a substantial number of cell wall GPI-anchored conidial or hyphal specific proteins, which provides a basis to investigate the role of these molecules in the host-pathogen interaction and fungal virulence.

  2. Molecular identification of carnosine N-methyltransferase as chicken histamine N-methyltransferase-like protein (hnmt-like.

    Directory of Open Access Journals (Sweden)

    Jakub Drozak

    Full Text Available Anserine (beta-alanyl-N(Pi-methyl-L-histidine, a naturally occurring derivative of carnosine (beta-alanyl-L-histidine, is an abundant constituent of skeletal muscles and brain of many vertebrates. Although it has long been proposed to serve as a proton buffer, radicals scavenger and transglycating agent, its physiological function remains obscure. The formation of anserine is catalyzed by carnosine N-methyltransferase which exhibits unknown molecular identity. In the present investigation, we have purified carnosine N-methyltransferase from chicken pectoral muscle about 640-fold until three major polypeptides of about 23, 26 and 37 kDa coeluting with the enzyme were identified in the preparation. Mass spectrometry analysis of these polypeptides resulted in an identification of histamine N-methyltransferase-like (HNMT-like protein as the only meaningful candidate. Analysis of GenBank database records indicated that the hnmt-like gene might be a paralogue of histamine N-methyltransferase gene, while comparison of their protein sequences suggested that HNMT-like protein might have acquired a new activity. Chicken HNMT-like protein was expressed in COS-7 cells, purified to homogeneity, and shown to catalyze the formation of anserine as confirmed by both chromatographic and mass spectrometry analysis. Both specificity and kinetic studies carried out on the native and recombinant enzyme were in agreement with published data. Particularly, several compounds structurally related to carnosine, including histamine and L-histidine, were tested as potential substrates for the enzyme, and carnosine was the only methyl group acceptor. The identification of the gene encoding carnosine N-methyltransferase might be beneficial for estimation of the biological functions of anserine.

  3. Identification of canine platelet proteins separated by differential detergent fractionation for nonelectrophoretic proteomics analyzed by Gene Ontology and pathways analysis

    Directory of Open Access Journals (Sweden)

    Trichler SA

    2014-01-01

    , identification of potential treatment targets and biomarkers, and sets a new standard for the resting platelet proteome. Keywords: proteome, differential detergent fractionation, dog, functional analysis, protein

  4. Identification of Novel Virulence-Associated Proteins Secreted to Xylem by Verticillium nonalfalfae During Colonization of Hop Plants.

    Science.gov (United States)

    Flajsman, Marko; Mandelc, Stanislav; Radisek, Sebastjan; Stajner, Natasa; Jakse, Jernej; Kosmelj, Katarina; Javornik, Branka

    2016-05-01

    Plant pathogens employ various secreted proteins to suppress host immunity for their successful host colonization. Identification and characterization of pathogen-secreted proteins can contribute to an understanding of the pathogenicity mechanism and help in disease control. We used proteomics to search for proteins secreted to xylem by the vascular pathogen Verticillium nonalfalfae during colonization of hop plants. Three highly abundant fungal proteins were identified: two enzymes, α-N-arabinofuranosidase (VnaAbf4.216) and peroxidase (VnaPRX1.1277), and one small secreted hypothetical protein (VnaSSP4.2). These are the first secreted proteins so far identified in xylem sap following infection with Verticillium spp. VnaPRX1.1277, classified as a heme-containing peroxidase from Class II, similar to other Verticillium spp. lignin-degrading peroxidases, and VnaSSP4.2, a 14-kDa cysteine-containing protein with unknown function and with a close homolog in related V. alfalfae strains, were further examined. The in planta expression of VnaPRX1.1277 and VnaSSP4.2 genes increased with the progression of colonization, implicating their role in fungal virulence. Indeed, V. nonalfalfae deletion mutants of both genes exhibited attenuated virulence on hop plants, which returned to the level of the wild-type pathogenicity in the knockout complementation lines, supporting VnaPRX1.1277 and VnaSSP4.2 as virulence factors required to promote V. nonalfalfae colonization of hop plants. PMID:26883488

  5. Identification of a Highly Conserved Epitope on Avian Influenza Virus Non-Structural Protein 1 Using a Peptide Microarray

    Science.gov (United States)

    Wen, Xuexia; Bao, Hongmei; Shi, Lin; Tao, Qimeng; Jiang, Yongping; Zeng, Xianying; Xu, Xiaolong; Tian, Guobin; Zheng, Shimin; Chen, Hualan

    2016-01-01

    Avian influenza virus (AIV) non-structural protein 1 (NS1) is a multifunctional protein. It is present at high levels in infected cells and can be used for AIV detection and diagnosis. In this study, we generated monoclonal antibody (MAb) D7 against AIV NS1 protein by immunization of BALB/c mice with purified recombinant NS1 protein expressed in Escherichia coli. Isotype determination revealed that the MAb was IgG1/κ-type subclass. To identify the epitope of the MAb D7, the NS1 protein was truncated into a total of 225 15-mer peptides with 14 amino acid overlaps, which were spotted for a peptide microarray. The results revealed that the MAb D7 recognized the consensus DAPF motif. Furthermore, the AIV NS1 protein with the DAPF motif deletion was transiently expressed in 293T cells and failed to react with MAb D7. Subsequently, the DAPF motif was synthesized with an elongated GSGS linker at both the C- and N-termini. The MAb D7 reacted with the synthesized peptide both in enzyme-linked immunosorbent assay (ELISA) and dot-blot assays. From these results, we concluded that DAPF motif is the epitope of MAb D7. To our knowledge, this is the first report of a 4-mer epitope on the NS1 protein of AIV that can be recognized by MAb using a peptide microarray, which is able to simplify epitope identification, and that could serve as the basis for immune responses against avian influenza. PMID:26938453

  6. Identification of a human homologue of the vesicle-associated membrane protein (VAMP)-associated protein of 33 kDa (VAP-33): a broadly expressed protein that binds to VAMP.

    Science.gov (United States)

    Weir, M L; Klip, A; Trimble, W S

    1998-01-01

    We report the identification of a human homologue of the vesicle-associated membrane protein (VAMP)-associated protein (hVAP-33) that has been implicated in neuronal exocytosis in Aplysia californica. This hVAP-33 shared 50% amino acid identity with the A. californica form and had similar length, structural organization and VAMP-binding abilities. However, in contrast with the neuron-specific expression seen in A. californica, hVAP-33 was broadly expressed, suggesting possible roles in vesicle fusion in both neuronal and non-neuronal cells. PMID:9657962

  7. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    Science.gov (United States)

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-01

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  8. Identification of Protein Complex Associated with LYT1 of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    C. Lugo-Caballero

    2013-01-01

    Full Text Available To carry out the intracellular phase of its life cycle, Trypanosoma cruzi must infect a host cell. Although a few molecules have been reported to participate in this process, one known protein is LYT1, which promotes lysis under acidic conditions and is involved in parasite infection and development. Alternative transcripts from a single LYT1 gene generate two proteins with differential functions and compartmentalization. Single-gene products targeted to more than one location can interact with disparate proteins that might affect their function and targeting properties. The aim of this work was to study the LYT1 interaction map using coimmunoprecipitation assays with transgenic parasites expressing LYT1 products fused to GFP. We detected several proteins of sizes from 8 to 150 kDa that bind to LYT1 with different binding strengths. By MS-MS analysis, we identified proteins involved in parasite infectivity (trans-sialidase, development (kDSPs and histones H2A and H2B, and motility and protein traffic (dynein and α- and β-tubulin, as well as protein-protein interactions (TPR-protein and kDSPs and several hypothetical proteins. Our approach led us to identify the LYT1 interaction profile, thereby providing insights into the molecular mechanisms that contribute to parasite stage development and pathogenesis of T. cruzi infection.

  9. Identification of novel human damage response proteins targeted through yeast orthology.

    Directory of Open Access Journals (Sweden)

    J Peter Svensson

    Full Text Available Studies in Saccharomyces cerevisiae show that many proteins influence cellular survival upon exposure to DNA damaging agents. We hypothesized that human orthologs of these S. cerevisiae proteins would also be required for cellular survival after treatment with DNA damaging agents. For this purpose, human homologs of S. cerevisiae proteins were identified and mapped onto the human protein-protein interaction network. The resulting human network was highly modular and a series of selection rules were implemented to identify 45 candidates for human toxicity-modulating proteins. The corresponding transcripts were targeted by RNA interference in human cells. The cell lines with depleted target expression were challenged with three DNA damaging agents: the alkylating agents MMS and 4-NQO, and the oxidizing agent t-BuOOH. A comparison of the survival revealed that the majority (74% of proteins conferred either sensitivity or resistance. The identified human toxicity-modulating proteins represent a variety of biological functions: autophagy, chromatin modifications, RNA and protein metabolism, and telomere maintenance. Further studies revealed that MMS-induced autophagy increase the survival of cells treated with DNA damaging agents. In summary, we show that damage recovery proteins in humans can be identified through homology to S. cerevisiae and that many of the same pathways are represented among the toxicity modulators.

  10. Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion.

    Science.gov (United States)

    Hammad, Moamen; Rao, Wei; Smith, James G W; Anderson, Daniel G; Langer, Robert; Young, Lorraine E; Barrett, David A; Davies, Martyn C; Denning, Chris; Alexander, Morgan R

    2016-08-16

    Improved biomaterials are required for application in regenerative medicine, biosensing, and as medical devices. The response of cells to the chemistry of polymers cultured in media is generally regarded as being dominated by proteins adsorbed to the surface. Here we use mass spectrometry to identify proteins adsorbed from a complex mouse embryonic fibroblast (MEF) conditioned medium found to support pluripotent human embryonic stem cell (hESC) expansion on a plasma etched tissue culture polystyrene surface. A total of 71 proteins were identified, of which 14 uniquely correlated with the surface on which pluripotent stem cell expansion was achieved. We have developed a microarray combinatorial protein spotting approach to test the potential of these 14 proteins to support expansion of a hESC cell line (HUES-7) and a human induced pluripotent stem cell line (ReBl-PAT) on a novel polymer (N-(4-Hydroxyphenyl) methacrylamide). These proteins were spotted to form a primary array yielding several protein mixture 'hits' that enhanced cell attachment to the polymer. A second array was generated to test the function of a refined set of protein mixtures. We found that a combination of heat shock protein 90 and heat shock protein-1 encourage elevated adherence of pluripotent stem cells at a level comparable to fibronectin pre-treatment. PMID:27466628

  11. Identification of karyopherin α1 and α7 interacting proteins in porcine tissue.

    Directory of Open Access Journals (Sweden)

    Ki-Eun Park

    Full Text Available Specialized trafficking systems in eukaryotic cells serve a critical role in partitioning intracellular proteins between the nucleus and cytoplasm. Cytoplasmic proteins (including chromatin remodeling enzymes and transcription factors must gain access to the nucleus to exert their functions to properly program fundamental cellular events ranging from cell cycle progression to gene transcription. Knowing that nuclear import mediated by members of the karyopherin α family of transport receptors plays a critical role in regulating development and differentiation, we wanted to determine the identity of proteins that are trafficked by this karyopherin α pathway. To this end, we performed a GST pull-down assay using porcine orthologs of karyopherin α1 (KPNA1 and karyopherin α7 (KPNA7 and prey protein derived from porcine fibroblast cells and used a liquid chromatography and tandem mass spectrometry (LC-MS/MS approach to determine the identity of KPNA1 and KPNA7 interacting proteins. Our screen revealed that the proteins that interact with KPNA1 and KPNA7 are generally nuclear proteins that possess nuclear localization signals. We further validated two candidate proteins from this screen and showed that they are able to be imported into the nucleus in vivo and also interact with members of the karyopherin α family of proteins in vitro. Our results also reveal the utility of using a GST pull-down approach coupled with LC-MS/MS to screen for protein interaction partners in a non-traditional model system.

  12. Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging.

    Science.gov (United States)

    Kanski, Jaroslaw; Behring, Antje; Pelling, Jill; Schöneich, Christian

    2005-01-01

    Proteomic techniques were used to identify cardiac proteins from whole heart homogenate and heart mitochondria of Fisher 344/Brown Norway F1 rats, which suffer protein nitration as a consequence of biological aging. Soluble proteins from young (5 mo old) and old (26 mo old) animals were separated by one- and two-dimensional gel electrophoresis. One- and two-dimensional Western blots with an anti-nitrotyrosine antibody show an age-related increase in the immunoresponse of a few specific proteins, which were identified by nanoelectrospray ionization-tandem mass spectrometry (NSI-MS/MS). Complementary proteins were immunoprecipitated with an immobilized anti-nitrotyrosine antibody followed by NSI-MS/MS analysis. A total of 48 proteins were putatively identified. Among the identified proteins were alpha-enolase, alpha-aldolase, desmin, aconitate hydratase, methylmalonate semialdehyde dehydrogenase, 3-ketoacyl-CoA thiolase, acetyl-CoA acetyltransferase, GAPDH, malate dehydrogenase, creatine kinase, electron-transfer flavoprotein, manganese-superoxide dismutase, F1-ATPase, and the voltage-dependent anion channel. Some contaminating blood proteins including transferrin and fibrinogen beta-chain precursor showed increased levels of nitration as well. MS/MS analysis located nitration at Y105 of the electron-transfer flavoprotein. Among the identified proteins, there are important enzymes responsible for energy production and metabolism as well as proteins involved in the structural integrity of the cells. Our results are consistent with age-dependent increased oxidative stress and with free radical-dependent damage of proteins. Possibly the oxidative modifications of the identified proteins contribute to the age-dependent degeneration and functional decline of heart proteins.

  13. Identification of the Receptor-Binding Protein in Lytic Leuconostoc pseudomesenteroides Bacteriophages

    DEFF Research Database (Denmark)

    Kot, Witold Piotr; Hammer, Karin; Neve, Horst;

    2013-01-01

    Two phages, P793 and ΦLN04, sharing 80.1% nucleotide sequence identity but having different strains of Leuconostoc pseudomesenteroides as hosts, were selected for identification of the host determinant gene. Construction of chimeric phages leading to the expected switch in host range identified t...

  14. Identification and quantification of serum proteins secreted into the normal human jejunum

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Hegnhøj, J H

    1990-01-01

    The in vivo transfer of serum proteins to the human intestinal lumen was characterized by crossed immunoelectrophoretic analyses of intestinal perfusates from four healthy volunteers. Serum proteins with molecular masses below 100 kDa and the immunoglobulins were found in human jejunal perfusates....... Larger serum proteins were either absent (alpha and beta lipoproteins) or present in small amounts (alpha 2-macroglobulin, haptoglobulin and ceruloplasmin). These results demonstrate the existence of a selective transfer of serum proteins to the intestinal lumen under physiological conditions....... The intestinal clearance rate was 0.1 ml serum per hour per 10 cm jejunum for albumin, prealbumin, alpha 1-antitrypsin, orosomucoid, transferrin and haemopexin. The rate of secretion of total protein to the jejunal lumen was 100 mg protein per hour per 10 cm jejunum. About 45% was due to immunoglobulins...

  15. Identification of salt-tolerant Sinorhizobium sp. strain BL3 membrane proteins based on proteomics

    DEFF Research Database (Denmark)

    Tanthanuch, Waraporn; Tittabutr, Panlada; Mohammed, Shabaz;

    2010-01-01

    Sinorhizobium sp. BL3 is a salt-tolerant strain that can fix atmospheric nitrogen in symbiosis with leguminous host plants under salt-stress conditions. Since cell membranes are the first barrier to environmental change, it is interesting to explore the membrane proteins within this protective...... functional categories, the two biggest of which were energy production and conversion, and proteins not in clusters of orthologous groups (COGs). In addition, a comparative analysis of membrane proteins between salt-stressed and non-stressed BL3 cells was conducted using a membrane enrichment method and off...... barrier under salt stress. The protein contents of membrane-enriched fractions obtained from BL3 were analyzed by nanoflow liquid chromatography interfaced with electrospray ionization tandem mass spectrometry. A total of 105 membrane proteins were identified. These proteins could be classified into 17...

  16. Preprocessing significantly improves the peptide/protein identification sensitivity of high-resolution isobarically labeled tandem mass spectrometry data.

    Science.gov (United States)

    Sheng, Quanhu; Li, Rongxia; Dai, Jie; Li, Qingrun; Su, Zhiduan; Guo, Yan; Li, Chen; Shyr, Yu; Zeng, Rong

    2015-02-01

    Isobaric labeling techniques coupled with high-resolution mass spectrometry have been widely employed in proteomic workflows requiring relative quantification. For each high-resolution tandem mass spectrum (MS/MS), isobaric labeling techniques can be used not only to quantify the peptide from different samples by reporter ions, but also to identify the peptide it is derived from. Because the ions related to isobaric labeling may act as noise in database searching, the MS/MS spectrum should be preprocessed before peptide or protein identification. In this article, we demonstrate that there are a lot of high-frequency, high-abundance isobaric related ions in the MS/MS spectrum, and removing isobaric related ions combined with deisotoping and deconvolution in MS/MS preprocessing procedures significantly improves the peptide/protein identification sensitivity. The user-friendly software package TurboRaw2MGF (v2.0) has been implemented for converting raw TIC data files to mascot generic format files and can be downloaded for free from https://github.com/shengqh/RCPA.Tools/releases as part of the software suite ProteomicsTools. The data have been deposited to the ProteomeXchange with identifier PXD000994.

  17. Identification of novel small molecule inhibitors of the XPA protein using in silico based screening

    OpenAIRE

    Neher, Tracy M.; Shuck, Sarah C.; Liu, Jingyuan; Zhang, Jian-Ting; Turchi, John J.

    2010-01-01

    The nucleotide excision repair pathway catalyzes the removal of bulky adduct damage from DNA and requires the activity of more than 30 individual proteins and complexes. A diverse array of damage can be recognized and removed by the NER pathway including UV-induced adducts and intrastrand adducts induced by the chemotherapeutic compound cisplatin. The recognition of DNA damage is complex and involves a series of proteins including the xeroderma pigmentosum group A and C proteins and the UV-da...

  18. Identification of Fibronectin-Binding Proteins in Mycoplasma gallisepticum Strain R

    OpenAIRE

    May, Meghan; Papazisi, Leka; Gorton, Timothy S.; Geary, Steven J.

    2006-01-01

    We have determined that virulent Mycoplasma gallisepticum strain Rlow is capable of binding the extracellular matrix protein fibronectin. Fibronectin was found to be present in M. gallisepticum Rlow protein extracts by Western blotting and peptide sequencing. Mycoplasma gallisepticum Rhigh, the attenuated, high-passage derivative of Rlow, is deficient in this ability. MGA_1199, the M. gallisepticum homologue of the cytadherence-associated protein P65 from Mycoplasma pneumoniae, and MGA_0928, ...

  19. Endogenous occurrence of protein S-guanylation in Escherichia coli: Target identification and genetic regulation.

    Science.gov (United States)

    Tsutsuki, Hiroyasu; Jung, Minkyung; Zhang, Tianli; Ono, Katsuhiko; Ida, Tomoaki; Kunieda, Kohei; Ihara, Hideshi; Akaike, Takaaki; Sawa, Tomohiro

    2016-09-01

    8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a nitrated cGMP derivative formed in response to nitric oxide (NO) and reactive oxygen species (ROS). It can cause a post-translational modification (PTM) of protein thiols through cGMP adduction (protein S-guanylation). Accumulating evidence has suggested that, in mammals, S-guanylation of redox-sensor proteins may implicate in regulation of adaptive responses against ROS-associated oxidative stress. Occurrence as well as protein targets of S-guanylation in bacteria remained unknown, however. Here we demonstrated, for the first time, the endogenous occurrence of protein S-guanylation in Escherichia coli (E. coli). Western blotting using anti-S-guanylation antibody clearly showed that multiple proteins were S-guanylated in E. coli. Interestingly, some of those proteins were more intensely S-guanylated when bacteria were cultured under static culture condition than shaking culture condition. It has been known that E. coli is deficient of guanylate cyclase, an enzyme indispensable for 8-nitro-cGMP formation in mammals. We found that adenylate cyclase from E. coli potentially catalyzed 8-nitro-cGMP formation from its precursor 8-nitroguanosine 5'-triphosphate. More importantly, E. coli lacking adenylate cyclase showed significantly reduced formation of S-guanylated proteins. Our S-guanylation proteomics successfully identified S-guanylation protein targets in E. coli, including chaperons, ribosomal proteins, and enzymes which associate with protein synthesis, redox regulation and metabolism. Understanding of functional impacts for protein S-guanylation in bacterial signal transduction is necessary basis for development of potential chemotherapy and new diagnostic strategy for control of pathogenic bacterial infections. PMID:27473654

  20. Bacteriophage M13 gene 2 protein: increasing its yield in infected cells, and identification and localization

    International Nuclear Information System (INIS)

    M13 gene 2 protein, implicated in the introduction of single-strand nicks into double-stranded closed circular (RFI) DNA molecules, was previously found in only very small quantities in infected cells. We now find that the gene 2 protein can be readily identified and its yield can be increased manyfold if infections are carried out at high temperature with either a gene 2 temperature-sensitive mutant or with wild type M13. Mechanisms are suggested by which the increased yield could result from subnormal function of the protein in these infections. Under conditions of high yield, the gene 2 protein is found largely in a rapidly sedimenting particulate fraction of unknown nature, where it constitutes as much as 36 percent of the leucine-labeled protein. The gene 2 protein can be readily solubilized from this particulate fraction with the ionic detergent sodium dodecyl sulfate (SDS) but no satisfactory solubilization method was found which keeps the protein in its native state. Attempts to demonstrate in vitro activity of the gene 2 protein, that is, nicking of M13 RFI DNA, were not successful. On the basis of SDS-polyacrylamide gel electrophoresis, we estimate that the gene 2 polypeptide has a molecular weight of approximately 40,000. In the course of the experiments on gene 2 protein, it was observed that the gene 3, as well as the gene 8, virion protein molecules were found predominantly in the cell inner membrane, supporting the idea that virion assembly is carried out there. The gene 4, nonvirion, protein also proved to be in the inner membrane, as would be expected if this protein plays a role in virion assembly

  1. Identification and characterization of amylase binding protein C (AbpC) from Streptococcus mitis NS51

    OpenAIRE

    Vorrasi, John; Chaudhuri, Biswendu; Haase, Elaine M.; Scannapieco, Frank A.

    2010-01-01

    A substantial proportion of the streptococcal species found in dental plaque biofilms are able to interact with the abundant salivary enzyme α-amylase. These streptococci produce proteins that specifically bind amylase. An important plaque species, Streptococcus mitis, secretes a 36-kDa amylase binding protein into the extracellular milieu. Proteins precipitated from S. mitis NS51 cell culture supernatant by the addition of purified salivary amylase were separated by SDS-PAGE, transferred to ...

  2. Endogenous occurrence of protein S-guanylation in Escherichia coli: Target identification and genetic regulation.

    Science.gov (United States)

    Tsutsuki, Hiroyasu; Jung, Minkyung; Zhang, Tianli; Ono, Katsuhiko; Ida, Tomoaki; Kunieda, Kohei; Ihara, Hideshi; Akaike, Takaaki; Sawa, Tomohiro

    2016-09-01

    8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a nitrated cGMP derivative formed in response to nitric oxide (NO) and reactive oxygen species (ROS). It can cause a post-translational modification (PTM) of protein thiols through cGMP adduction (protein S-guanylation). Accumulating evidence has suggested that, in mammals, S-guanylation of redox-sensor proteins may implicate in regulation of adaptive responses against ROS-associated oxidative stress. Occurrence as well as protein targets of S-guanylation in bacteria remained unknown, however. Here we demonstrated, for the first time, the endogenous occurrence of protein S-guanylation in Escherichia coli (E. coli). Western blotting using anti-S-guanylation antibody clearly showed that multiple proteins were S-guanylated in E. coli. Interestingly, some of those proteins were more intensely S-guanylated when bacteria were cultured under static culture condition than shaking culture condition. It has been known that E. coli is deficient of guanylate cyclase, an enzyme indispensable for 8-nitro-cGMP formation in mammals. We found that adenylate cyclase from E. coli potentially catalyzed 8-nitro-cGMP formation from its precursor 8-nitroguanosine 5'-triphosphate. More importantly, E. coli lacking adenylate cyclase showed significantly reduced formation of S-guanylated proteins. Our S-guanylation proteomics successfully identified S-guanylation protein targets in E. coli, including chaperons, ribosomal proteins, and enzymes which associate with protein synthesis, redox regulation and metabolism. Understanding of functional impacts for protein S-guanylation in bacterial signal transduction is necessary basis for development of potential chemotherapy and new diagnostic strategy for control of pathogenic bacterial infections.

  3. Identification of the human papillomavirus E2 protein in genital tract tissues.

    OpenAIRE

    Li, C. C.; Gilden, R. V.; Showalter, S D; Shah, K V

    1988-01-01

    A 27-kilodalton protein representing approximately 60% of the E2 open reading frame of human papillomavirus type 6 (HPV-6) was synthesized in a bacterial expression system. Affinity-purified polyclonal antibody to this protein detected the probable E2 gene product as a 50-kilodalton protein in most condylomas by Western blot (immunoblot) analysis. The E2-positive condylomas were associated with HPV-6, HPV-11, HPV-16, or unidentified HPVs.

  4. Identification and characterization of the RNA binding surface of the pentatricopeptide repeat protein

    OpenAIRE

    Kobayashi, Keiko; Kawabata, Masuyo; Hisano, Keizo; Kazama, Tomohiko; Matsuoka, Ken; Sugita, Mamoru; Nakamura, Takahiro

    2011-01-01

    The expressions of chloroplast and mitochondria genes are tightly controlled by numerous nuclear-encoded proteins, mainly at the post-transcriptional level. Recent analyses have identified a large, plant-specific family of pentatricopeptide repeat (PPR) motif-containing proteins that are exclusively involved in RNA metabolism of organelle genes via sequence-specific RNA binding. A tandem array of PPR motifs within the protein is believed to facilitate the RNA interaction, although little is k...

  5. Identification of tissue-specific DNA-protein binding sites by means of two-dimensional electrophoretic mobility shift assay display.

    Science.gov (United States)

    Chernov, Igor P; Timchenko, Kira A; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D

    2007-05-01

    We developed a technique of differential electrophoretic mobility shift assay (EMSA) display allowing identification of tissue-specific protein-binding sites within long genomic sequences. Using this approach, we identified 10 cell type-specific protein-binding sites (protein target sites [PTSs]) within a 137-kb human chromosome 19 region. In general, tissue-specific binding of proteins from different nuclear extracts by individual PTSs did not follow the all-or-nothing principle. Most often, PTS-protein complexes were formed in all cases, but they were different for different nuclear extracts used. PMID:17359930

  6. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada); Bernatchez, Pascal, E-mail: pbernatc@mail.ubc.ca [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. Black-Right-Pointing-Pointer Dysferlin interacts with key signaling proteins for transcytosis in EC. Black-Right-Pointing-Pointer Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  7. Identification and monitoring of host cell proteins by mass spectrometry combined with high performance immunochemistry testing.

    Directory of Open Access Journals (Sweden)

    Katrin Bomans

    Full Text Available Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS. However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day manner.

  8. Identification of four nuclear transport signal-binding proteins that interact with diverse transport signals.

    Science.gov (United States)

    Yamasaki, L; Kanda, P; Lanford, R E

    1989-07-01

    The transport of proteins into the nucleus requires not only the presence of a nuclear transport signal on the targeted protein but also the signal recognition proteins and the nuclear pore translocation apparatus. Complicating the search for the signal recognition proteins is the fact that the nuclear transport signals identified share little obvious homology. In this study, synthetic peptides homologous to the nuclear transport signals from the simian virus 40 large T antigen, Xenopus oocyte nucleoplasmin, adenovirus E1A, and Saccharomyces cerevisiae MAT alpha 2 proteins were coupled to a UV-photoactivable cross-linker and iodinated for use in an in vitro cross-linking reaction with cellular lysates. Four proteins, p140, p100, p70, and p55, which specifically interacted with the nuclear transport signal peptides were identified. Unique patterns of reactivity were observed with closely related pairs of nuclear transport signal peptides. Competition experiments with labeled and unlabeled peptides demonstrated that heterologous signals were able to bind the same protein and suggested that diverse signals use a common transport pathway. The subcellular distribution of the four nuclear transport signal-binding proteins suggested that nuclear transport involves both cytoplasmic and nuclear receptors. The four proteins were not bound by wheat germ agglutinin and were not associated tightly with the nuclear pore complex.

  9. A machine learning approach for the identification of odorant binding proteins from sequence-derived properties

    Directory of Open Access Journals (Sweden)

    Suganthan PN

    2007-09-01

    Full Text Available Abstract Background Odorant binding proteins (OBPs are believed to shuttle odorants from the environment to the underlying odorant receptors, for which they could potentially serve as odorant presenters. Although several sequence based search methods have been exploited for protein family prediction, less effort has been devoted to the prediction of OBPs from sequence data and this area is more challenging due to poor sequence identity between these proteins. Results In this paper, we propose a new algorithm that uses Regularized Least Squares Classifier (RLSC in conjunction with multiple physicochemical properties of amino acids to predict odorant-binding proteins. The algorithm was applied to the dataset derived from Pfam and GenDiS database and we obtained overall prediction accuracy of 97.7% (94.5% and 98.4% for positive and negative classes respectively. Conclusion Our study suggests that RLSC is potentially useful for predicting the odorant binding proteins from sequence-derived properties irrespective of sequence similarity. Our method predicts 92.8% of 56 odorant binding proteins non-homologous to any protein in the swissprot database and 97.1% of the 414 independent dataset proteins, suggesting the usefulness of RLSC method for facilitating the prediction of odorant binding proteins from sequence information.

  10. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism

    Energy Technology Data Exchange (ETDEWEB)

    Stekhoven, Daniel J. [Univ. of Zurich (Switzerland); Omasits, Ulrich [Univ. of Zurich (Switzerland); ETH Zurich (Switzerland); Quebatte, Maxime [Univ. of Basel (Switzerland); Dehio, Christoph [Univ. of Basel (Switzerland); Ahrens, Christian H. [Univ. of Zurich (Switzerland)

    2014-03-01

    Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral innermembrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion.

  11. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction.

    Science.gov (United States)

    Lewis, Aurélia E; Sommer, Lilly; Arntzen, Magnus Ø; Strahm, Yvan; Morrice, Nicholas A; Divecha, Nullin; D'Santos, Clive S

    2011-02-01

    Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(X(n= 3-7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions.

  12. Identification of differentially expressed proteins in SH-SY5Y cells treated with resveratrol

    Institute of Scientific and Technical Information of China (English)

    Ying Wang; Zhong Dong; Hongyan Fan; Ming Chang; Guoyi Li; Linsen Hu

    2011-01-01

    To gain insight into the molecular mechanisms of resveratrol-mediated neuroprotection, two-dimensional difference gel electrophoresis in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to identify proteins differentially-expressed in SH-SY5Y cells treated with resveratrol. Compared with the control group, resveratrol treatment significantly affected the expression of four proteins: endoplasmic reticulum oxidoreductin 1-like protein alpha, p21-activated kinase 1, Archain 1, and T cell receptor beta chain. The former three were downregulated and the latter was upregulated. These proteins are primarily associated with endoplasmic reticulum stress, intracellular trafficking, and immune function.

  13. Identification of proteins in promastigote and amastigote-like Leishmania using an immunoproteomic approach.

    Directory of Open Access Journals (Sweden)

    Vinicio T S Coelho

    2012-01-01

    Full Text Available BACKGROUND: The present study aims to identify antigens in protein extracts of promastigote and amastigote-like Leishmania (Leishmania chagasi syn. L. (L. infantum recognized by antibodies present in the sera of dogs with asymptomatic and symptomatic visceral leishmaniasis (VL. METHODOLOGY/PRINCIPAL FINDINGS: Proteins recognized by sera samples were separated by two-dimensional electrophoresis (2DE and identified by mass spectrometry. A total of 550 spots were observed in the 2DE gels, and approximately 104 proteins were identified. Several stage-specific proteins could be identified by either or both classes of sera, including, as expected, previously known proteins identified as diagnosis, virulence factors, drug targets, or vaccine candidates. Three, seven, and five hypothetical proteins could be identified in promastigote antigenic extracts; while two, eleven, and three hypothetical proteins could be identified in amastigote-like antigenic extracts by asymptomatic and symptomatic sera, as well as a combination of both, respectively. CONCLUSIONS/SIGNIFICANCE: The present study represents a significant contribution not only in identifying stage-specific L. infantum molecules, but also in revealing the expression of a large number of hypothetical proteins. Moreover, when combined, the identified proteins constitute a significant source of information for the improvement of diagnostic tools and/or vaccine development to VL.

  14. Identification of immunogenic and virulence-associated Campylobacter jejuni proteins

    DEFF Research Database (Denmark)

    Nielsen, Lene Nørby; Luijkx, Thomas A.; Vegge, Christina Skovgaard;

    2012-01-01

    With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes was trans......With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes...

  15. Identification of the bacteriophage T5 dUTPase by protein sequence comparisons.

    Science.gov (United States)

    Kaliman, A V

    1996-01-01

    It is shown by protein sequence comparisons that a 148 amino acid open reading frame (ORF 148) located at 67% of the bacteriophage T5 genome encodes a protein with strong similarity to known dUTPases. This protein contains five characteristic amino acid sequence motifs that are common to the dUTPase gene family. A similarity in size and high degree of sequence identity strongly suggest that the protein encoded by the ORF 148 of bacteriophage T5 is dUTPase. PMID:8988373

  16. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus

    Directory of Open Access Journals (Sweden)

    Müller Judith

    2009-03-01

    Full Text Available Abstract Background Archaea share with bacteria the ability to bias their movement towards more favorable locations, a process known as taxis. Two molecular systems drive this process: the motility apparatus and the chemotaxis signal transduction system. The first consists of the flagellum, the flagellar motor, and its switch, which allows cells to reverse the rotation of flagella. The second targets the flagellar motor switch in order to modulate the switching frequency in response to external stimuli. While the signal transduction system is conserved throughout archaea and bacteria, the archaeal flagellar apparatus is different from the bacterial one. The proteins constituting the flagellar motor and its switch in archaea have not yet been identified, and the connection between the bacterial-like chemotaxis signal transduction system and the archaeal motility apparatus is unknown. Results Using protein-protein interaction analysis, we have identified three proteins in Halobacterium salinarum that interact with the chemotaxis (Che proteins CheY, CheD, and CheC2, as well as the flagella accessory (Fla proteins FlaCE and FlaD. Two of the proteins belong to the protein family DUF439, the third is a HEAT_PBS family protein. In-frame deletion strains for all three proteins were generated and analyzed as follows: a photophobic responses were measured by a computer-based cell tracking system b flagellar rotational bias was determined by dark-field microscopy, and c chemotactic behavior was analyzed by a swarm plate assay. Strains deleted for the HEAT_PBS protein or one of the DUF439 proteins proved unable to switch the direction of flagellar rotation. In these mutants, flagella rotate only clockwise, resulting in exclusively forward swimming cells that are unable to respond to tactic signals. Deletion of the second DUF439 protein had only minimal effects. HEAT_PBS proteins could be identified in the chemotaxis gene regions of all motile haloarchaea

  17. Identification of a New Pyk2 Target Protein with Arf-GAP Activity

    OpenAIRE

    Andreev, J; Simon, J.-P.; Sabatini, D D; J. Kam; Plowman, G; Randazzo, P. A.; Schlessinger, J

    1999-01-01

    Protein tyrosine kinase Pyk2 is activated by a variety of G-protein-coupled receptors and by extracellular signals that elevate intracellular Ca2+ concentration. We have identified a new Pyk2 binding protein designated Pap. Pap is a multidomain protein composed of an N-terminal α-helical region with a coiled-coil motif, followed by a pleckstrin homology domain, an Arf-GAP domain, an ankyrin homology region, a proline-rich region, and a C-terminal SH3 domain. We demonstrate that Pap forms a st...

  18. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules.

    Science.gov (United States)

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  19. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    International Nuclear Information System (INIS)

    Highlights: ► Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. ► Dysferlin interacts with key signaling proteins for transcytosis in EC. ► Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  20. Active and accurate trans-translation requires distinct determinants in the C-terminal tail of SmpB protein and the mRNA-like domain of transfer messenger RNA (tmRNA).

    Science.gov (United States)

    Camenares, Devin; Dulebohn, Daniel P; Svetlanov, Anton; Karzai, A Wali

    2013-10-18

    Unproductive ribosome stalling in eubacteria is resolved by the actions of SmpB protein and transfer messenger (tm) RNA. We examined the functional significance of conserved regions of SmpB and tmRNA to the trans-translation process. Our investigations reveal that the N-terminal 20 residues of SmpB, which are located near the ribosomal decoding center, are dispensable for all known SmpB activities. In contrast, a set of conserved residues that reside at the junction between the tmRNA-binding core and the C-terminal tail of SmpB play an important role in tmRNA accommodation. Our data suggest that the highly conserved glycine 132 acts as a flexible hinge that enables movement of the C-terminal tail, thus permitting proper positioning and establishment of the tmRNA open reading frame (ORF) as the surrogate template. To gain further insights into the function of the SmpB C-terminal tail, we examined the tagging activity of hybrid variants of tmRNA and the SmpB protein, in which the tmRNA ORF or the SmpB C-terminal tail was substituted with the equivalent but highly divergent sequences from Francisella tularensis. We observed that the hybrid tmRNA was active but resulted in less accurate selection of the resume codon. Cognate hybrid SmpB was necessary to restore activity. Furthermore, accurate tagging was observed when the identity of the resume codon was reverted from GGC to GCA. Taken together, these data suggest that the engagement of the tmRNA ORF and the selection of the correct translation resumption point are distinct activities that are influenced by independent tmRNA and SmpB determinants.

  1. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects

    Directory of Open Access Journals (Sweden)

    Zhang Yong-Jun

    2009-12-01

    Full Text Available Abstract Background Insect odorant binding proteins (OBPs and chemosensory proteins (CSPs play an important role in chemical communication of insects. Gene discovery of these proteins is a time-consuming task. In recent years, expressed sequence tags (ESTs of many insect species have accumulated, thus providing a useful resource for gene discovery. Results We have developed a computational pipeline to identify OBP and CSP genes from insect ESTs. In total, 752,841 insect ESTs were examined from 54 species covering eight Orders of Insecta. From these ESTs, 142 OBPs and 177 CSPs were identified, of which 117 OBPs and 129 CSPs are new. The complete open reading frames (ORFs of 88 OBPs and 123 CSPs were obtained by electronic elongation. We randomly chose 26 OBPs from eight species of insects, and 21 CSPs from four species for RT-PCR validation. Twenty two OBPs and 16 CSPs were confirmed by RT-PCR, proving the efficiency and reliability of the algorithm. Together with all family members obtained from the NCBI (OBPs or the UniProtKB (CSPs, 850 OBPs and 237 CSPs were analyzed for their structural characteristics and evolutionary relationship. Conclusions A large number of new OBPs and CSPs were found, providing the basis for deeper understanding of these proteins. In addition, the conserved motif and evolutionary analysis provide some new insights into the evolution of insect OBPs and CSPs. Motif pattern fine-tune the functions of OBPs and CSPs, leading to the minor difference in binding sex pheromone or plant volatiles in different insect Orders.

  2. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae.

    Science.gov (United States)

    Xue, Wenxin; Fan, Jia; Zhang, Yong; Xu, Qingxuan; Han, Zongli; Sun, Jingrui; Chen, Julian

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae. PMID:27561107

  3. Identification of secreted proteins regulated by cAMP in glioblastoma cells using glycopeptide capture and label-free quantification.

    Science.gov (United States)

    Hill, Jennifer J; Moreno, Maria J; Lam, Jean C Y; Haqqani, Arsalan S; Kelly, John F

    2009-02-01

    Exposure of glioblastoma U87MG cells to a cAMP analog leads to a decrease in proliferation, invasion, and angiogenic potential. Here, we apply a label-free MS-based approach to identify formerly N-linked glycopeptides that change in abundance upon cAMP treatment. Over 150 unique glycopeptides in three biological repetitions were quantified, leading to the identification of 14 upregulated proteins and 21 downregulated proteins due to cAMP treatment. Of these, eight have been validated, either through comparison with microarray data or by Western blot. We estimate our ability to identify differentially expressed peptides at greater than 85% in a single biological repetition, while the analysis of multiple biological repetitions lowers the false positive rate to approximately 2%. Many of the proteins identified in this study are involved in cell signaling and some, such as Tenascin C, Cathepsin L, Neuroblastoma suppressor of tumorigenicity, and AXL/UFO tyrosine-protein kinase receptor, have been previously shown to be involved in glioblastoma progression. We also identify several semitryptic peptides that increase in abundance upon cAMP treatment, suggesting that cAMP regulates protease activity in these cells. Overall, these results demonstrate the benefits of using a highly specific enrichment method for quantitative proteomic experiments. PMID:19137551

  4. Identification of polyvalent protective immunogens from outer membrane proteins in Vibrio parahaemolyticus to protect fish against bacterial infection.

    Science.gov (United States)

    Peng, Bo; Ye, Jin-Zhou; Han, Yi; Zeng, Li; Zhang, Jian-Ying; Li, Hui

    2016-07-01

    Vaccination is one of the most effective and economic way to prevent infectious diseases in aquaculture. The development of effective vaccines, however, is still limited, especially for polyvalent vaccines, which are against multiple species. With this regard, identification of polyvalent protective immunogens, serving as polyvalent vaccines, became a key step in vaccine development. In the current study, 17 outer membrane proteins from Vibrio parahaemolyticus were identified as immunogens. Further, four of the 17 proteins including VP2309, VP0887, VPA0548 and VP1019 were characterized as efficiently protective immunogens against V. parahaemolyticus' infection through passive and active immunizations in zebrafish. Importantly, these four proteins showed cross-protective capability against infections by Aeromonas hydrophila or/and Pseudomonas fluorescens, which shared similar epitopes with V. parahaemolyticus in homology of these proteins. Further investigation showed that the expression level of the four protective immunogens elevated in response to fish plasma in a dose-dependent manner. These results indicate that the four protective immunogens are polyvalent vaccine candidates in aquaculture. PMID:27071519

  5. Identification of protein partners in mycobacteria using a single-step affinity purification method.

    Directory of Open Access Journals (Sweden)

    Przemysław Płociński

    Full Text Available Tuberculosis is a leading cause of death in developing countries. Efforts are being made to both prevent its spread and improve curability rates. Understanding the biology of the bacteria causing the disease, Mycobacterium tuberculosis (M. tuberculosis, is thus vital. We have implemented improved screening methods for protein-protein interactions based on affinity purification followed by high-resolution mass spectrometry. This method can be efficiently applied to both medium- and high-throughput studies aiming to characterize protein-protein interaction networks of tubercle bacilli. Of the 4 tested epitopes FLAG, enhanced green fluorescent protein (eGFP, protein A and haemagglutinin, the eGFP tag was found to be most useful on account of its easily monitored expression and its ability to function as a simultaneous tool for subcellular localization studies. It presents a relatively low background with cost-effective purification. RNA polymerase subunit A (RpoA was used as a model for investigation of a large protein complex. When used as bait, it co-purified with all remaining RNA polymerase core subunits as well as many accessory proteins. The amount of RpoA strongly correlated with the amount of quantification peptide used as part of the tagging system in this study (SH, making it applicable for semi-quantification studies. Interactions between the components of the RpoA-eGFP protein complex were further confirmed using protein cross-linking. Dynamic changes in the composition of protein complexes under induction of UV damage were observed when UvrA-eGFP expressing cells treated with UV light were used to co-purify UvrA interaction partners.

  6. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    Energy Technology Data Exchange (ETDEWEB)

    Zencir, Sevil [Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100 (Turkey); Ovee, Mohiuddin [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States); Dobson, Melanie J. [Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 4R2 (Canada); Banerjee, Monimoy [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States); Topcu, Zeki, E-mail: zeki.topcu@ege.edu.tr [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35100 (Turkey); Mohanty, Smita, E-mail: mohansm@auburn.edu [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States)

    2011-08-12

    Highlights: {yields} Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. {yields} BAI2 interaction with GIP was revealed by yeast two-hybrid assay. {yields} Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. {yields} BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, {beta}-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  7. Identification of new interacting partners of the shuttling protein ubinuclein (Ubn-1)

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, Julien [Unit of Virus Host Cell Interactions (UVHCI), UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181, F-38042 Grenoble Cedex 9 (France); CHU de Grenoble, BP217, 38043 Grenoble Cedex 9 (France); Conti, Audrey [Unit of Virus Host Cell Interactions (UVHCI), UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181, F-38042 Grenoble Cedex 9 (France); Sueur, Charlotte [Unit of Virus Host Cell Interactions (UVHCI), UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181, F-38042 Grenoble Cedex 9 (France); CHU de Grenoble, BP217, 38043 Grenoble Cedex 9 (France); Coly, Pierre-Alain [Unit of Virus Host Cell Interactions (UVHCI), UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181, F-38042 Grenoble Cedex 9 (France); Coute, Yohann [CEA, IRTSV, Laboratoire Biologie a Grande Echelle, F-38054 Grenoble (France); INSERM, U1038, F-38054 Grenoble (France); Universite Joseph Fourier, Grenoble 1, F-38000 Grenoble Cedex 09 (France); Hunziker, Walter [Institute of Molecular and Cell Biology, Epithelial Cell Biology Laboratory, Singapore 1386473 (Singapore); Burmeister, Wim P. [Unit of Virus Host Cell Interactions (UVHCI), UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181, F-38042 Grenoble Cedex 9 (France); Germi, Raphaelle [Unit of Virus Host Cell Interactions (UVHCI), UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181, F-38042 Grenoble Cedex 9 (France); CHU de Grenoble, BP217, 38043 Grenoble Cedex 9 (France); Manet, Evelyne; Gruffat, Henri [INSERM U758, Unite de Virologie humaine, Lyon, 46 allee d' Italie F-69007 France (France); Ecole Normale Superieure de Lyon, F-69007 France (France); Universite Lyon1, F-69007, Lyon (France); and others

    2012-03-10

    We have previously characterized ubinuclein (Ubn-1) as a NACos (Nuclear and Adherent junction Complex components) protein which interacts with viral or cellular transcription factors and the tight junction (TJ) protein ZO-1. The purpose of the present study was to get more insights on the binding partners of Ubn-1, notably those present in the epithelial junctions. Using an in vivo assay of fluorescent protein-complementation assay (PCA), we demonstrated that the N-terminal domains of the Ubn-1 and ZO-1 proteins triggered a functional interaction inside the cell. Indeed, expression of both complementary fragments of venus fused to the N-terminal parts of Ubn-1 and ZO-1 was able to reconstitute a fluorescent venus protein. Furthermore, nuclear expression of the chimeric Ubn-1 triggered nuclear localization of the chimeric ZO-1. We could localize this interaction to the PDZ2 domain of ZO-1 using an in vitro pull-down assay. More precisely, a 184-amino acid region (from amino acids 39 to 223) at the N-terminal region of Ubn-1 was responsible for the interaction with the PDZ2 domain of ZO-1. Co-imunoprecipitation and confocal microscopy experiments also revealed the tight junction protein cingulin as a new interacting partner of Ubn-1. A proteomic approach based on mass spectrometry analysis (MS) was then undertaken to identify further binding partners of GST-Ubn-1 fusion protein in different subcellular fractions of human epithelial HT29 cells. LYRIC (Lysine-rich CEACAM1-associated protein) and RACK-1 (receptor for activated C-kinase) proteins were validated as bona fide interacting partners of Ubn-1. Altogether, these results suggest that Ubn-1 is a scaffold protein influencing protein subcellular localization and is involved in several processes such as cell-cell contact signalling or modulation of gene activity.

  8. Speaking Fluently And Accurately

    Institute of Scientific and Technical Information of China (English)

    JosephDeVeto

    2004-01-01

    Even after many years of study,students make frequent mistakes in English. In addition, many students still need a long time to think of what they want to say. For some reason, in spite of all the studying, students are still not quite fluent.When I teach, I use one technique that helps students not only speak more accurately, but also more fluently. That technique is dictations.

  9. Accurate Finite Difference Algorithms

    Science.gov (United States)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  10. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  11. Proteomic identification of differentially expressed proteins in sea cucumber Apostichopus japonicus coelomocytes after Vibrio splendidus infection.

    Science.gov (United States)

    Zhang, Peng; Li, Chenghua; Li, Ye; Zhang, Pengjuan; Shao, Yina; Jin, Chunhua; Li, Taiwu

    2014-06-01

    Skin ulceration syndrome (SUS) was the main limitation in the development of Apostichopus japonicus culture industries. To better understand how Vibrio splendidus modulates SUS outbreak, the immune response of A. japonicus coelomocytes after the pathogen challenge were investigated through comparative proteomics approach, and differentially expressed proteins were screened and characterized in the present study. A total of 40 protein spots representing 30 entries were identified at 24, 72 and 96 h post-infection. Of these proteins, 32 were up-regulated and 8 were down-regulated in the V. splendidus challenged samples compared to those of control. These differentially expressed proteins were mainly classified into four categories by GO analysis, in which approximate 33% of proteins showed to be related to immunity response. The mRNA expression levels of 6 differentially expressed proteins were further validated by qRT-PCR. Similar protein-mRNA-level expression patterns were detected in genes of phospholipase (spot 4), G protein (spot 20), annexin (spot 30) and filamin (spot 31). Whilst the levels of ficolin (spot 12) and calumenin (spot 14) transcripts were not corresponded with those of their translation products. These data provide a new insight to understand the molecular immune mechanism of sea cucumber responsive towards pathogen infection. PMID:24468075

  12. Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis

    Directory of Open Access Journals (Sweden)

    Schlegel Brigitte

    2004-03-01

    Full Text Available Abstract Background High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination. Results 88 different E. coli expression constructs for 17 human protein domains were analysed using high-throughput cloning, purification and folding analysis to obtain candidates suitable for structural analysis. After 96 deep-well microplate expression and automated protein purification, protein domains were directly analysed using 1D 1H-NMR spectroscopy. In addition, analytical hydrophobic interaction chromatography (HIC was used to detect natively folded protein. With these two analytical methods, six constructs (representing two domains were quickly identified as being well folded and suitable for structural analysis. Conclusion The described approach facilitates high-throughput structural analysis. Clones expressing natively folded proteins suitable for NMR structure determination were quickly identified upon small scale expression screening using 1D 1H-NMR and/or analytical HIC. This procedure is especially effective as a fast and inexpensive screen for the 'low hanging fruits' in structural genomics.

  13. Identification of a new class of lipid droplet-associated proteins in plants.

    Science.gov (United States)

    Horn, Patrick J; James, Christopher N; Gidda, Satinder K; Kilaru, Aruna; Dyer, John M; Mullen, Robert T; Ohlrogge, John B; Chapman, Kent D

    2013-08-01

    Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated. Here, we have combined lipidomic, proteomic, and transcriptomic studies of avocado (Persea americana) mesocarp to identify two new lipid droplet-associated proteins, which we named LDAP1 and LDAP2. These proteins are highly similar to each other and also to the small rubber particle proteins that accumulate in rubber-producing plants. An Arabidopsis (Arabidopsis thaliana) homolog to LDAP1 and LDAP2, At3g05500, was localized to the surface of lipid droplets after transient expression in tobacco (Nicotiana tabacum) cells that were induced to accumulate triacylglycerols. We propose that small rubber particle protein-like proteins are involved in the general process of binding and perhaps the stabilization of lipid-rich particles in the cytosol of plant cells and that the avocado and Arabidopsis protein members reveal a new aspect of the cellular machinery that is involved in the packaging of triacylglycerols in plant tissues.

  14. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    Science.gov (United States)

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light.

  15. Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana.

    Science.gov (United States)

    Shi, Jiahai; Lua, Shixiong; Du, Ning; Liu, Xiangyang; Song, Jianxing

    2008-06-01

    Unlike silkworm and spider silks assembled from very large and repetitive fibrous proteins, the bee and ant silks were recently demonstrated to consist of four small and non-repetitive coiled-coil proteins. The design principle for this silk family remains largely unknown and so far no structural study is available on them in solution. The present study aimed to identify, express and characterize the Asiatic honeybee silk proteins using DLS, CD and NMR spectroscopy. Consequently, (1) four silk proteins are identified, with approximately 6, 10, 9 and 8% variations, respectively, from their European honeybee homologs. Strikingly, their recombinant forms can be produced in Escherichia coil with yields of 10-60 mg/l. (2) Despite containing approximately 65% coiled-coil sequences, four proteins have very low alpha-helix (9-27%) but unusually high random coil (45-56%) contents. Surprisingly, beta-sheet is also detected in four silk proteins (26-35%), implying the possible presence of beta-sheet in the bee and ant silks. (3) Four proteins lacking of the tight tertiary packing appear capable of interacting with each other weakly but this interaction triggers no significant formation of the tight tertiary packing. The study not only implies the promising potential to produce recombinant honeybee silk proteins for the development of various biomaterials; but also provides the first structural insight into the molecular mechanism underlying the formation of the coiled-coil silks. PMID:18394700

  16. Identification of differentially expressed proteins in poplar leaves induced by Marssonina brunnea f. Sp. Multigermtubi

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Black spot disease in poplar is a disease of the leaf caused by fungus. The major pathogen is Marssonina brunnea f. sp. multigermtubi.To date, little is known about the molecular mechanism of poplar (M. brunnea) interaction. In order to identify the proteins related to disease resistance and understand its molecular basis, the clone "NL895" (P. euramericana CL"NL895"), which is highly resistant to M.brunnea f. sp. multigermtubi, was used in this study. We used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to identify the proteins in poplar leaves that were differentially expressed in response to black spot disease pathogen, M. brunnea f. sp. multigermtubi. Proteins extracted from poplar leaves at 0, 12, 24, 48, and 72 h after pathogen-inoculation were separated by 2-DE. About 500 reproducible protein spots were detected, of which 40 protein spots displayed differential expression in levels and were subjected to Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) followed by database searching. According to the function, the identified proteins were sorted into five categories, that is, protein synthesis, metabolism, defense response and unclassified proteins.

  17. Identification of a major protein on the cytosolic face of caveolae

    DEFF Research Database (Denmark)

    Vinten, J; Johnsen, A H; Roepstorff, Peter;

    2005-01-01

    followed by SDS-PAGE, and that the protein was as abundant as caveolin in this fraction. We were unable to detect the protein in cell nuclei by subcellular fractionation or fluorescence microscopy. The results show that in a large number of cell types, PTRF is essentially located to caveolae, and that each...

  18. Proteomic allergen-peptide/protein interaction assay for the identification of human skin sensitizers

    NARCIS (Netherlands)

    Dietz, L.; Kinzebach, S.; Ohnesorge, S.; Franke, B.; Goette, I.; Koenig-Gressel, D.; Thierse, H.J.

    2013-01-01

    Modification of proteins by skin sensitizers is a pivotal step in T cell mediated allergic contact dermatitis (ACD). In this process small reactive chemicals interact covalently or non-covalently with cellular or extracellular skin self-proteins or self-peptides to become recognized by the human imm

  19. Identification of five serum protein markers for detection of ovarian cancer by antibody arrays.

    Directory of Open Access Journals (Sweden)

    Weidong Jiang

    Full Text Available BACKGROUND: Protein and antibody arrays have emerged as a promising technology to study protein expression and protein function in a high-throughput manner. These arrays also represent a new opportunity to profile protein expression levels in cancer patients' samples and to identify useful biosignatures for clinical diagnosis, disease classification, prediction, drug development and patient care. We applied antibody arrays to discover a panel of proteins which may serve as biomarkers to distinguish between patients with ovarian cancer and normal controls. METHODOLOGY/PRINCIPAL FINDINGS: Using a case-control study design of 34 ovarian cancer patients and 53 age-matched healthy controls, we profiled the expression levels of 174 proteins using antibody array technology and determined the CA125 level using ELISA. The expression levels of those proteins were analyzed using 3 discriminant methods, including artificial neural network, classification tree and split-point score analysis. A panel of 5 serum protein markers (MSP-alpha, TIMP-4, PDGF-R alpha, and OPG and CA125 was identified, which could effectively detect ovarian cancer with high specificity (95% and high sensitivity (100%, with AUC =0.98, while CA125 alone had an AUC of 0.87. CONCLUSIONS/SIGNIFICANCE: Our pilot study has shown the promising set of 5 serum markers for ovarian cancer detection.

  20. Protein N- and C-Termini Identification Using Mass Spectrometry and Isotopic Labeling

    Science.gov (United States)

    A new method for protein N- and C-terminal analysis using mass spectrometry is introduced. A novel stable isotopic labeling scheme has been developed to identify terminal peptides generated from an enzyme digestion for the determination of both N- and C-termini of the protein. This method works dire...

  1. Identification of procollagen promoter DNA-binding proteins: effects of dexamethasone

    International Nuclear Information System (INIS)

    Glucocorticoids selectively decrease procollagen synthesis by decreasing procollagen mRNA transcription. Dexamethasone coordinately decreased total cellular type I and type III procollagen mRNAs in mouse embryonic skin fibroblasts. Since sequence specific DNA-binding proteins are known to modulate eukaryotic gene expression the authors identified in mouse fibroblasts nuclear proteins which bind to types I and III procollagen promoter DNAs. Nuclear proteins were electrophoresed, blotted onto nitrocellulose and probed with 32P-end-labeled type I and type III procollagen promoter DNAs in the presence of equimolar amounts of 32P-end-labeled vector DNA. Differences in total DNA binding were noted by the densitometric scans of the nuclear proteins. Dexamethasone treatment enhanced total DNA binding. Increasing the NaCl concentration decreased the number of promoter DNA-binding proteins without altering the relative specificity for the promoter DNAs. Promoter DNA binding to nuclear proteins was also inhibited by increasing concentrations of E. coli DNA. The number of DNA-binding proteins was greater for type III procollagen promoter DNA. The effect of dexamethasone treatment on promoter DNA binding to nuclear proteins was determined

  2. IDENTIFICATION AND MOLECULAR CLONING OF XENOPUS LAEVIS SP22, A PROTEIN ASSOCIATED WITH FERTILIZATION IN MAMMALS

    Science.gov (United States)

    ABSTRACTSP22 is a protein that has been characterized in rats where it has been related with fertility. SP22 homologues have been studied in mouse and man and a definitive role for the protein has not been assigned yet. By means of a polyclonal IgG to recombinant rat SP22...

  3. A proteomic approach to identification of plutonium-binding proteins in mammalian cells.

    Science.gov (United States)

    Aryal, Baikuntha P; Paunesku, Tatjana; Woloschak, Gayle E; He, Chuan; Jensen, Mark P

    2012-02-16

    Plutonium can enter the body through different routes and remains there for decades; however its specific biochemical interactions are poorly defined. We, for the first time, have studied plutonium-binding proteins using a metalloproteomic approach with rat PC12 cells. A combination of immobilized metal ion chromatography, 2D gel electrophoresis, and mass spectrometry was employed to analyze potential plutonium-binding proteins. Our results show that several proteins from PC12 cells show affinity towards Pu(4+)-NTA (plutonium bound to nitrilotriacetic acid). Proteins from seven different spots in the 2D gel were identified. In contrast to the previously known plutonium-binding proteins transferrin and ferritin, which bind ferric ions, most identified proteins in our experiment are known to bind calcium, magnesium, or divalent transition metal ions. The identified plutonium interacting proteins also have functional roles in downregulation of apoptosis and other pro-proliferative processes. MetaCore™ analysis based on this group of proteins produced a pathway with a statistically significant association with development of neoplastic diseases.

  4. Identification of a new class of lipid droplet-associated proteins in plants.

    Science.gov (United States)

    Horn, Patrick J; James, Christopher N; Gidda, Satinder K; Kilaru, Aruna; Dyer, John M; Mullen, Robert T; Ohlrogge, John B; Chapman, Kent D

    2013-08-01

    Lipid droplets in plants (also known as oil bodies, lipid bodies, or oleosomes) are well characterized in seeds, and oleosins, the major proteins associated with their surface, were shown to be important for stabilizing lipid droplets during seed desiccation and rehydration. However, lipid droplets occur in essentially all plant cell types, many of which may not require oleosin-mediated stabilization. The proteins associated with the surface of nonseed lipid droplets, which are likely to influence the formation, stability, and turnover of this compartment, remain to be elucidated. Here, we have combined lipidomic, proteomic, and transcriptomic studies of avocado (Persea americana) mesocarp to identify two new lipid droplet-associated proteins, which we named LDAP1 and LDAP2. These proteins are highly similar to each other and also to the small rubber particle proteins that accumulate in rubber-producing plants. An Arabidopsis (Arabidopsis thaliana) homolog to LDAP1 and LDAP2, At3g05500, was localized to the surface of lipid droplets after transient expression in tobacco (Nicotiana tabacum) cells that were induced to accumulate triacylglycerols. We propose that small rubber particle protein-like proteins are involved in the general process of binding and perhaps the stabilization of lipid-rich particles in the cytosol of plant cells and that the avocado and Arabidopsis protein members reveal a new aspect of the cellular machinery that is involved in the packaging of triacylglycerols in plant tissues. PMID:23821652

  5. Purification, identification and preliminary crystallographic studies of a 2S albumin seed protein from Lens culinaris

    International Nuclear Information System (INIS)

    A 2S albumin from L. culinaris was purified and crystallized and preliminary crystallographic studies were carried out. Lens culinaris (lentil) is a widely consumed high-protein-content leguminous crop. A 2S albumin protein (26.5 kDa) has been identified using NH2-terminal sequencing from a 90% ammonium sulfate saturation fraction of total L. culinaris seed protein extract. The NH2-terminal sequence shows very high homology to PA2, an allergy-related protein from Pisum sativum. The 2S albumin protein was purified using a combination of size-exclusion and ion-exchange chromatography. Crystals of the 2S seed albumin obtained using the hanging-drop vapour-diffusion method diffracted to 2.5 Å resolution and were indexed in space group P41 (or P43), with unit-cell parameters a = b = 78.6, c = 135.2 Å

  6. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification.

    Science.gov (United States)

    Nguyen, Ngoc-Thuy-Trinh; Saguez, Cyril; Conesa, Christine; Lefebvre, Olivier; Acker, Joël

    2015-02-01

    To identify the proteins associated with the RNA polymerase III (Pol III) machinery in exponentially growing yeast cells, we developed our own tandem chromatin affinity purification procedure (TChAP) after in vivo cross-link, allowing a reproducible and good recovery of the protein bait and its associated partners. In contrast to TFIIIA that could only be purified as a free protein, this protocol allows us to capture free Pol III together with Pol III bound on its target genes. Transcription factors, elongation factors, RNA-associated proteins and proteins involved in Pol III biogenesis were identified by mass spectrometry. Interestingly, the presence of all the TFIIIB subunits found associated with Pol III together with the absence of TFIIIC and chromatin factors including histones suggest that DNA-bound Pol III purified using TChAP is mainly engaged in transcription reinitiation.

  7. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    International Nuclear Information System (INIS)

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1–17 and 18–36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  8. Identification and characterization of a novel Chlamydia trachomatis reticulate body protein

    DEFF Research Database (Denmark)

    Shaw, Allan C; Larsen, Martin Røssel; Roepstorff, Peter;

    2002-01-01

    The genome of the obligate intracellular bacterium Chlamydia trachomatis comprises 894 genes predicted by computer-based analysis. As part of a large-scale proteome analysis of C. trachomatis, a small abundant protein encoded by a previously unrecognized novel 204-bp open reading frame was identi......The genome of the obligate intracellular bacterium Chlamydia trachomatis comprises 894 genes predicted by computer-based analysis. As part of a large-scale proteome analysis of C. trachomatis, a small abundant protein encoded by a previously unrecognized novel 204-bp open reading frame...... cycle. The protein is rapidly degraded and is only present in reticulate or intermediate bodies, suggesting a possible function in the intracellular stage of C. trachomatis development. We have termed the protein '7-kDa reticulate body protein'....

  9. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential.

    Directory of Open Access Journals (Sweden)

    Stéphane Bellafiore

    2008-10-01

    Full Text Available The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins. Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth. Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi, suggesting a common parasitic behavior and a possible

  10. Isolation and identification of histone H3 protein enriched in microvesicles secreted from cultured sebocytes.

    Science.gov (United States)

    Nagai, Ayako; Sato, Takashi; Akimoto, Noriko; Ito, Akira; Sumida, Michihiro

    2005-06-01

    Secretion of microvesicles, defined as sebosomes, containing lipid particles were discovered for the first time in cultured sebocytes. After reaching confluency, hamster-cloned sebocytes released bubble-like microvesicles with a diameter range of 0.5-5.0 microm. They had a complex structure containing multiple Oil Red O-stainable particles. The lipid components of the microvesicles were large amounts of squalene both of hamster-cloned and rat primary cultured sebocytes. The microvesicles contained a concentrated 17-kDa cationic protein, which was soluble in sulfate buffer including Nonidet P-40 at pH 1.5. As the protein bound tightly to heparin-Sepharose and eluted with 1.5 M NaCl, it was further purified from a SDS-PAGE gel. Peptide sequencing identified the protein to be histone H3. Polyclonal antibodies against the purified protein detected the antigen in the microvesicles both in the hamster-cloned and rat primary cultured sebocytes. The antibodies demonstrated a distribution of the protein within the nucleus, cytoplasm, and precursor microvesicles. When a gene construct encoding histone H3-enhanced green fluorescent protein was transfected to the sebocytes, fluorescence of the fusion proteins was detected within both the nucleus and the precursor microvesicles of the cytoplasm. The distribution of heparan sulfate was evident in the microvesicles, and it suggested the possibility that the histone H3 protein was recruited and then condensed to the secreted microvesicles by the molecules. In addition, the 14-3-3 protein, which was detected in the microvesicles, also may help incorporate the histone H3 protein in the microvesicles because it can bind to both histone and lipid particles. PMID:15746254

  11. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane expos