WorldWideScience

Sample records for accurate path integration

  1. A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat.

    Science.gov (United States)

    Liu, Jian; Li, Dezhang; Liu, Xinzijian

    2016-07-14

    We introduce a novel simple algorithm for thermostatting path integral molecular dynamics (PIMD) with the Langevin equation. The staging transformation of path integral beads is employed for demonstration. The optimum friction coefficients for the staging modes in the free particle limit are used for all systems. In comparison to the path integral Langevin equation thermostat, the new algorithm exploits a different order of splitting for the phase space propagator associated to the Langevin equation. While the error analysis is made for both algorithms, they are also employed in the PIMD simulations of three realistic systems (the H2O molecule, liquid para-hydrogen, and liquid water) for comparison. It is shown that the new thermostat increases the time interval of PIMD by a factor of 4-6 or more for achieving the same accuracy. In addition, the supplementary material shows the error analysis made for the algorithms when the normal-mode transformation of path integral beads is used.

  2. A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat

    Science.gov (United States)

    Liu, Jian; Li, Dezhang; Liu, Xinzijian

    2016-07-01

    We introduce a novel simple algorithm for thermostatting path integral molecular dynamics (PIMD) with the Langevin equation. The staging transformation of path integral beads is employed for demonstration. The optimum friction coefficients for the staging modes in the free particle limit are used for all systems. In comparison to the path integral Langevin equation thermostat, the new algorithm exploits a different order of splitting for the phase space propagator associated to the Langevin equation. While the error analysis is made for both algorithms, they are also employed in the PIMD simulations of three realistic systems (the H2O molecule, liquid para-hydrogen, and liquid water) for comparison. It is shown that the new thermostat increases the time interval of PIMD by a factor of 4-6 or more for achieving the same accuracy. In addition, the supplementary material shows the error analysis made for the algorithms when the normal-mode transformation of path integral beads is used.

  3. Nuclear Quantum Effects in Liquid Water: A Highly Accurate ab initio Path-Integral Molecular Dynamics Study

    Science.gov (United States)

    Distasio, Robert A., Jr.; Santra, Biswajit; Ko, Hsin-Yu; Car, Roberto

    2014-03-01

    In this work, we report highly accurate ab initio path-integral molecular dynamics (AI-PIMD) simulations on liquid water at ambient conditions utilizing the recently developed PBE0+vdW(SC) exchange-correlation functional, which accounts for exact exchange and a self-consistent pairwise treatment of van der Waals (vdW) or dispersion interactions, combined with nuclear quantum effects (via the colored-noise generalized Langevin equation). The importance of each of these effects in the theoretical prediction of the structure of liquid water will be demonstrated by a detailed comparative analysis of the predicted and experimental oxygen-oxygen (O-O), oxygen-hydrogen (O-H), and hydrogen-hydrogen (H-H) radial distribution functions as well as other structural properties. In addition, we will discuss the theoretically obtained proton momentum distribution, computed using the recently developed Feynman path formulation, in light of the experimental deep inelastic neutron scattering (DINS) measurements. DOE: DE-SC0008626, DOE: DE-SC0005180.

  4. Accurate path integral molecular dynamics simulation of ab-initio water at near-zero added cost

    Science.gov (United States)

    Elton, Daniel; Fritz, Michelle; Soler, José; Fernandez-Serra, Marivi

    It is now established that nuclear quantum motion plays an important role in determining water's structure and dynamics. These effects are important to consider when evaluating DFT functionals and attempting to develop better ones for water. The standard way of treating nuclear quantum effects, path integral molecular dynamics (PIMD), multiplies the number of energy/force calculations by the number of beads, which is typically 32. Here we introduce a method whereby PIMD can be incorporated into a DFT molecular dynamics simulation at virtually zero cost. The method is based on the cluster (many body) expansion of the energy. We first subtract the DFT monomer energies, using a custom DFT-based monomer potential energy surface. The evolution of the PIMD beads is then performed using only the more-accurate Partridge-Schwenke monomer energy surface. The DFT calculations are done using the centroid positions. Various bead thermostats can be employed to speed up the sampling of the quantum ensemble. The method bears some resemblance to multiple timestep algorithms and other schemes used to speed up PIMD with classical force fields. We show that our method correctly captures some of key effects of nuclear quantum motion on both the structure and dynamics of water. We acknowledge support from DOE Award No. DE-FG02-09ER16052 (D.E.) and DOE Early Career Award No. DE-SC0003871 (M.V.F.S.).

  5. Accurate free energy calculation along optimized paths.

    Science.gov (United States)

    Chen, Changjun; Xiao, Yi

    2010-05-01

    The path-based methods of free energy calculation, such as thermodynamic integration and free energy perturbation, are simple in theory, but difficult in practice because in most cases smooth paths do not exist, especially for large molecules. In this article, we present a novel method to build the transition path of a peptide. We use harmonic potentials to restrain its nonhydrogen atom dihedrals in the initial state and set the equilibrium angles of the potentials as those in the final state. Through a series of steps of geometrical optimization, we can construct a smooth and short path from the initial state to the final state. This path can be used to calculate free energy difference. To validate this method, we apply it to a small 10-ALA peptide and find that the calculated free energy changes in helix-helix and helix-hairpin transitions are both self-convergent and cross-convergent. We also calculate the free energy differences between different stable states of beta-hairpin trpzip2, and the results show that this method is more efficient than the conventional molecular dynamics method in accurate free energy calculation.

  6. Path Integrals and Hamiltonians

    Science.gov (United States)

    Baaquie, Belal E.

    2014-03-01

    1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.

  7. Continuous-Discrete Path Integral Filtering

    Directory of Open Access Journals (Sweden)

    Bhashyam Balaji

    2009-08-01

    Full Text Available A summary of the relationship between the Langevin equation, Fokker-Planck-Kolmogorov forward equation (FPKfe and the Feynman path integral descriptions of stochastic processes relevant for the solution of the continuous-discrete filtering problem is provided in this paper. The practical utility of the path integral formula is demonstrated via some nontrivial examples. Specifically, it is shown that the simplest approximation of the path integral formula for the fundamental solution of the FPKfe can be applied to solve nonlinear continuous-discrete filtering problems quite accurately. The Dirac-Feynman path integral filtering algorithm is quite simple, and is suitable for real-time implementation.

  8. Beyond transition state theory: accurate description of nuclear quantum effects on the rate and equilibrium constants of chemical reactions using Feynman path integrals.

    Science.gov (United States)

    Vanícek, Jirí

    2011-01-01

    Nuclear tunneling and other nuclear quantum effects have been shown to play a significant role in molecules as large as enzymes even at physiological temperatures. I discuss how these quantum phenomena can be accounted for rigorously using Feynman path integrals in calculations of the equilibrium and kinetic isotope effects as well as of the temperature dependence of the rate constant. Because these calculations are extremely computationally demanding, special attention is devoted to increasing the computational efficiency by orders of magnitude by employing efficient path integral estimators.

  9. Accurate Prediction of Hyperfine Coupling Constants in Muoniated and Hydrogenated Ethyl Radicals: Ab Initio Path Integral Simulation Study with Density Functional Theory Method.

    Science.gov (United States)

    Yamada, Kenta; Kawashima, Yukio; Tachikawa, Masanori

    2014-05-13

    We performed ab initio path integral molecular dynamics (PIMD) simulations with a density functional theory (DFT) method to accurately predict hyperfine coupling constants (HFCCs) in the ethyl radical (CβH3-CαH2) and its Mu-substituted (muoniated) compound (CβH2Mu-CαH2). The substitution of a Mu atom, an ultralight isotope of the H atom, with larger nuclear quantum effect is expected to strongly affect the nature of the ethyl radical. The static conventional DFT calculations of CβH3-CαH2 find that the elongation of one Cβ-H bond causes a change in the shape of potential energy curve along the rotational angle via the imbalance of attractive and repulsive interactions between the methyl and methylene groups. Investigation of the methyl-group behavior including the nuclear quantum and thermal effects shows that an unbalanced CβH2Mu group with the elongated Cβ-Mu bond rotates around the Cβ-Cα bond in a muoniated ethyl radical, quite differently from the CβH3 group with the three equivalent Cβ-H bonds in the ethyl radical. These rotations couple with other molecular motions such as the methylene-group rocking motion (inversion), leading to difficulties in reproducing the corresponding barrier heights. Our PIMD simulations successfully predict the barrier heights to be close to the experimental values and provide a significant improvement in muon and proton HFCCs given by the static conventional DFT method. Further investigation reveals that the Cβ-Mu/H stretching motion, methyl-group rotation, methylene-group rocking motion, and HFCC values deeply intertwine with each other. Because these motions are different between the radicals, a proper description of the structural fluctuations reflecting the nuclear quantum and thermal effects is vital to evaluate HFCC values in theory to be comparable to the experimental ones. Accordingly, a fundamental difference in HFCC between the radicals arises from their intrinsic molecular motions at a finite temperature, in

  10. Propagators and path integrals

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van

    1995-08-22

    Path-integral expressions for one-particle propagators in scalar and fermionic field theories are derived, for arbitrary mass. This establishes a direct connection between field theory and specific classical point-particle models. The role of world-line reparametrization invariance of the classical action and the implementation of the corresponding BRST-symmetry in the quantum theory are discussed. The presence of classical world-line supersymmetry is shown to lead to an unwanted doubling of states for massive spin-1/2 particles. The origin of this phenomenon is traced to a `hidden` topological fermionic excitation. A different formulation of the pseudo-classical mechanics using a bosonic representation of {gamma}{sub 5} is shown to remove these extra states at the expense of losing manifest supersymmetry. (orig.).

  11. Path integrals for awkward actions

    CERN Document Server

    Amdahl, David

    2016-01-01

    Time derivatives of scalar fields occur quadratically in textbook actions. A simple Legendre transformation turns the lagrangian into a hamiltonian that is quadratic in the momenta. The path integral over the momenta is gaussian. Mean values of operators are euclidian path integrals of their classical counterparts with positive weight functions. Monte Carlo simulations can estimate such mean values. This familiar framework falls apart when the time derivatives do not occur quadratically. The Legendre transformation becomes difficult or so intractable that one can't find the hamiltonian. Even if one finds the hamiltonian, it usually is so complicated that one can't path-integrate over the momenta and get a euclidian path integral with a positive weight function. Monte Carlo simulations don't work when the weight function assumes negative or complex values. This paper solves both problems. It shows how to make path integrals without knowing the hamiltonian. It also shows how to estimate complex path integrals b...

  12. Path integral in Snyder space

    Energy Technology Data Exchange (ETDEWEB)

    Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)

    2016-04-29

    The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.

  13. Path Integrals in Quantum Physics

    CERN Document Server

    Rosenfelder, R

    2012-01-01

    These lectures aim at giving graduate students an introduction to and a working knowledge of path integral methods in a wide variety of fields in physics. Consequently, the lecture notes are organized in three main parts dealing with non-relativistic quantum mechanics, many-body physics and field theory. In the first part the basic concepts of path integrals are developed in the usual heuristic, non-mathematical way followed by standard examples and special applications including numerical evaluation of (euclidean) path integrals by Monte-Carlo methods with a program for the anharmonic oscillator. The second part deals with the application of path integrals in statistical mechanics and many-body problems treating the polaron problem, dissipative quantum systems, path integrals over ordinary and Grassmannian coherent states and perturbation theory for both bosons and fermions. Again a simple Fortran program is included for illustrating the use of strong-coupling methods. Finally, in the third part path integra...

  14. Equivariant Localization of Path Integrals

    OpenAIRE

    Szabo, Richard J.

    1996-01-01

    We review equivariant localization techniques for the evaluation of Feynman path integrals. We develop systematic geometric methods for studying the semi-classical properties of phase space path integrals for dynamical systems, emphasizing the relations with integrable and topological quantum field theories. Beginning with a detailed review of the relevant mathematical background -- equivariant cohomology and the Duistermaat-Heckman theorem, we demonstrate how the localization ideas are relat...

  15. Path integrals and quantum processes

    CERN Document Server

    Swanson, Marc S

    1992-01-01

    In a clearly written and systematic presentation, Path Integrals and Quantum Processes covers all concepts necessary to understand the path integral approach to calculating transition elements, partition functions, and source functionals. The book, which assumes only a familiarity with quantum mechanics, is ideal for use as a supplemental textbook in quantum mechanics and quantum field theory courses. Graduate and post-graduate students who are unfamiliar with the path integral will also benefit from this contemporary text. Exercise sets are interspersed throughout the text to facilitate self-

  16. Scattering theory with path integrals

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfelder, R. [Particle Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2014-03-15

    Starting from well-known expressions for the T-matrix and its derivative in standard nonrelativistic potential scattering, I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.

  17. Scattering Theory with Path Integrals

    CERN Document Server

    Rosenfelder, R

    2013-01-01

    Starting from well-known expressions for the $T$-matrix and its derivative in standard nonrelativistic potential scattering I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.

  18. Path Integrals in Quantum Physics

    OpenAIRE

    2012-01-01

    These lectures aim at giving graduate students an introduction to and a working knowledge of path integral methods in a wide variety of fields in physics. Consequently, the lecture notes are organized in three main parts dealing with non-relativistic quantum mechanics, many-body physics and field theory. In the first part the basic concepts of path integrals are developed in the usual heuristic, non-mathematical way followed by standard examples and special applications including numerical ev...

  19. Simple and accurate analytical calculation of shortest path lengths

    CERN Document Server

    Melnik, Sergey

    2016-01-01

    We present an analytical approach to calculating the distribution of shortest paths lengths (also called intervertex distances, or geodesic paths) between nodes in unweighted undirected networks. We obtain very accurate results for synthetic random networks with specified degree distribution (the so-called configuration model networks). Our method allows us to accurately predict the distribution of shortest path lengths on real-world networks using their degree distribution, or joint degree-degree distribution. Compared to some other methods, our approach is simpler and yields more accurate results. In order to obtain the analytical results, we use the analogy between an infection reaching a node in $n$ discrete time steps (i.e., as in the susceptible-infected epidemic model) and that node being at a distance $n$ from the source of the infection.

  20. Discrete Coherent State Path Integrals

    Science.gov (United States)

    Marchioro, Thomas L., II

    1990-01-01

    The quantum theory provides a fundamental understanding of the physical world; however, as the number of degrees of freedom rises, the information required to specify quantum wavefunctions grows geometrically. Because basis set expansions mirror this geometric growth, a strict practical limit on quantum mechanics as a numerical tool arises, specifically, three degrees of freedom or fewer. Recent progress has been made utilizing Feynman's Path Integral formalism to bypass this geometric growth and instead calculate time -dependent correlation functions directly. The solution of the Schrodinger equation is converted into a large dimensional (formally infinite) integration, which can then be attacked with Monte Carlo techniques. To date, work in this area has concentrated on developing sophisticated mathematical algorithms for evaluating the highly oscillatory integrands occurring in Feynman Path Integrals. In an alternative approach, this work demonstrates two formulations of quantum dynamics for which the number of mathematical operations does not scale geometrically. Both methods utilize the Coherent State basis of quantum mechanics. First, a localized coherent state basis set expansion and an approximate short time propagator are developed. Iterations of the short time propagator lead to the full quantum dynamics if the coherent state basis is sufficiently dense along the classical phase space path of the system. Second, the coherent state path integral is examined in detail. For a common class of Hamiltonians, H = p^2/2 + V( x) the path integral is reformulated from a phase space-like expression into one depending on (q,dot q). It is demonstrated that this new path integral expression contains localized damping terms which can serve as a statistical weight for Monte Carlo evaluation of the integral--a process which scales approximately linearly with the number of degrees of freedom. Corrections to the traditional coherent state path integral, inspired by a

  1. Path integration in tactile perception of shapes.

    Science.gov (United States)

    Moscatelli, Alessandro; Naceri, Abdeldjallil; Ernst, Marc O

    2014-11-01

    Whenever we move the hand across a surface, tactile signals provide information about the relative velocity between the skin and the surface. If the system were able to integrate the tactile velocity information over time, cutaneous touch may provide an estimate of the relative displacement between the hand and the surface. Here, we asked whether humans are able to form a reliable representation of the motion path from tactile cues only, integrating motion information over time. In order to address this issue, we conducted three experiments using tactile motion and asked participants (1) to estimate the length of a simulated triangle, (2) to reproduce the shape of a simulated triangular path, and (3) to estimate the angle between two-line segments. Participants were able to accurately indicate the length of the path, whereas the perceived direction was affected by a direction bias (inward bias). The response pattern was thus qualitatively similar to the ones reported in classical path integration studies involving locomotion. However, we explain the directional biases as the result of a tactile motion aftereffect.

  2. Perturbative Methods in Path Integration

    Science.gov (United States)

    Johnson-Freyd, Theodore Paul

    This dissertation addresses a number of related questions concerning perturbative "path" integrals. Perturbative methods are one of the few successful ways physicists have worked with (or even defined) these infinite-dimensional integrals, and it is important as mathematicians to check that they are correct. Chapter 0 provides a detailed introduction. We take a classical approach to path integrals in Chapter 1. Following standard arguments, we posit a Feynman-diagrammatic description of the asymptotics of the time-evolution operator for the quantum mechanics of a charged particle moving nonrelativistically through a curved manifold under the influence of an external electromagnetic field. We check that our sum of Feynman diagrams has all desired properties: it is coordinate-independent and well-defined without ultraviolet divergences, it satisfies the correct composition law, and it satisfies Schrodinger's equation thought of as a boundary-value problem in PDE. Path integrals in quantum mechanics and elsewhere in quantum field theory are almost always of the shape ∫ f es for some functions f (the "observable") and s (the "action"). In Chapter 2 we step back to analyze integrals of this type more generally. Integration by parts provides algebraic relations between the values of ∫ (-) es for different inputs, which can be packaged into a Batalin--Vilkovisky-type chain complex. Using some simple homological perturbation theory, we study the version of this complex that arises when f and s are taken to be polynomial functions, and power series are banished. We find that in such cases, the entire scheme-theoretic critical locus (complex points included) of s plays an important role, and that one can uniformly (but noncanonically) integrate out in a purely algebraic way the contributions to the integral from all "higher modes," reducing ∫ f es to an integral over the critical locus. This may help explain the presence of analytic continuation in questions like the

  3. Integrated assignment and path planning

    Science.gov (United States)

    Murphey, Robert A.

    2005-11-01

    A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact

  4. Techniques and applications of path integration

    CERN Document Server

    Schulman, L S

    2005-01-01

    A book of techniques and applications, this text defines the path integral and illustrates its uses by example. It is suitable for advanced undergraduates and graduate students in physics; its sole prerequisite is a first course in quantum mechanics. For applications requiring specialized knowledge, the author supplies background material.The first part of the book develops the techniques of path integration. Topics include probability amplitudes for paths and the correspondence limit for the path integral; vector potentials; the Ito integral and gauge transformations; free particle and quadra

  5. Critical Review of Path Integral Formulation

    CERN Document Server

    Fujita, Takehisa

    2008-01-01

    The path integral formulation in quantum mechanics corresponds to the first quantization since it is just to rewrite the quantum mechanical amplitude into many dimensional integrations over discretized coordinates $x_n$. However, the path integral expression cannot be connected to the dynamics of classical mechanics, even though, superficially, there is some similarity between them. Further, the field theory path integral in terms of many dimensional integrations over fields does not correspond to the field quantization. We clarify the essential difference between Feynman's original formulation of path integral in QED and the modern version of the path integral method prevailing in lattice field theory calculations, and show that the former can make a correct second quantization while the latter cannot quantize fields at all and its physical meaning is unknown.

  6. White Noise Path Integrals in Stochastic Neurodynamics

    Science.gov (United States)

    Carpio-Bernido, M. Victoria; Bernido, Christopher C.

    2008-06-01

    The white noise path integral approach is used in stochastic modeling of neural activity, where the primary dynamical variables are the relative membrane potentials, while information on transmembrane ionic currents is contained in the drift coefficient. The white noise path integral allows a natural framework and can be evaluated explicitly to yield a closed form for the conditional probability density.

  7. Langevin equation path integral ground state.

    Science.gov (United States)

    Constable, Steve; Schmidt, Matthew; Ing, Christopher; Zeng, Tao; Roy, Pierre-Nicholas

    2013-08-15

    We propose a Langevin equation path integral ground state (LePIGS) approach for the calculation of ground state (zero temperature) properties of molecular systems. The approach is based on a modification of the finite temperature path integral Langevin equation (PILE) method (J. Chem. Phys. 2010, 133, 124104) to the case of open Feynman paths. Such open paths are necessary for a ground state formulation. We illustrate the applicability of the method using model systems and the weakly bound water-parahydrogen dimer. We show that the method can lead to converged zero point energies and structural properties.

  8. Feynman Path Integrals Over Entangled States

    CERN Document Server

    Green, A G; Keeling, J; Simon, S H

    2016-01-01

    The saddle points of a conventional Feynman path integral are not entangled, since they comprise a sequence of classical field configurations. We combine insights from field theory and tensor networks by constructing a Feynman path integral over a sequence of matrix product states. The paths that dominate this path integral include some degree of entanglement. This new feature allows several insights and applications: i. A Ginzburg-Landau description of deconfined phase transitions. ii. The emergence of new classical collective variables in states that are not adiabatically continuous with product states. iii. Features that are captured in product-state field theories by proliferation of instantons are encoded in perturbative fluctuations about entangled saddles. We develop a general formalism for such path integrals and a couple of simple examples to illustrate their utility.

  9. Path integral representations on the complex sphere

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2007-08-15

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S{sub 3C}. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

  10. Sensory feedback in a bump attractor model of path integration.

    Science.gov (United States)

    Poll, Daniel B; Nguyen, Khanh; Kilpatrick, Zachary P

    2016-04-01

    Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal's current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal's knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541-4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error.

  11. Path Integral Approach to Atomic Collisions

    Science.gov (United States)

    Harris, Allison

    2016-09-01

    The Path Integral technique is an alternative formulation of quantum mechanics that is based on a Lagrangian approach. In its exact form, it is completely equivalent to the Hamiltonian-based Schrödinger equation approach. Developed by Feynman in the 1940's, following inspiration from Dirac, the path integral approach has been widely used in high energy physics, quantum field theory, and statistical mechanics. However, only in limited cases has the path integral approach been applied to quantum mechanical few-body scattering. We present a theoretical and computational development of the path integral method for use in the study of atomic collisions. Preliminary results are presented for some simple systems. Ultimately, this approach will be applied to few-body ion-atom collisions. Work supported by NSF grant PHY-1505217.

  12. Path integration in relativistic quantum mechanics

    CERN Document Server

    Redmount, I H; Redmount, Ian H.; Suen, Wai-Mo

    1993-01-01

    The simple physics of a free particle reveals important features of the path-integral formulation of relativistic quantum theories. The exact quantum-mechanical propagator is calculated here for a particle described by the simple relativistic action proportional to its proper time. This propagator is nonvanishing outside the light cone, implying that spacelike trajectories must be included in the path integral. The propagator matches the WKB approximation to the corresponding configuration-space path integral far from the light cone; outside the light cone that approximation consists of the contribution from a single spacelike geodesic. This propagator also has the unusual property that its short-time limit does not coincide with the WKB approximation, making the construction of a concrete skeletonized version of the path integral more complicated than in nonrelativistic theory.

  13. Anomalous paths in quantum mechanical path-integrals

    Energy Technology Data Exchange (ETDEWEB)

    Grimsmo, Arne L., E-mail: arne.grimsmo@ntnu.no [Department of Physics, The Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Department of Physics, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Klauder, John R., E-mail: klauder@phys.ufl.edu [Departments of Physics and Mathematics, University of Florida, Gainesville, FL 32611 (United States); Skagerstam, Bo-Sture K., E-mail: bo-sture.skagerstam@ntnu.no [Department of Physics, The Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Kavli Institute for Theoretical Physics, Kohn Hall, University of California at Santa Barbara, CA 93106-4030 (United States); CREOL, The College of Optics and Photonics at the University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States)

    2013-11-25

    We investigate modifications of the discrete-time lattice action, for a quantum mechanical particle in one spatial dimension, that vanish in the naïve continuum limit but which, nevertheless, induce non-trivial effects due to quantum fluctuations. These effects are seen to modify the geometry of the paths contributing to the path-integral describing the time evolution of the particle, which we investigate through numerical simulations. In particular, we demonstrate the existence of a modified lattice action resulting in paths with any fractal dimension, d{sub f}, between one and two. We argue that d{sub f}=2 is a critical value, and we exhibit a type of lattice modification where the fluctuations in the position of the particle becomes independent of the time step, in which case the paths are interpreted as superdiffusive Lévy flights. We also consider the jaggedness of the paths, and show that this gives an independent classification of lattice theories.

  14. Local-time representation of path integrals.

    Science.gov (United States)

    Jizba, Petr; Zatloukal, Václav

    2015-12-01

    We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x-dependent local-time profiles. The latter quantify the time that the sample paths x(t) in the Feynman path integral spend in the vicinity of an arbitrary point x. Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed.

  15. Path integral distance for data interpretation

    CERN Document Server

    Volchenkov, D

    2015-01-01

    The process of data interpretation is always based on the implicit introduction of equivalence relations on the set of walks over the database. Every equivalence relation on the set of walks specifies a Markov chain describing the transitions of a discrete time random walk. In order to geometrize and interpret the data, we propose the new distance between data units defined as a "Feynman path integral", in which all possible paths between any two nodes in a graph model of the data are taken into account, although some paths are more preferable than others. Such a path integral distance approach to the analysis of databases has proven its efficiency and success, especially on multivariate strongly correlated data where other methods fail to detect structural components (urban planning, historical language phylogenies, music, street fashion traits analysis, etc. ). We believe that it would become an invaluable tool for the intelligent complexity reduction and big data interpretation.

  16. Noncommutative integrability, paths and quasi-determinants

    CERN Document Server

    Di Francesco, Philippe

    2010-01-01

    In previous work, we showed that the solution of certain systems of discrete integrable equations, notably $Q$ and $T$-systems, is given in terms of partition functions of positively weighted paths, thereby proving the positive Laurent phenomenon of Fomin and Zelevinsky for these cases. This method of solution is amenable to generalization to non-commutative weighted paths. Under certain circumstances, these describe solutions of discrete evolution equations in non-commutative variables: Examples are the corresponding quantum cluster algebras [BZ], the Kontsevich evolution [DFK09b] and the $T$-systems themselves [DFK09a]. In this paper, we formulate certain non-commutative integrable evolutions by considering paths with non-commutative weights, together with an evolution of the weights that reduces to cluster algebra mutations in the commutative limit. The general weights are expressed as Laurent monomials of quasi-determinants of path partition functions, allowing for a non-commutative version of the positiv...

  17. Path Integral Techniques in Conformal Field Theory

    CERN Document Server

    Van Tonder, A J

    2004-01-01

    We present the theory of a two-dimensional conformal scalar field using path integral techniques. We derive the conformal anomaly using an adaptation of the method of Fujikawa, and compare the result with a derivation based on a Pauli-Villars measure, where the anomaly is shifted from the path integral measure to the energy-momentum trace. In the path integral approach the energy-momentum is a true coordinate-invariant tensor quantity, and we explain how it is related to the corresponding non-tensor object arising in the operator approach, obtaining an intuitive explanation within the context of the path integral approach for the anomalous transformation law and anomalous Ward identities of the latter. After carefully calculating nontrivial contact terms arising in certain energy-momentum products, we use these to provide a simple consistency check confirming the change of variables formula for the path integral and to review the relationship between the conformal anomaly and the energy-momentum two-point fun...

  18. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2016-01-01

    Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name a few. Well-chosen and detailed examples illustrate the perturbation theory, canonical transformations, the action principle and demonstrate the usage of path integrals. This new edition has been revised and enlarged with chapters on quantum electrodynamics, high energy physics, Green’s functions and strong interaction.

  19. Field theory a path integral approach

    CERN Document Server

    Das, Ashok

    2006-01-01

    This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.Adding new material keenly requested by readers, this second edition is an important expansion of the popular first edition. Two extra chapters cover path integral quantization of gauge theories and anomalies, and a new section extends the supersymmetry chapter, where singular potentials in supersymmetric systems are described.

  20. Modeling DNA Dynamics by Path Integrals

    CERN Document Server

    Zoli, Marco

    2013-01-01

    Complementary strands in DNA double helix show temporary fluctuational openings which are essential to biological functions such as transcription and replication of the genetic information. Such large amplitude fluctuations, known as the breathing of DNA, are generally localized and, microscopically, are due to the breaking of the hydrogen bonds linking the base pairs (\\emph{bps}). I apply imaginary time path integral techniques to a mesoscopic Hamiltonian which accounts for the helicoidal geometry of a short circular DNA molecule. The \\emph{bps} displacements with respect to the ground state are interpreted as time dependent paths whose amplitudes are consistent with the model potential for the hydrogen bonds. The portion of the paths configuration space contributing to the partition function is determined by selecting the ensemble of paths which fulfill the second law of thermodynamics. Computations of the thermodynamics in the denaturation range show the energetic advantage for the equilibrium helicoidal g...

  1. Accurate pattern registration for integrated circuit tomography

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Zachary H.; Grantham, Steven; Neogi, Suneeta; Frigo, Sean P.; McNulty, Ian; Retsch, Cornelia C.; Wang, Yuxin; Lucatorto, Thomas B.

    2001-07-15

    As part of an effort to develop high resolution microtomography for engineered structures, a two-level copper integrated circuit interconnect was imaged using 1.83 keV x rays at 14 angles employing a full-field Fresnel zone plate microscope. A major requirement for high resolution microtomography is the accurate registration of the reference axes in each of the many views needed for a reconstruction. A reconstruction with 100 nm resolution would require registration accuracy of 30 nm or better. This work demonstrates that even images that have strong interference fringes can be used to obtain accurate fiducials through the use of Radon transforms. We show that we are able to locate the coordinates of the rectilinear circuit patterns to 28 nm. The procedure is validated by agreement between an x-ray parallax measurement of 1.41{+-}0.17 {mu}m and a measurement of 1.58{+-}0.08 {mu}m from a scanning electron microscope image of a cross section.

  2. Age differences in virtual environment and real world path integration

    Directory of Open Access Journals (Sweden)

    Diane E Adamo

    2012-09-01

    Full Text Available Accurate path integration requires the integration of visual, proprioceptive, and vestibular self-motion cues and age effects associated with alterations in processing information from these systems may contribute to declines in path integration abilities. The present study investigated age-related differences in path integration in conditions that varied as a function of available sources of sensory information. Twenty-two healthy, young (23.8 ± 3.0 yrs. and 16 older (70.1 ± 6.4 yrs. adults participated in distance reproduction and triangle completion tasks performed in a virtual environment and two real world conditions: guided walking and wheelchair propulsion. For walking and wheelchair propulsion conditions, participants wore a blindfold and wore noise-blocking headphones and were guided through the workspace by the experimenter. For the virtual environment (VE condition, participants viewed self-motion information on a computer monitor and used a joystick to navigate through the environment. For triangle completion tasks, older compared to younger individuals showed greater errors in rotation estimations performed in the wheelchair condition; and for rotation and distance estimations in the VE condition. Distance reproduction tasks, in contrast, did not show any age effects. These findings demonstrate that age differences in path integration vary as a function of the available sources of information and by the complexity of outbound pathway.

  3. Bead-Fourier path integral molecular dynamics

    Science.gov (United States)

    Ivanov, Sergei D.; Lyubartsev, Alexander P.; Laaksonen, Aatto

    2003-06-01

    Molecular dynamics formulation of Bead-Fourier path integral method for simulation of quantum systems at finite temperatures is presented. Within this scheme, both the bead coordinates and Fourier coefficients, defining the path representing the quantum particle, are treated as generalized coordinates with corresponding generalized momenta and masses. Introduction of the Fourier harmonics together with the center-of-mass thermostating scheme is shown to remove the ergodicity problem, known to pose serious difficulties in standard path integral molecular dynamics simulations. The method is tested for quantum harmonic oscillator and hydrogen atom (Coulombic potential). The simulation results are compared with the exact analytical solutions available for both these systems. Convergence of the results with respect to the number of beads and Fourier harmonics is analyzed. It was shown that addition of a few Fourier harmonics already improves the simulation results substantially, even for a relatively small number of beads. The proposed Bead-Fourier path integral molecular dynamics is a reliable and efficient alternative to simulations of quantum systems.

  4. Path Integral Bosonization of Massive GNO Fermions

    CERN Document Server

    Park, Q H

    1997-01-01

    We show the quantum equivalence between certain symmetric space sine-Gordon models and the massive free fermions. In the massless limit, these fermions reduce to the free fermions introduced by Goddard, Nahm and Olive (GNO) in association with symmetric spaces $K/G$. A path integral formulation is given in terms of the Wess-Zumino-Witten action where the field variable $g$ takes value in the orthogonal, unitary, and symplectic representations of the group $G$ in the basis of the symmetric space. We show that, for example, such a path integral bosonization is possible when the symmetric spaces $K/G$ are $SU(N) the relation between massive GNO fermions and the nonabelian solitons, and explain the restriction imposed on the fermion mass matrix due to the integrability of the bosonic model.

  5. Path integral quantization of parametrised field theory

    CERN Document Server

    Varadarajan, M

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrised field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrised field theory in order to analyse issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is non-trivial and is the analog of the Fradkin- Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrised field theory using key ideas of Schleich and show that our constructions imply the existence of non-standard `Wick rotations' of the standard free scalar field 2 point function. We develop a framework to study the problem of time through computations of scalar field 2 point functions. We illustra...

  6. Real-time accurate hand path tracking and joint trajectory planning for industrial robots(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 胡生员

    2002-01-01

    Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on-line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.

  7. Quantum gravitation the Feynman path integral approach

    CERN Document Server

    Hamber, Herbert W

    2009-01-01

    The book covers the theory of Quantum Gravitation from the point of view of Feynman path integrals. These provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. The path integral method is suitable for both perturbative as well as non-perturbative studies, and is known to already provide a framework of choice for the theoretical investigation of non-abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman’s formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The ren...

  8. An Alternate Path Integral for Quantum Gravity

    CERN Document Server

    Krishnan, Chethan; Raju, Avinash

    2016-01-01

    We define a (semi-classical) path integral for gravity with Neumann boundary conditions in $D$ dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This "Neumann ensemble" perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.

  9. An alternative path integral for quantum gravity

    Science.gov (United States)

    Krishnan, Chethan; Kumar, K. V. Pavan; Raju, Avinash

    2016-10-01

    We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This "Neumann ensemble" perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.

  10. A Path Integral Approach To Noncommutative Superspace

    CERN Document Server

    Chepelev, I; Chepelev, Iouri; Ciocarlie, Calin

    2003-01-01

    A path integral formula for the associative star-product of two superfields is proposed. It is a generalization of the Kontsevich-Cattaneo-Felder's formula for the star-product of functions of bosonic coordinates. The associativity of the star-product imposes certain conditions on the background of our sigma model. For generic background the action is not supersymmetric. The supersymmetry invariance of the action constrains the background and leads to a simple formula for the star-product.

  11. Path integrals for dimerized quantum spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Foussats, Adriana, E-mail: afoussats@gmail.co [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Greco, Andres [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Muramatsu, Alejandro [Institut fuer Theoretische Physik III, Universitaet Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany)

    2011-01-11

    Dimerized quantum spin systems may appear under several circumstances, e.g. by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a Neel state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin S=1/2 dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both an SO(4) formulation and bond-operators.

  12. State Space Path Integrals for Electronically Nonadiabatic Reaction Rates

    CERN Document Server

    Duke, Jessica Ryan

    2016-01-01

    We present a state-space-based path integral method to calculate the rate of electron transfer (ET) in multi-state, multi-electron condensed-phase processes. We employ an exact path integral in discrete electronic states and continuous Cartesian nuclear variables to obtain a transition state theory (TST) estimate to the rate. A dynamic recrossing correction to the TST rate is then obtained from real-time dynamics simulations using mean field ring polymer molecular dynamics. We employ two different reaction coordinates in our simulations and show that, despite the use of mean field dynamics, the use of an accurate dividing surface to compute TST rates allows us to achieve remarkable agreement with Fermi's golden rule rates for nonadiabatic ET in the normal regime of Marcus theory. Further, we show that using a reaction coordinate based on electronic state populations allows us to capture the turnover in rates for ET in the Marcus inverted regime.

  13. Purely geometric path integral for spin foams

    CERN Document Server

    Shirazi, Atousa Chaharsough

    2013-01-01

    Spin-foams are a proposal for defining the dynamics of loop quantum gravity via path integral. In order for a path integral to be at least formally equivalent to the corresponding canonical quantization, at each point in the space of histories it is important that the integrand have not only the correct phase -- a topic of recent focus in spin-foams -- but also the correct modulus, usually referred to as the measure factor. The correct measure factor descends from the Liouville measure on the reduced phase space, and its calculation is a task of canonical analysis. The covariant formulation of gravity from which spin-foams are derived is the Plebanski-Holst formulation, in which the basic variables are a Lorentz connection and a Lorentz-algebra valued two-form, called the Plebanski two-form. However, in the final spin-foam sum, one sums over only spins and intertwiners, which label eigenstates of the Plebanski two-form alone. The spin-foam sum is therefore a discretized version of a Plebanski-Holst path integ...

  14. Real-time accurate hand path tracking and joint trajectory planning for industrial robots(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 梁丰; 王越超

    2002-01-01

    Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.

  15. Quantum Measurement and Extended Feynman Path Integral

    Institute of Scientific and Technical Information of China (English)

    文伟; 白彦魁

    2012-01-01

    Quantum measurement problem has existed many years and inspired a large of literature in both physics and philosophy, but there is still no conclusion and consensus on it. We show it can be subsumed into the quantum theory if we extend the Feynman path integral by considering the relativistic effect of Feynman paths. According to this extended theory, we deduce not only the Klein-Gordon equation, but also the wave-function-collapse equation. It is shown that the stochastic and instantaneous collapse of the quantum measurement is due to the "potential noise" of the apparatus or environment and "inner correlation" of wave function respectively. Therefore, the definite-status of the macroscopic matter is due to itself and this does not disobey the quantum mechanics. This work will give a new recognition for the measurement problem.

  16. Path integral for multi-field inflation

    Science.gov (United States)

    Gong, Jinn-Ouk; Seo, Min-Seok; Shiu, Gary

    2016-07-01

    We develop the path integral formalism for studying cosmological perturbations in multi-field inflation, which is particularly well suited to study quantum theories with gauge symmetries such as diffeomorphism invariance. We formulate the gauge fixing conditions based on the Poisson brackets of the constraints, from which we derive two convenient gauges that are appropriate for multi-field inflation. We then adopt the in-in formalism to derive the most general expression for the power spectrum of the curvature perturbation including the corrections from the interactions of the curvature mode with other light degrees of freedom. We also discuss the contributions of the interactions to the bispectrum.

  17. Boundary conditions: The path integral approach

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M [Departamento de Fisica Teorica, Universidad de Zaragoza 50009 Zaragoza (Spain); Clemente-Gallardo, J [BIFI, Universidad de Zaragoza, 50009 Zaragoza (Spain); Munoz-Castaneda, J M [Departamento de Fisica Teorica, Universidad de Zaragoza 50009 Zaragoza (Spain)

    2007-11-15

    The path integral approach to quantum mechanics requires a substantial generalisation to describe the dynamics of systems confined to bounded domains. Nonlocal boundary conditions can be introduced in Feynman's approach by means of boundary amplitude distributions and complex phases to describe the quantum dynamics in terms of the classical trajectories. The different prescriptions involve only trajectories reaching the boundary and correspond to different choices of boundary conditions of selfadjoint extensions of the Hamiltonian. One dimensional particle dynamics is analysed in detail.

  18. An Introduction into the Feynman Path Integral

    CERN Document Server

    Grosche, C

    1993-01-01

    In this lecture a short introduction is given into the theory of the Feynman path integral in quantum mechanics. The general formulation in Riemann spaces will be given based on the Weyl- ordering prescription, respectively product ordering prescription, in the quantum Hamiltonian. Also, the theory of space-time transformations and separation of variables will be outlined. As elementary examples I discuss the usual harmonic oscillator, the radial harmonic oscillator, and the Coulomb potential. Lecture given at the graduate college ''Quantenfeldtheorie und deren Anwendung in der Elementarteilchen- und Festk\\"orperphysik'', Universit\\"at Leipzig, 16-26 November 1992.

  19. Path integral for multi-field inflation

    CERN Document Server

    Gong, Jinn-Ouk; Shiu, Gary

    2016-01-01

    We develop the path integral formalism for studying cosmological perturbations in multi-field inflation, which is particularly well suited to study quantum theories with gauge symmetries such as diffeomorphism invariance. We formulate the gauge fixing conditions based on the Poisson brackets of the constraints, from which we derive two convenient gauges that are appropriate for multi-field inflation. We then adopt the in-in formalism to derive the most general expression for the power spectrum of the curvature perturbation including the corrections from the interactions of the curvature mode with other light degrees of freedom. We also discuss the contributions of the interactions to the bispectrum.

  20. Path Integral Quantization of Generalized Quantum Electrodynamics

    CERN Document Server

    Bufalo, Rodrigo; Zambrano, German Enrique Ramos

    2010-01-01

    It is shown in this paper a complete covariant quantization of Generalized Electrodynamics by path integral approach. To this goal we first studied the hamiltonian structure of system following Dirac's methodology, and then we follow the Faddeev-Senjanovic procedure to attain the amplitude transition. The complete propagators (Schwinger-Dyson-Fradkin equations) on correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation on one-loop approximation of all Green's functions and a discussion about the obtained results are presented.

  1. Path integral approach to the quantum fidelity amplitude.

    Science.gov (United States)

    Vaníček, Jiří; Cohen, Doron

    2016-06-13

    The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact.

  2. High order path integrals made easy

    Science.gov (United States)

    Kapil, Venkat; Behler, Jörg; Ceriotti, Michele

    2016-12-01

    The precise description of quantum nuclear fluctuations in atomistic modelling is possible by employing path integral techniques, which involve a considerable computational overhead due to the need of simulating multiple replicas of the system. Many approaches have been suggested to reduce the required number of replicas. Among these, high-order factorizations of the Boltzmann operator are particularly attractive for high-precision and low-temperature scenarios. Unfortunately, to date, several technical challenges have prevented a widespread use of these approaches to study the nuclear quantum effects in condensed-phase systems. Here we introduce an inexpensive molecular dynamics scheme that overcomes these limitations, thus making it possible to exploit the improved convergence of high-order path integrals without having to sacrifice the stability, convenience, and flexibility of conventional second-order techniques. The capabilities of the method are demonstrated by simulations of liquid water and ice, as described by a neural-network potential fitted to the dispersion-corrected hybrid density functional theory calculations.

  3. Direct path integral estimators for isotope fractionation ratios

    CERN Document Server

    Cheng, Bingqing

    2014-01-01

    Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.

  4. Accurate Electromagnetic Modeling Methods for Integrated Circuits

    NARCIS (Netherlands)

    Sheng, Z.

    2010-01-01

    The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on t

  5. Building a cognitive map by assembling multiple path integration systems.

    Science.gov (United States)

    Wang, Ranxiao Frances

    2016-06-01

    Path integration and cognitive mapping are two of the most important mechanisms for navigation. Path integration is a primitive navigation system which computes a homing vector based on an animal's self-motion estimation, while cognitive map is an advanced spatial representation containing richer spatial information about the environment that is persistent and can be used to guide flexible navigation to multiple locations. Most theories of navigation conceptualize them as two distinctive, independent mechanisms, although the path integration system may provide useful information for the integration of cognitive maps. This paper demonstrates a fundamentally different scenario, where a cognitive map is constructed in three simple steps by assembling multiple path integrators and extending their basic features. The fact that a collection of path integration systems can be turned into a cognitive map suggests the possibility that cognitive maps may have evolved directly from the path integration system.

  6. Development Path of Urban-rural Integration

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The urban and rural areas are regarded as two major components of the regional economic system. Only through joint balanced development of the two can we achieve overall economic optimization and social welfare maximization. But the great social division of labor has separated urban areas from rural areas,which casts the shadow of city-oriented theory on cooperative relations between urban and rural areas. Mutual separation between urban and rural settlements and independent development trigger off a range of social problems. We must undertake guidance through rational development path of urban-rural integration,to eliminate the phenomenon of urban-rural dual structure,and promote the sustainable development of population,resources and environment in urban and rural areas as soon as possible.

  7. A Path Integral Approach to Inclusive Processes

    CERN Document Server

    Nachtmann, O

    2000-01-01

    The single-particle inclusive differential cross-section for a reaction$a+b\\to c+X$ is written as the imaginary part of a correlation function in afor ward scattering amplitude for $a+b\\to a+b$ in a modified effective theory.In this modified theory the interaction Hamiltonian $\\tilde H_I$ equals $H_I$in the original theory up to a certain time. Then there is a sign change and$\\tilde H_I$ becomes nonlocal. This is worked out in detail for scalar fieldmodels and for QED plus the abelian gluon model. A suitable path integral fordirect calculations of inclusive cross sections is presented.

  8. Polymer quantum mechanics some examples using path integrals

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Lorena [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, D.F., México and Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Vergara, J. David [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, D.F. (Mexico)

    2014-01-14

    In this work we analyze several physical systems in the context of polymer quantum mechanics using path integrals. First we introduce the group averaging method to quantize constrained systems with path integrals and later we use this procedure to compute the effective actions for the polymer non-relativistic particle and the polymer harmonic oscillator. We analyze the measure of the path integral and we describe the semiclassical dynamics of the systems.

  9. Path Integral Solution by Sum Over Perturbation Series

    CERN Document Server

    Lin, D H

    1999-01-01

    A method for calculating the relativistic path integral solution via sum over perturbation series is given. As an application the exact path integral solution of the relativistic Aharonov-Bohm-Coulomb system is obtained by the method. Different from the earlier treatment based on the space-time transformation and infinite multiple-valued trasformation of Kustaanheimo-Stiefel in order to perform path integral, the method developed in this contribution involves only the explicit form of a simple Green's function and an explicit path integral is avoided.

  10. Realization of Quadrature Signal Generator Using Accurate Magnitude Integrator

    DEFF Research Database (Denmark)

    Xin, Zhen; Yoon, Changwoo; Zhao, Rende

    2016-01-01

    -signal parameters, espically when a fast resonse is required for usages such as grid synchronization. As a result, the parameters design of the SOGI-QSG becomes complicated. Theoretical analysis shows that it is caused by the inaccurate magnitude-integration characteristic of the SOGI-QSG. To solve this problem......, an Accurate-Magnitude-Integrator based QSG (AMI-QSG) is proposed. The AMI has an accurate magnitude-integration characteristic for the sinusoidal signal, which makes the AMI-QSG possess an accurate First-Order-System (FOS) characteristic in terms of magnitude than the SOGI-QSG. The parameter design process...

  11. The development of path integration: combining estimations of distance and heading.

    Science.gov (United States)

    Smith, Alastair D; McKeith, Laura; Howard, Christina J

    2013-12-01

    Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study, 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the start point of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. Seven-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing.

  12. Path Integrals and Lorentz Violation in Polymer Quantized Scalar Fields

    CERN Document Server

    Kajuri, Nirmalya

    2014-01-01

    We obtain a path integral formulation of polymer quantized scalar field theory, starting from the Hilbert Space framework. This brings the polymer quantized scalar field theory under the ambit of Feynman diagrammatic techniques. The path integral formulation also shows that Lorentz invariance is lost for the Klein-Gordon field.

  13. Towards a Realistic Parsing of the Feynman Path Integral

    Directory of Open Access Journals (Sweden)

    Ken Wharton

    2016-01-01

    Full Text Available The Feynman path integral does not allow a one real path interpretation, because the quantum amplitudes contribute to probabilities in a non-separable manner. The opposite extreme, all paths happen, is not a useful or informative account. In this paper it is shown that an intermediate parsing of the path integral, into realistic non-interfering possibilities, is always available. Each realistic possibility formally corresponds to numerous particle paths, but is arguably best interpreted as a spacetime-valued field. Notably, one actual field history can always be said to occur, although it will generally not have an extremized action. The most obvious concerns with this approach are addressed, indicating necessary follow-up research. But without obvious showstoppers, it seems plausible that the path integral might be reinterpreted to explain quantum phenomena in terms of Lorentz covariant field histories.Quanta 2016; 5: 1–11.

  14. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat.

    Science.gov (United States)

    Farrell, Brad J; Bulgakova, Margarita A; Sirota, Mikhail G; Prilutsky, Boris I; Beloozerova, Irina N

    2015-11-01

    How do cats manage to walk so graciously on top of narrow fences or windowsills high above the ground while apparently exerting little effort? In this study we investigated cat full-body mechanics and the activity of limb muscles and motor cortex during walking along a narrow 5-cm path on the ground. We tested the hypotheses that during narrow walking 1) lateral stability would be lower because of the decreased base-of-support area and 2) the motor cortex activity would increase stride-related modulation because of imposed demands on lateral stability and paw placement accuracy. We measured medio-lateral and rostro-caudal dynamic stability derived from the extrapolated center of mass position with respect to the boundaries of the support area. We found that cats were statically stable in the frontal plane during both unconstrained and narrow-path walking. During narrow-path walking, cats walked slightly slower with more adducted limbs, produced smaller lateral forces by hindlimbs, and had elevated muscle activities. Of 174 neurons recorded in cortical layer V, 87% of forelimb-related neurons (from 114) and 90% of hindlimb-related neurons (from 60) had activities during narrow-path walking distinct from unconstrained walking: more often they had a higher mean discharge rate, lower depth of stride-related modulation, and/or longer period of activation during the stride. These activity changes appeared to contribute to control of accurate paw placement in the medio-lateral direction, the width of the stride, rather than to lateral stability control, as the stability demands on narrow-path and unconstrained walking were similar.

  15. Path Integrals and the WKB approximation in Loop Quantum Cosmology

    CERN Document Server

    Ashtekar, Abhay; Henderson, Adam

    2010-01-01

    We follow the Feynman procedure to obtain a path integral formulation of loop quantum cosmology starting from the Hilbert space framework. Quantum geometry effects modify the weight associated with each path so that the effective measure on the space of paths is different from that used in the Wheeler-DeWitt theory. These differences introduce some conceptual subtleties in arriving at the WKB approximation. But the approximation is well defined and provides intuition for the differences between loop quantum cosmology and the Wheeler-DeWitt theory from a path integral perspective.

  16. Path integrals and the WKB approximation in loop quantum cosmology

    Science.gov (United States)

    Ashtekar, Abhay; Campiglia, Miguel; Henderson, Adam

    2010-12-01

    We follow the Feynman procedure to obtain a path integral formulation of loop quantum cosmology starting from the Hilbert space framework. Quantum geometry effects modify the weight associated with each path so that the effective measure on the space of paths is different from that used in the Wheeler-DeWitt theory. These differences introduce some conceptual subtleties in arriving at the WKB approximation. But the approximation is well defined and provides intuition for the differences between loop quantum cosmology and the Wheeler-DeWitt theory from a path integral perspective.

  17. Two-path plasmonic interferometer with integrated detector

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory

    2016-03-29

    An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.

  18. Path integrals, hyperbolic spaces and Selberg trace formulae

    CERN Document Server

    Grosche, Christian

    2013-01-01

    In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition.The volume also contains r

  19. Accelerated nuclear quantum effects sampling with open path integrals

    CERN Document Server

    Mazzola, Guglielmo

    2016-01-01

    We numericaly demonstrate that, in double well models, the autocorrelation time of open path integral Monte Carlo simulations can be much smaller compared to standard ones using ring polymers. We also provide an intuitive explanation based on the role of instantons as transition states of the path integral pseudodynamics. Therefore we propose that, in all cases when the ground state approximation to the finite temperature partition function holds, open path integral simulations can be used to accelerate the sampling in realistic simulations aimed to explore nuclear quantum effects.

  20. Master equations and the theory of stochastic path integrals

    CERN Document Server

    Weber, Markus F

    2016-01-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. We discuss analytical and numerical methods for the solution of master equations, keeping our focus on methods that are applicable even when stochastic fluctuations are strong. The reviewed methods include the generating function technique and the Poisson representation, as well as novel ways of mapping the forward and backward master equations onto linear partial differential equations (PDEs). Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE obeyed by the generating function. After outlining these methods, we solve the derived PDEs in terms of two path integrals. The path integrals provide distinct exact representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Furthermore, we review a method for the approxima...

  1. Quantum Calisthenics: Gaussians, The Path Integral and Guided Numerical Approximations

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Marvin; /SLAC

    2009-02-12

    It is apparent to anyone who thinks about it that, to a large degree, the basic concepts of Newtonian physics are quite intuitive, but quantum mechanics is not. My purpose in this talk is to introduce you to a new, much more intuitive way to understand how quantum mechanics works. I begin with an incredibly easy way to derive the time evolution of a Gaussian wave-packet for the case free and harmonic motion without any need to know the eigenstates of the Hamiltonian. This discussion is completely analytic and I will later use it to relate the solution for the behavior of the Gaussian packet to the Feynman path-integral and stationary phase approximation. It will be clear that using the information about the evolution of the Gaussian in this way goes far beyond what the stationary phase approximation tells us. Next, I introduce the concept of the bucket brigade approach to dealing with problems that cannot be handled totally analytically. This approach combines the intuition obtained in the initial discussion, as well as the intuition obtained from the path-integral, with simple numerical tools. My goal is to show that, for any specific process, there is a simple Hilbert space interpretation of the stationary phase approximation. I will then argue that, from the point of view of numerical approximations, the trajectory obtained from my generalization of the stationary phase approximation specifies that subspace of the full Hilbert space that is needed to compute the time evolution of the particular state under the full Hamiltonian. The prescription I will give is totally non-perturbative and we will see, by the grace of Maple animations computed for the case of the anharmonic oscillator Hamiltonian, that this approach allows surprisingly accurate computations to be performed with very little work. I think of this approach to the path-integral as defining what I call a guided numerical approximation scheme. After the discussion of the anharmonic oscillator I will

  2. Characterizing regulatory path motifs in integrated networks using perturbational data

    OpenAIRE

    Joshi, Anagha Madhusudan; Van Parys, Thomas; de Peer, Yves Van; Michoel, Tom

    2010-01-01

    We introduce Pathicular http://bioinformatics.psb.ugent.be/software/details/Pathicular, a Cytoscape plugin for studying the cellular response to perturbations of transcription factors by integrating perturbational expression data with transcriptional, protein-protein and phosphorylation networks. Pathicular searches for 'regulatory path motifs', short paths in the integrated physical networks which occur significantly more often than expected between transcription factors and their targets in...

  3. Variational path integral molecular dynamics study of a water molecule

    Science.gov (United States)

    Miura, Shinichi

    2013-08-01

    In the present study, a variational path integral molecular dynamics method developed by the author [Chem. Phys. Lett. 482, 165 (2009)] is applied to a water molecule on the adiabatic potential energy surface. The method numerically generates an exact wavefunction using a trial wavefunction of the target system. It has been shown that even if a poor trial wavefunction is employed, the exact quantum distribution is numerically extracted, demonstrating the robustness of the variational path integral method.

  4. Emergent symmetry in a thermal pure state path integral

    CERN Document Server

    Sasa, Shin-ichi; Yokokura, Yuki

    2016-01-01

    We study a thermally isolated quantum many-body system with an external control represented by a time-dependent parameter. By formulating a thermal pure state path integral, we derive an effective action for trajectories in a thermodynamic state space, where the entropy appears with its conjugate variable. In particular, when operations are quasi-static, the symmetry for the uniform translation of the conjugate variable emerges in the path integral. This leads to the entropy as a Noether invariant.

  5. Second-Order Accurate Projective Integrators for Multiscale Problems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S L; Gear, C W

    2005-05-27

    We introduce new projective versions of second-order accurate Runge-Kutta and Adams-Bashforth methods, and demonstrate their use as outer integrators in solving stiff differential systems. An important outcome is that the new outer integrators, when combined with an inner telescopic projective integrator, can result in fully explicit methods with adaptive outer step size selection and solution accuracy comparable to those obtained by implicit integrators. If the stiff differential equations are not directly available, our formulations and stability analysis are general enough to allow the combined outer-inner projective integrators to be applied to black-box legacy codes or perform a coarse-grained time integration of microscopic systems to evolve macroscopic behavior, for example.

  6. Vehicle path tracking by integrated chassis control

    Institute of Scientific and Technical Information of China (English)

    Saman Salehpour; Yaghoub Pourasad; Seyyed Hadi Taheri

    2015-01-01

    The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. In order to follow desired path, a driver model is developed to enhance closed loop driver/vehicle model. Then, linear quadratic regulator (LQR) controller is developed which regulates direct yaw moment and corrective steering angle on wheels. Particle swam optimization (PSO) method is utilized to optimize the LQR controller for various dynamic conditions. Simulation results indicate that, over various maneuvers, side slip angle and lateral acceleration can be reduced by 10%and 15%, respectively, which sustain the vehicle stable. Also, anti-lock brake system is designed for longitudinal dynamics of vehicle to achieve desired slip during braking and accelerating. Proposed comprehensive controller demonstrates that vehicle steerability can increase by about 15% during severe braking by preventing wheel from locking and reducing stopping distance.

  7. The perturbative approach to path integrals: A succinct mathematical treatment

    Science.gov (United States)

    Nguyen, Timothy

    2016-09-01

    We study finite-dimensional integrals in a way that elucidates the mathematical meaning behind the formal manipulations of path integrals occurring in quantum field theory. This involves a proper understanding of how Wick's theorem allows one to evaluate integrals perturbatively, i.e., as a series expansion in a formal parameter irrespective of convergence properties. We establish invariance properties of such a Wick expansion under coordinate changes and the action of a Lie group of symmetries, and we use this to study essential features of path integral manipulations, including coordinate changes, Ward identities, Schwinger-Dyson equations, Faddeev-Popov gauge-fixing, and eliminating fields by their equation of motion. We also discuss the asymptotic nature of the Wick expansion and the implications this has for defining path integrals perturbatively and nonperturbatively.

  8. Medial temporal lobe roles in human path integration.

    Directory of Open Access Journals (Sweden)

    Naohide Yamamoto

    Full Text Available Path integration is a process in which observers derive their location by integrating self-motion signals along their locomotion trajectory. Although the medial temporal lobe (MTL is thought to take part in path integration, the scope of its role for path integration remains unclear. To address this issue, we administered a variety of tasks involving path integration and other related processes to a group of neurosurgical patients whose MTL was unilaterally resected as therapy for epilepsy. These patients were unimpaired relative to neurologically intact controls in many tasks that required integration of various kinds of sensory self-motion information. However, the same patients (especially those who had lesions in the right hemisphere walked farther than the controls when attempting to walk without vision to a previewed target. Importantly, this task was unique in our test battery in that it allowed participants to form a mental representation of the target location and anticipate their upcoming walking trajectory before they began moving. Thus, these results put forth a new idea that the role of MTL structures for human path integration may stem from their participation in predicting the consequences of one's locomotor actions. The strengths of this new theoretical viewpoint are discussed.

  9. AN ACCURATE MODEL FOR CALCULATING CORRECTION OF PATH FLEXURE OF SATELLITE SIGNALS

    Institute of Scientific and Technical Information of China (English)

    LiYanxing; HuXinkang; ShuaiPing; ZhangZhongfu

    2003-01-01

    The propagation path of satellite signals in the atmosphere is a curve thus it,is very difficult to calculate its flexure correction accurately, a strict calculating expressions has so far not been derived. In this study, the flexure correction of the refraction curve is divided into two parts and their strict calculating expressions are derived. By use of the standard atmospheric model, the accurate flexure correction of the refraction curve is calculated for different zenith distance Z. On this basis, a calculation model is structured. This model is very simple in structure, convenient in use and high in accuracy. When Z is smaller than 85°,the accuracy of the correction exceeds 0.06mm. The flexure correction is basically proportional to tan2Z and increases rapidly with the increase of Z When Z>50°,the correction is smaller than 0.5 mm and can be neglected. When Z>50°, the correction must be made. When Z is 85°, 88° and 89° , the corrections are 198mm, 8.911m and 28.497 km, respectively. The calculation results shows that the correction estimate by Hopfield is correct when Z≤80°, but too small when Z=89°. The expression in this paper is applicable to any satellite.

  10. AN ACCURATE MODEL FOR CALCULATING CORRECTION OF PATH FLEXURE OF SATELLITE SIGNALS

    Institute of Scientific and Technical Information of China (English)

    Li Yanxing; Hu Xinkang; Shuai Ping; Zhang Zhongfu

    2003-01-01

    The propagation path of satellite signals in the atmosphere is a curve thus it.is very difficult to calculate its flexure correction accurately, a strict calculating expressions has so far not been derived. In this study, the flexure correction of the refraction curve is divided into two parts and their strict calculating expressions are derived. By use of the standard atmospheric model, the accurate flexure correction of the refraction curve is calculated for different zenith distance Z. On this basis, a calculation model is structured. This model is very simple in structure, convenient in use and high in accuracy. When Z is smaller than 85°, the accuracy of the correction exceeds 0.06 mm. The flexure correction is basically proportional to tan2Z and increases rapidly with the increase of Z When Z>50°,the correction is smaller than 0.5 mm and can be neglected.When Z>50°, the correction must be made. When Z is 85° , 88° and 89° , the corrections are 198mm, 8. 911 m and 28. 497 km, respectively. The calculation results shows that the correction estimate by Hopfield is correct when Z≤80 °, but too small when Z=89°. The expression in this paper is applicable to any satellite.

  11. Quantum-classical path integral. I. Classical memory and weak quantum nonlocality.

    Science.gov (United States)

    Lambert, Roberto; Makri, Nancy

    2012-12-14

    We consider rigorous path integral descriptions of the dynamics of a quantum system coupled to a polyatomic environment, assuming that the latter is well approximated by classical trajectories. Earlier work has derived semiclassical or purely classical expressions for the influence functional from the environment, which should be sufficiently accurate for many situations, but the evaluation of quantum-(semi)classical path integral (QCPI) expressions has not been practical for large-scale simulation because the interaction with the environment introduces couplings nonlocal in time. In this work, we analyze the nature of the effects on a system from its environment in light of the observation [N. Makri, J. Chem. Phys. 109, 2994 (1998)] that true nonlocality in the path integral is a strictly quantum mechanical phenomenon. If the environment is classical, the path integral becomes local and can be evaluated in a stepwise fashion along classical trajectories of the free solvent. This simple "classical path" limit of QCPI captures fully the decoherence of the system via a classical mechanism. Small corrections to the classical path QCPI approximation may be obtained via an inexpensive random hop QCPI model, which accounts for some "back reaction" effects. Exploiting the finite length of nonlocality, we argue that further inclusion of quantum decoherence is possible via an iterative evaluation of the path integral. Finally, we show that the sum of the quantum amplitude factors with respect to the system paths leads to a smooth integrand as a function of trajectory initial conditions, allowing the use of Monte Carlo methods for the multidimensional phase space integral.

  12. INTEGRATED LAYOUT DESIGN OF CELLS AND FLOW PATHS

    Institute of Scientific and Technical Information of China (English)

    Li Zhihua; Zhong Yifang; Zhou Ji

    2003-01-01

    The integrated layout problem in manufacturing systems is investigated. An integrated model for concurrent layout design of cells and flow paths is formulated. A hybrid approach combined an enhanced branch-and-bound algorithm with a simulated annealing scheme is proposed to solve this problem. The integrated layout method is applied to re-layout the gear pump shop of a medium-size manufacturer of hydraulic pieces. Results show that the proposed layout method can concurrently provide good solutions of the cell layouts and the flow path layouts.

  13. Path integration and the neural basis of the 'cognitive map'.

    NARCIS (Netherlands)

    McNaughton, B.L.; Battaglia, F.P.; Jensen, O.; Moser, E.I.; Moser, M.B

    2006-01-01

    The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might pe

  14. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies.

    Science.gov (United States)

    Mielke, Steven L; Truhlar, Donald G

    2016-01-21

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function.

  15. The quantum bouncer by the path integral method

    Science.gov (United States)

    Goodings, D. A.; Szeredi, T.

    1991-10-01

    The path integral formulation of quantum mechanics in the semiclassical or WKB approximation provides a physically intuitive way of relating a classical system to its quantum analog. A fruitful way of studying quantum chaos is based upon applying the Gutzwiller periodic orbit sum rule, a result derived by the path integral method in the WKB approximation. This provides some motivation for learning about path integral techniques. In this paper a pedagogical example of the path integral formalism is presented in the hope of conveying the basic physical and mathematical concepts. The ``quantum bouncer'' is studied—the quantum version of a particle moving in one dimension above a perfectly reflecting surface while subject to a constant force directed toward the surface. The classical counterpart of this system is a ball bouncing on a floor in a constant gravitational field, collisions with the floor being assumed to be elastic. Path integration is used to derive the energy eigenvalues and eigenfunctions of the quantum bouncer in the WKB or semiclassical approximation. The results are shown to be the same as those obtained by solving the Schrödinger equation in the same approximation.

  16. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  17. Polymer density functional approach to efficient evaluation of path integrals

    DEFF Research Database (Denmark)

    Brukhno, Andrey; Vorontsov-Velyaminov, Pavel N.; Bohr, Henrik

    2005-01-01

    A polymer density functional theory (P-DFT) has been extended to the case of quantum statistics within the framework of Feynman path integrals. We start with the exact P-DFT formalism for an ideal open chain and adapt its efficient numerical solution to the case of a ring. We show that, similarly......, the path integral problem can, in principle, be solved exactly by making use of the two-particle pair correlation function (2p-PCF) for the ends of an open polymer, half of the original. This way the exact data for one-dimensional quantum harmonic oscillator are reproduced in a wide range of temperatures......-consistent iteration so as to correctly account for the interparticle interactions. The algorithm is speeded up by taking convolutions with the aid of fast Fourier transforms. We apply this approximate path integral DFT (PI-DFT) method to systems within spherical symmetry: 3D harmonic oscillator, atoms of hydrogen...

  18. High accurate interpolation of NURBS tool path for CNC machine tools

    Science.gov (United States)

    Liu, Qiang; Liu, Huan; Yuan, Songmei

    2016-09-01

    Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.

  19. Master equations and the theory of stochastic path integrals

    Science.gov (United States)

    Weber, Markus F.; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers–Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman–Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered

  20. Master equations and the theory of stochastic path integrals.

    Science.gov (United States)

    Weber, Markus F; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon

  1. Path Integrals and the Statistical Thermodynamics of Black Holes.

    Science.gov (United States)

    Martinez, Erik Andres

    The path integral is an important element in modern approaches to the quantization of the gravitational field. Path integral representations of partition functions for static and stationary black hole systems as well as path integrals for minisuperspace models of cosmology are presented. The functional integral is defined throughout as a sum over Lorentzian histories. A consistent formulation of Feynman's prescription to construct partition functions in terms of path integrals for general gravitational systems is presented and contrasted with other "Euclideanization" prescriptions. It is shown that the central object in the description of black hole systems is the gravitational action. In particular, the additivity of the entropies of matter and black holes in thermal equilibrium is a consequence of the additivity of their corresponding actions, and thermodynamic potentials like the energy or the pressure are not in general addivite when gravity plays an important role. Partition functions as stationary phase approximations of functional integrals for all the thermodynamic ensembles are then constructed by including gravitation as a part of the thermodynamical system. We show that a complex geometry is required to derive the thermodynamic properties of stationary geometries from the sum over histories. The corresponding real "thermodynamical" action is calculated explicitly and the thermodynamical data that imply thermal equilibrium in the presence of a rotating black hole in interaction with matter fields are presented and related to geometrical data. Some of the consequences for Kerr-Newman black hole systems are also discussed. For minisuperspace cosmologies the Lorentzian path integral is a Green function for the Wheeler-DeWitt operator, and its real part is a solution to the Wheeler -DeWitt equation. It is computed explicitly for the de Sitter minisuperspace model. The resulting Green function is then related to both the Hartle-Hawking and tunneling wave

  2. Path Integral Understanding in the Context of the Electromagnetic Theory

    Science.gov (United States)

    Gonzalez, Maria D.

    2006-12-01

    Introductory electromagnetic courses at the University of Juarez are in general identified by the use of a traditional instruction. The path integral is a fundamental mathematical knowledge to understand the properties of conservative fields such that the electric field. Many students in these courses do not develop the necessary scientific skills and mathematical formalism to understand the fact that the potential difference does not depend on the path followed from one point to another one inside an electric field. It is fundamental to probe the student understanding difficulties to apply the concept of path integral in an electromagnetic context. The use of the software CABRI could become an important didactic choice during the development of the potential difference concept. It was necessary the recollection of data related to the student procedural difficulties in the use of the designed CABRI activities. Sponsor: member Sergio Flores

  3. Path Integral for Lattice Staggered Fermions in the Loop Representation

    CERN Document Server

    Aroca, J M; Gambini, R

    1998-01-01

    The path integral formulation in terms of loop variables is introduced for lattice gauge theories with dynamical fermions. The path integral of lattice compact QED with staggered fermions is expressed as a sum over surfaces with border on self-avoiding fermionic paths. Each surface is weighted with a classical action -- written in terms of integer gauge invariant variables -- which gives via transfer matrix method the Hamiltonian of the loop or P-representation. The surfaces correspond to the world sheets of loop-like pure electric flux excitations and meson-like configurations (open electric flux tubes carrying matter fields at their ends). The gauge non-redundancy and the geometric transparency are two appealing features of this description. From the computational point of view, it involves fewer degrees of freedom than the Kogut-Susskind formulation and offers the possibility of alternative numerical methods for dynamical fermions.

  4. The path integral formulation of climate dynamics.

    Directory of Open Access Journals (Sweden)

    Antonio Navarra

    Full Text Available The chaotic nature of the atmospheric dynamics has stimulated the applications of methods and ideas derived from statistical dynamics. For instance, ensemble systems are used to make weather predictions recently extensive, which are designed to sample the phase space around the initial condition. Such an approach has been shown to improve substantially the usefulness of the forecasts since it allows forecasters to issue probabilistic forecasts. These works have modified the dominant paradigm of the interpretation of the evolution of atmospheric flows (and oceanic motions to some extent attributing more importance to the probability distribution of the variables of interest rather than to a single representation. The ensemble experiments can be considered as crude attempts to estimate the evolution of the probability distribution of the climate variables, which turn out to be the only physical quantity relevant to practice. However, little work has been done on a direct modeling of the probability evolution itself. In this paper it is shown that it is possible to write the evolution of the probability distribution as a functional integral of the same kind introduced by Feynman in quantum mechanics, using some of the methods and results developed in statistical physics. The approach allows obtaining a formal solution to the Fokker-Planck equation corresponding to the Langevin-like equation of motion with noise. The method is very general and provides a framework generalizable to red noise, as well as to delaying differential equations, and even field equations, i.e., partial differential equations with noise, for example, general circulation models with noise. These concepts will be applied to an example taken from a simple ENSO model.

  5. Path Integration Applied to Structural Systems with Uncertain Properties

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Köylüoglu, H. Ugur

    Path integration (cell-to-cell mapping) method is applied to evaluate the joint probability density function (jpdf) of the response of the structural systems, with uncertain properties, subject to white noise excitation. A general methodology to deal with uncertainties is outlined and applied...

  6. On Duru-Kleinert Path Integral In Quantum Cosmology

    CERN Document Server

    Jafarizadeh, M A; Rastegar, A R

    1998-01-01

    We show that the Duru-Kleinert fixed energy amplitude leads to the path integral for the propagation amplitude in the closed FRW quantum cosmology with scale factor as one degree of freedom. Then, using the Duru-Kleinert equivalence of corresponding actions, we calculate the tunneling rate, with exact prefactor, through the dilute-instanton approximation to first order in

  7. Quantum tunneling splittings from path-integral molecular dynamics

    Science.gov (United States)

    Mátyus, Edit; Wales, David J.; Althorpe, Stuart C.

    2016-03-01

    We illustrate how path-integral molecular dynamics can be used to calculate ground-state tunnelling splittings in molecules or clusters. The method obtains the splittings from ratios of density matrix elements between the degenerate wells connected by the tunnelling. We propose a simple thermodynamic integration scheme for evaluating these elements. Numerical tests on fully dimensional malonaldehyde yield tunnelling splittings in good overall agreement with the results of diffusion Monte Carlo calculations.

  8. Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.

    Science.gov (United States)

    Gao, J

    2016-01-01

    Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects.

  9. BOOK REVIEW: Path Integrals in Field Theory: An Introduction

    Science.gov (United States)

    Ryder, Lewis

    2004-06-01

    In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed

  10. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling

    Science.gov (United States)

    Kapania, Nitin R.; Gerdes, J. Christian

    2015-12-01

    This paper presents a feedback-feedforward steering controller that simultaneously maintains vehicle stability at the limits of handling while minimising lateral path tracking deviation. The design begins by considering the performance of a baseline controller with a lookahead feedback scheme and a feedforward algorithm based on a nonlinear vehicle handling diagram. While this initial design exhibits desirable stability properties at the limits of handling, the steady-state path deviation increases significantly at highway speeds. Results from both linear and nonlinear analyses indicate that lateral path tracking deviations are minimised when vehicle sideslip is held tangent to the desired path at all times. Analytical results show that directly incorporating this sideslip tangency condition into the steering feedback dramatically improves lateral path tracking, but at the expense of poor closed-loop stability margins. However, incorporating the desired sideslip behaviour into the feedforward loop creates a robust steering controller capable of accurate path tracking and oversteer correction at the physical limits of tyre friction. Experimental data collected from an Audi TTS test vehicle driving at the handling limits on a full length race circuit demonstrates the improved performance of the final controller design.

  11. Path integral quantization of the relativistic Hopfield model

    CERN Document Server

    Belgiorno, F; Piazza, F Dalla; Doronzo, M

    2016-01-01

    The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quantum matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path integral formalism. In particular we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.

  12. Mathematical theory of Feynman path integrals an introduction

    CERN Document Server

    Albeverio, Sergio A; Mazzucchi, Sonia

    2008-01-01

    Feynman path integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non-relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an important role in areas of mathematics like low-dimensional topology and differential geometry, algebraic geometry, infinite-dimensional analysis and geometry, and number theory. The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments since then, an entire new chapter on the current forefront of research has been added. Except for this new chapter and the correction of a few misprints, the basic material and presentation of the first edition has been maintained. At the end of each chapter the reader will also find notes with further bibliographical information.

  13. A discrete history of the Lorentzian path integral

    CERN Document Server

    Loll, R

    2003-01-01

    In these lecture notes, I describe the motivation behind a recent formulation of a non-perturbative gravitational path integral for Lorentzian (instead of the usual Euclidean) space-times, and give a pedagogical introduction to its main features. At the regularized, discrete level this approach solves the problems of (i) having a well-defined Wick rotation, (ii) possessing a coordinate-invariant cutoff, and (iii) leading to_convergent_ sums over geometries. Although little is known as yet about the existence and nature of an underlying continuum theory of quantum gravity in four dimensions, there are already a number of beautiful results in d=2 and d=3 where continuum limits have been found. They include an explicit example of the inequivalence of the Euclidean and Lorentzian path integrals, a non-perturbative mechanism for the cancellation of the conformal factor, and the discovery that causality can act as an effective regulator of quantum geometry.

  14. A path to integration in an academic health science center.

    Science.gov (United States)

    Panko, W B; Wilson, W

    1992-01-01

    This article describes a networking and integration strategy in use at the University of Michigan Medical Center. This strategy builds upon the existing technology base and is designed to provide a roadmap that will direct short-term development along a productive, long-term path. It offers a way to permit the short-term development of incremental solutions to current problems while at the same time maximizing the likelihood that these incremental efforts can be recycled into a more comprehensive approach.

  15. Remarks on the Origin of Path Integration: Einstein and Feynman

    OpenAIRE

    Sauer, Tilman

    2008-01-01

    I offer some historical comments about the origins of Feynman's path integral approach, as an alternative approach to standard quantum mechanics. Looking at the interaction between Einstein and Feynman, which was mediated by Feynman's thesis supervisor John Wheeler, it is argued that, contrary to what one might expect, the significance of the interaction between Einstein and Feynman pertained to a critique of classical field theory, rather than to a direct critique of quantum mechanics itself...

  16. Efficient stochastic thermostatting of path integral molecular dynamics

    Science.gov (United States)

    Ceriotti, Michele; Parrinello, Michele; Markland, Thomas E.; Manolopoulos, David E.

    2010-09-01

    The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently developed colored noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nosé-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.

  17. A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics

    Science.gov (United States)

    Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi

    2001-11-01

    We present a general approach for accurate calculation of chemical substances which treats both nuclei and electrons quantum mechanically, adopting ab initio molecular orbital theory for the electronic structure and path integral molecular dynamics for the nuclei. The present approach enables the evaluation of physical quantities dependent on the nuclear configuration as well as the electronic structure, within the framework of Born-Oppenheimer adiabatic approximation. As an application, we give the path integral formulation of electric response properties—dipole moment and polarizability, which characterize the changes both in electronic structure and nuclear configuration at a given temperature when uniform electrostatic field is present. We also demonstrate the calculation of a water molecule using the present approach and the result of temperature and isotope effects is discussed.

  18. Accurate Complex Systems Design: Integrating Serious Games with Petri Nets

    Directory of Open Access Journals (Sweden)

    Kirsten Sinclair

    2016-03-01

    Full Text Available Difficulty understanding the large number of interactions involved in complex systems makes their successful engineering a problem. Petri Nets are one graphical modelling technique used to describe and check proposed designs of complex systems thoroughly. While automatic analysis capabilities of Petri Nets are useful, their visual form is less so, particularly for communicating the design they represent. In engineering projects, this can lead to a gap in communications between people with different areas of expertise, negatively impacting achieving accurate designs.In contrast, although capable of representing a variety of real and imaginary objects effectively, behaviour of serious games can only be analysed manually through interactive simulation. This paper examines combining the complementary strengths of Petri Nets and serious games. The novel contribution of this work is a serious game prototype of a complex system design that has been checked thoroughly. Underpinned by Petri Net analysis, the serious game can be used as a high-level interface to communicate and refine the design.Improvement of a complex system design is demonstrated by applying the integration to a proof-of-concept case study.   

  19. Ab initio molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics

    Science.gov (United States)

    Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi

    2000-12-01

    We present an accurate calculational scheme for many-body systems composed of electrons and nuclei, by path integral molecular dynamics technique combined with the ab initio molecular orbital theory. Based upon the scheme, the simulation of a water molecule at room temperature is demonstrated, applying all-electron calculation at the Hartree-Fock level of theory.

  20. On the Accurate Identification of Network Paths Having a Common Bottleneck

    Directory of Open Access Journals (Sweden)

    Muhammad Murtaza Yousaf

    2013-01-01

    Full Text Available We present a new mechanism for detecting shared bottlenecks between end-to-end paths in a network. Our mechanism, which only needs one-way delays from endpoints as an input, is based on the well-known linear algebraic approach: singular value decomposition (SVD. Clusters of flows which share a bottleneck are extracted from SVD results by applying an outlier detection method. Simulations with varying topologies and different network conditions show the high accuracy of our technique.

  1. Path integrals and symmetry breaking for optimal control theory

    CERN Document Server

    Kappen, H J

    2005-01-01

    This paper considers linear-quadratic control of a non-linear dynamical system subject to arbitrary cost. I show that for this class of stochastic control problems the non-linear Hamilton-Jacobi-Bellman equation can be transformed into a linear equation. The transformation is similar to the transformation used to relate the classical Hamilton-Jacobi equation to the Schr\\"odinger equation. As a result of the linearity, the usual backward computation can be replaced by a forward diffusion process, that can be computed by stochastic integration or by the evaluation of a path integral. It is shown, how in the deterministic limit the PMP formalism is recovered. The significance of the path integral approach is that it forms the basis for a number of efficient computational methods, such as MC sampling, the Laplace approximation and the variational approximation. We show the effectiveness of the first two methods in number of examples. Examples are given that show the qualitative difference between stochastic and d...

  2. Potential theory, path integrals and the Laplacian of the indicator

    Science.gov (United States)

    Lange, Rutger-Jan

    2012-11-01

    This paper links the field of potential theory — i.e. the Dirichlet and Neumann problems for the heat and Laplace equation — to that of the Feynman path integral, by postulating the following seemingly ill-defined potential: V(x):=∓ {{σ^2}}/2nabla_x^2{1_{{xin D}}} where the volatility is the reciprocal of the mass (i.e. m = 1/ σ 2) and ħ = 1. The Laplacian of the indicator can be interpreted using the theory of distributions: it is the d-dimensional analogue of the Dirac δ'-function, which can formally be defined as partial_x^2{1_{x>0 }} . We show, first, that the path integral's perturbation series (or Born series) matches the classical single and double boundary layer series of potential theory, thereby connecting two hitherto unrelated fields. Second, we show that the perturbation series is valid for all domains D that allow Green's theorem (i.e. with a finite number of corners, edges and cusps), thereby expanding the classical applicability of boundary layers. Third, we show that the minus (plus) in the potential holds for the Dirichlet (Neumann) boundary condition; showing for the first time a particularly close connection between these two classical problems. Fourth, we demonstrate that the perturbation series of the path integral converges as follows:Table Float="No" ID="Taba"> mode of convergence absorbed propagator reflected propagator convex domain alternating monotone concave domain monotone alternating Table> We also discuss the third boundary problem (which poses Robin boundary conditions) and discuss an extension to moving domains.

  3. A path-integral approach to the problem of time

    CERN Document Server

    Amaral, M M

    2016-01-01

    Quantum transition amplitudes are formulated for a model system with local internal time, using path integrals. The amplitudes are shown to be more regular near a turning point of internal time than could be expected based on existing canonical treatments. In particular, a successful transition through a turning point is provided in the model system, together with a new definition of such a transition in general terms. Some of the results rely on a fruitful relation between the problem of time and general Gribov problems.

  4. The Path Integral Quantization corresponding to the Deformed Heisenberg Algebra

    CERN Document Server

    Pramanik, Souvik; Moussa, Mohamed; Ali, Ahmed Farag

    2014-01-01

    In this paper, we analyze a deformation of the Heisenberg algebra consistent with both the generalized uncertainty principle and doubly special relativity. We observe that this algebra can give rise to fractional derivatives terms in the corresponding quantum mechanical Hamiltonian. However, a formal meaning can be given to such fractional derivative terms, using the theory of harmonic extensions of functions. Thus we obtain the expression of the propagator of path integral corresponding to this deformed Heisenberg algebra. In fact, we explicitly evaluate this expression for a free particle in one dimension and check its consistency.

  5. Remarks on the Origin of Path Integration: Einstein and Feynman

    CERN Document Server

    Sauer, Tilman

    2008-01-01

    I offer some historical comments about the origins of Feynman's path integral approach, as an alternative approach to standard quantum mechanics. Looking at the interaction between Einstein and Feynman, which was mediated by Feynman's thesis supervisor John Wheeler, it is argued that, contrary to what one might expect, the significance of the interaction between Einstein and Feynman pertained to a critique of classical field theory, rather than to a direct critique of quantum mechanics itself. Nevertheless, the critical perspective on classical field theory became a motivation and point of departure for Feynman's space-time approach to non-relativistic quantum mechanics.

  6. Remarks on the Origin of Path Integration:. Einstein and Feynman

    Science.gov (United States)

    Sauer, T.

    2008-11-01

    I offer some historical comments about the origins of Feynman's path-integral approach, as an alternative approach to standard quantum mechanics. Looking at the interaction between Einstein and Feynman, which was mediated by Feynman's thesis supervisor John Wheeler, it is argued that, contrary to what one might expect, the significance of the interaction between Einstein and Feynman pertained to a critique of classical field theory, rather than to a direct critique of quantum mechanics itself. Nevertheless, the critical perspective on classical field theory became a motivation and point of departure for Feynman's space-time approach to non-relativistic quantum mechanics.

  7. Path-integral formula for local thermal equilibrium

    CERN Document Server

    Hongo, Masaru

    2016-01-01

    We develop a complete path-integral formulation of relativistic quantum fields in local thermal equilibrium, which brings about the emergence of thermally induced curved spacetime. The resulting action is shown to have full diffeomorphism invariance and gauge invariance in thermal spacetime with imaginary-time independent backgrounds. This leads to the notable symmetry properties of emergent thermal spacetime: Kaluza-Klein gauge symmetry, spatial diffeomorphism symmetry, and gauge symmetry. A thermodynamic potential in local thermal equilibrium, or the so-called Masseiu-Planck functional, is identified as a generating functional for conserved currents such as the energy-momentum tensor and the electric current.

  8. Self-gravitating stellar collapse: explicit geodesics and path integration

    Directory of Open Access Journals (Sweden)

    Jayashree Balakrishna

    2016-11-01

    Full Text Available We extend the work of Oppenheimer-Synder to model the gravitational collapse of a star to a black hole by including quantum mechanical effects. We first derive closed-form solutions for classical paths followed by a particle on the surface of the collapsing star in Schwarzschild and Kruskal coordinates for space-like, time-like and light-like geodesics. We next present an application of these paths to model the collapse of ultra-light dark matter particles, which necessitates incorporating quantum effects. To do so we treat a particle on the surface of the star as a wavepacket and integrate over all possible paths taken by the particle. The waveform is computed in Schwarzschild coordinates and found to exhibit an ingoing and an outgoing component, where the former contains the probability of collapse, while the latter contains the probability that the star will disperse. These calculations pave the way for investigating the possibility of quantum collapse that does not lead to black hole formation as well as for exploring the nature of the wavefunction inside r = 2M.

  9. Testing the limits of optimal integration of visual and proprioceptive information of path trajectory.

    Science.gov (United States)

    Reuschel, Johanna; Rösler, Frank; Henriques, Denise Y P; Fiehler, Katja

    2011-04-01

    Many studies provide evidence that information from different modalities is integrated following the maximum likelihood estimation model (MLE). For instance, we recently found that visual and proprioceptive path trajectories are optimally combined (Reuschel et al. in Exp Brain Res 201:853-862, 2010). However, other studies have failed to reveal optimal integration of such dynamic information. In the present study, we aim to generalize our previous findings to different parts of the workspace (central, ipsilateral, or contralateral) and to different types of judgments (relative vs. absolute). Participants made relative judgments by judging whether an angular path was acute or obtuse, or they made absolute judgments by judging whether a one-segmented straight path was directed to left or right. Trajectories were presented in the visual, proprioceptive, or combined visual-proprioceptive modality. We measured the bias and the variance of these estimates and predicted both parameters using the MLE. In accordance with the MLE model, participants linearly combined and weighted the unimodal angular path information by their reliabilities irrespective of the side of workspace. However, the precision of bimodal estimates was not greater than that for unimodal estimates, which is inconsistent with the MLE. For the absolute judgment task, participants' estimates were highly accurate and did not differ across modalities. Thus, we were unable to test whether the bimodal percept resulted as a weighted average of the visual and proprioceptive input. Additionally, participants were not more precise in the bimodal compared with the unimodal conditions, which is inconsistent with the MLE. Current findings suggest that optimal integration of visual and proprioceptive information of path trajectory only applies in some conditions.

  10. Path integral Liouville dynamics: Applications to infrared spectra of OH, water, ammonia, and methane

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: jianliupku@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Zhang, Zhijun [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2016-01-21

    Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems.

  11. Automatic Tool Path Generation for Robot Integrated Surface Sculpturing System

    Science.gov (United States)

    Zhu, Jiang; Suzuki, Ryo; Tanaka, Tomohisa; Saito, Yoshio

    In this paper, a surface sculpturing system based on 8-axis robot is proposed, the CAD/CAM software and tool path generation algorithm for this sculpturing system are presented. The 8-axis robot is composed of a 6-axis manipulator and a 2-axis worktable, it carves block of polystyrene foams by heated cutting tools. Multi-DOF (Degree of Freedom) robot benefits from the faster fashion than traditional RP (Rapid Prototyping) methods and more flexibility than CNC machining. With its flexibility driven from an 8-axis configuration, as well as efficient custom-developed software for rough cutting and finish cutting, this surface sculpturing system can carve sculptured surface accurately and efficiently.

  12. Spin path integral and quantum mechanics in the rotating frame of reference%Spin path integral and quantum mechanics in the rotating frame of reference

    Institute of Scientific and Technical Information of China (English)

    CHEN Tong; WU Ning; YU Yue

    2011-01-01

    We have developed a path integral formalism of the quantum mechanics in the rotating frame of reference, and proposed a path integral description of spin degrees of freedom, which is connected to the Schwinger bosons realization of the angular momenta. We

  13. Path-integral molecular dynamics simulation of diamond

    Science.gov (United States)

    Ramírez, Rafael; Herrero, Carlos P.; Hernández, Eduardo R.

    2006-06-01

    Diamond is studied by path-integral molecular dynamics simulations of the atomic nuclei in combination with a tight-binding Hamiltonian to describe its electronic structure and total energy. This approach allows us to quantify the influence of quantum zero-point vibrations and finite temperatures on both the electronic and vibrational properties of diamond. The electron-phonon coupling mediated by the zero-point vibration reduces the direct electronic gap of diamond by 10%. The calculated decrease of the direct gap with temperature shows good agreement with the experimental data available up to 700K . Anharmonic vibrational frequencies of the crystal have been obtained from a linear-response approach based on the path integral formalism. In particular, the temperature dependence of the zone-center optical phonon has been derived from the simulations. The anharmonicity of the interatomic potential produces a red shift of this phonon frequency. At temperatures above 500K , this shift is overestimated in comparison to available experimental data. The predicted temperature shift of the elastic constant c44 displays reasonable agreement with the available experimental results.

  14. N-slit interference: Path integrals, Bohmian trajectories

    CERN Document Server

    Sbitnev, Valeriy I

    2010-01-01

    Path integrals give a possibility to compute in details routes of particles from particle sources through slit gratings and further to detectors. The path integral for a particle passing through the Gaussian slit results in the Gaussian wavepacket. The wavepackets prepared on N slits and superposed together give rise to interference pattern in the near-field zone. It transforms to diffraction in the far-field zone represented by divergent principal rays, at that all rays are partitioned from each other by (N-2) subsidiary rays. The Bohmian trajectories in the near-field zone of N-slit gratings show wavy behavior. And they become straight in the far-field zone. The trajectories show zigzag behavior on the interference Talbot carpet (ratio of particle wavelength to a distance between slits are much smaller than 1 and N >> 1). Namely, the trajectories prefer to pass through caustics and avoid lacunae, i.e., places with small probability densities. Monochromatic thermal neutrons (wavelength=0.5 nm) simulate radia...

  15. A note on the path integral representation for Majorana fermions

    Science.gov (United States)

    Greco, Andrés

    2016-04-01

    Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.

  16. Atmospheric Refraction Path Integrals in Ground-Based Interferometry

    CERN Document Server

    Mathar, R J

    2004-01-01

    The basic effect of the earth's atmospheric refraction on telescope operation is the reduction of the true zenith angle to the apparent zenith angle, associated with prismatic aberrations due to the dispersion in air. If one attempts coherent superposition of star images in ground-based interferometry, one is in addition interested in the optical path length associated with the refracted rays. In a model of a flat earth, the optical path difference between these is not concerned as the translational symmetry of the setup means no net effect remains. Here, I evaluate these interferometric integrals in the more realistic arrangement of two telescopes located on the surface of a common earth sphere and point to a star through an atmosphere which also possesses spherical symmetry. Some focus is put on working out series expansions in terms of the small ratio of the baseline over the earth radius, which allows to bypass some numerics which otherwise is challenged by strong cancellation effects in building the opti...

  17. Semiclassical Path Integral Dynamics: Photosynthetic Energy Transfer with Realistic Environment Interactions

    Science.gov (United States)

    Lee, Mi Kyung; Huo, Pengfei; Coker, David F.

    2016-05-01

    This article reviews recent progress in the theoretical modeling of excitation energy transfer (EET) processes in natural light harvesting complexes. The iterative partial linearized density matrix path-integral propagation approach, which involves both forward and backward propagation of electronic degrees of freedom together with a linearized, short-time approximation for the nuclear degrees of freedom, provides an accurate and efficient way to model the nonadiabatic quantum dynamics at the heart of these EET processes. Combined with a recently developed chromophore-protein interaction model that incorporates both accurate ab initio descriptions of intracomplex vibrations and chromophore-protein interactions treated with atomistic detail, these simulation tools are beginning to unravel the detailed EET pathways and relaxation dynamics in light harvesting complexes.

  18. Path integral quantization corresponding to the deformed Heisenberg algebra

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Souvik, E-mail: souvick.in@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108 (India); Moussa, Mohamed, E-mail: mohamed.ibrahim@fsc.bu.edu.eg [Department of Physics, Faculty of Sciences, Benha University, Benha 13518 (Egypt); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Sciences, Benha University, Benha 13518 (Egypt)

    2015-11-15

    In this paper, the deformation of the Heisenberg algebra, consistent with both the generalized uncertainty principle and doubly special relativity, has been analyzed. It has been observed that, though this algebra can give rise to fractional derivative terms in the corresponding quantum mechanical Hamiltonian, a formal meaning can be given to them by using the theory of harmonic extensions of function. Depending on this argument, the expression of the propagator of the path integral corresponding to the deformed Heisenberg algebra, has been obtained. In particular, the consistent expression of the one dimensional free particle propagator has been evaluated explicitly. With this propagator in hand, it has been shown that, even in free particle case, normal generalized uncertainty principle and doubly special relativity show very much different result.

  19. High-resolution path-integral development of financial options

    CERN Document Server

    Ingber, L

    2000-01-01

    The Black-Scholes theory of option pricing has been considered for many years as an important but very approximate zeroth-order description of actual market behavior. We generalize the functional form of the diffusion of these systems and also consider multi-factor models including stochastic volatility. Daily Eurodollar futures prices and implied volatilities are fit to determine exponents of functional behavior of diffusions using methods of global optimization, Adaptive Simulated Annealing (ASA), to generate tight fits across moving time windows of Eurodollar contracts. These short-time fitted distributions are then developed into long-time distributions using a robust non-Monte Carlo path-integral algorithm, PATHINT, to generate prices and derivatives commonly used by option traders.

  20. Thermal momentum distribution from path integrals with shifted boundary conditions

    CERN Document Server

    Giusti, Leonardo

    2011-01-01

    For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total momentum is an observable characterizing the thermal state. We show that its cumulants are related to thermodynamic potentials. In a relativistic system for instance, the thermal variance of the total momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary conditions in the compact direction, and (b) the ordinary partition function. In this form the generating function is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different temperatures.

  1. Spin And Curvature In The Worldline Path Integral

    CERN Document Server

    Dilkes, F A

    1999-01-01

    Several aspects of worldline path-integrals are discussed in the context of quantum field theory. It is shown how “near-diagonal” elements of the Seeley-Gilkey coefficients can be computed both in the presence of an arbitrary Riemann metric, a gauge- potential and a scalar potential. These are connected with derivative expansions and ultraviolet properties of field theories. Recently resolved subtleties connected with curvature and curvilinear coordinate systems are taken into account and non-covariant terms in the worldline action are shown to be a necessary ingredient for a correct expansion. This is contrasted with the success of older formal methods. Rudimentary symbolic algebra is shown to be a practical tool for tracking the combinatorics of higher-order calculations. A significant generalization of the Parker-Toms conjecture and the form of the single-particle effective action in curved space results. Some aspects of spin are also considered and it is shown how the spinning particle...

  2. Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals

    CERN Document Server

    Ivancevic, Vladimir G

    2008-01-01

    Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to th...

  3. Keyword Search over Data Service Integration for Accurate Results

    CERN Document Server

    Zemleris, Vidmantas; Robert Gwadera

    2013-01-01

    Virtual data integration provides a coherent interface for querying heterogeneous data sources (e.g., web services, proprietary systems) with minimum upfront effort. Still, this requires its users to learn the query language and to get acquainted with data organization, which may pose problems even to proficient users. We present a keyword search system, which proposes a ranked list of structured queries along with their explanations. It operates mainly on the metadata, such as the constraints on inputs accepted by services. It was developed as an integral part of the CMS data discovery service, and is currently available as open source.

  4. An Integrative Approach to Accurate Vehicle Logo Detection

    Directory of Open Access Journals (Sweden)

    Hao Pan

    2013-01-01

    required for many applications in intelligent transportation systems and automatic surveillance. The task is challenging considering the small target of logos and the wide range of variability in shape, color, and illumination. A fast and reliable vehicle logo detection approach is proposed following visual attention mechanism from the human vision. Two prelogo detection steps, that is, vehicle region detection and a small RoI segmentation, rapidly focalize a small logo target. An enhanced Adaboost algorithm, together with two types of features of Haar and HOG, is proposed to detect vehicles. An RoI that covers logos is segmented based on our prior knowledge about the logos’ position relative to license plates, which can be accurately localized from frontal vehicle images. A two-stage cascade classier proceeds with the segmented RoI, using a hybrid of Gentle Adaboost and Support Vector Machine (SVM, resulting in precise logo positioning. Extensive experiments were conducted to verify the efficiency of the proposed scheme.

  5. Looping probabilities of elastic chains: a path integral approach.

    Science.gov (United States)

    Cotta-Ramusino, Ludovica; Maddocks, John H

    2010-11-01

    We consider an elastic chain at thermodynamic equilibrium with a heat bath, and derive an approximation to the probability density function, or pdf, governing the relative location and orientation of the two ends of the chain. Our motivation is to exploit continuum mechanics models for the computation of DNA looping probabilities, but here we focus on explaining the novel analytical aspects in the derivation of our approximation formula. Accordingly, and for simplicity, the current presentation is limited to the illustrative case of planar configurations. A path integral formalism is adopted, and, in the standard way, the first approximation to the looping pdf is obtained from a minimal energy configuration satisfying prescribed end conditions. Then we compute an additional factor in the pdf which encompasses the contributions of quadratic fluctuations about the minimum energy configuration along with a simultaneous evaluation of the partition function. The original aspects of our analysis are twofold. First, the quadratic Lagrangian describing the fluctuations has cross-terms that are linear in first derivatives. This, seemingly small, deviation from the structure of standard path integral examples complicates the necessary analysis significantly. Nevertheless, after a nonlinear change of variable of Riccati type, we show that the correction factor to the pdf can still be evaluated in terms of the solution to an initial value problem for the linear system of Jacobi ordinary differential equations associated with the second variation. The second novel aspect of our analysis is that we show that the Hamiltonian form of these linear Jacobi equations still provides the appropriate correction term in the inextensible, unshearable limit that is commonly adopted in polymer physics models of, e.g. DNA. Prior analyses of the inextensible case have had to introduce nonlinear and nonlocal integral constraints to express conditions on the relative displacement of the end

  6. Quantum Field Theory: From Operators to Path Integrals

    Science.gov (United States)

    Huang, Kerson

    1998-07-01

    A unique approach to quantum field theory, with emphasis on the principles of renormalization Quantum field theory is frequently approached from the perspective of particle physics. This book adopts a more general point of view and includes applications of condensed matter physics. Written by a highly respected writer and researcher, it first develops traditional concepts, including Feynman graphs, before moving on to key topics such as functional integrals, statistical mechanics, and Wilson's renormalization group. The connection between the latter and conventional perturbative renormalization is explained. Quantum Field Theory is an exceptional textbook for graduate students familiar with advanced quantum mechanics as well as physicists with an interest in theoretical physics. It features: * Coverage of quantum electrodynamics with practical calculations and a discussion of perturbative renormalization * A discussion of the Feynman path integrals and a host of current subjects, including the physical approach to renormalization, spontaneous symmetry breaking and superfluidity, and topological excitations * Nineteen self-contained chapters with exercises, supplemented with graphs and charts

  7. Convenient integrating sphere scanner for accurate luminous flux measurements

    Science.gov (United States)

    Winter, S.; Lindemann, M.; Jordan, W.; Binder, U.; Anokhin, M.

    2009-08-01

    Measurement results and applications of a recently developed device for the measurement of the spatial uniformity of integrating spheres are presented. Due to the complexity of their implementation, sphere scanners are mainly used by national metrology institutes to increase the accuracy of relative and absolute luminous flux measurements (Ohno et al 1997 J. IES 26 107-14, Ohno and Daubach 2001 J. IES 30 105-15, Ohno 1998 Metrologia 35 473-8, Hovila et al 2004 Metrologia 41 407-13). The major drawback of traditional scanners for integrating spheres is the necessity of a complex and time-consuming sphere modification, as the lamp holder has to be replaced by a new scanner holder with additional cables for power supply and for communication with the stepping motor control unit (Ohno et al 1997 J. IES 26 107-14). Therefore, with traditional scanners the relative spatial sphere responsivity already changes due to the installation of a special scanner holder. The new scanner simply substitutes the lamp under test: it can be screwed into an E27 lamp socket, as it needs only two electrical contacts. Two wires are simultaneously used for the power supply of the stepping motor control unit, the scanner light source (LED) and for the signal transmission of commands and results. The benefits of scanner-assisted measurements are shown for spotlight lamp calibrations.

  8. Theory of extreme correlations using canonical Fermions and path integrals

    Energy Technology Data Exchange (ETDEWEB)

    Shastry, B. Sriram, E-mail: sriram@physics.ucsc.edu

    2014-04-15

    The  t–J  model is studied using a novel and rigorous mapping of the Gutzwiller projected electrons, in terms of canonical electrons. The mapping has considerable similarity to the Dyson–Maleev transformation relating spin operators to canonical Bosons. This representation gives rise to a non Hermitian quantum theory, characterized by minimal redundancies. A path integral representation of the canonical theory is given. Using it, the salient results of the extremely correlated Fermi liquid (ECFL) theory, including the previously found Schwinger equations of motion, are easily rederived. Further, a transparent physical interpretation of the previously introduced auxiliary Greens function and the ‘caparison factor’, is obtained. The low energy electron spectral function in this theory, with a strong intrinsic asymmetry, is summarized in terms of a few expansion coefficients. These include an important emergent energy scale Δ{sub 0} that shrinks to zero on approaching the insulating state, thereby making it difficult to access the underlying very low energy Fermi liquid behavior. The scaled low frequency ECFL spectral function, related simply to the Fano line shape, has a peculiar energy dependence unlike that of a Lorentzian. The resulting energy dispersion obtained by maximization is a hybrid of a massive and a massless Dirac spectrum E{sub Q}{sup ∗}∼γQ−√(Γ{sub 0}{sup 2}+Q{sup 2}), where the vanishing of Q, a momentum type variable, locates the kink minimum. Therefore the quasiparticle velocity interpolates between (γ∓1) over a width Γ{sub 0} on the two sides of Q=0, implying a kink there that strongly resembles a prominent low energy feature seen in angle resolved photoemission spectra (ARPES) of cuprate materials. We also propose novel ways of analyzing the ARPES data to isolate the predicted asymmetry between particle and hole excitations. -- Highlights: •Spectral function of the Extremely Correlated Fermi Liquid theory at low energy.

  9. Theory of Atom Optics: Feynman's Path Integral Approach

    Institute of Scientific and Technical Information of China (English)

    DENG Lü-bi

    2006-01-01

    The present theory of atom optics is established mainly on the Schr(o)dinger equations or the matrix mechanics equation.The authors present a new theoretical formulation of atom optics: Feynman's path integral theory.Its advantage is that one can describe the diffraction and interference of atoms passing through slits (or grating),apertures,and standing wave laser field in Earth's gravitational field by using a type of wave function and calculation is simple.For this reason,we derive the wave functions of particles in the following configurations: single slit (and slit with the van der Waals interaction),double slit,N slit,rectangular aperture,circular aperture,the Mach-Zehndertype interferometer,the interferometer with the Raman beams,the Sagnac effect,the Aharonov-Casher effect,the Kapitza-Dirac diffraction effect,and the Aharonov-Bohm effect.The authors give a wave function of the state of particles on the screen in abovementioned configurations.Our formulas show good agreement with present experimental measurements.

  10. Quantum effects in graphene monolayers: Path-integral simulations

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael

    2016-12-01

    Path-integral molecular dynamics (PIMD) simulations have been carried out to study the influence of quantum dynamics of carbon atoms on the properties of a single graphene layer. Finite-temperature properties were analyzed in the range from 12 to 2000 K, by using the LCBOPII effective potential. To assess the magnitude of quantum effects in structural and thermodynamic properties of graphene, classical molecular dynamics simulations have been also performed. Particular emphasis has been laid on the atomic vibrations along the out-of-plane direction. Even though quantum effects are present in these vibrational modes, we show that at any finite temperature classical-like motion dominates over quantum delocalization, provided that the system size is large enough. Vibrational modes display an appreciable anharmonicity, as derived from a comparison between kinetic and potential energies of the carbon atoms. Nuclear quantum effects are found to be appreciable in the interatomic distance and layer area at finite temperatures. The thermal expansion coefficient resulting from PIMD simulations vanishes in the zero-temperature limit, in agreement with the third law of thermodynamics.

  11. Path integrals, matter waves, and the double slit

    Science.gov (United States)

    Jones, Eric R.; Bach, Roger A.; Batelaan, Herman

    2015-11-01

    Basic explanations of the double slit diffraction phenomenon include a description of waves that emanate from two slits and interfere. The locations of the interference minima and maxima are determined by the phase difference of the waves. An optical wave, which has a wavelength λ and propagates a distance L, accumulates a phase of 2π L/λ . A matter wave, also having wavelength λ that propagates the same distance L, accumulates a phase of π L/λ , which is a factor of two different from the optical case. Nevertheless, in most situations, the phase difference, {{Δ }}\\varphi , for interfering matter waves that propagate distances that differ by {{Δ }}L, is approximately 2π {{Δ }}L/λ , which is the same value computed in the optical case. The difference between the matter and optical case hinders conceptual explanations of diffraction from two slits based on the matter-optics analogy. In the following article we provide a path integral description for matter waves with a focus on conceptual explanation. A thought experiment is provided to illustrate the validity range of the approximation {{Δ }}\\varphi ≈ 2π {{Δ }}L/λ .

  12. Path integral approach to eikonal and next-to-eikonal exponentiation

    NARCIS (Netherlands)

    Laenen, E.; Stavenga, G.; White, C.D.

    2009-01-01

    We approach the issue of exponentiation of soft gauge boson corrections to scattering amplitudes from a path integral point of view. We show that if one represents the amplitude as a first quantized path integral in a mixed coordinate-momentum space representation, a charged particle interacting wit

  13. The path integral representation kernel of evolution operator in Merton-Garman model

    CERN Document Server

    Blazhyevskyi, L F; 10.5488/CMP.14.23001

    2011-01-01

    In the framework of path integral the evolution operator kernel for the Merton-Garman Hamiltonian is constructed. Based on this kernel option formula is obtained, which generalizes the well-known Black-Scholes result. Possible approximation numerical schemes for path integral calculations are proposed.

  14. Path integral approach to two-dimensional QCD in the light-front frame

    Energy Technology Data Exchange (ETDEWEB)

    Gaete, P. (Instituto de Fisica, Universidade Federal do Rio de Janeiro, C.P. 68528, BR-21945, Rio de Janeiro (Brazil)); Gamboa, J. (Fachbereich 7 Physik, Universitaet Siegen, Siegen, D-57068 (Germany)); Schmidt, I. (Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile))

    1994-05-15

    Two-dimensional quantum chromodynamics in the light-front frame is studied following Hamiltonian methods. The theory is quantized using the path integral formalism and an effective theory similar to the Nambu--Jona-Lasinio model is obtained. Confinement in two dimensions is derived by analyzing directly the constraints in the path integral.

  15. Path Integral and Solutions of the Constraint Equations The Case of Reducible Gauge Theories

    CERN Document Server

    Ferraro, R; Puchin, M

    1994-01-01

    It is shown that the BRST path integral for reducible gauge theories, with appropriate boundary conditions on the ghosts, is a solution of the constraint equations. This is done by relating the BRST path integral to the kernel of the evolution operator projected on the physical subspace.

  16. Accelerating the convergence of path integral dynamics with a generalized Langevin equation.

    Science.gov (United States)

    Ceriotti, Michele; Manolopoulos, David E; Parrinello, Michele

    2011-02-28

    The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.

  17. Determination of the experimental equilibrium structure of solid nitromethane using path-integral molecular dynamics simulations

    Science.gov (United States)

    Reilly, Anthony M.; Habershon, Scott; Morrison, Carole A.; Rankin, David W. H.

    2010-03-01

    Path-integral molecular dynamics (PIMD) simulations with an empirical interaction potential have been used to determine the experimental equilibrium structure of solid nitromethane at 4.2 and 15 K. By comparing the time-averaged molecular structure determined in a PIMD simulation to the calculated minimum-energy (zero-temperature) molecular structure, we have derived structural corrections that describe the effects of thermal motion. These corrections were subsequently used to determine the equilibrium structure of nitromethane from the experimental time-averaged structure. We find that the corrections to the intramolecular and intermolecular bond distances, as well as to the torsion angles, are quite significant, particularly for those atoms participating in the anharmonic motion of the methyl group. Our results demonstrate that simple harmonic models of thermal motion may not be sufficiently accurate, even at low temperatures, while molecular simulations employing more realistic potential-energy surfaces can provide important insight into the role and magnitude of anharmonic atomic motions.

  18. Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Warm Dense Matter

    Science.gov (United States)

    Militzer, Burkhard; Driver, Kevin

    2011-10-01

    We analyze the applicability of two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), to study the regime of warm dense matter. We discuss the advantages as well as the limitations of each method and propose directions for future development. Results for dense, liquid helium, where both methods have been applied, demonstrate the range of each method's applicability. Comparison of the equations of state from simulations with analytical theories and free energy models show that DFT is useful for temperatures below 100000 K and then PIMC provides accurate results for all higher temperatures. We characterize the structure of the liquid in terms of pair correlation functions and study the closure of the band gap with increasing density and temperature. Finally, we discuss simulations of heavier elements and demonstrate the reliability are both methods in such cases with preliminary results.

  19. Path integrals for actions that are not quadratic in their time derivatives

    CERN Document Server

    Cahill, Kevin

    2015-01-01

    The standard way to construct a path integral is to use a Legendre transformation to find the hamiltonian, to repeatedly insert complete sets of states into the time-evolution operator, and then to integrate over the momenta. This procedure is simple when the action is quadratic in its time derivatives, but in most other cases Legendre's transformation is intractable, and the hamiltonian is unknown. This paper shows how to make path integrals without using the hamiltonian.

  20. Review of computer simulations of isotope effects on biochemical reactions: From the Bigeleisen equation to Feynman's path integral.

    Science.gov (United States)

    Wong, Kin-Yiu; Xu, Yuqing; Xu, Liang

    2015-11-01

    -transphosphorylation. For all these applications, we used our recently-developed path-integral method based on the KP theory, called automated integration-free path-integral (AIF-PI) method, to perform ab initio path-integral calculations of isotope effects. As opposed to the conventional path-integral molecular dynamics (PIMD) and Monte Carlo (PIMC) simulations, values calculated from our AIF-PI path-integral method can be as precise as (not as accurate as) the numerical precision of the computing machine. Lastly, comments are made on the general challenges in theoretical modeling of candidates matching the experimental "fingerprints" of RLTS. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  1. First Integrals, Integrating Factors, and Invariant Solutions of the Path Equation Based on Noether and -Symmetries

    Directory of Open Access Journals (Sweden)

    Gülden Gün

    2013-01-01

    Full Text Available We analyze Noether and -symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate -symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of -symmetries. Finally, we compare the results obtained from different classifications.

  2. Square-root actions, metric signature, and the path-integral of quantum gravity

    CERN Document Server

    Carlini, A; Carlini, A; Greensite, J

    1995-01-01

    We consider quantization of the Baierlein-Sharp-Wheeler form of the gravitational action, in which the lapse function is determined from the Hamiltonian constraint. This action has a square root form, analogous to the actions of the relativistic particle and Nambu string. We argue that path-integral quantization of the gravitational action should be based on a path integrand \\exp[ \\sqrt{i} S ] rather than the familiar Feynman expression \\exp[ i S ], and that unitarity requires integration over manifolds of both Euclidean and Lorentzian signature. We discuss the relation of this path integral to our previous considerations regarding the problem of time, and extend our approach to include fermions.

  3. Square-root actions, metric signature, and the path integral of quantum gravity

    Science.gov (United States)

    Carlini, A.; Greensite, J.

    1995-12-01

    We consider quantization of the Baierlein-Sharp-Wheeler form of the gravitational action, in which the lapse function is determined from the Hamiltonian constraint. This action has a square root form, analogous to the actions of the relativistic particle and Nambu string. We argue that path-integral quantization of the gravitational action should be based on a path integrand exp[ √i S] rather than the familiar Feynman expression exp[iS], and that unitarity requires integration over manifolds of both Euclidean and Lorentzian signature. We discuss the relation of this path integral to our previous considerations regarding the problem of time, and extend our approach to include fermions.

  4. Power Series Expansion of Propagator for Path Integral and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper we obtain a propagator of path integral for a harmonic oscillator and a driven harmonic oscillator by using the power series expansion. It is shown that our result for the harmonic oscillator is more exact than the previous one obtained with other approximation methods. By using the same method, we obtain a propagator of path integral for the driven harmonic oscillator, which does not have any exact expansion. The more exact propagators may improve the path integral results for these systems.

  5. A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations

    KAUST Repository

    Liu, Meilin

    2011-07-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.

  6. Piloting and Path Integration within and across Boundaries

    Science.gov (United States)

    Mou, Weimin; Wang, Lin

    2015-01-01

    Three experiments investigated whether navigation is less efficient across boundaries than within boundaries. In an immersive virtual environment, participants learned objects' locations in a large room or a small room. Participants then pointed to the objects' original locations after physically walking a circuitous path without vision.…

  7. Path integrals, SUSY QM and the Atiyah-Singer index theorem for twisted Dirac

    CERN Document Server

    Fine, Dana

    2016-01-01

    Feynman's time-slicing construction approximates the path integral by a product, determined by a partition of a finite time interval, of approximate propagators. This paper formulates general conditions to impose on a short-time approximation to the propagator in a general class of imaginary-time quantum mechanics on a Riemannian manifold which ensure these products converge. The limit defines a path integral which agrees pointwise with the heat kernel for a generalized Laplacian. The result is a rigorous construction of the propagator for supersymmetric quantum mechanics, with potential, as a path integral. Further, the class of Laplacians includes the square of the twisted Dirac operator, which corresponds to an extension of N=1/2 supersymmetric quantum mechanics. General results on the rate of convergence of the approximate path integrals suffice in this case to derive the local version of the Atiyah-Singer index theorem.

  8. Which way and how far? Tracking of translation and rotation information for human path integration.

    Science.gov (United States)

    Chrastil, Elizabeth R; Sherrill, Katherine R; Hasselmo, Michael E; Stern, Chantal E

    2016-10-01

    Path integration, the constant updating of the navigator's knowledge of position and orientation during movement, requires both visuospatial knowledge and memory. This study aimed to develop a systems-level understanding of human path integration by examining the basic building blocks of path integration in humans. To achieve this goal, we used functional imaging to examine the neural mechanisms that support the tracking and memory of translational and rotational components of human path integration. Critically, and in contrast to previous studies, we examined movement in translation and rotation tasks with no defined end-point or goal. Navigators accumulated translational and rotational information during virtual self-motion. Activity in hippocampus, retrosplenial cortex (RSC), and parahippocampal cortex (PHC) increased during both translation and rotation encoding, suggesting that these regions track self-motion information during path integration. These results address current questions regarding distance coding in the human brain. By implementing a modified delayed match to sample paradigm, we also examined the encoding and maintenance of path integration signals in working memory. Hippocampus, PHC, and RSC were recruited during successful encoding and maintenance of path integration information, with RSC selective for tasks that required processing heading rotation changes. These data indicate distinct working memory mechanisms for translation and rotation, which are essential for updating neural representations of current location. The results provide evidence that hippocampus, PHC, and RSC flexibly track task-relevant translation and rotation signals for path integration and could form the hub of a more distributed network supporting spatial navigation. Hum Brain Mapp 37:3636-3655, 2016. © 2016 Wiley Periodicals, Inc.

  9. Path integral methods for the dynamics of stochastic and disordered systems

    DEFF Research Database (Denmark)

    Hertz, John A.; Roudi, Yasser; Sollich, Peter

    2017-01-01

    We review some of the techniques used to study the dynamics of disordered systems subject to both quenched and fast (thermal) noise. Starting from the Martin–Siggia–Rose/Janssen–De Dominicis–Peliti path integral formalism for a single variable stochastic dynamics, we provide a pedagogical survey ...... in studying the disorder-averaged dynamics. Finally, we discuss the path integral approach for the case of hard Ising spins and review some recent developments in the dynamics of such kinetic Ising models....

  10. A variational path integral molecular dynamics study of a solid helium-4

    Science.gov (United States)

    Miura, Shinichi

    2011-01-01

    In the present study, a variational path integral molecular dynamics method developed by the author [Chem. Phys. Lett. 482 (2009) 165] is applied to a solid helium-4 in the ground state. The method is a molecular dynamics algorithm for a variational path integral method which can be used to generate the exact ground state numerically. The solid state is shown to successfully be realized by the method, although a poor trial wavefunction that cannot describe the solid state is used.

  11. The path dependency theory: analytical framework to study institutional integration. The case of France

    Directory of Open Access Journals (Sweden)

    Hélène Trouvé

    2010-06-01

    Full Text Available Background: The literature on integration indicates the need for an enhanced theorization of institutional integration. This article proposes path dependence as an analytical framework to study the systems in which integration takes place.Purpose: PRISMA proposes a model for integrating health and social care services for older adults. This model was initially tested in Quebec. The PRISMA France study gave us an opportunity to analyze institutional integration in France.Methods: A qualitative approach was used. Analyses were based on semi-structured interviews with actors of all levels of decision-making, observations of advisory board meetings, and administrative documents.Results: Our analyses revealed the complexity and fragmentation of institutional integration. The path dependency theory, which analyzes the change capacity of institutions by taking into account their historic structures, allows analysis of this situation. The path dependency to the Bismarckian system and the incomplete reforms of gerontological policies generate the coexistence and juxtaposition of institutional systems. In such a context, no institution has sufficient ability to determine gerontology policy and build institutional integration by itself.Conclusion: Using path dependence as an analytical framework helps to understand the reasons why institutional integration is critical to organizational and clinical integration, and the complex construction of institutional integration in France.

  12. The path dependency theory: analytical framework to study institutional integration. The case of France

    Directory of Open Access Journals (Sweden)

    Hélène Trouvé

    2010-06-01

    Full Text Available Background: The literature on integration indicates the need for an enhanced theorization of institutional integration. This article proposes path dependence as an analytical framework to study the systems in which integration takes place. Purpose: PRISMA proposes a model for integrating health and social care services for older adults. This model was initially tested in Quebec. The PRISMA France study gave us an opportunity to analyze institutional integration in France. Methods: A qualitative approach was used. Analyses were based on semi-structured interviews with actors of all levels of decision-making, observations of advisory board meetings, and administrative documents. Results: Our analyses revealed the complexity and fragmentation of institutional integration. The path dependency theory, which analyzes the change capacity of institutions by taking into account their historic structures, allows analysis of this situation. The path dependency to the Bismarckian system and the incomplete reforms of gerontological policies generate the coexistence and juxtaposition of institutional systems. In such a context, no institution has sufficient ability to determine gerontology policy and build institutional integration by itself. Conclusion: Using path dependence as an analytical framework helps to understand the reasons why institutional integration is critical to organizational and clinical integration, and the complex construction of institutional integration in France.

  13. The path dependency theory: analytical framework to study institutional integration. The case of France

    Science.gov (United States)

    Trouvé, Hélène; Couturier, Yves; Etheridge, Francis; Saint-Jean, Olivier; Somme, Dominique

    2010-01-01

    Background The literature on integration indicates the need for an enhanced theorization of institutional integration. This article proposes path dependence as an analytical framework to study the systems in which integration takes place. Purpose PRISMA proposes a model for integrating health and social care services for older adults. This model was initially tested in Quebec. The PRISMA France study gave us an opportunity to analyze institutional integration in France. Methods A qualitative approach was used. Analyses were based on semi-structured interviews with actors of all levels of decision-making, observations of advisory board meetings, and administrative documents. Results Our analyses revealed the complexity and fragmentation of institutional integration. The path dependency theory, which analyzes the change capacity of institutions by taking into account their historic structures, allows analysis of this situation. The path dependency to the Bismarckian system and the incomplete reforms of gerontological policies generate the coexistence and juxtaposition of institutional systems. In such a context, no institution has sufficient ability to determine gerontology policy and build institutional integration by itself. Conclusion Using path dependence as an analytical framework helps to understand the reasons why institutional integration is critical to organizational and clinical integration, and the complex construction of institutional integration in France. PMID:20689740

  14. Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits

    CERN Document Server

    Schaeff, Christoph; Lapkiewicz, Radek; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton

    2012-01-01

    Integrated photonic circuits offer the possibility for complex quantum optical experiments in higher-dimensional photonic systems. However, the advantages of integration and scalability can only be fully utilized with the availability of a source for higher-dimensional entangled photons. Here, a novel fiber integrated source for path-entangled photons in the telecom band at 1.55\\mum using only standard fiber technology is presented. Due to the special design the source shows good scalability towards higher-dimensional entangled photonic states (quNits), while path entanglement offers direct compatibility with on-chip path encoding. We present an experimental realization of a path-entangled two-qubit source. A very high quality of entanglement is verified by various measurements, i.a. a tomographic state reconstruction is performed leading to a background corrected fidelity of (99.45+-0.06)%. Moreover, we describe an easy method for extending our source to arbitrarily high dimensions.

  15. Path integral molecular dynamics calculations of the H6+ and D6+ clusters on an ab initio potential energy surface

    Science.gov (United States)

    Kakizaki, Akira; Takayanagi, Toshiyuki; Shiga, Motoyuki

    2007-11-01

    Path integral molecular dynamics simulations for the H6+ and D6+ cluster cations have been carried out in order to understand the floppy nature of their molecular structure due to quantum-mechanical fluctuation. A full-dimensional analytical potential energy surface for the ground electronic state of H6+ has been developed on the basis of accurate ab initio electronic structure calculations at the CCSD(T)/cc-pVTZ level. It is found that the outer H 2(D 2) nuclei rotate almost freely and that the probability density distributions of the central H 2(D 2) nuclei show strong spatial delocalization.

  16. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Animesh, E-mail: animesh@zedat.fu-berlin.de; Delle Site, Luigi, E-mail: dellesite@fu-berlin.de [Institute for Mathematics, Freie Universität Berlin, Berlin (Germany)

    2015-09-07

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

  17. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

    Science.gov (United States)

    Agarwal, Animesh; Delle Site, Luigi

    2015-09-01

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

  18. Development and Integration of a Pulsed 2-micron Direct Detection Integrated Path Differential Absorption (IPDA) Lidar for CO2 Column Measurement from Airborne platform Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop, integrate and demonstrate a 2-micron pulsed Integrated Path Differential Absorption Lidar (IPDA) instrument CO2 Column Measurement from Airborne platform...

  19. Ensemble variance in free energy calculations by thermodynamic integration: theory, optimal "Alchemical" path, and practical solutions.

    Science.gov (United States)

    Blondel, Arnaud

    2004-05-01

    Thermodynamic integration is a widely used method to calculate and analyze the effect of a chemical modification on the free energy of a chemical or biochemical process, for example, the impact of an amino acid substitution on protein association. Numerical fluctuations can introduce large uncertainties, limiting the domain of application of the method. The parametric energy function describing the chemical modification in the thermodynamic integration, the "Alchemical path," determines the amplitudes of the fluctuations. In the present work, I propose a measure of the fluctuations in the thermodynamic integration and an approach to search for a parametric energy path minimizing that measure. The optimal path derived with this approach is very close to the theoretical minimum of the measure, but produces nonergodic sampling. Nevertheless, this path is used to guide the design of a practical and efficient path producing correct sampling. The convergence with this practical path is evaluated on test cases, and compares favorably with that of other methods such as power or polynomial path, soft-core van der Waals, and some other approaches presented in the literature.

  20. Mnemonic discrimination relates to perforant path integrity: An ultra-high resolution diffusion tensor imaging study.

    Science.gov (United States)

    Bennett, Ilana J; Stark, Craig E L

    2016-03-01

    Pattern separation describes the orthogonalization of similar inputs into unique, non-overlapping representations. This computational process is thought to serve memory by reducing interference and to be mediated by the dentate gyrus of the hippocampus. Using ultra-high in-plane resolution diffusion tensor imaging (hrDTI) in older adults, we previously demonstrated that integrity of the perforant path, which provides input to the dentate gyrus from entorhinal cortex, was associated with mnemonic discrimination, a behavioral outcome designed to load on pattern separation. The current hrDTI study assessed the specificity of this perforant path integrity-mnemonic discrimination relationship relative to other cognitive constructs (identified using a factor analysis) and white matter tracts (hippocampal cingulum, fornix, corpus callosum) in 112 healthy adults (20-87 years). Results revealed age-related declines in integrity of the perforant path and other medial temporal lobe (MTL) tracts (hippocampal cingulum, fornix). Controlling for global effects of brain aging, perforant path integrity related only to the factor that captured mnemonic discrimination performance. Comparable integrity-mnemonic discrimination relationships were also observed for the hippocampal cingulum and fornix. Thus, whereas perforant path integrity specifically relates to mnemonic discrimination, mnemonic discrimination may be mediated by a broader MTL network.

  1. Quantum-classical path integral with self-consistent solvent-driven reference propagators.

    Science.gov (United States)

    Banerjee, Tuseeta; Makri, Nancy

    2013-10-24

    Efficient procedures for evaluating the quantum-classical path integral (QCPI) [J. Chem. Phys. 2013, 137, 22A552] are described. The main idea is to identify a trajectory-specific reference Hamiltonian that captures the dominant effects of the classical "solvent" degrees of freedom on the dynamics of the quantum "system". This time-dependent reference is used to construct a system propagator that is valid for large time increments. Residual "quantum memory" interactions are included via the path integral representation of the density matrix, which converges with large time steps. Two physically motivated reference schemes are considered. The first involves the dynamics of the solvent unperturbed by the system, which forms the basis for the "classical path" approximation. The second is based on solvent trajectories determined self-consistently with the evolution of the system, according to the time-dependent self-consistent field or Ehrenfest model. Application to dissipative two-level systems indicates that both reference schemes allow a substantial increase of the path integral time step, leading to rapid convergence of the path sum. In addition, the time-dependent reference propagators automatically weigh state-to-state coupling against solvent reorganization in the determination of transition probabilities, further enhancing the convergence of the path integral.

  2. Integration of multi-modality imaging for accurate 3D reconstruction of human coronary arteries in vivo

    Science.gov (United States)

    Giannoglou, George D.; Chatzizisis, Yiannis S.; Sianos, George; Tsikaderis, Dimitrios; Matakos, Antonis; Koutkias, Vassilios; Diamantopoulos, Panagiotis; Maglaveras, Nicos; Parcharidis, George E.; Louridas, George E.

    2006-12-01

    In conventional intravascular ultrasound (IVUS)-based three-dimensional (3D) reconstruction of human coronary arteries, IVUS images are arranged linearly generating a straight vessel volume. However, with this approach real vessel curvature is neglected. To overcome this limitation an imaging method was developed based on integration of IVUS and biplane coronary angiography (BCA). In 17 coronary arteries from nine patients, IVUS and BCA were performed. From each angiographic projection, a single end-diastolic frame was selected and in each frame the IVUS catheter was interactively detected for the extraction of 3D catheter path. Ultrasound data was obtained with a sheath-based catheter and recorded on S-VHS videotape. S-VHS data was digitized and lumen and media-adventitia contours were semi-automatically detected in end-diastolic IVUS images. Each pair of contours was aligned perpendicularly to the catheter path and rotated in space by implementing an algorithm based on Frenet-Serret rules. Lumen and media-adventitia contours were interpolated through generation of intermediate contours creating a real 3D lumen and vessel volume, respectively. The absolute orientation of the reconstructed lumen was determined by back-projecting it onto both angiographic planes and comparing the projected lumen with the actual angiographic lumen. In conclusion, our method is capable of performing rapid and accurate 3D reconstruction of human coronary arteries in vivo. This technique can be utilized for reliable plaque morphometric, geometrical and hemodynamic analyses.

  3. Efficient Calculation of Energy Expectation Values in the Path Integral Formalism

    CERN Document Server

    Grujic, J

    2006-01-01

    The path integral formalism, originally introduced by Richard Feynman, represents a powerful general framework for dealing with quantum and statistical theories, as well as an extremely useful tool in many other areas of science. Their numerical integration, however, is notoriously demanding of computer time and it is one of the most challenging computational problems.

  4. A path-integral Langevin equation treatment of low-temperature doped helium clusters.

    Science.gov (United States)

    Ing, Christopher; Hinsen, Konrad; Yang, Jing; Zeng, Toby; Li, Hui; Roy, Pierre-Nicholas

    2012-06-14

    We present an implementation of path integral molecular dynamics for sampling low temperature properties of doped helium clusters using Langevin dynamics. The robustness of the path integral Langevin equation and white-noise Langevin equation [M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 133, 124104 (2010)] sampling methods are considered for those weakly bound systems with comparison to path integral Monte Carlo (PIMC) in terms of efficiency and accuracy. Using these techniques, convergence studies are performed to confirm the systematic error reduction introduced by increasing the number of discretization steps of the path integral. We comment on the structural and energetic evolution of He(N)-CO(2) clusters from N = 1 to 20. To quantify the importance of both rotations and exchange in our simulations, we present a chemical potential and calculated band origin shifts as a function of cluster size utilizing PIMC sampling that includes these effects. This work also serves to showcase the implementation of path integral simulation techniques within the molecular modelling toolkit [K. Hinsen, J. Comp. Chem. 21, 79 (2000)], an open-source molecular simulation package.

  5. Feynman path integral application on deriving black-scholes diffusion equation for european option pricing

    Science.gov (United States)

    Utama, Briandhika; Purqon, Acep

    2016-08-01

    Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods.

  6. Path-integral and Ornstein-Zernike computations of quantum fluid structures under strong fluctuations

    Directory of Open Access Journals (Sweden)

    Luis M. Sesé

    2017-02-01

    Full Text Available This work deals with the computation of the structure factors of quantum fluids under complex conditions involving substantial density fluctuations and/or large particle delocalization effects. The method is based on the combination of path-integral Monte Carlo (PIMC simulations and the pair Ornstein-Zernike framework (OZ2. PIMC provides the radial correlation functions (centroid, instantaneous, and thermalized-continuous total linear response, which are used as data input to the OZ2 calculations that lead to their associated structure factors. To undertake this project normal liquid 4He and supercritical 3He are selected, studying conditions in the range (T = 4.2 K; 0.01886 <ρN/Å-3 < 0.02687. Full inter-comparison between the structure factors determined via both OZ2 and direct PIMC calculations is made. In addition, comparison with experimental data, including thermodynamic properties, is made wherever possible. The results establish that, even under severe thermodynamic and/or quantum fluctuation conditions, OZ2 remains in the quantum domain as a highly reliable and cost-effective framework to determine accurate structure factors, also allowing one to understand the related isotopic shifts in fluid He.

  7. Direct Calculation of Permeability by High-Accurate Finite Difference and Numerical Integration Methods

    KAUST Repository

    Wang, Yi

    2016-07-21

    Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.

  8. A path integral approach to asset-liability management

    NARCIS (Netherlands)

    Decamps, M.; de Schepper, A.; Goovaerts, M.J.

    2006-01-01

    Functional integrals constitute a powerful tool in the investigation of financial models. In the recent econophysics literature, this technique was successfully used for the pricing of a number of derivative securities. In the present contribution, we introduce this approach to the field of asset-li

  9. An Accurate Heading Solution using MEMS-based Gyroscope and Magnetometer Integrated System (Preliminary Results)

    Science.gov (United States)

    El-Diasty, M.

    2014-11-01

    An accurate heading solution is required for many applications and it can be achieved by high grade (high cost) gyroscopes (gyros) which may not be suitable for such applications. Micro-Electro Mechanical Systems-based (MEMS) is an emerging technology, which has the potential of providing heading solution using a low cost MEMS-based gyro. However, MEMS-gyro-based heading solution drifts significantly over time. The heading solution can also be estimated using MEMS-based magnetometer by measuring the horizontal components of the Earth magnetic field. The MEMS-magnetometer-based heading solution does not drift over time, but are contaminated by high level of noise and may be disturbed by the presence of magnetic field sources such as metal objects. This paper proposed an accurate heading estimation procedure based on the integration of MEMS-based gyro and magnetometer measurements that correct gyro and magnetometer measurements where gyro angular rates of changes are estimated using magnetometer measurements and then integrated with the measured gyro angular rates of changes with a robust filter to estimate the heading. The proposed integration solution is implemented using two data sets; one was conducted in static mode without magnetic disturbances and the second was conducted in kinematic mode with magnetic disturbances. The results showed that the proposed integrated heading solution provides accurate, smoothed and undisturbed solution when compared with magnetometerbased and gyro-based heading solutions.

  10. Path integral approach to eikonal and next-to-eikonal exponentiation

    CERN Document Server

    Laenen, E; White, C D

    2009-01-01

    We approach the issue of exponentiation of soft gauge boson corrections to scattering amplitudes from a path integral point of view. We show that if one represents the amplitude as a first quantized path integral in a mixed coordinate-momentum space representation, a charged particle interacting with a soft gauge field is represented as a Wilson line for a semi-infinite line segment, together with calculable fluctuations. Combining such line segments, we show that exponentiation in an abelian field theory follows immediately from standard path-integral combinatorics. In the non-abelian case, we consider color singlet hard interactions with two outgoing external lines, and obtain a new viewpoint for exponentiation in terms of ``webs'', with a closed form solution for their corresponding color factors. We investigate and clarify the structure of next-to-eikonal corrections.

  11. i-PI: A Python interface for ab initio path integral molecular dynamics simulations

    CERN Document Server

    Ceriotti, Michele; Manolopoulos, David E

    2014-01-01

    Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high pressure water.

  12. On the path integral representation of the Wigner function and the Barker-Murray ansatz

    Science.gov (United States)

    Sels, Dries; Brosens, Fons; Magnus, Wim

    2012-01-01

    The propagator of the Wigner function is constructed from the Wigner-Liouville equation as a phase space path integral over a new effective Lagrangian. In contrast to a paper by Barker and Murray (1983) [1], we show that the path integral can in general not be written as a linear superposition of classical phase space trajectories over a family of non-local forces. Instead, we adopt a saddle point expansion to show that the semiclassical Wigner function is a linear superposition of classical solutions for a different set of non-local time dependent forces. As shown by a simple example the specific form of the path integral makes the formulation ideal for Monte Carlo simulation.

  13. Path integration in the field of a topological defect: the case of dispiration

    CERN Document Server

    Inomata, Akira; Raynolds, James

    2011-01-01

    The motion of a particle in the field of dispiration (due to a wedge disclination and a screw dislocation) is studied by path integration. By gauging $SO(2) \\otimes T(1)$, first, we derive the metric, curvature, and torsion of the medium of dispiration. Then we carry out explicitly path integration for the propagator of a particle moving in the non-Euclidean medium under the influence of a scalar potential and a vector potential. We obtain also the winding number representation of the propagator by taking the non-trivial topological structure of the medium into account. We extract the energy spectrum and the eigenfunctions from the propagator. Finally we make some remarks for special cases. Particularly, paying attention to the difference between the result of the path integration and the solution of Schr\\"odinger's equation in the case of disclination, we suggest that Schr\\"odinger equation may have to be modified by a curvature term.

  14. On the Structure of QFT in the Particle Picture of the Path Integral Formulation

    CERN Document Server

    Jackson, D M; Morales, A

    2008-01-01

    In quantum field theory the path integral is usually formulated in the wave picture, i.e., as a sum over field evolutions. This path integral is difficult to define rigorously because of analytic problems whose resolution may ultimately require knowledge of non-perturbative or even Planck scale physics. Alternatively, QFT can be formulated directly in the particle picture, namely as a sum over all multi-particle paths, i.e., over Feynman graphs. This path integral is well-defined, as a map between rings of formal power series. This suggests a program for determining which structures of QFT are provable for this path integral and thus are combinatorial in nature, and which structures are actually sensitive to analytic issues. For a start, we show that the fact that the Legendre transform of the sum of connected graphs yields the effective action is indeed combinatorial in nature and is thus independent of analytic assumptions. Our proof also leads to new methods for the efficient decomposition of Feynman graph...

  15. Path integral regularization of QED by means of Stueckelberg fields

    CERN Document Server

    Jacquot, J L

    2005-01-01

    With the help of a Stueckelberg field we construct a regularized U(1) gauge invariant action through the introduction of cutoff functions. This action has the property that it converges formally to the unregularized action of QED when the ultraviolet cutoff goes to infinity. Integrating out exactly the Stueckelberg field we obtain a simple effective regularized action, which is fully gauge invariant and gives rise to the same prediction as QED at the tree level and to the one loop order.

  16. Robust path integration in the entorhinal grid cell system with hippocampal feed-back.

    Science.gov (United States)

    Samu, Dávid; Eros, Péter; Ujfalussy, Balázs; Kiss, Tamás

    2009-07-01

    Animals are able to update their knowledge about their current position solely by integrating the speed and the direction of their movement, which is known as path integration. Recent discoveries suggest that grid cells in the medial entorhinal cortex might perform some of the essential underlying computations of path integration. However, a major concern over path integration is that as the measurement of speed and direction is inaccurate, the representation of the position will become increasingly unreliable. In this paper, we study how allothetic inputs can be used to continually correct the accumulating error in the path integrator system. We set up the model of a mobile agent equipped with the entorhinal representation of idiothetic (grid cell) and allothetic (visual cells) information and simulated its place learning in a virtual environment. Due to competitive learning, a robust hippocampal place code emerges rapidly in the model. At the same time, the hippocampo-entorhinal feed-back connections are modified via Hebbian learning in order to allow hippocampal place cells to influence the attractor dynamics in the entorhinal cortex. We show that the continuous feed-back from the integrated hippocampal place representation is able to stabilize the grid cell code.

  17. Improving the convergence of closed and open path integral molecular dynamics via higher order Trotter factorization schemes

    Science.gov (United States)

    Pérez, Alejandro; Tuckerman, Mark E.

    2011-08-01

    Higher order factorization schemes are developed for path integral molecular dynamics in order to improve the convergence of estimators for physical observables as a function of the Trotter number. The methods are based on the Takahashi-Imada and Susuki decompositions of the Boltzmann operator. The methods introduced improve the averages of the estimators by using the classical forces needed to carry out the dynamics to construct a posteriori weighting factors for standard path integral molecular dynamics. The new approaches are straightforward to implement in existing path integral codes and carry no significant overhead. The Suzuki higher order factorization was also used to improve the end-to-end distance estimator in open path integral molecular dynamics. The new schemes are tested in various model systems, including an ab initio path integral molecular dynamics calculation on the hydrogen molecule and a quantum water model. The proposed algorithms have potential utility for reducing the cost of path integral molecular dynamics calculations of bulk systems.

  18. Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing-Hu; WANG Zhuang-Bing; WU Fu-Li; LUO Meng-Bo; RUAN Yong-Hong; JIAO Zheng-Kuan

    2001-01-01

    The expression of the ground-state energy of an electron coupled simultaneously with a Coulomb potential and a longitudinal-optical phonon field in parabolic quantum dots and wires is derived within the framework of Feynman variational path-integral theory. We obtain a general result with arbitrary electron-phonon coupling constant,Coulomb binding parameters, and confining potential strength, which could be used for further numerical calculation of polaron properties. Moreover, it is shown that all the previous path-integral formulae for free polarons,bound polarons, and polarons confined in parabolic quantum dots and wires can be recovered in the present formalism.

  19. Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules

    Science.gov (United States)

    Shiga, Motoyuki; Nakayama, Akira

    2008-01-01

    The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.

  20. A path integral approach to asset-liability management

    Science.gov (United States)

    Decamps, Marc; De Schepper, Ann; Goovaerts, Marc

    2006-05-01

    Functional integrals constitute a powerful tool in the investigation of financial models. In the recent econophysics literature, this technique was successfully used for the pricing of a number of derivative securities. In the present contribution, we introduce this approach to the field of asset-liability management. We work with a representation of cash flows by means of a two-dimensional delta-function perturbation, in the case of a Brownian model and a geometric Brownian model. We derive closed-form solutions for a finite horizon ALM policy. The results are numerically and graphically illustrated.

  1. Quantum field theory from operators to path integrals

    CERN Document Server

    Huang, Kerson

    1998-01-01

    A unique approach to quantum field theory, with emphasis on the principles of renormalization Quantum field theory is frequently approached from the perspective of particle physics. This book adopts a more general point of view and includes applications of condensed matter physics. Written by a highly respected writer and researcher, it first develops traditional concepts, including Feynman graphs, before moving on to key topics such as functional integrals, statistical mechanics, and Wilson's renormalization group. The connection between the latter and conventional perturbative renormalization is explained

  2. Singular path-independent energy integrals for elastic bodies with thin elastic inclusions

    Science.gov (United States)

    Shcherbakov, V. V.

    2016-06-01

    An equilibrium problem for a two-dimensional homogeneous linear elastic body containing a thin elastic inclusion and an interfacial crack is considered. The thin inclusion is modeled within the framework of Euler-Bernoulli beam theory. An explicit formula for the first derivative of the energy functional with respect to the crack perturbation along the interface is presented. It is shown that the formulas for the derivative associated with translation and self-similar expansion of the crack are represented as path-independent integrals along smooth contour surrounding one or both crack tips. These path-independent integrals consist of regular and singular terms and are analogs of the well-known Eshelby-Cherepanov-Rice J-integral and Knowles-Sternberg M-integral.

  3. Some comments on rigorous quantum field path integrals in the analytical regularization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Matematica Aplicada]. E-mail: botelho.luiz@superig.com.br

    2008-07-01

    Through the systematic use of the Minlos theorem on the support of cylindrical measures on R{sup {infinity}}, we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)

  4. Accelerated path integral methods for atomistic simulations at ultra-low temperatures

    Science.gov (United States)

    Uhl, Felix; Marx, Dominik; Ceriotti, Michele

    2016-08-01

    Path integral methods provide a rigorous and systematically convergent framework to include the quantum mechanical nature of atomic nuclei in the evaluation of the equilibrium properties of molecules, liquids, or solids at finite temperature. Such nuclear quantum effects are often significant for light nuclei already at room temperature, but become crucial at cryogenic temperatures such as those provided by superfluid helium as a solvent. Unfortunately, the cost of converged path integral simulations increases significantly upon lowering the temperature so that the computational burden of simulating matter at the typical superfluid helium temperatures becomes prohibitive. Here we investigate how accelerated path integral techniques based on colored noise generalized Langevin equations, in particular the so-called path integral generalized Langevin equation thermostat (PIGLET) variant, perform in this extreme quantum regime using as an example the quasi-rigid methane molecule and its highly fluxional protonated cousin, CH5+. We show that the PIGLET technique gives a speedup of two orders of magnitude in the evaluation of structural observables and quantum kinetic energy at ultralow temperatures. Moreover, we computed the spatial spread of the quantum nuclei in CH4 to illustrate the limits of using such colored noise thermostats close to the many body quantum ground state.

  5. Factors Affecting Technology Integration in K-12 Classrooms: A Path Model

    Science.gov (United States)

    Inan, Fethi A.; Lowther, Deborah L.

    2010-01-01

    The purpose of this study was to examine the direct and indirect effects of teachers' individual characteristics and perceptions of environmental factors that influence their technology integration in the classroom. A research-based path model was developed to explain causal relationships between these factors and was tested based on data gathered…

  6. Response of Non-Linear Systems to Renewal Impulses by Path Integration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Iwankiewicz, R.

    The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear and non-hysteretic systems subjected to random trains of impulses driven by an ordinary renewal point process with gamma-distributed integer parameter interarrival times (an Erlang process). Since the renew...

  7. Accelerated path integral methods for atomistic simulations at ultra-low temperatures.

    Science.gov (United States)

    Uhl, Felix; Marx, Dominik; Ceriotti, Michele

    2016-08-07

    Path integral methods provide a rigorous and systematically convergent framework to include the quantum mechanical nature of atomic nuclei in the evaluation of the equilibrium properties of molecules, liquids, or solids at finite temperature. Such nuclear quantum effects are often significant for light nuclei already at room temperature, but become crucial at cryogenic temperatures such as those provided by superfluid helium as a solvent. Unfortunately, the cost of converged path integral simulations increases significantly upon lowering the temperature so that the computational burden of simulating matter at the typical superfluid helium temperatures becomes prohibitive. Here we investigate how accelerated path integral techniques based on colored noise generalized Langevin equations, in particular the so-called path integral generalized Langevin equation thermostat (PIGLET) variant, perform in this extreme quantum regime using as an example the quasi-rigid methane molecule and its highly fluxional protonated cousin, CH5 (+). We show that the PIGLET technique gives a speedup of two orders of magnitude in the evaluation of structural observables and quantum kinetic energy at ultralow temperatures. Moreover, we computed the spatial spread of the quantum nuclei in CH4 to illustrate the limits of using such colored noise thermostats close to the many body quantum ground state.

  8. Path Integral Treatment of Proton Transport Processes in BaZrO3

    DEFF Research Database (Denmark)

    Zhang, Qianfan; Wahnstrom, Goran; Björketun, Mårten

    2008-01-01

    Nuclear quantum effects on proton transfer and reorientation in BaZrO3 is investigated theoretically using the ab initio path-integral molecular-dynamics simulation technique. The result demonstrates that adding quantum fluctuations has a large effect on, in particular, the transfer barrier...

  9. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Science.gov (United States)

    2012-06-06

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of......

  10. Green function of the double fractional Fokker-Planck equation: Path integral and stochastic differential equations

    OpenAIRE

    Kleinert, H.; Zatloukal, V.

    2015-01-01

    The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.

  11. Comment on "Dual path integral representation for finite temperature quantum field theory"

    CERN Document Server

    Kazinski, P O

    2008-01-01

    I show that the novel dual path integral representation for finite temperature quantum field theory proposed in [Phys. Rev. D 77, 105030 (2008), arXiv:0803.1667 ] is a well-known representation of quantum mechanics in terms of symbols of operators.

  12. On the coordinate (in)dependence of the formal path integral

    DEFF Research Database (Denmark)

    Johnson-Freyd, Theo

    . In this short note, aimed primarily at mathematicians, we first briefly recall the notions of Lagrangian classical and quantum field theory and the standard coordinate-full definition of the “formal” or “Feynman-diagrammatic” path integral construction. We then outline a proof of the following claim: the formal...

  13. Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method

    Science.gov (United States)

    Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo

    2012-01-01

    This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)

  14. Fourier Path Integral Monte Carlo Method for the Calculation of the Microcanonical Density of States

    CERN Document Server

    Freeman, D L; Freeman, David L.

    1994-01-01

    Using a Hubbard-Stratonovich transformation coupled with Fourier path integral methods, expressions are derived for the numerical evaluation of the microcanonical density of states for quantum particles obeying Boltzmann statistics. A numerical algorithmis suggested to evaluate the quantum density of states and illustrated on a one-dimensional model system.

  15. Coherent-state path integrals in the continuum: The SU(2) case

    Science.gov (United States)

    Kordas, G.; Kalantzis, D.; Karanikas, A. I.

    2016-09-01

    We define the time-continuous spin coherent-state path integral in a way that is free from inconsistencies. The proposed definition is used to reproduce known exact results. Such a formalism opens new possibilities for applying approximations with improved accuracy and can be proven useful in a great variety of problems where spin Hamiltonians are used.

  16. Wakeful rest promotes the integration of spatial memories into accurate cognitive maps.

    Science.gov (United States)

    Craig, Michael; Dewar, Michaela; Harris, Mathew A; Della Sala, Sergio; Wolbers, Thomas

    2016-02-01

    Flexible spatial navigation, e.g. the ability to take novel shortcuts, is contingent upon accurate mental representations of environments-cognitive maps. These cognitive maps critically depend on hippocampal place cells. In rodents, place cells replay recently travelled routes, especially during periods of behavioural inactivity (sleep/wakeful rest). This neural replay is hypothesised to promote not only the consolidation of specific experiences, but also their wider integration, e.g. into accurate cognitive maps. In humans, rest promotes the consolidation of specific experiences, but the effect of rest on the wider integration of memories remained unknown. In the present study, we examined the hypothesis that cognitive map formation is supported by rest-related integration of new spatial memories. We predicted that if wakeful rest supports cognitive map formation, then rest should enhance knowledge of overarching spatial relations that were never experienced directly during recent navigation. Forty young participants learned a route through a virtual environment before either resting wakefully or engaging in an unrelated perceptual task for 10 min. Participants in the wakeful rest condition performed more accurately in a delayed cognitive map test, requiring the pointing to landmarks from a range of locations. Importantly, the benefit of rest could not be explained by active rehearsal, but can be attributed to the promotion of consolidation-related activity. These findings (i) resonate with the demonstration of hippocampal replay in rodents, and (ii) provide the first evidence that wakeful rest can improve the integration of new spatial memories in humans, a function that has, hitherto, been associated with sleep.

  17. An Accurate Integral Method for Vibration Signal Based on Feature Information Extraction

    Directory of Open Access Journals (Sweden)

    Yong Zhu

    2015-01-01

    Full Text Available After summarizing the advantages and disadvantages of current integral methods, a novel vibration signal integral method based on feature information extraction was proposed. This method took full advantage of the self-adaptive filter characteristic and waveform correction feature of ensemble empirical mode decomposition in dealing with nonlinear and nonstationary signals. This research merged the superiorities of kurtosis, mean square error, energy, and singular value decomposition on signal feature extraction. The values of the four indexes aforementioned were combined into a feature vector. Then, the connotative characteristic components in vibration signal were accurately extracted by Euclidean distance search, and the desired integral signals were precisely reconstructed. With this method, the interference problem of invalid signal such as trend item and noise which plague traditional methods is commendably solved. The great cumulative error from the traditional time-domain integral is effectively overcome. Moreover, the large low-frequency error from the traditional frequency-domain integral is successfully avoided. Comparing with the traditional integral methods, this method is outstanding at removing noise and retaining useful feature information and shows higher accuracy and superiority.

  18. Generalization of the coherent-state path integrals and systematic derivation of semiclassical propagators

    Science.gov (United States)

    Koda, Shin-Ichi; Takatsuka, Kazuo

    2011-03-01

    The coherent path integral is generalized such that the identity operator represented in a complete (actually overcomplete) set of the coherent states with the “time-variable” exponents are inserted between two consecutive short-time propagators. Since such a complete set of any given exponent can constitute the identity operator, the exponent may be varied from time to time without loss of generality as long as it is set common to all the Gaussians. However, a finite truncation of the coherent state expansion should result in different values of the propagator depending on the choice of the exponents. Furthermore, approximation methodology to treat with the exact propagator can also depend on this choice, and thereby many different semiclassical propagators may emerge from these combinations. Indeed, we show that the well-known semiclassical propagators such as those of Van Vleck, Herman-Kluk, Heller’s thawed Gaussian, and many others can be derived in a systematic manner, which enables one to comprehend these semiclassical propagators from a unified point of view. We are particularly interested in our generalized form of the Herman-Kluk propagator, since the relative accuracy of this propagator has been well established by Kay, and since, nevertheless, its derivation was not necessarily clear. Thus our generalized Herman-Kluk propagator replaces the classical Hamiltonian with a Gaussian averaged quantum Hamiltonian, generating non-Newtonian trajectories. We perform a numerical test to assess the quality of such a family of generalized Herman-Kluk propagators and find that the original Herman-Kluk gives an accurate result. The reason why this has come about is also discussed.

  19. Notes on area operator, geometric 2-rough paths and Young integral when p^-1+q^-1=1

    CERN Document Server

    Yang, Danyu

    2012-01-01

    1.When equipped with 2-rough norm and restricted to continuous paths with bounded variation, the area operator is a closable unbounded operator. 2.The area defined through Riemann-Stieltjes integral is the only possible candidate to enhance a path with vanishing 2-variation into a geometric 2-rough path. 3.Young integral is extended to p^-1+q^-1=1 by assigning a finer scale continuity.

  20. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2009-11-01

    Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.

  1. Spatial representations of place cells in darkness are supported by path integration and border information

    Science.gov (United States)

    Zhang, Sijie; Schönfeld, Fabian; Wiskott, Laurenz; Manahan-Vaughan, Denise

    2014-01-01

    Effective spatial navigation is enabled by reliable reference cues that derive from sensory information from the external environment, as well as from internal sources such as the vestibular system. The integration of information from these sources enables dead reckoning in the form of path integration. Navigation in the dark is associated with the accumulation of errors in terms of perception of allocentric position and this may relate to error accumulation in path integration. We assessed this by recording from place cells in the dark under circumstances where spatial sensory cues were suppressed. Spatial information content, spatial coherence, place field size, and peak and infield firing rates decreased whereas sparsity increased following exploration in the dark compared to the light. Nonetheless it was observed that place field stability in darkness was sustained by border information in a subset of place cells. To examine the impact of encountering the environment’s border on navigation, we analyzed the trajectory and spiking data gathered during navigation in the dark. Our data suggest that although error accumulation in path integration drives place field drift in darkness, under circumstances where border contact is possible, this information is integrated to enable retention of spatial representations. PMID:25009477

  2. Exactly solvable path integral for open cavities in terms of quasinormal modes

    CERN Document Server

    Maasen van den Brink, A

    2000-01-01

    We evaluate the finite-temperature Euclidean phase-space path integral for the generating functional of a scalar field inside a leaky cavity. Provided the source is confined to the cavity, one can first of all integrate out the fields on the outside to obtain an effective action for the cavity alone. Subsequently, one uses an expansion of the cavity field in terms of its quasinormal modes (QNMs)-the exact, exponentially damped eigenstates of the classical evolution operator, which previously have been shown to be complete for a large class of models. Dissipation causes the effective cavity action to be nondiagonal in the QNM basis. The inversion of this action matrix inherent in the Gaussian path integral to obtain the generating functional is therefore nontrivial, but can be accomplished by invoking a novel QNM sum rule. The results are consistent with those obtained previously using canonical quantization.

  3. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks.

    Science.gov (United States)

    Bressloff, Paul C

    2015-01-01

    We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous

  4. Functional integration of vertical flight path and speed control using energy principles

    Science.gov (United States)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  5. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    Science.gov (United States)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  6. The role of spatial memory and frames of reference in the precision of angular path integration.

    Science.gov (United States)

    Arthur, Joeanna C; Philbeck, John W; Kleene, Nicholas J; Chichka, David

    2012-09-01

    Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating.

  7. Path-integral solution of the one-dimensional Dirac quantum cellular automaton

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, Giacomo Mauro [QUIT group, Dipartimento di Fisica, via Bassi 6, Pavia, 27100 (Italy); INFN Gruppo IV, Sezione di Pavia, via Bassi 6, Pavia, 27100 (Italy); Mosco, Nicola [QUIT group, Dipartimento di Fisica, via Bassi 6, Pavia, 27100 (Italy); Perinotti, Paolo [QUIT group, Dipartimento di Fisica, via Bassi 6, Pavia, 27100 (Italy); INFN Gruppo IV, Sezione di Pavia, via Bassi 6, Pavia, 27100 (Italy); Tosini, Alessandro [QUIT group, Dipartimento di Fisica, via Bassi 6, Pavia, 27100 (Italy)

    2014-09-05

    Quantum cellular automata, which describe the discrete and exactly causal unitary evolution of a lattice of quantum systems, have been recently considered as a fundamental approach to quantum field theory and a linear automaton for the Dirac equation in one dimension has been derived. In the linear case a quantum cellular automaton is isomorphic to a quantum walk and its evolution is conveniently formulated in terms of transition matrices. The semigroup structure of the matrices leads to a new kind of discrete path-integral, different from the well known Feynman checkerboard one, that is solved analytically in terms of Jacobi polynomials of the arbitrary mass parameter. - Highlights: • Discrete path integral formulation of linear QCAs in terms of transition matrices. • Derivation of the analytical solution for the one dimensional Dirac QCA. • Solution given in terms of Jacobi polynomials versus the arbitrary mass parameter. • The discrete paths and the transition matrices of the Dirac QCA are binary encoded. • Paths are grouped in equivalence classes according to their overall transition matrix.

  8. The path-independent M Integral around Röthlisberger channels

    Science.gov (United States)

    Meyer, C. R.; Rice, J. R.

    2015-12-01

    Röthlisberger channels are essential components of subglacial hydrologic systems. Deviations from the Nye creep closure of the ice around a Röthlisberger channel have been long recognized and enhancement factors or a more complex rheology for ice have been suggested as ameliorations to account for channels closing faster than predicted. Here we use the MM integral, a path-independent integral of the equations of continuum mechanics, with a Glen power-law rheology to unify descriptions of creep closure under a variety of stress states surrounding the Röthlisberger channel. The advantage of this approach is that the MM integral around the Röthlisberger channel is equivalent to the integral around the far field. In this way, the creep closure on the channel wall can be determined as a function of the far-field loading, e.g. antiplane shear as well as overburden pressure. We start by analyzing the case of axisymmetric creep closure and we see that the Nye solution is implied by the path-independence of MM integral. We then examine the effects of antiplane shear in several geometries and derive scalings for the creep closure rate based on the MM integral. The results are compared to observations for tunnel closure measurements in a variety of stress states and it is shown that the additional stress components can account for the deviations from the Nye solution. Furthermore, creep closure can be succinctly written in terms of the path-independent MM integral and the variation with applied shear can be found via scalings, which is useful for subglacial hydrology models.

  9. Combining Meteosat-10 satellite image data with GPS tropospheric path delays to estimate regional integrated water vapor (IWV) distribution

    Science.gov (United States)

    Leontiev, Anton; Reuveni, Yuval

    2017-02-01

    Using GPS satellites signals, we can study different processes and coupling mechanisms that can help us understand the physical conditions in the lower atmosphere, which might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by ground stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into accurate integrated water vapor (IWV) observations using collocated pressure and temperature measurements on the ground. Here, we present for the first time the use of Israel's dense regional GPS network for extracting tropospheric zenith path delays combined with near-real-time Meteosat-10 water vapor (WV) and surface temperature pixel intensity values (7.3 and 10.8 µm channels, respectively) in order to assess whether it is possible to obtain absolute IWV (kg m-2) distribution. The results show good agreement between the absolute values obtained from our triangulation strategy based solely on GPS zenith total delays (ZTD) and Meteosat-10 surface temperature data compared with available radiosonde IWV absolute values. The presented strategy can provide high temporal and special IWV resolution, which is needed as part of the accurate and comprehensive observation data integrated in modern data assimilation systems and is required for increasing the accuracy of regional numerical weather prediction systems forecast.

  10. A path-independent integral for the characterization of solute concentration and flux at biofilm detachments

    Science.gov (United States)

    Moran, B.; Kulkarni, S.S.; Reeves, H.W.

    2007-01-01

    A path-independent (conservation) integral is developed for the characterization of solute concentration and flux in a biofilm in the vicinity of a detachment or other flux limiting boundary condition. Steady state conditions of solute diffusion are considered and biofilm kinetics are described by an uptake term which can be expressed in terms of a potential (Michaelis-Menten kinetics). An asymptotic solution for solute concentration at the tip of the detachment is obtained and shown to be analogous to that of antiplane crack problems in linear elasticity. It is shown that the amplitude of the asymptotic solution can be calculated by evaluating a path-independent integral. The special case of a semi-infinite detachment in an infinite strip is considered and the amplitude of the asymptotic field is related to the boundary conditions and problem parameters in closed form for zeroth and first order kinetics and numerically for Michaelis-Menten kinetics. ?? Springer Science+Business Media, Inc. 2007.

  11. Semi-classical locality for the non-relativistic path integral in configuration space

    CERN Document Server

    Gomes, Henrique

    2015-01-01

    In an accompanying paper, we have put forward an interpretation of quantum mechanics grounded on a non-relativistic Lagrangian 3+1 formalism of a closed Universe, existing on timeless configuration space. However, not much was said there about the role of locality, which was not assumed. In this paper, I describe how subsystems existing in (spatial) regions with fixed boundary conditions can be represented as submanifolds of the complete configuration space. I show that if the action functional can be put in the form of Riemannian distance element, then dynamical independence of the subsystem implies that the respective submanifolds are totally geodesic. When two regions are mutually independent the semi-classical path integral kernel factorizes, showing cluster decomposition. To exemplify these constructions I then construct a specific gravitational system with two propagating physical degrees of freedom and no refoliation-invariance. Finally, considering the path integral in this 3+1 context, I implement an...

  12. Path-integral action of a particle in the noncommutative phase-space

    CERN Document Server

    Gangopadhyay, Sunandan

    2016-01-01

    In this paper we construct a path integral formulation of quantum mechanics on noncommutative phase-space. We first map the system to an equivalent system on the noncommutative plane. Then by applying the formalism of representing a quantum system in the space of Hilbert-Schmidt operators acting on noncommutative configuration space, the path integral action of a particle is derived. It is observed that the action has a similar form to that of a particle in a magnetic field in the noncommutative plane. From this action the energy spectrum is obtained for the free particle and the harmonic oscillator potential. We also show that the nonlocal nature (in time) of the action yields a second class constrained system from which the noncommutative Heisenberg algebra can be recovered.

  13. Ab Initio Path Integral Molecular Dynamics Simulation of Hydrogen in Silicon

    Science.gov (United States)

    Probert, M. I. J.; Glover, M. J.

    2006-05-01

    We report results of a first-principles theoretical study of an isolated neutral hydrogen atom in crystalline silicon. Spin-polarised density functional theory is used to treat the electrons, and the path-integral molecular dynamics method is used to describe the quantum properties of the nucleus at finite temperature. This is necessary as the hydrogen atom has sufficiently low mass that it exhibits significant nuclear quantum delocalisation and zero-point motion even at room temperature. Unlike post-hoc treatments, such as calculating a static potential energy surface, the path-integral treatment enables such effects to be included "on-the-fly". This is found to be significant, as a coupling is found between the structure of the host silicon lattice and the quantum delocalisation of the hydrogen defect.

  14. Simulations of one- and two-electron systems by Bead-Fourier path integral molecular dynamics

    Science.gov (United States)

    Ivanov, Sergei D.; Lyubartsev, Alexander P.

    2005-07-01

    The Bead-Fourier path integral molecular dynamics technique introduced earlier [S. D. Ivanov, A. P. Lyubartsev, and A. Laaksonen, Phys. Rev. E 67 066710 (2003)] is applied for simulation of electrons in the simplest molecules: molecular hydrogen, helium atom, and their ions. Special attention is paid to the correct description of electrons in the core region of a nucleus. In an attempt to smooth the Coulomb potential at small distances, a recipe is suggested. The simulation results are in excellent agreement with the analytical solution for the "harmonic helium atom", as well as with the vibrational potential of the H2 molecule and He ionization energies. It is demonstrated, that the Bead-Fourier path integral molecular dynamics technique is able to provide the accuracy required for the description of electron structure and chemical bonds in cases when electron exchange effects need not be taken into account.

  15. Proton momentum distributions in water: A path integral molecular dynamics study

    Science.gov (United States)

    Srinivasan, Varadharajan; Morrone, Joseph A.; Sebastiani, Daniel; Car, Roberto

    2007-03-01

    Recent neutron Compton scattering experiments have detected the proton momentum distributions of water. This density in momentum space is a quantum mechanical property of the proton, due to the confining anharmonic potential from covalent and hydrogen bonds. The theoretical calculation of this property can be carried out via ``open'' path integral expressions. In this work, we present an extension of the staging path integral molecular dynamics method, which is then employed to calculate the proton momentum distributions of water in the solid, liquid, and supercritical phases. We utilize the SPC/F2 empirical force field to model the system's interactions. The calculated momentum distributions depict both agreement and discrepancies with experiment. The differences may be explained by the deviation of the force field from the true interactions. These distributions provide an abundance of information about the environment and interactions surrounding the proton.

  16. Proton momentum distribution in water: an open path integral molecular dynamics study

    Science.gov (United States)

    Morrone, Joseph A.; Srinivasan, Varadharajan; Sebastiani, Daniel; Car, Roberto

    2007-06-01

    Recent neutron Compton scattering experiments have detected the proton momentum distribution in water. The theoretical calculation of this property can be carried out via "open" path integral expressions. In this work, present an extension of the staging path integral molecular dynamics method, which is then employed to calculate the proton momentum distributions of water in the solid, liquid, and supercritical phases. We utilize a flexible, single point charge empirical force field to model the system's interactions. The calculated momentum distributions depict both agreement and discrepancies with experiment. The differences may be explained by the deviation of the force field from the true interactions. These distributions provide an abundance of information about the environment and interactions surrounding the proton.

  17. Data Assimilation using a GPU Accelerated Path Integral Monte Carlo Approach

    CERN Document Server

    Quinn, John C

    2011-01-01

    The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a Graphics Processing Unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 200 times faster than an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.

  18. From Path Integrals to Tensor Networks for AdS/CFT

    CERN Document Server

    Miyaji, Masamichi; Watanabe, Kento

    2016-01-01

    In this paper, we discuss tensor network descriptions of AdS/CFT from two different viewpoints. First, we start with an Euclidean path-integral computation of ground state wave functions with a UV cut off. We consider its efficient optimization by making its UV cut off position dependent and define a quantum state at each length scale. We conjecture that this path-integral corresponds to a time slice of AdS. Next, we derive a flow of quantum states by rewriting the action of Killing vectors of AdS3 in terms of the dual 2d CFT. Both approaches support a correspondence between the hyperbolic time slice H2 in AdS3 and a version of continuous MERA (cMERA). We also give a heuristic argument why we can expect a sub-AdS scale bulk locality for holographic CFTs.

  19. From path integrals to tensor networks for the AdS /CFT correspondence

    Science.gov (United States)

    Miyaji, Masamichi; Takayanagi, Tadashi; Watanabe, Kento

    2017-03-01

    In this paper, we discuss tensor network descriptions of AdS /CFT from two different viewpoints. First, we start with a Euclidean path-integral computation of ground state wave functions with a UV cutoff. We consider its efficient optimization by making its UV cutoff position dependent and define a quantum state at each length scale. We conjecture that this path integral corresponds to a time slice of anti-de Sitter (AdS) spacetime. Next, we derive a flow of quantum states by rewriting the action of Killing vectors of AdS3 in terms of the dual two-dimensional conformal field theory (CFT). Both approaches support a correspondence between the hyperbolic time slice H2 in AdS3 and a version of continuous multiscale entanglement renormalization ansatz. We also give a heuristic argument about why we can expect a sub-AdS scale bulk locality for holographic CFTs.

  20. Polyakov's spin factor for a classical spinning particle via BRST invariant path integral

    CERN Document Server

    Cho, J; Lee, H; Jin-Ho Cho; Seungjoon Hyun; Hyuk-Jae Lee

    1994-01-01

    For the "classical" formulation of a massive spinning particle, the propagator is obtained along with the spin factor. We treat the system with two kinds of constraints that were recently shown to be concerned with the reparametrization invariance and "quasi-supersymmetry". In the path integral, the BRST invariant Lagrangian is used and the same spin factor is obtained as in the pseudo-classical formulation.

  1. Accurate integral equation theory for the central force model of liquid water and ionic solutions

    Science.gov (United States)

    Ichiye, Toshiko; Haymet, A. D. J.

    1988-10-01

    The atom-atom pair correlation functions and thermodynamics of the central force model of water, introduced by Lemberg, Stillinger, and Rahman, have been calculated accurately by an integral equation method which incorporates two new developments. First, a rapid new scheme has been used to solve the Ornstein-Zernike equation. This scheme combines the renormalization methods of Allnatt, and Rossky and Friedman with an extension of the trigonometric basis-set solution of Labik and co-workers. Second, by adding approximate ``bridge'' functions to the hypernetted-chain (HNC) integral equation, we have obtained predictions for liquid water in which the hydrogen bond length and number are in good agreement with ``exact'' computer simulations of the same model force laws. In addition, for dilute ionic solutions, the ion-oxygen and ion-hydrogen coordination numbers display both the physically correct stoichiometry and good agreement with earlier simulations. These results represent a measurable improvement over both a previous HNC solution of the central force model and the ex-RISM integral equation solutions for the TIPS and other rigid molecule models of water.

  2. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    Science.gov (United States)

    Shiga, Motoyuki; Shinoda, Wataru

    2005-10-01

    As an application of atomistic simulation methods to heat capacities, path-integral molecular dynamics has been used to calculate the constant-volume heat capacities of light and heavy water in the gas, liquid, and solid phases. While the classical simulation based on conventional molecular dynamics has estimated the heat capacities too high, the quantum simulation based on path-integral molecular dynamics has given reasonable results based on the simple point-charge/flexible potential model. The calculated heat capacities (divided by the Boltzmann constant) in the quantum simulation are 3.1 in the vapor H2O at 300 K, 6.9 in the liquid H2O at 300 K, and 4.1 in the ice IhH2O at 250 K, respectively, which are comparable to the experimental data of 3.04, 8.9, and 4.1, respectively. The quantum simulation also reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than that of H2O, while it is 13% higher in the experiment. The results demonstrate that the path-integral simulation is a promising approach to quantitatively evaluate the heat capacities for molecular systems, taking account of quantum-mechanical vibrations as well as strongly anharmonic motions.

  3. i-PI: A Python interface for ab initio path integral molecular dynamics simulations

    Science.gov (United States)

    Ceriotti, Michele; More, Joshua; Manolopoulos, David E.

    2014-03-01

    Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic

  4. Transport coefficients of normal liquid helium-4 calculated by path integral centroid molecular dynamics simulation

    Science.gov (United States)

    Imaoka, Haruna; Kinugawa, Kenichi

    2017-03-01

    Thermal conductivity, shear viscosity, and bulk viscosity of normal liquid 4He at 1.7-4.0 K are calculated using path integral centroid molecular dynamics (CMD) simulations. The calculated thermal conductivity and shear viscosity above lambda transition temperature are on the same order of magnitude as experimental values, while the agreement of shear viscosity is better. Above 2.3 K the CMD well reproduces the temperature dependences of isochoric shear viscosity and of the time integral of the energy current and off-diagonal stress tensor correlation functions. The calculated bulk viscosity, not known in experiments, is several times larger than shear viscosity.

  5. Ground-based integrated path coherent differential absorption lidar measurement of CO2: hard target return

    Directory of Open Access Journals (Sweden)

    A. Sato

    2012-11-01

    Full Text Available The National Institute of Information and Communications Technology (NICT have made a great deal of effort to develop a coherent 2-μm differential absorption and wind lidar (Co2DiaWiL for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA lidar experiments were conducted using the Co2DiaWiL and a hard target (surface return located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2-μm IPDA lidar was examined in detail using the CO2 concentration measured by the hard target. The precisions of CO2 measurement for the hard target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for measuring the CO2 concentration of the hard target with a precision of 1–2 ppm. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the hard target made comparison difficult, the CO2 volume mixing ratio measured with the Co2DiaWiL was about 5 ppm lower than that measured with the in situ sensor. The statistical results indicated that there were no differences between the hard target and atmospheric return measurements. A precision of 1.5% was achieved from the atmospheric return, which is lower than that obtained from the hard-target returns. Although long-range DIfferential Absorption Lidar (DIAL CO2 measurement with the atmospheric return can result in highly precise measurement, the precision of the atmospheric return measurement was widely distributed comparing to that of the hard target return. Our results indicated that it is important to use a Q-switched laser to measure the range-gated differential absorption optical depth with the atmospheric return and that it is better to simultaneously conduct both hard target and atmospheric return

  6. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Hua Y., E-mail: huay.geng@gmail.com [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102, Mianyang, Sichuan, 621900 (China); Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853 (United States)

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  7. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    Science.gov (United States)

    Geng, Hua Y.

    2015-02-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

  8. Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics

    Science.gov (United States)

    Minary, Peter; Martyna, Glenn J.; Tuckerman, Mark E.

    2003-02-01

    In this paper (Paper I) and a companion paper (Paper II), novel new algorithms and applications of the isokinetic ensemble as generated by Gauss' principle of least constraint, pioneered for use with molecular dynamics 20 years ago, are presented for biophysical, path integral, and Car-Parrinello based ab initio molecular dynamics. In Paper I, a new "extended system" version of the isokinetic equations of motion that overcomes the ergodicity problems inherent in the standard approach, is developed using a new theory of non-Hamiltonian phase space analysis [M. E. Tuckerman et al., Europhys. Lett. 45, 149 (1999); J. Chem. Phys. 115, 1678 (2001)]. Reversible multiple time step integrations schemes for the isokinetic methods, first presented by Zhang [J. Chem. Phys. 106, 6102 (1997)] are reviewed. Next, holonomic constraints are incorporated into the isokinetic methodology for use in fast efficient biomolecular simulation studies. Model and realistic examples are presented in order to evaluate, critically, the performance of the new isokinetic molecular dynamic schemes. Comparisons are made to the, now standard, canonical dynamics method, Nosé-Hoover chain dynamics [G. J. Martyna et al., J. Chem. Phys. 97, 2635 (1992)]. The new isokinetic techniques are found to yield more efficient sampling than the Nosé-Hoover chain method in both path integral molecular dynamics and biophysical molecular dynamics calculations. In Paper II, the use of isokinetic methods in Car-Parrinello based ab initio molecular dynamics calculations is presented.

  9. A path integral formula with applications to quantum random walks in Z{sup d}

    Energy Technology Data Exchange (ETDEWEB)

    Yang Weishih [Department of Mathematics, Temple University, Philadelphia, PA 19122 (United States); Liu, Chaobin [Department of Mathematics, Bowie State University, Bowie, MD 20715 (United States); Zhang Kai [Department of Mathematics, Temple University, Philadelphia, PA 19122 (United States)

    2007-07-20

    We consider general quantum random walks in a d-dimensional half-space. We first obtain a path integral formula for general quantum random walks in a d-dimensional space. Our path integral formula is valid for general quantum random walks on Cayley graphs as well. Then the path integral formula is applied to obtain the scaling limit of the exit distribution, the expectation of exit time and the asymptotic behaviour of the exit probabilities, for general quantum random walks in a half-space under some conditions on amplitude functions. The conditions are shown to be satisfied by both the Hadamard and Grover quantum random walks in two-dimensional half-spaces. For the two-dimensional case, we show that the critical exponent for the scaling limit of the hitting distribution is 1 as the lattice spacing tends to zero, i.e. the natural magnitude of the hitting position is of order O(1) if the lattice spacing is set to be 1/n. We also show that the rate of convergence of the total hitting probability has lower bound n{sup -2} and upper bound n{sup -2+{epsilon}} for any {epsilon} > 0. For a quantum random walk with a fixed starting point, we show that the probability of hitting times at the hyperplane decays faster than that of the classical random walk. In both one and two dimensions, given the event of a hit, the conditional expectation of hitting times is finite, in contrast to being infinite for the classical case. In the one-dimensional case, we also obtain an exact order of the probability distribution of the hitting time at 0.

  10. Many-body quantum dynamics by adiabatic path-integral molecular dynamics: Disordered Frenkel Kontorova models

    Science.gov (United States)

    Krajewski, Florian R.; Müser, Martin H.

    2005-07-01

    The spectral density of quantum mechanical Frenkel Kontorova chains moving in disordered, external potentials is investigated by means of path-integral molecular dynamics. If the second moment of the embedding potential is well defined (roughness exponent H=0), there is one regime in which the chain is pinned (large masses m of chain particles) and one in which it is unpinned (small m). If the embedding potential can be classified as a random walk on large length scales ( H=1/2), then the chain is always pinned irrespective of the value of m. For H=1/2, two phonon-like branches appear in the spectra.

  11. Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method

    Science.gov (United States)

    Fujita, Takatoshi; Watanabe, Hirofumi; Tanaka, Shigenori

    2009-10-01

    We have developed an ab initio path integral molecular dynamics method based on the fragment molecular orbital method. This “FMO-PIMD” method can treat both nuclei and electrons quantum mechanically, and is useful to simulate large hydrogen-bonded systems with high accuracy. After a benchmark calculation for water monomer, water trimer and glycine pentamer have been studied using the FMO-PIMD method to investigate nuclear quantum effects on structure and molecular interactions. The applicability of the present approach is demonstrated through a number of test calculations.

  12. Formation of bound states in expanded metal studied via path integral molecular dynamics

    Science.gov (United States)

    Deymier, P. A.; Oh, Ki-Dong

    2004-03-01

    The usefulness of the restricted path integral molecular dynamics method for the study of strongly correlated electrons is demonstrated by studying the formation of bound electronic states in a half-filled expanded three-dimensional hydrogenoid body-centred cubic lattice at finite temperature. Starting from a metallic state with one-component plasma character, we find that bound electrons form upon expansion of the lattice. The bound electrons are spatially localized with their centre for the motion of gyration located at ionic positions. The number of bound electrons increases monotonically with decreasing density.

  13. Path Integral Molecular Dynamics for Hydrogen with Orbital-Free Density Functional Theory

    Science.gov (United States)

    Runge, Keith; Karasiev, Valentin; Deymier, Pierre

    2014-03-01

    The computational bottleneck for performing path-integral molecular dynamics (PIMD) for nuclei on a first principles electronic potential energy surface has been the speed with which forces from the electrons can be generated. Recent advances in orbital-free density functional theory (OF-DFT) not only allow for faster generation of first principles forces but also include the effects of temperature on the electron density. We will present results of calculations on hydrogen in warm dense matter conditions where the protons are described by PIMD and the electrons by OF-DFT. Work supported by U.S. Dept. of Energy, grant DE-SC0002139.

  14. Restricted Path-Integral Molecular Dynamics for Simulating the Correlated Electron Plasma in Warm Dense Matter

    Science.gov (United States)

    Kapila, Vivek; Deymier, Pierre; Runge, Keith

    2011-10-01

    Several areas of study including heavy ion beam, large scale laser, and high pressure or Thomson scattering studies necessitate a fundamental understanding of warm dense matter (WDM) i.e. matter at high temperature and high density. The WDM regime, however, lacks any adequate highly developed class of simulation methods. Recent progress to address this deficit has been the development of orbital-free Density Functional Theory (ofDFT). However, scant benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as harmonic necklaces. Quantum exchange takes the form of cross linking between electron necklaces. The fermion sign problem is addressed by restricting the density matrix to positive values. The molecular dynamics algorithm is employed to sample phase space. Here, we focus on the behavior of strongly correlated electron plasmas under WDM conditions. We compute the kinetic and potential energies and compare them to those obtained with the ofDFT method. Several areas of study including heavy ion beam, large scale laser, and high pressure or Thomson scattering studies necessitate a fundamental understanding of warm dense matter (WDM) i.e. matter at high temperature and high density. The WDM regime, however, lacks any adequate highly developed class of simulation methods. Recent progress to address this deficit has been the development of orbital-free Density Functional Theory (ofDFT). However, scant benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as

  15. Path-integral molecular dynamics simulations for water anion clusters (HO)5- and (DO)5-

    Science.gov (United States)

    Takayanagi, Toshiyuki; Yoshikawa, Takehiro; Motegi, Haruki; Shiga, Motoyuki

    2009-11-01

    Quantum path-integral molecular dynamics simulations have been performed for the (HO)5- and (DO)5- anion clusters on the basis of a semiempirical one-electron pseudopotential-polarization model. Due to larger zero-point vibrational amplitudes for H atoms than that of D atoms, hydrogen-bond lengths in the (HO)5- cluster are slightly larger than those in (DO)5-. The distribution of the vertical detachment energies for (HO)5- also show a broader feature than that for (DO)5-. The present PIMD simulations thus demonstrate the importance of nuclear quantum effects in water anion clusters.

  16. Seismic Imaging, One-Way Wave Equations, Pseudodifferential Operators, Path Integrals, and all that Jazz

    Science.gov (United States)

    Artoun, Ojenie; David-Rus, Diana; Emmett, Matthew; Fishman, Lou; Fital, Sandra; Hogan, Chad; Lim, Jisun; Lushi, Enkeleida; Marinov, Vesselin

    2006-05-01

    In this report we summarize an extension of Fourier analysis for the solution of the wave equation with a non-constant coefficient corresponding to an inhomogeneous medium. The underlying physics of the problem is exploited to link pseudodifferential operators and phase space path integrals to obtain a marching algorithm that incorporates the backward scattering into the evolution of the wave. This allows us to successfully apply single-sweep, one-way marching methods in inherently two-way environments, which was not achieved before through other methods for this problem.

  17. Quantum Brownian Motions and Navier-Stokes Weakly Turbulence — a Path Integral Study

    Science.gov (United States)

    Botelho, Luiz C. L.

    In this paper, we present a new method to solve exactly the Schrödinger Harmonic oscillator wave equation in the presence of time-dependent parameter. We also apply such technique to solve exactly the problem of random frequency averaged quantum propagator of a harmonic oscillator with white-noise statistics frequency. We still apply our technique to solve exactly the Brownian Quantum Oscillator in the presence of an electric field. Finally, we use these quantum mechanic techniques to solve exactly the Statistical-Turbulence of the Navier-Stokes in a region of fluid random stirring weakly (analytical) coupling through time-dependent Euclidean-Quantum oscillators path-integrals.

  18. The most likely voltage path and large deviations approximations for integrate-and-fire neurons.

    Science.gov (United States)

    Paninski, Liam

    2006-08-01

    We develop theory and numerical methods for computing the most likely subthreshold voltage path of a noisy integrate-and-fire (IF) neuron, given observations of the neuron's superthreshold spiking activity. This optimal voltage path satisfies a second-order ordinary differential (Euler-Lagrange) equation which may be solved analytically in a number of special cases, and which may be solved numerically in general via a simple "shooting" algorithm. Our results are applicable for both linear and nonlinear subthreshold dynamics, and in certain cases may be extended to correlated subthreshold noise sources. We also show how this optimal voltage may be used to obtain approximations to (1) the likelihood that an IF cell with a given set of parameters was responsible for the observed spike train; and (2) the instantaneous firing rate and interspike interval distribution of a given noisy IF cell. The latter probability approximations are based on the classical Freidlin-Wentzell theory of large deviations principles for stochastic differential equations. We close by comparing this most likely voltage path to the true observed subthreshold voltage trace in a case when intracellular voltage recordings are available in vitro.

  19. A Neural Path Integration Mechanism for Adaptive Vector Navigation in Autonomous Agents

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Dasgupta, Sakyasingha; Wörgötter, Florentin

    2015-01-01

    to a simulated sixlegged artificial agent. Input signals from an allothetic compass and odometry are sustained through leaky neural integrator circuits, which are then used to compute the home vector by local excitation-global inhibition interactions. The home vector is computed and represented in circular...... arrays of neurons, where compass directions are population-coded and linear displacements are rate-coded. The mechanism allows for robust homing behavior in the presence of external sensory noise. The emergent behavior of the controlled agent does not only show a robust solution for the problem......Animals show remarkable capabilities in navigating their habitat in a fully autonomous and energy-efficient way. In many species, these capabilities rely on a process called path integration, which enables them to estimate their current location and to find their way back home after long...

  20. The Klauder-Daubechies Construction of the Phase Space Path Integral and the Harmonic Oscillator

    CERN Document Server

    Govaerts, Jan; Mattelaer, Olivier

    2009-01-01

    The canonical operator quantisation formulation corresponding to the Klauder-Daubechies construction of the phase space path integral is considered. This formulation is explicitly applied and solved in the case of the harmonic oscillator, thereby illustrating in a manner complementary to Klauder and Daubechies' original work some of the promising features offered by their construction of a quantum dynamics. The Klauder-Daubechies functional integral involves a regularisation parameter eventually taken to vanish, which defines a new physical time scale. When extrapolated to the field theory context, besides providing a new regularisation of short distance divergences, keeping a finite value for that time scale offers some tantalising prospects when it comes to strong gravitational quantum systems.

  1. Path integral approach for electron transport in disturbed magnetic field lines

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ryutaro; Nakajima, Noriyoshi; Takamaru, Hisanori

    2002-05-01

    A path integral method is developed to investigate statistical property of an electron transport described as a Langevin equation in a statically disturbed magnetic field line structure; especially a transition probability of electrons strongly tied to field lines is considered. The path integral method has advantages that 1) it does not include intrinsically a growing numerical error of an orbit, which is caused by evolution of the Langevin equation under a finite calculation accuracy in a chaotic field line structure, and 2) it gives a method of understanding the qualitative content of the Langevin equation and assists to expect statistical property of the transport. Monte Carlo calculations of the electron distributions under both effects of chaotic field lines and collisions are demonstrated to comprehend above advantages through some examples. The mathematical techniques are useful to study statistical properties of various phenomena described as Langevin equations in general. By using parallel generators of random numbers, the Monte Carlo scheme to calculate a transition probability can be suitable for a parallel computation. (author)

  2. Transport properties of liquid para-hydrogen: The path integral centroid molecular dynamics approach

    Science.gov (United States)

    Yonetani, Yoshiteru; Kinugawa, Kenichi

    2003-11-01

    Several fundamental transport properties of a quantum liquid para-hydrogen (p-H2) at 17 K have been numerically evaluated by means of the quantum dynamics simulation called the path integral centroid molecular dynamics (CMD). For comparison, classical molecular dynamics (MD) simulations have also been performed under the same condition. In accordance with the previous path integral simulations, the calculated static properties of the liquid agree well with the experimental results. For the diffusion coefficient, thermal conductivity, and shear viscosity, the CMD predicts the values closer to the experimental ones though the classical MD results are far from the reality. The agreement of the CMD result with the experimental one is especially good for the shear viscosity with the difference less than 5%. The calculated diffusion coefficient and the thermal conductivity agree with the experimental values at least in the same order. We predict that the ratio of bulk viscosity to shear viscosity for liquid p-H2 is much larger than classical van der Waals simple liquids such as rare gas liquids.

  3. Quantum free-energy differences from nonequilibrium path integrals. I. Methods and numerical application.

    Science.gov (United States)

    van Zon, Ramses; Hernández de la Peña, Lisandro; Peslherbe, Gilles H; Schofield, Jeremy

    2008-10-01

    In this paper, the imaginary-time path-integral representation of the canonical partition function of a quantum system and nonequilibrium work fluctuation relations are combined to yield methods for computing free-energy differences in quantum systems using nonequilibrium processes. The path-integral representation is isomorphic to the configurational partition function of a classical field theory, to which a natural but fictitious Hamiltonian dynamics is associated. It is shown that if this system is prepared in an equilibrium state, after which a control parameter in the fictitious Hamiltonian is changed in a finite time, then formally the Jarzynski nonequilibrium work relation and the Crooks fluctuation relation hold, where work is defined as the change in the energy as given by the fictitious Hamiltonian. Since the energy diverges for the classical field theory in canonical equilibrium, two regularization methods are introduced which limit the number of degrees of freedom to be finite. The numerical applicability of the methods is demonstrated for a quartic double-well potential with varying asymmetry. A general parameter-free smoothing procedure for the work distribution functions is useful in this context.

  4. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals

    Energy Technology Data Exchange (ETDEWEB)

    Sinitskiy, Anton V.; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637 (United States)

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

  5. The Path of Initiation: The Integration of Psychological and Spiritual Development in Western Esoteric Thought

    Directory of Open Access Journals (Sweden)

    Gary Raucher

    2013-09-01

    Full Text Available This paper examines, from an emic stance, a strand of Western esoteric wisdom that offers a particular perspective on psycho-spiritual development in relation to spiritual emergence, the mutually interdependent evolution of consciousness and substance, and the functional role of human incarnation within our planetary life. The writings of Alice A. Bailey (1880-1949 and Lucille Cedercrans (1921-1984 serve as significant reference points in this effort. These teachings hold an integral view of human development in which a person’s awareness and self-identification progress from polarization in physical matter and sensation through progressively subtler gradients of emotional and mental experience, culminating in “The Path of Initiation,” a phase of psychological and spiritual expansions into deepening levels of transcendent, supramental consciousness and functioning. The esoteric teachings described here portray this path descriptively rather than prescriptively, and have significant parallels to Sri Aurobindo’s Integral vision. Both consider human life in form to be a vital and necessary phase within the larger cosmic evolution of consciousness and matter, and both are frameworks that expansively embrace the significance of the Divine as both immanent and transcendent presence. The important issue of epistemological methodology and the testing of esoteric assertions is also considered.

  6. Path-integral description of combined Hamiltonian and non-Hamiltonian dynamics in quantum dissipative systems

    Science.gov (United States)

    Barth, A. M.; Vagov, A.; Axt, V. M.

    2016-09-01

    We present a numerical path-integral iteration scheme for the low-dimensional reduced density matrix of a time-dependent quantum dissipative system. Our approach simultaneously accounts for the combined action of a microscopically modeled pure-dephasing-type coupling to a continuum of harmonic oscillators representing, e.g., phonons, and further environmental interactions inducing non-Hamiltonian dynamics in the inner system represented, e.g., by Lindblad-type dissipation or relaxation. Our formulation of the path-integral method allows for a numerically exact treatment of the coupling to the oscillator modes and moreover is general enough to provide a natural way to include Markovian processes that are sufficiently described by rate equations. We apply this new formalism to a model of a single semiconductor quantum dot which includes the coupling to longitudinal acoustic phonons for two cases: (a) external laser excitation taking into account a phenomenological radiative decay of the excited dot state and (b) a coupling of the quantum dot to a single mode of an optical cavity taking into account cavity photon losses.

  7. Relations between the EU and Republic of Kosovo - The path of Kosovo integration towards the EU

    Directory of Open Access Journals (Sweden)

    Arif Riza

    2016-07-01

    Full Text Available Almost all the European Union member states have surpassed various challenges toward their integration into the European family. Although all these challenges are special cases on their own, Kosovo’s journey differs from the above mentioned cases, because Kosovo has not been recognized as an independent state by some members of the European family. The other key element that differs Kosovo’s journey from other cases is the presence of international institutions such as: EULEX, ICO, UNMIK, KFOR etc. in Kosovo’s territory. These organizations were not present in other member states of the European Union and other countries which aim for European integration. This manuscript aims to analyze the Kosovo challenges in its path towards the European family, which is only possible if Kosovo can create sustainable politics and cause fundamental changes in all fields, whether in public or private institutions, in order to build the rule of law. In general, this article will discuss the presence of international institutions in Kosovo such as: EULEX, ICO, UNMIK, KFOR and other international organizations, their effects on the rule of law, economic development and the sustainability of institutions. Moreover, this paper will particularly analyze the influence of the above mentioned factors to ease Kosovo’s path, as an observed country, compared to other countries in the region.

  8. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    CERN Document Server

    Geng, Hua Y

    2014-01-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibration...

  9. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.

    Science.gov (United States)

    Sinitskiy, Anton V; Voth, Gregory A

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

  10. Isotope dependence of the lattice parameter of germanium from path-integral Monte Carlo simulations

    Science.gov (United States)

    Noya, José C.; Herrero, Carlos P.; Ramírez, Rafael

    1997-07-01

    The dependence of the lattice parameter upon the isotope mass for five isotopically pure Ge crystals was studied by quantum path-integral Monte Carlo simulations. The interatomic interactions in the solid were described by an empirical potential of the Stillinger-Weber type. At 50 K the isotopic effect leads to an increase of 2.3×10-4 Å in the lattice parameter of 70Ge with respect to 76Ge. Comparison of the simulation results with available experimental data for 74Ge shows that the employed model provides a realistic description of this anharmonic effect. The path-integral results were compared to those derived from a quasiharmonic approximation of the crystal. Within this approximation, the calculated fractional change of the lattice parameter of 74Ge with respect to a crystal whose atoms have the average mass of natural Ge amounts to Δa/a=-9.2×10-6 at T=0 K. Some limitations of the quasiharmonic approximation are shown at temperatures above 200 K.

  11. Path-integrated measurements of carbon dioxide in the urban canopy layer

    Science.gov (United States)

    Büns, Christian; Kuttler, Wilhelm

    2012-01-01

    Continuous CO 2 concentration measurements have been recorded within the city center of Essen, Germany, using a path-integrated measuring system above a typical urban area over the course of nine months (February-October 2010). Mean monthly urban CO 2 concentrations were 396 and 446 ppm in summer and winter, respectively, which were 8.5 % in average higher than at a nearby suburban measuring site. Urban-suburban differences mainly occur due to increased CO 2 emissions from traffic and industry within the urban area, as well as domestic heating in winter. Among the analyzed meteorological variables, low wind velocities increased CO 2 concentrations as well as high atmospheric stability within the urban boundary layer, respectively. The influence of wind direction reflects the heterogeneous distribution of local CO 2 sources at the recording sites, particularly industrial point sources. Other point sources in the vicinity of the urban site strongly influence the additional point measurements but show no significant effect on the measured CO 2 concentrations by the path-integrated measuring system. Within an eight-day case study, a significant positive correlation between CO 2 concentration and traffic count ( R = 0.26; p system provides CO 2 concentrations on a greater temporal and spatial scale than common point measurements, which can be influenced by strong adjacent local CO 2 sources.

  12. Rapid Design Methodology of Layout Euler Path for Integrated Circuits%集成电路版图欧拉路径的快速判寻方法

    Institute of Scientific and Technical Information of China (English)

    王健; 陈海洋; 蓝海萌

    2011-01-01

    Euler path of layout is a common methodology used to minimize layout area of integrated circuits. Relationship between Euler path of layout and Boolean expression was discussed, and a fast design methodology to decide if there is an Euler path of layout and search for it was proposed. Using this method, Euler path of layout for a number of typical circuits were designed, one of which was designed with IC design software. The optimized layout area was greatly reduced. The proposed methodology is rapid, accurate, convenient, and has broad potential applications.%版图欧拉路径法是实现集成电路版图面积最小化的常用方法.讨论了版图欧拉路径与布尔表达式的关系,提出一种版图欧拉路径快速判寻方法.利用该方法,设计了几种典型电路的版图欧拉路径,并运用集成电路设计软件设计其中一种电路,经过优化后的版图面积明显减小.该方法快速、准确、方便,具有广阔的应用前景.

  13. Improved methods for Feynman path integral calculations and their application to calculate converged vibrational-rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane.

    Science.gov (United States)

    Mielke, Steven L; Truhlar, Donald G

    2015-01-28

    We present an improved version of our "path-by-path" enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P(-6)) to O(P(-12)), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational-rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan-Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ∼1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300-3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.

  14. Quantum mechanics 1. Path-integral formulation and operator formalism; Quantenmechanik 1. Pfadintegralformulierung und Operatorformalismus

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Hugo [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik

    2012-11-01

    The first volume of this two-volume textbook gives a modern introduction to the quantum theory, which connects Feynman's path-integral formulation with the traditional operator formalism. In easily understandable form starting from the double-slit experiment the characteristic features and foundations of quantum theory are made accessible by means of the functional-integral approach. Just this approach makes a ''derivation'' of the Schroedinger equation from the principle of the interfering alternatives possible. In the following the author developes the traditional operator formulation of quantum mechanics, which is better suited for practical solution of elementary problems. However he then refers to the functional-integral approach, when this contributes to a better understanding. A further advance of this concept: The functional-integral approach facilitates essentially the later access to quantum field theory. The work is in like manner suited for the self-study as for the deepening accompanying of the course.

  15. Quantum dynamics in the highly discrete, commensurate Frenkel Kontorova model: A path-integral molecular dynamics study

    Science.gov (United States)

    Krajewski, Florian R.; Müser, Martin H.

    2005-03-01

    The commensurate Frenkel Kontorova (FK) model is studied using path-integral molecular dynamics (PIMD). We focus on the highly discrete case, in which the embedding potential has a much greater maximum curvature than the harmonic potential connecting two particles in the FK chain. When efficient sampling methods are used, the dynamical interpretation of adiabatic PIMD appears to represent quite accurately the true time correlation functions of this highly correlated many-body system. We have found that the discrete, quantum FK model shows different behavior than its continuum version. The spectral density does not show the characteristic ω-2Θ(ω-ωc) cusp of the continuum solution in the pinned phase (m>mc). We also identify a dynamical quantum hysteresis in addition to the regular classical hysteresis when an external force is applied to the FK chain. In the unpinned phase (m⩽mc), we find a linear response damping coefficient which is finite and only weakly dependent on temperature T at small values of T.

  16. Greybody factors for Schwarzschild black holes: Path-ordered exponentials and product integrals

    CERN Document Server

    Gray, Finnian

    2015-01-01

    In recent work concerning the sparsity of the Hawking flux [arXiv:1506.03975v2], we found it necessary to re-examine what is known regarding the greybody factors of black holes, with a view to extending and expanding on some old results from the 1970s. Focussing specifically on Schwarzschild black holes, we re-calculated and re-assessed the greybody factors using a path-ordered-exponential approach, a technique which has the virtue of providing a semi-explicit formula for the relevant Bogoliubov coefficients. These path-ordered-exponentials, (being based on a "transfer matrix" formalism), are closely related to so-called "product integrals", leading to quite straightforward and direct numerical evaluation, while avoiding any need for numerically solving differential equations. Furthermore, while considerable analytic information is already available regarding both the high-frequency and low-frequency asymptotics of these greybody factors, numerical approaches seem better adapted to finding suitable "global mo...

  17. Gaussian white noise analysis and its application to Feynman path integral

    Science.gov (United States)

    Suryawan, Herry Pribawanto

    2016-02-01

    In applied science, Gaussian white noise (the time derivative of Brownian motion) is often chosen as a mathematical idealization of phenomena involving sudden and extremely large fluctuations. It is also possible to define and study Gaussian white noise in a mathematically rigorous framework. In this survey paper we review the Gaussian white noise as an object in an infinite dimensional topological vector space. A brief construction of Gaussian white noise space and Gaussian white noise distributions will be presented. Gaussian white noise analysis provides a framework which offers various generalization of concept known from finite dimensional analysis to the infinite dimensional case, among them are differential operators, Fourier transform, and distribution theory. We will also present some recent developments and results on the application of Gaussian white noise theory to Feynman's path integral approach for quantum mechanics.

  18. Path integral approach for quantum motion on spaces of non-constant curvature according to Koenigs

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2006-08-15

    In this contribution I discuss a path integral approach for the quantum motion on two-dimensional spaces according to Koenigs, for short ''Koenigs-Spaces''. Their construction is simple: One takes a Hamiltonian from two-dimensional flat space and divides it by a two-dimensional superintegrable potential. These superintegrable potentials are the isotropic singular oscillator, the Holt-potential, and the Coulomb potential. In all cases a non-trivial space of non-constant curvature is generated. We can study free motion and the motion with an additional superintegrable potential. For possible bound-state solutions we find in all three cases an equation of eighth order in the energy E. The special cases of the Darboux spaces are easily recovered by choosing the parameters accordingly. (orig.)

  19. The canonical versrus path integral quantization approach to generalized Kodama states (Part I)

    CERN Document Server

    Ita, Eyo Eyo

    2007-01-01

    This is the fifth paper in the series outlining an algorithm to consistently quantize four-dimensional gravity. We derive the pure Kodama state in analogy to the no-boundary proposal for constructing quantum gravitational wavefunctions, checking at each stage of the process the equivalence of the canonical and path integral approaches. A family of additional pure Kodama states is identified via the canonical approach and a criterion for their suitability as a basis of states is examined. We provide an interpretation for the problem of time within the context of the generalized Kodama states and propose a possible method of resolution. We also develop different techniques for solving the Gauss' law constraintsd at the kinematical level, in preparation for future work in this series.

  20. Path integral polymer propagator of relativistic and non-relativistic particles

    CERN Document Server

    Morales-Técotl, Hugo A; Ruelas, Juan C

    2016-01-01

    A recent proposal to connect the loop quantization with the spin foam model for cosmology via the path integral is hereby adapted to the case of mechanical systems within the framework of the so called polymer quantum mechanics. The mechanical models we consider are deparametrized and thus the group averaging technique is used to deal with the corresponding constraints. The transition amplitudes are written in a vertex expansion form used in the spin foam models, where here a vertex is actually a jump in position. Polymer Propagators previously obtained by spectral methods for a nonrelativistic polymer particle, both free and in a box, are regained with this method. Remarkably, the approach is also shown to yield the polymer propagator of the relativistic particle. This reduces to the standard form in the continuum limit for which the length scale parameter of the polymer quantization is taken to be small. Some possible future developments are commented upon.

  1. Path-integral Monte Carlo method for Rényi entanglement entropies.

    Science.gov (United States)

    Herdman, C M; Inglis, Stephen; Roy, P-N; Melko, R G; Del Maestro, A

    2014-07-01

    We introduce a quantum Monte Carlo algorithm to measure the Rényi entanglement entropies in systems of interacting bosons in the continuum. This approach is based on a path-integral ground state method that can be applied to interacting itinerant bosons in any spatial dimension with direct relevance to experimental systems of quantum fluids. We demonstrate how it may be used to compute spatial mode entanglement, particle partitioned entanglement, and the entanglement of particles, providing insights into quantum correlations generated by fluctuations, indistinguishability, and interactions. We present proof-of-principle calculations and benchmark against an exactly soluble model of interacting bosons in one spatial dimension. As this algorithm retains the fundamental polynomial scaling of quantum Monte Carlo when applied to sign-problem-free models, future applications should allow for the study of entanglement entropy in large-scale many-body systems of interacting bosons.

  2. Path-integral action of a particle in the noncommutative plane.

    Science.gov (United States)

    Gangopadhyay, Sunandan; Scholtz, Frederik G

    2009-06-19

    Noncommutative quantum mechanics can be viewed as a quantum system represented in the space of Hilbert-Schmidt operators acting on noncommutative configuration space. Taking this as a departure point, we formulate a coherent state approach to the path-integral representation of the transition amplitude. From this we derive an action for a particle moving in the noncommutative plane and in the presence of an arbitrary potential. We find that this action is nonlocal in time. However, this nonlocality can be removed by introducing an auxilary field, which leads to a second class constrained system that yields the noncommutative Heisenberg algebra upon quantization. Using this action, the propagator of the free particle and harmonic oscillator are computed explicitly.

  3. Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zeidler, Anita [University of Bath; Salmon, Phil [University of Bath; Fischer, Henry E [Institut Laue-Langevin (ILL); Neuefeind, Joerg C [ORNL; Simonson, J Michael {Mike} [ORNL; Markland, Thomas [Columbia University

    2012-01-01

    The structure of heavy and light water at 300 K was investigated by using a joint approach in which the method of neutron di raction with oxygen isotope substitution was combined with path integral molecular dynamics simulations. The di raction results, which give intra-molecular O-D and O-H bond distances of 0.985(5) and 0.990(5) A, were found to be in best agreement with those obtained by using the exible anharmonic TTM3-F water model. Both techniques show a di erence of '0.5% between the O-D and O-H intra-molecular bond lengths and the results support a competing quantum e ects model for water in which its structural and dynamical properties are governed by an o set between intra-molecular and inter-molecular quantum contributions. Further consideration of the O-O correlations is needed in order to improve agreement with experiment.

  4. Path integral centroid molecular dynamics simulations of semiinfinite slab and bulk liquid of para-hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, Kenichi [Nara Women`s Univ., Nara (Japan). Dept. of Chemistry

    1998-10-01

    It has been unsuccessful to solve a set of time-dependent Schroedinger equations numerically for many-body quantum systems which involve, e.g., a number of hydrogen molecules, protons, and excess electrons at a low temperature, where quantum effect evidently appears. This undesirable situation is fatal for the investigation of real low-temperature chemical systems because they are essentially composed of many quantum degrees of freedom. However, if we use a new technique called `path integral centroid molecular dynamics (CMD) simulation` proposed by Cao and Voth in 1994, the real-time semi-classical dynamics of many degrees of freedom can be computed by utilizing the techniques already developed in the traditional classical molecular dynamics (MD) simulations. Therefore, the CMD simulation is expected to be very powerful tool for the quantum dynamics studies or real substances. (J.P.N.)

  5. Geometric isotope effects on small chloride ion water clusters with path integral molecular dynamics simulations

    Science.gov (United States)

    Wang, Qi; Suzuki, Kimichi; Nagashima, Umpei; Tachikawa, Masanori; Yan, Shiwei

    2013-11-01

    The geometric isotope effects on the structures of hydrated chloride ionic hydrogen bonded clusters are explored by carrying out path integral molecular dynamics simulations. First, an outer shell coordinate is selected to display the rearrangement of single and multi hydration shell cluster structures. Next, to show the competition of intramolecular and intermolecular nuclear quantum effects, the intramolecular OH∗ stretching and intermolecular ion-water wagging motions are studied for single and multi shell structures, respectively. The results indicate that the intermolecular nuclear quantum effects stabilize the ionic hydrogen bonds in single shell structures, while they are destabilized through the competition with intramolecular nuclear quantum effects in multi shell structures. In addition, the correlations between ion-water stretching motion and other cluster vibrational coordinates are discussed. The results indicate that the intermolecular nuclear quantum effects on the cluster structures are strongly related to the cooperation of the water-water hydrogen bond interactions.

  6. Low-temperature anharmonicity of barium titanate: A path-integral molecular-dynamics study

    Science.gov (United States)

    Geneste, Grégory; Dammak, Hichem; Hayoun, Marc; Thiercelin, Mickael

    2013-01-01

    We investigate the influence of quantum effects on the dielectric and piezoelectric properties of barium titanate in its (low-temperature) rhombohedral phase, and show the strongly anharmonic character of this system even at low temperature. For this purpose, we perform path-integral molecular-dynamics simulations under fixed pressure and fixed temperature, using an efficient Langevin thermostat-barostat, and an effective Hamiltonian derived from first-principles calculations. The quantum fluctuations are shown to significantly enhance the static dielectric susceptibility (≈ by a factor of 2) and the piezoelectric constants, reflecting the strong anharmonicity of this ferroelectric system even at very low temperature. The slow temperature-evolution of the dielectric properties observed below ≈100 K is attributed (i) to zero-point energy contributions and (ii) to harmonic behavior if the quantum effects are turned off.

  7. Mapping variable ring polymer molecular dynamics: A path-integral based method for nonadiabatic processes

    Science.gov (United States)

    Ananth, Nandini

    2013-09-01

    We introduce mapping-variable ring polymer molecular dynamics (MV-RPMD), a model dynamics for the direct simulation of multi-electron processes. An extension of the RPMD idea, this method is based on an exact, imaginary time path-integral representation of the quantum Boltzmann operator using continuous Cartesian variables for both electronic states and nuclear degrees of freedom. We demonstrate the accuracy of the MV-RPMD approach in calculations of real-time, thermal correlation functions for a range of two-state single-mode model systems with different coupling strengths and asymmetries. Further, we show that the ensemble of classical trajectories employed in these simulations preserves the Boltzmann distribution and provides a direct probe into real-time coupling between electronic state transitions and nuclear dynamics.

  8. Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective

    Science.gov (United States)

    Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge

    2013-03-01

    Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.

  9. Hydrogen and muonium in diamond: A path-integral molecular dynamics simulation

    Science.gov (United States)

    Herrero, Carlos P.; Ramírez, Rafael; Hernández, Eduardo R.

    2006-06-01

    Isolated hydrogen, deuterium, and muonium in diamond have been studied by path-integral molecular dynamics simulations in the canonical ensemble. Finite-temperature properties of these point defects were analyzed in the range from 100 to 800K . Interatomic interactions were modeled by a tight-binding potential fitted to density-functional calculations. The most stable position for these hydrogenic impurities is found at the C-C bond center. Vibrational frequencies have been obtained from a linear-response approach, based on correlations of atom displacements at finite temperatures. The results show a large anharmonic effect in impurity vibrations at the bond center site, which hardens the vibrational modes with respect to a harmonic approximation. Zero-point motion causes an appreciable shift of the defect level in the electronic gap, as a consequence of electron-phonon interaction. This defect level goes down by 70meV when replacing hydrogen by muonium.

  10. On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy

    Science.gov (United States)

    Witt, Alexander; Ivanov, Sergei D.; Shiga, Motoyuki; Forbert, Harald; Marx, Dominik

    2009-05-01

    Centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD) are two conceptually distinct extensions of path integral molecular dynamics that are able to generate approximate quantum dynamics of complex molecular systems. Both methods can be used to compute quasiclassical time correlation functions which have direct application in molecular spectroscopy; in particular, to infrared spectroscopy via dipole autocorrelation functions. The performance of both methods for computing vibrational spectra of several simple but representative molecular model systems is investigated systematically as a function of temperature and isotopic substitution. In this context both CMD and RPMD feature intrinsic problems which are quantified and investigated in detail. Based on the obtained results guidelines for using CMD and RPMD to compute infrared spectra of molecular systems are provided.

  11. Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics

    Science.gov (United States)

    Zeidler, Anita; Salmon, Philip S.; Fischer, Henry E.; Neuefeind, Jörg C.; Simonson, J. Mike; Markland, Thomas E.

    2012-07-01

    The structures of heavy and light water at 300 K were investigated by using a joint approach in which the method of neutron diffraction with oxygen isotope substitution was complemented by path integral molecular dynamics simulations. The diffraction results, which give intra-molecular O-D and O-H bond distances of 0.985(5) and 0.990(5) Å, were found to be in best agreement with those obtained by using the flexible anharmonic TTM3-F water model. Both techniques show a difference of ≃ 0.5% between the O-D and O-H intra-molecular bond lengths, and the results support a competing quantum effects model for water in which its structural and dynamical properties are governed by an offset between intra-molecular and inter-molecular quantum contributions. Further consideration of the O-O correlations is needed in order to improve agreement with experiment.

  12. Quantum tautomerization in porphycene and its isotopomers: Path-integral molecular dynamics simulations

    Science.gov (United States)

    Yoshikawa, Takehiro; Sugawara, Shuichi; Takayanagi, Toshiyuki; Shiga, Motoyuki; Tachikawa, Masanori

    2012-02-01

    Path-integral molecular dynamics simulations have been performed for porphycene and its isotopic variants in order to understand the effect of isotopic substitution of inner protons on the double proton transfer mechanism. We have used an on-the-fly direct dynamics technique at the semiempirical PM6 level combined with specific reaction parameterization. Our quantum simulations show that double proton transfer of the unsubstituted porphycene at T = 300 K mainly occurs via a so-called concerted mechanism through the D2h second-order saddle point. In addition, we found that both isotopic substitution and temperature significantly affect the double proton transfer mechanism. For example, the contribution of the stepwise mechanism increases with a temperature increase. We have also carried out hypothetical simulations with the porphycene configurations being completely planar. It has been found that out-of-plane vibrational motions significantly decrease the contribution of the concerted proton transfer mechanism.

  13. Path integral centroid molecular dynamics simulation of para-hydrogen sandwiched by graphene sheets

    Science.gov (United States)

    Minamino, Yuki; Kinugawa, Kenichi

    2016-11-01

    The carbon-hydrogen composite systems of para-hydrogen (p-H2) sandwiched by a couple of graphene sheets have been investigated by means of path integral centroid molecular dynamics simulations at 17 K. It has been shown that sandwiched hydrogen is liquid-like but p-H2 molecules are preferably adsorbed onto the graphene sheets because of attractive graphene-hydrogen interaction. The diffusion coefficient of p-H2 molecules in the direction parallel to the graphene sheets is comparable to that in pure liquid p-H2. There exists a characteristic mode of 140 cm-1 of the p-H2 molecules, attributed to adsorption-binding motion perpendicular to the graphene sheets.

  14. Path-integral simulation of ice VII: Pressure and temperature effects

    CERN Document Server

    Herrero, Carlos P

    2015-01-01

    Effects of pressure and temperature on structural and thermodynamic properties of ice VII have been studied by using path-integral molecular dynamics (PIMD) simulations. Temperatures between 25 and 450 K, as well as pressures up to 12 GPa were considered. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. We analyze the pressure dependence of the molar volume, bulk modulus, interatomic distances, kinetic energy, and atomic delocalization at various temperatures. Results of PIMD simulations are compared with those derived from a quasi-harmonic approximation (QHA) of vibrational modes, which helps to assess the importance of anharmonic effects, as well as the influence of the different modes on the properties of ice VII. The accuracy of the QHA for describing this high-pressure phase decreases for rising temperature, but this approximation becomes more reliable as pressure grows, since anharmonicity becomes less relevant. Comparisons with low-pressure cubic ice ...

  15. PATH INTEGRAL SOLUTION OF NONLINEAR DYNAMIC BEHAVIOR OF STRUCTURE UNDER WIND EXCITATION

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wind load was modeled as the Ito' s stochastic differential equation. The state vector associated with such a model is a diffusion process. A continuous linearization strategy in the time-domain was adopted.Based on the solution series of its stochastic linearization equations, the formal probabilistic density of the structure response was developed by the path integral technique. It is shown by the numerical example of a guyed mast that compared with the frequency-domain method and the time-domain nonlinear analysis, the proposed approach is highlighted by high accuracy and effectiveness. The influence of the structure non-linearity on the dynamic reliability assessment is also analyzed in the example.

  16. A Path Integral Approach to Option Pricing with Stochastic Volatility: Some Exact Results

    Science.gov (United States)

    Baaquie, Belal E.

    1997-12-01

    The Black-Scholes formula for pricing options on stocks and other securities has been generalized by Merton and Garman to the case when stock volatility is stochastic. The derivation of the price of a security derivative with stochastic volatility is reviewed starting from the first principles of finance. The equation of Merton and Garman is then recast using the path integration technique of theoretical physics. The price of the stock option is shown to be the analogue of the Schrödinger wavefunction of quantum mechanics and the exact Hamiltonian and Lagrangian of the system is obtained. The results of Hull and White are generalized to the case when stock price and volatility have non-zero correlation. Some exact results for pricing stock options for the general correlated case are derived.

  17. Quantum Mechanical Single Molecule Partition Function from PathIntegral Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian

    2006-10-01

    An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.

  18. Toward Picard-Lefschetz Theory of Path Integrals, Complex Saddles and Resurgence

    CERN Document Server

    Behtash, Alireza; Schaefer, Thomas; Sulejmanpasic, Tin; Unsal, Mithat

    2015-01-01

    We show that the semi-classical analysis of generic Euclidean path integrals necessarily requires complexification of the action and measure, and consideration of complex saddle solutions. We demonstrate that complex saddle points have a natural interpretation in terms of the Picard-Lefschetz theory. Motivated in part by the semi-classical expansion of QCD with adjoint matter on ${\\mathbb R}^3\\times S^1$, we study quantum-mechanical systems with bosonic and fermionic (Grassmann) degrees of freedom with harmonic degenerate minima, as well as (related) purely bosonic systems with harmonic non-degenerate minima. We find exact finite action non-BPS bounce and bion solutions to the holomorphic Newton equations. We find not only real solutions, but also complex solution with non-trivial monodromy, and finally complex multi-valued and singular solutions. Complex bions are necessary for obtaining the correct non-perturbative structure of these models. In the supersymmetric limit the complex solutions govern the groun...

  19. Finite Size Effect in Path Integral Monte Carlo Simulations of 4He Systems

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xing-Wen; CHENG Xin-Lu

    2008-01-01

    Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of the simulated systems of 4He. We determine the energy as a function of temperature at saturated-vapor-pressure (SVP) conditions in the temperature range of T ∈ [1.0 K,4.0 K], and the equation of state (EOS) in the ground state for systems consisted of 32, 64 and 128 4He atoms, respectively. We find that the energy at SVP is influenced significantly by the size of the simulated system in the temperature range of T ∈ [2.1 K, 3.0 K] and the larger the system is, the better results are obtained in comparison with the experimental values; while the EOS appeared to be unrelated to it.

  20. Thermally assisted tunneling of hydrogen in silicon: A path-integral Monte Carlo study

    Science.gov (United States)

    Herrero, Carlos P.

    1997-04-01

    Quantum transition-state theory, based on the path-integral formalism, has been applied to study the jump rate of atomic hydrogen and deuterium in crystalline silicon. This technique provides a methodology to study the influence of vibrational mode quantization and quantum tunneling on the impurity jump rate. The atomic interactions were modeled by effective potentials, fitted to earlier ab initio pseudopotential calculations. Silicon nuclei were treated as quantum particles up to second-nearest neighbors of the impurity. The hydrogen jump rate follows an Arrhenius law, describable with classical transition-state theory, at temperatures higher than 100 K. At ~80 K, a change in the slope of the Arrhenius plot is obtained for hydrogen, as expected for the onset of a diffusion regime controlled by phonon-assisted tunneling of the impurity. For deuterium, no change of slope is observed in the studied temperature range (down to 40 K).

  1. Correct Path-Integral Formulation of Quantum Thermal Field Theory in Coherent State Representation

    Institute of Scientific and Technical Information of China (English)

    SU Jun-Chen; ZHENG Fu-Hou

    2005-01-01

    The path-integral quantization of thermal scalar, vector, and spinor fields is performed newly in the coherent-state representation. In doing this, we choose the thermal electrodynamics and ψ4 theory as examples. By this quantization, correct expressions of the partition functions and the generating functionals for the quantum thermal electrodynamics and ψ4 theory are obtained in the coherent-state representation. These expressions allow us to perform analytical calculations of the partition functions and generating functionals and therefore are useful in practical applications. Especially, the perturbative expansions of the generating functionals are derived specifically by virtue of the stationary-phase method. The generating functionals formulated in the position space are re-derived from the ones given in the coherent-state representation.

  2. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  3. Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration.

    Directory of Open Access Journals (Sweden)

    Allen Cheung

    Full Text Available Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's "cognitive map", or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark information. In vivo recordings demonstrate that the rodent head direction (HD system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and--we conjecture--necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation

  4. Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration.

    Science.gov (United States)

    Cheung, Allen; Ball, David; Milford, Michael; Wyeth, Gordon; Wiles, Janet

    2012-01-01

    Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's "cognitive map", or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and--we conjecture--necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and elaborate on

  5. Path Integral Molecular Dynamics within the Grand Canonical-like Adaptive Resolution Technique: Quantum-Classical Simulation of Liquid Water

    CERN Document Server

    Agarwal, Animesh

    2015-01-01

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however computationally this technique is very demanding. The abovementioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One possible solution to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this ...

  6. Accurate computation of Galerkin double surface integrals in the 3-D boundary element method

    CERN Document Server

    Adelman, Ross; Duraiswami, Ramani

    2015-01-01

    Many boundary element integral equation kernels are based on the Green's functions of the Laplace and Helmholtz equations in three dimensions. These include, for example, the Laplace, Helmholtz, elasticity, Stokes, and Maxwell's equations. Integral equation formulations lead to more compact, but dense linear systems. These dense systems are often solved iteratively via Krylov subspace methods, which may be accelerated via the fast multipole method. There are advantages to Galerkin formulations for such integral equations, as they treat problems associated with kernel singularity, and lead to symmetric and better conditioned matrices. However, the Galerkin method requires each entry in the system matrix to be created via the computation of a double surface integral over one or more pairs of triangles. There are a number of semi-analytical methods to treat these integrals, which all have some issues, and are discussed in this paper. We present novel methods to compute all the integrals that arise in Galerkin fo...

  7. Scattering from the Potential Barrier $V=cosh^{-2} \\omega x$ from the Path Integration over SO(1,2)

    CERN Document Server

    Ahmedov, H

    1996-01-01

    Unitary irreducible representation of the group SO(1,2) is obtained in the mixed basis, i.e. between the compact and noncompact basis and the new addition theorems are derived which are required in path integral applications involving the positively signed potential. The Green function for the potential barrier $V=cosh^{-2}\\omega x$ is evaluated from the path integration over the coset space SO(1,2)/K where K is the compact subgroup.The transition and the reflection coefficients are given.Results for the moving barrier $V=cosh^{-2}\\omega (x-g_0t)$ are also presented.

  8. A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations.

    Science.gov (United States)

    Song, Linze; Shi, Qiang

    2015-05-07

    We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated.

  9. Data Integrity: Why Aren't the Data Accurate? AIR 1989 Annual Forum Paper.

    Science.gov (United States)

    Gose, Frank J.

    The accuracy and reliability aspects of data integrity are discussed, with an emphasis on the need for consistency in responsibility and authority. A variety of ways in which data integrity can be compromised are discussed. The following sources of data corruption are described, and the ease or difficulty of identification and suggested actions…

  10. Improved methods for Feynman path integral calculations and their application to calculate converged vibrational–rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, Steven L., E-mail: slmielke@gmail.com, E-mail: truhlar@umn.edu; Truhlar, Donald G., E-mail: slmielke@gmail.com, E-mail: truhlar@umn.edu [Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455-0431 (United States)

    2015-01-28

    We present an improved version of our “path-by-path” enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P{sup −6}) to O(P{sup −12}), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational–rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan–Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ∼1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300–3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.

  11. The Effect of Learning in Virtual Path Integration%虚拟路径整合的学习效应

    Institute of Scientific and Technical Information of China (English)

    过继成思; 宛小昂

    2015-01-01

    Path integration is one type of navigations in which navigators integrate self-motion information to update their current position and orientation relative to the origin of their travel. Human path integration ability is often measured in the path completion task. In this task, participants travel along several segments, make several turns at the intersections of each two segments, and arrive at the end of the outbound path. Then they are asked to directly return to the origin of the outbound path. Previous studies have revealed that athletes showed better path completion performance than general population. The purpose of the present study was to examine whether the path integration ability of general population can be improved if they are repeatedly exposed to outbound paths with the same configurations. In two experiments, we used the Head-Mounted Display Virtual Reality to present hallway mazes, and each outbound path consisted of 5 segments. Participants pressed a button on the gamepad to travel along a segment, so the information about transition was based on optical flow. By contrast, they were asked to actually rotate their bodies at the intersections, so the information about rotation came from both optical flow and body senses. Each participant completed 4 blocks, 6 trials of each. Within each block, they performed the path completion task on 6 different outbound paths. From one block to the next, they performed the path completion task on outbound paths with the same configurations. In Experiment 1, all the 5 segments within each outbound path had the same lengths, and the turning angle at each interaction was always 60 degree, clockwise or counterclockwise. When the participants repeatedly performed the path completion task on these outbound paths with the same configurations, they showed reduced position errors, direction errors, and RTs. By contrast, more complicated path configurations were used in Experiment 2. Specifically, within each outbound

  12. Information technology - Telecommunications and information exchange between systems - Private integrated services network - Inter-exchange signalling protocol - Path replacement additional network feature

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Information technology - Telecommunications and information exchange between systems - Private integrated services network - Inter-exchange signalling protocol - Path replacement additional network feature

  13. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

    Science.gov (United States)

    Yexin, Feng; Ji, Chen; Xin-Zheng, Li; Enge, Wang

    2016-01-01

    The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275008, 91021007, and 10974012) and the China Postdoctoral Science Foundation (Grant No. 2014M550005).

  14. Computational Acoustics: Computational PDEs, Pseudodifferential Equations, Path Integrals, and All That Jazz

    Science.gov (United States)

    Fishman, Louis

    2000-11-01

    The role of mathematical modeling in the physical sciences will be briefly addressed. Examples will focus on computational acoustics, with applications to underwater sound propagation, electromagnetic modeling, optics, and seismic inversion. Direct and inverse wave propagation problems in both the time and frequency domains will be considered. Focusing on fixed-frequency (elliptic) wave propagation problems, the usual, two-way, partial differential equation formulation will be exactly reformulated, in a well-posed manner, as a one-way (marching) problem. This is advantageous for both direct and inverse considerations, as well as stochastic modeling problems. The reformulation will require the introduction of pseudodifferential operators and their accompanying phase space analysis (calculus), in addition to path integral representations for the fundamental solutions and their subsequent computational algorithms. Unlike the more traditional, purely numerical applications of, for example, finite-difference and finite-element methods, this approach, in effect, writes the exact, or, more generally, the asymptotically correct, answer as a functional integral and, subsequently, computes it directly. The overall computational philosophy is to combine analysis, asymptotics, and numerical methods to attack complicated, real-world problems. Exact and asymptotic analysis will stress the complementary nature of the direct and inverse formulations, as well as indicating the explicit structural connections between the time- and frequency-domain solutions.

  15. On the Path Integral Loop Representation of (2+1) Lattice Non-Abelian Theory

    CERN Document Server

    Aroca, J M; Gambini, R

    1998-01-01

    A gauge invariant Hamiltonian representation for SU(2) in terms of a spin network basis is introduced. The vectors of the spin network basis are independent and the electric part of the Hamiltonian is diagonal in this representation. The corresponding path integral for SU(2) lattice gauge theory is expressed as a sum over colored surfaces, i.e. only involving the $j_p$ attached to the lattice plaquettes. This surfaces may be interpreted as the world sheets of the spin networks In 2+1 dimensions, this can be accomplished by working in a lattice dual to a tetrahedral lattice constructed on a face centered cubic Bravais lattice. On such a lattice, the integral of gauge variables over boundaries or singular lines - which now always bound three coloured surfaces - only contributes when four singular lines intersect at one vertex and can be explicitly computed producing a 6-j or Racah symbol. We performed a strong coupling expansion for the free energy. The convergence of the series expansions is quite different fr...

  16. Digital Integrator for Fast Accurate Measurement of Magnetic Flux by Rotating Coils

    CERN Document Server

    Arpaia, P; Spiezia, G

    2007-01-01

    A fast digital integrator (FDI) with dynamic accuracy and a trigger frequency higher than those of a portable digital integrator (PDI), which is a state-of-the-art instrument for magnetic measurements based on rotating coils, was developed for analyzing superconducting magnets in particle accelerators. Results of static and dynamic metrological characterization show how the FDI prototype is already capable of overcoming the dynamic performance of PDI as well as covering operating regions that used to be inaccessible

  17. Surface Response-based Behavioral Modeling of Accurate Digitizers a Case Study on a Fast Digital Integrator at CERN

    CERN Document Server

    Arpaia, P; Spiezia, G; Tiso, S

    2007-01-01

    A statistical approach to behavioral modeling for assessing dynamic metrological performance during the concept design of accurate digitizers is proposed. A surface-response approach based on statistical experiment design is exploited for avoiding unrealistic hypothesis of linearity, optimizing simulation, exploring operating conditions systematically, as well as verifying identification and validation uncertainty. An actual case study on the dynamic metrological characterization of a Fast Digital Integrator for high-performance magnetic measurements at the European Organization for Nuclear Research (CERN) is presented.

  18. Exact Green Function for a Dirac Particle in Presence of Two Orthogonal Plane Wave Fields. Path Integral Derivation

    Science.gov (United States)

    Ould-Lahoucine, H. K.; Chetouani, L.

    2012-07-01

    Exact Green function for a Dirac particle subject to a couple of orthogonal plane wave fields is obtained throughout a path integral approach. In addition, a suitable representation of the Dirac matrices is deduced so that the initial problem becomes the one of a free particle.

  19. Coherent-state path integral versus coarse-grained effective stochastic equation of motion: From reaction diffusion to stochastic sandpiles.

    Science.gov (United States)

    Wiese, Kay Jörg

    2016-04-01

    We derive and study two different formalisms used for nonequilibrium processes: the coherent-state path integral, and an effective, coarse-grained stochastic equation of motion. We first study the coherent-state path integral and the corresponding field theory, using the annihilation process A+A→A as an example. The field theory contains counterintuitive quartic vertices. We show how they can be interpreted in terms of a first-passage problem. Reformulating the coherent-state path integral as a stochastic equation of motion, the noise generically becomes imaginary. This renders it not only difficult to interpret, but leads to convergence problems at finite times. We then show how alternatively an effective coarse-grained stochastic equation of motion with real noise can be constructed. The procedure is similar in spirit to the derivation of the mean-field approximation for the Ising model, and the ensuing construction of its effective field theory. We finally apply our findings to stochastic Manna sandpiles. We show that the coherent-state path integral is inappropriate, or at least inconvenient. As an alternative, we derive and solve its mean-field approximation, which we then use to construct a coarse-grained stochastic equation of motion with real noise.

  20. Green function of the double-fractional Fokker-Planck equation: path integral and stochastic differential equations.

    Science.gov (United States)

    Kleinert, H; Zatloukal, V

    2013-11-01

    The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.

  1. Architectural constraints are a major factor reducing path integration accuracy in the rat head direction cell system

    Directory of Open Access Journals (Sweden)

    Hector James Ingram Page

    2015-02-01

    Full Text Available Head direction cells fire to signal the direction in which an animal's head is pointing. They are able to track head direction using only internally-derived information (path integration. In this simulation study we investigate the factors that affect path integration accuracy. Specifically, two major limiting factors are identified: rise time, the time after stimulation it takes for a neuron to start firing, and the presence of symmetric non-offset within-layer recurrent collateral connectivity. On the basis of the latter, the important prediction is made that head direction cell regions directly involved in path integration will not contain this type of connectivity; giving a theoretical explanation for architectural observations. Increased neuronal rise time is found to slow path integration, and the slowing effect for a given rise time is found to be more severe in the context of short conduction delays. Further work is suggested on the basis of our findings, which represent a valuable contribution to understanding of the head direction cell system.

  2. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    Science.gov (United States)

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  3. Multidimensional Genome-wide Analyses Show Accurate FVIII Integration by ZFN in Primary Human Cells

    Science.gov (United States)

    Sivalingam, Jaichandran; Kenanov, Dimitar; Han, Hao; Nirmal, Ajit Johnson; Ng, Wai Har; Lee, Sze Sing; Masilamani, Jeyakumar; Phan, Toan Thang; Maurer-Stroh, Sebastian; Kon, Oi Lian

    2016-01-01

    Costly coagulation factor VIII (FVIII) replacement therapy is a barrier to optimal clinical management of hemophilia A. Therapy using FVIII-secreting autologous primary cells is potentially efficacious and more affordable. Zinc finger nucleases (ZFN) mediate transgene integration into the AAVS1 locus but comprehensive evaluation of off-target genome effects is currently lacking. In light of serious adverse effects in clinical trials which employed genome-integrating viral vectors, this study evaluated potential genotoxicity of ZFN-mediated transgenesis using different techniques. We employed deep sequencing of predicted off-target sites, copy number analysis, whole-genome sequencing, and RNA-seq in primary human umbilical cord-lining epithelial cells (CLECs) with AAVS1 ZFN-mediated FVIII transgene integration. We combined molecular features to enhance the accuracy and activity of ZFN-mediated transgenesis. Our data showed a low frequency of ZFN-associated indels, no detectable off-target transgene integrations or chromosomal rearrangements. ZFN-modified CLECs had very few dysregulated transcripts and no evidence of activated oncogenic pathways. We also showed AAVS1 ZFN activity and durable FVIII transgene secretion in primary human dermal fibroblasts, bone marrow- and adipose tissue-derived stromal cells. Our study suggests that, with close attention to the molecular design of genome-modifying constructs, AAVS1 ZFN-mediated FVIII integration in several primary human cell types may be safe and efficacious. PMID:26689265

  4. Accurate integration of segmented x-ray optics using interfacing ribs

    Science.gov (United States)

    Civitani, Marta Maria; Basso, Stefano; Citterio, Oberto; Conconi, Paolo; Ghigo, Mauro; Pareschi, Giovanni; Proserpio, Laura; Salmaso, Bianca; Sironi, Giorgia; Spiga, Daniele; Tagliaferri, Gianpiero; Zambra, Alberto; Martelli, Francesco; Parodi, Giancarlo; Fumi, Pierluigi; Gallieni, Daniele; Tintori, Matteo; Bavdaz, Marcos; Wille, Eric

    2013-09-01

    Future lightweight and long-focal-length x-ray telescopes must guarantee a good angular resolution (e.g., 5 arc sec HEW) and reach an unprecedented large effective area. This goal can be reached with the slumping of borosilicate glass sheets that allow the fabrication of lightweight and low-cost x-ray optical units (XOU). These XOUs, based on mirror segments, have to be assembled together to form complete multishell Wolter-I optics. The technology for the fabrication and the integration of these XOUs is under development in Europe, funded by European Space Agency, and led by the Brera Observatory (INAF-OAB). While the achievement of the required surface accuracy on the glass segments by means of a hot slumping technique is a challenging aspect, adequate attention must be given to the correct integration and coalignment of the mirror segments into the XOUs. To this aim, an innovative assembly concept has been investigated, based on glass reinforcing ribs. The ribs connect pairs of consecutive foils, stacked into a XOU, with both structural and functional roles, providing robust monolithic stacks of mirror plates. Moreover, this integration concept allows the correction of residual low-frequency errors still present on the mirror foil profile after slumping. We present the integration concept, the related error budget, and the results achieved so far with a semi-robotic integration machine especially designed and realized to assemble slumped glass foils into XOUs.

  5. On the calculation of the static structure factor of path-integral quantum simple fluids far from exchange

    Science.gov (United States)

    Sesé, Luis M.

    This paper addresses several points of interest concerning the computation of the static structure factor of path-integral monatomic quantum fluids. First of all, the connection between the structure factor and the path-integral linear response pair radial correlation function is shown as its defining quantity by assuming a generalized Fermi's potential for the neutron- nuclei interactions, which is to be included in the general expression of the dynamic structure factor. Second, the possibilities of finding Ornstein-Zernike equations for full path-integral fluids, and also for the effective potential models of fluids derived from the path-integral formalism, are explored by working in the grand canonical ensemble. By so doing, the success and features for improvement of the weak-field approach used previously in this context of determining quantum static structure factors [SESE,L.M.,1996, Molec. Phys., 89, 1783; SESE, L.M., and LEDESMA,R., 1997, J. chem. Phys., 106, 1134] can be understood. New numerical applications are performed within this weak-field approach taking as probes the quantum hard-sphere fluid and dense fluid helium-4, the latter being described through LennardJones and Aziz-Slaman underlying interactions. The results show that the structure factors associated with the linear response and instantaneous path-integral pair radial correlation functions differ noticeably from each other with increasing quantum effects. In particular, the linear response description leads to more compressible fluids than the instantaneous one. Besides, the equality between the isothermal compressibilities fixed via the linear response and the quantum particle centre-of-gravity pair radial correlation functions does not hold beyond the situations that can be treated with the Gaussian Feynman-Hibbs effective potential picture. Comparison with experiment in the case of helium-4 (T = 4.2 K) reveals clearly that, under strong quantum conditions, an operative framework more

  6. Numerical path integral solution to strong Coulomb correlation in one dimensional Hooke's atom

    CERN Document Server

    Ruokosenmäki, Ilkka; Kylänpää, Ilkka; Rantala, Tapio T

    2015-01-01

    We present a new approach based on real time domain Feynman path integrals (RTPI) for electronic structure calculations and quantum dynamics, which includes correlations between particles exactly but within the numerical accuracy. We demonstrate that incoherent propagation by keeping the wave function real is a novel method for finding and simulation of the ground state, similar to Diffusion Monte Carlo (DMC) method, but introducing new useful tools lacking in DMC. We use 1D Hooke's atom, a two-electron system with very strong correlation, as our test case, which we solve with incoherent RTPI (iRTPI) and compare against DMC. This system provides an excellent test case due to exact solutions for some confinements and because in 1D the Coulomb singularity is stronger than in two or three dimensional space. The use of Monte Carlo grid is shown to be efficient for which we determine useful numerical parameters. Furthermore, we discuss another novel approach achieved by combining the strengths of iRTPI and DMC. We...

  7. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  8. The quantum nature of the hydrogen bond: insight from path-integral molecular dynamics

    Science.gov (United States)

    Walker, Brent; Li, Xin-Zheng; Michaelides, Angelos

    2011-03-01

    Hydrogen (H) bonds are weak, generally intermolecular bonds, that hold together much of soft matter, the condensed phases of water, network liquids, and many ferroelectric crystals. The small mass of H means H-bonds are inherently quantum mechanical; effects such as zero point motion and tunneling should be considered, although often are not. In particular, a consistent picture of quantum nuclear effects on the strength of H-bonds and consequently the structure of H-bonded systems is still absent. Here, we report ab initio path-integral molecular dynamics studies on the quantum nature of the H-bond. Systematic examination of a range of H-bonded systems shows that quantum nuclei weaken weak H-bonds but strengthen relatively strong ones. This correlation arises from a competition between anharmonic intermolecular bond bending and intramolecular bond stretching. A simple rule of thumb enables predictions to be made for H-bonded bonded materials in general with merely classical knowledge (e.g. H-bond strength or H-bond length). Our work rationalizes the contrasting influence of quantum nuclear dynamics on a wide variety of materials, including liquid water and HF, and highlights the need for flexible molecules in force-field based studies of quantum nuclear dynamics.

  9. Path-integral molecular dynamics simulation of 3C-SiC

    Science.gov (United States)

    Ramírez, Rafael; Herrero, Carlos P.; Hernández, Eduardo R.; Cardona, Manuel

    2008-01-01

    Molecular dynamics simulations of 3C-SiC have been performed as a function of pressure and temperature. These simulations treat both electrons and atomic nuclei by quantum mechanical methods. While the electronic structure of the solid is described by an efficient tight-binding Hamiltonian, the nuclei dynamics is treated by the path-integral formulation of statistical mechanics. To assess the relevance of nuclear quantum effects, the results of quantum simulations are compared to others where either the Si nuclei, the C nuclei, or both atomic nuclei are treated as classical particles. We find that the experimental thermal expansion of 3C-SiC is realistically reproduced by our simulations. The calculated bulk modulus of 3C-SiC and its pressure derivative at room temperature show also good agreement with the available experimental data. The effect of the electron-phonon interaction on the direct electronic gap of 3C-SiC has been calculated as a function of temperature and related to results obtained for bulk diamond and Si. Comparison to available experimental data shows satisfactory agreement, although we observe that the employed tight-binding model tends to overestimate the magnitude of the electron-phonon interaction. The effect of treating the atomic nuclei as classical particles on the direct gap of 3C-SiC has been assessed. We find that nonlinear quantum effects related to the atomic masses are particularly relevant at temperatures below 250K .

  10. Geometric isotope effects on small chloride ion water clusters with path integral molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [Department of Chemistry, Tsukuba University, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan); Suzuki, Kimichi [Research Institute for Nanosystem, National Institute of Advanced Industrial Science and Technology, Chuo-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Nagashima, Umpei, E-mail: u.nagashima@aist.go.jp [Department of Chemistry, Tsukuba University, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan); Research Institute for Nanosystem, National Institute of Advanced Industrial Science and Technology, Chuo-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of Science, Yokohama-City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan); Yan, Shiwei [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2013-11-29

    Highlights: • PIMD simulations with PM6-DH+ potential are carried out for Cl{sup −}(H{sub 2}O){sub n} clusters. • The geometric isotope effects on the rearrangement of single and multi shell structures are presented. • The competition of intramolecular and intermolecular nuclear quantum effects on the cluster structures is shown. • The correlations between r(Cl…O) and other vibration motions are discussed. - Abstract: The geometric isotope effects on the structures of hydrated chloride ionic hydrogen bonded clusters are explored by carrying out path integral molecular dynamics simulations. First, an outer shell coordinate is selected to display the rearrangement of single and multi hydration shell cluster structures. Next, to show the competition of intramolecular and intermolecular nuclear quantum effects, the intramolecular OH{sup ∗} stretching and intermolecular ion–water wagging motions are studied for single and multi shell structures, respectively. The results indicate that the intermolecular nuclear quantum effects stabilize the ionic hydrogen bonds in single shell structures, while they are destabilized through the competition with intramolecular nuclear quantum effects in multi shell structures. In addition, the correlations between ion–water stretching motion and other cluster vibrational coordinates are discussed. The results indicate that the intermolecular nuclear quantum effects on the cluster structures are strongly related to the cooperation of the water–water hydrogen bond interactions.

  11. Path integral Monte Carlo and density functional molecular dynamics simulations of hot, dense helium

    Science.gov (United States)

    Militzer, B.

    2009-04-01

    Two first-principles simulation techniques, path integral Monte Carlo (PIMC) and density functional molecular dynamics (DFT-MD), are applied to study hot, dense helium in the density-temperature range of 0.387-5.35gcm-3 and 500K-1.28×108K . One coherent equation of state is derived by combining DFT-MD data at lower temperatures with PIMC results at higher temperatures. Good agreement between both techniques is found in an intermediate-temperature range. For the highest temperatures, the PIMC results converge to the Debye-Hückel limiting law. In order to derive the entropy, a thermodynamically consistent free-energy fit is used that reproduces the internal energies and pressure derived from the first-principles simulations. The equation of state is presented in the form of a table as well as a fit and is compared with different free-energy models. Pair-correlation functions and the electronic density of states are discussed. Shock Hugoniot curves are compared with recent laser shock-wave experiments.

  12. Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. II. Transport across impurities

    Science.gov (United States)

    Mühlbacher, Lothar; Ankerhold, Joachim

    2005-05-01

    Electron transfer (ET) across molecular chains including an impurity is studied based on a recently improved real-time path-integral Monte Carlo (PIMC) approach [L. Mühlbacher, J. Ankerhold, and C. Escher, J. Chem. Phys. 121 12696 (2004)]. The reduced electronic dynamics is studied for various bridge lengths and defect site energies. By determining intersite hopping rates from PIMC simulations up to moderate times, the relaxation process in the extreme long-time limit is captured within a sequential transfer model. The total transfer rate is extracted and shown to be enhanced for certain defect site energies. Superexchange turns out to be relevant for extreme gap energies only and then gives rise to different dynamical signatures for high- and low-lying defects. Further, it is revealed that the entire bridge compound approaches a steady state on a much shorter time scale than that related to the total transfer. This allows for a simplified description of ET along donor-bridge-acceptor systems in the long-time range.

  13. Quantum tautomerization in porphycene and its isotopomers: Path-integral molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Takehiro; Sugawara, Shuichi [Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Shiga, Motoyuki [Center for Computational Science and E-systems, Japan Atomic Energy Agency, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa City, Chiba 277-8563 (Japan); Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of Nanobioscience, Yokohama-City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)

    2012-02-06

    Highlights: Black-Right-Pointing-Pointer Double proton transfer mechanisms in porphycene were studied with quantum simulations. Black-Right-Pointing-Pointer Both isotopic substitution and temperature significantly affect the transfer mechanism. Black-Right-Pointing-Pointer Nuclear quantum effects are playing important roles in the transfer mechanism. - Abstract: Path-integral molecular dynamics simulations have been performed for porphycene and its isotopic variants in order to understand the effect of isotopic substitution of inner protons on the double proton transfer mechanism. We have used an on-the-fly direct dynamics technique at the semiempirical PM6 level combined with specific reaction parameterization. Our quantum simulations show that double proton transfer of the unsubstituted porphycene at T = 300 K mainly occurs via a so-called concerted mechanism through the D{sub 2h} second-order saddle point. In addition, we found that both isotopic substitution and temperature significantly affect the double proton transfer mechanism. For example, the contribution of the stepwise mechanism increases with a temperature increase. We have also carried out hypothetical simulations with the porphycene configurations being completely planar. It has been found that out-of-plane vibrational motions significantly decrease the contribution of the concerted proton transfer mechanism.

  14. Neural Network-Based Solutions for Stochastic Optimal Control Using Path Integrals.

    Science.gov (United States)

    Rajagopal, Karthikeyan; Balakrishnan, Sivasubramanya Nadar; Busemeyer, Jerome R

    2017-03-01

    In this paper, an offline approximate dynamic programming approach using neural networks is proposed for solving a class of finite horizon stochastic optimal control problems. There are two approaches available in the literature, one based on stochastic maximum principle (SMP) formalism and the other based on solving the stochastic Hamilton-Jacobi-Bellman (HJB) equation. However, in the presence of noise, the SMP formalism becomes complex and results in having to solve a couple of backward stochastic differential equations. Hence, current solution methodologies typically ignore the noise effect. On the other hand, the inclusion of noise in the HJB framework is very straightforward. Furthermore, the stochastic HJB equation of a control-affine nonlinear stochastic system with a quadratic control cost function and an arbitrary state cost function can be formulated as a path integral (PI) problem. However, due to curse of dimensionality, it might not be possible to utilize the PI formulation for obtaining comprehensive solutions over the entire operating domain. A neural network structure called the adaptive critic design paradigm is used to effectively handle this difficulty. In this paper, a novel adaptive critic approach using the PI formulation is proposed for solving stochastic optimal control problems. The potential of the algorithm is demonstrated through simulation results from a couple of benchmark problems.

  15. Equilibrium fractionation of H and O isotopes in water from path integral molecular dynamics

    Science.gov (United States)

    Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Ferlat, Guillaume; Vuilleumier, Rodolphe; Mauri, Francesco

    2014-06-01

    The equilibrium fractionation factor between two phases is of importance for the understanding of many planetary and environmental processes. Although thermodynamic equilibrium can be achieved between minerals at high temperature, many natural processes involve reactions between liquids or aqueous solutions and solids. For crystals, the fractionation factor α can be theoretically determined using a statistical thermodynamic approach based on the vibrational properties of the phases. These calculations are mostly performed in the harmonic approximation, using empirical or ab-initio force fields. In the case of aperiodic and dynamic systems such as liquids or solutions, similar calculations can be done using finite-size molecular clusters or snapshots obtained from molecular dynamics (MD) runs. It is however difficult to assess the effect of these approximate models on the isotopic fractionation properties. In this work we present a systematic study of the calculation of the D/H and 18O/16O equilibrium fractionation factors in water for the liquid/vapour and ice/vapour phases using several levels of theory within the simulations. Namely, we use a thermodynamic integration approach based on Path Integral MD calculations (PIMD) and an empirical potential model of water. Compared with standard MD, PIMD takes into account quantum effects in the thermodynamic modeling of systems and the exact fractionation factor for a given potential can be obtained. We compare these exact results with those of modeling strategies usually used, which involve the mapping of the quantum system on its harmonic counterpart. The results show the importance of including configurational disorder for the estimation of isotope fractionation in liquid phases. In addition, the convergence of the fractionation factor as a function of parameters such as the size of the simulated system and multiple isotope substitution is analyzed, showing that isotope fractionation is essentially a local effect in

  16. Multi Sensor Data Integration for AN Accurate 3d Model Generation

    Science.gov (United States)

    Chhatkuli, S.; Satoh, T.; Tachibana, K.

    2015-05-01

    The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other's weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  17. Study of time-accurate integration of the variable-density Navier-Stokes equations

    Science.gov (United States)

    Lu, Xiaoyi; Pantano, Carlos

    2015-11-01

    We present several theoretical elements that affect time-consistent integration of the low-Mach number approximation of variable-density Navier-Stokes equations. The goal is for velocity, pressure, density, and scalars to achieve uniform order of accuracy, consistent with the time integrator being used. We show examples of second-order (using Crank-Nicolson and Adams-Bashforth) and third-order (using additive semi-implicit Runge-Kutta) uniform convergence with the proposed conceptual framework. Furthermore, the consistent approach can be extended to other time integrators. In addition, the method is formulated using approximate/incomplete factorization methods for easy incorporation in existing solvers. One of the observed benefits of the proposed approach is improved stability, even for large density difference, in comparison with other existing formulations. A linearized stability analysis is also carried out for some test problems to better understand the behavior of the approach. This work was supported in part by the Department of Energy, National Nuclear Security Administration, under award no. DE-NA0002382 and the California Institute of Technology.

  18. Different strategies for spatial updating in yaw and pitch path integration

    Directory of Open Access Journals (Sweden)

    Caspar Mathias Goeke

    2013-02-01

    Full Text Available Research in spatial navigation revealed the existence of discrete strategies defined by the use of distinct reference frames during virtual path integration. The present study investigated the distribution of these navigation strategies as a function of gender, video gaming experience, and self-estimates of spatial navigation abilities in a population of 300 subjects. Participants watched videos of virtual passages through a star-field with one turn in either the horizontal (yaw or the vertical (pitch axis. At the end of a passage they selected one out of four homing arrows to indicate the initial starting location. To solve the task, participants could employ two discrete strategies, navigating within either an egocentric or an allocentric reference frame. The majority of valid subjects (232/260 consistently used the same strategy in more than 75% of all trials. With that approach 33.1% of all participants were classified as Turners (using an egocentric reference frame on both axes and 46.5% as Nonturners (using an allocentric reference frame on both axes. 9.2% of all participants consistently used an egocentric reference frame in the yaw plane but an allocentric reference frame in the pitch plane (Switcher. Investigating the influence of gender on navigation strategies revealed that females predominantly used the Nonturner strategy while males used both the Turner and the Nonturner strategy with comparable probabilities. Other than expected, video gaming experience did not influence strategy use. Based on a strong quantitative basis with the sample size about an order of magnitude larger than in typical psychophysical studies these results demonstrate that most people reliably use one out of three possible navigation strategies (Turners, Nonturners, Switchers for spatial updating and provides a sound estimate of how those strategies are distributed within the general population.

  19. Statistical mechanics and field theory. [Path integrals, lattices, pseudofree vertex model

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, S.A.

    1979-05-01

    Field theory methods are applied to statistical mechanics. Statistical systems are related to fermionic-like field theories through a path integral representation. Considered are the Ising model, the free-fermion model, and close-packed dimer problems on various lattices. Graphical calculational techniques are developed. They are powerful and yield a simple procedure to compute the vacuum expectation value of an arbitrary product of Ising spin variables. From a field theorist's point of view, this is the simplest most logical derivation of the Ising model partition function and correlation functions. This work promises to open a new area of physics research when the methods are used to approximate unsolved problems. By the above methods a new model named the 128 pseudo-free vertex model is solved. Statistical mechanics intuition is applied to field theories. It is shown that certain relativistic field theories are equivalent to classical interacting gases. Using this analogy many results are obtained, particularly for the Sine-Gordon field theory. Quark confinement is considered. Although not a proof of confinement, a logical, esthetic, and simple picture is presented of how confinement works. A key ingredient is the insight gained by using an analog statistical system consisting of a gas of macromolecules. This analogy allows the computation of Wilson loops in the presence of topological vortices and when symmetry breakdown occurs in the topological quantum number. Topological symmetry breakdown calculations are placed on approximately the same level of rigor as instanton calculations. The picture of confinement that emerges is similar to the dual Meissner type advocated by Mandelstam. Before topological symmetry breakdown, QCD has monopoles bound linearly together by three topological strings. Topological symmetry breakdown corresponds to a new phase where these monopoles are liberated. It is these liberated monopoles that confine quarks. 64 references.

  20. Proton transport in triflic acid hydrates studied via path integral car-parrinello molecular dynamics.

    Science.gov (United States)

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2009-12-31

    The mono-, di-, and tetrahydrates of trifluoromethanesulfonic acid, which contain characteristic H(3)O(+), H(5)O(2)(+), and H(9)O(4)(+) structures, provide model systems for understanding proton transport in materials with high perfluorosulfonic acid density such as perfluorosulfonic acid membranes commonly employed in hydrogen fuel cells. Ab initio molecular dynamics simulations indicate that protons in these solids are predisposed to transfer to the water most strongly bound to sulfonate groups via a Grotthuss-type mechanism, but quickly return to the most solvated defect structure either due to the lack of a nearby species to stabilize the new defect or a preference for the proton to be maximally hydrated. Path integral molecular dynamics of the mono- and dihydrate reveal significant quantum effects that facilitate proton transfer to the "presolvated" water or SO(3)(-) in the first solvation shell and increase the Zundel character of all the defects. These trends are quantified in free energy profiles for each bonding environment. Hydrogen bonding criteria for HOH-OH(2) and HOH-O(3)S are extracted from the two-dimensional potential of mean force. The quantum radial distribution function, radius of gyration, and root-mean-square displacement position correlation function show that the protonic charge is distributed over two or more water molecules. Metastable structural defects with one excess proton shared between two sulfonate groups and another Zundel or Eigen type cation defect are found for the mono- and dihydrate but not for the tetrahydrate crystal. Results for the tetrahydrate native crystal exhibit minor differences at 210 and 250 K. IR spectra are calculated for all native and stable defect structures. Graph theory techniques are used to characterize the chain lengths and ring sizes in the hydrogen bond network. Low conductivities when limited water is present may be attributable to trapping of protons between SO(3)(-) groups and the increased

  1. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the path to ignition

    Energy Technology Data Exchange (ETDEWEB)

    Lagin, L.J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550 (United States)], E-mail: lagin1@llnl.gov; Bettenhausen, R.C.; Bowers, G.A.; Carey, R.W.; Edwards, O.D.; Estes, C.M.; Demaret, R.D.; Ferguson, S.W.; Fisher, J.M.; Ho, J.C.; Ludwigsen, A.P.; Mathisen, D.G.; Marshall, C.D.; Matone, J.T.; McGuigan, D.L.; Sanchez, R.J.; Stout, E.A.; Tekle, E.A.; Townsend, S.L.; Van Arsdall, P.J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550 (United States)] (and others)

    2008-04-15

    final optics, target positioners and diagnostics. Additional capabilities to support fusion ignition shots in a National Ignition Campaign (NIC) beginning in 2010 will include a cryogenic target system, target diagnostics, and integrated experimental shot data analysis with tools for data visualization and archiving. This talk discusses the current status of the control system implementation and discusses the plan to complete the control system on the path to ignition.

  2. Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return

    Directory of Open Access Journals (Sweden)

    S. Ishii

    2013-05-01

    Full Text Available The National Institute of Information and Communications Technology (NICT has made a great deal of effort to develop a coherent 2 μm differential absorption and wind lidar (Co2DiaWiL for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA lidar experiments were conducted using the Co2DiaWiL and a foothill target (tree and ground surface located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2 μm IPDA lidar was examined in detail using the CO2 concentration measured by the foothill reflection. The precisions of CO2 measurements for the foothill target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for XCO2 (column-averaged dry air mixing ratio of CO2 measurement with a precision of 1–2 ppm in order to observe temporal and spatial variations in the CO2. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the foothill target made comparison difficult, the CO2 volume mixing ratio obtained by the Co2DiaWiL measurements for the foothill target and atmospheric returns was about −5 ppm lower than the 5 min running averages of the in situ sensor. Not only actual difference of sensing volume or the natural variability of CO2 but also the fluctuations of temperature could cause this difference. The statistical results indicated that there were no biases between the foothill target and atmospheric return measurements. The 2 μm coherent IPDA lidar can detect the CO2 volume mixing ratio change of 3% in the 5 min signal integration. In order to detect the position of the foothill target, to measure a range with a high SNR (signal-to-noise ratio, and to reduce uncertainty due to the presence of aerosols and clouds, it is

  3. High Order Path Integrals Made Easy: A Precise Assessment of Nuclear Quantum Effects in Liquid Water and its Isotopomers

    CERN Document Server

    Kapil, Venkat; Ceriotti, Michele

    2016-01-01

    The quantum nature of light nuclei influences the structural and dynamic properties of matter up to room temperature and even above. The precise description of such effects in atomistic mod- elling is possible by employing path integral techniques, which involve a considerable computational overhead due to the need of simulating multiple replicas of the system. Many techniques have been suggested to reduce the required number of replicas, including high-order factorizations of the Boltzmann operator, that are particularly attractive for high-precision and low-temperature scenar- ios. Unfortunately, to date several technical challenges have prevented a widespread use of these approaches to study nuclear quantum effects in condensed-phase systems. Here we introduce an inexpensive molecular dynamics scheme that overcomes these limitations, thus making it possible to exploit the improved convergence of high-order path integrals without having to sacrifice the stability, convenience and flexibility of conventional...

  4. Path integral action of a particle in a magnetic field in the noncommutative plane and the Aharonov-Bohm effect

    CERN Document Server

    Gangopadhyay, Sunandan

    2014-01-01

    The formulation of noncommutative quantum mechanics as a quantum system represented in the space of Hilbert-Schmidt operators is used to systematically derive, using the standard time slicing procedure, the path integral action for a particle moving in the noncommutative plane and in the presence of a magnetic field and an arbitrary potential. Using this action, the equation of motion and the energy spectrum for the partcle are obtained explicitly. The Aharonov-Bohm phase is derived using a variety of methods and several dualities between this system and other commutative and noncommutative systems are demonstrated. Finally, the equivalence of the path integral formulation with the noncommutative Schr\\"{o}dinger equation is also established.

  5. Car-Parrinello and path integral molecular dynamics study of the hydrogen bond in the chloroacetic acid dimer system

    Science.gov (United States)

    Durlak, Piotr; Morrison, Carole A.; Middlemiss, Derek S.; Latajka, Zdzislaw

    2007-08-01

    We have studied the double proton transfer (DPT) reaction in the cyclic dimer of chloroacetic acid using both classical and path integral Car-Parrinello molecular dynamics. We also attempt to quantify the errors in the potential energy surface that arise from the use of a pure density functional. In the classical dynamics a clear reaction mechanism can be identified, where asynchronized DPT arises due to coupling between the O-H stretching oscillator and several low energy intermolecular vibrational modes. This mechanism is considerably altered when quantum tunneling is permitted in the simulation. The introduction of path integrals leads to considerable changes in the thermally averaged molecular geometry, leading to shorter and more centered hydrogen bond linkages.

  6. Variational path integral molecular dynamics and hybrid Monte Carlo algorithms using a fourth order propagator with applications to molecular systems

    Science.gov (United States)

    Kamibayashi, Yuki; Miura, Shinichi

    2016-08-01

    In the present study, variational path integral molecular dynamics and associated hybrid Monte Carlo (HMC) methods have been developed on the basis of a fourth order approximation of a density operator. To reveal various parameter dependence of physical quantities, we analytically solve one dimensional harmonic oscillators by the variational path integral; as a byproduct, we obtain the analytical expression of the discretized density matrix using the fourth order approximation for the oscillators. Then, we apply our methods to realistic systems like a water molecule and a para-hydrogen cluster. In the HMC, we adopt two level description to avoid the time consuming Hessian evaluation. For the systems examined in this paper, the HMC method is found to be about three times more efficient than the molecular dynamics method if appropriate HMC parameters are adopted; the advantage of the HMC method is suggested to be more evident for systems described by many body interaction.

  7. Ab initio path integral molecular dynamics simulation study on the dihydrogen bond of NH4+⋯BeH2

    Science.gov (United States)

    Hayashi, Aiko; Shiga, Motoyuki; Tachikawa, Masanori

    2005-07-01

    An ab initio path integral molecular dynamics simulation has been performed to study the quantum and thermal effects of a dihydrogen bonded cation, NH4+⋯BeH2. In this system, an attractive interaction exists between two neighboring hydrogen atoms as N δ- H δ+ ⋯H δ- Be δ+ involving large-amplitude of vibration. Some properties playing a key role for this dihydrogen bonded system, such as the bond length, bond angle, and distribution of atomic charges, are investigated in detail by comparing the results of path integral and classical molecular dynamics with those of the equilibrium structure. It was found that the atomic charges of H δ+ and H δ- are decreased and the dihydrogen H δ+ ⋯H δ- bond length is expanded as the thermal and zero-point quantum effects.

  8. Qualitative Evaluation of Project P.A.T.H.S.: An Integration of Findings Based on Program Participants

    Directory of Open Access Journals (Sweden)

    Daniel T. L. Shek

    2012-01-01

    Full Text Available An integration of the qualitative evaluation findings collected in different cohorts of students who participated in Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes (n=252 students in 29 focus groups was carried out. With specific focus on how the informants described the program, results showed that the descriptions were mainly positive in nature, suggesting that the program was well received by the program participants. When the informants were invited to name three metaphors that could stand for the program, positive metaphors were commonly used. Beneficial effects of the program in different psychosocial domains were also voiced by the program participants. The qualitative findings integrated in this paper provide further support for the effectiveness of the Tier 1 Program of Project P.A.T.H.S. in promoting holistic development in Chinese adolescents in Hong Kong.

  9. AN ACCURATE ORBITAL INTEGRATOR FOR THE RESTRICTED THREE-BODY PROBLEM AS A SPECIAL CASE OF THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    Energy Technology Data Exchange (ETDEWEB)

    Minesaki, Yukitaka [Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514 (Japan)

    2013-08-01

    For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators.

  10. Hooke's Atom in an Arbitrary External Electric Field: Analytical Solutions of Two-Electron Problem by Path Integral Approach

    Institute of Scientific and Technical Information of China (English)

    CAI Liang; ZHANG Ping; YANG Tao; PAN Xiao-Yin

    2011-01-01

    By using the path integral approach, we investigate the problem of Hooke's atom (two electrons interacting with Coulomb potential in an external harmonic-oscillator potential) in an arbitrary time-dependent electric field. For a certain infinite set of discrete oscillator frequencies, we obtain the analytical solutions. The ground state polarization of the atom is then calculated. The same result is also obtained through linear response theory.

  11. Calculation of Internal Energy and Pressure of Dense hydrogen Plasma by Direct Path Integral Monte Carlo Approach

    Institute of Scientific and Technical Information of China (English)

    刘松芬; 胡北来

    2003-01-01

    The internal energy and pressure of dense hydrogen plasma are calculated by the direct path integral Monte Carlo approach. The Kelbg potential is used as interaction potentials both between electrons and between protons and electrons in the calculation. The complete formulae for internal energy and pressure in dense hydrogen plasma derived for the simulation are presented. The correctness of the derived formulae are validated by the obtained simulation results. The numerical results are discussed in details.

  12. Inclusion of trial functions in the Langevin equation path integral ground state method: application to parahydrogen clusters and their isotopologues.

    Science.gov (United States)

    Schmidt, Matthew; Constable, Steve; Ing, Christopher; Roy, Pierre-Nicholas

    2014-06-21

    We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψT, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen for cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 - 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.

  13. Inclusion of trial functions in the Langevin equation path integral ground state method: Application to parahydrogen clusters and their isotopologues

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Matthew; Constable, Steve; Ing, Christopher; Roy, Pierre-Nicholas, E-mail: pnroy@uwaterloo.ca [Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-06-21

    We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψ{sub T}, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen for cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 − 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.

  14. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics.

    Science.gov (United States)

    Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

    2011-06-16

    Trifluoromethanesulfonic acid hydrates provide a well-defined system to study proton dissociation and transport in perfluorosulfonic acid membranes, typically used as the electrolyte in hydrogen fuel cells, in the limit of minimal water. The triflic acid pentahydrate crystal (CF(3)SO(3)H·5H(2)O) is sufficiently aqueous that it contains an extended three-dimensional water network. Despite it being extended, however, long-range proton transport along the network is structurally unfavorable and would require considerable rearrangement. Nevertheless, the triflic acid pentahydrate crystal system can provide a clear picture of the preferred locations of local protonic defects in the water network, which provides insights about related structures in the disordered, low-hydration environment of perfluorosulfonic acid membranes. Ab initio molecular dynamics simulations reveal that the proton defect is most likely to transfer to the closest water that has the expected presolvation and only contains water in its first solvation shell. Unlike the tetrahydrate of triflic acid (CF(3)SO(3)H·4H(2)O), there is no evidence of the proton preferentially transferring to a water molecule bridging two of the sulfonate groups. However, this could be an artifact of the crystal structure since the only such water molecule is separated from the proton by long O-O distances. Hydrogen bonding criteria, using the two-dimensional potential of mean force, are extracted. Radial distribution functions, free energy profiles, radii of gyration, and the root-mean-square displacement computed from ab initio path integral molecular dynamics simulations reveal that quantum effects do significantly extend the size of the protonic defect and increase the frequency of proton transfer events by nearly 15%. The calculated IR spectra confirm that the dominant protonic defect mostly exists as an Eigen cation but contains some Zundel ion characteristics. Chain lengths and ring sizes determined from the

  15. Real-time path-integral approach for dissipative quantum dot-cavity quantum electrodynamics: impure dephasing-induced effects

    Science.gov (United States)

    Nahri, Davoud G.; Mathkoor, Faisal H. A.; Ooi, C. H. Raymond

    2017-02-01

    A dissipative quantum dot (QD)-cavity system, where the QD is initially prepared in the excited state with no photon in the cavity, coupled to a longitudinal acoustic (LA) phonon reservoir is studied using a numerically exact real-time path-integral approach. Three distinct dynamical regimes of weak (WC), strong (SC), and coherent coupling (CC) are discussed and more accurate conditions identifying them are presented. Our results show that to have the CC regime, which is characterized by clear vacuum Rabi oscillation (VRO), vacuum Rabi splitting (VRS) should be larger than the sum of the widths of the corresponding peaks. In order to distinguish between contributions of population decay and impure dephasing, induced by LA phonon bath and the dissipations, we propose a two-part phenomenological expression, corresponding to the population decay and impure dephasing, which fits the QD-cavity decay curves perfectly and is used to calculate the corresponding spectra. We demonstrate that the effective population decay rate (the emission rate) increases from the carrier recombination rate to a maximum value, which is the mean of the QD and cavity dissipation rates, with QD-cavity coupling strength. To study the role of the effective impure dephasing rate on the width of the central peak of the spectra we introduce a quantity that can also be applied in determining the distinct coupling regimes. This quantity enables us to identify the onset of the SC regime as the point where the impure dephasing term begins to contribute to the central band of the spectrum significantly, as a result of the existence of VRO with a very small frequency (unclear VRO) at the corresponding decay curve. Its contribution to the width of the central peak increases with the coupling strength up to the onset of the CC regime, then reduces as a result of the appearance of sidebands in the spectra, which originates from clear VRO. The effective population decay and impure dephasing rate contribute

  16. Improved methods for Feynman path integral calculations of vibrational-rotational free energies and application to isotopic fractionation of hydrated chloride ions.

    Science.gov (United States)

    Mielke, Steven L; Truhlar, Donald G

    2009-04-23

    We present two enhancements to our methods for calculating vibrational-rotational free energies by Feynman path integrals, namely, a sequential sectioning scheme for efficiently generating random free-particle paths and a stratified sampling scheme that uses the energy of the path centroids. These improved methods are used with three interaction potentials to calculate equilibrium constants for the fractionation behavior of Cl(-) hydration in the presence of a gas-phase mixture of H(2)O, D(2)O, and HDO. Ion cyclotron resonance experiments indicate that the equilibrium constant, K(eq), for the reaction Cl(H(2)O)(-) + D(2)O right harpoon over left harpoon Cl(D(2)O)(-) + H(2)O is 0.76, whereas the three theoretical predictions are 0.946, 0.979, and 1.20. Similarly, the experimental K(eq) for the Cl(H(2)O)(-) + HDO right harpoon over left harpoon Cl(HDO)(-) + H(2)O reaction is 0.64 as compared to theoretical values of 0.972, 0.998, and 1.10. Although Cl(H(2)O)(-) has a large degree of anharmonicity, K(eq) values calculated with the harmonic oscillator rigid rotator (HORR) approximation agree with the accurate treatment to within better than 2% in all cases. Results of a variety of electronic structure calculations, including coupled cluster and multireference configuration interaction calculations, with either the HORR approximation or with anharmonicity estimated via second-order vibrational perturbation theory, all agree well with the equilibrium constants obtained from the analytical surfaces.

  17. Path integral approach to the Wigner representation of canonical density operators for discrete systems coupled to harmonic baths

    CERN Document Server

    Montoya-Castillo, Andrés

    2016-01-01

    We derive a semi-analytical form for the Wigner transform for the canonical density operator of a discrete system coupled to a harmonic bath based on the path integral expansion of the Boltzmann factor. The introduction of this simple and controllable approach allows for the exact rendering of the canonical distribution and permits systematic convergence of static properties with respect to the number of path integral steps. In additions, the expressions derived here provide an exact and facile interface with quasi- and semi-classical dynamical methods, which enables the direct calculation of equilibrium time correlation functions within a wide array of approaches. We demonstrate that the present method represents a practical path for the calculation of thermodynamic data for the spin-boson and related systems. We illustrate the power of the present approach by detailing the improvement of the quality of Ehrenfest theory for the correlation function $\\mathcal{C}_{zz}(t) = \\mathrm{Re}\\langle \\sigma_z(0)\\sigma_...

  18. Path integral approach to the Wigner representation of canonical density operators for discrete systems coupled to harmonic baths

    Science.gov (United States)

    Montoya-Castillo, Andrés; Reichman, David R.

    2017-01-01

    We derive a semi-analytical form for the Wigner transform for the canonical density operator of a discrete system coupled to a harmonic bath based on the path integral expansion of the Boltzmann factor. The introduction of this simple and controllable approach allows for the exact rendering of the canonical distribution and permits systematic convergence of static properties with respect to the number of path integral steps. In addition, the expressions derived here provide an exact and facile interface with quasi- and semi-classical dynamical methods, which enables the direct calculation of equilibrium time correlation functions within a wide array of approaches. We demonstrate that the present method represents a practical path for the calculation of thermodynamic data for the spin-boson and related systems. We illustrate the power of the present approach by detailing the improvement of the quality of Ehrenfest theory for the correlation function Cz z(t ) =Re ⟨σz(0 ) σz(t ) ⟩ for the spin-boson model with systematic convergence to the exact sampling function. Importantly, the numerically exact nature of the scheme presented here and its compatibility with semiclassical methods allows for the systematic testing of commonly used approximations for the Wigner-transformed canonical density.

  19. Qualitative Evaluation of the Project P.A.T.H.S.: An Integration of Findings Based on Program Implementers

    Directory of Open Access Journals (Sweden)

    Daniel T. L. Shek

    2012-01-01

    Full Text Available An integration of the qualitative evaluation findings collected from program implementers conducting the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes in different years (n=177 participants in 36 focus groups was carried out. General qualitative data analyses utilizing intra and interrater reliability techniques were performed. Results showed that the descriptors used to describe the program and the metaphors named by the informants that could stand for the program were generally positive in nature. Program participants also perceived the program to be beneficial to the development of the students in different psychosocial domains. The present study further supports the effectiveness of the Tier 1 Program of the Project P.A.T.H.S. in Hong Kong based on the perspective of the program implementers.

  20. Design of an aluminium bicycle path integrated in a steel bridge

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Burggraaf, H.G.

    2007-01-01

    This paper describes the design of the aluminium structure of a bicycle path which is mounted on an existing steel brige. The benefits of aluminium, being low self weight, freedom in design obtained by extrusion and good corrosion resistance were maximal utilized. One of the main drawbacks of alumin

  1. A novel, integrated PET-guided MRS technique resulting in more accurate initial diagnosis of high-grade glioma.

    Science.gov (United States)

    Kim, Ellen S; Satter, Martin; Reed, Marilyn; Fadell, Ronald; Kardan, Arash

    2016-06-01

    Glioblastoma multiforme (GBM) is the most common and lethal malignant glioma in adults. Currently, the modality of choice for diagnosing brain tumor is high-resolution magnetic resonance imaging (MRI) with contrast, which provides anatomic detail and localization. Studies have demonstrated, however, that MRI may have limited utility in delineating the full tumor extent precisely. Studies suggest that MR spectroscopy (MRS) can also be used to distinguish high-grade from low-grade gliomas. However, due to operator dependent variables and the heterogeneous nature of gliomas, the potential for error in diagnostic accuracy with MRS is a concern. Positron emission tomography (PET) imaging with (11)C-methionine (MET) and (18)F-fluorodeoxyglucose (FDG) has been shown to add additional information with respect to tumor grade, extent, and prognosis based on the premise of biochemical changes preceding anatomic changes. Combined PET/MRS is a technique that integrates information from PET in guiding the location for the most accurate metabolic characterization of a lesion via MRS. We describe a case of glioblastoma multiforme in which MRS was initially non-diagnostic for malignancy, but when MRS was repeated with PET guidance, demonstrated elevated choline/N-acetylaspartate (Cho/NAA) ratio in the right parietal mass consistent with a high-grade malignancy. Stereotactic biopsy, followed by PET image-guided resection, confirmed the diagnosis of grade IV GBM. To our knowledge, this is the first reported case of an integrated PET/MRS technique for the voxel placement of MRS. Our findings suggest that integrated PET/MRS may potentially improve diagnostic accuracy in high-grade gliomas.

  2. Nuclear quantum effect on hydrogen adsorption site of zeolite-templated carbon model using path integral molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kimichi, E-mail: ki-suzuki@aist.go.jp [Research Institute for Nanosystem, National Institute of Advanced Industrial Science and Technology, Chuo-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Kayanuma, Megumi [Institut de Chimie, UMR 7177 CNRS/Universite de Strasbourg, 4 rue Blaise Pascal 67000, Strasbourg (France); Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of Science, Yokohama-city University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan); Ogawa, Hiroshi [Research Institute for Nanosystem, National Institute of Advanced Industrial Science and Technology, Chuo-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Nishihara, Hirotomo; Kyotani, Takashi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Nagashima, Umpei [Research Institute for Nanosystem, National Institute of Advanced Industrial Science and Technology, Chuo-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2011-09-15

    Research highlights: > The stable hydrogen adsorption sites on C{sub 36}H{sub 12} were evaluated at 300 K using path integral molecular dynamics. > In the static MO calculation and conventional MD simulation, five stable adsorption sites of hydrogen atom were found. > In path integral simulation, only four stable adsorption sites were obtained. > The thermal and nuclear quantum effects are key role to settle the hydrogen adsorption sites on carbon materials. - Abstract: To settle the hydrogen adsorption sites on buckybowl C{sub 36}H{sub 12}, which is picked up from zeolite-templated carbon (ZTC), we have performed path integral molecular dynamics (PIMD) simulation including thermal and nuclear quantum fluctuations under semi-empirical PM3 method. In the static PM3 calculation and classical simulation the five stable adsorption sites of hydrogen atom are optimized inside a buckybowl C{sub 36}H{sub 12}, which are labeled as {alpha}-, {beta}{sub 1}-, {beta}{sub 2}-, {gamma}-, and {delta}-carbons from edge to innermost carbon. In PIMD simulation, meanwhile, stable adsorption site is not appeared on {delta}-carbon, but on only {alpha}-, {beta}{sub 1}-, {beta}{sub 2}-, and {gamma}-carbons. This result is due to the fact that the adsorbed hydrogen atom can easily go over the barrier for hydrogen transferring from {delta}- to {beta}{sub 1}-carbons by thermal and nuclear quantum fluctuations. The thermal and nuclear quantum effects are key role to settle the hydrogen adsorption sites on carbon materials.

  3. Beyond complex Langevin equations II: a positive representation of Feynman path integrals directly in the Minkowski time

    CERN Document Server

    Wosiek, Jacek

    2015-01-01

    Recently found positive representation for an arbitrary complex, gaussian weight is used to construct a statistical formulation of gaussian path integrals directly in the Minkowski time. The positivity of Minkowski weights is achieved by doubling the number of real variables. The continuum limit of the new representation exists only if some of the additional couplings tend to infinity and are tuned in a specific way. The construction is then successfully applied to three quantum mechanical examples including a particle in a constant magnetic field -- a simplest prototype of a Wilson line. Further generalizations are shortly discussed and an intriguing interpretation of new variables is alluded to.

  4. Simulation of material properties below the Debye temperature: A path-integral molecular dynamics case study of quartz

    Science.gov (United States)

    Müser, Martin H.

    2001-04-01

    Classical and path integral molecular dynamics (PIMD) simulations are used to study α and β quartz in a large range of temperatures at zero external stress. PIMD account for quantum fluctuations of atomic vibrations, which can modify material properties at temperatures below the Debye temperature. The difference between classical and quantum mechanical results for bond lengths, bond angles, elastic moduli, and some dynamical properties is calculated and comparison to experimental data is done. Only quantum mechanical simulations are able to reproduce the correct thermomechanical properties below room temperature. It is discussed in how far classical and PIMD simulations can be helpful in constructing improved potential energy surfaces for silica.

  5. Nuclear quantum effect on intramolecular hydrogen bond of hydrogen maleate anion: An ab initio path integral molecular dynamics study

    Science.gov (United States)

    Kawashima, Yukio; Tachikawa, Masanori

    2013-05-01

    Ab initio path integral molecular dynamics simulation was performed to understand the nuclear quantum effect on the hydrogen bond of hydrogen malonate anion. Static calculation predicted the proton transfer barrier as 0.12 kcal/mol. Conventional ab initio molecular dynamics simulation at 300 K found proton distribution with a double peak on the proton transfer coordinate. Inclusion of thermal effect alone elongates the hydrogen bond length, which increases the barrier height. Inclusion of nuclear quantum effect washes out this barrier, and distributes a single broad peak in the center. H/D isotope effect on the proton transfer is also discussed.

  6. Theoretical study on the mechanism of double proton transfer in porphycene by path-integral molecular dynamics simulations

    Science.gov (United States)

    Yoshikawa, Takehiro; Sugawara, Shuichi; Takayanagi, Toshiyuki; Shiga, Motoyuki; Tachikawa, Masanori

    2010-08-01

    Full-dimensional path-integral molecular dynamics simulations were performed to determine whether the double proton transfer tautomerization of porphycene is a concerted or a stepwise process. We employed an on-the-fly direct dynamics technique at the semiempirical PM6 method whose parameters were determined so as that the relative energies of the stationary points approximately reproduce previously reported electronic structure calculations. It was found that double proton transfer occurs dominantly through the concerted pathway via the second-order saddle point structure and that contribution of the stepwise mechanism increases with a temperature increase. Nuclear quantum effects play essential roles in determining the proton transfer mechanism.

  7. Path Integral Monte Carlo Approach to the U(1) Lattice Gauge Theory in (2+1) Dimensions

    CERN Document Server

    Loan, M; Sloggett, C; Hamer, C; Loan, Mushtaq; Brunner, Michael; Sloggett, Clare; Hamer, Chris

    2003-01-01

    Path Integral Monte Carlo simulations have been performed for U(1) lattice gauge theory in (2+1) dimensions on anisotropic lattices. We extract the static quark potential, the string tension and the low-lying "glueball" spectrum. The Euclidean string tension and mass gap decrease exponentially at weak coupling in excellent agreement with the predictions of Polyakov and G{\\" o}pfert and Mack, but their magnitudes are five times bigger than predicted. Extrapolations are made to the extreme anisotropic or Hamiltonian limit, and comparisons are made with previous estimates obtained in the Hamiltonian formulation.

  8. Internal limiting membrane layer visualization and vitreoretinal surgery guidance using a common-path OCT integrated microsurgical tool

    Science.gov (United States)

    Liu, Xuan; Meisne, Eric; Han, Jae-Ho; Zhang, Kang; Gehlbach, Peter; Taylor, Russell; Kang, Jin U.

    2010-02-01

    Contemporary retinal microsurgery is performed by skilled surgeons through operating microscopes, utilizing free hand techniques and manually operated micro-instruments. One technically challenging procedure is the incising and peeling of the internal limiting membrane (ILM) while minimizing damage to the underlying retina. One strategy for minimizing damage is to improve visualization of the ILM layer. Here we present a preliminary evaluation of a prototype tool that integrates an ultra high resolution Fourier domain common path Optical Coherence Tomography (OCT) with an intelligent microsurgical instrument. The tool provides OCT guided visualization of the ILM layer at the point of tissue contact by the surgical tool. We have evaluated the imaging properties of the common path OCT system. The common path OCT system used in this study has a maximum imaging depth of 1.3mm and a sensitivity of 91dB. We have achieved an experimental axial resolution of 3μm in air and this appears to be sufficient to both identify the ILM and to perform surgical maneuvers. We scanned the single mode fiber probe using an intelligent microsurgical instrument to form B-Mode images. We imaged a porcine eye with both anterior eye segment and the vitreous removed. The image obtained show distinct functional layers of retina.

  9. Path integral molecular dynamics method based on a pair density matrix approximation: An algorithm for distinguishable and identical particle systems

    Science.gov (United States)

    Miura, Shinichi; Okazaki, Susumu

    2001-09-01

    In this paper, the path integral molecular dynamics (PIMD) method has been extended to employ an efficient approximation of the path action referred to as the pair density matrix approximation. Configurations of the isomorphic classical systems were dynamically sampled by introducing fictitious momenta as in the PIMD based on the standard primitive approximation. The indistinguishability of the particles was handled by a pseudopotential of particle permutation that is an extension of our previous one [J. Chem. Phys. 112, 10 116 (2000)]. As a test of our methodology for Boltzmann statistics, calculations have been performed for liquid helium-4 at 4 K. We found that the PIMD with the pair density matrix approximation dramatically reduced the computational cost to obtain the structural as well as dynamical (using the centroid molecular dynamics approximation) properties at the same level of accuracy as that with the primitive approximation. With respect to the identical particles, we performed the calculation of a bosonic triatomic cluster. Unlike the primitive approximation, the pseudopotential scheme based on the pair density matrix approximation described well the bosonic correlation among the interacting atoms. Convergence with a small number of discretization of the path achieved by this approximation enables us to construct a method of avoiding the problem of the vanishing pseudopotential encountered in the calculations by the primitive approximation.

  10. A PATH ANALYTICAL ANALYSIS OF ORGANIZATIONAL INTEGRATION PRACTICES' EFFECTS ON MANUFACTURING FLEXIBILITY AND COMPETITIVE ADVANTAGE

    Institute of Scientific and Technical Information of China (English)

    Mei CAO; Qingyu ZHANG

    2008-01-01

    To cope with an increasingly turbulent environment, manufacturing firms increasingly implement integration practices to enhance flexibility in the production process. This research develops a framework to explore the relationships among organizational integration practices, manufacturing flexibility, and competitive advantage. The study develops valid and reliable instruments to measure these constructs, and it applies structural equation modeling to test relationships among these variables using a large sample. The results indicate strong, positive, and direct relationships between organizational integration practices and manufacturing flexibility, and between manufacturing flexibility and competitive advantage. The results also indicate that organizational integration practices enhance competitive advantage directly as well as indirectly by facilitating manufacturing flexibility.

  11. Path-integral Monte-Carlo simulations for electronic dynamics on molecular chains: I. Sequential hopping and super exchange

    CERN Document Server

    Mühlbacher, L; Escher, C M

    2004-01-01

    An improved real-time quantum Monte Carlo procedure is presented and applied to describe the electronic transfer dynamics along molecular chains. The model consists of discrete electronic sites coupled to a thermal environment which is integrated out exactly within the path integral formulation. The approach is numerically exact and its results reduce to known analytical findings (Marcus theory, golden rule) in proper limits. Special attention is paid to the role of superexchange and sequential hopping at lower temperatures in symmetric donor-bridge-acceptor systems. In contrast to previous approximate studies, superexchange turns out to play a significant role only for extremely high lying bridges where the transfer is basically frozen or for extremely low temperatures where for weaker dissipation a description in terms of rate constants is no longer feasible. For bridges with increasing length an algebraic decrease of the yield is found for short as well as for longer bridges. The approach can be extended t...

  12. Simulation of the Correlated Electron Plasma in the Warm Dense Matter Regime by Restricted Path-Integral Molecular Dynamics

    Science.gov (United States)

    Kapila, Vivek; Deymier, Pierre; Runge, Keith

    2012-02-01

    Warm dense matter (WDM) can be characterized by electron temperatures of a few eV and densities an order of magnitude or more beyond ambient. This regime currently lacks any adequate highly developed class of simulation methods. Recent developments in orbital-free Density Functional Theory (ofDFT) aim to provide such a simulation method, however, little benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as harmonic necklaces, while, quantum exchange takes the form of cross linking between electron necklaces. The fermion sign problem is addressed by restricting the density matrix to positive values and a molecular dynamics algorithm is employed to sample phase space. Here, we focus on the behavior of strongly correlated electron plasmas under WDM conditions. We compute the kinetic and potential energies and compare them to those obtained with the ofDFT method.

  13. Temperature Dependence of the Kinetic Energy of the Correlated Electron Plasma by Restricted Path-Integral Molecular Dynamics

    Science.gov (United States)

    Runge, Keith; Deymier, Pierre

    2013-03-01

    Recent progress in orbital-free Density Functional Theory (OF-DFT), particularly with regard to temperature dependent functionals, has promise for the simulation of warm dense matter (WDM) systems. WDM includes systems with densities of an order of magnitude beyond ambient or more and temperatures measured in kilokelvin. A challenge for the development of temperature dependent OF-DFT functionals is the lack of benchmark information with temperature and pressure dependence on simple models under WDM conditions. We present an approach to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Electrons are described as harmonic necklaces within the discrete path integral representation while quantum exchange takes the form of cross linking between electron necklaces. A molecular dynamics algorithm is used to sample phase space and the fermion sign problem is addressed by restricting the density matrix to positive values. The temperature dependence of kinetic energies for the strongly coupled electron plasma is presented for a number of Wigner-Seitz radii in terms of a fourth order Sommerfeld expansion. Supported by US DoE Grant DE-SC0002139

  14. Intensity moments by path integral techniques for wave propagation through random media, with application to sound in the ocean

    Science.gov (United States)

    Bernstein, D. R.; Dashen, R.; Flatte, S. M.

    1983-01-01

    A theory is developed which describes intensity moments for wave propagation through random media. It is shown using the path integral technique that these moments are significantly different from those of a Rayleigh distribution in certain asymptotic regions. The path integral approach is extended to inhomogeneous, anisotropic media possessing a strong deterministic velocity profile. The behavior of the corrections to Rayleigh statistics is examined, and it is shown that the important characteristics can be attributed to a local micropath focusing function. The correction factor gamma is a micropath focusing parameter defined in terms of medium fluctuations. The value of gamma is calculated for three ocean acoustic experiments, using internal waves as the medium fluctuations. It is found that all three experiments show excellent agreement as to the relative values of the intensity moments. The full curved ray is found to yield results that are significantly different from the straight-line approximations. It is noted that these methods are applicable to a variety of experimental situations, including atmospheric optics and radio waves through plasmas.

  15. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface

    Science.gov (United States)

    Hu, Hao; Lu, Zhenyu; Parks, Jerry M.; Burger, Steven K.; Yang, Weitao

    2008-01-01

    To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the

  16. Ab initio path-integral calculations of kinetic and equilibrium isotope effects on base-catalyzed RNA transphosphorylation models.

    Science.gov (United States)

    Wong, Kin-Yiu; Xu, Yuqing; York, Darrin M

    2014-06-30

    Detailed understandings of the reaction mechanisms of RNA catalysis in various environments can have profound importance for many applications, ranging from the design of new biotechnologies to the unraveling of the evolutionary origin of life. An integral step in the nucleolytic RNA catalysis is self-cleavage of RNA strands by 2'-O-transphosphorylation. Key to elucidating a reaction mechanism is determining the molecular structure and bonding characteristics of transition state. A direct and powerful probe of transition state is measuring isotope effects on biochemical reactions, particularly if we can reproduce isotope effect values from quantum calculations. This article significantly extends the scope of our previous joint experimental and theoretical work in examining isotope effects on enzymatic and nonenzymatic 2'-O-transphosphorylation reaction models that mimic reactions catalyzed by RNA enzymes (ribozymes), and protein enzymes such as ribonuclease A (RNase A). Native reactions are studied, as well as reactions with thio substitutions representing chemical modifications often used in experiments to probe mechanism. Here, we report and compare results from eight levels of electronic-structure calculations for constructing the potential energy surfaces in kinetic and equilibrium isotope effects (KIE and EIE) computations, including a "gold-standard" coupled-cluster level of theory [CCSD(T)]. In addition to the widely used Bigeleisen equation for estimating KIE and EIE values, internuclear anharmonicity and quantum tunneling effects were also computed using our recently developed ab initio path-integral method, that is, automated integration-free path-integral method. The results of this work establish an important set of benchmarks that serve to guide calculations of KIE and EIE for RNA catalysis.

  17. Test-Taker Characteristics and Integrated Speaking Test Performance: A Path-Analytic Study

    Science.gov (United States)

    Huang, Heng-Tsung Danny; Hung, Shao-Ting Alan; Hong, He-Ting Vivian

    2016-01-01

    This study explored the relationships among language proficiency, two selected test-taker characteristics (i.e., topical knowledge and anxiety), and integrated speaking test performance. Data collection capitalized on three sets of instruments: three integrated tasks derived from TOEFL-iBT preparation materials, the state anxiety inventory created…

  18. Automated Milling Path Tracking and CAM-ROB Integration for Industrial Redundant Manipulators

    Directory of Open Access Journals (Sweden)

    Luis Gracia

    2012-09-01

    Full Text Available The present paper explores the industrial capabilities of a CAM‐ROB system implementation based on a commercial CAD/CAM system (NX™ for an industrial robotic workcell of eight joints, committed to the rapid prototyping of 3D CAD‐defined models. The workcell consists of a KUKATM KR15/2 manipulator assembled on a linear track and synchronized with a rotary table. A redundancy resolution scheme is developed to deal with the redundancies due to the additional joints of the robot, plus the one from the symmetry axis of the milling tool. During the path tracking, the use of these redundancies is optimized by adjusting two performance criterion vectors related to singularity avoidance and maintenance of a preferred reference posture, as secondary tasks to be done. In addition, two suitable fuzzy inference engines adjust the weight of each joint in these tasks. The developed system is validated in a real prototyping of a carving.

  19. Simulating multiple diffraction in imaging systems using a path integration method.

    Science.gov (United States)

    Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Jörg; Urbach, Paul

    2016-05-10

    We present a method for simulating multiple diffraction in imaging systems based on the Huygens-Fresnel principle. The method accounts for the effects of both aberrations and diffraction and is entirely performed using Monte Carlo ray tracing. We compare the results of this method to those of reference simulations for field propagation through optical systems and for the calculation of point spread functions. The method can accurately model a wide variety of optical systems beyond the exit pupil approximation.

  20. A PATH-DEPENDENT MODEL OF INVESTMENT AND EMPLOYMENT FLOW IN A LARGE ECONOMY IN A PROCESS OF INTEGRATION

    Institute of Scientific and Technical Information of China (English)

    LIU An-guo; YANG Kai-zhong

    2004-01-01

    This paper meant to analyze the spatial evolution of a large country in its process of integration with the world economy in general, and, to look into the possible effect of China's accession into WTO on the future development of its spatial economy in particular. Through an approach of increasing returns, external economy, product differentiation and path-dependence, with foreign trade costs incurred by different regions within the large country discriminated, a model of investment and employment flow is developed as a simulation of a large country's process of integration with the world economy. The modeling indicates that in the process of integration, as there exist differences in foreign trade costs among different regions within the large country, either the spatial economy of the country deviates from its symmetric structure in autarky and falls into a core-periphery relationship, or the effect of industrial agglomeration is reinforced, amplified and locked in, if the agglomeration had been started. The economic gap on either the aggregate or structural basis between different regions within the large country will increase rapidly as the integration proceeds.

  1. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application

    Science.gov (United States)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-01-01

    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  2. Halo statistics in non-Gaussian cosmologies: the collapsed fraction, conditional mass function, and halo bias from the path-integral excursion set method

    CERN Document Server

    D'Aloisio, Anson; Jeong, Donghui; Shapiro, Paul R

    2012-01-01

    Characterizing the level of primordial non-Gaussianity (PNG) in the initial conditions for structure formation is one of the most promising ways to test inflation and differentiate among different scenarios. The scale-dependent imprint of PNG on the large-scale clustering of galaxies and quasars has already been used to place significant constraints on the level of PNG in our observed Universe. Such measurements depend upon an accurate and robust theory for how PNG affects the bias of galactic halos relative to the underlying matter density field. We improve upon previous work by employing a more general analytical method - the path-integral extension of the excursion set formalism - which is able to account for the non-Markovianity caused by PNG in the random-walk model used to identify halos in the initial density field. This non-Markovianity encodes information about environmental effects on halo formation which have so far not been taken into account in analytical bias calculations. We compute both scale-...

  3. A path to better healthcare simulation systems: leveraging the integrated systems design approach.

    NARCIS (Netherlands)

    Scerbo, M.W.; Murray, W.B.; Antonius, T.A.J.; Alinier, G.; Caird, J.; Stricker, E.; Rice, J.; Kyle, R.

    2011-01-01

    This article addresses the necessary steps in the design of simulation-based instructional systems. A model for designing instructional systems is presented which stipulates that the outcome metrics be defined before the simulation system is designed. This ensures integration of educational objectiv

  4. Path integral approach for quantum motion on spaces of non-constant curvature according to Koenigs - Three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2007-08-15

    In this contribution a path integral approach for the quantum motion on three-dimensional spaces according to Koenigs, for short''Koenigs-Spaces'', is discussed. Their construction is simple: One takes a Hamiltonian from three-dimensional flat space and divides it by a three-dimensional superintegrable potential. Such superintegrable potentials will be the isotropic singular oscillator, the Holt-potential, the Coulomb potential, or two centrifugal potentials, respectively. In all cases a non-trivial space of non-constant curvature is generated. In order to obtain a proper quantum theory a curvature term has to be incorporated into the quantum Hamiltonian. For possible bound-state solutions we find equations up to twelfth order in the energy E. (orig.)

  5. The inefficiency of re-weighted sampling and the curse of system size in high order path integration

    CERN Document Server

    Ceriotti, Michele; Riordan, Oliver; Manolopoulos, David E

    2011-01-01

    Computing averages over a target probability density by statistical re-weighting of a set of samples with a different distribution is a strategy which is commonly adopted in fields as diverse as atomistic simulation and finance. Here we present a very general analysis of the accuracy and efficiency of this approach, highlighting some of its weaknesses. We then give an example of how our results can be used, specifically to assess the feasibility of high-order path integral methods. We demonstrate that the most promising of these techniques -- which is based on re-weighted sampling -- is bound to fail as the size of the system is increased, because of the exponential growth of the statistical uncertainty in the re-weighted average.

  6. Thermodynamics of the quark-gluon plasma at finite chemical potential: color path integral Monte Carlo results

    Energy Technology Data Exchange (ETDEWEB)

    Filinov, V.S.; Fortov, V.E. [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13, bd. 2, 125412 Moscow (Russian Federation); Bonitz, M. [Institute for Theoretical Physics and Astrophysics, Christian Albrechts University Kiel, Leibnizstrasse 15, D-24098 Kiel (Germany); Ivanov, Y.B. [National Research Center ' ' Kurchatov Institute' ' , Kurchatov Sq. 1, 123182 Moscow, Russia, National Research Nuclear University ' ' MEPhI' ' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Reseach, Joliot-Curie str. 6, Dubna, 141980, Moscow Region (Russian Federation)

    2015-02-01

    Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), color quantum path-integral Monte-Carlo (PIMC) calculations of the thermodynamic properties of the QGP are performed. We extend our previous zero chemical potential simulations to the QGP at finite baryon chemical potential. The results indicate that color PIMC can be applied not only above the QCD critical temperature T{sub c} but also below T{sub c}. Besides reproducing the lattice equation of state our approach yields also valuable additional insight into the internal structure of the QGP, via the pair distribution functions of the various quasiparticles. In particular, the pair distribution function of gluons reflects the existence of gluon-gluon bound states at low temperatures and μ = 175 MeV, i.e. glueballs, while meson-like bound states are not found. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Quantum path-integral molecular dynamics calculations of the dipole-bound state of the water dimer anion

    Science.gov (United States)

    Shiga, Motoyuki; Takayanagi, Toshiyuki

    2003-09-01

    The equilibrium structure of the negatively charged water dimer (H 2O) 2- has been studied using the path-integral molecular dynamics simulation. All the atomic motions as well as the excess electron were treated quantum mechanically, employing a semi-empirical model combining a water-water interatomic potential with an electron-water pseudopotential. It is demonstrated that the molecular structure of (H 2O) 2- is more flexible than that of (H 2O) 2; both the donor switching and donor-acceptor interchange can more effectively occur in (H 2O) 2- than in (H 2O) 2. We conclude that this floppy character is a result of the breakdown of the adiabatic Born-Oppenheimer picture.

  8. Low-temperature phases of dense hydrogen and deuterium by first-principles path-integral molecular dynamics

    Science.gov (United States)

    Torrent, Marc; Geneste, Gregory

    2012-02-01

    The low-temperature phases of dense hydrogen and deuterium have been investigated using first-principles path-integral molecular dynamics, a technique that we have recently implemented in the ABINIT code and that allows to account for the quantum fluctuations of atomic nuclei. A massively parallelized scheme is applied to produce trajectories of several tens of thousands steps using a 64-atom supercell and a Trotter number of 64. The so-called phases I, II and III are studied and compared to the structures proposed in the literature. The quantum fluctuations produce configurational disorder and are shown to systematically enhance the symmetry of the system: a continuous gain of symmetry in the angular density of probability of the molecules is found from classical particles to quantum D2 and finally to quantum H2. Particular emphasis is made on the ``broken-symmetry'' phase (phase II).

  9. Temperature and isotope effects on water cluster ions with path integral molecular dynamics based on the fourth order Trotter expansion

    Science.gov (United States)

    Suzuki, Kimichi; Shiga, Motoyuki; Tachikawa, Masanori

    2008-10-01

    Path integral molecular dynamics simulation based on the fourth order Trotter expansion has been performed to elucidate the geometrical isotope effect of water dimer anions, H3O2-, D3O2-, and T3O2-, at different temperatures from 50 to 600 K. At low temperatures below 200 K the hydrogen-bonded hydrogen nucleus is near the center of two oxygen atoms with mostly O⋯X⋯O geometry (where X =H, D, or T), while at high temperatures above 400 K, hydrogen becomes more delocalized, showing the coexistence between O⋯X-O and O-X⋯O. The OO distance tends to be shorter as the isotopomer is heavier at low temperatures, while this ordering becomes opposite at high temperatures. It is concluded that the coupling between the OO stretching mode and proton transfer modes is a key to understand such a temperature dependence of a hydrogen-bonded structure.

  10. NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a new model of diffusion anisotropy

    CERN Document Server

    Yolcu, Cem; Şimşek, Kadir; Westin, Carl-Fredrik; Özarslan, Evren

    2016-01-01

    We study the influence of diffusion on NMR experiments when the molecules undergo random motion under the influence of a force field, and place special emphasis on parabolic (Hookean) potentials. To this end, the problem is studied using path integral methods. Explicit relationships are derived for commonly employed gradient waveforms involving pulsed and oscillating gradients. The Bloch-Torrey equation, describing the temporal evolution of magnetization, is modified by incorporating potentials. A general solution to this equation is obtained for the case of parabolic potential by adopting the multiple correlation function (MCF) formalism, which has been used in the past to quantify the effects of restricted diffusion. Both analytical and MCF results were found to be in agreement with random walk simulations. A multi-dimensional formulation of the problem is introduced that leads to a new characterization of diffusion anisotropy. Unlike for the case of traditional methods that employ a diffusion tensor, aniso...

  11. Unified treatment of the bound states of the Schi ¨oberg and the Eckart potentials using Feynman path integral approach

    Institute of Scientific and Technical Information of China (English)

    A. Diaf

    2015-01-01

    We obtain analytical expressions for the energy eigenvalues of both the Schi ¨oberg and Eckart potentials using an approximation of the centrifugal term. In order to determine the ℓ-states solutions, we use the Feynman path integral approach to quantum mechanics. We show that by performing nonlinear space–time transformations in the radial path integral, we can derive a transformation formula that relates the original path integral to the Green function of a new quantum solvable system. The explicit expression of bound state energy is obtained and the associated eigenfunctions are given in terms of hypergeometric functions. We show that the Eckart potential can be derived from the Schi ¨oberg potential. The obtained results are compared to those by other methods and found to be consistent.

  12. Relations between the EU and Republic of Kosovo - The path of Kosovo integration towards the EU

    OpenAIRE

    Arif Riza

    2016-01-01

    Almost all the European Union member states have surpassed various challenges toward their integration into the European family. Although all these challenges are special cases on their own, Kosovo’s journey differs from the above mentioned cases, because Kosovo has not been recognized as an independent state by some members of the European family. The other key element that differs Kosovo’s journey from other cases is the presence of international institutions such as: EULEX, ICO, UNMIK, KFO...

  13. Guided growth of horizontal nanowires: A new path to self-integrated nanosystems

    Science.gov (United States)

    Joselevich, Ernesto

    2014-03-01

    The large-scale assembly of nanowires with controlled orientation on surfaces remains one of the most critical challenges toward their integration into practical devices. We report the vapor-liquid-solid growth of perfectly aligned, millimeter-long, horizontal GaN and ZnO nanowires with controlled crystallographic orientations on different planes of sapphire and other substrates. The growth directions, crystallographic orientation and faceting of the nanowires vary with each surface orientation, as determined by their epitaxial relationship with the substrate, as well as by a graphoepitaxial effect that guides their growth along surface steps and grooves. Despite their interaction with the surface, these horizontally grown nanowires display few structural defects, exhibiting optical and electronic properties comparable to those of vertically grown nanowires. Guided GaN nanowires and ZnO nanowires present general similarities and a few interesting differences, which shed light into the guided growth mechanism. The controlled horizontal growth of nanowires of different materials on different substrates proves the generality of the guided growth approach. Recently, we demonstrated the feasibility of massively parallel ``self-integration'' of NWs into functional systems based on guided growth, including hundreds of sing-NW based field-effect transistors made all at once, and complex logic circuits, such as a 3-bit address decoder. These examples highlight the potential of guided growth for the large-scale integration of nanowires into practical devices.

  14. Simulating biochemical physics with computers: 1. Enzyme catalysis by phosphotriesterase and phosphodiesterase; 2. Integration-free path-integral method for quantum-statistical calculations

    Science.gov (United States)

    Wong, Kin-Yiu

    We have simulated two enzymatic reactions with molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) techniques. One reaction is the hydrolysis of the insecticide paraoxon catalyzed by phosphotriesterase (PTE). PTE is a bioremediation candidate for environments contaminated by toxic nerve gases (e.g., sarin) or pesticides. Based on the potential of mean force (PMF) and the structural changes of the active site during the catalysis, we propose a revised reaction mechanism for PTE. Another reaction is the hydrolysis of the second-messenger cyclic adenosine 3'-5'-monophosphate (cAMP) catalyzed by phosphodiesterase (PDE). Cyclicnucleotide PDE is a vital protein in signal-transduction pathways and thus a popular target for inhibition by drugs (e.g., ViagraRTM). A two-dimensional (2-D) free-energy profile has been generated showing that the catalysis by PDE proceeds in a two-step SN2-type mechanism. Furthermore, to characterize a chemical reaction mechanism in experiment, a direct probe is measuring kinetic isotope effects (KIEs). KIEs primarily arise from internuclear quantum-statistical effects, e.g., quantum tunneling and quantization of vibration. To systematically incorporate the quantum-statistical effects during MD simulations, we have developed an automated integration-free path-integral (AIF-PI) method based on Kleinert's variational perturbation theory for the centroid density of Feynman's path integral. Using this analytic method, we have performed ab initio pathintegral calculations to study the origin of KIEs on several series of proton-transfer reactions from carboxylic acids to aryl substituted alpha-methoxystyrenes in water. In addition, we also demonstrate that the AIF-PI method can be used to systematically compute the exact value of zero-point energy (beyond the harmonic approximation) by simply minimizing the centroid effective potential.

  15. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    Energy Technology Data Exchange (ETDEWEB)

    Butko, Yana A., E-mail: yanabutko@yandex.ru, E-mail: kinderknecht@math.uni-sb.de [Bauman Moscow State Technical University, 2nd Baumanskaya street, 5, Moscow 105005, Russia and University of Saarland, Postfach 151150, D-66041 Saarbrücken (Germany); Grothaus, Martin, E-mail: grothaus@mathematik.uni-kl.de [University of Kaiserslautern, 67653 Kaiserslautern (Germany); Smolyanov, Oleg G., E-mail: Smolyanov@yandex.ru [Lomonosov Moscow State University, Vorob’evy gory 1, Moscow 119992 (Russian Federation)

    2016-02-15

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures.

  16. Studies on Polyakov and Nambu-Goto random surface path integrals on QCD(SU(∞)): Interquark potential and phenomenological scattering amplitudes

    Science.gov (United States)

    Botelho, Luiz C. L.

    2017-02-01

    We present new path integral studies on the Polyakov noncritical and Nambu-Goto critical string theories and their applications to QCD(SU(∞)) interquark potential. We also evaluate the long distance asymptotic behavior of the interquark potential on the Nambu-Goto string theory with an extrinsic term in Polyakov’s string at D →∞. We also propose an alternative and a new view to covariant Polyakov’s string path integral with a fourth-order two-dimensional quantum gravity, is an effective stringy description for QCD(SU(∞)) at the deep infrared region.

  17. On the geometrical representation of the path integral reduction Jacobian: The case of dependent coordinates in the description of the reduced motion

    CERN Document Server

    Storchak, S N

    2008-01-01

    The geometrical representation of the path integral reduction Jacobian obtained in the problem of the path integral quantization of a scalar particle motion on a smooth compact Riemannian manifold with the given free isometric action of the compact semisimple Lie group has been found for the case when the local reduced motion is described by means of dependent coordinates. The result is based on the scalar curvature formula for the original manifold which is viewed as a total space of the principal fibre bundle.

  18. A Path to Successful Energy Retrofits: Early Collaboration through Integrated Project Delivery Teams

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Kristen

    2012-10-31

    This document guides you through a process for the early design phases of retrofit projects to help you mitigate frustrations commonly experienced by building owners and designers. It outlines the value of forming an integrated project delivery team and developing a communication and information-sharing infrastructure that fosters collaboration. This guide does not present a complete process for designing an energy retrofit for a building. Instead, it focuses on the early design phase tasks related to developing and selecting energy efficiency measures (EEMs) that benefit from collaboration, and highlights the resulting advantages.

  19. Complex Path Integrals and Saddles in Two-Dimensional Gauge Theory.

    Science.gov (United States)

    Buividovich, P V; Dunne, Gerald V; Valgushev, S N

    2016-04-01

    We study numerically the saddle point structure of two-dimensional lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are, in general, complex valued, even though the original integration variables and action are real. We confirm the trans-series and instanton gas structure in the weak-coupling phase, and we identify a new complex-saddle interpretation of nonperturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.

  20. Path programmable logic: A structured design method for digital and/or mixed analog integrated circuits

    Science.gov (United States)

    Taylor, B.

    1990-01-01

    The design of Integrated Circuits has evolved past the black art practiced by a few semiconductor companies to a world wide community of users. This was basically accomplished by the development of computer aided design tools which were made available to this community. As the tools matured into different components of the design task they were accepted into the community at large. However, the next step in this evolution is being ignored by the large tool vendors hindering the continuation of this process. With system level definition and simulation through the logic specification well understood, why is the physical generation so blatantly ignored. This portion of the development is still treated as an isolated task with information being passed from the designer to the layout function. Some form of result given back but it severely lacks full definition of what has transpired. The level of integration in I.C.'s for tomorrow, whether through new processes or applications will require higher speeds, increased transistor density, and non-digital performance which can only be achieved through attention to the physical implementation.

  1. TPP: Is the best path to regional integration of Asia Pacific?

    Directory of Open Access Journals (Sweden)

    Jason Carlos Martínez Jurado

    2012-10-01

    Full Text Available Asia-Pacific has distinguished itself for its high levels of interdependence and its fast economic growth, however, it lacks of a strong regional institutional framework. Despite the existence of APEC as a forum which includes the region’s diversity of economic development levels and cultural differences, its voluntary approach which relays on open regionalism has not allowed member economies to advance towards its ambitious goals of trade and investment liberalization. Therefore, several of its members have decided to embrace binding schemes, at a bilateral and multilateral basis, among them the TPP, which due to its comprehensive approach, for many represents the better route to achieve regional integration. However, there are questions raised regarding the convenience for Asia-Pacific to transit from a flexible model towards a reciprocal one, and the possible costs involved in such process.

  2. Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. I. Sequential hopping and super exchange

    Science.gov (United States)

    Mühlbacher, Lothar; Ankerhold, Joachim; Escher, Charlotte

    2004-12-01

    An improved real-time quantum Monte Carlo procedure is presented and applied to describe the electronic transfer dynamics along molecular chains. The model consists of discrete electronic sites coupled to a thermal environment which is integrated out exactly within the path integral formulation. The approach is numerically exact and its results reduce to known analytical findings (Marcus theory, golden rule) in proper limits. Special attention is paid to the role of superexchange and sequential hopping at lower temperatures in symmetric donor-bridge-acceptor systems. In contrast to previous approximate studies, superexchange turns out to play a significant role only for extremely high-lying bridges where the transfer is basically frozen or for extremely low temperatures where for weaker dissipation a description in terms of rate constants is no longer feasible. For bridges with increasing length an algebraic decrease of the yield is found for short as well as for long bridges. The approach can be extended to electronic systems with more complicated topologies including impurities and in presence of external time-dependent forces.

  3. First-principles path-integral molecular dynamics study of diffusion process of hydrogen in face-centered cubic metals

    Science.gov (United States)

    Kimizuka, Hajime; Ogata, Shigenobu

    We investigated the H diffusivity in face-centered cubic Pd and Al by performing path-integral molecular dynamics (PIMD) modeling in the framework of density functional theory (DFT); in our calculations, we took nuclear quantum effects into consideration. The DFT results showed that the H-migration barriers (Em) in Pd and Al exhibited similar values (approximately 0.16 eV), while the H atoms were stable at octahedral (O) sites for Pd and at tetrahedral (T) sites for Al. The PIMD-based free-energy profiles for H migration between the O-site and T-site were evaluated using the thermodynamic integration of the centroid forces at 150-600 K. We confirmed that the quantum effects significantly affected the Em and the difference between the energies of the H atom at the O-site and the T-site (EO - T); The Em and EO - T values in Pd at 300 K increased by 32% and 98%, respectively, relative to the classical limit. On the other hand, the Em and ET - O (i.e., -EO - T) values in Al at 300 K decreased by 3% and 41%, respectively. This suggested that the quantum nature of H nuclei was essential for understanding the H-diffusion kinetics in these metals even above ambient temperature.

  4. Integration of manual channel initiation and flow path tracing in extracting stream features from lidar-derived DTM

    Science.gov (United States)

    Gaspa, M. C.; De La Cruz, R. M.; Olfindo, N. T.; Borlongan, N. J. B.; Perez, A. M. C.

    2016-10-01

    Stream network delineation based on LiDAR-derived digital terrain model (DTM) may produce stream segments that are inexistent or incomplete because of limitations imposed by extraction procedure, terrain and data. The applicability of a common threshold value in defining streams such as those implemented through the D8 algorithm also remains in question because the threshold varies depending on the geomorphology of the area. Flat areas and improper hydrologic conditioning produce erratic stream network. To counteract these limitations, this study proposes a workflow that improves the stream network produced by the D8 algorithm. It incorporates user-defined channel initiation points as inputs to a tool developed to automatically trace the flow of water into the next actual stream segment. Spurious streams along digital dams and flat areas are also manually reshaped. The proposed workflow is implemented in Iligan River Basin, Philippines using LiDARderived DTM of 1-meter resolution. The Flow Path Tracing (FPT) method counteracts the limits imposed by extraction procedure, terrain and data. It is applicable to different typologies of watersheds by eliminating the need to use site-specific threshold in determining streams. FPT is implemented as a Phyton script to automate the tracing of the streams using the flow direction raster. The FPT method is compared to the blue line digitization and the D8 method using morphometric parameters, such as stream number, stream order and stream length, to assess its performance. Results show that streams derived from the FPT method has higher stream order, number and length. An accuracy of 93.5% produced from field validation of the FPT method's streams strengthens the findings that integrating manual channel head initiation and flow path tracing can be used for nationwide extraction of streams using LiDAR-derived-DTM in the Philippines.

  5. The Integration of Geographical Information System and Remotely Sensed Data to Track and Predict the Migration Path of the Africanized Honey Bee

    Science.gov (United States)

    Ward, Charles; Bravo, Jessica; De Luna, Rosalia; Lopez, Gerardo; Pichardo, Itza; Trejo, Danny; Vargas, Gabriel

    1997-01-01

    One of the research groups at the Pan American Center for Earth and Environmental Studies (PACES) is researching the northward migration path of Africanized Honey Bees or often referred to in the popular press as killer bees. The goal of the Killer Bee Research Group (KBRG) is to set up a database in the form of a geographical information system, which will be used to track and predict the bees future migration path. Included in this paper is background information on geographical information systems, the SPANS Explorer software package which was used to implement the database, and Advanced Very High Resolution Radiometer data and how each of these is being incorporated in the research. With an accurate means of predicting future migration paths, the negative effects of the Africanized honey bees maybe reduced.

  6. Ecosystem services and integrated water resource management: different paths to the same end?

    Science.gov (United States)

    Cook, Brian R; Spray, Christopher J

    2012-10-30

    The two concepts that presently dominate water resource research and management are the Global Water Partnership's (GWP, 2000) interpretation of Integrated Water Resource Management (IWRM) and Ecosystem Services (ES) as interpreted by the Millennium Ecosystem Assessment (MA, 2005). Both concepts are subject to mounting criticism, with a significant number of critiques focusing on both their conceptual and methodological incompatibility with management and governance, what has come to be known as the 'implementation gap'. Emergent within the ES and IWRM literatures, then, are two parallel debates concerning the gap between conceptualisation and implementation. Our purpose for writing this review is to argue: 1) that IWRM and ES have evolved into nearly identical concepts, 2) that they face the same critical challenge of implementation, and 3) that, if those interested in water research and management are to have a positive impact on the sustainable utilisation of dwindling water resources, they must break the tendency to jump from concept to concept and confront the challenges that arise with implementation.

  7. The hidden curriculum in radiology residency programs: A path to isolation or integration?

    Energy Technology Data Exchange (ETDEWEB)

    Van Deven, T. [Department of Medical Imaging, Schulich School of Medicine and Dentistry (Canada); Hibbert, K., E-mail: khibbert@uwo.ca [Faculty of Education, Schulich School of Medicine and Dentistry (Canada); Faden, L. [Faculty of Education, The University of Western Ontario (Canada); Chhem, R.K. [Institute of History, Philosophy and Ethics of Medicine, Ulm University, Ulm (Germany)

    2013-05-15

    Purpose: In this qualitative case study involving five academic Radiology centres across Canada, the authors seek to identify the hidden curriculum. Methods: A qualitative case study methodology was used for its potential to explore and provide rich descriptions and allow for the in-depth analysis of multiple data sources that include official institutional documents, surveys, observations and interviews (including undergraduate students, postgraduate, radiologists, imaging scientists, residents, faculty and administrators). This study relied on 48 interviews and involved primary data analysis by the core research team, and a secondary analysis by external examiners. Results: The results revealed that in four of the five major centres studied, a hidden curriculum of isolation prevailed, reinforcing an image of the radiologist as an independent operator within an organization dependent upon collaboration for optimal performance. The fifth site exhibited a hidden curriculum of collaboration and support, although the messages received were conflicting when addressing issues around teaching. Conclusions: The authors conclude by noting two possibilities for medical imaging departments to consider that of isolation or that of integration. They examine the implications of each and propose a way forward that situates Radiology as the crossroads of medicine. As such, the need for a new, generative metaphor reasserts the importance of recognizing the role and function of scholarship in teaching and learning contexts across Canada.

  8. A Critical Path for Data Integration in the U.S. Earth Sciences

    Science.gov (United States)

    Gallagher, K. T.; Allison, M. L.

    2011-12-01

    Development efforts for the U.S. Geoscience Information Network (US GIN) have crystallized around the Community for Data Integration (CDI) at the USGS, and the 50-state AASG State Geothermal Data project. The next step in developing a USGS-AASG community is to bring these two efforts into closer alignment through greater participation in CDI activities by geoinformatics practitioners from state geological surveys, and implementation of test bed activities by the USGIN partners. Test bed activities in the geological survey community will define a scope and provide a foundation to promote the use of specifications developed by the larger geoinformatics community. Adoption of some of these specifications as 'standards' by USGS and AASG for use by those organizations will lend authority and motivate wider adoption. The arc from use case to test bed to production deployments to agreement on 'standard' specifications for data discovery and access must be propelled by active interest from the user communities who have a stake in the outcome. The specifications developed will benefit the organizations involved in development, testing and deployment, which motivates participation -- a model that has worked successfully for standards organizations such as OGC, ISO and OASIS. The governance structure to support such a community process should promote grass root nucleation of interest groups that are the core of development efforts. Some mechanism for community agreement on priorities is desirable because geological survey agencies will need to allocate resources to support development. Loosely knit organizations such as ESIP and the current CDI provide models for this kind of structure. Because many geological surveys have data archive and dissemination functions as part of their portfolio, some support for the system can be built into the operating expenses and overhead. Sharing of resources and reuse of components can reduce the cost. Wide adoption of similar software

  9. A path integral study of the role of correlation in exchange coupling of spins in double quantum dots and optical lattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Zhang, Lei; Gilbert, M.J.

    2010-01-01

    We explore exchange coupling of a pair of spins in a double dot and in an optical lattice, using the frequency of exchanges in a bosonic path integral, evaluated using Monte Carlo simulation. The algorithm gives insights into the role of correlation through visualization of two-particle probability...

  10. Electron-phonon coupling in Ba sub 0. 6 K sub 0. 4 BiO sub 3 by discretized quantum path integral molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.Y. (Dept. of Physics, Univ. of Arizona, Tucson (United States)); Deymier, P.A. (Dept. of Materials Science and Engineering, Univ. of Arizona, Tucson (United States))

    1992-01-01

    We calculated the electron-phonon interaction energy and estimated the electron-phonon coupling constant in Ba{sub 0.6}K{sub 0.4}BiO{sub 3} using a quantum path integral molecular dynamics. We determined the electron-phonon coupling constant at room temperature to be about 1.34. (orig.).

  11. Simulations of light induced processes in water based on ab initio path integrals molecular dynamics. I. Photoabsorption

    Science.gov (United States)

    Svoboda, Ondřej; Ončák, Milan; Slavíček, Petr

    2011-10-01

    We have performed large-scale simulations of UV absorption spectra of water clusters (monomer to octamer) using a combination of ab initio path-integral molecular dynamics with reflection principle. The aim of the present work is four-fold: (1) To explore the transition from isolated molecules to bulk water from the perspective of UV photoabsorption. (2) To investigate quantum nuclear and thermal effects on the shape of the water UV spectra. (3) To make an assessment of the density functional theory functionals to be used for water excited states. (4) To check the applicability of the QM/MM schemes for a description of the UV absorption. Within the path integral molecular dynamics (PIMD)/reflection principle approach both the thermal and quantum vibrational effects including anharmonicities are accounted for. We demonstrate that shape of the spectra is primarily controlled by the nuclear quantum effects. The excited states and transition characteristics of the water clusters were calculated with the time-dependent density functional theory and equation-of-motion coupled clusters singles and doubles methods. Based on our benchmark calculations considering the whole UV spectrum we argue that the BHandHLYP method performs best among the 6 functionals tested (B3LYP, BHandHLYP, BNL, CAM-B3LYP, LC-ωPBE, and M06HF). We observe a gradual blueshift of the maximum of the first absorption peak with the increasing cluster size. The UV absorption spectrum for the finite size clusters (i.e., the peak centers, peak widths, and photoabsorption cross section) essentially converges into the corresponding bulk water spectrum. The effect of distant molecules accounted for within the polarizable continuum model is shown to be almost negligible. Using the natural transition orbitals we demonstrate that the first absorption band is formed by localized excitations while the second band includes delocalized excited states. Consequently, the QM/MM electrostatic embedding scheme can only be

  12. Development of Fast Deterministic Physically Accurate Solvers for Kinetic Collision Integral for Applications of Near Space Flight and Control Devices

    Science.gov (United States)

    2015-08-31

    ideal testing ground for the developed program module . SMILE [10] is 2D/ 3D parallel code that uses the DSMC approach for the statistical solution of...other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...integral based on the stochastic integration; and The validation of the improved physical accuracy of the new modules . PETTT, HPC, HPCMP, supersonic

  13. IAS15: A fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits

    CERN Document Server

    Rein, Hanno

    2014-01-01

    We present IAS15, a 15th-order integrator to simulate gravitational dynamics. The integrator is based on a Gau{\\ss}-Radau quadrature and can handle conservative as well as non-conservative forces. We develop a step-size control that can automatically choose an optimal timestep. The algorithm can handle close encounters and high-eccentricity orbits. The systematic errors are kept well below machine precision and long-term orbit integrations over $10^9$ orbits show that IAS15 is optimal in the sense that it follows Brouwer's law, i.e. the energy error behaves like a random walk. Our tests show that IAS15 is superior to a mixed-variable symplectic integrator (MVS) and other high-order integrators in both speed and accuracy. In fact, IAS15 preserves the symplecticity of Hamiltonian systems better than the commonly-used nominally symplectic integrators to which we compared it. We provide an open-source implementation of IAS15. The package comes with several easy-to-extend examples involving resonant planetary syst...

  14. Path integral Monte Carlo study of 4He clusters doped with alkali and alkali-earth ions.

    Science.gov (United States)

    Galli, D E; Ceperley, D M; Reatto, L

    2011-06-30

    Path integral Monte Carlo calculations of (4)He nanodroplets doped with alkali (Na(+), K(+) and Cs(+)) and alkali-earth (Be(+) and Mg(+)) ions are presented. We study the system at T = 1 K and between 14 and 128 (4)He atoms. For all studied systems, we find that the ion is well localized at the center of the droplet with the formation of a "snowball" of well-defined shells of localized (4)He atoms forming solid-like order in at least the first surrounding shell. The number of surrounding helium shells (two or three) and the number of atoms per shell and the degree of localization of the helium atoms are sensitive to the type of ion. The number of (4)He atoms in the first shell varies from 12 for Na(+) to 18 for Mg(+) and depends weakly on the size of the droplet. The study of the density profile and of the angular correlations shows that the local solid-like order is more pronounced for the alkali ions with Na(+) giving a very stable icosahedral order extending up to three shells.

  15. Integrated Path Differential Absorption Lidar Optimizations Based on Pre-Analyzed Atmospheric Data for ASCENDS Mission Applications

    Science.gov (United States)

    Pliutau, Denis; Prasad, Narasimha S.

    2012-01-01

    In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.

  16. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  17. Direct assessment of quantum nuclear effects on hydrogen bond strength by constrained-centroid ab initio path integral molecular dynamics

    Science.gov (United States)

    Walker, Brent; Michaelides, Angelos

    2010-11-01

    The impact of quantum nuclear effects on hydrogen (H-) bond strength has been inferred in earlier work from bond lengths obtained from path integral molecular dynamics (PIMD) simulations. To obtain a direct quantitative assessment of such effects, we use constrained-centroid PIMD simulations to calculate the free energy changes upon breaking the H-bonds in dimers of HF and water. Comparing ab initio simulations performed using PIMD and classical nucleus molecular dynamics (MD), we find smaller dissociation free energies with the PIMD method. Specifically, at 50 K, the H-bond in (HF)2 is about 30% weaker when quantum nuclear effects are included, while that in (H2O)2 is about 15% weaker. In a complementary set of simulations, we compare unconstrained PIMD and classical nucleus MD simulations to assess the influence of quantum nuclei on the structures of these systems. We find increased heavy atom distances, indicating weakening of the H-bond consistent with that observed by direct calculation of the free energies of dissociation.

  18. Electron-phonon interaction in Ba-K-Bi-O superconductor by quantum path integral molecular dynamics (QPIMD)

    Energy Technology Data Exchange (ETDEWEB)

    Lee Chong Young.

    1990-01-01

    The author introduces two different techniques to investigate the high-Tc superconductor BaKBiO{sub 3}. The first one is the rigid-ion molecular dynamics model to calculate classical properties of the crystal. This method provides the ionic anisotropic vibrational spectra. It is found that the oxygen modes dominate the vibrational spectrum from 150 up to 820 cm{sup {minus}1}. An increase in the number of substituted K around an oxygen favors high frequency vibrational modes. Also determined by experiment was an IR spectrum, with absorption peaks between 380 to 880 cm{sup {minus}1}. Experimental and computational data are in good agreement in the high frequency region. The second technique used is based on quantum path integral molecular dynamics. It is applied for the first time to the determination of electron-phonon interaction energy. The electron-phonon coupling constant is estimated at about 1.34. This value represents a weak to moderate electron-phonon coupling in Ba{sub 1(minus)x}K{sub x}BiO{sub 3} in agreement with current views of this pairing mechanism in this material.

  19. Polymer extension under flow: A path integral evaluation of the free energy change using the Jarzynski relation

    Science.gov (United States)

    Ghosal, Aishani; Cherayil, Binny J.

    2016-06-01

    The Jarzynski relation (and its variants) has provided a route to the experimental evaluation of equilibrium free energy changes based on measurements conducted under arbitrary non-equilibrium conditions. Schroeder and co-workers [Soft Matter 10, 2178 (2014) and J. Chem. Phys. 141, 174903 (2014)] have recently exploited this fact to determine the elastic properties of model DNA from simulations and experiments of chain extension under elongational flow, bypassing the need to make these measurements mechanically using sophisticated optical trapping techniques. In this paper, motivated by these observations, we investigate chain elasticity analytically, using the Jarzynski relation and a finitely extensible nonlinear elastic-type Rouse model within a path integral formalism to calculate (essentially exactly) both the flow-induced free energy change between chain conformations of definite average end-to-end distance, as well as the force-extension curve that follows from it. This curve, based on a new analytic expression, matches the trends in the corresponding curve obtained from a model of chain stretching developed by Marko and Siggia [Macromolecules 28, 8759 (1995)], which itself is in very satisfactory agreement with the numerical and experimental data from the work of Schroeder et al.

  20. One electronic document accepted by importer and exporter authorities: Blue Path as an element of integration and traceability

    Directory of Open Access Journals (Sweden)

    Scoton Maria L. R. P. D.

    2016-01-01

    Full Text Available The Blue Path (CA-e is an document created and transmitted electronically that contains all necessary data to allow the sanitary authority to analyze the requirement of exportation that will result on the sanitary clearance of the animal protein for exportation. Actually it is in use in Brazil. However, even though the data exists electronically, when it is send to the importer country some must be sent on paper, because the bilateral agreements do not allow the exchange of electronic documents. The present work proposals the extension of the CA-e, as an element of integration and traceability, that will allow the automation of the communication between private and public systems not only at Brazil, the country of the origin of the animal protein exported, but also between and at the country of destiny. Based on the number presented by the adoption of the CA-e at Brazil, it is fair to conclude that this communication machine/machine would bring great economy and optimization for the supply chain.

  1. Path Integral Monte Carlo study confirms a highly ordered snowball in $^4$He nanodroplets doped with an Ar$^+$ ion

    CERN Document Server

    Tramonto, Filippo; Nava, Marco; Galli, Davide E

    2014-01-01

    By means of the exact Path Integral Monte Carlo method we have performed a detailed microscopic study of 4He nanodroplets doped with an argon ion, Ar$^+$, at $T=0.5$ K. We have computed density profiles, energies, dissociation energies and characterized the local order around the ion for nanodroplets with a number of 4He atoms ranging from 10 to 64 and also 128. We have found the formation of a stable solid structure around the ion, a "snowball", consisting of 3 concentric shells in which the 4He atoms are placed on at the vertices of platonic solids: the first inner shell is an icosahedron (12 atoms); the second one is a dodecahedron with 20 atoms placed on the faces of the icosahedron of the first shell; the third shell is again an icosahedron composed of 12 atoms placed on the faces of the dodecahedron of the second shell. The "magic numbers" implied by this structure, 12, 32 and 44 helium atoms, have been observed in a recent experimental study [Bartl et al, J. Phys. Chem. A 118, 2014] of these complexes;...

  2. Nonholonomic catheter path reconstruction using electromagnetic tracking

    Science.gov (United States)

    Lugez, Elodie; Sadjadi, Hossein; Akl, Selim G.; Fichtinger, Gabor

    2015-03-01

    Catheter path reconstruction is a necessary step in many clinical procedures, such as cardiovascular interventions and high-dose-rate brachytherapy. To overcome limitations of standard imaging modalities, electromagnetic tracking has been employed to reconstruct catheter paths. However, tracking errors pose a challenge in accurate path reconstructions. We address this challenge by means of a filtering technique incorporating the electromagnetic measurements with the nonholonomic motion constraints of the sensor inside a catheter. The nonholonomic motion model of the sensor within the catheter and the electromagnetic measurement data were integrated using an extended Kalman filter. The performance of our proposed approach was experimentally evaluated using the Ascension's 3D Guidance trakStar electromagnetic tracker. Sensor measurements were recorded during insertions of an electromagnetic sensor (model 55) along ten predefined ground truth paths. Our method was implemented in MATLAB and applied to the measurement data. Our reconstruction results were compared to raw measurements as well as filtered measurements provided by the manufacturer. The mean of the root-mean-square (RMS) errors along the ten paths was 3.7 mm for the raw measurements, and 3.3 mm with manufacturer's filters. Our approach effectively reduced the mean RMS error to 2.7 mm. Compared to other filtering methods, our approach successfully improved the path reconstruction accuracy by exploiting the sensor's nonholonomic motion constraints in its formulation. Our approach seems promising for a variety of clinical procedures involving reconstruction of a catheter path.

  3. Combine umbrella sampling with integrated tempering method for efficient and accurate calculation of free energy changes of complex energy surface.

    Science.gov (United States)

    Yang, Mingjun; Yang, Lijiang; Gao, Yiqin; Hu, Hao

    2014-07-28

    Umbrella sampling is an efficient method for the calculation of free energy changes of a system along well-defined reaction coordinates. However, when there exist multiple parallel channels along the reaction coordinate or hidden barriers in directions perpendicular to the reaction coordinate, it is difficult for conventional umbrella sampling to reach convergent sampling within limited simulation time. Here, we propose an approach to combine umbrella sampling with the integrated tempering sampling method. The umbrella sampling method is applied to chemically more relevant degrees of freedom that possess significant barriers. The integrated tempering sampling method is used to facilitate the sampling of other degrees of freedom which may possess statistically non-negligible barriers. The combined method is applied to two model systems, butane and ACE-NME molecules, and shows significantly improved sampling efficiencies as compared to standalone conventional umbrella sampling or integrated tempering sampling approaches. Further analyses suggest that the enhanced performance of the new method come from the complemented advantages of umbrella sampling with a well-defined reaction coordinate and integrated tempering sampling in orthogonal space. Therefore, the combined approach could be useful in the simulation of biomolecular processes, which often involves sampling of complex rugged energy landscapes.

  4. Accurate and Integrated Localization System for Indoor Environments Based on IEEE 802.11 Round-Trip Time Measurements

    Directory of Open Access Journals (Sweden)

    Lorenzo RubénMateo

    2010-01-01

    Full Text Available The presence of (Non line of Sight NLOS propagation paths has been considered the main drawback for localization schemes to estimate the position of a (Mobile User MU in an indoor environment. This paper presents a comprehensive wireless localization system based on (Round-Trip Time RTT measurements in an unmodified IEEE 802.11 wireless network. It overcomes the NLOS impairment by implementing the (Prior NLOS Measurements Correction PNMC technique. At first, the RTT measurements are performed with a novel electronic circuit avoiding the need for time synchronization between wireless nodes. At second, the distance between the MU and each reference device is estimated by using a simple linear regression function that best relates the RTT to the distance in (Line of Sight LOS. Assuming that LOS in an indoor environment is a simplification of reality hence, the PNMC technique is applied to correct the NLOS effect. At third, assuming known the position of the reference devices, a multilateration technique is implemented to obtain the MU position. Finally, the localization system coupled with measurements demonstrates that the system outperforms the conventional time-based indoor localization schemes without using any tracking technique such as Kalman filters or Bayesian methods.

  5. Simulations of light induced processes in water based on ab initio path integrals molecular dynamics. II. Photoionization

    Science.gov (United States)

    Svoboda, Ondřej; Ončák, Milan; Slavíček, Petr

    2011-10-01

    We have applied ab initio based reflection principle to simulate photoelectron spectra of small water clusters, ranging from monomer to octamer. The role of quantum and thermal effects on the structure of the water photoelectron spectra is discussed within the ab initio path integral molecular dynamics (PIMD) framework. We have used the PIMD method with up to 40 beads to sample the ground state quantum distribution at temperature T = 180 K. We have thoroughly tested the performance of various density functionals (B3LYP, BHandHLYP, M06HF, BNL, LC-ωPBE, and CAM-B3LYP) for the ionization process description. The benchmarking based on a comparison of simulated photoelectron spectra to experimental data and high level equation-of-motion ionization potential coupled clusters with singles and doubles calculations has singled out the BHandHLYP and LC-ωPBE functionals as the most reliable ones for simulations of light induced processes in water. The good performance of the density functional theory functionals to model the water photoelectron spectra also reflects their ability to reliably describe open shell excited states. The width of the photoelectron spectrum converges quickly with the cluster size as it is controlled by specific interactions of local character. The peak position is, on the other hand, defined by long-range non-specific solvent effects; it therefore only slowly converges to the corresponding bulk value. We are able to reproduce the experimental valence photoelectron spectrum of liquid water within the combined model of the water octamer embedded in a polarizable dielectric continuum. We demonstrate that including the long-range polarization and the state-specific treatment of the solvent response are needed for a reliable liquid water ionization description.

  6. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

    Science.gov (United States)

    Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori

    2016-08-01

    The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and "reduced" isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is -8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.

  7. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics

    Science.gov (United States)

    Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Natarajan, Suresh K.; Vuilleumier, Rodolphe; Mauri, Francesco

    2015-08-01

    The theoretical determination of the isotopic fractionation between an aqueous solution and a mineral is of utmost importance in Earth sciences. While for crystals, it is well established that equilibrium isotopic fractionation factors can be calculated using a statistical thermodynamic approach based on the vibrational properties, several theoretical methods are currently used to model ions in aqueous solution. In this work, we present a systematic study to determine the reduced partition function ratio (β-factor) of aqueous Mg2+ using several levels of theory within the simulations. In particular, using an empirical force field, we compare and discuss the performance of the exact results obtained from path integral molecular dynamics (PIMD) simulations, with respect to the more traditional methods based on vibrational properties and the cluster approximation. The results show the importance of including configurational disorder for the estimation of the equilibrium isotope fractionation factor. We also show that using the vibrational frequencies computed from snapshots taken from equilibrated classical molecular dynamics represents a good approximation for the study of aqueous ions. Based on these conclusions, the β-factor of aqueous Mg2+ have been estimated from a Car-Parrinello molecular dynamics (CPMD) simulation with an ab initio force field, and combined with the β-factors of carbonate minerals (magnesite, dolomite, calcite and aragonite). Mg β-factor of Mg-bearing aragonite, calculated here for the first time, displays a lower value than the three other carbonate minerals. This is explained by a strong distortion of the cationic site leading to a decrease of the coordination number during Ca-Mg substitution. Overall, the equilibrium magnesium isotope fractionation factors between aqueous Mg2+ and carbonate minerals that derive from this methodological study support the previous theoretical results obtained from embedded cluster models.

  8. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    Science.gov (United States)

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and 0.28% additional bias. Sensitivity analysis of environmental

  9. Direct hot slumping and accurate integration process to manufacture prototypal x-ray optical units made of glass

    Science.gov (United States)

    Civitani, M.; Ghigo, M.; Basso, S.; Proserpio, L.; Spiga, D.; Salmaso, B.; Pareschi, G.; Tagliaferri, G.; Burwitz, V.; Hartner, G.; Menz, B.; Bavdaz, M.; Wille, E.

    2013-09-01

    X-ray telescopes with very large collecting area, like the proposed International X-ray Observatory (IXO, with around 3 m2 at 1 keV), need to be composed of a large number high quality mirror segments, aiming at achieving an angular resolution better than 5 arcsec HEW (Half-Energy-Width). A possible technology to manufacture the modular elements that will compose the entire optical module, named X-ray Optical Units (XOUs), consists of stacking in Wolter-I configuration several layers of thin foils of borosilicate glass, previously formed by hot slumping. The XOUs are subsequently assembled to form complete multi-shell optics with Wolter-I geometry. The achievable global angular resolution of the optic relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments. The Brera Astronomical Observatory (INAF-OAB) is leading a study, supported by ESA, concerning the implementation of the IXO telescopes based on thin slumped glass foils. In addition to the opto-mechanical design, the study foresees the development of a direct hot slumping thin glass foils production technology. Moreover, an innovative assembly concept making use of Wolter-I counter-form moulds and glass reinforcing ribs is under development. The ribs connect pairs of consecutive foils in an XOU stack, playing a structural and a functional role. In fact, as the ribs constrain the foil profile to the correct shape during the bonding, they damp the low-frequency profile errors still present on the foil after slumping. A dedicated semirobotic Integration MAchine (IMA) has been realized to this scope and used to build a few integrated prototypes made of several layers of slumped plates. In this paper we provide an overview of the project, we report the results achieved so far, including full illumination intra-focus X-ray tests of the last integrated prototype that are compliant with a HEW of

  10. Path Dependency

    OpenAIRE

    Mark Setterfield

    2015-01-01

    Path dependency is defined, and three different specific concepts of path dependency – cumulative causation, lock in, and hysteresis – are analyzed. The relationships between path dependency and equilibrium, and path dependency and fundamental uncertainty are also discussed. Finally, a typology of dynamical systems is developed to clarify these relationships.

  11. Path integral approach for superintegrable potentials on spaces of non-constant curvature. Pt. 2. Darboux spaces D{sub III} and D{sub IV}

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Pogosyan, G.S. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics]|[Guadalajara Univ., Jalisco (Mexico). Dept. de Matematicas CUCEI; Sissakian, A.N. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2006-08-15

    This is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze in the spaces D{sub III} and D{sub IV} five respectively four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order polynomial equation. We show that also the free motion in Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We state the energy spectrum and the wave-functions, respectively. (orig.)

  12. Car-Parrinello and path integral molecular dynamics study of the hydrogen bonds in 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene

    Science.gov (United States)

    Durlak, Piotr; Latajka, Zdzisław

    2010-10-01

    Theoretical studies of the structure and proton motion in the intramolecular O-H…O hydrogen bonds in 2-acetyl-1,8-dihydroxy-3,6-dimethylnapthlane were carried out at the DFT and molecular dynamics levels. Geometry optimization at the PBE1PBE/6-311++G(2d,2p) level demonstrate the existence of two tautomers on the potential energy surface. Dynamics of proton motion in intramolecular hydrogen bonds was investigated in vacuo at 100 K using Car-Parrinello and path integral molecular dynamics. For the strong intramolecular hydrogen bond very large delocalization of bridging proton is noted, especially in the path integral simulation where quantum effects are taken into account. No tautomerism was found for this intramolecular hydrogen bond.

  13. A Car-Parrinello and path integral molecular dynamics study of the intramolecular lithium bond in the lithium 2-pyridyl-N-oxide acetate

    Science.gov (United States)

    Durlak, Piotr; Latajka, Zdzisław; Berski, Sławomir

    2009-07-01

    Lithium bonding in lithium 2-pyridyl-N-oxide acetate has been investigated using classic Car-Parrinello molecular dynamics (CPMD) and the path integral approach [path integrals molecular dynamics (PIMD)]. The simulations have been performed in 300 K. Structures, energies, and lithium trajectories have been determined. The CPMD results show that the lithium atom is generally equidistant between heavy atoms in the (O⋯Li⋯O) bridge. Applying quantum effects through the PIMD leads to similar conclusion. The theoretical lithium 2-pyridyl-N-oxide acetate infrared spectrum has also been determined using the CPMD calculations. This shows very good agreement with available experimental results and reproduces well the broad low-frequency band observed experimentally. In order to gain deeper understanding of the nature of the lithium bonding topological analysis of the electron localization function has been applied.

  14. Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

    Directory of Open Access Journals (Sweden)

    Michael E. Hasselmo

    2008-01-01

    Full Text Available The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.

  15. Accurate determination of the Gibbs energy of Cu-Zr melts using the thermodynamic integration method in Monte Carlo simulations

    Science.gov (United States)

    Harvey, J.-P.; Gheribi, A. E.; Chartrand, P.

    2011-08-01

    The design of multicomponent alloys used in different applications based on specific thermo-physical properties determined experimentally or predicted from theoretical calculations is of major importance in many engineering applications. A procedure based on Monte Carlo simulations (MCS) and the thermodynamic integration (TI) method to improve the quality of the predicted thermodynamic properties calculated from classical thermodynamic calculations is presented in this study. The Gibbs energy function of the liquid phase of the Cu-Zr system at 1800 K has been determined based on this approach. The internal structure of Cu-Zr melts and amorphous alloys at different temperatures, as well as other physical properties were also obtained from MCS in which the phase trajectory was modeled by the modified embedded atom model formalism. A rigorous comparison between available experimental data and simulated thermo-physical properties obtained from our MCS is presented in this work. The modified quasichemical model in the pair approximation was parameterized using the internal structure data obtained from our MCS and the precise Gibbs energy function calculated at 1800 K from the TI method. The predicted activity of copper in Cu-Zr melts at 1499 K obtained from our thermodynamic optimization was corroborated by experimental data found in the literature. The validity of the amplitude of the entropy of mixing obtained from the in silico procedure presented in this work was analyzed based on the thermodynamic description of hard sphere mixtures.

  16. Robust and Accurate Closed-Loop Control of McKibben Artificial Muscle Contraction with a Linear Single Integral Action

    Directory of Open Access Journals (Sweden)

    Bertrand Tondu

    2014-06-01

    Full Text Available We analyze the possibility of taking advantage of artificial muscle’s own stiffness and damping, and substituting it for a classic proportional-integral-derivative controller (PID controller an I controller. The advantages are that there would only be one parameter to tune and no need for a dynamic model. A stability analysis is proposed from a simple phenomenological artificial muscle model. Step and sinus-wave tracking responses performed with pneumatic McKibben muscles are reported showing the practical efficiency of the method to combine accuracy and load robustness. In the particular case of the McKibben artificial muscle technology, we suggest that the dynamic performances in stability and load robustness would result from the textile nature of its braided sleeve and its internal friction which do not obey Coulomb’s third law, as verified by preliminary reported original friction experiments. Comparisons are reported between three kinds of braided sleeves made of rayon yarns, plastic, and thin metal wires, whose similar closed-loop dynamic performances are highlighted. It is also experimentally shown that a sleeve braided with thin metal wires can give high accuracy performance, in step as in tracking response. This would be due to a low static friction coefficient combined with a kinetic friction exponentially increasing with speed in accordance with hydrodynamic lubrication theory applied to textile physics.

  17. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    Science.gov (United States)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  18. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    Science.gov (United States)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  19. Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.).

    Science.gov (United States)

    Kim, Seungill; Kim, Myung-Shin; Kim, Yong-Min; Yeom, Seon-In; Cheong, Kyeongchae; Kim, Ki-Tae; Jeon, Jongbum; Kim, Sunggil; Kim, Do-Sun; Sohn, Seong-Han; Lee, Yong-Hwan; Choi, Doil

    2015-02-01

    The onion (Allium cepa L.) is one of the most widely cultivated and consumed vegetable crops in the world. Although a considerable amount of onion transcriptome data has been deposited into public databases, the sequences of the protein-coding genes are not accurate enough to be used, owing to non-coding sequences intermixed with the coding sequences. We generated a high-quality, annotated onion transcriptome from de novo sequence assembly and intensive structural annotation using the integrated structural gene annotation pipeline (ISGAP), which identified 54,165 protein-coding genes among 165,179 assembled transcripts totalling 203.0 Mb by eliminating the intron sequences. ISGAP performed reliable annotation, recognizing accurate gene structures based on reference proteins, and ab initio gene models of the assembled transcripts. Integrative functional annotation and gene-based SNP analysis revealed a whole biological repertoire of genes and transcriptomic variation in the onion. The method developed in this study provides a powerful tool for the construction of reference gene sets for organisms based solely on de novo transcriptome data. Furthermore, the reference genes and their variation described here for the onion represent essential tools for molecular breeding and gene cloning in Allium spp.

  20. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    Science.gov (United States)

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  1. Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab-Initio Molecular Dynamics Simulations

    CERN Document Server

    Kessler, Jan; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D

    2015-01-01

    The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab-initio molecular dynamics simulations in conjunction with an instantaneous surface definition [A. P. Willard and D. Chandler, J. Phys. Chem. B 114, 1954 (2010)]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.

  2. Path integral molecular dynamics combined with discrete-variable-representation approach: the effect of solvation structures on vibrational spectra of Cl 2 in helium clusters

    Science.gov (United States)

    Takayanagi, Toshiyuki; Shiga, Motoyuki

    2002-08-01

    The structures and vibrational frequencies of Cl 2-helium clusters have been studied using the path integral molecular dynamics method combined with the discrete-variable-representation approach. It is found that the Cl 2-helium clusters form clear shell structures comprised of rings around the Cl 2 bond. The vibrational frequencies calculated show a monotonically increasing red shift with an increase in cluster size. It can be concluded that the first solvation shell and its density around T-shaped configurations play the most important role in the observed frequency shifts.

  3. Theoretical study on mechanisms of structural rearrangement and ionic dissociation in the HCl(H 2O) 4 cluster with path-integral molecular dynamics simulations

    Science.gov (United States)

    Sugawara, Shuichi; Yoshikawa, Takehiro; Takayanagi, Toshiyuki; Tachikawa, Masanori

    2011-01-01

    The structural rearrangement process for the HCl(H2O)4 cluster has been studied by path-integral molecular dynamics simulations, where 'on-the-fly' calculation of the potential energy surface is done with the PM3-MAIS semiempirical level. The mechanisms of the rearrangement were analyzed using appropriate collective coordinates as well as detailed potential energy diagrams derived from low-lying stationary points. It was found that the vibrational entropy mainly determines the stability of the cluster structure especially at high temperatures. We have also found that the acidity of HCl in the cluster correlates with the coordination number of chlorine with respect water molecules.

  4. Path integral molecular dynamics simulation of quasi-free rotational motion of CO doped in a large para-hydrogen cluster

    Science.gov (United States)

    Mizumoto, Yoshihiko; Ohtsuki, Yukiyoshi

    2011-01-01

    Path integral molecular dynamics simulation is used to study the rotational motion of a CO molecule doped in a large para-hydrogen (p-H2) cluster. The quasi-free rotational motion of CO in a p-H2 cluster with a reduced rotational constant is derived from the imaginary-time orientational correlation functions, and is in good agreement with recent experimental observations. We attribute the reduced rotational constant to the low-viscous fluid-like behavior of the host p-H2 cluster.

  5. Path-integral molecular dynamics simulations of hydrated hydrogen chloride cluster HCl(H{sub 2}O){sub 4} on a semiempirical potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takahashi, Kenta; Kakizaki, Akira [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Shiga, Motoyuki [Center for Computational Science and E-systems, Japan Atomic Energy Agency, Higashi-Ueno 6-9-3, Taito-ku, Tokyo 110-0015 (Japan); Tachikawa, Masanori [Quantum Chemistry Division, International Graduate School of Arts and Sciences, Yokohama-City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)

    2009-04-22

    Path-integral molecular dynamics simulations for the HCl(H{sub 2}O){sub 4} cluster have been performed on the ground-state potential energy surface directly obtained on-the-fly from semiempirical PM3-MAIS molecular orbital calculations. It is found that the HCl(H{sub 2}O){sub 4} cluster has structural rearrangement above the temperature of 300 K showing a liquid-like behavior. Quantum mechanical fluctuation of hydrogen nuclei plays a significant role in structural arrangement processes in this cluster.

  6. Path-integral molecular dynamics simulations of hydrated hydrogen chloride cluster HCl(H 2O) 4 on a semiempirical potential energy surface

    Science.gov (United States)

    Takayanagi, Toshiyuki; Takahashi, Kenta; Kakizaki, Akira; Shiga, Motoyuki; Tachikawa, Masanori

    2009-04-01

    Path-integral molecular dynamics simulations for the HCl(H 2O) 4 cluster have been performed on the ground-state potential energy surface directly obtained on-the-fly from semiempirical PM3-MAIS molecular orbital calculations. It is found that the HCl(H 2O) 4 cluster has structural rearrangement above the temperature of 300 K showing a liquid-like behavior. Quantum mechanical fluctuation of hydrogen nuclei plays a significant role in structural arrangement processes in this cluster.

  7. Photodissociation of Cl 2 in helium clusters: an application of hybrid method of quantum wavepacket dynamics and path integral centroid molecular dynamics

    Science.gov (United States)

    Takayanagi, Toshiyuki; Shiga, Motoyuki

    2003-04-01

    The photodissociation dynamics of Cl 2 embedded in helium clusters is studied by numerical simulation with an emphasis on the effect of quantum character of helium motions. The simulation is based on the hybrid model in which Cl-Cl internuclear dynamics is treated in a wavepacket technique, while the helium motions are described by a path integral centroid molecular dynamics approach. It is found that the cage effect largely decreases when the helium motion is treated quantum mechanically. The mechanism is affected not only by the zero-point vibration in the helium solvation structure, but also by the quantum dynamics of helium.

  8. Effect of surface corrugation on low temperature phases of adsorbed (p-H{sub 2}){sub 7}: A quantum path integral Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Anthony; López, Gustavo E., E-mail: gustavo.lopez1@lehman.cuny.edu

    2014-04-01

    By using path integral Monte Carlo simulations coupled to Replica Exchange algorithms, various phases of (p-H{sub 2}){sub 7} physically adsorbed on a model graphite surface were identified at low temperatures. At T=0.5 K, the expected superfluid phase was observed for flat and slightly corrugated surfaces. At intermediate and high corrugations, a “supersolid” phase in C{sub 7/16} registry and a solid phase in C{sub 1/3} registry were observed, respectively. At higher temperatures, the superfluid is converted to a fluid and the “supersolid” to a solid.

  9. Egocentric and geocentric navigation during extremely long foraging paths of desert ants.

    Science.gov (United States)

    Huber, Roman; Knaden, Markus

    2015-06-01

    Desert ants, Cataglyphis fortis, navigate individually in the salt pans of Tunisia by means of path integration. However, as path integration is error-prone, the ants in addition use visual and olfactory cues to pinpoint their nest entrance. It has been shown that the accuracy of the path integrator as well as the ants' confidence in that egocentric navigational tool decreases with increasing foraging distance. Here, we show that despite the accumulating errors, even after far-reaching foraging runs path integration provides the ants with surprisingly accurate information regarding the nest position. However, in addition, the ants take into account distant visual cues that are most probably provided by the patterns along the horizon line behind the nest entrance.

  10. Spatially-global integration of closed, fragmented contours by finding the shortest-path in a log-polar representation.

    Science.gov (United States)

    Kwon, TaeKyu; Agrawal, Kunal; Li, Yunfeng; Pizlo, Zygmunt

    2016-09-01

    Finding the occluding contours of objects in real 2D retinal images of natural 3D scenes is done by determining, which contour fragments are relevant, and the order in which they should be connected. We developed a model that finds the closed contour represented in the image by solving a shortest path problem that uses a log-polar representation of the image; the kind of representation known to exist in area V1 of the primate cortex. The shortest path in a log-polar representation favors the smooth, convex and closed contours in the retinal image that have the smallest number of gaps. This approach is practical because finding a globally-optimal solution to a shortest path problem is computationally easy. Our model was tested in four psychophysical experiments. In the first two experiments, the subject was presented with a fragmented convex or concave polygon target among a large number of unrelated pieces of contour (distracters). The density of these pieces of contour was uniform all over the screen to minimize spatially-local cues. The orientation of each target contour fragment was randomly perturbed by varying the levels of jitter. Subjects drew a closed contour that represented the target's contour on a screen. The subjects' performance was nearly perfect when the jitter-level was low. Their performance deteriorated as jitter-levels were increased. The performance of our model was very similar to our subjects'. In two subsequent experiments, the subject was asked to discriminate a briefly-presented egg-shaped object while maintaining fixation at several different positions relative to the closed contour of the shape. The subject's discrimination performance was affected by the fixation position in much the same way as the model's.

  11. Path integral approach for superintegrable potentials on spaces of non-constant curvature. Pt. 1. Darboux spaces D{sub I} and D{sub II}

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Pogosyan, G.S. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics]|[Guadalajara Univ., Jalisco (Mexico). Dept. de Matematicas CUCEI; Sissakian, A.N. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2006-07-15

    In this paper the Feynman path integral technique is applied for superintegrable potentials on two-dimensional spaces of non-constant curvature: these spaces are Darboux spaces D{sub I} and D{sub II}, respectively. On D{sub I} there are three and on D{sub II} foru such potentials, respectively. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is either determined by a transcendental equation involving parabolic cylinder functions (Darboux space I), or by a higher order polynomial equation. The solutions on D{sub I} in particular show that superintegrable systems are not necessarily degenerate. We can also show how the limiting cases of flat space (Constant curvature zero) and the two-dimensional hyperboloid (constant negative curvature) emerge. (Orig.)

  12. The path integral quantization and the construction of the S-matrix in the abelian and non-abelian Chern-Simons theories

    CERN Document Server

    Fainberg, V Ya; Shikakhwa, M S

    1996-01-01

    The cvariant path integral quantization of the theory of the scalar and spinor particles interacting through the abelian and non-Abelian Chern-Simons gauge fields is carried out and is shown to be mathematically ill defined due to the absence of the transverse components of these gauge fields. This is remedied by the introduction of the Maxwell or the Maxwell-type (in the non-Abelian case)term which makes the theory superrenormalizable and guarantees its gauge-invariant regularization and renormalization. The generating functionals are constructed and shown to be formally the same as those of QED (or QCD) in 2+1 dimensions with the substitution of the Chern-Simons propagator for the photon (gluon) propagator. By constructing the propagator in the general case, the existence of two limits; pure Chern-Simons and QED (QCD) after renormalization is demonstrated. By carrying out carefully the path integral quantization of the non-Abelian Chern-Simons theories using the De Witt-Fadeev-Popov and the Batalin-Fradkin-...

  13. Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane.

    Science.gov (United States)

    Webb, Michael A; Miller, Thomas F

    2014-01-16

    We combine path-integral Monte Carlo methods with high-quality potential energy surfaces to compute equilibrium isotope effects in a variety of systems relevant to 'clumped' isotope analysis and isotope geochemistry, including CO2, N2O, methane, and propane. Through a systematic study of heavy-atom isotope-exchange reactions, we quantify and analyze errors that arise in the widely used Urey model for predicting equilibrium constants of isotope-exchange reactions using reduced partition function ratios. These results illustrate that the Urey model relies on a nontrivial cancellation of errors that can shift the apparent equilibrium temperature by as much as 35 K for a given distribution of isotopologues. The calculations reported here provide the same level of precision as the best existing analytical instrumentation, resolving the relative enrichment of certain isotopologues to as little as 0.01‰. These findings demonstrate path-integral methods to be a rigorous and viable alternative to more approximate methods for heavy-atom geochemical applications.

  14. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr–Universität Bochum, 44780 Bochum (Germany)

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  15. 公民诚信建设的路径研究%Study on the Improvement Paths of Civic Integrity Construction

    Institute of Scientific and Technical Information of China (English)

    施向阳; 程萍

    2016-01-01

    诚信是个体道德的基础,是一切道德的根本,是社会赖以生存和发展的基本要素。坚守诚信是中华民族的优良传统。社会转型期出现的公民诚信危机主要表现为部分公民诚信内涵认识的碎片化、诚信价值判断的相对化、诚信评价标准的利己化。公民诚信建设应选择以下主要路径,即构建公民诚信的教育网络,加强公民诚信的舆论引导,建立公民诚信的信息渠道,健全公民诚信的奖惩机制。%Integrity is the foundation of individual morality, the fundamental of all morality and the essential factor of the survival and development of society. Adhering to integrity is the fine tradition of the Chinese nation. During the social transformation, the integrity crisis mainly manifested as fragmented understanding of the connotation of integrity, relative value judgment of integrity, the self serving of the evaluation standard. Analyzing the reasons causing the civic integrity crisis, the paper proposes improvement path for civic integrity construction including improving family education, school education and social education, strengthening the public opinion leading, establishing the information channels, improving the reward and punishment mechanism of civic integrity.

  16. Crack path predictions and experiments in plane structures considering anisotropic properties and material interfaces

    Directory of Open Access Journals (Sweden)

    P.O. Judt

    2015-10-01

    Full Text Available In many engineering applications special requirements are directed to a material's fracture behavior and the prediction of crack paths. Especially if the material exhibits anisotropic elastic properties or fracture toughnesses, e.g. in textured or composite materials, the simulation of crack paths is challenging. Here, the application of path independent interaction integrals (I-integrals, J-, L- and M-integrals is beneficial for an accurate crack tip loading analysis. Numerical tools for the calculation of loading quantities using these path-invariant integrals are implemented into the commercial finite element (FE-code ABAQUS. Global approaches of the integrals are convenient considering crack tips approaching other crack faces, internal boundaries or material interfaces. Curved crack faces require special treatment with respect to integration contours. Numerical crack paths are predicted based on FE calculations of the boundary value problem in connection with an intelligent adaptive re-meshing algorithm. Considering fracture toughness anisotropy and accounting for inelastic effects due to small plastic zones in the crack tip region, the numerically predicted crack paths of different types of specimens with material interfaces and internal boundaries are compared to subcritically grown paths obtained from experiments.

  17. Path Sensitization

    Institute of Scientific and Technical Information of China (English)

    赵著行; 闵应骅; 等

    1997-01-01

    For different delay models,the concept of sensitization can be very different.Traditonal concepts of sensitization cannot precisely describe circuit behavior when the input vectors change very fast.Using Boolean process aporoach,this paper presents a new definition of sensitization for arbitrary input waveforms.By this new concept it is found that if the inputs of a combinational circuit can change at any time,and each gate's delay varies within an interval (bounded gate delay model),then every path,which is not necessarily a single topological path,is sensitizable.From the experimental results it can be seen that,all nonsensitizable paths for traditional concepts actually can propagate transitions along them for some input waveforms.However,specified time between input transitions(STBIT) and minimum permissible pulse width(ε)are two major factors to make some paths non-sensitizable.

  18. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    Science.gov (United States)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  19. Teaching Art a Greener Path: Integrating Sustainability Concepts of Interior Design Curriculum into the Art Education Curriculum

    Science.gov (United States)

    Hasio, Cindy; Crane, Tommy J.

    2014-01-01

    Interior design is seldom integrated within the general art education curriculum because the subject matter is generally segregated as a commercial art. However, the importance of interior design concepts of sustainability in art education can really help a student understand the scale and proportion of space and mass, and how sustainability is…

  20. Integrated Geophysical Investigation of Preferential Flow Paths at the Former Tyson Valley Powder Farm near Eureka, Missouri, May 2006

    Science.gov (United States)

    Burton, Bethany L.; Ball, Lyndsay B.; Stanton, Gregory P.; Hobza, Christopher M.

    2009-01-01

    In May 2006, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, conducted surface and borehole geophysical surveys at the former Tyson Valley Powder Farm near Eureka, Mo., to identify preferential pathways for potential contaminant transport along the bedrock surface and into dissolution-enhanced fractures. The Tyson Valley Powder Farm was formerly used as a munitions storage and disposal facility in the 1940s and 1950s, and the site at which the surveys were performed was a disposal area for munitions and waste solvents such as trichloroethylene and dichloroethylene. Direct-current resistivity and seismic refraction data were acquired on the surface; gamma, electromagnetic induction, and full waveform sonic logs were acquired in accessible boreholes. Through the combined interpretation of the seismic refraction tomographic and resistivity inversion results and borehole logs, inconsistencies in the bedrock surface were identified that may provide horizontal preferential flow paths for dense nonaqueous phase liquid contaminants. These results, interpreted and displayed in georeferenced three-dimensional space, should help to establish more effective monitoring and remediation strategies.

  1. Die Baltischen handels-beziehungen mit Russland: Pfadabhängigkeiten trotz EU-Integration? Challenging the Baltic states trade relations with Russia: caught in path dependencies?

    Directory of Open Access Journals (Sweden)

    Klaus Schrader

    2015-08-01

    Full Text Available Against the backdrop of the lingering Ukraine crisis, Russia retaliated against the EU sanctions imposed on selected Russian enterprises and representatives by boycotting import goods from European and North American suppliers. Russian politicians further threatened to restrict the export of raw materials, especially natural gas, provided that the EU-Russia relations further worsen and sanctions gather momen-tum. Hence, the paper deals with the question to what extent the EU economies Estonia, Latvia and Lithuania are vulnerable to Russian reprisals and would experience comparatively high costs of the EU sanction policy. The focus of the analysis is on the Baltic States’ trade relations with Russia because these countries were integrated in the Soviet division of labor before regaining independence. It is analyzed whether path dependencies in Baltic trade patterns still exist that could make Estonia, Latvia and Lithuania more vulnerable to political blackmail than other EU countries.

  2. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions.

    Science.gov (United States)

    Yan, Yangqian; Blume, D

    2016-06-10

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  3. Path-integral molecular dynamics simulations of BeO embedded in helium clusters: Formation of the stable HeBeO complex

    Science.gov (United States)

    Motegi, Haruki; Kakizaki, Akira; Takayanagi, Toshiyuki; Taketsugu, Yuriko; Taketsugu, Tetsuya; Shiga, Motoyuki

    2008-12-01

    Path-integral molecular dynamics simulations have been performed to understand the quantum helium solvation structures in the He nBeO cluster up to n = 100. Our simulations show that one helium atom is strongly bound to BeO to form HeBeO and that the first solvation shell around the HeBeO complex includes roughly 12-14 helium atoms. The second solvation structure was also observed for n > 20. Both the first and second solvation shells show an anisotropic behavior but the anisotropy for the second solvation shell was found to be much weaker than that for the first solvation shell, as expected. The present simulations suggest that the HeBeO complex may be formed in large helium clusters.

  4. Effect of temperature on the formation of electronic bound states in an expanded bcc hydrogenoid crystal: A restricted path-integral molecular dynamics simulation

    Science.gov (United States)

    Oh, Ki-Dong; Deymier, P. A.

    2004-04-01

    We have used the restricted path-integral molecular dynamics method to study the correlated electronic structure of a half-filled expanded three-dimensional hydrogenoid body-centered cubic lattice at finite temperatures. Starting from a paramagnetic metallic state with electron gas character, we find that bound electrons form upon expansion of the lattice. The bound electrons are spatially localized with their center for the motion of gyration located on ionic positions. The region of coexistence of bound and unbound states in the temperature-density plane is reminiscent of that associated with a first-order transition. At constant temperature, the number of bound electrons increases monotonously with decreasing density. The width of the region of coexistence narrows with increasing temperature.

  5. Path-integral molecular dynamics simulations of BeO embedded in helium clusters: Formation of the stable HeBeO complex

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Haruki; Kakizaki, Akira [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)], E-mail: tako@mail.saitama-u.ac.jp; Taketsugu, Yuriko; Taketsugu, Tetsuya [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Shiga, Motoyuki [Center for Computational Science and E-systems, Japan Atomic Energy Agency, Higashi-Ueno 6-9-3, Taito-ku, Tokyo 110-0015 (Japan)

    2008-12-10

    Path-integral molecular dynamics simulations have been performed to understand the quantum helium solvation structures in the He{sub n}BeO cluster up to n = 100. Our simulations show that one helium atom is strongly bound to BeO to form HeBeO and that the first solvation shell around the HeBeO complex includes roughly 12-14 helium atoms. The second solvation structure was also observed for n > 20. Both the first and second solvation shells show an anisotropic behavior but the anisotropy for the second solvation shell was found to be much weaker than that for the first solvation shell, as expected. The present simulations suggest that the HeBeO complex may be formed in large helium clusters.

  6. Path-integral molecular dynamics simulations of glycine·(H 2O) n ( n = 1-7) clusters on semi-empirical PM6 potential energy surfaces

    Science.gov (United States)

    Yoshikawa, Takehiro; Motegi, Haruki; Kakizaki, Akira; Takayanagi, Toshiyuki; Shiga, Motoyuki; Tachikawa, Masanori

    2009-11-01

    Path-integral molecular dynamics simulations for the hydrogen-bonded glycine·(H 2O) n ( n = 1-7) clusters have been carried out using an on-the-fly direct dynamics technique at the semi-empirical PM6 level of theory. In the case of smaller clusters with n = 1-3, the simulations show that the cluster structure takes exclusively the hydrogen-bonded complex between a canonical neutral glycine and a water cluster moiety. In contrast, it was found that proton-exchange processes effectively occur between the COOH carboxylic group and water cluster moiety for n = 4-6 clusters although the overall structures are the complex between a neutral glycine and water clusters. In the case of the n = 7 cluster, glycine preferentially takes a zwitterionic form having NH3+ and COO - functional groups.

  7. H /D isotope effect on the dihydrogen bond of NH4+⋯BeH2 by ab initio path integral molecular dynamics simulation

    Science.gov (United States)

    Hayashi, Aiko; Shiga, Motoyuki; Tachikawa, Masanori

    2006-11-01

    In order to investigate the H /D isotope effect on a dihydrogen bonded cation system, we have studied NH4+⋯BeH2 and its isotopomers by ab initio path integral molecular dynamics. It is found that the dihydrogen bond can be exchanged by NH4+ rotation. The deuterated isotopomer (ND4+⋯BeD2; DD) can exchange the dihydrogen bond more easily than other isotopomers such as (NH4+⋯BeH2; HH). This unusual isotope effect is ascribed to the "quantum localization" which occurs when the effective energy barrier for the rotational mode becomes higher by the zero point energy of other modes. We also found that the binding energy of dihydrogen bonds for DD species is the smallest among the isotopomers.

  8. Path-integral Fujikawa's approach to anomalous virial theorems and equations of state for systems with SO(2,1) symmetry

    Science.gov (United States)

    Ordóñez, Carlos R.

    2016-03-01

    We derive anomalous equations of state for nonrelativistic 2D complex bosonic fields with contact interactions, using Fujikawa's path-integral approach to anomalies and scaling arguments. In the process, we derive an anomalous virial theorem for such systems. The methods used are easily generalizable for other 2D systems, including fermionic ones, and of different spatial dimensionality, all of which share a classical SO(2 , 1) Schrödinger symmetry. The discussion is of a more formal nature and is intended mainly to shed light on the structure of anomalies in 2D many-body systems. The anomaly corrections to the virial theorem and equation of state-pressure relationship-may be identified as the Tan contact term. The practicality of these ideas rests upon being able to compute in detail the Fujikawa Jacobian that contains the anomaly. This and other conceptual issues, as well as some recent developments, are discussed at the end of the paper.

  9. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

    Science.gov (United States)

    Caspani, Lucia; Reimer, Christian; Kues, Michael; Roztocki, Piotr; Clerici, Matteo; Wetzel, Benjamin; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Razzari, Luca; Little, Brent E.; Chu, Sai T.; Moss, David J.; Morandotti, Roberto

    2016-06-01

    Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

  10. New Path for Integrated Reform of Urban and Rural Household Registration System in the Context of Informationization

    Institute of Scientific and Technical Information of China (English)

    Yue; LIU; Liang; ZHOU

    2013-01-01

    In China, household registration system has the problems of unreasonable standard setting and relevant supporting measures failure to keep pace with the development trend. From analysis of current problems and situations, it is believed that household registration system should undertake reform and take a new road by means of informationization. Strengthening informationization management in land, population, education and labor market can better perform urban and rural integration.

  11. Measure of the accuracy of navigational sensors for autonomous path tracking

    Science.gov (United States)

    Motazed, Ben

    1994-02-01

    Outdoor mobile robot path tracking for an extended period of time and distance is a formidable task. The difficulty lies in the ability of robot navigation systems to reliably and accurately report on the position and orientation of the vehicle. This paper addresses the accurate navigation of mobile robots in the context of non-line of sight autonomous convoying. Dead-reckoning, GPS and vision based autonomous road following navigational schemes are integrated through a Kalman filter formulation to derive mobile robot position and orientation. The accuracy of these navigational schemes and their sufficiency to achieve autonomous path tracking for long duration are examined.

  12. Path Choice on Rural Industrial Upgrading in the Process of Rural-urban Integration in Binhai New Area

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With methods of reference research and field research, the current situations of rural industrialization in the process of rural-urban integration in Binhai new area are analyzed and some problems in the process of integration in the new area are pointed out, such as difficulties in breaking dual economic structure in urban and rural areas, imbalanced economic development in the area and inadequate development of the third industry. And relevant countermeasures are proposed: optimizing agriculture industrial structure and promoting agricultural industrialization to form urban agricultural model of Binhai new area focusing on facility agriculture, park agriculture and high-end agriculture and to realize the intensive growth of agriculture; rationally distributing rural industrial structure to form regional leading industry and playing the guiding role of industry to achieve industrial adjustment improvement; quickening the construction of the third industry centering on service to form the service system of modern countryside and the leading role of modern service industry so as to achieve rapid development of the third industry.

  13. Path Dependence

    DEFF Research Database (Denmark)

    Madsen, Mogens Ove

    Begrebet Path Dependence blev oprindelig udviklet inden for New Institutionel Economics af bl.a. David, Arthur og North. Begrebet har spredt sig vidt i samfundsvidenskaberne og undergået en udvikling. Dette paper propagerer for at der er sket så en så omfattende udvikling af begrebet, at man nu kan...... tale om 1. og 2. generation af Path Dependence begrebet. Den nyeste udvikling af begrebet har relevans for metodologi-diskusionerne i relation til Keynes...

  14. On the Path to SunShot. Emerging Issues and Challenges in Integrating Solar with the Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Broderick, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mather, Barry [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baker, Kyri [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ding, Fei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reno, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bharatkumar, Ashwini [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-05-01

    This report analyzes distribution-integration challenges, solutions, and research needs in the context of distributed generation from PV (DGPV) deployment to date and the much higher levels of deployment expected with achievement of the U.S. Department of Energy's SunShot targets. Recent analyses have improved estimates of the DGPV hosting capacities of distribution systems. This report uses these results to statistically estimate the minimum DGPV hosting capacity for the contiguous United States using traditional inverters of approximately 170 GW without distribution system modifications. This hosting capacity roughly doubles if advanced inverters are used to manage local voltage and additional minor, low-cost changes could further increase these levels substantially. Key to achieving these deployment levels at minimum cost is siting DGPV based on local hosting capacities, suggesting opportunities for regulatory, incentive, and interconnection innovation. Already, pre-computed hosting capacity is beginning to expedite DGPV interconnection requests and installations in select regions; however, realizing SunShot-scale deployment will require further improvements to DGPV interconnection processes, standards and codes, and compensation mechanisms so they embrace the contributions of DGPV to system-wide operations. SunShot-scale DGPV deployment will also require unprecedented coordination of the distribution and transmission systems. This includes harnessing DGPV's ability to relieve congestion and reduce system losses by generating closer to loads; minimizing system operating costs and reserve deployments through improved DGPV visibility; developing communication and control architectures that incorporate DGPV into system operations; providing frequency response, transient stability, and synthesized inertia with DGPV in the event of large-scale system disturbances; and potentially managing reactive power requirements due to large-scale deployment of advanced

  15. Engineering the path to higher-order thinking in elementary education: A problem-based learning approach for STEM integration

    Science.gov (United States)

    Rehmat, Abeera Parvaiz

    As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.

  16. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.

    Science.gov (United States)

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Bhatia, Suresh K

    2007-03-27

    Hydrogen in slit-like carbon nanopores at 77 K represents a quantum fluid in strong confinement. We have used path-integral grand canonical Monte Carlo and classical grand canonical Monte Carlo simulations for the investigation of the "quantumness" of hydrogen at 77 K adsorbed in slit-like carbon nanopores up to 1 MPa. We find that classical simulations overpredict the hydrogen uptake in carbon nanopores due to neglect of the quantum delocalization. Such disagreement of both simulation methods depends on the slit-like carbon pore size. However, the differences between the final uptakes of hydrogen computed from both classical and quantum simulations are not large due to a similar effective size of quantum/classical hydrogen molecules in carbon nanospaces. For both types of molecular simulations, the volumetric density of stored energy in optimal carbon nanopores exceeds 6.4 MJ dm(-3) (i.e., 45 kg m(-3); Department of Energy target for 2010). In contrast to the hydrogen adsorption isotherms, we found a large reduction of isosteric enthalpy of adsorption computed from the quantum Feynman's path-integral simulations in comparison to the classical values at 77 K and pressures up to 1 MPa. Depression of the quantum isosteric enthalpy of adsorption depends on the slit-like carbon pore size. For the narrow pores (pore width H in [0.59-0.7] nm), the reduction of the quantum isosteric enthalpy of adsorption at zero coverage is around 50% in comparison to the classical one. We observed new phenomena called, by us, the quantum confinement-inducing polymer shrinking. In carbon nanospaces, the quantum cyclic polymers shrink, in comparison to its bulk-phase counterpart, due to a strong confinement effect. At considered storage conditions, this complex phenomenon depends on the size of the slit-like carbon nanopore and the density of hydrogen volumetric energy. For the smallest nanopores and a low density of hydrogen volumetric energy, the reduction of the polymer effective size

  17. Path Creation

    DEFF Research Database (Denmark)

    Karnøe, Peter; Garud, Raghu

    2012-01-01

    This paper employs path creation as a lens to follow the emergence of the Danish wind turbine cluster. Supplier competencies, regulations, user preferences and a market for wind power did not pre-exist; all had to emerge in a tranformative manner involving multiple actors and artefacts. Competenc......This paper employs path creation as a lens to follow the emergence of the Danish wind turbine cluster. Supplier competencies, regulations, user preferences and a market for wind power did not pre-exist; all had to emerge in a tranformative manner involving multiple actors and artefacts....... Competencies emerged through processes and mechanisms such as co-creation that implicated multiple learning processes. The process was not an orderly linear one as emergent contingencies influenced the learning processes. An implication is that public policy to catalyse clusters cannot be based...

  18. Cosmological Feynman Paths

    CERN Document Server

    Chew, Geoffrey F

    2008-01-01

    Arrowed-time divergence-free rules or cosmological quantum dynamics are formulated through stepped Feynman paths across macroscopic slices of Milne spacetime. Slice boundaries house totally-relativistic rays representing elementary entities--preons. Total relativity and the associated preon Fock space, despite distinction from special relativity (which lacks time arrow), are based on the Lorentz group. Each path is a set of cubic vertices connected by straight, directed and stepped arcs that carry inertial, electromagnetic and gravitational action. The action of an arc step comprises increments each bounded by Planck's constant. Action from extremely-distant sources is determined by universe mean energy density. Identifying the arc-step energy that determines inertial action with that determining gravitational action establishes both arc-step length and universe density. Special relativity is accurate for physics at laboratory spacetime scales far below that of Hubble and far above that of Planck.

  19. A semiclassical approach to the dynamics of many-body Bose/Fermi systems by the path integral centroid molecular dynamics

    Science.gov (United States)

    Kinugawa, Kenichi; Nagao, Hidemi; Ohta, Koji

    2001-01-01

    We present a formalism of the path integral centroid molecular dynamics (CMD) extended to Bose and Fermi statistics as a semiclassical approach to explore the dynamics of quantum many-body systems. The validity of the method is examined in relation to the time correlation functions. The presently proposed scheme, refined from our previous derivation [Chem. Phys. Lett. 307, 187 (1999)], is aimed at the calculations of not the exact quantum-mechanical dynamics but the semiclassical dynamics under certain approximations. The formalism is based on the projection operator with which the Bose/Fermi system is mapped onto a particular type of pseudo-Boltzmann system. In the pseudo-Boltzmann system the correlation due to the Bose/Fermi statistics is introduced via an extra pseudopotential called the permutation potential and its relevant operator. Using the present semiclassical formalism, the time correlation function of centroid position, which is evaluated from the CMD trajectories in the pseudo-Boltzmann system, is an approximation to the Kubo canonical correlation function of position operator of the exact quantum-statistical system composed of bosons or fermions. There is no such apparent relation between the momentum operator and the corresponding momentum centroid.

  20. A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals

    Science.gov (United States)

    Pérez, Alejandro; Tuckerman, Mark E.; Müser, Martin H.

    2009-05-01

    The problems of ergodicity and internal consistency in the centroid and ring-polymer molecular dynamics methods are addressed in the context of a comparative study of the two methods. Enhanced sampling in ring-polymer molecular dynamics (RPMD) is achieved by first performing an equilibrium path integral calculation and then launching RPMD trajectories from selected, stochastically independent equilibrium configurations. It is shown that this approach converges more rapidly than periodic resampling of velocities from a single long RPMD run. Dynamical quantities obtained from RPMD and centroid molecular dynamics (CMD) are compared to exact results for a variety of model systems. Fully converged results for correlations functions are presented for several one dimensional systems and para-hydrogen near its triple point using an improved sampling technique. Our results indicate that CMD shows very similar performance to RPMD. The quality of each method is further assessed via a new χ2 descriptor constructed by transforming approximate real-time correlation functions from CMD and RPMD trajectories to imaginary time and comparing these to numerically exact imaginary time correlation functions. For para-hydrogen near its triple point, it is found that adiabatic CMD and RPMD both have similar χ2 error.

  1. Molecular collective dynamics in solid para-hydrogen and ortho-deuterium: The Parrinello-Rahman-type path integral centroid molecular dynamics approach

    Science.gov (United States)

    Saito, Hiroaki; Nagao, Hidemi; Nishikawa, Kiyoshi; Kinugawa, Kenichi

    2003-07-01

    The single-particle and collective dynamics of hydrogen/deuterium molecules in solid hcp para-hydrogen (p-H2) and ortho-deuterium (o-D2) has been investigated by using the path integral centroid molecular dynamics (CMD) simulations at zero-pressure and 5.4 and 5.0 K, respectively. For this purpose, we have newly unified the standard CMD method with the Parrinello-Rahman-Nosé-Hoover-chain-type isothermal-isobaric technique. The phonon density of states have been obtained and the dynamic structure factors have been calculated to observe the phonon dispersion relations of both crystals. For solid p-H2, the high energy edge of the phonon energies of solid p-H2 is >13 meV, and the calculated phonon energies are significantly higher than those observed in Nielsen's previous neutron scattering experiments in the energy region >9 meV. The relationship between the present results and the data reported so far is discussed to resolve the outstanding controversy regarding the phonon energies in solid p-H2. On the other hand, the excitation energies for solid o-D2 are in fairly good agreement with those of the neutron experiments. The calculated isothermal compressibility of solid p-H2 is found to be very close to the experimental result.

  2. Path integral molecular dynamic study of nuclear quantum effect on small chloride water clusters of Cl-(H2O)1-4

    Science.gov (United States)

    Wang, Qi; Suzuki, Kimichi; Nagashima, Umpei; Tachikawa, Masanori; Yan, Shiwei

    2013-06-01

    The nuclear quantum effect, which plays important roles on ionic hydrogen bonded structures of Cl-(H2O)n (n = 1-4) clusters, was explored by carrying out path integral molecular dynamic simulations. An outer shell coordinate rl(Cl⋯O) is selected to display the rearrangement of single and multi hydration shell cluster structures. By incorporating the nuclear quantum effect, it is shown that the probability for single shell structures is decreased while the probability for multi shell structures is increased. On the other hand, the correlations between changing of bonded H∗ atom to Cl- (defined as δ) and other cluster vibration coordinates are studied. We have found that δ strongly correlates with proton transfer motion while it has little correlation with ion-water stretching motion. Contrary to θ(H-O-H∗) coordinate, the correlations between δ and other coordinates are decreased by inclusion of nuclear quantum effect. The results indicate that the water-water hydrogen bond interactions are encouraged by quantum simulations.

  3. Simulating signatures of two-dimensional electronic spectra of the Fenna-Matthews-Olson complex: By using a numerical path integral.

    Science.gov (United States)

    Liang, Xian-Ting

    2014-07-28

    A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time.

  4. 路径积分法在一类随机动力系统中的应用%Application of Path Integration Method in Nonlinear Stochastic Dynamics

    Institute of Scientific and Technical Information of China (English)

    沈焰焰

    2011-01-01

    利用路径积分法研究一类非线性动力系统的混沌响应,计算lévy噪声激励的混沌系统的瞬时概率密度等概率性质,并讨论lévy噪声对确定性系统混沌运动的影响.研究表明,在噪声强度一定的情况下,其随机系统的概率密度的演化可以用来刻画该混沌吸引算子的结构特征.%Path integration method was used to study the chaotic response of the nonlinear dynamical systems and the probabilistic nature such as the instantaneous probability density of chaotic systems with the lévy noise was calculated.Then the impacts of lévy noise on chaotic movement of the deterministic systems were discussed.The findings show that evolution of probability density of chaotic systems can be used to character structure feature of such chaotic attractor.

  5. Submersion of sodium impurities in finite cryogenic droplets: A path-integral molecular dynamics study for 4He and para-H2

    Science.gov (United States)

    Calvo, F.

    2017-01-01

    The size-dependent submersion of sodium clusters into helium and para-hydrogen droplets has been computationally investigated using continuum models and path-integral molecular dynamics (PIMD) simulations. All-atom explicit potential energy surfaces combining a semiempirical many-body model for the alkali-metal subpart and a pairwise additive repulsion-dispersion contribution for the solvent-alkali-metal interactions parametrized on quantum chemical calculations were employed for the simulations. Direct evidence for the submersion process was found by placing a sufficiently large sodium cluster, NaSUB>55, initially at the surface of a He4300 droplet, whereas NaSUB>13 spontaneously migrates to the surface when initially placed at the center of this droplet. Under the normal fluid conditions probed by our approach, submersion in larger helium droplets appears thermally activated but the potential of mean force harvested from out-of-equilibrium PIMD trajectories confirms that the submersion transition occurs near the size of 20 atoms, in agreement with earlier investigations. In the case of para-hydrogen media, temperature and the crystalline nature of the cryogenic host were both found to play significant roles: while a single sodium atom migrates to the surface of liquid p -H2 clusters, it remains stuck inside at 2 K. Similarly, a NaSUB>13 cluster remains at the surface in a cold p -H2 cluster but becomes readily submerged at 16 K. Our results also indicate that submersion is disfavored in smaller droplets of the cryogenic medium.

  6. Hamiltonian, path integral and BRST formulations of large N scalar QCD{sub 2} on the light-front and spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kulshreshtha, Usha, E-mail: ushakulsh@gmail.com [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States); Department of Physics, Kirori Mal College, University of Delhi, 110007, Delhi (India); Kulshreshtha, Daya Shankar, E-mail: dskulsh@gmail.com [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States); Department of Physics and Astrophysics, University of Delhi, 110007, Delhi (India); Vary, James P., E-mail: jvary@iastate.edu [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States)

    2015-04-28

    Recently Grinstein, Jora, and Polosa have studied a theory of large-N scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe–Salpeter equation describing the discrete spectrum of quark–antiquark bound states. They consider gauge fields in the adjoint representation of SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark–antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front ’t Hooft gauge.

  7. Hamiltonian, path integral and BRST formulations of large N scalar QCD{sub 2} on the light-front and spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kulshreshtha, Usha [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); University of Delhi, Department of Physics, Kirori Mal College, Delhi (India); Kulshreshtha, Daya Shankar [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); University of Delhi, Department of Physics and Astrophysics, Delhi (India); Vary, James P. [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States)

    2015-04-01

    Recently Grinstein, Jora, and Polosa have studied a theory of large- N scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front 't Hooft gauge. (orig.)

  8. Hamiltonian, Path Integral and BRST Formulations of Large N Scalar $QCD_{2}$ on the Light-Front and Spontaneous Symmetry Breaking

    CERN Document Server

    Kulshreshtha, Usha; Vary, James P

    2015-01-01

    Recently Grinstein, Jora, and Polosa have studied a theory of large-$N$ scalar quantum chromodynamics in one-space one-time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of $SU(N)$ and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge-invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as ...

  9. Integration of Building Information Modeling and Critical Path Method Schedules to Simulate the Impact of Temperature and Humidity at the Project Level

    Directory of Open Access Journals (Sweden)

    Yongwei Shan

    2014-07-01

    Full Text Available Steel construction activities are often undertaken in an environment with limited climate control. Both hot and cold temperatures can physically and psychologically affect construction workers, thus decreasing their productivity. Temperature and humidity are two factors that constantly exert forces on workers and influence their performance and efficiency. Previous studies have established a relationship between labor productivity and temperature and humidity. This research is built on the existing body of knowledge and develops a framework of integrating building information modeling (BIM with a lower level critical path method (CPM schedule to simulate the overall impact of temperature and humidity on a healthcare facility’s structural steel installation project in terms of total man hours required to build the project. This research effort utilized historical weather data of four cities across the U.S., with each city having workable seasons year-round and conducted a baseline assessment to test if various project starting dates and locations could significantly impact the project’s schedule performance. It was found that both varied project start dates and locations can significantly contribute to the difference in the man hours required to build the model project and that the project start date and location can have an interaction effect. This study contributes to the overall body of knowledge by providing a framework that can help practitioners better understand the overall impact of a productivity influencing factor at a project level, in order to facilitate better decision making.

  10. Feynman-Kleinert Linearized Path Integral (FK-LPI) Algorithms for Quantum Molecular Dynamics, with Application to Water and He(4).

    Science.gov (United States)

    Poulsen, Jens Aage; Nyman, Gunnar; Rossky, Peter J

    2006-11-01

    The Feynman-Kleinert Linearized Path Integral (FK-LPI) representation of quantum correlation functions is extended in applications and algorithms. Diffusion including quantum effects for a flexible simple point charge model of liquid water is explored, including new tests of internal consistency. An ab initio quantum correction factor (QCF) is also obtained to correct the far-infrared spectrum of water. After correction, a spectrum based on a classical simulation is in good agreement with the experiment. The FK-LPI QCF is shown to be superior to the so-called harmonic QCF. New computational algorithms are introduced so that the quantum Boltzmann Wigner phase-space density, the central object in the implementation, can be obtained for arbitrary potentials. One scheme requires only that the standard classical force routine be replaced when turning from one molecular problem to another. The new algorithms are applied to the calculation of the Van Hove spectrum of liquid He(4) at 27 K. The spectrum moments are in very good agreement with the experiment. These observations indicate that the FK-LPI approach can be broadly effective for molecular problems involving the dynamics of light nuclei.

  11. Real-space finite-difference approach for multi-body systems: path-integral renormalization group method and direct energy minimization method.

    Science.gov (United States)

    Sasaki, Akira; Kojo, Masashi; Hirose, Kikuji; Goto, Hidekazu

    2011-11-02

    The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.

  12. Quantum thermodynamics of (H{sub 2}){sub x}@C{sub 60} [x=1–2]: A path integral Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Anthony [Department of Chemistry, Lehman College-CUNY, Bronx, NY 10468 (United States); López, Gustavo E., E-mail: gustavo.lopez1@lehman.cuny.edu [Department of Chemistry, Lehman College-CUNY, Bronx, NY 10468 (United States)

    2012-04-09

    The thermodynamic properties of H{sub 2} and (H{sub 2}){sub 2} inside C{sub 60} were computed using the path integral formalism. In accordance with experimental data, H{sub 2}@C{sub 60} is thermodynamically stable in a wide range of temperatures due to energetic factors. Variations in the molecular hydrogen–fullerene interaction energy were considered in order to increase the stability of the monomeric system. For (H{sub 2}){sub 2}@C{sub 60} no stable states were observed in the temperature range studied or in any reasonable modification in the molecular hydrogen–fullerene interaction parameter. Modification of the attractive part of the molecular hydrogen–fullerene interaction stabilized the dimeric system. -- Highlights: ► Thermodynamic information of molecular hydrogen entrapped in fullerene. ► One hydrogen molecule trapped in C{sub 60} is energetically stable. ► Two hydrogen molecules trapped are not thermodynamic stable. ► Increments in the attractive part of the hydrogen/C{sub 60} potential stabilized the entrapped molecules.

  13. Dynamic density and spin responses of a superfluid Fermi gas in the BCS-BEC crossover: Path integral formulation and pair fluctuation theory

    Science.gov (United States)

    He, Lianyi

    2016-10-01

    We present a standard field theoretical derivation of the dynamic density and spin linear response functions of a dilute superfluid Fermi gas in the BCS-BEC crossover in both three and two dimensions. The derivation of the response functions is based on the elegant functional path integral approach which allows us to calculate the density-density and spin-spin correlation functions by introducing the external sources for the density and the spin density. Since the generating functional cannot be evaluated exactly, we consider two gapless approximations which ensure a gapless collective mode (Goldstone mode) in the superfluid state: the BCS-Leggett mean-field theory and the Gaussian-pair-fluctuation (GPF) theory. In the mean-field theory, our results of the response functions agree with the known results from the random phase approximation. We further consider the pair fluctuation effects and establish a theoretical framework for the dynamic responses within the GPF theory. We show that the GPF response theory naturally recovers three kinds of famous diagrammatic contributions: the Self-Energy contribution, the Aslamazov-Lakin contribution, and the Maki-Thompson contribution. We also show that unlike the equilibrium state, in evaluating the response functions, the linear (first-order) terms in the external sources as well as the induced order parameter perturbations should be treated carefully. In the superfluid state, there is an additional order parameter contribution which ensures that in the static and long wavelength limit, the density response function recovers the result of the compressibility (compressibility sum rule). We expect that the f-sum rule is manifested by the full number equation which includes the contribution from the Gaussian pair fluctuations. The dynamic density and spin response functions in the normal phase (above the superfluid critical temperature) are also derived within the Nozières-Schmitt-Rink (NSR) theory.

  14. Accurate calculation of chemical shifts in highly dynamic H2@C60 through an integrated quantum mechanics/molecular dynamics scheme.

    Science.gov (United States)

    Jiménez-Osés, Gonzalo; García, José I; Corzana, Francisco; Elguero, José

    2011-05-20

    A new protocol combining classical MD simulations and DFT calculations is presented to accurately estimate the (1)H NMR chemical shifts of highly mobile guest-host systems and their thermal dependence. This strategy has been successfully applied for the hydrogen molecule trapped into C(60) fullerene, an unresolved and challenging prototypical case for which experimental values have never been reproduced. The dependence of the final values on the theoretical method and their implications to avoid over interpretation of the obtained results are carefully described.

  15. Car-Parrinello and path integral molecular dynamics study of the intramolecular hydrogen bond in the novel class of anionic H-chelates: 6-Nitro-2,3-dipyrrol-2-ylquinoxaline anion

    Science.gov (United States)

    Durlak, Piotr; Latajka, Zdzisław

    2009-10-01

    Theoretical studies of the structure and proton motion in the intramolecular N-H⋯N hydrogen bond in 6-nitro-2,3-dipyrrol-2-ylquinoxaline anion were carried out at the DFT, MP2 and molecular dynamics levels. Geometry optimization at the 6-311++G(2d,2p) level demonstrate existence of two tautomers on the potential energy surface. The difference in energy between both tautomers is equals 1.62 (1.42) kcal/mol. Dynamics of proton motion in the N-H⋯N hydrogen bond was investigated in vacuum at 233 K using Car-Parrinello and path integral molecular dynamics. Very large delocalization of bridging proton is noted especially in path integral simulation. DFT calculated the coupling constant across the hydrogen bond equals 16.5 Hz is in good agreement with experimental value.

  16. Nonadiabatic transition path sampling

    Science.gov (United States)

    Sherman, M. C.; Corcelli, S. A.

    2016-07-01

    Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase.

  17. Fully Coriolis-coupled quantum studies of the H + O2 (upsilon i = 0-2, j i = 0,1) --> OH + O reaction on an accurate potential energy surface: integral cross sections and rate constants.

    Science.gov (United States)

    Lin, Shi Ying; Sun, Zhigang; Guo, Hua; Zhang, Dong Hui; Honvault, Pascal; Xie, Daiqian; Lee, Soo-Y

    2008-01-31

    We present accurate quantum calculations of the integral cross section and rate constant for the H + O2 --> OH + O combustion reaction on a recently developed ab initio potential energy surface using parallelized time-dependent and Chebyshev wavepacket methods. Partial wave contributions up to J = 70 were computed with full Coriolis coupling, which enabled us to obtain the initial state-specified integral cross sections up to 2.0 eV of the collision energy and thermal rate constants up to 3000 K. The integral cross sections show a large reaction threshold due to the quantum endothermicity of the reaction, and they monotonically increase with the collision energy. As a result, the temperature dependence of the rate constant is of the Arrhenius type. In addition, it was found that reactivity is enhanced by reactant vibrational excitation. The calculated thermal rate constant shows a significant improvement over that obtained on the DMBE IV potential, but it still underestimates the experimental consensus.

  18. Accurate Dna Assembly And Direct Genome Integration With Optimized Uracil Excision Cloning To Facilitate Engineering Of Escherichia Coli As A Cell Factory

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Nørholm, Morten

    2015-01-01

    Plants produce a vast diversity of valuable compounds with medical properties, but these are often difficult to purify from the natural source or produce by organic synthesis. An alternative is to transfer the biosynthetic pathways to an efficient production host like the bacterium Escherichia co......-excision-based cloning and combining it with a genome-engineering approach to allow direct integration of whole metabolic pathways into the genome of E. coli, to facilitate the advanced engineering of cell factories....

  19. Accurate Localization of the Integration Sites of Two Genomic Islands at Single-Nucleotide Resolution in the Genome of Bacillus cereus ATCC 10987

    Directory of Open Access Journals (Sweden)

    Ren Zhang

    2008-01-01

    Full Text Available We have identified two genomic islands, that is, BCEGI-1 and BCEGI-2, in the genome of Bacillus cereus ATCC 10987, based on comparative analysis with Bacillus cereus ATCC 14579. Furthermore, by using the cumulative GC profile and performing homology searches between the two genomes, the integration sites of the two genomic islands were determined at single-nucleotide resolution. BCEGI-1 is integrated between 159705 bp and 198000 bp, whereas BCEGI-2 is integrated between the end of ORF BCE4594 and the start of the intergenic sequence immediately following BCE4626, that is, from 4256803 bp to 4285534 bp. BCEGI-1 harbors two bacterial Tn7 transposons, which have two sets of genes encoding TnsA, B, C, and D. It is generally believed that unlike the TnsABC+E pathway, the TnsABC+D pathway would only promote vertical transmission to daughter cells. The evidence presented in this paper, however, suggests a role of the TnsABC+D pathway in the horizontal transfer of some genomic islands.

  20. Fluctuating paths and fields Festschrift Kleinert (Hagen)

    CERN Document Server

    Bachmann, M; Schmidt, H J; Janke, W

    2001-01-01

    This volume covers the following fields: path integrals, quantum field theory, variational perturbation theory, phase transitions and critical phenomena, topological defects, strings and membranes, gravitation and cosmology. Contents: Path Integrals and Quantum Mechanics: Semiclassical Quantum Mechanics: A Path-Integral Approach (B R Holstein); Conjecture on the Reality of Spectra of Non-Hermitian Hamiltonians (C M Bender et al.); Time-Transformation Approach to q -Deformed Objects (A Inomata); Characterizing Volume Forms (P Cartier et al.); Vassiliev Invariants and Functional Integration (L H