WorldWideScience

Sample records for accurate image reconstruction

  1. Iterative feature refinement for accurate undersampled MR image reconstruction

    Science.gov (United States)

    Wang, Shanshan; Liu, Jianbo; Liu, Qiegen; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong

    2016-05-01

    Accelerating MR scan is of great significance for clinical, research and advanced applications, and one main effort to achieve this is the utilization of compressed sensing (CS) theory. Nevertheless, the existing CSMRI approaches still have limitations such as fine structure loss or high computational complexity. This paper proposes a novel iterative feature refinement (IFR) module for accurate MR image reconstruction from undersampled K-space data. Integrating IFR with CSMRI which is equipped with fixed transforms, we develop an IFR-CS method to restore meaningful structures and details that are originally discarded without introducing too much additional complexity. Specifically, the proposed IFR-CS is realized with three iterative steps, namely sparsity-promoting denoising, feature refinement and Tikhonov regularization. Experimental results on both simulated and in vivo MR datasets have shown that the proposed module has a strong capability to capture image details, and that IFR-CS is comparable and even superior to other state-of-the-art reconstruction approaches.

  2. Iterative feature refinement for accurate undersampled MR image reconstruction

    International Nuclear Information System (INIS)

    Wang, Shanshan; Liu, Jianbo; Liu, Xin; Zheng, Hairong; Liang, Dong; Liu, Qiegen; Ying, Leslie

    2016-01-01

    Accelerating MR scan is of great significance for clinical, research and advanced applications, and one main effort to achieve this is the utilization of compressed sensing (CS) theory. Nevertheless, the existing CSMRI approaches still have limitations such as fine structure loss or high computational complexity. This paper proposes a novel iterative feature refinement (IFR) module for accurate MR image reconstruction from undersampled K-space data. Integrating IFR with CSMRI which is equipped with fixed transforms, we develop an IFR-CS method to restore meaningful structures and details that are originally discarded without introducing too much additional complexity. Specifically, the proposed IFR-CS is realized with three iterative steps, namely sparsity-promoting denoising, feature refinement and Tikhonov regularization. Experimental results on both simulated and in vivo MR datasets have shown that the proposed module has a strong capability to capture image details, and that IFR-CS is comparable and even superior to other state-of-the-art reconstruction approaches. (paper)

  3. Image Reconstruction. Chapter 13

    Energy Technology Data Exchange (ETDEWEB)

    Nuyts, J. [Department of Nuclear Medicine and Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven (Belgium); Matej, S. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA (United States)

    2014-12-15

    This chapter discusses how 2‑D or 3‑D images of tracer distribution can be reconstructed from a series of so-called projection images acquired with a gamma camera or a positron emission tomography (PET) system [13.1]. This is often called an ‘inverse problem’. The reconstruction is the inverse of the acquisition. The reconstruction is called an inverse problem because making software to compute the true tracer distribution from the acquired data turns out to be more difficult than the ‘forward’ direction, i.e. making software to simulate the acquisition. There are basically two approaches to image reconstruction: analytical reconstruction and iterative reconstruction. The analytical approach is based on mathematical inversion, yielding efficient, non-iterative reconstruction algorithms. In the iterative approach, the reconstruction problem is reduced to computing a finite number of image values from a finite number of measurements. That simplification enables the use of iterative instead of mathematical inversion. Iterative inversion tends to require more computer power, but it can cope with more complex (and hopefully more accurate) models of the acquisition process.

  4. Prospective regularization design in prior-image-based reconstruction

    International Nuclear Information System (INIS)

    Dang, Hao; Siewerdsen, Jeffrey H; Stayman, J Webster

    2015-01-01

    Prior-image-based reconstruction (PIBR) methods leveraging patient-specific anatomical information from previous imaging studies and/or sequences have demonstrated dramatic improvements in dose utilization and image quality for low-fidelity data. However, a proper balance of information from the prior images and information from the measurements is required (e.g. through careful tuning of regularization parameters). Inappropriate selection of reconstruction parameters can lead to detrimental effects including false structures and failure to improve image quality. Traditional methods based on heuristics are subject to error and sub-optimal solutions, while exhaustive searches require a large number of computationally intensive image reconstructions. In this work, we propose a novel method that prospectively estimates the optimal amount of prior image information for accurate admission of specific anatomical changes in PIBR without performing full image reconstructions. This method leverages an analytical approximation to the implicitly defined PIBR estimator, and introduces a predictive performance metric leveraging this analytical form and knowledge of a particular presumed anatomical change whose accurate reconstruction is sought. Additionally, since model-based PIBR approaches tend to be space-variant, a spatially varying prior image strength map is proposed to optimally admit changes everywhere in the image (eliminating the need to know change locations a priori). Studies were conducted in both an ellipse phantom and a realistic thorax phantom emulating a lung nodule surveillance scenario. The proposed method demonstrated accurate estimation of the optimal prior image strength while achieving a substantial computational speedup (about a factor of 20) compared to traditional exhaustive search. Moreover, the use of the proposed prior strength map in PIBR demonstrated accurate reconstruction of anatomical changes without foreknowledge of change locations in

  5. Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT

    International Nuclear Information System (INIS)

    Chen, Tai-Been; Horng-Shing Lu, Henry; Kim, Hang-Keun; Son, Young-Don; Cho, Zang- Hee

    2014-01-01

    State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time. - Highlights: • The PDS-OSEM reconstructs PET images with iteratively compensating random and scatter corrections from prompt sinogram. • The PDS-OSEM can reconstruct PET images with low count data and data contaminations. • The PDS-OSEM provides less noise and higher quality of reconstructed images than those of OP-OSEM algorithm in statistical sense

  6. Integration of multi-modality imaging for accurate 3D reconstruction of human coronary arteries in vivo

    International Nuclear Information System (INIS)

    Giannoglou, George D.; Chatzizisis, Yiannis S.; Sianos, George; Tsikaderis, Dimitrios; Matakos, Antonis; Koutkias, Vassilios; Diamantopoulos, Panagiotis; Maglaveras, Nicos; Parcharidis, George E.; Louridas, George E.

    2006-01-01

    In conventional intravascular ultrasound (IVUS)-based three-dimensional (3D) reconstruction of human coronary arteries, IVUS images are arranged linearly generating a straight vessel volume. However, with this approach real vessel curvature is neglected. To overcome this limitation an imaging method was developed based on integration of IVUS and biplane coronary angiography (BCA). In 17 coronary arteries from nine patients, IVUS and BCA were performed. From each angiographic projection, a single end-diastolic frame was selected and in each frame the IVUS catheter was interactively detected for the extraction of 3D catheter path. Ultrasound data was obtained with a sheath-based catheter and recorded on S-VHS videotape. S-VHS data was digitized and lumen and media-adventitia contours were semi-automatically detected in end-diastolic IVUS images. Each pair of contours was aligned perpendicularly to the catheter path and rotated in space by implementing an algorithm based on Frenet-Serret rules. Lumen and media-adventitia contours were interpolated through generation of intermediate contours creating a real 3D lumen and vessel volume, respectively. The absolute orientation of the reconstructed lumen was determined by back-projecting it onto both angiographic planes and comparing the projected lumen with the actual angiographic lumen. In conclusion, our method is capable of performing rapid and accurate 3D reconstruction of human coronary arteries in vivo. This technique can be utilized for reliable plaque morphometric, geometrical and hemodynamic analyses

  7. Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT

    Science.gov (United States)

    Chen, Tai-Been; Horng-Shing Lu, Henry; Kim, Hang-Keun; Son, Young-Don; Cho, Zang-Hee

    2014-03-01

    State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time.

  8. Digital holography super-resolution for accurate three-dimensional reconstruction of particle holograms.

    Science.gov (United States)

    Verrier, Nicolas; Fournier, Corinne

    2015-01-15

    In-line digital holography (DH) is used in many fields to locate and size micro or nano-objects spread in a volume. To reconstruct simple shaped objects, the optimal approach is to fit an imaging model to accurately estimate their position and their characteristic parameters. Increasing the accuracy of the reconstruction is a big issue in DH, particularly when the pixel is large or the signal-to-noise ratio is low. We suggest exploiting the information redundancy of videos to improve the reconstruction of the holograms by jointly estimating the position of the objects and the characteristic parameters. Using synthetic and experimental data, we checked experimentally that this approach can improve the accuracy of the reconstruction by a factor more than the square root of the image number.

  9. 3D reconstruction based on light field images

    Science.gov (United States)

    Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei

    2018-04-01

    This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.

  10. Improvement of Quality of Reconstructed Images in Multi-Frame Fresnel Digital Holography

    International Nuclear Information System (INIS)

    Xiao-Wei, Lu; Jing-Zhen, Li; Hong-Yi, Chen

    2010-01-01

    A modified reconstruction algorithm to improve the quality of reconstructed images of multi-frame Fresnel digital holography is presented. When the reference beams are plane or spherical waves with azimuth encoding, by introducing two spherical wave factors, images can be reconstructed with only one time Fourier transform. In numerical simulation, this algorithm could simplify the reconstruction process and improve the signal-to-noise ratio of the reconstructed images. In single-frame reconstruction experiments, the accurate reconstructed image is obtained with this simplified algorithm

  11. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.

    Science.gov (United States)

    Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B; Jia, Xun

    2014-07-01

    4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3-0.5 mm for patients 1-3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1-1.5 min per phase. High-quality 4D-CBCT imaging based

  12. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao; Folkerts, Michael; Jiang, Steve B., E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun, E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 (United States); Zhen, Xin [Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Yongbao [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Pan, Tinsu [Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cervino, Laura [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  13. A two-step Hilbert transform method for 2D image reconstruction

    International Nuclear Information System (INIS)

    Noo, Frederic; Clackdoyle, Rolf; Pack, Jed D

    2004-01-01

    The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fan-beam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained

  14. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  15. Analysis of stability of tomographic reconstruction of x-ray medical images

    Directory of Open Access Journals (Sweden)

    Л. А. Булавін

    2017-09-01

    Full Text Available Slice reconstruction in X-ray computed tomography is reduced to the solution of integral equations, or a system of algebraic equations in discrete case. It is considered to be an ill-posed problem due to the inconsistencies in the number of equations and variables and due to errors in the experimental data. Therefore, determination of the best method of the slice reconstruction is of great interest. Furthermore, all available methods give approximate results. The aim of this article was two-fold: i to compare two methods of image reconstruction, viz. inverse projection and variation, using the numerical experiment; ii to obtain the relationship between image accuracy and experimental error. It appeared that the image obtained by inverse projection is unstable: there was no convergence of the approximate image to the accurate one, when the experimental error reached zero. In turn, the image obtained by variational method was accurate at zero experimental error. Finally, the latter showed better slice reconstruction, despite the low number of projections and the experimental errors.

  16. A fast and accurate image reconstruction using GPU for OpenPET prototype

    International Nuclear Information System (INIS)

    Kinouchi, Shoko; Suga, Mikio; Yamaya, Taiga; Yoshida, Eiji

    2010-01-01

    The OpenPET (positron emission tomography), which have a physically opened space between two detector rings, is our new geometry to enable PET imaging during radiation therapy if the real-time imaging system is realized. In this paper, therefore, we developed a list-mode image reconstruction method using general purpose graphic processing units (GPUs). We used the list-mode dynamic row-action maximum likelihood algorithm (DRAMA). For GPU implementation, the efficiency of acceleration depends on the implementation method which is required to avoid conditional statements. We developed a system model in which each element of system matrix is calculated as the value of detector response function (DRF) of the length between the center of a voxel and a line of response (LOR). The system model was suited to GPU implementations that enable us to calculate each element of the system matrix with reduced number of the conditional statements. We applied the developed method to a small OpenPET prototype, which was developed for a proof-of-concept. We measured the micro-Derenzo phantom placed at the gap. The results showed that the same quality of reconstructed images using GPU as using central processing unit (CPU) were achieved, and calculation speed on the GPU was 35.5 times faster than that on the CPU. (author)

  17. Scattering Correction For Image Reconstruction In Flash Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo [Xi' an Jiaotong Univ., Xi' an (China)

    2013-08-15

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

  18. Scattering Correction For Image Reconstruction In Flash Radiography

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo

    2013-01-01

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency

  19. Algebraic 2D PET image reconstruction using depth-of-interaction information

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Obi, Takashi; Yamaguchi, Masahiro; Kita, Kouichi

    2001-01-01

    Recently a high-performance PET scanner, which measures depth-of-interaction (DOI) information, is being developed for molecular imaging. DOI measurement of multi-layered thin crystals can improve spatial resolution and scanner sensitivity simultaneously. In this paper, we apply an algebraic image reconstruction method to 2-dimensional (2D) DOI-PET scanners using accurate system modeling, in order to evaluate the effects of using DOI information on PET image quality. Algebraic image reconstruction methods have been successfully used to improve PET image quality, compared with the conventional filtered backprojection method. The proposed method is applied to simulated data for a small 2D DOI-PET scanner. The results show that accurate system modeling improves spatial resolution without noise emphasis, and that DOI information improves uniformity of spatial resolution. (author)

  20. Monte-Carlo simulations and image reconstruction for novel imaging scenarios in emission tomography

    International Nuclear Information System (INIS)

    Gillam, John E.; Rafecas, Magdalena

    2016-01-01

    Emission imaging incorporates both the development of dedicated devices for data acquisition as well as algorithms for recovering images from that data. Emission tomography is an indirect approach to imaging. The effect of device modification on the final image can be understood through both the way in which data are gathered, using simulation, and the way in which the image is formed from that data, or image reconstruction. When developing novel devices, systems and imaging tasks, accurate simulation and image reconstruction allow performance to be estimated, and in some cases optimized, using computational methods before or during the process of physical construction. However, there are a vast range of approaches, algorithms and pre-existing computational tools that can be exploited and the choices made will affect the accuracy of the in silico results and quality of the reconstructed images. On the one hand, should important physical effects be neglected in either the simulation or reconstruction steps, specific enhancements provided by novel devices may not be represented in the results. On the other hand, over-modeling of device characteristics in either step leads to large computational overheads that can confound timely results. Here, a range of simulation methodologies and toolkits are discussed, as well as reconstruction algorithms that may be employed in emission imaging. The relative advantages and disadvantages of a range of options are highlighted using specific examples from current research scenarios.

  1. Monte-Carlo simulations and image reconstruction for novel imaging scenarios in emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gillam, John E. [The University of Sydney, Faculty of Health Sciences and The Brain and Mind Centre, Camperdown (Australia); Rafecas, Magdalena, E-mail: rafecas@imt.uni-luebeck.de [University of Lubeck, Institute of Medical Engineering, Ratzeburger Allee 160, 23538 Lübeck (Germany)

    2016-02-11

    Emission imaging incorporates both the development of dedicated devices for data acquisition as well as algorithms for recovering images from that data. Emission tomography is an indirect approach to imaging. The effect of device modification on the final image can be understood through both the way in which data are gathered, using simulation, and the way in which the image is formed from that data, or image reconstruction. When developing novel devices, systems and imaging tasks, accurate simulation and image reconstruction allow performance to be estimated, and in some cases optimized, using computational methods before or during the process of physical construction. However, there are a vast range of approaches, algorithms and pre-existing computational tools that can be exploited and the choices made will affect the accuracy of the in silico results and quality of the reconstructed images. On the one hand, should important physical effects be neglected in either the simulation or reconstruction steps, specific enhancements provided by novel devices may not be represented in the results. On the other hand, over-modeling of device characteristics in either step leads to large computational overheads that can confound timely results. Here, a range of simulation methodologies and toolkits are discussed, as well as reconstruction algorithms that may be employed in emission imaging. The relative advantages and disadvantages of a range of options are highlighted using specific examples from current research scenarios.

  2. Convergence of iterative image reconstruction algorithms for Digital Breast Tomosynthesis

    DEFF Research Database (Denmark)

    Sidky, Emil; Jørgensen, Jakob Heide; Pan, Xiaochuan

    2012-01-01

    Most iterative image reconstruction algorithms are based on some form of optimization, such as minimization of a data-fidelity term plus an image regularizing penalty term. While achieving the solution of these optimization problems may not directly be clinically relevant, accurate optimization s...

  3. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units.

    Science.gov (United States)

    Wang, Kun; Huang, Chao; Kao, Yu-Jiun; Chou, Cheng-Ying; Oraevsky, Alexander A; Anastasio, Mark A

    2013-02-01

    Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional imaging models. One important reason is because 3D image reconstruction is computationally burdensome. The aim of this work is to accelerate existing image reconstruction algorithms for 3D OAT by use of parallel programming techniques. Parallelization strategies are proposed to accelerate a filtered backprojection (FBP) algorithm and two different pairs of projection/backprojection operations that correspond to two different numerical imaging models. The algorithms are designed to fully exploit the parallel computing power of graphics processing units (GPUs). In order to evaluate the parallelization strategies for the projection/backprojection pairs, an iterative image reconstruction algorithm is implemented. Computer simulation and experimental studies are conducted to investigate the computational efficiency and numerical accuracy of the developed algorithms. The GPU implementations improve the computational efficiency by factors of 1000, 125, and 250 for the FBP algorithm and the two pairs of projection/backprojection operators, respectively. Accurate images are reconstructed by use of the FBP and iterative image reconstruction algorithms from both computer-simulated and experimental data. Parallelization strategies for 3D OAT image reconstruction are proposed for the first time. These GPU-based implementations significantly reduce the computational time for 3D image reconstruction, complementing our earlier work on 3D OAT iterative image reconstruction.

  4. Accurate reconstruction of hyperspectral images from compressive sensing measurements

    Science.gov (United States)

    Greer, John B.; Flake, J. C.

    2013-05-01

    The emerging field of Compressive Sensing (CS) provides a new way to capture data by shifting the heaviest burden of data collection from the sensor to the computer on the user-end. This new means of sensing requires fewer measurements for a given amount of information than traditional sensors. We investigate the efficacy of CS for capturing HyperSpectral Imagery (HSI) remotely. We also introduce a new family of algorithms for constructing HSI from CS measurements with Split Bregman Iteration [Goldstein and Osher,2009]. These algorithms combine spatial Total Variation (TV) with smoothing in the spectral dimension. We examine models for three different CS sensors: the Coded Aperture Snapshot Spectral Imager-Single Disperser (CASSI-SD) [Wagadarikar et al.,2008] and Dual Disperser (CASSI-DD) [Gehm et al.,2007] cameras, and a hypothetical random sensing model closer to CS theory, but not necessarily implementable with existing technology. We simulate the capture of remotely sensed images by applying the sensor forward models to well-known HSI scenes - an AVIRIS image of Cuprite, Nevada and the HYMAP Urban image. To measure accuracy of the CS models, we compare the scenes constructed with our new algorithm to the original AVIRIS and HYMAP cubes. The results demonstrate the possibility of accurately sensing HSI remotely with significantly fewer measurements than standard hyperspectral cameras.

  5. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    International Nuclear Information System (INIS)

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan Xiaochuan

    2010-01-01

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  6. Visual image reconstruction from human brain activity: A modular decoding approach

    International Nuclear Information System (INIS)

    Miyawaki, Yoichi; Uchida, Hajime; Yamashita, Okito; Sato, Masa-aki; Kamitani, Yukiyasu; Morito, Yusuke; Tanabe, Hiroki C; Sadato, Norihiro

    2009-01-01

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2 100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  7. Time Reversal Reconstruction Algorithm Based on PSO Optimized SVM Interpolation for Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Mingjian Sun

    2015-01-01

    Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.

  8. Comprehensive Use of Curvature for Robust and Accurate Online Surface Reconstruction.

    Science.gov (United States)

    Lefloch, Damien; Kluge, Markus; Sarbolandi, Hamed; Weyrich, Tim; Kolb, Andreas

    2017-12-01

    Interactive real-time scene acquisition from hand-held depth cameras has recently developed much momentum, enabling applications in ad-hoc object acquisition, augmented reality and other fields. A key challenge to online reconstruction remains error accumulation in the reconstructed camera trajectory, due to drift-inducing instabilities in the range scan alignments of the underlying iterative-closest-point (ICP) algorithm. Various strategies have been proposed to mitigate that drift, including SIFT-based pre-alignment, color-based weighting of ICP pairs, stronger weighting of edge features, and so on. In our work, we focus on surface curvature as a feature that is detectable on range scans alone and hence does not depend on accurate multi-sensor alignment. In contrast to previous work that took curvature into consideration, however, we treat curvature as an independent quantity that we consistently incorporate into every stage of the real-time reconstruction pipeline, including densely curvature-weighted ICP, range image fusion, local surface reconstruction, and rendering. Using multiple benchmark sequences, and in direct comparison to other state-of-the-art online acquisition systems, we show that our approach significantly reduces drift, both when analyzing individual pipeline stages in isolation, as well as seen across the online reconstruction pipeline as a whole.

  9. GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.

    Science.gov (United States)

    Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin

    2017-07-01

    Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.

  10. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction

    International Nuclear Information System (INIS)

    Kadrmas, Dan J.; Karimi, Seemeen S.; Frey, Eric C.; Tsui, Benjamin M.W.

    1998-01-01

    Accurate scatter compensation in SPECT can be performed by modelling the scatter response function during the reconstruction process. This method is called reconstruction-based scatter compensation (RBSC). It has been shown that RBSC has a number of advantages over other methods of compensating for scatter, but using RBSC for fully 3D compensation has resulted in prohibitively long reconstruction times. In this work we propose two new methods that can be used in conjunction with existing methods to achieve marked reductions in RBSC reconstruction times. The first method, coarse-grid scatter modelling, significantly accelerates the scatter model by exploiting the fact that scatter is dominated by low-frequency information. The second method, intermittent RBSC, further accelerates the reconstruction process by limiting the number of iterations during which scatter is modelled. The fast implementations were evaluated using a Monte Carlo simulated experiment of the 3D MCAT phantom with 99m Tc tracer, and also using experimentally acquired data with 201 Tl tracer. Results indicated that these fast methods can reconstruct, with fully 3D compensation, images very similar to those obtained using standard RBSC methods, and in reconstruction times that are an order of magnitude shorter. Using these methods, fully 3D iterative reconstruction with RBSC can be performed well within the realm of clinically realistic times (under 10 minutes for 64x64x24 image reconstruction). (author)

  11. Maximum a posteriori reconstruction of the Patlak parametric image from sinograms in dynamic PET

    International Nuclear Information System (INIS)

    Wang Guobao; Fu Lin; Qi Jinyi

    2008-01-01

    Parametric imaging using the Patlak graphical method has been widely used to analyze dynamic PET data. Conventionally a Patlak parametric image is generated by reconstructing a sequence of dynamic images first and then performing Patlak graphical analysis on the time-activity curves pixel-by-pixel. However, because it is rather difficult to model the noise distribution in reconstructed images, the spatially variant noise correlation is simply ignored in the Patlak analysis, which leads to sub-optimal results. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by incorporating the Patlak plot model into the image reconstruction procedure. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. The proposed direct method is statistically more efficient than the conventional indirect approach because the Poisson noise distribution in PET data can be accurately modeled in the direct reconstruction. The computation cost of the direct method is similar to reconstruction time of two dynamic frames. Therefore, when more than two dynamic frames are used in the Patlak analysis, the direct method is faster than the conventional indirect approach. We conduct computer simulations to validate the proposed direct method. Comparisons with the conventional indirect approach show that the proposed method results in a more accurate estimate of the parametric image. The proposed method has been applied to dynamic fully 3D PET data from a microPET scanner

  12. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

    Science.gov (United States)

    Elahi, Sana; kaleem, Muhammad; Omer, Hammad

    2018-01-01

    Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.

  13. Practical considerations for image-based PSF and blobs reconstruction in PET

    International Nuclear Information System (INIS)

    Stute, Simon; Comtat, Claude

    2013-01-01

    Iterative reconstructions in positron emission tomography (PET) need a model relating the recorded data to the object/patient being imaged, called the system matrix (SM). The more realistic this model, the better the spatial resolution in the reconstructed images. However, a serious concern when using a SM that accurately models the resolution properties of the PET system is the undesirable edge artefact, visible through oscillations near sharp discontinuities in the reconstructed images. This artefact is a natural consequence of solving an ill-conditioned inverse problem, where the recorded data are band-limited. In this paper, we focus on practical aspects when considering image-based point-spread function (PSF) reconstructions. To remove the edge artefact, we propose to use a particular case of the method of sieves (Grenander 1981 Abstract Inference New York: Wiley), which simply consists in performing a standard PSF reconstruction, followed by a post-smoothing using the PSF as the convolution kernel. Using analytical simulations, we investigate the impact of different reconstruction and PSF modelling parameters on the edge artefact and its suppression, in the case of noise-free data and an exactly known PSF. Using Monte-Carlo simulations, we assess the proposed method of sieves with respect to the choice of the geometric projector and the PSF model used in the reconstruction. When the PSF model is accurately known, we show that the proposed method of sieves succeeds in completely suppressing the edge artefact, though after a number of iterations higher than typically used in practice. When applying the method to realistic data (i.e. unknown true SM and noisy data), we show that the choice of the geometric projector and the PSF model does not impact the results in terms of noise and contrast recovery, as long as the PSF has a width close to the true PSF one. Equivalent results were obtained using either blobs or voxels in the same conditions (i.e. the blob

  14. Accurate phylogenetic tree reconstruction from quartets: a heuristic approach.

    Science.gov (United States)

    Reaz, Rezwana; Bayzid, Md Shamsuzzoha; Rahman, M Sohel

    2014-01-01

    Supertree methods construct trees on a set of taxa (species) combining many smaller trees on the overlapping subsets of the entire set of taxa. A 'quartet' is an unrooted tree over 4 taxa, hence the quartet-based supertree methods combine many 4-taxon unrooted trees into a single and coherent tree over the complete set of taxa. Quartet-based phylogeny reconstruction methods have been receiving considerable attentions in the recent years. An accurate and efficient quartet-based method might be competitive with the current best phylogenetic tree reconstruction methods (such as maximum likelihood or Bayesian MCMC analyses), without being as computationally intensive. In this paper, we present a novel and highly accurate quartet-based phylogenetic tree reconstruction method. We performed an extensive experimental study to evaluate the accuracy and scalability of our approach on both simulated and biological datasets.

  15. Correlation of conventional simulation x-ray films and CT images for HDR-brachytherapy catheters reconstruction

    International Nuclear Information System (INIS)

    Rajendran, M.; Reddy, K.D.; Reddy, R.M.; Reddy, J.M.; Reddy, B.V.N.; Kiran Kumar; Gopi, S.; Dharaniraj; Janardhanan

    2002-01-01

    In order to plan a brachytherapy implant, it is imperative that implant reconstruction is done accurately. The purpose of this paper is to evaluate whether implant reconstruction done with transverse CT images is comparable to reconstruction done with conventional x-ray films

  16. Intensity-based bayesian framework for image reconstruction from sparse projection data

    International Nuclear Information System (INIS)

    Rashed, E.A.; Kudo, Hiroyuki

    2009-01-01

    This paper presents a Bayesian framework for iterative image reconstruction from projection data measured over a limited number of views. The classical Nyquist sampling rule yields the minimum number of projection views required for accurate reconstruction. However, challenges exist in many medical and industrial imaging applications in which the projection data is undersampled. Classical analytical reconstruction methods such as filtered backprojection (FBP) are not a good choice for use in such cases because the data undersampling in the angular range introduces aliasing and streak artifacts that degrade lesion detectability. In this paper, we propose a Bayesian framework for maximum likelihood-expectation maximization (ML-EM)-based iterative reconstruction methods that incorporates a priori knowledge obtained from expected intensity information. The proposed framework is based on the fact that, in tomographic imaging, it is often possible to expect a set of intensity values of the reconstructed object with relatively high accuracy. The image reconstruction cost function is modified to include the l 1 norm distance to the a priori known information. The proposed method has the potential to regularize the solution to reduce artifacts without missing lesions that cannot be expected from the a priori information. Numerical studies showed a significant improvement in image quality and lesion detectability under the condition of highly undersampled projection data. (author)

  17. The gridding method for image reconstruction by Fourier transformation

    International Nuclear Information System (INIS)

    Schomberg, H.; Timmer, J.

    1995-01-01

    This paper explores a computational method for reconstructing an n-dimensional signal f from a sampled version of its Fourier transform f. The method involves a window function w and proceeds in three steps. First, the convolution g = w * f is computed numerically on a Cartesian grid, using the available samples of f. Then, g = wf is computed via the inverse discrete Fourier transform, and finally f is obtained as g/w. Due to the smoothing effect of the convolution, evaluating w * f is much less error prone than merely interpolating f. The method was originally devised for image reconstruction in radio astronomy, but is actually applicable to a broad range of reconstructive imaging methods, including magnetic resonance imaging and computed tomography. In particular, it provides a fast and accurate alternative to the filtered backprojection. The basic method has several variants with other applications, such as the equidistant resampling of arbitrarily sampled signals or the fast computation of the Radon (Hough) transform

  18. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Xia Hui-Hui; Kan Rui-Feng; Liu Jian-Guo; Xu Zhen-Yu; He Ya-Bai

    2016-01-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H 2 O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. (paper)

  19. Analyser-based phase contrast image reconstruction using geometrical optics.

    Science.gov (United States)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  20. Sparse representation and dictionary learning penalized image reconstruction for positron emission tomography

    International Nuclear Information System (INIS)

    Chen, Shuhang; Liu, Huafeng; Shi, Pengcheng; Chen, Yunmei

    2015-01-01

    Accurate and robust reconstruction of the radioactivity concentration is of great importance in positron emission tomography (PET) imaging. Given the Poisson nature of photo-counting measurements, we present a reconstruction framework that integrates sparsity penalty on a dictionary into a maximum likelihood estimator. Patch-sparsity on a dictionary provides the regularization for our effort, and iterative procedures are used to solve the maximum likelihood function formulated on Poisson statistics. Specifically, in our formulation, a dictionary could be trained on CT images, to provide intrinsic anatomical structures for the reconstructed images, or adaptively learned from the noisy measurements of PET. Accuracy of the strategy with very promising application results from Monte-Carlo simulations, and real data are demonstrated. (paper)

  1. The impact of reconstruction method on the quantification of DaTSCAN images

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, John C.; Erlandsson, Kjell; Hutton, Brian F. [UCLH NHS Foundation Trust and University College London, Institute of Nuclear Medicine, London (United Kingdom); Tossici-Bolt, Livia [Southampton University Hospitals NHS Trust, Department of Medical Physics, Southampton (United Kingdom); Sera, Terez [University of Szeged, Department of Nuclear Medicine and Euromedic Szeged, Szeged (Hungary); Varrone, Andrea [Psychiatry Section and Stockholm Brain Institute, Karolinska Institute, Department of Clinical Neuroscience, Stockholm (Sweden); Tatsch, Klaus [EANM/European Network of Excellence for Brain Imaging, Vienna (Austria)

    2010-01-15

    Reconstruction of DaTSCAN brain studies using OS-EM iterative reconstruction offers better image quality and more accurate quantification than filtered back-projection. However, reconstruction must proceed for a sufficient number of iterations to achieve stable and accurate data. This study assessed the impact of the number of iterations on the image quantification, comparing the results of the iterative reconstruction with filtered back-projection data. A striatal phantom filled with {sup 123}I using striatal to background ratios between 2:1 and 10:1 was imaged on five different gamma camera systems. Data from each system were reconstructed using OS-EM (which included depth-independent resolution recovery) with various combinations of iterations and subsets to achieve up to 200 EM-equivalent iterations and with filtered back-projection. Using volume of interest analysis, the relationships between image reconstruction strategy and quantification of striatal uptake were assessed. For phantom filling ratios of 5:1 or less, significant convergence of measured ratios occurred close to 100 EM-equivalent iterations, whereas for higher filling ratios, measured uptake ratios did not display a convergence pattern. Assessment of the count concentrations used to derive the measured uptake ratio showed that nonconvergence of low background count concentrations caused peaking in higher measured uptake ratios. Compared to filtered back-projection, OS-EM displayed larger uptake ratios because of the resolution recovery applied in the iterative algorithm. The number of EM-equivalent iterations used in OS-EM reconstruction influences the quantification of DaTSCAN studies because of incomplete convergence and possible bias in areas of low activity due to the nonnegativity constraint in OS-EM reconstruction. Nevertheless, OS-EM using 100 EM-equivalent iterations provides the best linear discriminatory measure to quantify the uptake in DaTSCAN studies. (orig.)

  2. Analyser-based phase contrast image reconstruction using geometrical optics

    International Nuclear Information System (INIS)

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-01-01

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 μm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser

  3. Accelerated gradient methods for total-variation-based CT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jakob H.; Hansen, Per Christian [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Informatics and Mathematical Modeling; Jensen, Tobias L.; Jensen, Soeren H. [Aalborg Univ. (Denmark). Dept. of Electronic Systems; Sidky, Emil Y.; Pan, Xiaochuan [Chicago Univ., Chicago, IL (United States). Dept. of Radiology

    2011-07-01

    Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-intensive methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits prohibitively slow convergence. In the present work we address the question of how to reduce the number of gradient method iterations needed to achieve a high-accuracy TV reconstruction. We consider the use of two accelerated gradient-based methods, GPBB and UPN, to solve the 3D-TV minimization problem in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/~pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the standard gradient method. (orig.)

  4. Task-based data-acquisition optimization for sparse image reconstruction systems

    Science.gov (United States)

    Chen, Yujia; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.

    2017-03-01

    Conventional wisdom dictates that imaging hardware should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the class of objects to be imaged, without consideration of the reconstruction method to be employed. However, accurate and tractable models of the complete object statistics are often difficult to determine in practice. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and (sparse) image reconstruction are innately coupled technologies. We have previously proposed a sparsity-driven ideal observer (SDIO) that can be employed to optimize hardware by use of a stochastic object model that describes object sparsity. The SDIO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute SDIO performance, the posterior distribution is estimated by use of computational tools developed recently for variational Bayesian inference. Subsequently, the SDIO test statistic can be computed semi-analytically. The advantages of employing the SDIO instead of a Hotelling observer are systematically demonstrated in case studies in which magnetic resonance imaging (MRI) data acquisition schemes are optimized for signal detection tasks.

  5. Parametric image reconstruction using spectral analysis of PET projection data

    International Nuclear Information System (INIS)

    Meikle, Steven R.; Matthews, Julian C.; Cunningham, Vincent J.; Bailey, Dale L.; Livieratos, Lefteris; Jones, Terry; Price, Pat

    1998-01-01

    Spectral analysis is a general modelling approach that enables calculation of parametric images from reconstructed tracer kinetic data independent of an assumed compartmental structure. We investigated the validity of applying spectral analysis directly to projection data motivated by the advantages that: (i) the number of reconstructions is reduced by an order of magnitude and (ii) iterative reconstruction becomes practical which may improve signal-to-noise ratio (SNR). A dynamic software phantom with typical 2-[ 11 C]thymidine kinetics was used to compare projection-based and image-based methods and to assess bias-variance trade-offs using iterative expectation maximization (EM) reconstruction. We found that the two approaches are not exactly equivalent due to properties of the non-negative least-squares algorithm. However, the differences are small ( 1 and, to a lesser extent, VD). The optimal number of EM iterations was 15-30 with up to a two-fold improvement in SNR over filtered back projection. We conclude that projection-based spectral analysis with EM reconstruction yields accurate parametric images with high SNR and has potential application to a wide range of positron emission tomography ligands. (author)

  6. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    Science.gov (United States)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  7. Adaptive reconstructions for magnetic resonance imaging of moving organs

    International Nuclear Information System (INIS)

    Lohezic, Maelene

    2011-01-01

    Magnetic resonance imaging (MRI) is a valuable tool for the clinical diagnosis for brain imaging as well as cardiac and abdominal imaging. For instance, MRI is the only modality that enables the visualization and characterization myocardial edema. However, motion remains a challenging problem for cardiac MRI. Breathing as well as cardiac beating have to be carefully handled during patient examination. Moreover they limit the achievable temporal and spatial resolution of the images. In this work an approach that takes these physiological motions into account during image reconstruction process has been proposed. It allows performing cardiac examination while breathing freely. First, an iterative reconstruction algorithm, that compensates motion estimated from a motion model constrained by physiological signals, is applied to morphological cardiac imaging. A semi-automatic method for edema detection has been tested on reconstructed images. It has also been associated with an adaptive acquisition strategy which enables free-breathing end-systolic imaging. This reconstruction has then been extended to the assessment of transverse relaxation times T2, which is used for myocardial edema characterization. The proposed method, ARTEMIS, enables free-breathing T2 mapping without additional acquisition time. The proposed free breathing approaches take advantage of physiological signals to estimate the motion that occurs during MR acquisitions. Several solutions have been tested to measure this information. Among them, accelerometer-based external sensors allow local measurements at several locations. Another approach consists in the use of k-space based measurements, which are 'embedded' inside the MRI pulse sequence (navigator) and prevent from the requirement of additional recording hardware. Hence, several adaptive reconstruction algorithms were developed to obtain diagnostic information from free breathing acquisitions. These works allow performing efficient and accurate

  8. SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography

    International Nuclear Information System (INIS)

    Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G

    2014-01-01

    Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose

  9. STEP: Self-supporting tailored k-space estimation for parallel imaging reconstruction.

    Science.gov (United States)

    Zhou, Zechen; Wang, Jinnan; Balu, Niranjan; Li, Rui; Yuan, Chun

    2016-02-01

    A new subspace-based iterative reconstruction method, termed Self-supporting Tailored k-space Estimation for Parallel imaging reconstruction (STEP), is presented and evaluated in comparison to the existing autocalibrating method SPIRiT and calibrationless method SAKE. In STEP, two tailored schemes including k-space partition and basis selection are proposed to promote spatially variant signal subspace and incorporated into a self-supporting structured low rank model to enforce properties of locality, sparsity, and rank deficiency, which can be formulated into a constrained optimization problem and solved by an iterative algorithm. Simulated and in vivo datasets were used to investigate the performance of STEP in terms of overall image quality and detail structure preservation. The advantage of STEP on image quality is demonstrated by retrospectively undersampled multichannel Cartesian data with various patterns. Compared with SPIRiT and SAKE, STEP can provide more accurate reconstruction images with less residual aliasing artifacts and reduced noise amplification in simulation and in vivo experiments. In addition, STEP has the capability of combining compressed sensing with arbitrary sampling trajectory. Using k-space partition and basis selection can further improve the performance of parallel imaging reconstruction with or without calibration signals. © 2015 Wiley Periodicals, Inc.

  10. Reconstruction of a cone-beam CT image via forward iterative projection matching

    International Nuclear Information System (INIS)

    Brock, R. Scott; Docef, Alen; Murphy, Martin J.

    2010-01-01

    Purpose: To demonstrate the feasibility of reconstructing a cone-beam CT (CBCT) image by deformably altering a prior fan-beam CT (FBCT) image such that it matches the anatomy portrayed in the CBCT projection data set. Methods: A prior FBCT image of the patient is assumed to be available as a source image. A CBCT projection data set is obtained and used as a target image set. A parametrized deformation model is applied to the source FBCT image, digitally reconstructed radiographs (DRRs) that emulate the CBCT projection image geometry are calculated and compared to the target CBCT projection data, and the deformation model parameters are adjusted iteratively until the DRRs optimally match the CBCT projection data set. The resulting deformed FBCT image is hypothesized to be an accurate representation of the patient's anatomy imaged by the CBCT system. The process is demonstrated via numerical simulation. A known deformation is applied to a prior FBCT image and used to create a synthetic set of CBCT target projections. The iterative projection matching process is then applied to reconstruct the deformation represented in the synthetic target projections; the reconstructed deformation is then compared to the known deformation. The sensitivity of the process to the number of projections and the DRR/CBCT projection mismatch is explored by systematically adding noise to and perturbing the contrast of the target projections relative to the iterated source DRRs and by reducing the number of projections. Results: When there is no noise or contrast mismatch in the CBCT projection images, a set of 64 projections allows the known deformed CT image to be reconstructed to within a nRMS error of 1% and the known deformation to within a nRMS error of 7%. A CT image nRMS error of less than 4% is maintained at noise levels up to 3% of the mean projection intensity, at which the deformation error is 13%. At 1% noise level, the number of projections can be reduced to 8 while maintaining

  11. Cone-beam and fan-beam image reconstruction algorithms based on spherical and circular harmonics

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2004-01-01

    A cone-beam image reconstruction algorithm using spherical harmonic expansions is proposed. The reconstruction algorithm is in the form of a summation of inner products of two discrete arrays of spherical harmonic expansion coefficients at each cone-beam point of acquisition. This form is different from the common filtered backprojection algorithm and the direct Fourier reconstruction algorithm. There is no re-sampling of the data, and spherical harmonic expansions are used instead of Fourier expansions. As a special case, a new fan-beam image reconstruction algorithm is also derived in terms of a circular harmonic expansion. Computer simulation results for both cone-beam and fan-beam algorithms are presented for circular planar orbit acquisitions. The algorithms give accurate reconstructions; however, the implementation of the cone-beam reconstruction algorithm is computationally intensive. A relatively efficient algorithm is proposed for reconstructing the central slice of the image when a circular scanning orbit is used

  12. Ultra fast, accurate PET image reconstruction for the Siemens hybrid MR/BrainPET scanner using raw LOR data

    International Nuclear Information System (INIS)

    Scheins, Juergen; Lerche, Christoph; Shah, Jon

    2015-01-01

    Fast PET image reconstruction algorithms usually use a Line-of-Response (LOR) preprocessing step where the detected raw LOR data are interpolated either to evenly spaced sinogram projection bins or alternatively to a generic projection space as for example proposed by the PET Reconstruction Software Toolkit (PRESTO) [1]. In this way, speed-optimised, versatile geometrical projectors can be implemented for iterative image reconstruction independent of the underlying scanner geometry. However, all strategies of projection data interpolation unavoidably lead to a loss of original information and result in some degradation of image quality. Here, direct LOR reconstructions overcome this evident drawback at cost of a massively enhanced computational burden. Therefore, computational optimisation techniques are essential to make such demanding approaches attractive and economical for widespread usage in the clinical environment. In this paper, we demonstrate for the Siemens Hybrid MR/BrainPET with 240 million physical LORs that a very fast quantitative direct LOR reconstruction can be realized using a modified version of PRESTO. Now, PRESTO is also capable to directly use sets of symmetric physical LORs instead of interpolating LORs to a generic projection space. Exploiting basic scanner symmetries together with the technique of Single Instruction Multipe Data (SIMD) and Simultaneous Multi-Threading (SMT) results in an overall calculation time of 2-3 minutes per frame on a single multi-core machine, i.e. neither requiring a cluster of mutliple machines nor Graphics Processing Units (GPUs).

  13. Ultra fast, accurate PET image reconstruction for the Siemens hybrid MR/BrainPET scanner using raw LOR data

    Energy Technology Data Exchange (ETDEWEB)

    Scheins, Juergen; Lerche, Christoph; Shah, Jon [Forschungszentrum Jülich GmbH, Jülich (Germany)

    2015-05-18

    Fast PET image reconstruction algorithms usually use a Line-of-Response (LOR) preprocessing step where the detected raw LOR data are interpolated either to evenly spaced sinogram projection bins or alternatively to a generic projection space as for example proposed by the PET Reconstruction Software Toolkit (PRESTO) [1]. In this way, speed-optimised, versatile geometrical projectors can be implemented for iterative image reconstruction independent of the underlying scanner geometry. However, all strategies of projection data interpolation unavoidably lead to a loss of original information and result in some degradation of image quality. Here, direct LOR reconstructions overcome this evident drawback at cost of a massively enhanced computational burden. Therefore, computational optimisation techniques are essential to make such demanding approaches attractive and economical for widespread usage in the clinical environment. In this paper, we demonstrate for the Siemens Hybrid MR/BrainPET with 240 million physical LORs that a very fast quantitative direct LOR reconstruction can be realized using a modified version of PRESTO. Now, PRESTO is also capable to directly use sets of symmetric physical LORs instead of interpolating LORs to a generic projection space. Exploiting basic scanner symmetries together with the technique of Single Instruction Multipe Data (SIMD) and Simultaneous Multi-Threading (SMT) results in an overall calculation time of 2-3 minutes per frame on a single multi-core machine, i.e. neither requiring a cluster of mutliple machines nor Graphics Processing Units (GPUs).

  14. Overview of image reconstruction

    International Nuclear Information System (INIS)

    Marr, R.B.

    1980-04-01

    Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on R/sup n/ is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references

  15. Bayesian image reconstruction for emission tomography based on median root prior

    International Nuclear Information System (INIS)

    Alenius, S.

    1997-01-01

    The aim of the present study was to investigate a new type of Bayesian one-step late reconstruction method which utilizes a median root prior (MRP). The method favours images which have locally monotonous radioactivity concentrations. The new reconstruction algorithm was applied to ideal simulated data, phantom data and some patient examinations with PET. The same projection data were reconstructed with filtered back-projection (FBP) and maximum likelihood-expectation maximization (ML-EM) methods for comparison. The MRP method provided good-quality images with a similar resolution to the FBP method with a ramp filter, and at the same time the noise properties were as good as with Hann-filtered FBP images. The typical artefacts seen in FBP reconstructed images outside of the object were completely removed, as was the grainy noise inside the object. Quantitativley, the resulting average regional radioactivity concentrations in a large region of interest in images produced by the MRP method corresponded to the FBP and ML-EM results but at the pixel by pixel level the MRP method proved to be the most accurate of the tested methods. In contrast to other iterative reconstruction methods, e.g. ML-EM, the MRP method was not sensitive to the number of iterations nor to the adjustment of reconstruction parameters. Only the Bayesian parameter β had to be set. The proposed MRP method is much more simple to calculate than the methods described previously, both with regard to the parameter settings and in terms of general use. The new MRP reconstruction method was shown to produce high-quality quantitative emission images with only one parameter setting in addition to the number of iterations. (orig.)

  16. HistoStitcher© : An Interactive Program for Accurate and Rapid Reconstruction of Digitized Whole Histological Sections from Tissue Fragments

    Science.gov (United States)

    Chappelow, Jonathan; Tomaszewski, John E.; Feldman, Michael; Shih, Natalie; Madabhushi, Anant

    2011-01-01

    We present an interactive program called HistoStitcher© for accurate and rapid reassembly of histology fragments into a pseudo-whole digitized histological section. HistoStitcher© provides both an intuitive graphical interface to assist the operator in performing the stitch of adjacent histology fragments by selecting pairs of anatomical landmarks, and a set of computational routines for determining and applying an optimal linear transformation to generate the stitched image. Reconstruction of whole histological sections from images of slides containing smaller fragments is required in applications where preparation of whole sections of large tissue specimens is not feasible or efficient, and such whole mounts are required to facilitate (a) disease annotation and (b) image registration with radiological images. Unlike manual reassembly of image fragments in a general purpose image editing program (such as Photoshop), HistoStitcher© provides memory efficient operation on high resolution digitized histology images and a highly flexible stitching process capable of producing more accurate results in less time. Further, by parameterizing the series of transformations determined by the stitching process, the stitching parameters can be saved, loaded at a later time, refined, or reapplied to multi-resolution scans, or quickly transmitted to another site. In this paper, we describe in detail the design of HistoStitcher© and the mathematical routines used for calculating the optimal image transformation, and demonstrate its operation for stitching high resolution histology quadrants of a prostate specimen to form a digitally reassembled whole histology section, for 8 different patient studies. To evaluate stitching quality, a 6 point scoring scheme, which assesses the alignment and continuity of anatomical structures important for disease annotation, is employed by three independent expert pathologists. For 6 studies compared with this scheme, reconstructed sections

  17. A low-count reconstruction algorithm for Compton-based prompt gamma imaging

    Science.gov (United States)

    Huang, Hsuan-Ming; Liu, Chih-Chieh; Jan, Meei-Ling; Lee, Ming-Wei

    2018-04-01

    The Compton camera is an imaging device which has been proposed to detect prompt gammas (PGs) produced by proton–nuclear interactions within tissue during proton beam irradiation. Compton-based PG imaging has been developed to verify proton ranges because PG rays, particularly characteristic ones, have strong correlations with the distribution of the proton dose. However, accurate image reconstruction from characteristic PGs is challenging because the detector efficiency and resolution are generally low. Our previous study showed that point spread functions can be incorporated into the reconstruction process to improve image resolution. In this study, we proposed a low-count reconstruction algorithm to improve the image quality of a characteristic PG emission by pooling information from other characteristic PG emissions. PGs were simulated from a proton beam irradiated on a water phantom, and a two-stage Compton camera was used for PG detection. The results show that the image quality of the reconstructed characteristic PG emission is improved with our proposed method in contrast to the standard reconstruction method using events from only one characteristic PG emission. For the 4.44 MeV PG rays, both methods can be used to predict the positions of the peak and the distal falloff with a mean accuracy of 2 mm. Moreover, only the proposed method can improve the estimated positions of the peak and the distal falloff of 5.25 MeV PG rays, and a mean accuracy of 2 mm can be reached.

  18. Statistical dynamic image reconstruction in state-of-the-art high-resolution PET

    International Nuclear Information System (INIS)

    Rahmim, Arman; Cheng, J-C; Blinder, Stephan; Camborde, Maurie-Laure; Sossi, Vesna

    2005-01-01

    Modern high-resolution PET is now more than ever in need of scrutiny into the nature and limitations of the imaging modality itself as well as image reconstruction techniques. In this work, we have reviewed, analysed and addressed the following three considerations within the particular context of state-of-the-art dynamic PET imaging: (i) the typical average numbers of events per line-of-response (LOR) are now (much) less than unity (ii) due to the physical and biological decay of the activity distribution, one requires robust and efficient reconstruction algorithms applicable to a wide range of statistics and (iii) the computational considerations in dynamic imaging are much enhanced (i.e., more frames to be stored and reconstructed). Within the framework of statistical image reconstruction, we have argued theoretically and shown experimentally that the sinogram non-negativity constraint (when using the delayed-coincidence and/or scatter-subtraction techniques) is especially expected to result in an overestimation bias. Subsequently, two schemes are considered: (a) subtraction techniques in which an image non-negativity constraint has been imposed and (b) implementation of random and scatter estimates inside the reconstruction algorithms, thus enabling direct processing of Poisson-distributed prompts. Both techniques are able to remove the aforementioned bias, while the latter, being better conditioned theoretically, is able to exhibit superior noise characteristics. We have also elaborated upon and verified the applicability of the accelerated list-mode image reconstruction method as a powerful solution for accurate, robust and efficient dynamic reconstructions of high-resolution data (as well as a number of additional benefits in the context of state-of-the-art PET)

  19. Reconstruction of Novel Viewpoint Image Using GRNN

    Institute of Scientific and Technical Information of China (English)

    李战委; 孙济洲; 张志强

    2003-01-01

    A neural-statistical approach to the reconstruction of novel viewpoint image using general regression neural networks(GRNN) is presented. Different color value will be obtained by watching the same surface point of an object from different viewpoints due to specular reflection, and the difference is related to the position of viewpoint. The relationship between the position of viewpoint and the color of image is non-linear, neural network is introduced to make curve fitting, where the inputs of neural network are only a few calibrated images with obvious specular reflection. By training the neural network, network model is obtained. By inputing an arbitrary virtual viewpoint to the model, the image of the virtual viewpoint can be computed. By using the method presented here, novel viewpoint image with photo-realistic property can be obtained, especially images with obvious specular reflection can accurately be generated. The method is an image-based rendering method, geometric model of the scene and position of lighting are not needed.

  20. Model-Based Photoacoustic Image Reconstruction using Compressed Sensing and Smoothed L0 Norm

    OpenAIRE

    Mozaffarzadeh, Moein; Mahloojifar, Ali; Nasiriavanaki, Mohammadreza; Orooji, Mahdi

    2018-01-01

    Photoacoustic imaging (PAI) is a novel medical imaging modality that uses the advantages of the spatial resolution of ultrasound imaging and the high contrast of pure optical imaging. Analytical algorithms are usually employed to reconstruct the photoacoustic (PA) images as a result of their simple implementation. However, they provide a low accurate image. Model-based (MB) algorithms are used to improve the image quality and accuracy while a large number of transducers and data acquisition a...

  1. Image reconstruction by domain-transform manifold learning

    Science.gov (United States)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development

  2. MR image reconstruction via guided filter.

    Science.gov (United States)

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  3. Medical image reconstruction. A conceptual tutorial

    International Nuclear Information System (INIS)

    Zeng, Gengsheng Lawrence

    2010-01-01

    ''Medical Image Reconstruction: A Conceptual Tutorial'' introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l 0 -minimization are also included. (orig.)

  4. EIT image reconstruction with four dimensional regularization.

    Science.gov (United States)

    Dai, Tao; Soleimani, Manuchehr; Adler, Andy

    2008-09-01

    Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.

  5. 3D RECONSTRUCTION FROM MULTI-VIEW MEDICAL X-RAY IMAGES – REVIEW AND EVALUATION OF EXISTING METHODS

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2015-12-01

    Full Text Available The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT scan and magnetic resonance imaging (MRI have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT. Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.

  6. Reconstruction of initial pressure from limited view photoacoustic images using deep learning

    Science.gov (United States)

    Waibel, Dominik; Gröhl, Janek; Isensee, Fabian; Kirchner, Thomas; Maier-Hein, Klaus; Maier-Hein, Lena

    2018-02-01

    Quantification of tissue properties with photoacoustic (PA) imaging typically requires a highly accurate representation of the initial pressure distribution in tissue. Almost all PA scanners reconstruct the PA image only from a partial scan of the emitted sound waves. Especially handheld devices, which have become increasingly popular due to their versatility and ease of use, only provide limited view data because of their geometry. Owing to such limitations in hardware as well as to the acoustic attenuation in tissue, state-of-the-art reconstruction methods deliver only approximations of the initial pressure distribution. To overcome the limited view problem, we present a machine learning-based approach to the reconstruction of initial pressure from limited view PA data. Our method involves a fully convolutional deep neural network based on a U-Net-like architecture with pixel-wise regression loss on the acquired PA images. It is trained and validated on in silico data generated with Monte Carlo simulations. In an initial study we found an increase in accuracy over the state-of-the-art when reconstructing simulated linear-array scans of blood vessels.

  7. Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Xu, Shiyu; Chen, Ying; Lu, Jianping; Zhou, Otto

    2015-01-01

    Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair based prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications

  8. Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shiyu, E-mail: shiyu.xu@gmail.com; Chen, Ying, E-mail: adachen@siu.edu [Department of Electrical and Computer Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901 (United States); Lu, Jianping; Zhou, Otto [Department of Physics and Astronomy and Curriculum in Applied Sciences and Engineering, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-09-15

    Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair based prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications.

  9. Alpha image reconstruction (AIR): A new iterative CT image reconstruction approach using voxel-wise alpha blending

    International Nuclear Information System (INIS)

    Hofmann, Christian; Sawall, Stefan; Knaup, Michael; Kachelrieß, Marc

    2014-01-01

    Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger the loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a contrast

  10. Prostate implant reconstruction from C-arm images with motion-compensated tomosynthesis

    International Nuclear Information System (INIS)

    Dehghan, Ehsan; Moradi, Mehdi; Wen, Xu; French, Danny; Lobo, Julio; Morris, W. James; Salcudean, Septimiu E.; Fichtinger, Gabor

    2011-01-01

    Purpose: Accurate localization of prostate implants from several C-arm images is necessary for ultrasound-fluoroscopy fusion and intraoperative dosimetry. The authors propose a computational motion compensation method for tomosynthesis-based reconstruction that enables 3D localization of prostate implants from C-arm images despite C-arm oscillation and sagging. Methods: Five C-arm images are captured by rotating the C-arm around its primary axis, while measuring its rotation angle using a protractor or the C-arm joint encoder. The C-arm images are processed to obtain binary seed-only images from which a volume of interest is reconstructed. The motion compensation algorithm, iteratively, compensates for 2D translational motion of the C-arm by maximizing the number of voxels that project on a seed projection in all of the images. This obviates the need for C-arm full pose tracking traditionally implemented using radio-opaque fiducials or external trackers. The proposed reconstruction method is tested in simulations, in a phantom study and on ten patient data sets. Results: In a phantom implanted with 136 dummy seeds, the seed detection rate was 100% with a localization error of 0.86 ± 0.44 mm (Mean ± STD) compared to CT. For patient data sets, a detection rate of 99.5% was achieved in approximately 1 min per patient. The reconstruction results for patient data sets were compared against an available matching-based reconstruction method and showed relative localization difference of 0.5 ± 0.4 mm. Conclusions: The motion compensation method can successfully compensate for large C-arm motion without using radio-opaque fiducial or external trackers. Considering the efficacy of the algorithm, its successful reconstruction rate and low computational burden, the algorithm is feasible for clinical use.

  11. Prostate implant reconstruction from C-arm images with motion-compensated tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, Ehsan; Moradi, Mehdi; Wen, Xu; French, Danny; Lobo, Julio; Morris, W. James; Salcudean, Septimiu E.; Fichtinger, Gabor [School of Computing, Queen' s University, Kingston, Ontario K7L-3N6 (Canada); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T-1Z4 (Canada); Vancouver Cancer Centre, Vancouver, British Columbia V5Z-1E6 (Canada); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia V6T-1Z4 (Canada); School of Computing, Queen' s University, Kingston, Ontario K7L-3N6 (Canada)

    2011-10-15

    Purpose: Accurate localization of prostate implants from several C-arm images is necessary for ultrasound-fluoroscopy fusion and intraoperative dosimetry. The authors propose a computational motion compensation method for tomosynthesis-based reconstruction that enables 3D localization of prostate implants from C-arm images despite C-arm oscillation and sagging. Methods: Five C-arm images are captured by rotating the C-arm around its primary axis, while measuring its rotation angle using a protractor or the C-arm joint encoder. The C-arm images are processed to obtain binary seed-only images from which a volume of interest is reconstructed. The motion compensation algorithm, iteratively, compensates for 2D translational motion of the C-arm by maximizing the number of voxels that project on a seed projection in all of the images. This obviates the need for C-arm full pose tracking traditionally implemented using radio-opaque fiducials or external trackers. The proposed reconstruction method is tested in simulations, in a phantom study and on ten patient data sets. Results: In a phantom implanted with 136 dummy seeds, the seed detection rate was 100% with a localization error of 0.86 {+-} 0.44 mm (Mean {+-} STD) compared to CT. For patient data sets, a detection rate of 99.5% was achieved in approximately 1 min per patient. The reconstruction results for patient data sets were compared against an available matching-based reconstruction method and showed relative localization difference of 0.5 {+-} 0.4 mm. Conclusions: The motion compensation method can successfully compensate for large C-arm motion without using radio-opaque fiducial or external trackers. Considering the efficacy of the algorithm, its successful reconstruction rate and low computational burden, the algorithm is feasible for clinical use.

  12. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    International Nuclear Information System (INIS)

    Pino, Francisco; Roé, Nuria; Aguiar, Pablo; Falcon, Carles; Ros, Domènec; Pavía, Javier

    2015-01-01

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  13. Improved image quality in pinhole SPECT by accurate modeling of the point spread function in low magnification systems

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08907 (Spain); Roé, Nuria [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036 (Spain); Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Complexo Hospitalario Universitario de Santiago de Compostela 15706, Spain and Grupo de Imagen Molecular, Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Galicia 15782 (Spain); Falcon, Carles; Ros, Domènec [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Pavía, Javier [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 080836 (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); and Servei de Medicina Nuclear, Hospital Clínic, Barcelona 08036 (Spain)

    2015-02-15

    Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery

  14. Statistical image reconstruction methods for simultaneous emission/transmission PET scans

    International Nuclear Information System (INIS)

    Erdogan, H.; Fessler, J.A.

    1996-01-01

    Transmission scans are necessary for estimating the attenuation correction factors (ACFs) to yield quantitatively accurate PET emission images. To reduce the total scan time, post-injection transmission scans have been proposed in which one can simultaneously acquire emission and transmission data using rod sources and sinogram windowing. However, since the post-injection transmission scans are corrupted by emission coincidences, accurate correction for attenuation becomes more challenging. Conventional methods (emission subtraction) for ACF computation from post-injection scans are suboptimal and require relatively long scan times. We introduce statistical methods based on penalized-likelihood objectives to compute ACFs and then use them to reconstruct lower noise PET emission images from simultaneous transmission/emission scans. Simulations show the efficacy of the proposed methods. These methods improve image quality and SNR of the estimates as compared to conventional methods

  15. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad; Prakosa, Adityo; Vadakkumpadan, Fijoy [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Rajchl, Martin [Department of Computing, Imperial College London, London SW7 2AZ (United Kingdom); White, James [Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, Alberta T2N 2T9 (Canada); Herzka, Daniel A.; McVeigh, Elliot [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lardo, Albert C. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Division of Cardiology, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21224 (United States); Trayanova, Natalia A. [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21205 (United States)

    2015-08-15

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D

  16. Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction

    Science.gov (United States)

    Chen, Liang-Chia; Ho, Hsuan-Wei; Nguyen, Xuan-Loc

    2010-02-01

    This article presents a novel band-pass filter for Fourier transform profilometry (FTP) for accurate 3-D surface reconstruction. FTP can be employed to obtain 3-D surface profiles by one-shot images to achieve high-speed measurement. However, its measurement accuracy has been significantly influenced by the spectrum filtering process required to extract the phase information representing various surface heights. Using the commonly applied 2-D Hanning filter, the measurement errors could be up to 5-10% of the overall measuring height and it is unacceptable to various industrial application. To resolve this issue, the article proposes an elliptical band-pass filter for extracting the spectral region possessing essential phase information for reconstructing accurate 3-D surface profiles. The elliptical band-pass filter was developed and optimized to reconstruct 3-D surface models with improved measurement accuracy. Some experimental results verify that the accuracy can be effectively enhanced by using the elliptical filter. The accuracy improvement of 44.1% and 30.4% can be achieved in 3-D and sphericity measurement, respectively, when the elliptical filter replaces the traditional filter as the band-pass filtering method. Employing the developed method, the maximum measured error can be kept within 3.3% of the overall measuring range.

  17. THE RESEARCH OF SPECTRAL RECONSTRUCTION FOR LARGE APERTURE STATIC IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    H. Lv

    2018-04-01

    Full Text Available Imaging spectrometer obtains or indirectly obtains the spectral information of the ground surface feature while obtaining the target image, which makes the imaging spectroscopy has a prominent advantage in fine characterization of terrain features, and is of great significance for the study of geoscience and other related disciplines. Since the interference data obtained by interferometric imaging spectrometer is intermediate data, which must be reconstructed to achieve the high quality spectral data and finally used by users. The difficulty to restrict the application of interferometric imaging spectroscopy is to reconstruct the spectrum accurately. Based on the original image acquired by Large Aperture Static Imaging Spectrometer as the input, this experiment selected the pixel that is identified as crop by artificial recognition, extract and preprocess the interferogram to recovery the corresponding spectrum of this pixel. The result shows that the restructured spectrum formed a small crest near the wavelength of 0.55 μm with obvious troughs on both sides. The relative reflection intensity of the restructured spectrum rises abruptly at the wavelength around 0.7 μm, forming a steep slope. All these characteristics are similar with the spectral reflection curve of healthy green plants. It can be concluded that the experimental result is consistent with the visual interpretation results, thus validating the effectiveness of the scheme for interferometric imaging spectrum reconstruction proposed in this paper.

  18. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    Energy Technology Data Exchange (ETDEWEB)

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  19. Joint model of motion and anatomy for PET image reconstruction

    International Nuclear Information System (INIS)

    Qiao Feng; Pan Tinsu; Clark, John W. Jr.; Mawlawi, Osama

    2007-01-01

    Anatomy-based positron emission tomography (PET) image enhancement techniques have been shown to have the potential for improving PET image quality. However, these techniques assume an accurate alignment between the anatomical and the functional images, which is not always valid when imaging the chest due to respiratory motion. In this article, we present a joint model of both motion and anatomical information by integrating a motion-incorporated PET imaging system model with an anatomy-based maximum a posteriori image reconstruction algorithm. The mismatched anatomical information due to motion can thus be effectively utilized through this joint model. A computer simulation and a phantom study were conducted to assess the efficacy of the joint model, whereby motion and anatomical information were either modeled separately or combined. The reconstructed images in each case were compared to corresponding reference images obtained using a quadratic image prior based maximum a posteriori reconstruction algorithm for quantitative accuracy. Results of these studies indicated that while modeling anatomical information or motion alone improved the PET image quantitation accuracy, a larger improvement in accuracy was achieved when using the joint model. In the computer simulation study and using similar image noise levels, the improvement in quantitation accuracy compared to the reference images was 5.3% and 19.8% when using anatomical or motion information alone, respectively, and 35.5% when using the joint model. In the phantom study, these results were 5.6%, 5.8%, and 19.8%, respectively. These results suggest that motion compensation is important in order to effectively utilize anatomical information in chest imaging using PET. The joint motion-anatomy model presented in this paper provides a promising solution to this problem

  20. Accurate Sample Time Reconstruction of Inertial FIFO Data

    Directory of Open Access Journals (Sweden)

    Sebastian Stieber

    2017-12-01

    Full Text Available In the context of modern cyber-physical systems, the accuracy of underlying sensor data plays an increasingly important role in sensor data fusion and feature extraction. The raw events of multiple sensors have to be aligned in time to enable high quality sensor fusion results. However, the growing number of simultaneously connected sensor devices make the energy saving data acquisition and processing more and more difficult. Hence, most of the modern sensors offer a first-in-first-out (FIFO interface to store multiple data samples and to relax timing constraints, when handling multiple sensor devices. However, using the FIFO interface increases the negative influence of individual clock drifts—introduced by fabrication inaccuracies, temperature changes and wear-out effects—onto the sampling data reconstruction. Furthermore, additional timing offset errors due to communication and software latencies increases with a growing number of sensor devices. In this article, we present an approach for an accurate sample time reconstruction independent of the actual clock drift with the help of an internal sensor timer. Such timers are already available in modern sensors, manufactured in micro-electromechanical systems (MEMS technology. The presented approach focuses on calculating accurate time stamps using the sensor FIFO interface in a forward-only processing manner as a robust and energy saving solution. The proposed algorithm is able to lower the overall standard deviation of reconstructed sampling periods below 40 μ s, while run-time savings of up to 42% are achieved, compared to single sample acquisition.

  1. 3D reconstruction of microvascular flow phantoms with hybrid imaging modalities

    Science.gov (United States)

    Lin, Jingying; Hsiung, Kevin; Ritenour, Russell; Golzarian, Jafar

    2011-03-01

    Microvascular flow phantoms were built to aid the development of a hemodynamic simulation model for treating hepatocelluar carcinoma. The goal is to predict the blood flow routing for embolotherapy planning. Embolization is to deliver agents (e.g. microspheres) to the vicinity of the tumor to obstruct blood supply and nutrients to the tumor, targeting into 30 - 40 μm arterioles. Due to the size of the catheter, it has to release microspheres at an upper stream location, which may not localize the blocking effect. Accurate anatomical descriptions of microvasculature will help to conduct a reliable simulation and prepare a successful embolization strategy. Modern imaging devices can generate 3D reconstructions with ease. However, with a fixed detector size, larger field of view yields lower resolution. Clinical CT images can't be used to measure micro vessel dimensions, while micro-CT requires more acquisitions to reconstruct larger vessels. A multi-tiered, montage 3D reconstruction method with hybrid-modality imagery is devised to minimize the reconstruction effort. Regular CT is used for larger vessels and micro-CT is used for micro vessels. The montage approach aims to stitch up images with different resolutions and orientations. A resolution-adaptable 3D image registration is developed to assemble the images. We have created vessel phantoms that consist of several tiers of bifurcating polymer tubes in reducing diameters, down to 25 μm. No previous work of physical flow phantom has ventured into this small scale. Overlapping phantom images acquired from clinical CT and micro-CT are used to verify the image registration fidelity.

  2. MR-guided PET motion correction in LOR space using generic projection data for image reconstruction with PRESTO

    International Nuclear Information System (INIS)

    Scheins, J.; Ullisch, M.; Tellmann, L.; Weirich, C.; Rota Kops, E.; Herzog, H.; Shah, N.J.

    2013-01-01

    The BrainPET scanner from Siemens, designed as hybrid MR/PET system for simultaneous acquisition of both modalities, provides high-resolution PET images with an optimum resolution of 3 mm. However, significant head motion often compromises the achievable image quality, e.g. in neuroreceptor studies of human brain. This limitation can be omitted when tracking the head motion and accurately correcting measured Lines-of-Response (LORs). For this purpose, we present a novel method, which advantageously combines MR-guided motion tracking with the capabilities of the reconstruction software PRESTO (PET Reconstruction Software Toolkit) to convert motion-corrected LORs into highly accurate generic projection data. In this way, the high-resolution PET images achievable with PRESTO can also be obtained in presence of severe head motion

  3. Tomographic image reconstruction using training images

    DEFF Research Database (Denmark)

    Soltani, Sara; Andersen, Martin Skovgaard; Hansen, Per Christian

    2017-01-01

    We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is available in the form of training images. We first construct a non-negative dictionary based on prototype elements from the training images; this problem is formulated within...

  4. Method for position emission mammography image reconstruction

    Science.gov (United States)

    Smith, Mark Frederick

    2004-10-12

    An image reconstruction method comprising accepting coincidence datat from either a data file or in real time from a pair of detector heads, culling event data that is outside a desired energy range, optionally saving the desired data for each detector position or for each pair of detector pixels on the two detector heads, and then reconstructing the image either by backprojection image reconstruction or by iterative image reconstruction. In the backprojection image reconstruction mode, rays are traced between centers of lines of response (LOR's), counts are then either allocated by nearest pixel interpolation or allocated by an overlap method and then corrected for geometric effects and attenuation and the data file updated. If the iterative image reconstruction option is selected, one implementation is to compute a grid Siddon retracing, and to perform maximum likelihood expectation maiximization (MLEM) computed by either: a) tracing parallel rays between subpixels on opposite detector heads; or b) tracing rays between randomized endpoint locations on opposite detector heads.

  5. Accurate 3D reconstruction of bony surfaces using ultrasonic synthetic aperture techniques for robotic knee arthroplasty.

    Science.gov (United States)

    Kerr, William; Rowe, Philip; Pierce, Stephen Gareth

    2017-06-01

    Robotically guided knee arthroplasty systems generally require an individualized, preoperative 3D model of the knee joint. This is typically measured using Computed Tomography (CT) which provides the required accuracy for preoperative surgical intervention planning. Ultrasound imaging presents an attractive alternative to CT, allowing for reductions in cost and the elimination of doses of ionizing radiation, whilst maintaining the accuracy of the 3D model reconstruction of the joint. Traditional phased array ultrasound imaging methods, however, are susceptible to poor resolution and signal to noise ratios (SNR). Alleviating these weaknesses by offering superior focusing power, synthetic aperture methods have been investigated extensively within ultrasonic non-destructive testing. Despite this, they have yet to be fully exploited in medical imaging. In this paper, the ability of a robotic deployed ultrasound imaging system based on synthetic aperture methods to accurately reconstruct bony surfaces is investigated. Employing the Total Focussing Method (TFM) and the Synthetic Aperture Focussing Technique (SAFT), two samples were imaged which were representative of the bones of the knee joint: a human-shaped, composite distal femur and a bovine distal femur. Data were captured using a 5MHz, 128 element 1D phased array, which was manipulated around the samples using a robotic positioning system. Three dimensional surface reconstructions were then produced and compared with reference models measured using a precision laser scanner. Mean errors of 0.82mm and 0.88mm were obtained for the composite and bovine samples, respectively, thus demonstrating the feasibility of the approach to deliver the sub-millimetre accuracy required for the application. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Photoacoustic image reconstruction via deep learning

    Science.gov (United States)

    Antholzer, Stephan; Haltmeier, Markus; Nuster, Robert; Schwab, Johannes

    2018-02-01

    Applying standard algorithms to sparse data problems in photoacoustic tomography (PAT) yields low-quality images containing severe under-sampling artifacts. To some extent, these artifacts can be reduced by iterative image reconstruction algorithms which allow to include prior knowledge such as smoothness, total variation (TV) or sparsity constraints. These algorithms tend to be time consuming as the forward and adjoint problems have to be solved repeatedly. Further, iterative algorithms have additional drawbacks. For example, the reconstruction quality strongly depends on a-priori model assumptions about the objects to be recovered, which are often not strictly satisfied in practical applications. To overcome these issues, in this paper, we develop direct and efficient reconstruction algorithms based on deep learning. As opposed to iterative algorithms, we apply a convolutional neural network, whose parameters are trained before the reconstruction process based on a set of training data. For actual image reconstruction, a single evaluation of the trained network yields the desired result. Our presented numerical results (using two different network architectures) demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative reconstruction methods.

  7. A novel data processing technique for image reconstruction of penumbral imaging

    Science.gov (United States)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  8. A Case Series of Rapid Prototyping and Intraoperative Imaging in Orbital Reconstruction

    Science.gov (United States)

    Lim, Christopher G.T.; Campbell, Duncan I.; Cook, Nicholas; Erasmus, Jason

    2014-01-01

    In Christchurch Hospital, rapid prototyping (RP) and intraoperative imaging are the standard of care in orbital trauma and has been used since February 2013. RP allows the fabrication of an anatomical model to visualize complex anatomical structures which is dimensionally accurate and cost effective. This assists diagnosis, planning, and preoperative implant adaptation for orbital reconstruction. Intraoperative imaging involves a computed tomography scan during surgery to evaluate surgical implants and restored anatomy and allows the clinician to correct errors in implant positioning that may occur during the same procedure. This article aims to demonstrate the potential clinical and cost saving benefits when both these technologies are used in orbital reconstruction which minimize the need for revision surgery. PMID:26000080

  9. A case series of rapid prototyping and intraoperative imaging in orbital reconstruction.

    Science.gov (United States)

    Lim, Christopher G T; Campbell, Duncan I; Cook, Nicholas; Erasmus, Jason

    2015-06-01

    In Christchurch Hospital, rapid prototyping (RP) and intraoperative imaging are the standard of care in orbital trauma and has been used since February 2013. RP allows the fabrication of an anatomical model to visualize complex anatomical structures which is dimensionally accurate and cost effective. This assists diagnosis, planning, and preoperative implant adaptation for orbital reconstruction. Intraoperative imaging involves a computed tomography scan during surgery to evaluate surgical implants and restored anatomy and allows the clinician to correct errors in implant positioning that may occur during the same procedure. This article aims to demonstrate the potential clinical and cost saving benefits when both these technologies are used in orbital reconstruction which minimize the need for revision surgery.

  10. High-speed reconstruction of compressed images

    Science.gov (United States)

    Cox, Jerome R., Jr.; Moore, Stephen M.

    1990-07-01

    A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.

  11. Optimized 3D Street Scene Reconstruction from Driving Recorder Images

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang

    2015-07-01

    Full Text Available The paper presents an automatic region detection based method to reconstruct street scenes from driving recorder images. The driving recorder in this paper is a dashboard camera that collects images while the motor vehicle is moving. An enormous number of moving vehicles are included in the collected data because the typical recorders are often mounted in the front of moving vehicles and face the forward direction, which can make matching points on vehicles and guardrails unreliable. Believing that utilizing these image data can reduce street scene reconstruction and updating costs because of their low price, wide use, and extensive shooting coverage, we therefore proposed a new method, which is called the Mask automatic detecting method, to improve the structure results from the motion reconstruction. Note that we define vehicle and guardrail regions as “mask” in this paper since the features on them should be masked out to avoid poor matches. After removing the feature points in our new method, the camera poses and sparse 3D points that are reconstructed with the remaining matches. Our contrast experiments with the typical pipeline of structure from motion (SfM reconstruction methods, such as Photosynth and VisualSFM, demonstrated that the Mask decreased the root-mean-square error (RMSE of the pairwise matching results, which led to more accurate recovering results from the camera-relative poses. Removing features from the Mask also increased the accuracy of point clouds by nearly 30%–40% and corrected the problems of the typical methods on repeatedly reconstructing several buildings when there was only one target building.

  12. High resolution depth reconstruction from monocular images and sparse point clouds using deep convolutional neural network

    Science.gov (United States)

    Dimitrievski, Martin; Goossens, Bart; Veelaert, Peter; Philips, Wilfried

    2017-09-01

    Understanding the 3D structure of the environment is advantageous for many tasks in the field of robotics and autonomous vehicles. From the robot's point of view, 3D perception is often formulated as a depth image reconstruction problem. In the literature, dense depth images are often recovered deterministically from stereo image disparities. Other systems use an expensive LiDAR sensor to produce accurate, but semi-sparse depth images. With the advent of deep learning there have also been attempts to estimate depth by only using monocular images. In this paper we combine the best of the two worlds, focusing on a combination of monocular images and low cost LiDAR point clouds. We explore the idea that very sparse depth information accurately captures the global scene structure while variations in image patches can be used to reconstruct local depth to a high resolution. The main contribution of this paper is a supervised learning depth reconstruction system based on a deep convolutional neural network. The network is trained on RGB image patches reinforced with sparse depth information and the output is a depth estimate for each pixel. Using image and point cloud data from the KITTI vision dataset we are able to learn a correspondence between local RGB information and local depth, while at the same time preserving the global scene structure. Our results are evaluated on sequences from the KITTI dataset and our own recordings using a low cost camera and LiDAR setup.

  13. 3-D image reconstruction in radiology

    International Nuclear Information System (INIS)

    Grangeat, P.

    1999-01-01

    In this course, we present highlights on fully 3-D image reconstruction algorithms used in 3-D X-ray Computed Tomography (3-D-CT) and 3-D Rotational Radiography (3-D-RR). We first consider the case of spiral CT with a one-row detector. Starting from the 2-D fan-beam inversion formula for a circular trajectory, we introduce spiral CT 3-D image reconstruction algorithm using axial interpolation for each transverse slice. In order to improve the X-ray detection efficiency and to speed the acquisition process, the future is to use multi-row detectors associated with small angle cone-beam geometry. The generalization of the 2-D fan-beam image reconstruction algorithm to cone beam defined direct inversion formula referred as Feldkamp's algorithm for a circular trajectory and Wang's algorithm for a spiral trajectory. However, large area detectors does exist such as Radiological Image Intensifiers or in a near future solid state detectors. To get a larger zoom effect, it defines a cone-beam geometry associated with a large aperture angle. For this case, we introduce indirect image reconstruction algorithm by plane re-binning in the Radon domain. We will present some results from a prototype MORPHOMETER device using the RADON reconstruction software. Lastly, we consider the special case of 3-D Rotational Digital Subtraction Angiography with a restricted number of views. We introduce constraint optimization algorithm using quadratic, entropic or half-quadratic constraints. Generalized ART (Algebraic Reconstruction Technique) iterative reconstruction algorithm can be derived from the Bregman algorithm. We present reconstructed vascular trees from a prototype MORPHOMETER device. (author)

  14. Tomographic image reconstruction using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Paschalis, P.; Giokaris, N.D.; Karabarbounis, A.; Loudos, G.K.; Maintas, D.; Papanicolas, C.N.; Spanoudaki, V.; Tsoumpas, Ch.; Stiliaris, E.

    2004-01-01

    A new image reconstruction technique based on the usage of an Artificial Neural Network (ANN) is presented. The most crucial factor in designing such a reconstruction system is the network architecture and the number of the input projections needed to reconstruct the image. Although the training phase requires a large amount of input samples and a considerable CPU time, the trained network is characterized by simplicity and quick response. The performance of this ANN is tested using several image patterns. It is intended to be used together with a phantom rotating table and the γ-camera of IASA for SPECT image reconstruction

  15. DEEP WIDEBAND SINGLE POINTINGS AND MOSAICS IN RADIO INTERFEROMETRY: HOW ACCURATELY DO WE RECONSTRUCT INTENSITIES AND SPECTRAL INDICES OF FAINT SOURCES?

    Energy Technology Data Exchange (ETDEWEB)

    Rau, U.; Bhatnagar, S.; Owen, F. N., E-mail: rurvashi@nrao.edu [National Radio Astronomy Observatory, Socorro, NM-87801 (United States)

    2016-11-01

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μ Jy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in the reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.

  16. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  17. Photoacoustic image reconstruction: a quantitative analysis

    Science.gov (United States)

    Sperl, Jonathan I.; Zell, Karin; Menzenbach, Peter; Haisch, Christoph; Ketzer, Stephan; Marquart, Markus; Koenig, Hartmut; Vogel, Mika W.

    2007-07-01

    Photoacoustic imaging is a promising new way to generate unprecedented contrast in ultrasound diagnostic imaging. It differs from other medical imaging approaches, in that it provides spatially resolved information about optical absorption of targeted tissue structures. Because the data acquisition process deviates from standard clinical ultrasound, choice of the proper image reconstruction method is crucial for successful application of the technique. In the literature, multiple approaches have been advocated, and the purpose of this paper is to compare four reconstruction techniques. Thereby, we focused on resolution limits, stability, reconstruction speed, and SNR. We generated experimental and simulated data and reconstructed images of the pressure distribution using four different methods: delay-and-sum (DnS), circular backprojection (CBP), generalized 2D Hough transform (HTA), and Fourier transform (FTA). All methods were able to depict the point sources properly. DnS and CBP produce blurred images containing typical superposition artifacts. The HTA provides excellent SNR and allows a good point source separation. The FTA is the fastest and shows the best FWHM. In our study, we found the FTA to show the best overall performance. It allows a very fast and theoretically exact reconstruction. Only a hardware-implemented DnS might be faster and enable real-time imaging. A commercial system may also perform several methods to fully utilize the new contrast mechanism and guarantee optimal resolution and fidelity.

  18. Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method

    Science.gov (United States)

    Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao

    2017-03-01

    Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.

  19. Task-driven image acquisition and reconstruction in cone-beam CT

    International Nuclear Information System (INIS)

    Gang, Grace J; Stayman, J Webster; Siewerdsen, Jeffrey H; Ehtiati, Tina

    2015-01-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d′) is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d′ for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d′ by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  20. Heuristic optimization in penumbral image for high resolution reconstructed image

    International Nuclear Information System (INIS)

    Azuma, R.; Nozaki, S.; Fujioka, S.; Chen, Y. W.; Namihira, Y.

    2010-01-01

    Penumbral imaging is a technique which uses the fact that spatial information can be recovered from the shadow or penumbra that an unknown source casts through a simple large circular aperture. The size of the penumbral image on the detector can be mathematically determined as its aperture size, object size, and magnification. Conventional reconstruction methods are very sensitive to noise. On the other hand, the heuristic reconstruction method is very tolerant of noise. However, the aperture size influences the accuracy and resolution of the reconstructed image. In this article, we propose the optimization of the aperture size for the neutron penumbral imaging.

  1. Reconstruction Algorithms in Undersampled AFM Imaging

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Oxvig, Christian Schou; Pedersen, Patrick Steffen

    2016-01-01

    This paper provides a study of spatial undersampling in atomic force microscopy (AFM) imaging followed by different image reconstruction techniques based on sparse approximation as well as interpolation. The main reasons for using undersampling is that it reduces the path length and thereby...... the scanning time as well as the amount of interaction between the AFM probe and the specimen. It can easily be applied on conventional AFM hardware. Due to undersampling, it is then necessary to further process the acquired image in order to reconstruct an approximation of the image. Based on real AFM cell...... images, our simulations reveal that using a simple raster scanning pattern in combination with conventional image interpolation performs very well. Moreover, this combination enables a reduction by a factor 10 of the scanning time while retaining an average reconstruction quality around 36 dB PSNR...

  2. Image reconstruction methods for the PBX-M pinhole camera

    International Nuclear Information System (INIS)

    Holland, A.; Powell, E.T.; Fonck, R.J.

    1990-03-01

    This paper describes two methods which have been used to reconstruct the soft x-ray emission profile of the PBX-M tokamak from the projected images recorded by the PBX-M pinhole camera. Both methods must accurately represent the shape of the reconstructed profile while also providing a degree of immunity to noise in the data. The first method is a simple least squares fit to the data. This has the advantage of being fast and small, and thus easily implemented on the PDP-11 computer used to control the video digitizer for the pinhole camera. The second method involves the application of a maximum entropy algorithm to an overdetermined system. This has the advantage of allowing the use of a default profile. This profile contains additional knowledge about the plasma shape which can be obtained from equilibrium fits to the external magnetic measurements. Additionally the reconstruction is guaranteed positive, and the fit to the data can be relaxed by specifying both the amount and distribution of noise in the image. The algorithm described has the advantage of being considerably faster, for an overdetermined system, than the usual Lagrange multiplier approach to finding the maximum entropy solution. 13 refs., 24 figs

  3. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  4. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    International Nuclear Information System (INIS)

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  5. Computational acceleration for MR image reconstruction in partially parallel imaging.

    Science.gov (United States)

    Ye, Xiaojing; Chen, Yunmei; Huang, Feng

    2011-05-01

    In this paper, we present a fast numerical algorithm for solving total variation and l(1) (TVL1) based image reconstruction with application in partially parallel magnetic resonance imaging. Our algorithm uses variable splitting method to reduce computational cost. Moreover, the Barzilai-Borwein step size selection method is adopted in our algorithm for much faster convergence. Experimental results on clinical partially parallel imaging data demonstrate that the proposed algorithm requires much fewer iterations and/or less computational cost than recently developed operator splitting and Bregman operator splitting methods, which can deal with a general sensing matrix in reconstruction framework, to get similar or even better quality of reconstructed images.

  6. Self-training-based spectral image reconstruction for art paintings with multispectral imaging.

    Science.gov (United States)

    Xu, Peng; Xu, Haisong; Diao, Changyu; Ye, Zhengnan

    2017-10-20

    A self-training-based spectral reflectance recovery method was developed to accurately reconstruct the spectral images of art paintings with multispectral imaging. By partitioning the multispectral images with the k-means clustering algorithm, the training samples are directly extracted from the art painting itself to restrain the deterioration of spectral estimation caused by the material inconsistency between the training samples and the art painting. Coordinate paper is used to locate the extracted training samples. The spectral reflectances of the extracted training samples are acquired indirectly with a spectroradiometer, and the circle Hough transform is adopted to detect the circle measuring area of the spectroradiometer. Through simulation and a practical experiment, the implementation of the proposed method is explained in detail, and it is verified to have better reflectance recovery performance than that using the commercial target and is comparable to the approach using a painted color target.

  7. Simulated annealing image reconstruction for positron emission tomography

    International Nuclear Information System (INIS)

    Sundermann, E.; Lemahieu, I.; Desmedt, P.

    1994-01-01

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors)

  8. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany).

    2017-10-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  9. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    International Nuclear Information System (INIS)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc

    2017-01-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  10. The comparison of aneurysmal necks measured on three dimensional reconstruction images of rotational DSA and those of traditional DSA

    International Nuclear Information System (INIS)

    Wu Chunhong; Chen Zuoquan; Gu Binxian; Zhang Guiyun

    2006-01-01

    Objective: To evaluate the value of three dimensional reconstruction images of rotational DSA on measuring aneurysmal necks and make a comparison with traditional DSA so as to provide more abundant and accurate information for the embolization of aneurysm. Methods: A comparison was made between the measurement of aneurismal necks from 14 cases with traditional DSA examination and a measurement made on three dimensional reconstruction images of the same patients. Results: There was a difference shown in the measurement of the aneurysmal necks between three dimensional reconstruction images of rotational DSA and those of traditional DSA, outcoming with more angles and data on three dimensional reconstruction images. Conclusions: There are more angles of aneurysmal neck can be shown on rotational 3D DSA especially for the demonstration of the largest aneurysmal neck with a directional value for the intervention. (authors)

  11. Penalised Maximum Likelihood Simultaneous Longitudinal PET Image Reconstruction with Difference-Image Priors.

    Science.gov (United States)

    Ellis, Sam; Reader, Andrew J

    2018-04-26

    Many clinical contexts require the acquisition of multiple positron emission tomography (PET) scans of a single subject, for example to observe and quantify changes in functional behaviour in tumours after treatment in oncology. Typically, the datasets from each of these scans are reconstructed individually, without exploiting the similarities between them. We have recently shown that sharing information between longitudinal PET datasets by penalising voxel-wise differences during image reconstruction can improve reconstructed images by reducing background noise and increasing the contrast-to-noise ratio of high activity lesions. Here we present two additional novel longitudinal difference-image priors and evaluate their performance using 2D simulation studies and a 3D real dataset case study. We have previously proposed a simultaneous difference-image-based penalised maximum likelihood (PML) longitudinal image reconstruction method that encourages sparse difference images (DS-PML), and in this work we propose two further novel prior terms. The priors are designed to encourage longitudinal images with corresponding differences which have i) low entropy (DE-PML), and ii) high sparsity in their spatial gradients (DTV-PML). These two new priors and the originally proposed longitudinal prior were applied to 2D simulated treatment response [ 18 F]fluorodeoxyglucose (FDG) brain tumour datasets and compared to standard maximum likelihood expectation-maximisation (MLEM) reconstructions. These 2D simulation studies explored the effects of penalty strengths, tumour behaviour, and inter-scan coupling on reconstructed images. Finally, a real two-scan longitudinal data series acquired from a head and neck cancer patient was reconstructed with the proposed methods and the results compared to standard reconstruction methods. Using any of the three priors with an appropriate penalty strength produced images with noise levels equivalent to those seen when using standard

  12. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  13. Robust and accurate multi-view reconstruction by prioritized matching

    DEFF Research Database (Denmark)

    Ylimaki, Markus; Kannala, Juho; Holappa, Jukka

    2012-01-01

    a prioritized matching method which expands the most promising seeds first. The output of the method is a three-dimensional point cloud. Unlike previous correspondence growing approaches our method allows to use the best-first matching principle in the generic multi-view stereo setting with arbitrary number...... of input images. Our experiments show that matching the most promising seeds first provides very robust point cloud reconstructions efficiently with just a single expansion step. A comparison to the current state-of-the-art shows that our method produces reconstructions of similar quality but significantly...

  14. Super-Resolution Image Reconstruction Applied to Medical Ultrasound

    Science.gov (United States)

    Ellis, Michael

    Ultrasound is the preferred imaging modality for many diagnostic applications due to its real-time image reconstruction and low cost. Nonetheless, conventional ultrasound is not used in many applications because of limited spatial resolution and soft tissue contrast. Most commercial ultrasound systems reconstruct images using a simple delay-and-sum architecture on receive, which is fast and robust but does not utilize all information available in the raw data. Recently, more sophisticated image reconstruction methods have been developed that make use of far more information in the raw data to improve resolution and contrast. One such method is the Time-Domain Optimized Near-Field Estimator (TONE), which employs a maximum a priori estimation to solve a highly underdetermined problem, given a well-defined system model. TONE has been shown to significantly improve both the contrast and resolution of ultrasound images when compared to conventional methods. However, TONE's lack of robustness to variations from the system model and extremely high computational cost hinder it from being readily adopted in clinical scanners. This dissertation aims to reduce the impact of TONE's shortcomings, transforming it from an academic construct to a clinically viable image reconstruction algorithm. By altering the system model from a collection of individual hypothetical scatterers to a collection of weighted, diffuse regions, dTONE is able to achieve much greater robustness to modeling errors. A method for efficient parallelization of dTONE is presented that reduces reconstruction time by more than an order of magnitude with little loss in image fidelity. An alternative reconstruction algorithm, called qTONE, is also developed and is able to reduce reconstruction times by another two orders of magnitude while simultaneously improving image contrast. Each of these methods for improving TONE are presented, their limitations are explored, and all are used in concert to reconstruct in

  15. Computed tomography imaging with the Adaptive Statistical Iterative Reconstruction (ASIR) algorithm: dependence of image quality on the blending level of reconstruction.

    Science.gov (United States)

    Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide

    2018-06-01

    Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.

  16. Simulated annealing image reconstruction for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sundermann, E; Lemahieu, I; Desmedt, P [Department of Electronics and Information Systems, University of Ghent, St. Pietersnieuwstraat 41, B-9000 Ghent, Belgium (Belgium)

    1994-12-31

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors). 11 refs., 2 figs.

  17. Sparse Image Reconstruction in Computed Tomography

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Sauer

    In recent years, increased focus on the potentially harmful effects of x-ray computed tomography (CT) scans, such as radiation-induced cancer, has motivated research on new low-dose imaging techniques. Sparse image reconstruction methods, as studied for instance in the field of compressed sensing...... applications. This thesis takes a systematic approach toward establishing quantitative understanding of conditions for sparse reconstruction to work well in CT. A general framework for analyzing sparse reconstruction methods in CT is introduced and two sets of computational tools are proposed: 1...... contributions to a general set of computational characterization tools. Thus, the thesis contributions help advance sparse reconstruction methods toward routine use in...

  18. Simultaneous maximum a posteriori longitudinal PET image reconstruction

    Science.gov (United States)

    Ellis, Sam; Reader, Andrew J.

    2017-09-01

    Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.

  19. Parallel CT image reconstruction based on GPUs

    International Nuclear Information System (INIS)

    Flores, Liubov A.; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2014-01-01

    In X-ray computed tomography (CT) iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions from a small number of projections. However, in practice, these methods are not widely used due to the high computational cost of their implementation. Nowadays technology provides the possibility to reduce effectively this drawback. It is the goal of this work to develop a fast GPU-based algorithm to reconstruct high quality images from under sampled and noisy projection data. - Highlights: • We developed GPU-based iterative algorithm to reconstruct images. • Iterative algorithms are capable to reconstruct images from under sampled set of projections. • The computer cost of the implementation of the developed algorithm is low. • The efficiency of the algorithm increases for the large scale problems

  20. Research of ART method in CT image reconstruction

    International Nuclear Information System (INIS)

    Li Zhipeng; Cong Peng; Wu Haifeng

    2005-01-01

    This paper studied Algebraic Reconstruction Technique (ART) in CT image reconstruction. Discussed the ray number influence on image quality. And the adopting of smooth method got high quality CT image. (authors)

  1. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    Directory of Open Access Journals (Sweden)

    Chang-Chieh Cheng

    Full Text Available A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  2. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    Science.gov (United States)

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  3. Image quality improvements using adaptive statistical iterative reconstruction for evaluating chronic myocardial infarction using iodine density images with spectral CT.

    Science.gov (United States)

    Kishimoto, Junichi; Ohta, Yasutoshi; Kitao, Shinichiro; Watanabe, Tomomi; Ogawa, Toshihide

    2018-04-01

    Single-source dual-energy CT (ssDECT) allows the reconstruction of iodine density images (IDIs) from projection based computing. We hypothesized that adding adaptive statistical iterative reconstruction (ASiR) could improve image quality. The aim of our study was to evaluate the effect and determine the optimal blend percentages of ASiR for IDI of myocardial late iodine enhancement (LIE) in the evaluation of chronic myocardial infarction using ssDECT. A total of 28 patients underwent cardiac LIE using a ssDECT scanner. IDIs between 0 and 100% of ASiR contributions in 10% increments were reconstructed. The signal-to-noise ratio (SNR) of remote myocardia and the contrast-to-noise ratio (CNR) of infarcted myocardia were measured. Transmural extent of infarction was graded using a 5-point scale. The SNR, CNR, and transmural extent were assessed for each ASiR contribution ratio. The transmural extents were compared with MRI as a reference standard. Compared to 0% ASiR, the use of 20-100% ASiR resulted in a reduction of image noise (p ASiR images, reconstruction with 100% ASiR image showed the highest improvement in SNR (229%; p ASiR above 80% showed the highest ratio (73.7%) of accurate transmural extent classification. In conclusion, ASiR intensity of 80-100% in IDIs can improve image quality without changes in signal and maximizes the accuracy of transmural extent in infarcted myocardium.

  4. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    Science.gov (United States)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  5. System Characterizations and Optimized Reconstruction Methods for Novel X-ray Imaging Modalities

    Science.gov (United States)

    Guan, Huifeng

    In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique when combined with the X-ray tomosynthesis. Fourier slice theorem implies that the high frequency components collected in the tomosynthesis data can be more reliably reconstructed. It is observed that the fringes or boundary enhancement introduced by the phase-contrast effects can serve as an accurate indicator of the true depth position in the tomosynthesis in-plane image. In the second part, we derived a sub-space framework to reconstruct images from few-view D-XPCT data set. By introducing a proper mask, the high frequency contents of the image can be theoretically preserved in a certain region of interest. A two-step reconstruction strategy is developed to mitigate the risk of subtle structures being oversmoothed when the commonly used total-variation regularization is employed in the conventional iterative framework. In the thirt part, we proposed a practical method to improve the quantitative accuracy of the projection-based dual-energy material decomposition. It is demonstrated that applying a total-projection-length constraint along with the dual-energy measurements can achieve a stabilized numerical solution of the decomposition problem, thus overcoming the

  6. A Kalman filter technique applied for medical image reconstruction

    International Nuclear Information System (INIS)

    Goliaei, S.; Ghorshi, S.; Manzuri, M. T.; Mortazavi, M.

    2011-01-01

    Medical images contain information about vital organic tissues inside of human body and are widely used for diagnoses of disease or for surgical purposes. Image reconstruction is essential for medical images for some applications such as suppression of noise or de-blurring the image in order to provide images with better quality and contrast. Due to vital rule of image reconstruction in medical sciences the corresponding algorithms with better efficiency and higher speed is desirable. Most algorithms in image reconstruction are operated on frequency domain such as the most popular one known as filtered back projection. In this paper we introduce a Kalman filter technique which is operated in time domain for medical image reconstruction. Results indicated that as the number of projection increases in both normal collected ray sum and the collected ray sum corrupted by noise the quality of reconstructed image becomes better in terms of contract and transparency. It is also seen that as the number of projection increases the error index decreases.

  7. Tomographic Image Reconstruction Using Training Images with Matrix and Tensor Formulations

    DEFF Research Database (Denmark)

    Soltani, Sara

    the image resolution compared to a classical reconstruction method such as Filtered Back Projection (FBP). Some priors for the tomographic reconstruction take the form of cross-section images of similar objects, providing a set of the so-called training images, that hold the key to the structural......Reducing X-ray exposure while maintaining the image quality is a major challenge in computed tomography (CT); since the imperfect data produced from the few view and/or low intensity projections results in low-quality images that are suffering from severe artifacts when using conventional...... information about the solution. The training images must be reliable and application-specific. This PhD project aims at providing a mathematical and computational framework for the use of training sets as non-parametric priors for the solution in tomographic image reconstruction. Through an unsupervised...

  8. Speeding up image reconstruction in computed tomography

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Computed tomography (CT) is a technique for imaging cross-sections of an object using X-ray measurements taken from different angles. In last decades a significant progress has happened there: today advanced algorithms allow fast image reconstruction and obtaining high-quality images even with missing or dirty data, modern detectors provide high resolution without increasing radiation dose, and high-performance multi-core computing devices are there to help us solving such tasks even faster. I will start with CT basics, then briefly present existing classes of reconstruction algorithms and their differences. After that I will proceed to employing distinctive architectural features of modern multi-core devices (CPUs and GPUs) and popular program interfaces (OpenMP, MPI, CUDA, OpenCL) for developing effective parallel realizations of image reconstruction algorithms. Decreasing full reconstruction time from long hours up to minutes or even seconds has a revolutionary impact in diagnostic medicine and industria...

  9. Effects of point configuration on the accuracy in 3D reconstruction from biplane images

    International Nuclear Information System (INIS)

    Dmochowski, Jacek; Hoffmann, Kenneth R.; Singh, Vikas; Xu Jinhui; Nazareth, Daryl P.

    2005-01-01

    Two or more angiograms are being used frequently in medical imaging to reconstruct locations in three-dimensional (3D) space, e.g., for reconstruction of 3D vascular trees, implanted electrodes, or patient positioning. A number of techniques have been proposed for this task. In this simulation study, we investigate the effect of the shape of the configuration of the points in 3D (the 'cloud' of points) on reconstruction errors for one of these techniques developed in our laboratory. Five types of configurations (a ball, an elongated ellipsoid (cigar), flattened ball (pancake), flattened cigar, and a flattened ball with a single distant point) are used in the evaluations. For each shape, 100 random configurations were generated, with point coordinates chosen from Gaussian distributions having a covariance matrix corresponding to the desired shape. The 3D data were projected into the image planes using a known imaging geometry. Gaussian distributed errors were introduced in the x and y coordinates of these projected points. Gaussian distributed errors were also introduced into the gantry information used to calculate the initial imaging geometry. The imaging geometries and 3D positions were iteratively refined using the enhanced-Metz-Fencil technique. The image data were also used to evaluate the feasible R-t solution volume. The 3D errors between the calculated and true positions were determined. The effects of the shape of the configuration, the number of points, the initial geometry error, and the input image error were evaluated. The results for the number of points, initial geometry error, and image error are in agreement with previously reported results, i.e., increasing the number of points and reducing initial geometry and/or image error, improves the accuracy of the reconstructed data. The shape of the 3D configuration of points also affects the error of reconstructed 3D configuration; specifically, errors decrease as the 'volume' of the 3D configuration

  10. Combining Public Domain and Professional Panoramic Imagery for the Accurate and Dense 3d Reconstruction of the Destroyed Bel Temple in Palmyra

    Science.gov (United States)

    Wahbeh, W.; Nebiker, S.; Fangi, G.

    2016-06-01

    This paper exploits the potential of dense multi-image 3d reconstruction of destroyed cultural heritage monuments by either using public domain touristic imagery only or by combining the public domain imagery with professional panoramic imagery. The focus of our work is placed on the reconstruction of the temple of Bel, one of the Syrian heritage monuments, which was destroyed in September 2015 by the so called "Islamic State". The great temple of Bel is considered as one of the most important religious buildings of the 1st century AD in the East with a unique design. The investigations and the reconstruction were carried out using two types of imagery. The first are freely available generic touristic photos collected from the web. The second are panoramic images captured in 2010 for documenting those monuments. In the paper we present a 3d reconstruction workflow for both types of imagery using state-of-the art dense image matching software, addressing the non-trivial challenges of combining uncalibrated public domain imagery with panoramic images with very wide base-lines. We subsequently investigate the aspects of accuracy and completeness obtainable from the public domain touristic images alone and from the combination with spherical panoramas. We furthermore discuss the challenges of co-registering the weakly connected 3d point cloud fragments resulting from the limited coverage of the touristic photos. We then describe an approach using spherical photogrammetry as a virtual topographic survey allowing the co-registration of a detailed and accurate single 3d model of the temple interior and exterior.

  11. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  12. High-definition computed tomography for coronary artery stents imaging: Initial evaluation of the optimal reconstruction algorithm.

    Science.gov (United States)

    Cui, Xiaoming; Li, Tao; Li, Xin; Zhou, Weihua

    2015-05-01

    The aim of this study was to evaluate the in vivo performance of four image reconstruction algorithms in a high-definition CT (HDCT) scanner with improved spatial resolution for the evaluation of coronary artery stents and intrastent lumina. Thirty-nine consecutive patients with a total of 71 implanted coronary stents underwent coronary CT angiography (CCTA) on a HDCT (Discovery CT 750 HD; GE Healthcare) with the high-resolution scanning mode. Four different reconstruction algorithms (HD-stand, HD-detail; HD-stand-plus; HD-detail-plus) were applied to reconstruct the stented coronary arteries. Image quality for stent characterization was assessed. Image noise and intrastent luminal diameter were measured. The relationship between the measurement of inner stent diameter (ISD) and the true stent diameter (TSD) and stent type were analysed. The stent-dedicated kernel (HD-detail) offered the highest percentage (53.5%) of good image quality for stent characterization and the highest ratio (68.0±8.4%) of visible stent lumen/true stent lumen for luminal diameter measurement at the expense of an increased overall image noise. The Pearson correlation coefficient between the ISD and TSD measurement and spearman correlation coefficient between the ISD measurement and stent type were 0.83 and 0.48, respectively. Compared with standard reconstruction algorithms, high-definition CT imaging technique with dedicated high-resolution reconstruction algorithm provides more accurate stent characterization and intrastent luminal diameter measurement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. 3D Reconstruction of NMR Images

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  14. Image simulation and surface reconstruction of undercut features in atomic force microscopy

    Science.gov (United States)

    Qian, Xiaoping; Villarrubia, John; Tian, Fenglei; Dixson, Ronald

    2007-03-01

    CD-AFMs (critical dimension atomic force microscopes) are instruments with servo-control of the tip in more than one direction. With appropriately "boot-shaped" or flared tips, such instruments can image vertical or even undercut features. As with any AFM, the image is a dilation of the sample shape with the tip shape. Accurate extraction of the CD requires a correction for the tip effect. Analytical methods to correct images for the tip shape have been available for some time for the traditional (vertical feedback only) AFMs, but were until recently unavailable for instruments with multi-dimensional feedback. Dahlen et al. [J. Vac. Sci. Technol. B23, pp. 2297-2303, (2005)] recently introduced a swept-volume approach, implemented for 2-dimensional (2D) feedback. It permits image simulation and sample reconstruction, techniques previously developed for the traditional instruments, to be extended for the newer tools. We have introduced [X. Qian and J. S. Villarrubia, Ultramicroscopy, in press] an alternative dexel-based method, that does the same in either 2D or 3D. This paper describes the application of this method to sample shapes of interest in semiconductor manufacturing. When the tip shape is known (e.g., by prior measurement using a tip characterizer) a 3D sample surface may be reconstructed from its 3D image. Basing the CD measurement upon such a reconstruction is shown here to remove some measurement artifacts that are not removed (or are incompletely removed) by the existing measurement procedures.

  15. Stokes image reconstruction for two-color microgrid polarization imaging systems.

    Science.gov (United States)

    Lemaster, Daniel A

    2011-07-18

    The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.

  16. High-definition computed tomography for coronary artery stents imaging: Initial evaluation of the optimal reconstruction algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaoming, E-mail: mmayzy2008@126.com; Li, Tao, E-mail: litaofeivip@163.com; Li, Xin, E-mail: lx0803@sina.com.cn; Zhou, Weihua, E-mail: wangxue0606@gmail.com

    2015-05-15

    Highlights: • High-resolution scan mode is appropriate for imaging coronary stent. • HD-detail reconstruction algorithm is stent-dedicated kernel. • The intrastent lumen visibility also depends on stent diameter and material. - Abstract: Objective: The aim of this study was to evaluate the in vivo performance of four image reconstruction algorithms in a high-definition CT (HDCT) scanner with improved spatial resolution for the evaluation of coronary artery stents and intrastent lumina. Materials and methods: Thirty-nine consecutive patients with a total of 71 implanted coronary stents underwent coronary CT angiography (CCTA) on a HDCT (Discovery CT 750 HD; GE Healthcare) with the high-resolution scanning mode. Four different reconstruction algorithms (HD-stand, HD-detail; HD-stand-plus; HD-detail-plus) were applied to reconstruct the stented coronary arteries. Image quality for stent characterization was assessed. Image noise and intrastent luminal diameter were measured. The relationship between the measurement of inner stent diameter (ISD) and the true stent diameter (TSD) and stent type were analysed. Results: The stent-dedicated kernel (HD-detail) offered the highest percentage (53.5%) of good image quality for stent characterization and the highest ratio (68.0 ± 8.4%) of visible stent lumen/true stent lumen for luminal diameter measurement at the expense of an increased overall image noise. The Pearson correlation coefficient between the ISD and TSD measurement and spearman correlation coefficient between the ISD measurement and stent type were 0.83 and 0.48, respectively. Conclusions: Compared with standard reconstruction algorithms, high-definition CT imaging technique with dedicated high-resolution reconstruction algorithm provides more accurate stent characterization and intrastent luminal diameter measurement.

  17. Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation

    International Nuclear Information System (INIS)

    Tong, S; Alessio, A M; Kinahan, P E

    2010-01-01

    The addition of accurate system modeling in PET image reconstruction results in images with distinct noise texture and characteristics. In particular, the incorporation of point spread functions (PSF) into the system model has been shown to visually reduce image noise, but the noise properties have not been thoroughly studied. This work offers a systematic evaluation of noise and signal properties in different combinations of reconstruction methods and parameters. We evaluate two fully 3D PET reconstruction algorithms: (1) OSEM with exact scanner line of response modeled (OSEM+LOR), (2) OSEM with line of response and a measured point spread function incorporated (OSEM+LOR+PSF), in combination with the effects of four post-reconstruction filtering parameters and 1-10 iterations, representing a range of clinically acceptable settings. We used a modified NEMA image quality (IQ) phantom, which was filled with 68 Ge and consisted of six hot spheres of different sizes with a target/background ratio of 4:1. The phantom was scanned 50 times in 3D mode on a clinical system to provide independent noise realizations. Data were reconstructed with OSEM+LOR and OSEM+LOR+PSF using different reconstruction parameters, and our implementations of the algorithms match the vendor's product algorithms. With access to multiple realizations, background noise characteristics were quantified with four metrics. Image roughness and the standard deviation image measured the pixel-to-pixel variation; background variability and ensemble noise quantified the region-to-region variation. Image roughness is the image noise perceived when viewing an individual image. At matched iterations, the addition of PSF leads to images with less noise defined as image roughness (reduced by 35% for unfiltered data) and as the standard deviation image, while it has no effect on background variability or ensemble noise. In terms of signal to noise performance, PSF-based reconstruction has a 7% improvement in

  18. Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.

    Science.gov (United States)

    She, Huajun; Chen, Rong-Rong; Liang, Dong; DiBella, Edward V R; Ying, Leslie

    2014-02-01

    To develop a sensitivity-based parallel imaging reconstruction method to reconstruct iteratively both the coil sensitivities and MR image simultaneously based on their prior information. Parallel magnetic resonance imaging reconstruction problem can be formulated as a multichannel sampling problem where solutions are sought analytically. However, the channel functions given by the coil sensitivities in parallel imaging are not known exactly and the estimation error usually leads to artifacts. In this study, we propose a new reconstruction algorithm, termed Sparse BLind Iterative Parallel, for blind iterative parallel imaging reconstruction using compressed sensing. The proposed algorithm reconstructs both the sensitivity functions and the image simultaneously from undersampled data. It enforces the sparseness constraint in the image as done in compressed sensing, but is different from compressed sensing in that the sensing matrix is unknown and additional constraint is enforced on the sensitivities as well. Both phantom and in vivo imaging experiments were carried out with retrospective undersampling to evaluate the performance of the proposed method. Experiments show improvement in Sparse BLind Iterative Parallel reconstruction when compared with Sparse SENSE, JSENSE, IRGN-TV, and L1-SPIRiT reconstructions with the same number of measurements. The proposed Sparse BLind Iterative Parallel algorithm reduces the reconstruction errors when compared to the state-of-the-art parallel imaging methods. Copyright © 2013 Wiley Periodicals, Inc.

  19. Reconstructing the landing trajectory of the CE-3 lunar probe by using images from the landing camera

    International Nuclear Information System (INIS)

    Liu Jian-Jun; Yan Wei; Li Chun-Lai; Tan Xu; Ren Xin; Mu Ling-Li

    2014-01-01

    An accurate determination of the landing trajectory of Chang'e-3 (CE-3) is significant for verifying orbital control strategy, optimizing orbital planning, accurately determining the landing site of CE-3 and analyzing the geological background of the landing site. Due to complexities involved in the landing process, there are some differences between the planned trajectory and the actual trajectory of CE-3. The landing camera on CE-3 recorded a sequence of the landing process with a frequency of 10 frames per second. These images recorded by the landing camera and high-resolution images of the lunar surface are utilized to calculate the position of the probe, so as to reconstruct its precise trajectory. This paper proposes using the method of trajectory reconstruction by Single Image Space Resection to make a detailed study of the hovering stage at a height of 100 m above the lunar surface. Analysis of the data shows that the closer CE-3 came to the lunar surface, the higher the spatial resolution of images that were acquired became, and the more accurately the horizontal and vertical position of CE-3 could be determined. The horizontal and vertical accuracies were 7.09 m and 4.27 m respectively during the hovering stage at a height of 100.02 m. The reconstructed trajectory can reflect the change in CE-3's position during the powered descent process. A slight movement in CE-3 during the hovering stage is also clearly demonstrated. These results will provide a basis for analysis of orbit control strategy, and it will be conducive to adjustment and optimization of orbit control strategy in follow-up missions

  20. Non-Cartesian parallel imaging reconstruction.

    Science.gov (United States)

    Wright, Katherine L; Hamilton, Jesse I; Griswold, Mark A; Gulani, Vikas; Seiberlich, Nicole

    2014-11-01

    Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be used to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the nonhomogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA), and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered. © 2014 Wiley Periodicals, Inc.

  1. Reconstruction of Undersampled Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Arildsen, Thomas; Østergaard, Jan

    2013-01-01

    Atomic force microscopy (AFM) is one of the most advanced tools for high-resolution imaging and manipulation of nanoscale matter. Unfortunately, standard AFM imaging requires a timescale on the order of seconds to minutes to acquire an image which makes it complicated to observe dynamic processes....... Moreover, it is often required to take several images before a relevant observation region is identified. In this paper we show how to significantly reduce the image acquisition time by undersampling. The reconstruction of an undersampled AFM image can be viewed as an inpainting, interpolating problem...... should be reconstructed using interpolation....

  2. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  3. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  4. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  5. Simbol-X Formation Flight and Image Reconstruction

    Science.gov (United States)

    Civitani, M.; Djalal, S.; Le Duigou, J. M.; La Marle, O.; Chipaux, R.

    2009-05-01

    Simbol-X is the first operational mission relying on two satellites flying in formation. The dynamics of the telescope, due to the formation flight concept, raises a variety of problematic, like image reconstruction, that can be better evaluated via a simulation tools. We present here the first results obtained with Simulos, simulation tool aimed to study the relative spacecrafts navigation and the weight of the different parameters in image reconstruction and telescope performance evaluation. The simulation relies on attitude and formation flight sensors models, formation flight dynamics and control, mirror model and focal plane model, while the image reconstruction is based on the Line of Sight (LOS) concept.

  6. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    OpenAIRE

    Kotasidis Fotis A.; Kotasidis Fotis A.; Angelis Georgios I.; Anton-Rodriguez Jose; Matthews Julian C.; Reader Andrew J.; Reader Andrew J.; Zaidi Habib; Zaidi Habib; Zaidi Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However due to the short half life of clinically used isotopes other long lived isotopes not used in clinical practice are used to perform the PSF measurements. As such non optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction usuall...

  7. Image quality of iterative reconstruction in cranial CT imaging: comparison of model-based iterative reconstruction (MBIR) and adaptive statistical iterative reconstruction (ASiR).

    Science.gov (United States)

    Notohamiprodjo, S; Deak, Z; Meurer, F; Maertz, F; Mueck, F G; Geyer, L L; Wirth, S

    2015-01-01

    The purpose of this study was to compare cranial CT (CCT) image quality (IQ) of the MBIR algorithm with standard iterative reconstruction (ASiR). In this institutional review board (IRB)-approved study, raw data sets of 100 unenhanced CCT examinations (120 kV, 50-260 mAs, 20 mm collimation, 0.984 pitch) were reconstructed with both ASiR and MBIR. Signal-to-noise (SNR) and contrast-to-noise (CNR) were calculated from attenuation values measured in caudate nucleus, frontal white matter, anterior ventricle horn, fourth ventricle, and pons. Two radiologists, who were blinded to the reconstruction algorithms, evaluated anonymized multiplanar reformations of 2.5 mm with respect to depiction of different parenchymal structures and impact of artefacts on IQ with a five-point scale (0: unacceptable, 1: less than average, 2: average, 3: above average, 4: excellent). MBIR decreased artefacts more effectively than ASiR (p ASiR was 2 (p ASiR (p ASiR. As CCT is an examination that is frequently required, the use of MBIR may allow for substantial reduction of radiation exposure caused by medical diagnostics. • Model-Based iterative reconstruction (MBIR) effectively decreased artefacts in cranial CT. • MBIR reconstructed images were rated with significantly higher scores for image quality. • Model-Based iterative reconstruction may allow reduced-dose diagnostic examination protocols.

  8. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation

    International Nuclear Information System (INIS)

    Zhao, Zhanqi; Möller, Knut; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich

    2014-01-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton–Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR C ) and (4) GREIT with individual thorax geometry (GR T ). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal–Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms. (paper)

  9. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation.

    Science.gov (United States)

    Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut

    2014-06-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton-Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR(C)) and (4) GREIT with individual thorax geometry (GR(T)). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal-Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms.

  10. Image reconstruction methods in positron tomography

    International Nuclear Information System (INIS)

    Townsend, D.W.; Defrise, M.

    1993-01-01

    In the two decades since the introduction of the X-ray scanner into radiology, medical imaging techniques have become widely established as essential tools in the diagnosis of disease. As a consequence of recent technological and mathematical advances, the non-invasive, three-dimensional imaging of internal organs such as the brain and the heart is now possible, not only for anatomical investigations using X-ray but also for studies which explore the functional status of the body using positron-emitting radioisotopes. This report reviews the historical and physical basis of medical imaging techniques using positron-emitting radioisotopes. Mathematical methods which enable three-dimensional distributions of radioisotopes to be reconstructed from projection data (sinograms) acquired by detectors suitably positioned around the patient are discussed. The extension of conventional two-dimensional tomographic reconstruction algorithms to fully three-dimensional reconstruction is described in detail. (orig.)

  11. Few-view image reconstruction with dual dictionaries

    International Nuclear Information System (INIS)

    Lu Yang; Zhao Jun; Wang Ge

    2012-01-01

    In this paper, we formulate the problem of computed tomography (CT) under sparsity and few-view constraints, and propose a novel algorithm for image reconstruction from few-view data utilizing the simultaneous algebraic reconstruction technique (SART) coupled with dictionary learning, sparse representation and total variation (TV) minimization on two interconnected levels. The main feature of our algorithm is the use of two dictionaries: a transitional dictionary for atom matching and a global dictionary for image updating. The atoms in the global and transitional dictionaries represent the image patches from high-quality and low-quality CT images, respectively. Experiments with simulated and real projections were performed to evaluate and validate the proposed algorithm. The results reconstructed using the proposed approach are significantly better than those using either SART or SART–TV. (paper)

  12. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  13. Reconstruction CT imaging of the hypopharynx and the larynx

    International Nuclear Information System (INIS)

    Okuno, Tetsuji; Fujimura, Akiko; Murakami, Yasushi; Shiga, Hayao

    1986-01-01

    The multiplanar reconstruction CT imaging of the hypopharynx and the larynx was performed on a total of 20 cases: 8 with laryngeal carcinomas, 6 with hypopharyngeal carcinomas, 4 with vocal cord paralyses due to various causes, 1 with laryngeal amyloidosis, 1 with inflammatory granuloma of the hypopharynx. Coronal, segittal, and parasagittal reconstruction images were obtained from either 1 or 2 mm overlapping axial scans with 4 or 5 mm slice thickness (3 cases) using 5 sec scan times during queit breathing. In 15 cases with coronal reconstruction imaging, the anatomical derangements of the laryngopharyngeal structures especially along the undersurface of the true vocal cord to the false cord level, the lateral wall of the pyriform sinus, and the paraglottic space were demonstrated more clearly than the axial CT imaging. In 5 cases with sagittal reconstruction imaging, the vertical extension of the lesions through the anterior commisure was more clearly depicted than the axial CT imaging. In 8 cases with parasagittal reconstruction imaging, which is along the vocal fold or across the aryepiglottic fold, pathological changes along the aryepiglottic fold, the arytenoid-corniculate cartilage complex, and the tip of the pyriform sinus were more clearly demonstrated than the axial CT imaging. In determining the feasibility of conservation surgery of the larynx and the hypopharynx, reconstruction CT imaging is recommended as the diagnostic procedure of a choice, which would supplement the findings of the routine axial CT imaging. (author)

  14. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    International Nuclear Information System (INIS)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom

    2015-01-01

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  15. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  16. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland FHNW, 5210 Windisch (Switzerland)

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  17. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Science.gov (United States)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  18. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

    Science.gov (United States)

    Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D

    2010-10-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  19. Matrix-based image reconstruction methods for tomography

    International Nuclear Information System (INIS)

    Llacer, J.; Meng, J.D.

    1984-10-01

    Matrix methods of image reconstruction have not been used, in general, because of the large size of practical matrices, ill condition upon inversion and the success of Fourier-based techniques. An exception is the work that has been done at the Lawrence Berkeley Laboratory for imaging with accelerated radioactive ions. An extension of that work into more general imaging problems shows that, with a correct formulation of the problem, positron tomography with ring geometries results in well behaved matrices which can be used for image reconstruction with no distortion of the point response in the field of view and flexibility in the design of the instrument. Maximum Likelihood Estimator methods of reconstruction, which use the system matrices tailored to specific instruments and do not need matrix inversion, are shown to result in good preliminary images. A parallel processing computer structure based on multiple inexpensive microprocessors is proposed as a system to implement the matrix-MLE methods. 14 references, 7 figures

  20. Real-time SPARSE-SENSE cardiac cine MR imaging: optimization of image reconstruction and sequence validation.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Bomas, Bettina; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-12-01

    Improved real-time cardiac magnetic resonance (CMR) sequences have currently been introduced, but so far only limited practical experience exists. This study aimed at image reconstruction optimization and clinical validation of a new highly accelerated real-time cine SPARSE-SENSE sequence. Left ventricular (LV) short-axis stacks of a real-time free-breathing SPARSE-SENSE sequence with high spatiotemporal resolution and of a standard segmented cine SSFP sequence were acquired at 1.5 T in 11 volunteers and 15 patients. To determine the optimal iterations, all volunteers' SPARSE-SENSE images were reconstructed using 10-200 iterations, and contrast ratios, image entropies, and reconstruction times were assessed. Subsequently, the patients' SPARSE-SENSE images were reconstructed with the clinically optimal iterations. LV volumetric values were evaluated and compared between both sequences. Sufficient image quality and acceptable reconstruction times were achieved when using 80 iterations. Bland-Altman plots and Passing-Bablok regression showed good agreement for all volumetric parameters. 80 iterations are recommended for iterative SPARSE-SENSE image reconstruction in clinical routine. Real-time cine SPARSE-SENSE yielded comparable volumetric results as the current standard SSFP sequence. Due to its intrinsic low image acquisition times, real-time cine SPARSE-SENSE imaging with iterative image reconstruction seems to be an attractive alternative for LV function analysis. • A highly accelerated real-time CMR sequence using SPARSE-SENSE was evaluated. • SPARSE-SENSE allows free breathing in real-time cardiac cine imaging. • For clinically optimal SPARSE-SENSE image reconstruction, 80 iterations are recommended. • Real-time SPARSE-SENSE imaging yielded comparable volumetric results as the reference SSFP sequence. • The fast SPARSE-SENSE sequence is an attractive alternative to standard SSFP sequences.

  1. Active illumination based 3D surface reconstruction and registration for image guided medialization laryngoplasty

    Science.gov (United States)

    Jin, Ge; Lee, Sang-Joon; Hahn, James K.; Bielamowicz, Steven; Mittal, Rajat; Walsh, Raymond

    2007-03-01

    The medialization laryngoplasty is a surgical procedure to improve the voice function of the patient with vocal fold paresis and paralysis. An image guided system for the medialization laryngoplasty will help the surgeons to accurately place the implant and thus reduce the failure rates of the surgery. One of the fundamental challenges in image guided system is to accurately register the preoperative radiological data to the intraoperative anatomical structure of the patient. In this paper, we present a combined surface and fiducial based registration method to register the preoperative 3D CT data to the intraoperative surface of larynx. To accurately model the exposed surface area, a structured light based stereo vision technique is used for the surface reconstruction. We combined the gray code pattern and multi-line shifting to generate the intraoperative surface of the larynx. To register the point clouds from the intraoperative stage to the preoperative 3D CT data, a shape priori based ICP method is proposed to quickly register the two surfaces. The proposed approach is capable of tracking the fiducial markers and reconstructing the surface of larynx with no damage to the anatomical structure. We used off-the-shelf digital cameras, LCD projector and rapid 3D prototyper to develop our experimental system. The final RMS error in the registration is less than 1mm.

  2. SU-E-I-82: Improving CT Image Quality for Radiation Therapy Using Iterative Reconstruction Algorithms and Slightly Increasing Imaging Doses

    International Nuclear Information System (INIS)

    Noid, G; Chen, G; Tai, A; Li, X

    2014-01-01

    Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. For CT in radiation therapy (RT), slightly increasing imaging dose to improve IQ may be justified if it can substantially enhance structure delineation. The purpose of this study is to investigate and to quantify the IQ enhancement as a result of increasing imaging doses and using IR algorithms. Methods: CT images were acquired for phantoms, built to evaluate IQ metrics including spatial resolution, contrast and noise, with a variety of imaging protocols using a CT scanner (Definition AS Open, Siemens) installed inside a Linac room. Representative patients were scanned once the protocols were optimized. Both phantom and patient scans were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and the Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared. Results: IR techniques are demonstrated to preserve spatial resolution as measured by the point spread function and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is doubled by adopting the highest SAFIRE strength. As expected, increasing imaging dose reduces noise for both SAFIRE and FBP reconstructions. The contrast to noise increases from 3 to 5 by increasing the dose by a factor of 4. Similar IQ improvement was observed on the CTs for selected patients with pancreas and prostrate cancers. Conclusion: The IR techniques produce a measurable enhancement to CT IQ by reducing the noise. Increasing imaging dose further reduces noise independent of the IR techniques. The improved CT enables more accurate delineation of tumors and/or organs at risk during RT planning and delivery guidance

  3. MR imaging of the augmented and reconstructed breast

    International Nuclear Information System (INIS)

    Ivanov, V.; Kirova, G.

    2013-01-01

    Full text: Introduction: Various diagnostic methods are used to assess the changes in both the integrity of the implant, and the fibrous capsule of breast parenchyma. MRI has advantages over other diagnostic methods providing high tissue contrast, multi-faceted imaging and lack of ionizing radiation. What you will learn: MRI evaluation of breast augmentation approaches and their complications, MRI assessment of disease with malignant and benign characteristics in patients with breast implants, MRI assessment of breast reconstruction with autologous tissue. Discussion: Mammography after augmentation and reconstructive mammoplasty is hampered by the deformation of the breast parenchyma of the implant and the reduced compression. Postoperative scarring is also difficult to assess. MRI evaluation of implant rupture is accurate using the findings specific to it - linguine sign, teardrop sign or siliconomas. According to Gorczyca et al. MRI has a sensitivity 94% and specificity 97% in the evaluation of rupture. MRI mammography is highly sensitive - between 90 and 95%, in the detection of malignant, but it has limited specificity, which is its disadvantage. Malignant lesions can be represented as fibroadenomas, postoperative and inflammatory changes. Conclusion: Difficulties in the diagnosis of rupture of the implant, the primary and recurrent carcinoma based on clinical examination and inconclusive data from mammography and ultrasound imaging make MRI the method of choice in the evaluation of patients with breast implants

  4. Model-based image reconstruction for four-dimensional PET

    International Nuclear Information System (INIS)

    Li Tianfang; Thorndyke, Brian; Schreibmann, Eduard; Yang Yong; Xing Lei

    2006-01-01

    Positron emission tonography (PET) is useful in diagnosis and radiation treatment planning for a variety of cancers. For patients with cancers in thoracic or upper abdominal region, the respiratory motion produces large distortions in the tumor shape and size, affecting the accuracy in both diagnosis and treatment. Four-dimensional (4D) (gated) PET aims to reduce the motion artifacts and to provide accurate measurement of the tumor volume and the tracer concentration. A major issue in 4D PET is the lack of statistics. Since the collected photons are divided into several frames in the 4D PET scan, the quality of each reconstructed frame degrades as the number of frames increases. The increased noise in each frame heavily degrades the quantitative accuracy of the PET imaging. In this work, we propose a method to enhance the performance of 4D PET by developing a new technique of 4D PET reconstruction with incorporation of an organ motion model derived from 4D-CT images. The method is based on the well-known maximum-likelihood expectation-maximization (ML-EM) algorithm. During the processes of forward- and backward-projection in the ML-EM iterations, all projection data acquired at different phases are combined together to update the emission map with the aid of deformable model, the statistics is therefore greatly improved. The proposed algorithm was first evaluated with computer simulations using a mathematical dynamic phantom. Experiment with a moving physical phantom was then carried out to demonstrate the accuracy of the proposed method and the increase of signal-to-noise ratio over three-dimensional PET. Finally, the 4D PET reconstruction was applied to a patient case

  5. A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.

    Science.gov (United States)

    Konkle, Justin J; Goodwill, Patrick W; Hensley, Daniel W; Orendorff, Ryan D; Lustig, Michael; Conolly, Steven M

    2015-01-01

    Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.

  6. Assessment of the impact of modeling axial compression on PET image reconstruction.

    Science.gov (United States)

    Belzunce, Martin A; Reader, Andrew J

    2017-10-01

    To comprehensively evaluate both the acceleration and image-quality impacts of axial compression and its degree of modeling in fully 3D PET image reconstruction. Despite being used since the very dawn of 3D PET reconstruction, there are still no extensive studies on the impact of axial compression and its degree of modeling during reconstruction on the end-point reconstructed image quality. In this work, an evaluation of the impact of axial compression on the image quality is performed by extensively simulating data with span values from 1 to 121. In addition, two methods for modeling the axial compression in the reconstruction were evaluated. The first method models the axial compression in the system matrix, while the second method uses an unmatched projector/backprojector, where the axial compression is modeled only in the forward projector. The different system matrices were analyzed by computing their singular values and the point response functions for small subregions of the FOV. The two methods were evaluated with simulated and real data for the Biograph mMR scanner. For the simulated data, the axial compression with span values lower than 7 did not show a decrease in the contrast of the reconstructed images. For span 11, the standard sinogram size of the mMR scanner, losses of contrast in the range of 5-10 percentage points were observed when measured for a hot lesion. For higher span values, the spatial resolution was degraded considerably. However, impressively, for all span values of 21 and lower, modeling the axial compression in the system matrix compensated for the spatial resolution degradation and obtained similar contrast values as the span 1 reconstructions. Such approaches have the same processing times as span 1 reconstructions, but they permit significant reduction in storage requirements for the fully 3D sinograms. For higher span values, the system has a large condition number and it is therefore difficult to recover accurately the higher

  7. An efficient algorithm for MR image reconstruction and compression

    International Nuclear Information System (INIS)

    Wang, Hang; Rosenfeld, D.; Braun, M.; Yan, Hong

    1992-01-01

    In magnetic resonance imaging (MRI), the original data are sampled in the spatial frequency domain. The sampled data thus constitute a set of discrete Fourier transform (DFT) coefficients. The image is usually reconstructed by taking inverse DFT. The image data may then be efficiently compressed using the discrete cosine transform (DCT). A method of using DCT to treat the sampled data is presented which combines two procedures, image reconstruction and data compression. This method may be particularly useful in medical picture archiving and communication systems where both image reconstruction and compression are important issues. 11 refs., 3 figs

  8. Algorithms for Reconstruction of Undersampled Atomic Force Microscopy Images Supplementary Material

    DEFF Research Database (Denmark)

    2017-01-01

    Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods.......Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods....

  9. Fast dictionary-based reconstruction for diffusion spectrum imaging.

    Science.gov (United States)

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar

    2013-11-01

    Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.

  10. Biologically inspired EM image alignment and neural reconstruction.

    Science.gov (United States)

    Knowles-Barley, Seymour; Butcher, Nancy J; Meinertzhagen, Ian A; Armstrong, J Douglas

    2011-08-15

    Three-dimensional reconstruction of consecutive serial-section transmission electron microscopy (ssTEM) images of neural tissue currently requires many hours of manual tracing and annotation. Several computational techniques have already been applied to ssTEM images to facilitate 3D reconstruction and ease this burden. Here, we present an alternative computational approach for ssTEM image analysis. We have used biologically inspired receptive fields as a basis for a ridge detection algorithm to identify cell membranes, synaptic contacts and mitochondria. Detected line segments are used to improve alignment between consecutive images and we have joined small segments of membrane into cell surfaces using a dynamic programming algorithm similar to the Needleman-Wunsch and Smith-Waterman DNA sequence alignment procedures. A shortest path-based approach has been used to close edges and achieve image segmentation. Partial reconstructions were automatically generated and used as a basis for semi-automatic reconstruction of neural tissue. The accuracy of partial reconstructions was evaluated and 96% of membrane could be identified at the cost of 13% false positive detections. An open-source reference implementation is available in the Supplementary information. seymour.kb@ed.ac.uk; douglas.armstrong@ed.ac.uk Supplementary data are available at Bioinformatics online.

  11. Gadgetron: An Open Source Framework for Medical Image Reconstruction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-01-01

    This work presents a new open source framework for medical image reconstruction called the “Gadgetron.” The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or “Gadgets” from raw data to reconstructed images...... with a set of dedicated toolboxes in shared libraries for medical image reconstruction. This includes generic toolboxes for data-parallel (e.g., GPU-based) execution of compute-intensive components. The basic framework architecture is independent of medical imaging modality, but this article focuses on its...

  12. Blind compressed sensing image reconstruction based on alternating direction method

    Science.gov (United States)

    Liu, Qinan; Guo, Shuxu

    2018-04-01

    In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.

  13. Time-of-flight PET image reconstruction using origin ensembles

    Science.gov (United States)

    Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven

    2015-03-01

    The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.

  14. Noninvasive Vascular Displacement Estimation for Relative Elastic Modulus Reconstruction in Transversal Imaging Planes

    Directory of Open Access Journals (Sweden)

    Chris L. de Korte

    2013-03-01

    Full Text Available Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding.

  15. Low dose reconstruction algorithm for differential phase contrast imaging.

    Science.gov (United States)

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  16. 3D surface reconstruction using optical flow for medical imaging

    International Nuclear Information System (INIS)

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  17. AN IMAGE-BASED TECHNIQUE FOR 3D BUILDING RECONSTRUCTION USING MULTI-VIEW UAV IMAGES

    Directory of Open Access Journals (Sweden)

    F. Alidoost

    2015-12-01

    Full Text Available Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud generation, and 3D modelling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM is applied on UAV images and a dense point cloud is generated. Then, a mesh model of points is calculated using Delaunay 2.5D triangulation and refined to obtain an accurate model of building. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough details of building based on visual assessment.

  18. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU.

    Science.gov (United States)

    Arefan, D; Talebpour, A; Ahmadinejhad, N; Kamali Asl, A

    2015-06-01

    Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU). At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU) card and the Graphics Processing Unit (GPU). It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU).

  19. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  20. Superiority of CT imaging reconstruction on Linux OS

    International Nuclear Information System (INIS)

    Lin Shaochun; Yan Xufeng; Wu Tengfang; Luo Xiaomei; Cai Huasong

    2010-01-01

    Objective: To compare the speed of CT reconstruction using the Linux and Windows OS. Methods: Shepp-Logan head phantom in different pixel size was projected to obtain the sinogram by using the inverse Fourier transformation, filtered back projection and Radon transformation on both Linux and Windows OS. Results: CT image reconstruction using the Linux operating system was significantly better and more efficient than Windows. Conclusion: CT image reconstruction using the Linux operating system is more efficient. (authors)

  1. Influence of image reconstruction methods on statistical parametric mapping of brain PET images

    International Nuclear Information System (INIS)

    Yin Dayi; Chen Yingmao; Yao Shulin; Shao Mingzhe; Yin Ling; Tian Jiahe; Cui Hongyan

    2007-01-01

    Objective: Statistic parametric mapping (SPM) was widely recognized as an useful tool in brain function study. The aim of this study was to investigate if imaging reconstruction algorithm of PET images could influence SPM of brain. Methods: PET imaging of whole brain was performed in six normal volunteers. Each volunteer had two scans with true and false acupuncturing. The PET scans were reconstructed using ordered subsets expectation maximization (OSEM) and filtered back projection (FBP) with 3 varied parameters respectively. The images were realigned, normalized and smoothed using SPM program. The difference between true and false acupuncture scans was tested using a matched pair t test at every voxel. Results: (1) SPM corrected multiple comparison (P corrected uncorrected <0.001): SPM derived from the images with different reconstruction method were different. The largest difference, in number and position of the activated voxels, was noticed between FBP and OSEM re- construction algorithm. Conclusions: The method of PET image reconstruction could influence the results of SPM uncorrected multiple comparison. Attention should be paid when the conclusion was drawn using SPM uncorrected multiple comparison. (authors)

  2. A combinational fast algorithm for image reconstruction

    International Nuclear Information System (INIS)

    Wu Zhongquan

    1987-01-01

    A combinational fast algorithm has been developed in order to increase the speed of reconstruction. First, an interpolation method based on B-spline functions is used in image reconstruction. Next, the influence of the boundary conditions assumed here on the interpolation of filtered projections and on the image reconstruction is discussed. It is shown that this boundary condition has almost no influence on the image in the central region of the image space, because the error of interpolation rapidly decreases by a factor of ten in shifting two pixels from the edge toward the center. In addition, a fast algorithm for computing the detecting angle has been used with the mentioned interpolation algorithm, and the cost for detecting angle computaton is reduced by a factor of two. The implementation results show that in the same subjective and objective fidelity, the computational cost for the interpolation using this algorithm is about one-twelfth of the conventional algorithm

  3. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval

    International Nuclear Information System (INIS)

    Bastarrika, Gorka; Arraiza, Maria; Pueyo, Jesus C.; Cecco, Carlo N. de; Ubilla, Matias; Mastrobuoni, Stefano; Rabago, Gregorio

    2008-01-01

    The image quality and optimal reconstruction interval for coronary arteries in heart transplant recipients undergoing non-invasive dual-source computed tomography (DSCT) coronary angiography was evaluated. Twenty consecutive heart transplant recipients who underwent DSCT coronary angiography were included (19 male, one female; mean age 63.1±10.7 years). Data sets were reconstructed in 5% steps from 30% to 80% of the R-R interval. Two blinded independent observers assessed the image quality of each coronary segments using a five-point scale (from 0 = not evaluative to 4=excellent quality). A total of 289 coronary segments in 20 heart transplant recipients were evaluated. Mean heart rate during the scan was 89.1±10.4 bpm. At the best reconstruction interval, diagnostic image quality (score ≥2) was obtained in 93.4% of the coronary segments (270/289) with a mean image quality score of 3.04± 0.63. Systolic reconstruction intervals provided better image quality scores than diastolic reconstruction intervals (overall mean quality scores obtained with the systolic and diastolic reconstructions 3.03±1.06 and 2.73±1.11, respectively; P<0.001). Different systolic reconstruction intervals (35%, 40%, 45% of RR interval) did not yield to significant differences in image quality scores for the coronary segments (P=0.74). Reconstructions obtained at the systolic phase of the cardiac cycle allowed excellent diagnostic image quality coronary angiograms in heart transplant recipients undergoing DSCT coronary angiography. (orig.)

  4. Quantitative reconstruction from a single diffraction-enhanced image

    International Nuclear Information System (INIS)

    Paganin, D.M.; Lewis, R.A.; Kitchen, M.

    2003-01-01

    Full text: We develop an algorithm for using a single diffraction-enhanced image (DEI) to obtain a quantitative reconstruction of the projected thickness of a single-material sample which is embedded within a substrate of approximately constant thickness. This algorithm is used to quantitatively map inclusions in a breast phantom, from a single synchrotron DEI image. In particular, the reconstructed images quantitatively represent the projected thickness in the bulk of the sample, in contrast to DEI images which greatly emphasise sharp edges (high spatial frequencies). In the context of an ultimate aim of improved methods for breast cancer detection, the reconstructions are potentially of greater diagnostic value compared to the DEI data. Lastly, we point out that the methods of analysis presented here are also applicable to the quantitative analysis of differential interference contrast (DIC) images

  5. Image reconstruction under non-Gaussian noise

    DEFF Research Database (Denmark)

    Sciacchitano, Federica

    During acquisition and transmission, images are often blurred and corrupted by noise. One of the fundamental tasks of image processing is to reconstruct the clean image from a degraded version. The process of recovering the original image from the data is an example of inverse problem. Due...... to the ill-posedness of the problem, the simple inversion of the degradation model does not give any good reconstructions. Therefore, to deal with the ill-posedness it is necessary to use some prior information on the solution or the model and the Bayesian approach. Additive Gaussian noise has been......D thesis intends to solve some of the many open questions for image restoration under non-Gaussian noise. The two main kinds of noise studied in this PhD project are the impulse noise and the Cauchy noise. Impulse noise is due to for instance the malfunctioning pixel elements in the camera sensors, errors...

  6. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    Science.gov (United States)

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was

  7. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-07-15

    Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the

  8. Fast parallel algorithm for CT image reconstruction.

    Science.gov (United States)

    Flores, Liubov A; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2012-01-01

    In X-ray computed tomography (CT) the X rays are used to obtain the projection data needed to generate an image of the inside of an object. The image can be generated with different techniques. Iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions and from a small number of projections. Their use may be important in portable scanners for their functionality in emergency situations. However, in practice, these methods are not widely used due to the high computational cost of their implementation. In this work we analyze iterative parallel image reconstruction with the Portable Extensive Toolkit for Scientific computation (PETSc).

  9. GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng; Fessler, Jeffrey A. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Electrical Engineering and Computer Science

    2011-07-01

    Iterative 3D image reconstruction methods can improve image quality over conventional filtered back projection (FBP) in X-ray computed tomography. However, high computational costs deter the routine use of iterative reconstruction clinically. The separable footprint method for forward and back-projection simplifies the integrals over a detector cell in a way that is quite accurate and also has a relatively efficient CPU implementation. In this project, we implemented the separable footprints method for both forward and backward projection on a graphics processing unit (GPU) with NVDIA's parallel computing architecture (CUDA). This paper describes our GPU kernels for the separable footprint method and simulation results. (orig.)

  10. Fast Dictionary-Based Reconstruction for Diffusion Spectrum Imaging

    Science.gov (United States)

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F.; Yendiki, Anastasia; Wald, Lawrence L.; Adalsteinsson, Elfar

    2015-01-01

    Diffusion Spectrum Imaging (DSI) reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation (TV) transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using Matlab running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using Principal Component Analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm. PMID:23846466

  11. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J [Lehigh Valley Health Network, Allentown, PA (United States)

    2014-06-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation

  12. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J

    2014-01-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation

  13. 3D prostate histology image reconstruction: Quantifying the impact of tissue deformation and histology section location

    Directory of Open Access Journals (Sweden)

    Eli Gibson

    2013-01-01

    Full Text Available Background: Guidelines for localizing prostate cancer on imaging are ideally informed by registered post-prostatectomy histology. 3D histology reconstruction methods can support this by reintroducing 3D spatial information lost during histology processing. The need to register small, high-grade foci drives a need for high accuracy. Accurate 3D reconstruction method design is impacted by the answers to the following central questions of this work. (1 How does prostate tissue deform during histology processing? (2 What spatial misalignment of the tissue sections is induced by microtome cutting? (3 How does the choice of reconstruction model affect histology reconstruction accuracy? Materials and Methods: Histology, paraffin block face and magnetic resonance images were acquired for 18 whole mid-gland tissue slices from six prostates. 7-15 homologous landmarks were identified on each image. Tissue deformation due to histology processing was characterized using the target registration error (TRE after landmark-based registration under four deformation models (rigid, similarity, affine and thin-plate-spline [TPS]. The misalignment of histology sections from the front faces of tissue slices was quantified using manually identified landmarks. The impact of reconstruction models on the TRE after landmark-based reconstruction was measured under eight reconstruction models comprising one of four deformation models with and without constraining histology images to the tissue slice front faces. Results: Isotropic scaling improved the mean TRE by 0.8-1.0 mm (all results reported as 95% confidence intervals, while skew or TPS deformation improved the mean TRE by <0.1 mm. The mean misalignment was 1.1-1.9΀ (angle and 0.9-1.3 mm (depth. Using isotropic scaling, the front face constraint raised the mean TRE by 0.6-0.8 mm. Conclusions: For sub-millimeter accuracy, 3D reconstruction models should not constrain histology images to the tissue slice front faces and

  14. Reconstruction-of-difference (RoD) imaging for cone-beam CT neuro-angiography

    Science.gov (United States)

    Wu, P.; Stayman, J. W.; Mow, M.; Zbijewski, W.; Sisniega, A.; Aygun, N.; Stevens, R.; Foos, D.; Wang, X.; Siewerdsen, J. H.

    2018-06-01

    compared to FBP and PL in all simulation and physical experiments, suggesting the possibility of CBCT-A on low-cost, mobile imaging platforms suitable to the point-of-care. The algorithm demonstrated accurate reconstruction with a high degree of robustness against data sparsity and inconsistency.

  15. Three dimensional image reconstruction in the Fourier domain

    International Nuclear Information System (INIS)

    Stearns, C.W.; Chesler, D.A.; Brownell, G.L.

    1987-01-01

    Filtered backprojection reconstruction algorithms are based upon the relationship between the Fourier transform of the imaged object and the Fourier transforms of its projections. A new reconstruction algorithm has been developed which performs the image assembly operation in Fourier space, rather than in image space by backprojection. This represents a significant decrease in the number of operations required to assemble the image. The new Fourier domain algorithm has resolution comparable to the filtered backprojection algorithm, and, after correction by a pointwise multiplication, demonstrates proper recovery throughout image space. Although originally intended for three-dimensional imaging applications, the Fourier domain algorithm can also be developed for two-dimensional imaging applications such as planar positron imaging systems

  16. Radionuclide imaging with coded apertures and three-dimensional image reconstruction from focal-plane tomography

    International Nuclear Information System (INIS)

    Chang, L.T.

    1976-05-01

    Two techniques for radionuclide imaging and reconstruction have been studied;; both are used for improvement of depth resolution. The first technique is called coded aperture imaging, which is a technique of tomographic imaging. The second technique is a special 3-D image reconstruction method which is introduced as an improvement to the so called focal-plane tomography

  17. Development of a new prior knowledge based image reconstruction algorithm for the cone-beam-CT in radiation therapy

    International Nuclear Information System (INIS)

    Vaegler, Sven

    2016-01-01

    follow up reconstructed images are not appropriate considered so far. These deviations may result from changes in anatomy including tumour shrinkage and loss of weight and may result in a degraded image quality of the reconstructed images. Deformable registration methods that adapt the prior images adequately can compensate this shortcoming of PICCS. Such registration techniques, however, suffer from limited accurateness and much higher computation time for the overall reconstruction process. Therefore, the aim of this thesis was to develop a new knowledge-based reconstruction algorithm that incorporates additionally local dependent reliability information about the prior images into reconstruction algorithm. The basic idea of the new algorithm is the assumption that the prior images are composed of areas with large and of areas with small deviations. Accordingly, the areas of the prior image were assigned as variable where substantial deformations due to motion or change in structure over the time series were expected. Hence, these regions were not providing valuable structural information for the anticipated result anymore. In contrast, ''a priori'' information was assigned to structurally stationary areas where no changes were expected. Based on this composition, a weighting matrix was generated that considers the strength of these variations during reconstruction. The new algorithm was tested in different feasibility studies to common dose reduction strategies. These dose reduction strategies includes the reduction of the number of projections, the acquisition of projections with strong noise and the reduction of the acquisition space. The main aim of this work was to demonstrate the gain of image quality when prior images with major variations are used compared to standard reconstruction techniques. The studies were performed with a computer phantom, and in particular with experimental data that have been acquired with the clinical CBCT. The new reconstruction

  18. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  19. Reconstruction of Cochlea Based on Micro-CT and Histological Images of the Human Inner Ear

    Directory of Open Access Journals (Sweden)

    Christos Bellos

    2014-01-01

    Full Text Available The study of the normal function and pathology of the inner ear has unique difficulties as it is inaccessible during life and, so, conventional techniques of pathologic studies such as biopsy and surgical excision are not feasible, without further impairing function. Mathematical modelling is therefore particularly attractive as a tool in researching the cochlea and its pathology. The first step towards efficient mathematical modelling is the reconstruction of an accurate three dimensional (3D model of the cochlea that will be presented in this paper. The high quality of the histological images is being exploited in order to extract several sections of the cochlea that are not visible on the micro-CT (mCT images (i.e., scala media, spiral ligament, and organ of Corti as well as other important sections (i.e., basilar membrane, Reissner membrane, scala vestibule, and scala tympani. The reconstructed model is being projected in the centerline of the coiled cochlea, extracted from mCT images, and represented in the 3D space. The reconstruction activities are part of the SIFEM project, which will result in the delivery of an infrastructure, semantically interlinking various tools and libraries (i.e., segmentation, reconstruction, and visualization tools with the clinical knowledge, which is represented by existing data, towards the delivery of a robust multiscale model of the inner ear.

  20. Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT

    International Nuclear Information System (INIS)

    Je, U.K.; Lee, M.S.; Cho, H.S.; Hong, D.K.; Park, Y.O.; Park, C.K.; Cho, H.M.; Choi, S.I.; Woo, T.H.

    2015-01-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient sampling data. In computed tomography (CT), for example, image reconstruction from sparse views and/or limited-angle (<360°) views would enable fast scanning with reduced imaging doses to the patient. In this study, we investigated and implemented a reconstruction algorithm based on the compressed-sensing (CS) theory, which exploits the sparseness of the gradient image with substantially high accuracy, for potential applications to low-dose, high-accurate dental cone-beam CT (CBCT). We performed systematic simulation works to investigate the image characteristics and also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images of superior accuracy from insufficient sampling data and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from insufficient data indicate that the CS-based algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality

  1. TREE STEM RECONSTRUCTION USING VERTICAL FISHEYE IMAGES: A PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    A. Berveglieri

    2016-06-01

    Full Text Available A preliminary study was conducted to assess a tree stem reconstruction technique with panoramic images taken with fisheye lenses. The concept is similar to the Structure from Motion (SfM technique, but the acquisition and data preparation rely on fisheye cameras to generate a vertical image sequence with height variations of the camera station. Each vertical image is rectified to four vertical planes, producing horizontal lateral views. The stems in the lateral view are rectified to the same scale in the image sequence to facilitate image matching. Using bundle adjustment, the stems are reconstructed, enabling later measurement and extraction of several attributes. The 3D reconstruction was performed with the proposed technique and compared with SfM. The preliminary results showed that the stems were correctly reconstructed by using the lateral virtual images generated from the vertical fisheye images and with the advantage of using fewer images and taken from one single station.

  2. Qualitative and quantitative analysis of reconstructed images using projections with noises

    International Nuclear Information System (INIS)

    Lopes, R.T.; Assis, J.T. de

    1988-01-01

    The reconstruction of a two-dimencional image from one-dimensional projections in an analytic algorithm ''convolution method'' is simulated on a microcomputer. In this work it was analysed the effects caused in the reconstructed image in function of the number of projections and noise level added to the projection data. Qualitative and quantitative (distortion and image noise) comparison were done with the original image and the reconstructed images. (author) [pt

  3. Improving parallel imaging by jointly reconstructing multi-contrast data.

    Science.gov (United States)

    Bilgic, Berkin; Kim, Tae Hyung; Liao, Congyu; Manhard, Mary Kate; Wald, Lawrence L; Haldar, Justin P; Setsompop, Kawin

    2018-08-01

    To develop parallel imaging techniques that simultaneously exploit coil sensitivity encoding, image phase prior information, similarities across multiple images, and complementary k-space sampling for highly accelerated data acquisition. We introduce joint virtual coil (JVC)-generalized autocalibrating partially parallel acquisitions (GRAPPA) to jointly reconstruct data acquired with different contrast preparations, and show its application in 2D, 3D, and simultaneous multi-slice (SMS) acquisitions. We extend the joint parallel imaging concept to exploit limited support and smooth phase constraints through Joint (J-) LORAKS formulation. J-LORAKS allows joint parallel imaging from limited autocalibration signal region, as well as permitting partial Fourier sampling and calibrationless reconstruction. We demonstrate highly accelerated 2D balanced steady-state free precession with phase cycling, SMS multi-echo spin echo, 3D multi-echo magnetization-prepared rapid gradient echo, and multi-echo gradient recalled echo acquisitions in vivo. Compared to conventional GRAPPA, proposed joint acquisition/reconstruction techniques provide more than 2-fold reduction in reconstruction error. JVC-GRAPPA takes advantage of additional spatial encoding from phase information and image similarity, and employs different sampling patterns across acquisitions. J-LORAKS achieves a more parsimonious low-rank representation of local k-space by considering multiple images as additional coils. Both approaches provide dramatic improvement in artifact and noise mitigation over conventional single-contrast parallel imaging reconstruction. Magn Reson Med 80:619-632, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    Science.gov (United States)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  5. Fast in vivo volume dose reconstruction via reference dose perturbation

    International Nuclear Information System (INIS)

    Lu, Weiguo; Chen, Mingli; Mo, Xiaohu; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel

    2014-01-01

    Purpose: Accurate on-line reconstruction of in-vivo volume dose that accounts for both machine and patient discrepancy is not clinically available. We present a simple reference-dose-perturbation algorithm that reconstructs in-vivo volume dose fast and accurately. Methods: We modelled the volume dose as a function of the fluence map and density image. Machine (output variation, jaw/leaf position errors, etc.) and patient (setup error, weight loss, etc.) discrepancies between the plan and delivery were modelled as perturbation of the fluence map and density image, respectively. Delivered dose is modelled as perturbation of the reference dose due to change of the fluence map and density image. We used both simulated and clinical data to validate the algorithm. The planned dose was used as the reference. The reconstruction was perturbed from the reference and accounted for output-variations and the registered daily image. The reconstruction was compared with the ground truth via isodose lines and the Gamma Index. Results: For various plans and geometries, the volume doses were reconstructed in few seconds. The reconstruction generally matched well with the ground truth. For the 3%/3mm criteria, the Gamma pass rates were 98% for simulations and 95% for clinical data. The differences mainly appeared on the surface of the phantom/patient. Conclusions: A novel reference-dose-perturbation dose reconstruction model is presented. The model accounts for machine and patient discrepancy from planning. The algorithm is simple, fast, yet accurate, which makes online in-vivo 3D dose reconstruction clinically feasible.

  6. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    Science.gov (United States)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  7. Level-set-based reconstruction algorithm for EIT lung images: first clinical results.

    Science.gov (United States)

    Rahmati, Peyman; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz; Adler, Andy

    2012-05-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure-volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM.

  8. Level-set-based reconstruction algorithm for EIT lung images: first clinical results

    International Nuclear Information System (INIS)

    Rahmati, Peyman; Adler, Andy; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz

    2012-01-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure–volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM. (paper)

  9. On an image reconstruction method for ECT

    Science.gov (United States)

    Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro

    2007-04-01

    An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.

  10. Super resolution reconstruction of infrared images based on classified dictionary learning

    Science.gov (United States)

    Liu, Fei; Han, Pingli; Wang, Yi; Li, Xuan; Bai, Lu; Shao, Xiaopeng

    2018-05-01

    Infrared images always suffer from low-resolution problems resulting from limitations of imaging devices. An economical approach to combat this problem involves reconstructing high-resolution images by reasonable methods without updating devices. Inspired by compressed sensing theory, this study presents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore, more satisfactory results is achieved without the increase in computational complexity and time cost. Experiments and results demonstrated that it is a viable method for infrared images reconstruction since it improves image resolution and recovers detailed information of targets.

  11. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy

    International Nuclear Information System (INIS)

    Frandes, M.

    2010-09-01

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  12. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    International Nuclear Information System (INIS)

    Chen, G; Pan, X; Stayman, J; Samei, E

    2014-01-01

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within the reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical

  13. A new reconstruction strategy for image improvement in pinhole SPECT

    International Nuclear Information System (INIS)

    Zeniya, Tsutomu; Watabe, Hiroshi; Kim, Kyeong Min; Teramoto, Noboru; Hayashi, Takuya; Iida, Hidehiro; Aoi, Toshiyuki; Sohlberg, Antti; Kudo, Hiroyuki

    2004-01-01

    Pinhole single-photon emission computed tomography (SPECT) is able to provide information on the biodistribution of several radioligands in small laboratory animals, but has limitations associated with non-uniform spatial resolution or axial blurring. We have hypothesised that this blurring is due to incompleteness of the projection data acquired by a single circular pinhole orbit, and have evaluated a new strategy for accurate image reconstruction with better spatial resolution uniformity. A pinhole SPECT system using two circular orbits and a dedicated three-dimensional ordered subsets expectation maximisation (3D-OSEM) reconstruction method were developed. In this system, not the camera but the object rotates, and the two orbits are at 90 and 45 relative to the object's axis. This system satisfies Tuy's condition, and is thus able to provide complete data for 3D pinhole SPECT reconstruction within the whole field of view (FOV). To evaluate this system, a series of experiments was carried out using a multiple-disk phantom filled with 99m Tc solution. The feasibility of the proposed method for small animal imaging was tested with a mouse bone study using 99m Tc-hydroxymethylene diphosphonate. Feldkamp's filtered back-projection (FBP) method and the 3D-OSEM method were applied to these data sets, and the visual and statistical properties were examined. Axial blurring, which was still visible at the edge of the FOV even after applying the conventional 3D-OSEM instead of FBP for single-orbit data, was not visible after application of 3D-OSEM using two-orbit data. 3D-OSEM using two-orbit data dramatically reduced the resolution non-uniformity and statistical noise, and also demonstrated considerably better image quality in the mouse scan. This system may be of use in quantitative assessment of bio-physiological functions in small animals. (orig.)

  14. Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

    International Nuclear Information System (INIS)

    Lee, Kisung; Kinahan, Paul E; Fessler, Jeffrey A; Miyaoka, Robert S; Janes, Marie; Lewellen, Tom K

    2004-01-01

    We present a pragmatic approach to image reconstruction for data from the micro crystal elements system (MiCES) fully 3D mouse imaging positron emission tomography (PET) scanner under construction at the University of Washington. Our approach is modelled on fully 3D image reconstruction used in clinical PET scanners, which is based on Fourier rebinning (FORE) followed by 2D iterative image reconstruction using ordered-subsets expectation-maximization (OSEM). The use of iterative methods allows modelling of physical effects (e.g., statistical noise, detector blurring, attenuation, etc), while FORE accelerates the reconstruction process by reducing the fully 3D data to a stacked set of independent 2D sinograms. Previous investigations have indicated that non-stationary detector point-spread response effects, which are typically ignored for clinical imaging, significantly impact image quality for the MiCES scanner geometry. To model the effect of non-stationary detector blurring (DB) in the FORE+OSEM(DB) algorithm, we have added a factorized system matrix to the ASPIRE reconstruction library. Initial results indicate that the proposed approach produces an improvement in resolution without an undue increase in noise and without a significant increase in the computational burden. The impact on task performance, however, remains to be evaluated

  15. Prior image constrained image reconstruction in emerging computed tomography applications

    Science.gov (United States)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation

  16. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy; Detection des rayons gamma et reconstruction d'images pour la camera Compton: Application a l'hadrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Frandes, M.

    2010-09-15

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  17. 3D Reconstruction of NMR Images by LabVIEW

    Directory of Open Access Journals (Sweden)

    Peter IZAK

    2007-01-01

    Full Text Available This paper introduces the experiment of 3D reconstruction NMR images via virtual instrumentation - LabVIEW. The main idea is based on marching cubes algorithm and image processing implemented by module of Vision assistant. The two dimensional images shot by the magnetic resonance device provide information about the surface properties of human body. There is implemented algorithm which can be used for 3D reconstruction of magnetic resonance images in biomedical application.

  18. Distributed 3-D iterative reconstruction for quantitative SPECT

    International Nuclear Information System (INIS)

    Ju, Z.W.; Frey, E.C.; Tsui, B.M.W.

    1995-01-01

    The authors describe a distributed three dimensional (3-D) iterative reconstruction library for quantitative single-photon emission computed tomography (SPECT). This library includes 3-D projector-backprojector pairs (PBPs) and distributed 3-D iterative reconstruction algorithms. The 3-D PBPs accurately and efficiently model various combinations of the image degrading factors including attenuation, detector response and scatter response. These PBPs were validated by comparing projection data computed using the projectors with that from direct Monte Carlo (MC) simulations. The distributed 3-D iterative algorithms spread the projection-backprojection operations for all the projection angles over a heterogeneous network of single or multi-processor computers to reduce the reconstruction time. Based on a master/slave paradigm, these distributed algorithms provide dynamic load balancing and fault tolerance. The distributed algorithms were verified by comparing images reconstructed using both the distributed and non-distributed algorithms. Computation times for distributed 3-D reconstructions running on up to 4 identical processors were reduced by a factor approximately 80--90% times the number of the processors participating, compared to those for non-distributed 3-D reconstructions running on a single processor. When combined with faster affordable computers, this library provides an efficient means for implementing accurate reconstruction and compensation methods to improve quality and quantitative accuracy in SPECT images

  19. Longitudinal and transverse digital image reconstruction with a tomographic scanner

    International Nuclear Information System (INIS)

    Pickens, D.R.; Price, R.R.; Erickson, J.J.; Patton, J.A.; Partain, C.L.; Rollo, F.D.

    1981-01-01

    A Siemens Gammasonics PHO/CON-192 Multiplane Imager is interfaced to a digital computer for the purpose of performing tomographic reconstructions from the data collected during a single scan. Data from the two moving gamma cameras as well as camera position information are sent to the computer by an interface designed in the authors' laboratory. Backprojection reconstruction is implemented by the computer. Longitudinal images in whole-body format as well as smaller formats are reconstructed for up to six planes simultaneously from the list mode data. Transverse reconstructions are demonstrated for 201 T1 myocardial scans. Post-reconstruction deconvolution processing to remove the blur artifact (characteristic of focal plane tomography) is applied to a multiplane phantom. Digital data acquisition of data and reconstruction of images are practical, and can extend the usefulness of the machine when compared with the film output (author)

  20. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage

    Science.gov (United States)

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  1. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de physique, de génie physique et d’optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Binnekamp, Dirk [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA (Netherlands)

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  2. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    International Nuclear Information System (INIS)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-01-01

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora ® Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators

  3. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    International Nuclear Information System (INIS)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  4. Choice of reconstructed tissue properties affects interpretation of lung EIT images.

    Science.gov (United States)

    Grychtol, Bartłomiej; Adler, Andy

    2014-06-01

    Electrical impedance tomography (EIT) estimates an image of change in electrical properties within a body from stimulations and measurements at surface electrodes. There is significant interest in EIT as a tool to monitor and guide ventilation therapy in mechanically ventilated patients. In lung EIT, the EIT inverse problem is commonly linearized and only changes in electrical properties are reconstructed. Early algorithms reconstructed changes in resistivity, while most recent work using the finite element method reconstructs conductivity. Recently, we demonstrated that EIT images of ventilation can be misleading if the electrical contrasts within the thorax are not taken into account during the image reconstruction process. In this paper, we explore the effect of the choice of the reconstructed electrical properties (resistivity or conductivity) on the resulting EIT images. We show in simulation and experimental data that EIT images reconstructed with the same algorithm but with different parametrizations lead to large and clinically significant differences in the resulting images, which persist even after attempts to eliminate the impact of the parameter choice by recovering volume changes from the EIT images. Since there is no consensus among the most popular reconstruction algorithms and devices regarding the parametrization, this finding has implications for potential clinical use of EIT. We propose a program of research to develop reconstruction techniques that account for both the relationship between air volume and electrical properties of the lung and artefacts introduced by the linearization.

  5. Choice of reconstructed tissue properties affects interpretation of lung EIT images

    International Nuclear Information System (INIS)

    Grychtol, Bartłomiej; Adler, Andy

    2014-01-01

    Electrical impedance tomography (EIT) estimates an image of change in electrical properties within a body from stimulations and measurements at surface electrodes. There is significant interest in EIT as a tool to monitor and guide ventilation therapy in mechanically ventilated patients. In lung EIT, the EIT inverse problem is commonly linearized and only changes in electrical properties are reconstructed. Early algorithms reconstructed changes in resistivity, while most recent work using the finite element method reconstructs conductivity. Recently, we demonstrated that EIT images of ventilation can be misleading if the electrical contrasts within the thorax are not taken into account during the image reconstruction process. In this paper, we explore the effect of the choice of the reconstructed electrical properties (resistivity or conductivity) on the resulting EIT images. We show in simulation and experimental data that EIT images reconstructed with the same algorithm but with different parametrizations lead to large and clinically significant differences in the resulting images, which persist even after attempts to eliminate the impact of the parameter choice by recovering volume changes from the EIT images. Since there is no consensus among the most popular reconstruction algorithms and devices regarding the parametrization, this finding has implications for potential clinical use of EIT. We propose a program of research to develop reconstruction techniques that account for both the relationship between air volume and electrical properties of the lung and artefacts introduced by the linearization. (paper)

  6. Evaluation of imaging protocol for ECT based on CS image reconstruction algorithm

    International Nuclear Information System (INIS)

    Zhou Xiaolin; Yun Mingkai; Cao Xuexiang; Liu Shuangquan; Wang Lu; Huang Xianchao; Wei Long

    2014-01-01

    Single-photon emission computerized tomography and positron emission tomography are essential medical imaging tools, for which the sampling angle number and scan time should be carefully chosen to give a good compromise between image quality and radiopharmaceutical dose. In this study, the image quality of different acquisition protocols was evaluated via varied angle number and count number per angle with Monte Carlo simulation data. It was shown that, when similar imaging counts were used, the factor of acquisition counts was more important than that of the sampling number in emission computerized tomography. To further reduce the activity requirement and the scan duration, an iterative image reconstruction algorithm for limited-view and low-dose tomography based on compressed sensing theory has been developed. The total variation regulation was added to the reconstruction process to improve the signal to noise Ratio and reduce artifacts caused by the limited angle sampling. Maximization of the maximum likelihood of the estimated image and the measured data and minimization of the total variation of the image are alternatively implemented. By using this advanced algorithm, the reconstruction process is able to achieve image quality matching or exceed that of normal scans with only half of the injection radiopharmaceutical dose. (authors)

  7. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell; Knutsen, Bjoern Helge; Roeislien, Jo; Olsen, Dag Rune

    2007-01-01

    The purpose of this study is to investigate whether the method of applicator reconstruction and/or the applicator orientation influence the dose calculation to points around the applicator for brachytherapy of cervical cancer with CT-based treatment planning. A phantom, containing a fixed ring applicator set and six lead pellets representing dose points, was used. The phantom was CT scanned with the ring applicator at four different angles related to the image plane. In each scan the applicator was reconstructed by three methods: (1) direct reconstruction in each image (DR) (2) reconstruction in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method was significantly lower (p < 0.05) than for the DR and MPR methods for all but two points. All applicator orientations had similar dose calculation reproducibility. Using library plans for applicator reconstruction gives the most reproducible dose calculation. However, with restrictive guidelines for applicator reconstruction the uncertainties for all methods are low compared to other factors influencing the accuracy of brachytherapy

  8. An image correlation procedure for digitally reconstructed radiographs and electronic portal images

    International Nuclear Information System (INIS)

    Dong, Lei; Boyer, Arthur L.

    1995-01-01

    Purpose: To study a procedure that uses megavoltage digitally reconstructed radiographs (DRRs) calculated from patient's three-dimensional (3D) computed tomography (CT) data as a reference image for correlation with on-line electronic portal images (EPIs) to detect patient setup errors. Methods and Materials: Megavoltage DRRs were generated by ray tracing through a modified volumetric CT data set in which CT numbers were converted into linear attenuation coefficients for the therapeutic beam energy. The DRR transmission image was transformed to the grayscale window of the EPI by a histogram-matching technique. An alternative approach was to calibrate the transmission DRR using a measured response curve of the electronic portal imaging device (EPID). This forces the calculated transmission fluence values to be distributed in the same range as that of the EPID image. A cross-correlation technique was used to determine the degree of alignment of the patient anatomy found in the EPID image relative to the reference DRR. Results: Phantom studies demonstrated that the correlation procedure had a standard deviation of 0.5 mm and 0.5 deg. in aligning translational shifts and in-plane rotations. Systematic errors were found between a reference DRR and a reference EPID image. The automated grayscale image-correlation process was completed within 3 s on a workstation computer or 12 s on a PC. Conclusion: The alignment procedure allows the direct comparison of a patient's treatment portal designed with a 3D planning computer with a patient's on-line portal image acquired at the treatment unit. The image registration process is automated to the extent that it requires minimal user intervention, and it is fast and accurate enough for on-line clinical applications

  9. Novel Low Cost 3D Surface Model Reconstruction System for Plant Phenotyping

    Directory of Open Access Journals (Sweden)

    Suxing Liu

    2017-09-01

    Full Text Available Accurate high-resolution three-dimensional (3D models are essential for a non-invasive analysis of phenotypic characteristics of plants. Previous limitations in 3D computer vision algorithms have led to a reliance on volumetric methods or expensive hardware to record plant structure. We present an image-based 3D plant reconstruction system that can be achieved by using a single camera and a rotation stand. Our method is based on the structure from motion method, with a SIFT image feature descriptor. In order to improve the quality of the 3D models, we segmented the plant objects based on the PlantCV platform. We also deducted the optimal number of images needed for reconstructing a high-quality model. Experiments showed that an accurate 3D model of the plant was successfully could be reconstructed by our approach. This 3D surface model reconstruction system provides a simple and accurate computational platform for non-destructive, plant phenotyping.

  10. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction.

    Science.gov (United States)

    Fessler, J A; Booth, S D

    1999-01-01

    Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shift-invariant, i.e., for those with approximately block-Toeplitz or block-circulant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantum-limited optical imaging, the Hessian of the weighted least-squares objective function is quite shift-variant, and circulant preconditioners perform poorly. Additional shift-variance is caused by edge-preserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shift-variant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugate-gradient (CG) iteration. We also propose a new efficient method for the line-search step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.

  11. Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data

    International Nuclear Information System (INIS)

    Zhuang Tingliang; Leng Shuai; Nett, Brian E; Chen Guanghong

    2004-01-01

    In this paper, a new image reconstruction scheme is presented based on Tuy's cone-beam inversion scheme and its fan-beam counterpart. It is demonstrated that Tuy's inversion scheme may be used to derive a new framework for fan-beam and cone-beam image reconstruction. In this new framework, images are reconstructed via filtering the backprojection image of differentiated projection data. The new framework is mathematically exact and is applicable to a general source trajectory provided the Tuy data sufficiency condition is satisfied. By choosing a piece-wise constant function for one of the components in the factorized weighting function, the filtering kernel is one dimensional, viz. the filtering process is along a straight line. Thus, the derived image reconstruction algorithm is mathematically exact and efficient. In the cone-beam case, the derived reconstruction algorithm is applicable to a large class of source trajectories where the pi-lines or the generalized pi-lines exist. In addition, the new reconstruction scheme survives the super-short scan mode in both the fan-beam and cone-beam cases provided the data are not transversely truncated. Numerical simulations were conducted to validate the new reconstruction scheme for the fan-beam case

  12. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  13. Software for 3D diagnostic image reconstruction and analysis

    International Nuclear Information System (INIS)

    Taton, G.; Rokita, E.; Sierzega, M.; Klek, S.; Kulig, J.; Urbanik, A.

    2005-01-01

    Recent advances in computer technologies have opened new frontiers in medical diagnostics. Interesting possibilities are the use of three-dimensional (3D) imaging and the combination of images from different modalities. Software prepared in our laboratories devoted to 3D image reconstruction and analysis from computed tomography and ultrasonography is presented. In developing our software it was assumed that it should be applicable in standard medical practice, i.e. it should work effectively with a PC. An additional feature is the possibility of combining 3D images from different modalities. The reconstruction and data processing can be conducted using a standard PC, so low investment costs result in the introduction of advanced and useful diagnostic possibilities. The program was tested on a PC using DICOM data from computed tomography and TIFF files obtained from a 3D ultrasound system. The results of the anthropomorphic phantom and patient data were taken into consideration. A new approach was used to achieve spatial correlation of two independently obtained 3D images. The method relies on the use of four pairs of markers within the regions under consideration. The user selects the markers manually and the computer calculates the transformations necessary for coupling the images. The main software feature is the possibility of 3D image reconstruction from a series of two-dimensional (2D) images. The reconstructed 3D image can be: (1) viewed with the most popular methods of 3D image viewing, (2) filtered and processed to improve image quality, (3) analyzed quantitatively (geometrical measurements), and (4) coupled with another, independently acquired 3D image. The reconstructed and processed 3D image can be stored at every stage of image processing. The overall software performance was good considering the relatively low costs of the hardware used and the huge data sets processed. The program can be freely used and tested (source code and program available at

  14. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads

    2003-01-01

    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  15. PROMISE: parallel-imaging and compressed-sensing reconstruction of multicontrast imaging using SharablE information.

    Science.gov (United States)

    Gong, Enhao; Huang, Feng; Ying, Kui; Wu, Wenchuan; Wang, Shi; Yuan, Chun

    2015-02-01

    A typical clinical MR examination includes multiple scans to acquire images with different contrasts for complementary diagnostic information. The multicontrast scheme requires long scanning time. The combination of partially parallel imaging and compressed sensing (CS-PPI) has been used to reconstruct accelerated scans. However, there are several unsolved problems in existing methods. The target of this work is to improve existing CS-PPI methods for multicontrast imaging, especially for two-dimensional imaging. If the same field of view is scanned in multicontrast imaging, there is significant amount of sharable information. It is proposed in this study to use manifold sharable information among multicontrast images to enhance CS-PPI in a sequential way. Coil sensitivity information and structure based adaptive regularization, which were extracted from previously reconstructed images, were applied to enhance the following reconstructions. The proposed method is called Parallel-imaging and compressed-sensing Reconstruction Of Multicontrast Imaging using SharablE information (PROMISE). Using L1 -SPIRiT as a CS-PPI example, results on multicontrast brain and carotid scans demonstrated that lower error level and better detail preservation can be achieved by exploiting manifold sharable information. Besides, the privilege of PROMISE still exists while there is interscan motion. Using the sharable information among multicontrast images can enhance CS-PPI with tolerance to motions. © 2014 Wiley Periodicals, Inc.

  16. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.

    Science.gov (United States)

    Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L

    2018-02-01

    This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Optical image reconstruction using DC data: simulations and experiments

    International Nuclear Information System (INIS)

    Huabei Jiang; Paulsen, K.D.; Oesterberg, U.L.

    1996-01-01

    In this paper, we explore optical image formation using a diffusion approximation of light propagation in tissue which is modelled with a finite-element method for optically heterogeneous media. We demonstrate successful image reconstruction based on absolute experimental DC data obtained with a continuous wave 633 nm He-Ne laser system and a 751 nm diode laser system in laboratory phantoms having two optically distinct regions. The experimental systems used exploit a tomographic type of data collection scheme that provides information from which a spatially variable optical property map is deduced. Reconstruction of scattering coefficient only and simultaneous reconstruction of both scattering and absorption profiles in tissue-like phantoms are obtained from measured and simulated data. Images with different contrast levels between the heterogeneity and the background are also reported and the results show that although it is possible to obtain qualitative visual information on the location and size of a heterogeneity, it may not be possible to quantitatively resolve contrast levels or optical properties using reconstructions from DC data only. Sensitivity of image reconstruction to noise in the measurement data is investigated through simulations. The application of boundary constraints has also been addressed. (author)

  18. Accelerated Compressed Sensing Based CT Image Reconstruction.

    Science.gov (United States)

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  19. Accelerated Compressed Sensing Based CT Image Reconstruction

    Directory of Open Access Journals (Sweden)

    SayedMasoud Hashemi

    2015-01-01

    Full Text Available In X-ray computed tomography (CT an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  20. Electro-optical system for the high speed reconstruction of computed tomography images

    International Nuclear Information System (INIS)

    Tresp, V.

    1989-01-01

    An electro-optical system for the high-speed reconstruction of computed tomography (CT) images has been built and studied. The system is capable of reconstructing high-contrast and high-resolution images at video rate (30 images per second), which is more than two orders of magnitude faster than the reconstruction rate achieved by special purpose digital computers used in commercial CT systems. The filtered back-projection algorithm which was implemented in the reconstruction system requires the filtering of all projections with a prescribed filter function. A space-integrating acousto-optical convolver, a surface acoustic wave filter and a digital finite-impulse response filter were used for this purpose and their performances were compared. The second part of the reconstruction, the back projection of the filtered projections, is computationally very expensive. An optical back projector has been built which maps the filtered projections onto the two-dimensional image space using an anamorphic lens system and a prism image rotator. The reconstructed image is viewed by a video camera, routed through a real-time image-enhancement system, and displayed on a TV monitor. The system reconstructs parallel-beam projection data, and in a modified version, is also capable of reconstructing fan-beam projection data. This extension is important since the latter are the kind of projection data actually acquired in high-speed X-ray CT scanners. The reconstruction system was tested by reconstructing precomputed projection data of phantom images. These were stored in a special purpose projection memory and transmitted to the reconstruction system as an electronic signal. In this way, a projection measurement system that acquires projections sequentially was simulated

  1. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs

    International Nuclear Information System (INIS)

    Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Budiharto, Tom; Haustermans, Karin; Heuvel, Frank van den

    2010-01-01

    Purpose: A robust and accurate method that allows the automatic detection of fiducial markers in MV and kV projection image pairs is proposed. The method allows to automatically correct for inter or intrafraction motion. Methods: Intratreatment MV projection images are acquired during each of five treatment beams of prostate cancer patients with four implanted fiducial markers. The projection images are first preprocessed using a series of marker enhancing filters. 2D candidate marker locations are generated for each of the filtered projection images and 3D candidate marker locations are reconstructed by pairing candidates in subsequent projection images. The correct marker positions are retrieved in 3D by the minimization of a cost function that combines 2D image intensity and 3D geometric or shape information for the entire marker configuration simultaneously. This optimization problem is solved using dynamic programming such that the globally optimal configuration for all markers is always found. Translational interfraction and intrafraction prostate motion and the required patient repositioning is assessed from the position of the centroid of the detected markers in different MV image pairs. The method was validated on a phantom using CT as ground-truth and on clinical data sets of 16 patients using manual marker annotations as ground-truth. Results: The entire setup was confirmed to be accurate to around 1 mm by the phantom measurements. The reproducibility of the manual marker selection was less than 3.5 pixels in the MV images. In patient images, markers were correctly identified in at least 99% of the cases for anterior projection images and 96% of the cases for oblique projection images. The average marker detection accuracy was 1.4±1.8 pixels in the projection images. The centroid of all four reconstructed marker positions in 3D was positioned within 2 mm of the ground-truth position in 99.73% of all cases. Detecting four markers in a pair of MV images

  2. Does thorax EIT image analysis depend on the image reconstruction method?

    Science.gov (United States)

    Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut

    2013-04-01

    Different methods were proposed to analyze the resulting images of electrical impedance tomography (EIT) measurements during ventilation. The aim of our study was to examine if the analysis methods based on back-projection deliver the same results when applied on images based on other reconstruction algorithms. Seven mechanically ventilated patients with ARDS were examined by EIT. The thorax contours were determined from the routine CT images. EIT raw data was reconstructed offline with (1) filtered back-projection with circular forward model (BPC); (2) GREIT reconstruction method with circular forward model (GREITC) and (3) GREIT with individual thorax geometry (GREITT). Three parameters were calculated on the resulting images: linearity, global ventilation distribution and regional ventilation distribution. The results of linearity test are 5.03±2.45, 4.66±2.25 and 5.32±2.30 for BPC, GREITC and GREITT, respectively (median ±interquartile range). The differences among the three methods are not significant (p = 0.93, Kruskal-Wallis test). The proportions of ventilation in the right lung are 0.58±0.17, 0.59±0.20 and 0.59±0.25 for BPC, GREITC and GREITT, respectively (p = 0.98). The differences of the GI index based on different reconstruction methods (0.53±0.16, 0.51±0.25 and 0.54±0.16 for BPC, GREITC and GREITT, respectively) are also not significant (p = 0.93). We conclude that the parameters developed for images generated with GREITT are comparable with filtered back-projection and GREITC.

  3. Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging

    International Nuclear Information System (INIS)

    Dang, H; Stayman, J W; Sisniega, A; Xu, J; Zbijewski, W; Siewerdsen, J H; Wang, X; Foos, D H; Aygun, N; Koliatsos, V E

    2015-01-01

    Non-contrast CT reliably detects fresh blood in the brain and is the current front-line imaging modality for intracranial hemorrhage such as that occurring in acute traumatic brain injury (contrast ∼40–80 HU, size  >  1 mm). We are developing flat-panel detector (FPD) cone-beam CT (CBCT) to facilitate such diagnosis in a low-cost, mobile platform suitable for point-of-care deployment. Such a system may offer benefits in the ICU, urgent care/concussion clinic, ambulance, and sports and military theatres. However, current FPD-CBCT systems face significant challenges that confound low-contrast, soft-tissue imaging. Artifact correction can overcome major sources of bias in FPD-CBCT but imparts noise amplification in filtered backprojection (FBP). Model-based reconstruction improves soft-tissue image quality compared to FBP by leveraging a high-fidelity forward model and image regularization. In this work, we develop a novel penalized weighted least-squares (PWLS) image reconstruction method with a noise model that includes accurate modeling of the noise characteristics associated with the two dominant artifact corrections (scatter and beam-hardening) in CBCT and utilizes modified weights to compensate for noise amplification imparted by each correction. Experiments included real data acquired on a FPD-CBCT test-bench and an anthropomorphic head phantom emulating intra-parenchymal hemorrhage. The proposed PWLS method demonstrated superior noise-resolution tradeoffs in comparison to FBP and PWLS with conventional weights (viz. at matched 0.50 mm spatial resolution, CNR = 11.9 compared to CNR = 5.6 and CNR = 9.9, respectively) and substantially reduced image noise especially in challenging regions such as skull base. The results support the hypothesis that with high-fidelity artifact correction and statistical reconstruction using an accurate post-artifact-correction noise model, FPD-CBCT can achieve image quality allowing reliable detection of

  4. Usefulness of three dimensional reconstructive images for thoracic trauma induced fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Hun; Kim, Dong Hun; Kim, Young Sook; Byun, Joo Nam [Chosun University Hospital, Gwangju (Korea, Republic of)

    2006-09-15

    We wanted to evaluate the usefulness of three-dimensional reconstructive images using multidetector computed tomography (MDCT) for thoracic traumatic patients visiting emergency room. 76 patients with fractures of the 105 patients who visited our emergency room with complaints of thoracic trauma were analyzed retrospectively. All the patients had thoracic MDCT performed and the three-dimensional reconstructive images were taken. The fractures were confirmed by axial CT, the clinical information, whole body bone scanning and the multiplanar reformation images. Plain x-ray images were analyzed by the fractured sites in a blind comparison of two radiologists' readings, and then that finding was compared with the axial CT scans and the three-dimensional reconstructive images. The fracture sites were rib (n 68), sternum (n = 14), clavicle (n = 6), scapula (n = 3), spine (n = 5) and combined fractures (n = 14). Plain x-ray and axial CT scans had a correspondency of 0.555 for the rib fractures. Axial CT scans and the three-dimensional reconstructive images had a correspondency of .952. For sternal fractures, those values were 0.692 and 0.928, respectively. The axial CT scans and three-dimensional reconstructive images showed sensitivities of 94% and 91% for rib and other fractures, respectively, and 93% and 100% for sternal fracture, respectively. Three-dimensional reconstructive image had an especially high sensitivity for the diagnosis of sternal fracture. While evaluating thoracic trauma at the emergency room, the three-dimensional reconstructive image was useful to easily diagnose the extent of fracture and it was very sensitive for detecting sternal fracture.

  5. Usefulness of three dimensional reconstructive images for thoracic trauma induced fractures

    International Nuclear Information System (INIS)

    Koh, Kyung Hun; Kim, Dong Hun; Kim, Young Sook; Byun, Joo Nam

    2006-01-01

    We wanted to evaluate the usefulness of three-dimensional reconstructive images using multidetector computed tomography (MDCT) for thoracic traumatic patients visiting emergency room. 76 patients with fractures of the 105 patients who visited our emergency room with complaints of thoracic trauma were analyzed retrospectively. All the patients had thoracic MDCT performed and the three-dimensional reconstructive images were taken. The fractures were confirmed by axial CT, the clinical information, whole body bone scanning and the multiplanar reformation images. Plain x-ray images were analyzed by the fractured sites in a blind comparison of two radiologists' readings, and then that finding was compared with the axial CT scans and the three-dimensional reconstructive images. The fracture sites were rib (n 68), sternum (n = 14), clavicle (n = 6), scapula (n = 3), spine (n = 5) and combined fractures (n = 14). Plain x-ray and axial CT scans had a correspondency of 0.555 for the rib fractures. Axial CT scans and the three-dimensional reconstructive images had a correspondency of .952. For sternal fractures, those values were 0.692 and 0.928, respectively. The axial CT scans and three-dimensional reconstructive images showed sensitivities of 94% and 91% for rib and other fractures, respectively, and 93% and 100% for sternal fracture, respectively. Three-dimensional reconstructive image had an especially high sensitivity for the diagnosis of sternal fracture. While evaluating thoracic trauma at the emergency room, the three-dimensional reconstructive image was useful to easily diagnose the extent of fracture and it was very sensitive for detecting sternal fracture

  6. Parallel Algorithm for Reconstruction of TAC Images

    International Nuclear Information System (INIS)

    Vidal Gimeno, V.

    2012-01-01

    The algebraic reconstruction methods are based on solving a system of linear equations. In a previous study, was used and showed as the PETSc library, was and is a scientific computing tool, which facilitates and enables the optimal use of a computer system in the image reconstruction process.

  7. A tensor-based dictionary learning approach to tomographic image reconstruction

    DEFF Research Database (Denmark)

    Soltani, Sara; Kilmer, Misha E.; Hansen, Per Christian

    2016-01-01

    We consider tomographic reconstruction using priors in the form of a dictionary learned from training images. The reconstruction has two stages: first we construct a tensor dictionary prior from our training data, and then we pose the reconstruction problem in terms of recovering the expansion...... coefficients in that dictionary. Our approach differs from past approaches in that (a) we use a third-order tensor representation for our images and (b) we recast the reconstruction problem using the tensor formulation. The dictionary learning problem is presented as a non-negative tensor factorization problem...... with sparsity constraints. The reconstruction problem is formulated in a convex optimization framework by looking for a solution with a sparse representation in the tensor dictionary. Numerical results show that our tensor formulation leads to very sparse representations of both the training images...

  8. 3.5D dynamic PET image reconstruction incorporating kinetics-based clusters

    International Nuclear Information System (INIS)

    Lu Lijun; Chen Wufan; Karakatsanis, Nicolas A; Rahmim, Arman; Tang Jing

    2012-01-01

    Standard 3D dynamic positron emission tomographic (PET) imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves at the voxel or region-of-interest (ROI). The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames within the image reconstruction task. Here we propose a novel reconstruction framework aiming to enhance quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as generated via clustering of preliminary reconstructed dynamic images to define clustered neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum a posteriori (MAP) 3D PET reconstruction as applied to individual frames; and as such the method is labeled ‘3.5D’ image reconstruction. The use of cluster-based priors has the advantage of further enhancing quantitative performance in dynamic PET imaging, because: (a) there are typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated 11 C-raclopride dynamic PET data, the quantitative performance of the proposed method was investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated from dynamic image reconstructions using (a) maximum-likelihood expectation maximization (MLEM), and MAP reconstructions using (b) the quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and quantitatively compared for 11 ROIs. Overall, the proposed dynamic PET reconstruction methodology resulted in substantial visual as well as quantitative accuracy improvements (in terms of noise versus bias performance) for parametric DV

  9. Complications of anterior cruciate ligament reconstruction: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Papakonstantinou, Olympia; Chung, Christine B.; Chanchairujira, Kullanuch; Resnick, Donald L. [Department of Radiology, Veterans Affairs Medical Center, University of California, 3350 La Jolla Village Dr., San Diego, CA 92161 (United States)

    2003-05-01

    Arthroscopic reconstruction of the anterior cruciate ligament (ACL) using autografts or allografts is being performed with increasing frequency, particularly in young athletes. Although the procedure is generally well tolerated, with good success rates, early and late complications have been documented. As clinical manifestations of graft complications are often non-specific and plain radiographs cannot directly visualize the graft and the adjacent soft tissues, MR imaging has a definite role in the diagnosis of complications after ACL reconstruction and may direct subsequent therapeutic management. Our purpose is to review the normal MR imaging of the ACL graft and present the MR imaging findings of a wide spectrum of complications after ACL reconstruction, such as graft impingement, graft rupture, cystic degeneration of the graft, postoperative infection of the knee, diffuse and localized (i.e., cyclops lesion) arthrofibrosis, and associated donor site abnormalities. Awareness of the MR imaging findings of complications as well as the normal appearances of the normal ACL graft is essential for correct interpretation. (orig.)

  10. Complications of anterior cruciate ligament reconstruction: MR imaging

    International Nuclear Information System (INIS)

    Papakonstantinou, Olympia; Chung, Christine B.; Chanchairujira, Kullanuch; Resnick, Donald L.

    2003-01-01

    Arthroscopic reconstruction of the anterior cruciate ligament (ACL) using autografts or allografts is being performed with increasing frequency, particularly in young athletes. Although the procedure is generally well tolerated, with good success rates, early and late complications have been documented. As clinical manifestations of graft complications are often non-specific and plain radiographs cannot directly visualize the graft and the adjacent soft tissues, MR imaging has a definite role in the diagnosis of complications after ACL reconstruction and may direct subsequent therapeutic management. Our purpose is to review the normal MR imaging of the ACL graft and present the MR imaging findings of a wide spectrum of complications after ACL reconstruction, such as graft impingement, graft rupture, cystic degeneration of the graft, postoperative infection of the knee, diffuse and localized (i.e., cyclops lesion) arthrofibrosis, and associated donor site abnormalities. Awareness of the MR imaging findings of complications as well as the normal appearances of the normal ACL graft is essential for correct interpretation. (orig.)

  11. CT image reconstruction system based on hardware implementation

    International Nuclear Information System (INIS)

    Silva, Hamilton P. da; Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, Joao A.P.; Zibetti, Marcelo; Hormaza, Joel M.; Lopes, Ricardo T.

    2009-01-01

    Full text: The timing factor is very important for medical imaging systems, which can nowadays be synchronized by vital human signals, like heartbeats or breath. The use of hardware implemented devices in such a system has advantages considering the high speed of information treatment combined with arbitrary low cost on the market. This article refers to a hardware system which is based on electronic programmable logic called FPGA, model Cyclone II from ALTERA Corporation. The hardware was implemented on the UP3 ALTERA Kit. A partially connected neural network with unitary weights was programmed. The system was tested with 60 topographic projections, 100 points in each, of the Shepp and Logan phantom created by MATLAB. The main restriction was found to be the memory size available on the device: the dynamic range of reconstructed image was limited to 0 65535. Also, the normalization factor must be observed in order to do not saturate the image during the reconstruction and filtering process. The test shows a principal possibility to build CT image reconstruction systems for any reasonable amount of input data by arranging the parallel work of the hardware units like we have tested. However, further studies are necessary for better understanding of the error propagation from topographic projections to reconstructed image within the implemented method. (author)

  12. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    International Nuclear Information System (INIS)

    Shieh, Chun-Chien; Kipritidis, John; O'Brien, Ricky T; Cooper, Benjamin J; Keall, Paul J; Kuncic, Zdenka

    2015-01-01

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp–Davis–Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan and was compared to FDK, ASD-POCS and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS and

  13. Bayesian PET image reconstruction incorporating anato-functional joint entropy

    International Nuclear Information System (INIS)

    Tang Jing; Rahmim, Arman

    2009-01-01

    We developed a maximum a posterior (MAP) reconstruction method for positron emission tomography (PET) image reconstruction incorporating magnetic resonance (MR) image information, with the joint entropy between the PET and MR image features serving as the regularization constraint. A non-parametric method was used to estimate the joint probability density of the PET and MR images. Using realistically simulated PET and MR human brain phantoms, the quantitative performance of the proposed algorithm was investigated. Incorporation of the anatomic information via this technique, after parameter optimization, was seen to dramatically improve the noise versus bias tradeoff in every region of interest, compared to the result from using conventional MAP reconstruction. In particular, hot lesions in the FDG PET image, which had no anatomical correspondence in the MR image, also had improved contrast versus noise tradeoff. Corrections were made to figures 3, 4 and 6, and to the second paragraph of section 3.1 on 13 November 2009. The corrected electronic version is identical to the print version.

  14. The SRT reconstruction algorithm for semiquantification in PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kastis, George A., E-mail: gkastis@academyofathens.gr [Research Center of Mathematics, Academy of Athens, Athens 11527 (Greece); Gaitanis, Anastasios [Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens 11527 (Greece); Samartzis, Alexandros P. [Nuclear Medicine Department, Evangelismos General Hospital, Athens 10676 (Greece); Fokas, Athanasios S. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB30WA, United Kingdom and Research Center of Mathematics, Academy of Athens, Athens 11527 (Greece)

    2015-10-15

    Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation–maximization (OSEM) algorithm for determining contrast and semiquantitative indices of {sup 18}F-FDG uptake. Methods: The authors implemented SRT in the software for tomographic image reconstruction (STIR) open-source platform and evaluated this technique using simulated and real sinograms obtained from the GE Discovery ST positron emission tomography/computer tomography scanner. All simulations and reconstructions were performed in STIR. For OSEM, the authors used the clinical protocol of their scanner, namely, 21 subsets and two iterations. The authors also examined images at one, four, six, and ten iterations. For the simulation studies, the authors analyzed an image-quality phantom with cold and hot lesions. Two different versions of the phantom were employed at two different hot-sphere lesion-to-background ratios (LBRs), namely, 2:1 and 4:1. For each noiseless sinogram, 20 Poisson realizations were created at five different noise levels. In addition to making visual comparisons of the reconstructed images, the authors determined contrast and bias as a function of the background image roughness (IR). For the real-data studies, sinograms of an image-quality phantom simulating the human torso were employed. The authors determined contrast and LBR as a function of the background IR. Finally, the authors present plots of contrast as a function of IR after smoothing each reconstructed image with Gaussian filters of six different sizes. Statistical significance was determined by employing the Wilcoxon rank-sum test. Results: In both simulated and real studies, SRT

  15. The SRT reconstruction algorithm for semiquantification in PET imaging

    International Nuclear Information System (INIS)

    Kastis, George A.; Gaitanis, Anastasios; Samartzis, Alexandros P.; Fokas, Athanasios S.

    2015-01-01

    Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation–maximization (OSEM) algorithm for determining contrast and semiquantitative indices of 18 F-FDG uptake. Methods: The authors implemented SRT in the software for tomographic image reconstruction (STIR) open-source platform and evaluated this technique using simulated and real sinograms obtained from the GE Discovery ST positron emission tomography/computer tomography scanner. All simulations and reconstructions were performed in STIR. For OSEM, the authors used the clinical protocol of their scanner, namely, 21 subsets and two iterations. The authors also examined images at one, four, six, and ten iterations. For the simulation studies, the authors analyzed an image-quality phantom with cold and hot lesions. Two different versions of the phantom were employed at two different hot-sphere lesion-to-background ratios (LBRs), namely, 2:1 and 4:1. For each noiseless sinogram, 20 Poisson realizations were created at five different noise levels. In addition to making visual comparisons of the reconstructed images, the authors determined contrast and bias as a function of the background image roughness (IR). For the real-data studies, sinograms of an image-quality phantom simulating the human torso were employed. The authors determined contrast and LBR as a function of the background IR. Finally, the authors present plots of contrast as a function of IR after smoothing each reconstructed image with Gaussian filters of six different sizes. Statistical significance was determined by employing the Wilcoxon rank-sum test. Results: In both simulated and real studies, SRT

  16. Robust framework for PET image reconstruction incorporating system and measurement uncertainties.

    Directory of Open Access Journals (Sweden)

    Huafeng Liu

    Full Text Available In Positron Emission Tomography (PET, an optimal estimate of the radioactivity concentration is obtained from the measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly known system probability matrix a priori, and the quality of such system model largely determines the quality of the reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts.

  17. Renal Cyst Pseudoenhancement: Intraindividual Comparison Between Virtual Monochromatic Spectral Images and Conventional Polychromatic 120-kVp Images Obtained During the Same CT Examination and Comparisons Among Images Reconstructed Using Filtered Back Projection, Adaptive Statistical Iterative Reconstruction, and Model-Based Iterative Reconstruction

    Science.gov (United States)

    Yamada, Yoshitake; Yamada, Minoru; Sugisawa, Koichi; Akita, Hirotaka; Shiomi, Eisuke; Abe, Takayuki; Okuda, Shigeo; Jinzaki, Masahiro

    2015-01-01

    Abstract The purpose of this study was to compare renal cyst pseudoenhancement between virtual monochromatic spectral (VMS) and conventional polychromatic 120-kVp images obtained during the same abdominal computed tomography (CT) examination and among images reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model-based iterative reconstruction (MBIR). Our institutional review board approved this prospective study; each participant provided written informed consent. Thirty-one patients (19 men, 12 women; age range, 59–85 years; mean age, 73.2 ± 5.5 years) with renal cysts underwent unenhanced 120-kVp CT followed by sequential fast kVp-switching dual-energy (80/140 kVp) and 120-kVp abdominal enhanced CT in the nephrographic phase over a 10-cm scan length with a random acquisition order and 4.5-second intervals. Fifty-one renal cysts (maximal diameter, 18.0 ± 14.7 mm [range, 4–61 mm]) were identified. The CT attenuation values of the cysts as well as of the kidneys were measured on the unenhanced images, enhanced VMS images (at 70 keV) reconstructed using FBP and ASIR from dual-energy data, and enhanced 120-kVp images reconstructed using FBP, ASIR, and MBIR. The results were analyzed using the mixed-effects model and paired t test with Bonferroni correction. The attenuation increases (pseudoenhancement) of the renal cysts on the VMS images reconstructed using FBP/ASIR (least square mean, 5.0/6.0 Hounsfield units [HU]; 95% confidence interval, 2.6–7.4/3.6–8.4 HU) were significantly lower than those on the conventional 120-kVp images reconstructed using FBP/ASIR/MBIR (least square mean, 12.1/12.8/11.8 HU; 95% confidence interval, 9.8–14.5/10.4–15.1/9.4–14.2 HU) (all P < .001); on the other hand, the CT attenuation values of the kidneys on the VMS images were comparable to those on the 120-kVp images. Regardless of the reconstruction algorithm, 70-keV VMS images showed

  18. Demosaicing and Superresolution for Color Filter Array via Residual Image Reconstruction and Sparse Representation

    OpenAIRE

    Sun, Guangling

    2012-01-01

    A framework of demosaicing and superresolution for color filter array (CFA) via residual image reconstruction and sparse representation is presented.Given the intermediate image produced by certain demosaicing and interpolation technique, a residual image between the final reconstruction image and the intermediate image is reconstructed using sparse representation.The final reconstruction image has richer edges and details than that of the intermediate image. Specifically, a generic dictionar...

  19. Molecular Imaging : Computer Reconstruction and Practice - Proceedings of the NATO Advanced Study Institute on Molecular Imaging from Physical Principles to Computer Reconstruction and Practice

    CERN Document Server

    Lemoigne, Yves

    2008-01-01

    This volume collects the lectures presented at the ninth ESI School held at Archamps (FR) in November 2006 and is dedicated to nuclear physics applications in molecular imaging. The lectures focus on the multiple facets of image reconstruction processing and management and illustrate the role of digital imaging in clinical practice. Medical computing and image reconstruction are introduced by analysing the underlying physics principles and their implementation, relevant quality aspects, clinical performance and recent advancements in the field. Several stages of the imaging process are specifically addressed, e.g. optimisation of data acquisition and storage, distributed computing, physiology and detector modelling, computer algorithms for image reconstruction and measurement in tomography applications, for both clinical and biomedical research applications. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehen...

  20. Accelerated Computing in Magnetic Resonance Imaging: Real-Time Imaging Using Nonlinear Inverse Reconstruction

    Directory of Open Access Journals (Sweden)

    Sebastian Schaetz

    2017-01-01

    Full Text Available Purpose. To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs in magnetic resonance imaging (MRI and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear inversion (NLINV algorithm for dynamic MRI with high frame rates. Methods. The NLINV algorithm is optimized and ported to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results. The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion. Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.

  1. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  2. Block Compressed Sensing of Images Using Adaptive Granular Reconstruction

    Directory of Open Access Journals (Sweden)

    Ran Li

    2016-01-01

    Full Text Available In the framework of block Compressed Sensing (CS, the reconstruction algorithm based on the Smoothed Projected Landweber (SPL iteration can achieve the better rate-distortion performance with a low computational complexity, especially for using the Principle Components Analysis (PCA to perform the adaptive hard-thresholding shrinkage. However, during learning the PCA matrix, it affects the reconstruction performance of Landweber iteration to neglect the stationary local structural characteristic of image. To solve the above problem, this paper firstly uses the Granular Computing (GrC to decompose an image into several granules depending on the structural features of patches. Then, we perform the PCA to learn the sparse representation basis corresponding to each granule. Finally, the hard-thresholding shrinkage is employed to remove the noises in patches. The patches in granule have the stationary local structural characteristic, so that our method can effectively improve the performance of hard-thresholding shrinkage. Experimental results indicate that the reconstructed image by the proposed algorithm has better objective quality when compared with several traditional ones. The edge and texture details in the reconstructed image are better preserved, which guarantees the better visual quality. Besides, our method has still a low computational complexity of reconstruction.

  3. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-04-01

    We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (pASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.

  4. Cellular neural networks, the Navier-Stokes equation, and microarray image reconstruction.

    Science.gov (United States)

    Zineddin, Bachar; Wang, Zidong; Liu, Xiaohui

    2011-11-01

    Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier-Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time.

  5. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  6. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  7. Feasibility study for application of the compressed-sensing framework to interior computed tomography (ICT) for low-dose, high-accurate dental x-ray imaging

    Science.gov (United States)

    Je, U. K.; Cho, H. M.; Cho, H. S.; Park, Y. O.; Park, C. K.; Lim, H. W.; Kim, K. S.; Kim, G. A.; Park, S. Y.; Woo, T. H.; Choi, S. I.

    2016-02-01

    In this paper, we propose a new/next-generation type of CT examinations, the so-called Interior Computed Tomography (ICT), which may presumably lead to dose reduction to the patient outside the target region-of-interest (ROI), in dental x-ray imaging. Here an x-ray beam from each projection position covers only a relatively small ROI containing a target of diagnosis from the examined structure, leading to imaging benefits such as decreasing scatters and system cost as well as reducing imaging dose. We considered the compressed-sensing (CS) framework, rather than common filtered-backprojection (FBP)-based algorithms, for more accurate ICT reconstruction. We implemented a CS-based ICT algorithm and performed a systematic simulation to investigate the imaging characteristics. Simulation conditions of two ROI ratios of 0.28 and 0.14 between the target and the whole phantom sizes and four projection numbers of 360, 180, 90, and 45 were tested. We successfully reconstructed ICT images of substantially high image quality by using the CS framework even with few-view projection data, still preserving sharp edges in the images.

  8. Image quality in children with low-radiation chest CT using adaptive statistical iterative reconstruction and model-based iterative reconstruction.

    Directory of Open Access Journals (Sweden)

    Jihang Sun

    Full Text Available OBJECTIVE: To evaluate noise reduction and image quality improvement in low-radiation dose chest CT images in children using adaptive statistical iterative reconstruction (ASIR and a full model-based iterative reconstruction (MBIR algorithm. METHODS: Forty-five children (age ranging from 28 days to 6 years, median of 1.8 years who received low-dose chest CT scans were included. Age-dependent noise index (NI was used for acquisition. Images were retrospectively reconstructed using three methods: MBIR, 60% of ASIR and 40% of conventional filtered back-projection (FBP, and FBP. The subjective quality of the images was independently evaluated by two radiologists. Objective noises in the left ventricle (LV, muscle, fat, descending aorta and lung field at the layer with the largest cross-section area of LV were measured, with the region of interest about one fourth to half of the area of descending aorta. Optimized signal-to-noise ratio (SNR was calculated. RESULT: In terms of subjective quality, MBIR images were significantly better than ASIR and FBP in image noise and visibility of tiny structures, but blurred edges were observed. In terms of objective noise, MBIR and ASIR reconstruction decreased the image noise by 55.2% and 31.8%, respectively, for LV compared with FBP. Similarly, MBIR and ASIR reconstruction increased the SNR by 124.0% and 46.2%, respectively, compared with FBP. CONCLUSION: Compared with FBP and ASIR, overall image quality and noise reduction were significantly improved by MBIR. MBIR image could reconstruct eligible chest CT images in children with lower radiation dose.

  9. Algorithms for reconstructing images for industrial applications

    International Nuclear Information System (INIS)

    Lopes, R.T.; Crispim, V.R.

    1986-01-01

    Several algorithms for reconstructing objects from their projections are being studied in our Laboratory, for industrial applications. Such algorithms are useful locating the position and shape of different composition of materials in the object. A Comparative study of two algorithms is made. The two investigated algorithsm are: The MART (Multiplicative - Algebraic Reconstruction Technique) and the Convolution Method. The comparison are carried out from the point view of the quality of the image reconstructed, number of views and cost. (Author) [pt

  10. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    Science.gov (United States)

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  11. Reconstruction algorithm medical imaging DRR; Algoritmo de construccion de imagenes medicas DRR

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Espinosa, J. C.

    2013-07-01

    The method of reconstruction for digital radiographic Imaging (DRR), is based on two orthogonal images, on the dorsal and lateral decubitus position of the simulation. DRR images are reconstructed with an algorithm that simulates running a conventional X-ray, a single rendition team, beam emitted is not divergent, in this case, the rays are considered to be parallel in the image reconstruction DRR, for this purpose, it is necessary to use all the values of the units (HU) hounsfield of each voxel in all axial cuts that form the study TC, finally obtaining the reconstructed image DRR performing a transformation from 3D to 2D. (Author)

  12. Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation

    International Nuclear Information System (INIS)

    Elbakri, Idris A; Fessler, Jeffrey A

    2003-01-01

    This paper describes a statistical image reconstruction method for x-ray CT that is based on a physical model that accounts for the polyenergetic x-ray source spectrum and the measurement nonlinearities caused by energy-dependent attenuation. Unlike our earlier work, the proposed algorithm does not require pre-segmentation of the object into the various tissue classes (e.g., bone and soft tissue) and allows mixed pixels. The attenuation coefficient of each voxel is modelled as the product of its unknown density and a weighted sum of energy-dependent mass attenuation coefficients. We formulate a penalized-likelihood function for this polyenergetic model and develop an iterative algorithm for estimating the unknown density of each voxel. Applying this method to simulated x-ray CT measurements of objects containing both bone and soft tissue yields images with significantly reduced beam hardening artefacts relative to conventional beam hardening correction methods. We also apply the method to real data acquired from a phantom containing various concentrations of potassium phosphate solution. The algorithm reconstructs an image with accurate density values for the different concentrations, demonstrating its potential for quantitative CT applications

  13. Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation.

    Science.gov (United States)

    Idris A, Elbakri; Fessler, Jeffrey A

    2003-08-07

    This paper describes a statistical image reconstruction method for x-ray CT that is based on a physical model that accounts for the polyenergetic x-ray source spectrum and the measurement nonlinearities caused by energy-dependent attenuation. Unlike our earlier work, the proposed algorithm does not require pre-segmentation of the object into the various tissue classes (e.g., bone and soft tissue) and allows mixed pixels. The attenuation coefficient of each voxel is modelled as the product of its unknown density and a weighted sum of energy-dependent mass attenuation coefficients. We formulate a penalized-likelihood function for this polyenergetic model and develop an iterative algorithm for estimating the unknown density of each voxel. Applying this method to simulated x-ray CT measurements of objects containing both bone and soft tissue yields images with significantly reduced beam hardening artefacts relative to conventional beam hardening correction methods. We also apply the method to real data acquired from a phantom containing various concentrations of potassium phosphate solution. The algorithm reconstructs an image with accurate density values for the different concentrations, demonstrating its potential for quantitative CT applications.

  14. A qualitative and quantitative analysis of radiation dose and image quality of computed tomography images using adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Hussain, Fahad Ahmed; Mail, Noor; Shamy, Abdulrahman M; Suliman, Alghamdi; Saoudi, Abdelhamid

    2016-05-08

    Image quality is a key issue in radiology, particularly in a clinical setting where it is important to achieve accurate diagnoses while minimizing radiation dose. Some computed tomography (CT) manufacturers have introduced algorithms that claim significant dose reduction. In this study, we assessed CT image quality produced by two reconstruction algorithms provided with GE Healthcare's Discovery 690 Elite positron emission tomography (PET) CT scanner. Image quality was measured for images obtained at various doses with both conventional filtered back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR) algorithms. A stan-dard CT dose index (CTDI) phantom and a pencil ionization chamber were used to measure the CT dose at 120 kVp and an exposure of 260 mAs. Image quality was assessed using two phantoms. CT images of both phantoms were acquired at tube voltage (kV) of 120 with exposures ranging from 25 mAs to 400 mAs. Images were reconstructed using FBP and ASIR ranging from 10% to 100%, then analyzed for noise, low-contrast detectability, contrast-to-noise ratio (CNR), and modulation transfer function (MTF). Noise was 4.6 HU in water phantom images acquired at 260 mAs/FBP 120 kV and 130 mAs/50% ASIR 120 kV. The large objects (fre-quency ASIR, compared to 260 mAs/FBP. The application of ASIR for small objects (frequency >7 lp/cm) showed poor visibility compared to FBP at 260 mAs and even worse for images acquired at less than 130 mAs. ASIR blending more than 50% at low dose tends to reduce contrast of small objects (frequency >7 lp/cm). We concluded that dose reduction and ASIR should be applied with close attention if the objects to be detected or diagnosed are small (frequency > 7 lp/cm). Further investigations are required to correlate the small objects (frequency > 7 lp/cm) to patient anatomy and clinical diagnosis.

  15. A fast image reconstruction technique based on ART

    International Nuclear Information System (INIS)

    Zhang Shunli; Zhang Dinghua; Wang Kai; Huang Kuidong; Li Weibin

    2007-01-01

    Algebraic Reconstruction Technique (ART) is an iterative method for image reconstruction. Improving its reconstruction speed has been one of the important researching aspects of ART. For the simplified weight coefficients reconstruction model of ART, a fast grid traverse algorithm is proposed, which can determine the grid index by simple operations such as addition, subtraction and comparison. Since the weight coefficients are calculated at real time during iteration, large amount of storage is saved and the reconstruction speed is greatly increased. Experimental results show that the new algorithm is very effective and the reconstruction speed is improved about 10 times compared with the traditional algorithm. (authors)

  16. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  17. Evaluation of aortocoronary bypass graft patency by reconstructed CT image

    International Nuclear Information System (INIS)

    Kawakita, Seizaburo; Koide, Takashi; Saito, Yoshio; Yamamoto, Tadao; Iwasaki, Tadaaki

    1982-01-01

    Ten patients were examined in the period of three months from January to March 1981. The patients were operated from 1 month to 7 years before CT. A bypass to the left anterior descending artery (LAD) was grafted in 10 cases, 2 to the right coronary artery (RCA), 4 to an obtuse marginal artery (OM), and 1 to a diagonal artery. Image reconstruction was performed in 10 cases by using an image analytical computer Evaluskop. Appropriate planes for reconstruction were selected by trial and error methods upon observation of CT images. When gained picture of a graft course coincided with surgical records or angiography, the work of building images was concluded. On cross section, grafts to LAD were visualized in all 10 cases: 9 in the entire course and 1 in a proximal part of the graft. Two to RCA, 4 to OM and 1 to a diagonal were also successfully visualized. Reconstruction of graft images succeeded in 9 grafts of 6 cases. The course of a graft could be pursued from the proximal to the distal end adjacent to the cardiac chamber. The picture of a bypass to LAD was visualized in 6 of 10 grafts. Two bypass to RCA could be depicted, and 1 to OM was also found. However 3 to OM and 1 to a diagonal failed to be visualized throughout their courses in reconstructed images. I think that the causes of faillure mainly depended upon the course of the graft. When a graft was running arc-like surrounding the heart chamber, it was very difficult to depict its entire length in reconstructed images, though the graft could be detected in cross sections. These preliminary studies indicated that reconstruction of CT images had some benefits for the pursuit of graft courses. (J.P.N.)

  18. Acceleration of the direct reconstruction of linear parametric images using nested algorithms

    International Nuclear Information System (INIS)

    Wang Guobao; Qi Jinyi

    2010-01-01

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  19. Proton computed tomography images with algebraic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzi, M. [Physics and Astronomy Department, University of Florence, Florence (Italy); Civinini, C.; Scaringella, M. [INFN - Florence Division, Florence (Italy); Bonanno, D. [INFN - Catania Division, Catania (Italy); Brianzi, M. [INFN - Florence Division, Florence (Italy); Carpinelli, M. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Chemistry and Pharmacy Department, University of Sassari, Sassari (Italy); Cirrone, G.A.P.; Cuttone, G. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Presti, D. Lo [INFN - Catania Division, Catania (Italy); Physics and Astronomy Department, University of Catania, Catania (Italy); Maccioni, G. [INFN – Cagliari Division, Cagliari (Italy); Pallotta, S. [INFN - Florence Division, Florence (Italy); Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence (Italy); SOD Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); Randazzo, N. [INFN - Catania Division, Catania (Italy); Romano, F. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Sipala, V. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Chemistry and Pharmacy Department, University of Sassari, Sassari (Italy); Talamonti, C. [INFN - Florence Division, Florence (Italy); Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence (Italy); SOD Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); Vanzi, E. [Fisica Sanitaria, Azienda Ospedaliero-Universitaria Senese, Siena (Italy)

    2017-02-11

    A prototype of proton Computed Tomography (pCT) system for hadron-therapy has been manufactured and tested in a 175 MeV proton beam with a non-homogeneous phantom designed to simulate high-contrast material. BI-SART reconstruction algorithms have been implemented with GPU parallelism, taking into account of most likely paths of protons in matter. Reconstructed tomography images with density resolutions r.m.s. down to ~1% and spatial resolutions <1 mm, achieved within processing times of ~15′ for a 512×512 pixels image prove that this technique will be beneficial if used instead of X-CT in hadron-therapy.

  20. Image reconstruction in k-space from MR data encoded with ambiguous gradient fields.

    Science.gov (United States)

    Schultz, Gerrit; Gallichan, Daniel; Weber, Hans; Witschey, Walter R T; Honal, Matthias; Hennig, Jürgen; Zaitsev, Maxim

    2015-02-01

    In this work, the limits of image reconstruction in k-space are explored when non-bijective gradient fields are used for spatial encoding. The image space analogy between parallel imaging and imaging with non-bijective encoding fields is partially broken in k-space. As a consequence, it is hypothesized and proven that ambiguities can only be resolved partially in k-space, and not completely as is the case in image space. Image-space and k-space based reconstruction algorithms for multi-channel radiofrequency data acquisitions are programmed and tested using numerical simulations as well as in vivo measurement data. The hypothesis is verified based on an analysis of reconstructed images. It is found that non-bijective gradient fields have the effect that densely sampled autocalibration data, used for k-space reconstruction, provide less information than a separate scan of the receiver coil sensitivity maps, used for image space reconstruction. Consequently, in k-space only the undersampling artifact can be unfolded, whereas in image space, it is also possible to resolve aliasing that is caused by the non-bijectivity of the gradient fields. For standard imaging, reconstruction in image space and in k-space is nearly equivalent, whereas there is a fundamental difference with practical consequences for the selection of image reconstruction algorithms when non-bijective encoding fields are involved. © 2014 Wiley Periodicals, Inc.

  1. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  2. Image reconstruction from limited angle Compton camera data

    International Nuclear Information System (INIS)

    Tomitani, T.; Hirasawa, M.

    2002-01-01

    The Compton camera is used for imaging the distributions of γ ray direction in a γ ray telescope for astrophysics and for imaging radioisotope distributions in nuclear medicine without the need for collimators. The integration of γ rays on a cone is measured with the camera, so that some sort of inversion method is needed. Parra found an analytical inversion algorithm based on spherical harmonics expansion of projection data. His algorithm is applicable to the full set of projection data. In this paper, six possible reconstruction algorithms that allow image reconstruction from projections with a finite range of scattering angles are investigated. Four algorithms have instability problems and two others are practical. However, the variance of the reconstructed image diverges in these two cases, so that window functions are introduced with which the variance becomes finite at a cost of spatial resolution. These two algorithms are compared in terms of variance. The algorithm based on the inversion of the summed back-projection is superior to the algorithm based on the inversion of the summed projection. (author)

  3. Robust sparse image reconstruction of radio interferometric observations with PURIFY

    Science.gov (United States)

    Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves

    2018-01-01

    Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

  4. Colour reconstruction of underwater images

    OpenAIRE

    Hoth, Julian; Kowalczyk, Wojciech

    2017-01-01

    Objects look very different in the underwater environment compared to their appearance in sunlight. Images with correct colouring simplify the detection of underwater objects and may allow the use of visual SLAM algorithms developed for land-based robots underwater. Hence, image processing is required. Current algorithms focus on the colour reconstruction of scenery at diving depth where different colours can still be distinguished. At greater depth this is not the case. In this study it is i...

  5. Image Reconstruction Algorithm For Electrical Capacitance Tomography (ECT)

    International Nuclear Information System (INIS)

    Arko

    2001-01-01

    ). Most image reconstruction algorithms for electrical capacitance tomography (ECT) use sensitivity maps as weighting factors. The computation is fast, involving a simple multiply-and- accumulate (MAC) operation, but the resulting image suffers from blurring due to the soft-field effect of the sensor. This paper presents a low cost iterative method employing proportional thresholding, which improves image quality dramatically. The strategy for implementation, computational cost, and achievable speed is examined when using a personal computer (PC) and Digital Signal Processor (DSP). For PC implementation, Watcom C++ 10.6 and Visual C++ 5.0 compilers were used. The experimental results are compared to the images reconstructed by commercially available software. The new algorithm improves the image quality significantly at a cost of a few iterations. This technique can be readily exploited for online applications

  6. A Superresolution Image Reconstruction Algorithm Based on Landweber in Electrical Capacitance Tomography

    Directory of Open Access Journals (Sweden)

    Chen Deyun

    2013-01-01

    Full Text Available According to the image reconstruction accuracy influenced by the “soft field” nature and ill-conditioned problems in electrical capacitance tomography, a superresolution image reconstruction algorithm based on Landweber is proposed in the paper, which is based on the working principle of the electrical capacitance tomography system. The method uses the algorithm which is derived by regularization of solutions derived and derives closed solution by fast Fourier transform of the convolution kernel. So, it ensures the certainty of the solution and improves the stability and quality of image reconstruction results. Simulation results show that the imaging precision and real-time imaging of the algorithm are better than Landweber algorithm, and this algorithm proposes a new method for the electrical capacitance tomography image reconstruction algorithm.

  7. Compositional-prior-guided image reconstruction algorithm for multi-modality imaging

    Science.gov (United States)

    Fang, Qianqian; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.

    2010-01-01

    The development of effective multi-modality imaging methods typically requires an efficient information fusion model, particularly when combining structural images with a complementary imaging modality that provides functional information. We propose a composition-based image segmentation method for X-ray digital breast tomosynthesis (DBT) and a structural-prior-guided image reconstruction for a combined DBT and diffuse optical tomography (DOT) breast imaging system. Using the 3D DBT images from 31 clinically measured healthy breasts, we create an empirical relationship between the X-ray intensities for adipose and fibroglandular tissue. We use this relationship to then segment another 58 healthy breast DBT images from 29 subjects into compositional maps of different tissue types. For each breast, we build a weighted-graph in the compositional space and construct a regularization matrix to incorporate the structural priors into a finite-element-based DOT image reconstruction. Use of the compositional priors enables us to fuse tissue anatomy into optical images with less restriction than when using a binary segmentation. This allows us to recover the image contrast captured by DOT but not by DBT. We show that it is possible to fine-tune the strength of the structural priors by changing a single regularization parameter. By estimating the optical properties for adipose and fibroglandular tissue using the proposed algorithm, we found the results are comparable or superior to those estimated with expert-segmentations, but does not involve the time-consuming manual selection of regions-of-interest. PMID:21258460

  8. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    Science.gov (United States)

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. © 2016 Elsevier Inc. All rights reserved.

  9. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    International Nuclear Information System (INIS)

    Virador, Patrick R.G.

    2000-01-01

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  10. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Virador, Patrick R.G. [Univ. of California, Berkeley, CA (United States)

    2000-04-01

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  11. Analytic 3D image reconstruction using all detected events

    International Nuclear Information System (INIS)

    Kinahan, P.E.; Rogers, J.G.

    1988-11-01

    We present the results of testing a previously presented algorithm for three-dimensional image reconstruction that uses all gamma-ray coincidence events detected by a PET volume-imaging scanner. By using two iterations of an analytic filter-backprojection method, the algorithm is not constrained by the requirement of a spatially invariant detector point spread function, which limits normal analytic techniques. Removing this constraint allows the incorporation of all detected events, regardless of orientation, which improves the statistical quality of the final reconstructed image

  12. Multiple-image hiding using super resolution reconstruction in high-frequency domains

    Science.gov (United States)

    Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua

    2017-12-01

    In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.

  13. Fast Tomographic Reconstruction From Limited Data Using Artificial Neural Networks

    NARCIS (Netherlands)

    D.M. Pelt (Daniël); K.J. Batenburg (Joost)

    2013-01-01

    htmlabstractImage reconstruction from a small number of projections is a challenging problem in tomography. Advanced algorithms that incorporate prior knowledge can sometimes produce accurate reconstructions, but they typically require long computation times. Furthermore, the required prior

  14. Fast and accurate denoising method applied to very high resolution optical remote sensing images

    Science.gov (United States)

    Masse, Antoine; Lefèvre, Sébastien; Binet, Renaud; Artigues, Stéphanie; Lassalle, Pierre; Blanchet, Gwendoline; Baillarin, Simon

    2017-10-01

    Restoration of Very High Resolution (VHR) optical Remote Sensing Image (RSI) is critical and leads to the problem of removing instrumental noise while keeping integrity of relevant information. Improving denoising in an image processing chain implies increasing image quality and improving performance of all following tasks operated by experts (photo-interpretation, cartography, etc.) or by algorithms (land cover mapping, change detection, 3D reconstruction, etc.). In a context of large industrial VHR image production, the selected denoising method should optimized accuracy and robustness with relevant information and saliency conservation, and rapidity due to the huge amount of data acquired and/or archived. Very recent research in image processing leads to a fast and accurate algorithm called Non Local Bayes (NLB) that we propose to adapt and optimize for VHR RSIs. This method is well suited for mass production thanks to its best trade-off between accuracy and computational complexity compared to other state-of-the-art methods. NLB is based on a simple principle: similar structures in an image have similar noise distribution and thus can be denoised with the same noise estimation. In this paper, we describe in details algorithm operations and performances, and analyze parameter sensibilities on various typical real areas observed in VHR RSIs.

  15. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.

    Science.gov (United States)

    Lee, K; Kim, M; Kim, K

    2018-05-11

    Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Research on reconstruction of steel tube section from few projections

    International Nuclear Information System (INIS)

    Peng Shuaijun; Wu Haifeng; Wang Kai

    2007-01-01

    Most parameters of steel tube can be acquired from CT image of the section so as to evaluate its quality. But large numbers of projections are needed in order to reconstruct the section image, so the collection and calculation of the projections consume lots of time. In order to solve the problem, reconstruction algorithms of steel tube from few projections are researched and the results are validated with simulation data in the paper. Three iterative algorithms, ART, MAP and OSEM, are attempted to reconstruct the section of steel tube by using the simulation model. Considering the prior information distributing of steel tube, we improve the algorithms and get better reconstruction images. The results of simulation experiment indicate that ART, MAP and OSEM can reconstruct accurate section images of steel tube from less than 20 projections and approximate images from 10 projections. (authors)

  17. The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors

    Science.gov (United States)

    Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.

    2015-12-01

    Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and

  18. Fast image reconstruction for Compton camera using stochastic origin ensemble approach.

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2011-01-01

    Compton camera has been proposed as a potential imaging tool in astronomy, industry, homeland security, and medical diagnostics. Due to the inherent geometrical complexity of Compton camera data, image reconstruction of distributed sources can be ineffective and/or time-consuming when using standard techniques such as filtered backprojection or maximum likelihood-expectation maximization (ML-EM). In this article, the authors demonstrate a fast reconstruction of Compton camera data using a novel stochastic origin ensembles (SOE) approach based on Markov chains. During image reconstruction, the origins of the measured events are randomly assigned to locations on conical surfaces, which are the Compton camera analogs of lines-of-responses in PET. Therefore, the image is defined as an ensemble of origin locations of all possible event origins. During the course of reconstruction, the origins of events are stochastically moved and the acceptance of the new event origin is determined by the predefined acceptance probability, which is proportional to the change in event density. For example, if the event density at the new location is higher than in the previous location, the new position is always accepted. After several iterations, the reconstructed distribution of origins converges to a quasistationary state which can be voxelized and displayed. Comparison with the list-mode ML-EM reveals that the postfiltered SOE algorithm has similar performance in terms of image quality while clearly outperforming ML-EM in relation to reconstruction time. In this study, the authors have implemented and tested a new image reconstruction algorithm for the Compton camera based on the stochastic origin ensembles with Markov chains. The algorithm uses list-mode data, is parallelizable, and can be used for any Compton camera geometry. SOE algorithm clearly outperforms list-mode ML-EM for simple Compton camera geometry in terms of reconstruction time. The difference in computational time

  19. Fingerprint image reconstruction for swipe sensor using Predictive Overlap Method

    Directory of Open Access Journals (Sweden)

    Mardiansyah Ahmad Zafrullah

    2018-01-01

    Full Text Available Swipe sensor is one of many biometric authentication sensor types that widely applied to embedded devices. The sensor produces an overlap on every pixel block of the image, so the picture requires a reconstruction process before heading to the feature extraction process. Conventional reconstruction methods require extensive computation, causing difficult to apply to embedded devices that have limited computing process. In this paper, image reconstruction is proposed using predictive overlap method, which determines the image block shift from the previous set of change data. The experiments were performed using 36 images generated by a swipe sensor with 128 x 8 pixels size of the area, where each image has an overlap in each block. The results reveal computation can increase up to 86.44% compared with conventional methods, with accuracy decreasing to 0.008% in average.

  20. Development of computed tomography system and image reconstruction algorithm

    International Nuclear Information System (INIS)

    Khairiah Yazid; Mohd Ashhar Khalid; Azaman Ahmad; Khairul Anuar Mohd Salleh; Ab Razak Hamzah

    2006-01-01

    Computed tomography is one of the most advanced and powerful nondestructive inspection techniques, which is currently used in many different industries. In several CT systems, detection has been by combination of an X-ray image intensifier and charge -coupled device (CCD) camera or by using line array detector. The recent development of X-ray flat panel detector has made fast CT imaging feasible and practical. Therefore this paper explained the arrangement of a new detection system which is using the existing high resolution (127 μm pixel size) flat panel detector in MINT and the image reconstruction technique developed. The aim of the project is to develop a prototype flat panel detector based CT imaging system for NDE. The prototype consisted of an X-ray tube, a flat panel detector system, a rotation table and a computer system to control the sample motion and image acquisition. Hence this project is divided to two major tasks, firstly to develop image reconstruction algorithm and secondly to integrate X-ray imaging components into one CT system. The image reconstruction algorithm using filtered back-projection method is developed and compared to other techniques. The MATLAB program is the tools used for the simulations and computations for this project. (Author)

  1. Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy.

    Science.gov (United States)

    Tang, Jing; Kuwabara, Hiroto; Wong, Dean F; Rahmim, Arman

    2010-08-07

    We developed an anatomy-guided 4D closed-form algorithm to directly reconstruct parametric images from projection data for (nearly) irreversible tracers. Conventional methods consist of individually reconstructing 2D/3D PET data, followed by graphical analysis on the sequence of reconstructed image frames. The proposed direct reconstruction approach maintains the simplicity and accuracy of the expectation-maximization (EM) algorithm by extending the system matrix to include the relation between the parametric images and the measured data. A closed-form solution was achieved using a different hidden complete-data formulation within the EM framework. Furthermore, the proposed method was extended to maximum a posterior reconstruction via incorporation of MR image information, taking the joint entropy between MR and parametric PET features as the prior. Using realistic simulated noisy [(11)C]-naltrindole PET and MR brain images/data, the quantitative performance of the proposed methods was investigated. Significant improvements in terms of noise versus bias performance were demonstrated when performing direct parametric reconstruction, and additionally upon extending the algorithm to its Bayesian counterpart using the MR-PET joint entropy measure.

  2. Separated reconstruction of images from ultrasonic holograms with tridimensional object by digital processing

    International Nuclear Information System (INIS)

    Son, J.H.

    1979-01-01

    Because of much attractiveness, digital reconstruction of image from ultrasonic hologram by computer has been widely studied in recent years. But the method of digital reconstruction of image is displayed in the plain only, so study is done mainly of the hologram obtained from bidimensional objects. Many applications of the ultrasonic holography such as the non-distructive testing and the ultrasonic diagnosis are mostly of the tridimensional object. In the ordinary digital reconstruction of the image from the hologram obtained from tridimensional object, a question of hidden-image problem arises, and the separated reconstruction of the image for the considered part of the object is required. In this paper, multi-diffraction by tridimensional object is assumed to have linearity, ie. superposition property by each diffraction of bidimensional objects. And a new algorithm is proposed here, namely reconstructed image for considered one of bidimensional objects in tridimensional object obtained by means of operation from the two holograms tilted in unequal angles. Such tilted holograms are obtained from the tilted linear array receivers by scanning method. That images can be reconstructed by the operation from two holograms means that the new algorithm is verified. And another new method of the transformation of hologram, that is, transformation of a hologram to arbitrarily tilted hologram, has been proved valid. The reconstructed images obtained with the method of transformation and the method of operation, are the images reconstructed from one hologram by the tridimensional object and more distinctly separated that any images mentioned above. (author)

  3. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    Energy Technology Data Exchange (ETDEWEB)

    Han, H; Xing, L [Stanford University, Palo Alto, CA (United States); Liang, Z [Stony Brook University, Stony Brook, NY (United States)

    2016-06-15

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  4. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    International Nuclear Information System (INIS)

    Han, H; Xing, L; Liang, Z

    2016-01-01

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  5. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles.

    Science.gov (United States)

    Yan, Liwei; Guo, Yongze; Qi, Jian; Zhu, Qingtang; Gu, Liqiang; Zheng, Canbin; Lin, Tao; Lu, Yutong; Zeng, Zitao; Yu, Sha; Zhu, Shuang; Zhou, Xiang; Zhang, Xi; Du, Yunfei; Yao, Zhi; Lu, Yao; Liu, Xiaolin

    2017-08-01

    The precise annotation and accurate identification of the topography of fascicles to the end organs are prerequisites for studying human peripheral nerves. In this study, we present a feasible imaging method that acquires 3D high-resolution (HR) topography of peripheral nerve fascicles using an iodine and freeze-drying (IFD) micro-computed tomography (microCT) method to greatly increase the contrast of fascicle images. The enhanced microCT imaging method can facilitate the reconstruction of high-contrast HR fascicle images, fascicle segmentation and extraction, feature analysis, and the tracing of fascicle topography to end organs, which define fascicle functions. The complex intraneural aggregation and distribution of fascicles is typically assessed using histological techniques or MR imaging to acquire coarse axial three-dimensional (3D) maps. However, the disadvantages of histological techniques (static, axial manual registration, and data instability) and MR imaging (low-resolution) limit these applications in reconstructing the topography of nerve fascicles. Thus, enhanced microCT is a new technique for acquiring 3D intraneural topography of the human peripheral nerve fascicles both to improve our understanding of neurobiological principles and to guide accurate repair in the clinic. Additionally, 3D microstructure data can be used as a biofabrication model, which in turn can be used to fabricate scaffolds to repair long nerve gaps. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. 3D EIT image reconstruction with GREIT.

    Science.gov (United States)

    Grychtol, Bartłomiej; Müller, Beat; Adler, Andy

    2016-06-01

    Most applications of thoracic EIT use a single plane of electrodes on the chest from which a transverse image 'slice' is calculated. However, interpretation of EIT images is made difficult by the large region above and below the electrode plane to which EIT is sensitive. Volumetric EIT images using two (or more) electrode planes should help compensate, but are little used currently. The Graz consensus reconstruction algorithm for EIT (GREIT) has become popular in lung EIT. One shortcoming of the original formulation of GREIT is its restriction to reconstruction onto a 2D planar image. We present an extension of the GREIT algorithm to 3D and develop open-source tools to evaluate its performance as a function of the choice of stimulation and measurement pattern. Results show 3D GREIT using two electrode layers has significantly more uniform sensitivity profiles through the chest region. Overall, the advantages of 3D EIT are compelling.

  7. Graph-cut based discrete-valued image reconstruction.

    Science.gov (United States)

    Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim

    2015-05-01

    Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.

  8. Propagation of errors from the sensitivity image in list mode reconstruction

    International Nuclear Information System (INIS)

    Qi, Jinyi; Huesman, Ronald H.

    2003-01-01

    List mode image reconstruction is attracting renewed attention. It eliminates the storage of empty sinogram bins. However, a single back projection of all LORs is still necessary for the pre-calculation of a sensitivity image. Since the detection sensitivity is dependent on the object attenuation and detector efficiency, it must be computed for each study. Exact computation of the sensitivity image can be a daunting task for modern scanners with huge numbers of LORs. Thus, some fast approximate calculation may be desirable. In this paper, we theoretically analyze the error propagation from the sensitivity image into the reconstructed image. The theoretical analysis is based on the fixed point condition of the list mode reconstruction. The non-negativity constraint is modeled using the Kuhn-Tucker condition. With certain assumptions and the first order Taylor series approximation, we derive a closed form expression for the error in the reconstructed image as a function of the error in the sensitivity image. The result provides insights on what kind of error might be allowable in the sensitivity image. Computer simulations show that the theoretical results are in good agreement with the measured results

  9. Adaptive multiresolution method for MAP reconstruction in electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Erman, E-mail: erman.acar@tut.fi [Department of Signal Processing, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere (Finland); BioMediTech, Tampere University of Technology, Biokatu 10, 33520 Tampere (Finland); Peltonen, Sari; Ruotsalainen, Ulla [Department of Signal Processing, Tampere University of Technology, P.O. Box 553, FI-33101 Tampere (Finland); BioMediTech, Tampere University of Technology, Biokatu 10, 33520 Tampere (Finland)

    2016-11-15

    3D image reconstruction with electron tomography holds problems due to the severely limited range of projection angles and low signal to noise ratio of the acquired projection images. The maximum a posteriori (MAP) reconstruction methods have been successful in compensating for the missing information and suppressing noise with their intrinsic regularization techniques. There are two major problems in MAP reconstruction methods: (1) selection of the regularization parameter that controls the balance between the data fidelity and the prior information, and (2) long computation time. One aim of this study is to provide an adaptive solution to the regularization parameter selection problem without having additional knowledge about the imaging environment and the sample. The other aim is to realize the reconstruction using sequences of resolution levels to shorten the computation time. The reconstructions were analyzed in terms of accuracy and computational efficiency using a simulated biological phantom and publically available experimental datasets of electron tomography. The numerical and visual evaluations of the experiments show that the adaptive multiresolution method can provide more accurate results than the weighted back projection (WBP), simultaneous iterative reconstruction technique (SIRT), and sequential MAP expectation maximization (sMAPEM) method. The method is superior to sMAPEM also in terms of computation time and usability since it can reconstruct 3D images significantly faster without requiring any parameter to be set by the user. - Highlights: • An adaptive multiresolution reconstruction method is introduced for electron tomography. • The method provides more accurate results than the conventional reconstruction methods. • The missing wedge and noise problems can be compensated by the method efficiently.

  10. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  11. Use of an object model in three dimensional image reconstruction. Application in medical imaging

    International Nuclear Information System (INIS)

    Delageniere-Guillot, S.

    1993-02-01

    Threedimensional image reconstruction from projections corresponds to a set of techniques which give information on the inner structure of the studied object. These techniques are mainly used in medical imaging or in non destructive evaluation. Image reconstruction is an ill-posed problem. So the inversion has to be regularized. This thesis deals with the introduction of a priori information within the reconstruction algorithm. The knowledge is introduced through an object model. The proposed scheme is applied to the medical domain for cone beam geometry. We address two specific problems. First, we study the reconstruction of high contrast objects. This can be applied to bony morphology (bone/soft tissue) or to angiography (vascular structures opacified by injection of contrast agent). With noisy projections, the filtering steps of standard methods tend to smooth the natural transitions of the investigated object. In order to regularize the reconstruction but to keep contrast, we introduce a model of classes which involves the Markov random fields theory. We develop a reconstruction scheme: analytic reconstruction-reprojection. Then, we address the case of an object changing during the acquisition. This can be applied to angiography when the contrast agent is moving through the vascular tree. The problem is then stated as a dynamic reconstruction. We define an evolution AR model and we use an algebraic reconstruction method. We represent the object at a particular moment as an intermediary state between the state of the object at the beginning and at the end of the acquisition. We test both methods on simulated and real data, and we prove how the use of an a priori model can improve the results. (author)

  12. PET image reconstruction: mean, variance, and optimal minimax criterion

    International Nuclear Information System (INIS)

    Liu, Huafeng; Guo, Min; Gao, Fei; Shi, Pengcheng; Xue, Liying; Nie, Jing

    2015-01-01

    Given the noise nature of positron emission tomography (PET) measurements, it is critical to know the image quality and reliability as well as expected radioactivity map (mean image) for both qualitative interpretation and quantitative analysis. While existing efforts have often been devoted to providing only the reconstructed mean image, we present a unified framework for joint estimation of the mean and corresponding variance of the radioactivity map based on an efficient optimal min–max criterion. The proposed framework formulates the PET image reconstruction problem to be a transformation from system uncertainties to estimation errors, where the minimax criterion is adopted to minimize the estimation errors with possibly maximized system uncertainties. The estimation errors, in the form of a covariance matrix, express the measurement uncertainties in a complete way. The framework is then optimized by ∞-norm optimization and solved with the corresponding H ∞ filter. Unlike conventional statistical reconstruction algorithms, that rely on the statistical modeling methods of the measurement data or noise, the proposed joint estimation stands from the point of view of signal energies and can handle from imperfect statistical assumptions to even no a priori statistical assumptions. The performance and accuracy of reconstructed mean and variance images are validated using Monte Carlo simulations. Experiments on phantom scans with a small animal PET scanner and real patient scans are also conducted for assessment of clinical potential. (paper)

  13. A study of transverse image reconstruction with digital subtraction angiography

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Terasawa, Yuuji; Oda, Masahiko; Gotou, Hiroshi; Nasada, Toshiya; Tanooka, Masao

    1995-01-01

    For digital subtraction angiography (DSA) with C-type equipment, it is possible to radiate an X-ray during rotation and to collect data at different angular settings. We tried to reconstruct transverse image from data obtained by scanning DSA images at different angular settings. 88 projection data were obtained by rotating the object at 180deg during radiation. Reconstruction was made using the convolution method with pixel value distribution for each projection. Similarly, the image quality of the reconstructed images were compared with the unsubtracted and subtracted ones. In case a part object was outside the calculating region, artifacts were generally produced. However, the artifacts were reduced by subtracting the background from the image. In addition, the cupping phenomenon caused by beam hardening was relaxed and high-quality imaging could be achieved. This method will become even more effective, if we will use it with selective angiography in which the limited area is enhanced. (author)

  14. Optimization of PET image quality by means of 3D data acquisition and iterative image reconstruction

    International Nuclear Information System (INIS)

    Doll, J.; Zaers, J.; Trojan, H.; Bellemann, M.E.; Adam, L.E.; Haberkorn, U.; Brix, G.

    1998-01-01

    The experiments were performed at the latest-generation whole-body PET system ECAT EXACT HR + . For 2D data acquisition, a collimator of thin tungsten septa was positioned in the field-of-view. Prior to image reconstruction, the measured 3D data were sorted into 2D sinograms by using the Fourier rebinning (FORE) algorithm developed by M. Defrise. The standard filtered backprojection (FBP) method and an optimized ML/EM algorithm with overrelaxation for accelerated convergence were employed for image reconstruction. The spatial resolution of both methods as well as the convergence and noise properties of the ML/EM algorithm were studied in phantom measurements. Furthermore, patient data were acquired in the 2D mode as well as in the 3D mode and reconstructed with both techniques. At the same spatial resolution, the ML/EM-reconstructed images showed fewer and less prominent artefacts than the FBP-reconstructed images. The resulting improved detail conspicuously was achieved for the data acquired in the 2D mode as well as in the 3D mode. The best image quality was obtained by iterative 2D reconstruction of 3D data sets which were previously rebinned into 2D sinograms with help of the FORE algorithm. The phantom measurements revealed that 50 iteration steps with the otpimized ML/EM algorithm were sufficient to keep the relative quantitation error below 5%. (orig./MG) [de

  15. An automated 3D reconstruction method of UAV images

    Science.gov (United States)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  16. A comparison of reconstruction methods for undersampled atomic force microscopy images

    International Nuclear Information System (INIS)

    Luo, Yufan; Andersson, Sean B

    2015-01-01

    Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip–sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images. (paper)

  17. Reconstruction of Clear-PEM data with STIR

    CERN Document Server

    Martins, M V; Rodrigues, P; Trindade, A; Oliveira, N; Correia, M; Cordeiro, H; Ferreira, N C; Varela, J; Almeida, P

    2006-01-01

    The Clear-PEM scanner is a device based on planar detectors that is currently under development within the Crystal Clear Collaboration, at CERN. The basis for 3D image reconstruction in Clear-PEM is the software for tomographic image reconstruction (STIR). STIR is an open source object-oriented library that efficiently deals with the 3D positron emission tomography data sets. This library was originally designed for the traditional cylindrical scanners. In order to make its use compatible with planar scanner data, new functionalities were introduced into the library's framework. In this work, Monte Carlo simulations of the Clear-PEM scanner acquisitions were used as input for image reconstruction with the 3D OSEM algorithm available in STIR. The results presented indicate that dual plate PEM data can be accurately reconstructed using the enhanced STIR framework.

  18. Brief review of image reconstruction methods for imaging in nuclear medicine

    International Nuclear Information System (INIS)

    Murayama, Hideo

    1999-01-01

    Emission computed tomography (ECT) has as its major emphasis the quantitative determination of the moment to moment changes in the chemistry and flow physiology of injected or inhaled compounds labeled with radioactive atoms in a human body. The major difference lies in the fact that ECT seeks to describe the location and intensity of sources of emitted photons in an attenuating medium whereas transmission X-ray computed tomography (TCT) seeks to determine the distribution of the attenuating medium. A second important difference between ECT and TCT is that of available statistics. ECT statistics are low because each photon without control in emitting direction must be detected and analyzed, not as in TCT. The following sections review the historical development of image reconstruction methods for imaging in nuclear medicine, relevant intrinsic concepts for image reconstruction on ECT, and current status of volume imaging as well as a unique approach on iterative techniques for ECT. (author). 130 refs

  19. Fully three-dimensional image reconstruction in radiology and nuclear medicine. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The proceedings of the meeting on ''fully three-dimensional image reconstruction in radiology and nuclear medicine'' covers contributions on the following topics: CT imaging, PET imaging, fidelity; iterative and few-view CT, CT-analytical; PET/SPECT Compton analytical; doses - spectral methods; phase contrast; compressed sensing- sparse reconstruction; special issues; motion - cardiac.

  20. Adaptive Statistical Iterative Reconstruction-V Versus Adaptive Statistical Iterative Reconstruction: Impact on Dose Reduction and Image Quality in Body Computed Tomography.

    Science.gov (United States)

    Gatti, Marco; Marchisio, Filippo; Fronda, Marco; Rampado, Osvaldo; Faletti, Riccardo; Bergamasco, Laura; Ropolo, Roberto; Fonio, Paolo

    The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. Computed tomography scanner radiation output was 38% (29%-45%) lower (P ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.

  1. Recent improvements in Hurricane Imaging Radiometer’s brightness temperature image reconstruction

    Directory of Open Access Journals (Sweden)

    Sayak K. Biswas

    Full Text Available NASA MSFCs airborne Hurricane Imaging Radiometer (HIRAD uses interferometric aperture synthesis to produce high resolution wide swath images of scene brightness temperature (Tb distribution at four discrete C-band microwave frequencies (4.0, 5.0, 6.0 and 6.6 GHz. Images of ocean surface wind speed under heavy precipitation such as in tropical cyclones, is inferred from these measurements. The baseline HIRAD Tb reconstruction algorithm had produced prominent along-track streaks in the Tb images. Particularly the 4.0 GHz channel had been so dominated by the streaks as to be unusable.The loss of a frequency channel had compromised the final wind speed retrievals. During 2016, the HIRAD team made substantial progress in developing a quality controlled signal processing technique for the HIRAD data collected in 2015’s Tropical Cyclone Intensity (TCI experiment and reduced the effect of streaks in all channels including 4.0 GHz. 2000 MSC: 41A05, 41A10, 65D05, 65D17, Keywords: Microwave radiometry, Aperture synthesis, Image reconstruction, Hurricane winds

  2. Fast MR image reconstruction for partially parallel imaging with arbitrary k-space trajectories.

    Science.gov (United States)

    Ye, Xiaojing; Chen, Yunmei; Lin, Wei; Huang, Feng

    2011-03-01

    Both acquisition and reconstruction speed are crucial for magnetic resonance (MR) imaging in clinical applications. In this paper, we present a fast reconstruction algorithm for SENSE in partially parallel MR imaging with arbitrary k-space trajectories. The proposed method is a combination of variable splitting, the classical penalty technique and the optimal gradient method. Variable splitting and the penalty technique reformulate the SENSE model with sparsity regularization as an unconstrained minimization problem, which can be solved by alternating two simple minimizations: One is the total variation and wavelet based denoising that can be quickly solved by several recent numerical methods, whereas the other one involves a linear inversion which is solved by the optimal first order gradient method in our algorithm to significantly improve the performance. Comparisons with several recent parallel imaging algorithms indicate that the proposed method significantly improves the computation efficiency and achieves state-of-the-art reconstruction quality.

  3. TH-E-17A-02: High-Pitch and Sparse-View Helical 4D CT Via Iterative Image Reconstruction Method Based On Tensor Framelet

    International Nuclear Information System (INIS)

    Guo, M; Nam, H; Li, R; Xing, L; Gao, H

    2014-01-01

    Purpose: 4D CT is routinely performed during radiation therapy treatment planning of thoracic and abdominal cancers. Compared with the cine mode, the helical mode is advantageous in temporal resolution. However, a low pitch (∼0.1) for 4D CT imaging is often required instead of the standard pitch (∼1) for static imaging, since standard image reconstruction based on analytic method requires the low-pitch scanning in order to satisfy the data sufficient condition when reconstructing each temporal frame individually. In comparison, the flexible iterative method enables the reconstruction of all temporal frames simultaneously, so that the image similarity among frames can be utilized to possibly perform high-pitch and sparse-view helical 4D CT imaging. The purpose of this work is to investigate such an exciting possibility for faster imaging with lower dose. Methods: A key for highpitch and sparse-view helical 4D CT imaging is the simultaneous reconstruction of all temporal frames using the prior that temporal frames are continuous along the temporal direction. In this work, such a prior is regularized through the sparsity transform based on spatiotemporal tensor framelet (TF) as a multilevel and high-order extension of total variation transform. Moreover, GPU-based fast parallel computing of X-ray transform and its adjoint together with split Bregman method is utilized for solving the 4D image reconstruction problem efficiently and accurately. Results: The simulation studies based on 4D NCAT phantoms were performed with various pitches (i.e., 0.1, 0.2, 0.5, and 1) and sparse views (i.e., 400 views per rotation instead of standard >2000 views per rotation), using 3D iterative individual reconstruction method based on 3D TF and 4D iterative simultaneous reconstruction method based on 4D TF respectively. Conclusion: The proposed TF-based simultaneous 4D image reconstruction method enables high-pitch and sparse-view helical 4D CT with lower dose and faster speed

  4. THE USE OF MOBILE LASER SCANNING DATA AND UNMANNED AERIAL VEHICLE IMAGES FOR 3D MODEL RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2013-08-01

    Full Text Available The increasing availability in multiple data sources acquired by different sensor platforms has provided the great advantages for desired result achievement. This paper proposes the use of both mobile laser scanning (MLS data and Unmanned Aerial Vehicle (UAV images for 3D model reconstruction. Due to no available exterior orientation parameters for UAV images, the first task is to georeference these images to 3D points. In order to fast and accurate acquire 3D points which are also easy to be found the corresponding locations on UAV images, automated pole extraction from MLS was developed. After georeferencing UAV images, building roofs are acquired from those images and building walls are extracted from MLS data. The roofs and the walls are combined to achieve the complete building models.

  5. Influence of iterative image reconstruction on CT-based calcium score measurements

    NARCIS (Netherlands)

    van Osch, Jochen A. C.; Mouden, Mohamed; van Dalen, Jorn A.; Timmer, Jorik R.; Reiffers, Stoffer; Knollema, Siert; Greuter, Marcel J. W.; Ottervanger, Jan Paul; Jager, Piet L.

    Iterative reconstruction techniques for coronary CT angiography have been introduced as an alternative for traditional filter back projection (FBP) to reduce image noise, allowing improved image quality and a potential for dose reduction. However, the impact of iterative reconstruction on the

  6. Real-time three-dimensional soft tissue reconstruction for laparoscopic surgery.

    Science.gov (United States)

    Kowalczuk, Jędrzej; Meyer, Avishai; Carlson, Jay; Psota, Eric T; Buettner, Shelby; Pérez, Lance C; Farritor, Shane M; Oleynikov, Dmitry

    2012-12-01

    Accurate real-time 3D models of the operating field have the potential to enable augmented reality for endoscopic surgery. A new system is proposed to create real-time 3D models of the operating field that uses a custom miniaturized stereoscopic video camera attached to a laparoscope and an image-based reconstruction algorithm implemented on a graphics processing unit (GPU). The proposed system was evaluated in a porcine model that approximates the viewing conditions of in vivo surgery. To assess the quality of the models, a synthetic view of the operating field was produced by overlaying a color image on the reconstructed 3D model, and an image rendered from the 3D model was compared with a 2D image captured from the same view. Experiments conducted with an object of known geometry demonstrate that the system produces 3D models accurate to within 1.5 mm. The ability to produce accurate real-time 3D models of the operating field is a significant advancement toward augmented reality in minimally invasive surgery. An imaging system with this capability will potentially transform surgery by helping novice and expert surgeons alike to delineate variance in internal anatomy accurately.

  7. Evaluation of the image quality in digital breast tomosynthesis (DBT) employed with a compressed-sensing (CS)-based reconstruction algorithm by using the mammographic accreditation phantom

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Cho, Heemoon; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Park, Chulkyu; Lim, Hyunwoo; Kim, Kyuseok; Kim, Guna; Park, Soyoung; Woo, Taeho; Choi, Sungil

    2015-12-21

    In this work, we have developed a prototype digital breast tomosynthesis (DBT) system which mainly consists of an x-ray generator (28 kV{sub p}, 7 mA s), a CMOS-type flat-panel detector (70-μm pixel size, 230.5×339 mm{sup 2} active area), and a rotational arm to move the x-ray generator in an arc. We employed a compressed-sensing (CS)-based reconstruction algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate DBT reconstruction. Here the CS is a state-of-the-art mathematical theory for solving the inverse problems, which exploits the sparsity of the image with substantially high accuracy. We evaluated the reconstruction quality in terms of the detectability, the contrast-to-noise ratio (CNR), and the slice-sensitive profile (SSP) by using the mammographic accreditation phantom (Model 015, CIRS Inc.) and compared it to the FBP-based quality. The CS-based algorithm yielded much better image quality, preserving superior image homogeneity, edge sharpening, and cross-plane resolution, compared to the FBP-based one. - Highlights: • A prototype digital breast tomosynthesis (DBT) system is developed. • Compressed-sensing (CS) based reconstruction framework is employed. • We reconstructed high-quality DBT images by using the proposed reconstruction framework.

  8. A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery

    International Nuclear Information System (INIS)

    Fu Dongshan; Kuduvalli, Gopinath

    2008-01-01

    The authors developed a fast and accurate two-dimensional (2D)-three-dimensional (3D) image registration method to perform precise initial patient setup and frequent detection and correction for patient movement during image-guided cranial radiosurgery treatment. In this method, an approximate geometric relationship is first established to decompose a 3D rigid transformation in the 3D patient coordinate into in-plane transformations and out-of-plane rotations in two orthogonal 2D projections. Digitally reconstructed radiographs are generated offline from a preoperative computed tomography volume prior to treatment and used as the reference for patient position. A multiphase framework is designed to register the digitally reconstructed radiographs with the x-ray images periodically acquired during patient setup and treatment. The registration in each projection is performed independently; the results in the two projections are then combined and converted to a 3D rigid transformation by 2D-3D geometric backprojection. The in-plane transformation and the out-of-plane rotation are estimated using different search methods, including multiresolution matching, steepest descent minimization, and one-dimensional search. Two similarity measures, optimized pattern intensity and sum of squared difference, are applied at different registration phases to optimize accuracy and computation speed. Various experiments on an anthropomorphic head-and-neck phantom showed that, using fiducial registration as a gold standard, the registration errors were 0.33±0.16 mm (s.d.) in overall translation and 0.29 deg. ±0.11 deg. (s.d.) in overall rotation. The total targeting errors were 0.34±0.16 mm (s.d.), 0.40±0.2 mm (s.d.), and 0.51±0.26 mm (s.d.) for the targets at the distances of 2, 6, and 10 cm from the rotation center, respectively. The computation time was less than 3 s on a computer with an Intel Pentium 3.0 GHz dual processor

  9. PIRPLE: a penalized-likelihood framework for incorporation of prior images in CT reconstruction

    International Nuclear Information System (INIS)

    Stayman, J Webster; Dang, Hao; Ding, Yifu; Siewerdsen, Jeffrey H

    2013-01-01

    Over the course of diagnosis and treatment, it is common for a number of imaging studies to be acquired. Such imaging sequences can provide substantial patient-specific prior knowledge about the anatomy that can be incorporated into a prior-image-based tomographic reconstruction for improved image quality and better dose utilization. We present a general methodology using a model-based reconstruction approach including formulations of the measurement noise that also integrates prior images. This penalized-likelihood technique adopts a sparsity enforcing penalty that incorporates prior information yet allows for change between the current reconstruction and the prior image. Moreover, since prior images are generally not registered with the current image volume, we present a modified model-based approach that seeks a joint registration of the prior image in addition to the reconstruction of projection data. We demonstrate that the combined prior-image- and model-based technique outperforms methods that ignore the prior data or lack a noise model. Moreover, we demonstrate the importance of registration for prior-image-based reconstruction methods and show that the prior-image-registered penalized-likelihood estimation (PIRPLE) approach can maintain a high level of image quality in the presence of noisy and undersampled projection data. (paper)

  10. Comparison of different reconstruction algorithms for three-dimensional ultrasound imaging in a neurosurgical setting.

    Science.gov (United States)

    Miller, D; Lippert, C; Vollmer, F; Bozinov, O; Benes, L; Schulte, D M; Sure, U

    2012-09-01

    Freehand three-dimensional ultrasound imaging (3D-US) is increasingly used in image-guided surgery. During image acquisition, a set of B-scans is acquired that is distributed in a non-parallel manner over the area of interest. Reconstructing these images into a regular array allows 3D visualization. However, the reconstruction process may introduce artefacts and may therefore reduce image quality. The aim of the study is to compare different algorithms with respect to image quality and diagnostic value for image guidance in neurosurgery. 3D-US data sets were acquired during surgery of various intracerebral lesions using an integrated ultrasound-navigation device. They were stored for post-hoc evaluation. Five different reconstruction algorithms, a standard multiplanar reconstruction with interpolation (MPR), a pixel nearest neighbour method (PNN), a voxel nearest neighbour method (VNN) and two voxel based distance-weighted algorithms (VNN2 and DW) were tested with respect to image quality and artefact formation. The capability of the algorithm to fill gaps within the sample volume was investigated and a clinical evaluation with respect to the diagnostic value of the reconstructed images was performed. MPR was significantly worse than the other algorithms in filling gaps. In an image subtraction test, VNN2 and DW reliably reconstructed images even if large amounts of data were missing. However, the quality of the reconstruction improved, if data acquisition was performed in a structured manner. When evaluating the diagnostic value of reconstructed axial, sagittal and coronal views, VNN2 and DW were judged to be significantly better than MPR and VNN. VNN2 and DW could be identified as robust algorithms that generate reconstructed US images with a high diagnostic value. These algorithms improve the utility and reliability of 3D-US imaging during intraoperative navigation. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Comparison of clinical and physics scoring of PET images when image reconstruction parameters are varied

    International Nuclear Information System (INIS)

    Walsh, C.; Johnston, C.; Sheehy, N.; Reilly, G. O.

    2013-01-01

    In this study the quantitative and qualitative image quality (IQ) measurements with clinical judgement of IQ in positron emission tomography (PET) were compared. The limitations of IQ metrics and the proposed criteria of acceptability for PET scanners are discussed. Phantom and patient images were reconstructed using seven different iterative reconstruction protocols. For each reconstructed set of images, IQ was scored based both on the visual analysis and on the quantitative metrics. The quantitative physics metrics did not rank the reconstruction protocols in the same order as the clinicians' scoring of perceived IQ (R s = -0.54). Better agreement was achieved when comparing the clinical perception of IQ to the physicist's visual assessment of IQ in the phantom images (R s = +0.59). The closest agreement was seen between the quantitative physics metrics and the measurement of the standard uptake values (SUVs) in small tumours (R s = +0.92). Given the disparity between the clinical perception of IQ and the physics metrics a cautious approach to use of IQ measurements for determining suspension levels is warranted. (authors)

  12. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image

    Directory of Open Access Journals (Sweden)

    Chengyu Guo

    2016-02-01

    Full Text Available Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach.

  13. ℓ0 Gradient Minimization Based Image Reconstruction for Limited-Angle Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Wei Yu

    Full Text Available In medical and industrial applications of computed tomography (CT imaging, limited by the scanning environment and the risk of excessive X-ray radiation exposure imposed to the patients, reconstructing high quality CT images from limited projection data has become a hot topic. X-ray imaging in limited scanning angular range is an effective imaging modality to reduce the radiation dose to the patients. As the projection data available in this modality are incomplete, limited-angle CT image reconstruction is actually an ill-posed inverse problem. To solve the problem, image reconstructed by conventional filtered back projection (FBP algorithm frequently results in conspicuous streak artifacts and gradual changed artifacts nearby edges. Image reconstruction based on total variation minimization (TVM can significantly reduce streak artifacts in few-view CT, but it suffers from the gradual changed artifacts nearby edges in limited-angle CT. To suppress this kind of artifacts, we develop an image reconstruction algorithm based on ℓ0 gradient minimization for limited-angle CT in this paper. The ℓ0-norm of the image gradient is taken as the regularization function in the framework of developed reconstruction model. We transformed the optimization problem into a few optimization sub-problems and then, solved these sub-problems in the manner of alternating iteration. Numerical experiments are performed to validate the efficiency and the feasibility of the developed algorithm. From the statistical analysis results of the performance evaluations peak signal-to-noise ratio (PSNR and normalized root mean square distance (NRMSD, it shows that there are significant statistical differences between different algorithms from different scanning angular ranges (p<0.0001. From the experimental results, it also indicates that the developed algorithm outperforms classical reconstruction algorithms in suppressing the streak artifacts and the gradual changed

  14. Image reconstruction in computerized tomography using the convolution method

    International Nuclear Information System (INIS)

    Oliveira Rebelo, A.M. de.

    1984-03-01

    In the present work an algoritin was derived, using the analytical convolution method (filtered back-projection) for two-dimensional or three-dimensional image reconstruction in computerized tomography applied to non-destructive testing and to the medical use. This mathematical model is based on the analytical Fourier transform method for image reconstruction. This model consists of a discontinuous system formed by an NxN array of cells (pixels). The attenuation in the object under study of a colimated gamma ray beam has been determined for various positions and incidence angles (projections) in terms of the interaction of the beam with the intercepted pixels. The contribution of each pixel to beam attenuation was determined using the weight function W ij which was used for simulated tests. Simulated tests using standard objects with attenuation coefficients in the range of 0,2 to 0,7 cm -1 were carried out using cell arrays of up to 25x25. One application was carried out in the medical area simulating image reconstruction of an arm phantom with attenuation coefficients in the range of 0,2 to 0,5 cm -1 using cell arrays of 41x41. The simulated results show that, in objects with a great number of interfaces and great variations of attenuation coefficients at these interfaces, a good reconstruction is obtained with the number of projections equal to the reconstruction matrix dimension. A good reconstruction is otherwise obtained with fewer projections. (author) [pt

  15. 3-D Reconstruction From Satellite Images

    DEFF Research Database (Denmark)

    Denver, Troelz

    1999-01-01

    of planetary surfaces, but other purposes is considered as well. The system performance is measured with respect to the precision and the time consumption.The reconstruction process is divided into four major areas: Acquisition, calibration, matching/reconstruction and presentation. Each of these areas...... are treated individually. A detailed treatment of various lens distortions is required, in order to correct for these problems. This subject is included in the acquisition part. In the calibration part, the perspective distortion is removed from the images. Most attention has been paid to the matching problem...

  16. Use of quantitative SPECT/CT reconstruction in 99mTc-sestamibi imaging of patients with renal masses.

    Science.gov (United States)

    Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S

    2018-02-01

    Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust

  17. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

    Science.gov (United States)

    Yamagiwa, Masatomo; Ogawa, Takayuki; Minamikawa, Takeo; Abdelsalam, Dahi Ghareab; Okabe, Kyosuke; Tsurumachi, Noriaki; Mizutani, Yasuhiro; Iwata, Testuo; Yamamoto, Hirotsugu; Yasui, Takeshi

    2018-06-01

    Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

  18. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

    Science.gov (United States)

    Yamagiwa, Masatomo; Ogawa, Takayuki; Minamikawa, Takeo; Abdelsalam, Dahi Ghareab; Okabe, Kyosuke; Tsurumachi, Noriaki; Mizutani, Yasuhiro; Iwata, Testuo; Yamamoto, Hirotsugu; Yasui, Takeshi

    2018-04-01

    Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

  19. Digital filtering and reconstruction of coded aperture images

    International Nuclear Information System (INIS)

    Tobin, K.W. Jr.

    1987-01-01

    The real-time neutron radiography facility at the University of Virginia has been used for both transmission radiography and computed tomography. Recently, a coded aperture system has been developed to permit the extraction of three dimensional information from a low intensity field of radiation scattered by an extended object. Short wave-length radiations (e.g. neutrons) are not easily image because of the difficulties in achieving diffraction and refraction with a conventional lens imaging system. By using a coded aperture approach, an imaging system has been developed that records and reconstructs an object from an intensity distribution. This system has a signal-to-noise ratio that is proportional to the total open area of the aperture making it ideal for imaging with a limiting intensity radiation field. The main goal of this research was to develope and implement the digital methods and theory necessary for the reconstruction process. Several real-time video systems, attached to an Intellect-100 image processor, a DEC PDP-11 micro-computer, and a Convex-1 parallel processing mainframe were employed. This system, coupled with theoretical extensions and improvements, allowed for retrieval of information previously unobtainable by earlier optical methods. The effect of thermal noise, shot noise, and aperture related artifacts were examined so that new digital filtering techniques could be constructed and implemented. Results of image data filtering prior to and following the reconstruction process are reported. Improvements related to the different signal processing methods are emphasized. The application and advantages of this imaging technique to the field of non-destructive testing are also discussed

  20. A Novel Kernel-Based Regularization Technique for PET Image Reconstruction

    Directory of Open Access Journals (Sweden)

    Abdelwahhab Boudjelal

    2017-06-01

    Full Text Available Positron emission tomography (PET is an imaging technique that generates 3D detail of physiological processes at the cellular level. The technique requires a radioactive tracer, which decays and releases a positron that collides with an electron; consequently, annihilation photons are emitted, which can be measured. The purpose of PET is to use the measurement of photons to reconstruct the distribution of radioisotopes in the body. Currently, PET is undergoing a revamp, with advancements in data measurement instruments and the computing methods used to create the images. These computer methods are required to solve the inverse problem of “image reconstruction from projection”. This paper proposes a novel kernel-based regularization technique for maximum-likelihood expectation-maximization ( κ -MLEM to reconstruct the image. Compared to standard MLEM, the proposed algorithm is more robust and is more effective in removing background noise, whilst preserving the edges; this suppresses image artifacts, such as out-of-focus slice blur.

  1. Image Reconstruction Based on Homotopy Perturbation Inversion Method for Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2013-01-01

    Full Text Available The image reconstruction for electrical impedance tomography (EIT mathematically is a typed nonlinear ill-posed inverse problem. In this paper, a novel iteration regularization scheme based on the homotopy perturbation technique, namely, homotopy perturbation inversion method, is applied to investigate the EIT image reconstruction problem. To verify the feasibility and effectiveness, simulations of image reconstruction have been performed in terms of considering different locations, sizes, and numbers of the inclusions, as well as robustness to data noise. Numerical results indicate that this method can overcome the numerical instability and is robust to data noise in the EIT image reconstruction. Moreover, compared with the classical Landweber iteration method, our approach improves the convergence rate. The results are promising.

  2. The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Chang; PENG Zu-Jie; FU Yun-Chang

    2011-01-01

    @@ For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object field reconstruction involves the diffraction calculation of the optic wave passing through the optical system.We propose two methods to reconstruct the object field.The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship.The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper.The reconstruction formulae which easily use classic diffraction integral are derived.Finally, experimental verifications are also accomplished.%For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object Reid reconstruction involves the diffraction calculation of the optic wave passing through the optical system. We propose two methods to reconstruct the object field. The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship. The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper. The reconstruction formulae which easily use classic diffraction integral are derived. Finally, experimental verifications are also accomplished.

  3. Optoelectronic Computer Architecture Development for Image Reconstruction

    National Research Council Canada - National Science Library

    Forber, Richard

    1996-01-01

    .... Specifically, we collaborated with UCSD and ERIM on the development of an optically augmented electronic computer for high speed inverse transform calculations to enable real time image reconstruction...

  4. Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.

    Science.gov (United States)

    Song, Ying; Zhu, Zhen; Lu, Yang; Liu, Qiegen; Zhao, Jun

    2014-03-01

    To improve the magnetic resonance imaging (MRI) data acquisition speed while maintaining the reconstruction quality, a novel method is proposed for multislice MRI reconstruction from undersampled k-space data based on compressed-sensing theory using dictionary learning. There are two aspects to improve the reconstruction quality. One is that spatial correlation among slices is used by extending the atoms in dictionary learning from patches to blocks. The other is that the dictionary-learning scheme is used at two resolution levels; i.e., a low-resolution dictionary is used for sparse coding and a high-resolution dictionary is used for image updating. Numerical experiments are carried out on in vivo 3D MR images of brains and abdomens with a variety of undersampling schemes and ratios. The proposed method (dual-DLMRI) achieves better reconstruction quality than conventional reconstruction methods, with the peak signal-to-noise ratio being 7 dB higher. The advantages of the dual dictionaries are obvious compared with the single dictionary. Parameter variations ranging from 50% to 200% only bias the image quality within 15% in terms of the peak signal-to-noise ratio. Dual-DLMRI effectively uses the a priori information in the dual-dictionary scheme and provides dramatically improved reconstruction quality. Copyright © 2013 Wiley Periodicals, Inc.

  5. Blockwise conjugate gradient methods for image reconstruction in volumetric CT.

    Science.gov (United States)

    Qiu, W; Titley-Peloquin, D; Soleimani, M

    2012-11-01

    Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. 3D widefield light microscope image reconstruction without dyes

    Science.gov (United States)

    Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.

    2015-03-01

    3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.

  7. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  8. A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging

    Science.gov (United States)

    Lim, Hongki; Dewaraja, Yuni K.; Fessler, Jeffrey A.

    2018-02-01

    Most existing PET image reconstruction methods impose a nonnegativity constraint in the image domain that is natural physically, but can lead to biased reconstructions. This bias is particularly problematic for Y-90 PET because of the low probability positron production and high random coincidence fraction. This paper investigates a new PET reconstruction formulation that enforces nonnegativity of the projections instead of the voxel values. This formulation allows some negative voxel values, thereby potentially reducing bias. Unlike the previously reported NEG-ML approach that modifies the Poisson log-likelihood to allow negative values, the new formulation retains the classical Poisson statistical model. To relax the non-negativity constraint embedded in the standard methods for PET reconstruction, we used an alternating direction method of multipliers (ADMM). Because choice of ADMM parameters can greatly influence convergence rate, we applied an automatic parameter selection method to improve the convergence speed. We investigated the methods using lung to liver slices of XCAT phantom. We simulated low true coincidence count-rates with high random fractions corresponding to the typical values from patient imaging in Y-90 microsphere radioembolization. We compared our new methods with standard reconstruction algorithms and NEG-ML and a regularized version thereof. Both our new method and NEG-ML allow more accurate quantification in all volumes of interest while yielding lower noise than the standard method. The performance of NEG-ML can degrade when its user-defined parameter is tuned poorly, while the proposed algorithm is robust to any count level without requiring parameter tuning.

  9. An Lq–Lp optimization framework for image reconstruction of electrical resistance tomography

    International Nuclear Information System (INIS)

    Zhao, Jia; Xu, Yanbin; Dong, Feng

    2014-01-01

    Image reconstruction in electrical resistance tomography (ERT) is an ill-posed and nonlinear problem, which is easily affected by measurement noise. The regularization method with L 2 constraint term or L 1 constraint term is often used to solve the inverse problem of ERT. It shows that the reconstruction method with L 2 regularization puts smoothness to obtain stability in the image reconstruction process, which is blurry at the interface of different conductivities. The regularization method with L 1 norm is powerful at dealing with the over-smoothing effects, which is beneficial in obtaining a sharp transaction in conductivity distribution. To find the reason for these effects, an L q –L p optimization framework (1 ⩽ q ⩽ 2, 1 ⩽ p ⩽ 2) for the image reconstruction of ERT is presented in this paper. The L q –L p optimization framework is solved based on an approximation handling with Gauss–Newton iteration algorithm. The optimization framework is tested for image reconstruction of ERT with different models and the effects of the L p regularization term on the quality of the reconstructed images are discussed with both simulation and experiment. By comparing the reconstructed results with different p in the regularization term, it is found that a large penalty is implemented on small data in the solution when p is small and a lesser penalty is implemented on small data in the solution when p is larger. It also makes the reconstructed images smoother and more easily affected by noise when p is larger. (paper)

  10. Image Reconstruction of Metal Pipe in Electrical Resistance Tomography

    Directory of Open Access Journals (Sweden)

    Suzanna RIDZUAN AW

    2017-02-01

    Full Text Available This paper demonstrates a Linear Back Projection (LBP algorithm based on the reconstruction of conductivity distributions to identify different sizes and locations of bubble phantoms in a metal pipe. Both forward and inverse problems are discussed. Reconstructed images of the phantoms under test conditions are presented. From the results, it was justified that the sensitivity maps of the conducting boundary strategy can be applied successfully in identifying the location for the phantom of interest using LBP algorithm. Additionally, the number and spatial distribution of the bubble phantoms can be clearly distinguished at any location in the pipeline. It was also shown that the reconstructed images agree well with the bubble phantoms.

  11. Multi-view Multi-sparsity Kernel Reconstruction for Multi-class Image Classification

    KAUST Repository

    Zhu, Xiaofeng

    2015-05-28

    This paper addresses the problem of multi-class image classification by proposing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short) model. Given images (including test images and training images) representing with multiple visual features, the MMKR first maps them into a high-dimensional space, e.g., a reproducing kernel Hilbert space (RKHS), where test images are then linearly reconstructed by some representative training images, rather than all of them. Furthermore a classification rule is proposed to classify test images. Experimental results on real datasets show the effectiveness of the proposed MMKR while comparing to state-of-the-art algorithms.

  12. A comparative study of three-dimensional reconstructive images of temporomandibular joint using computed tomogram

    International Nuclear Information System (INIS)

    Lim, Suk Young; Koh, Kwang Joon

    1993-01-01

    The purpose of this study was to clarify the spatial relationship of temporomandibular joint and to an aid in the diagnosis of temporomandibular disorder. For this study, three-dimensional images of normal temporomandibular joint were reconstructed by computer image analysis system and three-dimensional reconstructive program integrated in computed tomography. The obtained results were as follows : 1. Two-dimensional computed tomograms had the better resolution than three dimensional computed tomograms in the evaluation of bone structure and the disk of TMJ. 2. Direct sagittal computed tomograms and coronal computed tomograms had the better resolution in the evaluation of the disk of TMJ. 3. The positional relationship of the disk could be visualized, but the configuration of the disk could not be clearly visualized on three-dimensional reconstructive CT images. 4. Three-dimensional reconstructive CT images had the smoother margin than three-dimensional images reconstructed by computer image analysis system, but the images of the latter had the better perspective. 5. Three-dimensional reconstructive images had the better spatial relationship of the TMJ articulation, and the joint space were more clearly visualized on dissection images.

  13. The effects of slice thickness and reconstructive parameters on VR image quality in multi-slice CT

    International Nuclear Information System (INIS)

    Gao Zhenlong; Wang Qiang; Liu Caixia

    2005-01-01

    Objective: To explore the effects of slice thickness, reconstructive thickness and reconstructive interval on VR image quality in multi-slice CT, in order to select the best slice thickness and reconstructive parameters for the imaging. Methods: Multi-slice CT scan was applied on a rubber dinosaur model with different slice thickness. VR images were reconstructed with different reconstructive thickness and reconstructive interval. Five radiologists were invited to evaluate the quality of the images without knowing anything about the parameters. Results: The slice thickness, reconstructive thickness and reconstructive interval did have effects on VR image quality and the effective degree was different. The effective coefficients were V 1 =1413.033, V 2 =563.733, V 3 =390.533, respectively. The parameters interacted with the others (P<0.05). The smaller of those parameters, the better of the image quality. With a small slice thickness and a reconstructive slice equal to slice thickness, the image quality had no obvious difference when the reconstructive interval was 1/2, 1/3, 1/4 of the slice thickness. Conclusion: A relative small scan slice thickness, a reconstructive slice equal to slice thickness and a reconstructive interval 1/2 of the slice thickness should be selected for the best VR image quality. The image quality depends mostly on the slice thickness. (authors)

  14. An ART iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Zhang Li; Huang Zhifeng; Kang Kejun; Chen Zhiqiang; Fang Qiaoguang; Zhu Peiping

    2009-01-01

    X-ray diffraction enhanced imaging (DEI) has extremely high sensitivity for weakly absorbing low-Z samples in medical and biological fields. In this paper, we propose an Algebra Reconstruction Technique (ART) iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging (DEI-CT). An Ordered Subsets (OS) technique is used to accelerate the ART reconstruction. Few-view reconstruction is also studied, and a partial differential equation (PDE) type filter which has the ability of edge-preserving and denoising is used to improve the image quality and eliminate the artifacts. The proposed algorithm is validated with both the numerical simulations and the experiment at the Beijing synchrotron radiation facility (BSRF). (authors)

  15. Clinical evaluation of PET image reconstruction using a spatial resolution model

    DEFF Research Database (Denmark)

    Andersen, Flemming Littrup; Klausen, Thomas Levin; Loft, Annika

    2013-01-01

    PURPOSE: PET image resolution is variable across the measured field-of-view and described by the point spread function (PSF). When accounting for the PSF during PET image reconstruction image resolution is improved and partial volume effects are reduced. Here, we evaluate the effect of PSF......-based reconstruction on lesion quantification in routine clinical whole-body (WB) PET/CT imaging. MATERIALS AND METHODS: 41 oncology patients were referred for a WB-PET/CT examination (Biograph 40 TruePoint). Emission data were acquired at 2.5min/bed at 1hpi of 400 MBq [18F]-FDG. Attenuation-corrected PET images were...... reconstructed on 336×336-matrices using: (R1) standard AW-OSEM (4 iter, 8 subsets, 4mm Gaussian) and (R2) AW-OSEM with PSF (3 iter, 21 subsets, 2mm). Blinded and randomised reading of R1- and R2-PET images was performed. Individual lesions were located and counted independently on both sets of images...

  16. An iterative reconstruction method of complex images using expectation maximization for radial parallel MRI

    International Nuclear Information System (INIS)

    Choi, Joonsung; Kim, Dongchan; Oh, Changhyun; Han, Yeji; Park, HyunWook

    2013-01-01

    In MRI (magnetic resonance imaging), signal sampling along a radial k-space trajectory is preferred in certain applications due to its distinct advantages such as robustness to motion, and the radial sampling can be beneficial for reconstruction algorithms such as parallel MRI (pMRI) due to the incoherency. For radial MRI, the image is usually reconstructed from projection data using analytic methods such as filtered back-projection or Fourier reconstruction after gridding. However, the quality of the reconstructed image from these analytic methods can be degraded when the number of acquired projection views is insufficient. In this paper, we propose a novel reconstruction method based on the expectation maximization (EM) method, where the EM algorithm is remodeled for MRI so that complex images can be reconstructed. Then, to optimize the proposed method for radial pMRI, a reconstruction method that uses coil sensitivity information of multichannel RF coils is formulated. Experiment results from synthetic and in vivo data show that the proposed method introduces better reconstructed images than the analytic methods, even from highly subsampled data, and provides monotonic convergence properties compared to the conjugate gradient based reconstruction method. (paper)

  17. Modelling the physics in iterative reconstruction for transmission computed tomography

    Science.gov (United States)

    Nuyts, Johan; De Man, Bruno; Fessler, Jeffrey A.; Zbijewski, Wojciech; Beekman, Freek J.

    2013-01-01

    There is an increasing interest in iterative reconstruction (IR) as a key tool to improve quality and increase applicability of X-ray CT imaging. IR has the ability to significantly reduce patient dose, it provides the flexibility to reconstruct images from arbitrary X-ray system geometries and it allows to include detailed models of photon transport and detection physics, to accurately correct for a wide variety of image degrading effects. This paper reviews discretisation issues and modelling of finite spatial resolution, Compton scatter in the scanned object, data noise and the energy spectrum. Widespread implementation of IR with highly accurate model-based correction, however, still requires significant effort. In addition, new hardware will provide new opportunities and challenges to improve CT with new modelling. PMID:23739261

  18. Total variation regularization in measurement and image space for PET reconstruction

    KAUST Repository

    Burger, M

    2014-09-18

    © 2014 IOP Publishing Ltd. The aim of this paper is to test and analyse a novel technique for image reconstruction in positron emission tomography, which is based on (total variation) regularization on both the image space and the projection space. We formulate our variational problem considering both total variation penalty terms on the image and on an idealized sinogram to be reconstructed from a given Poisson distributed noisy sinogram. We prove existence, uniqueness and stability results for the proposed model and provide some analytical insight into the structures favoured by joint regularization. For the numerical solution of the corresponding discretized problem we employ the split Bregman algorithm and extensively test the approach in comparison to standard total variation regularization on the image. The numerical results show that an additional penalty on the sinogram performs better on reconstructing images with thin structures.

  19. A robust state-space kinetics-guided framework for dynamic PET image reconstruction

    International Nuclear Information System (INIS)

    Tong, S; Alessio, A M; Kinahan, P E; Liu, H; Shi, P

    2011-01-01

    Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data are expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H ∞ filtering is adopted for robust estimation. H ∞ filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help us to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches.

  20. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

    International Nuclear Information System (INIS)

    Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan

    2009-01-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular

  1. A resolution-enhancing image reconstruction method for few-view differential phase-contrast tomography

    Science.gov (United States)

    Guan, Huifeng; Anastasio, Mark A.

    2017-03-01

    It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities such as differential X-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task. In this work, a two-step sub-space reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. It is demonstrated that the resulting iterative algorithm can mitigate the high-frequency information loss caused by data incompleteness and produce images that have better preserved high spatial frequency content than those produced by use of a conventional penalized least squares (PLS) estimator.

  2. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.

    Science.gov (United States)

    Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M

    2011-01-20

    A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical

  3. Three-dimensional image reconstruction. I. Determination of pattern orientation

    International Nuclear Information System (INIS)

    Blankenbecler, Richard

    2004-01-01

    The problem of determining the Euler angles of a randomly oriented three-dimensional (3D) object from its 2D Fraunhofer diffraction patterns is discussed. This problem arises in the reconstruction of a positive semidefinite 3D object using oversampling techniques. In such a problem, the data consist of a measured set of magnitudes from 2D tomographic images of the object at several unknown orientations. After the orientation angles are determined, the object itself can then be reconstructed by a variety of methods using oversampling, the magnitude data from the 2D images, physical constraints on the image, and then iteration to determine the phases

  4. Consistent reconstruction of 4D fetal heart ultrasound images to cope with fetal motion.

    Science.gov (United States)

    Tanner, Christine; Flach, Barbara; Eggenberger, Céline; Mattausch, Oliver; Bajka, Michael; Goksel, Orcun

    2017-08-01

    4D ultrasound imaging of the fetal heart relies on reconstructions from B-mode images. In the presence of fetal motion, current approaches suffer from artifacts, which are unrecoverable for single sweeps. We propose to use many sweeps and exploit the resulting redundancy to automatically recover from motion by reconstructing a 4D image which is consistent in phase, space, and time. An interactive visualization framework to view animated ultrasound slices from 4D reconstructions on arbitrary planes was developed using a magnetically tracked mock probe. We first quantified the performance of 10 4D reconstruction formulations on simulated data. Reconstructions of 14 in vivo sequences by a baseline, the current state-of-the-art, and the proposed approach were then visually ranked with respect to temporal quality on orthogonal views. Rankings from 5 observers showed that the proposed 4D reconstruction approach significantly improves temporal image quality in comparison with the baseline. The 4D reconstructions of the baseline and the proposed methods were then inspected interactively for accessibility to clinically important views and rated for their clinical usefulness by an ultrasound specialist in obstetrics and gynecology. The reconstructions by the proposed method were rated as 'very useful' in 71% and were statistically significantly more useful than the baseline reconstructions. Multi-sweep fetal heart ultrasound acquisitions in combination with consistent 4D image reconstruction improves quality as well as clinical usefulness of the resulting 4D images in the presence of fetal motion.

  5. Image Reconstruction and Evaluation: Applications on Micro-Surfaces and Lenna Image Representation

    Directory of Open Access Journals (Sweden)

    Mohammad Mayyas

    2016-09-01

    Full Text Available This article develops algorithms for the characterization and the visualization of micro-scale features using a small number of sample points, with the goal of mitigating the measurement shortcomings, which are often destructive or time consuming. The popular measurement techniques that are used in imaging of micro-surfaces include the 3D stylus or interferometric profilometry and Scanning Electron Microscopy (SEM, where both could represent the micro-surface characteristics in terms of 3D dimensional topology and greyscale image, respectively. Such images could be highly dense; therefore, traditional image processing techniques might be computationally expensive. We implement the algorithms in several case studies to rapidly examine the microscopic features of micro-surface of Microelectromechanical System (MEMS, and then we validate the results using a popular greyscale image; i.e., “Lenna” image. The contributions of this research include: First, development of local and global algorithm based on modified Thin Plate Spline (TPS model to reconstruct high resolution images of the micro-surface’s topography, and its derivatives using low resolution images. Second, development of a bending energy algorithm from our modified TPS model for filtering out image defects. Finally, development of a computationally efficient technique, referred to as Windowing, which combines TPS and Linear Sequential Estimation (LSE methods, to enhance the visualization of images. The Windowing technique allows rapid image reconstruction based on the reduction of inverse problem.

  6. MRI reconstruction of multi-image acquisitions using a rank regularizer with data reordering

    Energy Technology Data Exchange (ETDEWEB)

    Adluru, Ganesh, E-mail: gadluru@gmail.com; Anderson, Jeffrey [UCAIR, Department of Radiology, University of Utah, Salt Lake City, Utah 84108 (United States); Gur, Yaniv [IBM Almaden Research Center, San Jose, California 95120 (United States); Chen, Liyong; Feinberg, David [Advanced MRI Technologies, Sebastpool, California, 95472 (United States); DiBella, Edward V. R. [UCAIR, Department of Radiology, University of Utah, Salt Lake City, Utah 84108 and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-08-15

    Purpose: To improve rank constrained reconstructions for undersampled multi-image MRI acquisitions. Methods: Motivated by the recent developments in low-rank matrix completion theory and its applicability to rapid dynamic MRI, a new reordering-based rank constrained reconstruction of undersampled multi-image data that uses prior image information is proposed. Instead of directly minimizing the nuclear norm of a matrix of estimated images, the nuclear norm of reordered matrix values is minimized. The reordering is based on the prior image estimates. The method is tested on brain diffusion imaging data and dynamic contrast enhanced myocardial perfusion data. Results: Good quality images from data undersampled by a factor of three for diffusion imaging and by a factor of 3.5 for dynamic cardiac perfusion imaging with respiratory motion were obtained. Reordering gave visually improved image quality over standard nuclear norm minimization reconstructions. Root mean squared errors with respect to ground truth images were improved by ∼18% and ∼16% with reordering for diffusion and perfusion applications, respectively. Conclusions: The reordered low-rank constraint is a way to inject prior image information that offers improvements over a standard low-rank constraint for undersampled multi-image MRI reconstructions.

  7. MRI reconstruction of multi-image acquisitions using a rank regularizer with data reordering

    International Nuclear Information System (INIS)

    Adluru, Ganesh; Anderson, Jeffrey; Gur, Yaniv; Chen, Liyong; Feinberg, David; DiBella, Edward V. R.

    2015-01-01

    Purpose: To improve rank constrained reconstructions for undersampled multi-image MRI acquisitions. Methods: Motivated by the recent developments in low-rank matrix completion theory and its applicability to rapid dynamic MRI, a new reordering-based rank constrained reconstruction of undersampled multi-image data that uses prior image information is proposed. Instead of directly minimizing the nuclear norm of a matrix of estimated images, the nuclear norm of reordered matrix values is minimized. The reordering is based on the prior image estimates. The method is tested on brain diffusion imaging data and dynamic contrast enhanced myocardial perfusion data. Results: Good quality images from data undersampled by a factor of three for diffusion imaging and by a factor of 3.5 for dynamic cardiac perfusion imaging with respiratory motion were obtained. Reordering gave visually improved image quality over standard nuclear norm minimization reconstructions. Root mean squared errors with respect to ground truth images were improved by ∼18% and ∼16% with reordering for diffusion and perfusion applications, respectively. Conclusions: The reordered low-rank constraint is a way to inject prior image information that offers improvements over a standard low-rank constraint for undersampled multi-image MRI reconstructions

  8. Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions.

    Science.gov (United States)

    Robson, Philip M; Grant, Aaron K; Madhuranthakam, Ananth J; Lattanzi, Riccardo; Sodickson, Daniel K; McKenzie, Charles A

    2008-10-01

    Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g-factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal-to-noise ratio and g-factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple "prescan" measurement of noise amplitude and correlation in the phased-array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal-to-noise ratio and g-factor. The "pseudo multiple replica" method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel-by-pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k-space trajectories, image reconstruction, or noise conditioning techniques. (c) 2008 Wiley-Liss, Inc.

  9. SU-F-I-49: Vendor-Independent, Model-Based Iterative Reconstruction On a Rotating Grid with Coordinate-Descent Optimization for CT Imaging Investigations

    International Nuclear Information System (INIS)

    Young, S; Hoffman, J; McNitt-Gray, M; Noo, F

    2016-01-01

    Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with a quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low

  10. SU-F-I-49: Vendor-Independent, Model-Based Iterative Reconstruction On a Rotating Grid with Coordinate-Descent Optimization for CT Imaging Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Young, S; Hoffman, J; McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States); Noo, F [University of Utah, Salt Lake City, UT (United States)

    2016-06-15

    Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with a quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low

  11. The optimal monochromatic spectral computed tomographic imaging plus adaptive statistical iterative reconstruction algorithm can improve the superior mesenteric vessel image quality

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiao-Ping; Zuo, Zi-Wei; Xu, Ying-Jin; Wang, Jia-Ning [CT/MRI room, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000 (China); Liu, Huai-Jun, E-mail: hebeiliu@outlook.com [Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000 (China); Liang, Guang-Lu [CT/MRI room, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000 (China); Gao, Bu-Lang, E-mail: browngao@163.com [Department of Medical Research, Shijiazhuang First Hospital, Shijiazhuang, Hebei, 050011 (China)

    2017-04-15

    Objective: To investigate the effect of the optimal monochromatic spectral computed tomography (CT) plus adaptive statistical iterative reconstruction on the improvement of the image quality of the superior mesenteric artery and vein. Materials and methods: The gemstone spectral CT angiographic data of 25 patients were reconstructed in the following three groups: 70 KeV, the optimal monochromatic imaging, and the optimal monochromatic plus 40%iterative reconstruction mode. The CT value, image noises (IN), background CT value and noises, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and image scores of the vessels and surrounding tissues were analyzed. Results: In the 70 KeV, the optimal monochromatic and the optimal monochromatic images plus 40% iterative reconstruction group, the mean scores of image quality were 3.86, 4.24 and 4.25 for the superior mesenteric artery and 3.46, 3.78 and 3.81 for the superior mesenteric vein, respectively. The image quality scores for the optimal monochromatic and the optimal monochromatic plus 40% iterative reconstruction groups were significantly greater than for the 70 KeV group (P < 0.05). The vascular CT value, image noise, background noise, CNR and SNR were significantly (P < 0.001) greater in the optimal monochromatic and the optimal monochromatic images plus 40% iterative reconstruction group than in the 70 KeV group. The optimal monochromatic plus 40% iterative reconstruction group had significantly (P < 0.05) lower image and background noise but higher CNR and SNR than the other two groups. Conclusion: The optimal monochromatic imaging combined with 40% iterative reconstruction using low-contrast agent dosage and low injection rate can significantly improve the image quality of the superior mesenteric artery and vein.

  12. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    Science.gov (United States)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  13. Research of the system response of neutron double scatter imaging for MLEM reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M., E-mail: wyj2013@163.com [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China); Peng, B.D.; Sheng, L.; Li, K.N.; Zhang, X.P.; Li, Y.; Li, B.K.; Yuan, Y.; Wang, P.W.; Zhang, X.D.; Li, C.H. [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China)

    2015-03-01

    A Maximum Likelihood image reconstruction technique has been applied to neutron scatter imaging. The response function of the imaging system can be obtained by Monte Carlo simulation, which is very time-consuming if the number of image pixels and particles is large. In this work, to improve time efficiency, an analytical approach based on the probability of neutron interaction and transport in the detector is developed to calculate the system response function. The response function was applied to calculate the relative efficiency of the neutron scatter imaging system as a function of the incident neutron energy. The calculated results agreed with simulations by the MCNP5 software. Then the maximum likelihood expectation maximization (MLEM) reconstruction method with the system response function was used to reconstruct data simulated by Monte Carlo method. The results showed that there was good consistency between the reconstruction position and true position. Compared with back-projection reconstruction, the improvement in image quality was obvious, and the locations could be discerned easily for multiple radiation point sources.

  14. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data

    International Nuclear Information System (INIS)

    Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-01-01

    Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy. (paper)

  15. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.

    Science.gov (United States)

    Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-07-21

    Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy.

  16. A comparison framework for temporal image reconstructions in electrical impedance tomography

    International Nuclear Information System (INIS)

    Gagnon, Hervé; Adler, Andy; Grychtol, Bartłomiej

    2015-01-01

    Electrical impedance tomography (EIT) provides low-resolution images of internal conductivity distributions, but is able to achieve relatively high temporal resolutions. Most EIT image reconstruction algorithms do not explicitly account for the temporal constraints on the measurements or physiological processes under investigation. Instead, algorithms typically assume both that the conductivity distribution does not change during the acquisition of each EIT data frame, and that frames can be reconstructed independently, without consideration of the correlation between images. A failure to account for these temporal effects will result in aliasing-related artefacts in images. Several methods have been proposed to compensate for these effects, including interpolation of raw data, and reconstruction algorithms using Kalman and temporal filtering. However, no systematic work has been performed to understand the severity of the temporal artefacts nor the extent to which algorithms can account for them. We seek to address this need by developing a temporal comparison framework and figures of merit to assess the ability of reconstruction algorithms to account for temporal effects. Using this approach, we compare combinations of three reconstruction algorithms using three EIT data frame types: perfect, realistic and interpolated. The results show that, without accounting for temporal effects, artefacts are present in images for dynamic conductivity contrasts at frequencies 10–20 times slower than the frame rate. The proposed methods show some improvements in reducing these artefacts. (paper)

  17. Connections model for tomographic images reconstruction

    International Nuclear Information System (INIS)

    Rodrigues, R.G.S.; Pela, C.A.; Roque, S.F. A.C.

    1998-01-01

    This paper shows an artificial neural network with an adequately topology for tomographic image reconstruction. The associated error function is derived and the learning algorithm is make. The simulated results are presented and demonstrate the existence of a generalized solution for nets with linear activation function. (Author)

  18. PET image reconstruction with rotationally symmetric polygonal pixel grid based highly compressible system matrix

    International Nuclear Information System (INIS)

    Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu

    2013-01-01

    To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)

  19. Missing data reconstruction using Gaussian mixture models for fingerprint images

    Science.gov (United States)

    Agaian, Sos S.; Yeole, Rushikesh D.; Rao, Shishir P.; Mulawka, Marzena; Troy, Mike; Reinecke, Gary

    2016-05-01

    Publisher's Note: This paper, originally published on 25 May 2016, was replaced with a revised version on 16 June 2016. If you downloaded the original PDF, but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. One of the most important areas in biometrics is matching partial fingerprints in fingerprint databases. Recently, significant progress has been made in designing fingerprint identification systems for missing fingerprint information. However, a dependable reconstruction of fingerprint images still remains challenging due to the complexity and the ill-posed nature of the problem. In this article, both binary and gray-level images are reconstructed. This paper also presents a new similarity score to evaluate the performance of the reconstructed binary image. The offered fingerprint image identification system can be automated and extended to numerous other security applications such as postmortem fingerprints, forensic science, investigations, artificial intelligence, robotics, all-access control, and financial security, as well as for the verification of firearm purchasers, driver license applicants, etc.

  20. Bayesian image reconstruction for improving detection performance of muon tomography.

    Science.gov (United States)

    Wang, Guobao; Schultz, Larry J; Qi, Jinyi

    2009-05-01

    Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.

  1. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    International Nuclear Information System (INIS)

    Wang, Jing; Gu, Xuejun

    2013-01-01

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  2. Three-dimensional reconstruction of CT images

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshiaki; Kattoh, Keiichi; Kawakami, Genichiroh; Igami, Isao; Mariya, Yasushi; Nakamura, Yasuhiko; Saitoh, Yohko; Tamura, Koreroku; Shinozaki, Tatsuyo

    1986-09-01

    Computed tomography (CT) has the ability to provide sensitive visualization of organs and lesions. Owing to the nature of CT to be transaxial images, a structure which is greater than a certain size appears as several serial CT images. Consequently each observer must reconstruct those images into a three-dimensional (3-D) form mentally. It has been supposed to be of great use if such a 3-D form can be described as a definite figure. A new computer program has been developed which can produce 3-D figures from the profiles of organs and lesions on CT images using spline curves. The figures obtained through this method are regarded to have practical applications.

  3. Images from the Mind: BCI image reconstruction based on Rapid Serial Visual Presentations of polygon primitives

    Directory of Open Access Journals (Sweden)

    Luís F Seoane

    2015-04-01

    Full Text Available We provide a proof of concept for an EEG-based reconstruction of a visual image which is on a user's mind. Our approach is based on the Rapid Serial Visual Presentation (RSVP of polygon primitives and Brain-Computer Interface (BCI technology. In an experimental setup, subjects were presented bursts of polygons: some of them contributed to building a target image (because they matched the shape and/or color of the target while some of them did not. The presentation of the contributing polygons triggered attention-related EEG patterns. These Event Related Potentials (ERPs could be determined using BCI classification and could be matched to the stimuli that elicited them. These stimuli (i.e. the ERP-correlated polygons were accumulated in the display until a satisfactory reconstruction of the target image was reached. As more polygons were accumulated, finer visual details were attained resulting in more challenging classification tasks. In our experiments, we observe an average classification accuracy of around 75%. An in-depth investigation suggests that many of the misclassifications were not misinterpretations of the BCI concerning the users' intent, but rather caused by ambiguous polygons that could contribute to reconstruct several different images. When we put our BCI-image reconstruction in perspective with other RSVP BCI paradigms, there is large room for improvement both in speed and accuracy. These results invite us to be optimistic. They open a plethora of possibilities to explore non-invasive BCIs for image reconstruction both in healthy and impaired subjects and, accordingly, suggest interesting recreational and clinical applications.

  4. A neural network image reconstruction technique for electrical impedance tomography

    International Nuclear Information System (INIS)

    Adler, A.; Guardo, R.

    1994-01-01

    Reconstruction of Images in Electrical Impedance Tomography requires the solution of a nonlinear inverse problem on noisy data. This problem is typically ill-conditioned and requires either simplifying assumptions or regularization based on a priori knowledge. This paper presents a reconstruction algorithm using neural network techniques which calculates a linear approximation of the inverse problem directly from finite element simulations of the forward problem. This inverse is adapted to the geometry of the medium and the signal-to-noise ratio (SNR) used during network training. Results show good conductivity reconstruction where measurement SNR is similar to the training conditions. The advantages of this method are its conceptual simplicity and ease of implementation, and the ability to control the compromise between the noise performance and resolution of the image reconstruction

  5. Scan time reduction in {sup 23}Na-Magnetic Resonance Imaging using the chemical shift imaging sequence. Evaluation of an iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Weingaertner, Sebastian; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Wetterling, Friedrich [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Dublin Univ. (Ireland) Trinity Inst. of Neuroscience; Fatar, Marc [Heidelberg Univ., Mannheim (Germany). Dept. of Neurology; Neumaier-Probst, Eva [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2015-07-01

    To evaluate potential scan time reduction in {sup 23}Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI {sup 23}Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered {sup 1}H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error < 12%) and an almost identical delineation of the stroke region (mismatch < 6%). The acquisition of undersampled {sup 23}Na-CSI images enables up to three-fold scan time reduction with improved image quality compared to conventional methods of scan time saving.

  6. Holographic images reconstructed from GMR-based fringe pattern

    Directory of Open Access Journals (Sweden)

    Kikuchi Hiroshi

    2013-01-01

    Full Text Available We have developed a magneto-optical spatial light modulator (MOSLM using giant magneto-resistance (GMR structures for realizing a holographic three-dimensional (3D display. For practical applications, reconstructed image of hologram consisting of GMR structures should be investigated in order to study the feasibility of the MOSLM. In this study, we fabricated a hologram with GMR based fringe-pattern and demonstrated a reconstructed image. A fringe-pattern convolving a crossshaped image was calculated by a conventional binary computer generated hologram (CGH technique. The CGH-pattern has 2,048 × 2,048 with 5 μm pixel pitch. The GMR stack consists of a Tb-Fe-Co/CoFe pinned layer, a Ag spacer, a Gd-Fe free layer for light modulation, and a Ru capping layer, was deposited by dc-magnetron sputtering. The GMR hologram was formed using photo-lithography and Krion milling processes, followed by the deposition of a Tb-Fe-Co reference layer with large coercivity and the same Kerr-rotation angle compared to the free layer, and a lift-off process. The reconstructed image of the ON-state was clearly observed and successfully distinguished from the OFF-state by switching the magnetization direction of the free-layer with an external magnetic field. These results indicate the possibility of realizing a holographic 3D display by the MOSLM using the GMR structures.

  7. Parallel MR image reconstruction using augmented Lagrangian methods.

    Science.gov (United States)

    Ramani, Sathish; Fessler, Jeffrey A

    2011-03-01

    Magnetic resonance image (MRI) reconstruction using SENSitivity Encoding (SENSE) requires regularization to suppress noise and aliasing effects. Edge-preserving and sparsity-based regularization criteria can improve image quality, but they demand computation-intensive nonlinear optimization. In this paper, we present novel methods for regularized MRI reconstruction from undersampled sensitivity encoded data--SENSE-reconstruction--using the augmented Lagrangian (AL) framework for solving large-scale constrained optimization problems. We first formulate regularized SENSE-reconstruction as an unconstrained optimization task and then convert it to a set of (equivalent) constrained problems using variable splitting. We then attack these constrained versions in an AL framework using an alternating minimization method, leading to algorithms that can be implemented easily. The proposed methods are applicable to a general class of regularizers that includes popular edge-preserving (e.g., total-variation) and sparsity-promoting (e.g., l(1)-norm of wavelet coefficients) criteria and combinations thereof. Numerical experiments with synthetic and in vivo human data illustrate that the proposed AL algorithms converge faster than both general-purpose optimization algorithms such as nonlinear conjugate gradient (NCG) and state-of-the-art MFISTA.

  8. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth.

    Science.gov (United States)

    Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C

    2015-04-13

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  9. Patient-adapted reconstruction and acquisition dynamic imaging method (PARADIGM) for MRI

    International Nuclear Information System (INIS)

    Aggarwal, Nitin; Bresler, Yoram

    2008-01-01

    Dynamic magnetic resonance imaging (MRI) is a challenging problem because the MR data acquisition is often not fast enough to meet the combined spatial and temporal Nyquist sampling rate requirements. Current approaches to this problem include hardware-based acceleration of the acquisition, and model-based image reconstruction techniques. In this paper we propose an alternative approach, called PARADIGM, which adapts both the acquisition and reconstruction to the spatio-temporal characteristics of the imaged object. The approach is based on time-sequential sampling theory, addressing the problem of acquiring a spatio-temporal signal under the constraint that only a limited amount of data can be acquired at a time instant. PARADIGM identifies a model class for the particular imaged object using a scout MR scan or auxiliary data. This object-adapted model is then used to optimize MR data acquisition, such that the imaging constraints are met, acquisition speed requirements are minimized, essentially perfect reconstruction of any object in the model class is guaranteed, and the inverse problem of reconstructing the dynamic object has a condition number of one. We describe spatio-temporal object models for various dynamic imaging applications including cardiac imaging. We present the theory underlying PARADIGM and analyze its performance theoretically and numerically. We also propose a practical MR imaging scheme for 2D dynamic cardiac imaging based on the theory. For this application, PARADIGM is predicted to provide a 10–25 × acceleration compared to the optimal non-adaptive scheme. Finally we present generalized optimality criteria and extend the scheme to dynamic imaging with three spatial dimensions

  10. Generalized Fourier slice theorem for cone-beam image reconstruction.

    Science.gov (United States)

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  11. Three-dimensional atomic-image reconstruction from a single-energy Si(100) photoelectron hologram

    International Nuclear Information System (INIS)

    Matsushita, T.; Agui, A.; Yoshigoe, A.

    2004-01-01

    Full text: J. J. Barton proposed a basic algorithm for three-dimensional atomic-image reconstruction from photoelectron hologram, which is based on the Fourier transform(FT). In the use of a single-energy hologram, the twin-image appears in principle. The twin image disappears in the use of multi-energy hologram, which requires longer measuring time and variable-energy light source. But the reconstruction in the use of a simple FT is difficult because the scattered electron wave is not s-symmetric wave. Many theoretical and experimental approaches based on the FT have been researched. We propose a new algorithm so-called 'scattering pattern matrix', which is not based on the FT. The algorithm utilizes the 'scattering pattern', and iterative gradient method. Real space image can be reconstructed from a single-energy hologram without initial model. In addition, the twin image disappears. We reconstructed the three-dimensional atomic image of Si bulk structure from an experimental single-energy hologram of Si(100) 2s emission, which is shown The experiment was performed with using a Al-K α light source. The experimental setup is shown in. Then we calculated a vertical slice image of the reconstructed Si bulk structure, which is shown. The atomic images appear around the expected positions

  12. Hierarchical Bayesian sparse image reconstruction with application to MRFM.

    Science.gov (United States)

    Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves

    2009-09-01

    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.

  13. Theoretical Analysis of Penalized Maximum-Likelihood Patlak Parametric Image Reconstruction in Dynamic PET for Lesion Detection.

    Science.gov (United States)

    Yang, Li; Wang, Guobao; Qi, Jinyi

    2016-04-01

    Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.

  14. A mixed-order nonlinear diffusion compressed sensing MR image reconstruction.

    Science.gov (United States)

    Joy, Ajin; Paul, Joseph Suresh

    2018-03-07

    Avoid formation of staircase artifacts in nonlinear diffusion-based MR image reconstruction without compromising computational speed. Whereas second-order diffusion encourages the evolution of pixel neighborhood with uniform intensities, fourth-order diffusion considers smooth region to be not necessarily a uniform intensity region but also a planar region. Therefore, a controlled application of fourth-order diffusivity function is used to encourage second-order diffusion to reconstruct the smooth regions of the image as a plane rather than a group of blocks, while not being strong enough to introduce the undesirable speckle effect. Proposed method is compared with second- and fourth-order nonlinear diffusion reconstruction, total variation (TV), total generalized variation, and higher degree TV using in vivo data sets for different undersampling levels with application to dictionary learning-based reconstruction. It is observed that the proposed technique preserves sharp boundaries in the image while preventing the formation of staircase artifacts in the regions of smoothly varying pixel intensities. It also shows reduced error measures compared with second-order nonlinear diffusion reconstruction or TV and converges faster than TV-based methods. Because nonlinear diffusion is known to be an effective alternative to TV for edge-preserving reconstruction, the crucial aspect of staircase artifact removal is addressed. Reconstruction is found to be stable for the experimentally determined range of fourth-order regularization parameter, and therefore not does not introduce a parameter search. Hence, the computational simplicity of second-order diffusion is retained. © 2018 International Society for Magnetic Resonance in Medicine.

  15. Breast EIT using a new projected image reconstruction method with multi-frequency measurements.

    Science.gov (United States)

    Lee, Eunjung; Ts, Munkh-Erdene; Seo, Jin Keun; Woo, Eung Je

    2012-05-01

    We propose a new method to produce admittivity images of the breast for the diagnosis of breast cancer using electrical impedance tomography(EIT). Considering the anatomical structure of the breast, we designed an electrode configuration where current-injection and voltage-sensing electrodes are separated in such a way that internal current pathways are approximately along the tangential direction of an array of voltage-sensing electrodes. Unlike conventional EIT imaging methods where the number of injected currents is maximized to increase the total amount of measured data, current is injected only twice between two pairs of current-injection electrodes attached along the circumferential side of the breast. For each current injection, the induced voltages are measured from the front surface of the breast using as many voltage-sensing electrodes as possible. Although this electrode configurational lows us to measure induced voltages only on the front surface of the breast,they are more sensitive to an anomaly inside the breast since such an injected current tends to produce a more uniform internal current density distribution. Furthermore, the sensitivity of a measured boundary voltage between two equipotential lines on the front surface of the breast is improved since those equipotential lines are perpendicular to the primary direction of internal current streamlines. One should note that this novel data collection method is different from those of other frontal plane techniques such as the x-ray projection and T-scan imaging methods because we do not get any data on the plane that is perpendicular to the current flow. To reconstruct admittivity images using two measured voltage data sets, a new projected image reconstruction algorithm is developed. Numerical simulations demonstrate the frequency-difference EIT imaging of the breast. The results show that the new method is promising to accurately detect and localize small anomalies inside the breast.

  16. Breast EIT using a new projected image reconstruction method with multi-frequency measurements

    International Nuclear Information System (INIS)

    Lee, Eunjung; Ts, Munkh-Erdene; Seo, Jin Keun; Woo, Eung Je

    2012-01-01

    We propose a new method to produce admittivity images of the breast for the diagnosis of breast cancer using electrical impedance tomography (EIT). Considering the anatomical structure of the breast, we designed an electrode configuration where current-injection and voltage-sensing electrodes are separated in such a way that internal current pathways are approximately along the tangential direction of an array of voltage-sensing electrodes. Unlike conventional EIT imaging methods where the number of injected currents is maximized to increase the total amount of measured data, current is injected only twice between two pairs of current-injection electrodes attached along the circumferential side of the breast. For each current injection, the induced voltages are measured from the front surface of the breast using as many voltage-sensing electrodes as possible. Although this electrode configuration allows us to measure induced voltages only on the front surface of the breast, they are more sensitive to an anomaly inside the breast since such an injected current tends to produce a more uniform internal current density distribution. Furthermore, the sensitivity of a measured boundary voltage between two equipotential lines on the front surface of the breast is improved since those equipotential lines are perpendicular to the primary direction of internal current streamlines. One should note that this novel data collection method is different from those of other frontal plane techniques such as the x-ray projection and T-scan imaging methods because we do not get any data on the plane that is perpendicular to the current flow. To reconstruct admittivity images using two measured voltage data sets, a new projected image reconstruction algorithm is developed. Numerical simulations demonstrate the frequency-difference EIT imaging of the breast. The results show that the new method is promising to accurately detect and localize small anomalies inside the breast. (paper)

  17. Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms

    International Nuclear Information System (INIS)

    Tang Jie; Nett, Brian E; Chen Guanghong

    2009-01-01

    Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.

  18. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    Science.gov (United States)

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-01-01

    Abstract. Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method. PMID:28464120

  19. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  20. Reconstructing flaw image using dataset of full matrix capture technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Yong Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

  1. Motion-map constrained image reconstruction (MCIR): Application to four-dimensional cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Justin C. [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 and Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093 (United States); Kim, Jin Sung [Department of Radiation Oncology, Samsung Medical Center, Seoul 135-710 (Korea, Republic of); Park, Sung Ho [Department of Medical Physics, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 138-736 (Korea, Republic of); Liu, Zhaowei [Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093 (United States); Song, Bongyong; Song, William Y. [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2013-12-15

    Purpose: Utilization of respiratory correlated four-dimensional cone-beam computed tomography (4DCBCT) has enabled verification of internal target motion and volume immediately prior to treatment. However, with current standard CBCT scan, 4DCBCT poses challenge for reconstruction due to the fact that multiple phase binning leads to insufficient number of projection data to reconstruct and thus cause streaking artifacts. The purpose of this study is to develop a novel 4DCBCT reconstruction algorithm framework called motion-map constrained image reconstruction (MCIR), that allows reconstruction of high quality and high phase resolution 4DCBCT images with no more than the imaging dose as well as projections used in a standard free breathing 3DCBCT (FB-3DCBCT) scan.Methods: The unknown 4DCBCT volume at each phase was mathematically modeled as a combination of FB-3DCBCT and phase-specific update vector which has an associated motion-map matrix. The motion-map matrix, which is the key innovation of the MCIR algorithm, was defined as the matrix that distinguishes voxels that are moving from stationary ones. This 4DCBCT model was then reconstructed with compressed sensing (CS) reconstruction framework such that the voxels with high motion would be aggressively updated by the phase-wise sorted projections and the voxels with less motion would be minimally updated to preserve the FB-3DCBCT. To evaluate the performance of our proposed MCIR algorithm, we evaluated both numerical phantoms and a lung cancer patient. The results were then compared with the (1) clinical FB-3DCBCT reconstructed using the FDK, (2) 4DCBCT reconstructed using the FDK, and (3) 4DCBCT reconstructed using the well-known prior image constrained compressed sensing (PICCS).Results: Examination of the MCIR algorithm showed that high phase-resolved 4DCBCT with sets of up to 20 phases using a typical FB-3DCBCT scan could be reconstructed without compromising the image quality. Moreover, in comparison with

  2. Motion-map constrained image reconstruction (MCIR): Application to four-dimensional cone-beam computed tomography

    International Nuclear Information System (INIS)

    Park, Justin C.; Kim, Jin Sung; Park, Sung Ho; Liu, Zhaowei; Song, Bongyong; Song, William Y.

    2013-01-01

    Purpose: Utilization of respiratory correlated four-dimensional cone-beam computed tomography (4DCBCT) has enabled verification of internal target motion and volume immediately prior to treatment. However, with current standard CBCT scan, 4DCBCT poses challenge for reconstruction due to the fact that multiple phase binning leads to insufficient number of projection data to reconstruct and thus cause streaking artifacts. The purpose of this study is to develop a novel 4DCBCT reconstruction algorithm framework called motion-map constrained image reconstruction (MCIR), that allows reconstruction of high quality and high phase resolution 4DCBCT images with no more than the imaging dose as well as projections used in a standard free breathing 3DCBCT (FB-3DCBCT) scan.Methods: The unknown 4DCBCT volume at each phase was mathematically modeled as a combination of FB-3DCBCT and phase-specific update vector which has an associated motion-map matrix. The motion-map matrix, which is the key innovation of the MCIR algorithm, was defined as the matrix that distinguishes voxels that are moving from stationary ones. This 4DCBCT model was then reconstructed with compressed sensing (CS) reconstruction framework such that the voxels with high motion would be aggressively updated by the phase-wise sorted projections and the voxels with less motion would be minimally updated to preserve the FB-3DCBCT. To evaluate the performance of our proposed MCIR algorithm, we evaluated both numerical phantoms and a lung cancer patient. The results were then compared with the (1) clinical FB-3DCBCT reconstructed using the FDK, (2) 4DCBCT reconstructed using the FDK, and (3) 4DCBCT reconstructed using the well-known prior image constrained compressed sensing (PICCS).Results: Examination of the MCIR algorithm showed that high phase-resolved 4DCBCT with sets of up to 20 phases using a typical FB-3DCBCT scan could be reconstructed without compromising the image quality. Moreover, in comparison with

  3. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    Science.gov (United States)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  4. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    DEFF Research Database (Denmark)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell

    2007-01-01

    in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method...

  5. Human eyeball model reconstruction and quantitative analysis.

    Science.gov (United States)

    Xing, Qi; Wei, Qi

    2014-01-01

    Determining shape of the eyeball is important to diagnose eyeball disease like myopia. In this paper, we present an automatic approach to precisely reconstruct three dimensional geometric shape of eyeball from MR Images. The model development pipeline involved image segmentation, registration, B-Spline surface fitting and subdivision surface fitting, neither of which required manual interaction. From the high resolution resultant models, geometric characteristics of the eyeball can be accurately quantified and analyzed. In addition to the eight metrics commonly used by existing studies, we proposed two novel metrics, Gaussian Curvature Analysis and Sphere Distance Deviation, to quantify the cornea shape and the whole eyeball surface respectively. The experiment results showed that the reconstructed eyeball models accurately represent the complex morphology of the eye. The ten metrics parameterize the eyeball among different subjects, which can potentially be used for eye disease diagnosis.

  6. Comparison of adaptive statistical iterative reconstruction (ASiRTM) and model-based iterative reconstruction (VeoTM) for paediatric abdominal CT examinations: an observer performance study of diagnostic image quality

    International Nuclear Information System (INIS)

    Hultenmo, Maria; Caisander, Haakan; Mack, Karsten; Thilander-Klang, Anne

    2016-01-01

    The diagnostic image quality of 75 paediatric abdominal computed tomography (CT) examinations reconstructed with two different iterative reconstruction (IR) algorithms-adaptive statistical IR (ASiR TM ) and model-based IR (Veo TM )-was compared. Axial and coronal images were reconstructed with 70 % ASiR with the Soft TM convolution kernel and with the Veo algorithm. The thickness of the reconstructed images was 2.5 or 5 mm depending on the scanning protocol used. Four radiologists graded the delineation of six abdominal structures and the diagnostic usefulness of the image quality. The Veo reconstruction significantly improved the visibility of most of the structures compared with ASiR in all subgroups of images. For coronal images, the Veo reconstruction resulted in significantly improved ratings of the diagnostic use of the image quality compared with the ASiR reconstruction. This was not seen for the axial images. The greatest improvement using Veo reconstruction was observed for the 2.5 mm coronal slices. (authors)

  7. First results of genetic algorithm application in ML image reconstruction in emission tomography

    International Nuclear Information System (INIS)

    Smolik, W.

    1999-01-01

    This paper concerns application of genetic algorithm in maximum likelihood image reconstruction in emission tomography. The example of genetic algorithm for image reconstruction is presented. The genetic algorithm was based on the typical genetic scheme modified due to the nature of solved problem. The convergence of algorithm was examined. The different adaption functions, selection and crossover methods were verified. The algorithm was tested on simulated SPECT data. The obtained results of image reconstruction are discussed. (author)

  8. An accurate and efficient system model of iterative image reconstruction in high-resolution pinhole SPECT for small animal research

    Energy Technology Data Exchange (ETDEWEB)

    Huang, P-C; Hsu, C-H [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Hsiao, I-T [Department Medical Imaging and Radiological Sciences, Chang Gung University, Tao-Yuan, Taiwan (China); Lin, K M [Medical Engineering Research Division, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan (China)], E-mail: cghsu@mx.nthu.edu.tw

    2009-06-15

    Accurate modeling of the photon acquisition process in pinhole SPECT is essential for optimizing resolution. In this work, the authors develop an accurate system model in which pinhole finite aperture and depth-dependent geometric sensitivity are explicitly included. To achieve high-resolution pinhole SPECT, the voxel size is usually set in the range of sub-millimeter so that the total number of image voxels increase accordingly. It is inevitably that a system matrix that models a variety of favorable physical factors will become extremely sophisticated. An efficient implementation for such an accurate system model is proposed in this research. We first use the geometric symmetries to reduce redundant entries in the matrix. Due to the sparseness of the matrix, only non-zero terms are stored. A novel center-to-radius recording rule is also developed to effectively describe the relation between a voxel and its related detectors at every projection angle. The proposed system matrix is also suitable for multi-threaded computing. Finally, the accuracy and effectiveness of the proposed system model is evaluated in a workstation equipped with two Quad-Core Intel X eon processors.

  9. Quantitative evaluation of ASiR image quality: an adaptive statistical iterative reconstruction technique

    Science.gov (United States)

    Van de Casteele, Elke; Parizel, Paul; Sijbers, Jan

    2012-03-01

    Adaptive statistical iterative reconstruction (ASiR) is a new reconstruction algorithm used in the field of medical X-ray imaging. This new reconstruction method combines the idealized system representation, as we know it from the standard Filtered Back Projection (FBP) algorithm, and the strength of iterative reconstruction by including a noise model in the reconstruction scheme. It studies how noise propagates through the reconstruction steps, feeds this model back into the loop and iteratively reduces noise in the reconstructed image without affecting spatial resolution. In this paper the effect of ASiR on the contrast to noise ratio is studied using the low contrast module of the Catphan phantom. The experiments were done on a GE LightSpeed VCT system at different voltages and currents. The results show reduced noise and increased contrast for the ASiR reconstructions compared to the standard FBP method. For the same contrast to noise ratio the images from ASiR can be obtained using 60% less current, leading to a reduction in dose of the same amount.

  10. Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.

    Science.gov (United States)

    Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua

    2018-03-01

    To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Maximum entropy reconstructions for crystallographic imaging; Cristallographie et reconstruction d`images par maximum d`entropie

    Energy Technology Data Exchange (ETDEWEB)

    Papoular, R

    1997-07-01

    The Fourier Transform is of central importance to Crystallography since it allows the visualization in real space of tridimensional scattering densities pertaining to physical systems from diffraction data (powder or single-crystal diffraction, using x-rays, neutrons, electrons or else). In turn, this visualization makes it possible to model and parametrize these systems, the crystal structures of which are eventually refined by Least-Squares techniques (e.g., the Rietveld method in the case of Powder Diffraction). The Maximum Entropy Method (sometimes called MEM or MaxEnt) is a general imaging technique, related to solving ill-conditioned inverse problems. It is ideally suited for tackling undetermined systems of linear questions (for which the number of variables is much larger than the number of equations). It is already being applied successfully in Astronomy, Radioastronomy and Medical Imaging. The advantages of using MAXIMUM Entropy over conventional Fourier and `difference Fourier` syntheses stem from the following facts: MaxEnt takes the experimental error bars into account; MaxEnt incorporate Prior Knowledge (e.g., the positivity of the scattering density in some instances); MaxEnt allows density reconstructions from incompletely phased data, as well as from overlapping Bragg reflections; MaxEnt substantially reduces truncation errors to which conventional experimental Fourier reconstructions are usually prone. The principles of Maximum Entropy imaging as applied to Crystallography are first presented. The method is then illustrated by a detailed example specific to Neutron Diffraction: the search for proton in solids. (author). 17 refs.

  12. Accurate reconstruction in digital holographic microscopy using Fresnel dual-tree complex wavelet transform

    Science.gov (United States)

    Zhang, Xiaolei; Zhang, Xiangchao; Yuan, He; Zhang, Hao; Xu, Min

    2018-02-01

    Digital holography is a promising measurement method in the fields of bio-medicine and micro-electronics. But the captured images of digital holography are severely polluted by the speckle noise because of optical scattering and diffraction. Via analyzing the properties of Fresnel diffraction and the topographies of micro-structures, a novel reconstruction method based on the dual-tree complex wavelet transform (DT-CWT) is proposed. This algorithm is shiftinvariant and capable of obtaining sparse representations for the diffracted signals of salient features, thus it is well suited for multiresolution processing of the interferometric holograms of directional morphologies. An explicit representation of orthogonal Fresnel DT-CWT bases and a specific filtering method are developed. This method can effectively remove the speckle noise without destroying the salient features. Finally, the proposed reconstruction method is compared with the conventional Fresnel diffraction integration and Fresnel wavelet transform with compressive sensing methods to validate its remarkable superiority on the aspects of topography reconstruction and speckle removal.

  13. Partial fourier and parallel MR image reconstruction with integrated gradient nonlinearity correction.

    Science.gov (United States)

    Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Weavers, Paul T; Huston, John; Gray, Erin M; Bernstein, Matt A

    2016-06-01

    To describe how integrated gradient nonlinearity (GNL) correction can be used within noniterative partial Fourier (homodyne) and parallel (SENSE and GRAPPA) MR image reconstruction strategies, and demonstrate that performing GNL correction during, rather than after, these routines mitigates the image blurring and resolution loss caused by postreconstruction image domain based GNL correction. Starting from partial Fourier and parallel magnetic resonance imaging signal models that explicitly account for GNL, noniterative image reconstruction strategies for each accelerated acquisition technique are derived under the same core mathematical assumptions as their standard counterparts. A series of phantom and in vivo experiments on retrospectively undersampled data were performed to investigate the spatial resolution benefit of integrated GNL correction over conventional postreconstruction correction. Phantom and in vivo results demonstrate that the integrated GNL correction reduces the image blurring introduced by the conventional GNL correction, while still correcting GNL-induced coarse-scale geometrical distortion. Images generated from undersampled data using the proposed integrated GNL strategies offer superior depiction of fine image detail, for example, phantom resolution inserts and anatomical tissue boundaries. Noniterative partial Fourier and parallel imaging reconstruction methods with integrated GNL correction reduce the resolution loss that occurs during conventional postreconstruction GNL correction while preserving the computational efficiency of standard reconstruction techniques. Magn Reson Med 75:2534-2544, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Reconstructing Face Image from the Thermal Infrared Spectrum to the Visible Spectrum

    Directory of Open Access Journals (Sweden)

    Brahmastro Kresnaraman

    2016-04-01

    Full Text Available During the night or in poorly lit areas, thermal cameras are a better choice instead of normal cameras for security surveillance because they do not rely on illumination. A thermal camera is able to detect a person within its view, but identification from only thermal information is not an easy task. The purpose of this paper is to reconstruct the face image of a person from the thermal spectrum to the visible spectrum. After the reconstruction, further image processing can be employed, including identification/recognition. Concretely, we propose a two-step thermal-to-visible-spectrum reconstruction method based on Canonical Correlation Analysis (CCA. The reconstruction is done by utilizing the relationship between images in both thermal infrared and visible spectra obtained by CCA. The whole image is processed in the first step while the second step processes patches in an image. Results show that the proposed method gives satisfying results with the two-step approach and outperforms comparative methods in both quality and recognition evaluations.

  15. Filter and slice thickness selection in SPECT image reconstruction

    International Nuclear Information System (INIS)

    Ivanovic, M.; Weber, D.A.; Wilson, G.A.; O'Mara, R.E.

    1985-01-01

    The choice of filter and slice thickness in SPECT image reconstruction as function of activity and linear and angular sampling were investigated in phantom and patient imaging studies. Reconstructed transverse and longitudinal spatial resolution of the system were measured using a line source in a water filled phantom. Phantom studies included measurements of the Data Spectrum phantom; clinical studies included tomographic procedures in 40 patients undergoing imaging of the temporomandibular joint. Slices of the phantom and patient images were evaluated for spatial of the phantom and patient images were evaluated for spatial resolution, noise, and image quality. Major findings include; spatial resolution and image quality improve with increasing linear sampling frequencies over the range of 4-8 mm/p in the phantom images, best spatial resolution and image quality in clinical images were observed at a linear sampling frequency of 6mm/p, Shepp and Logan filter gives the best spatial resolution for phantom studies at the lowest linear sampling frequency; smoothed Shepp and Logan filter provides best quality images without loss of resolution at higher frequencies and, spatial resolution and image quality improve with increased angular sampling frequency in the phantom at 40 c/p but appear to be independent of angular sampling frequency at 400 c/p

  16. Reconstructing building mass models from UAV images

    KAUST Repository

    Li, Minglei

    2015-07-26

    We present an automatic reconstruction pipeline for large scale urban scenes from aerial images captured by a camera mounted on an unmanned aerial vehicle. Using state-of-the-art Structure from Motion and Multi-View Stereo algorithms, we first generate a dense point cloud from the aerial images. Based on the statistical analysis of the footprint grid of the buildings, the point cloud is classified into different categories (i.e., buildings, ground, trees, and others). Roof structures are extracted for each individual building using Markov random field optimization. Then, a contour refinement algorithm based on pivot point detection is utilized to refine the contour of patches. Finally, polygonal mesh models are extracted from the refined contours. Experiments on various scenes as well as comparisons with state-of-the-art reconstruction methods demonstrate the effectiveness and robustness of the proposed method.

  17. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    Science.gov (United States)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  18. A Comparison of Manual Neuronal Reconstruction from Biocytin Histology or 2-Photon Imaging: Morphometry and Computer Modeling

    Directory of Open Access Journals (Sweden)

    Arne Vladimir Blackman

    2014-07-01

    Full Text Available Accurate 3D reconstruction of neurons is vital for applications linking anatomy and physiology. Reconstructions are typically created using Neurolucida after biocytin histology (BH. An alternative inexpensive and fast method is to use freeware such as Neuromantic to reconstruct from fluorescence imaging (FI stacks acquired using 2-photon laser-scanning microscopy during physiological recording. We compare these two methods with respect to morphometry, cell classification, and multicompartmental modeling in the NEURON simulation environment. Quantitative morphological analysis of the same cells reconstructed using both methods reveals that whilst biocytin reconstructions facilitate tracing of more distal collaterals, both methods are comparable in representing the overall morphology: automated clustering of reconstructions from both methods successfully separates neocortical basket cells from pyramidal cells but not BH from FI reconstructions. BH reconstructions suffer more from tissue shrinkage and compression artifacts than FI reconstructions do. FI reconstructions, on the other hand, consistently have larger process diameters. Consequently, significant differences in NEURON modeling of excitatory post-synaptic potential (EPSP forward propagation are seen between the two methods, with FI reconstructions exhibiting smaller depolarizations. Simulated action potential backpropagation (bAP, however, is indistinguishable between reconstructions obtained with the two methods. In our hands, BH reconstructions are necessary for NEURON modeling and detailed morphological tracing, and thus remain state of the art, although they are more labor intensive, more expensive, and suffer from a higher failure rate. However, for a subset of anatomical applications such as cell type identification, FI reconstructions are superior, because of indistinguishable classification performance with greater ease of use, essentially 100% success rate, and lower cost.

  19. Intra-patient comparison of reduced-dose model-based iterative reconstruction with standard-dose adaptive statistical iterative reconstruction in the CT diagnosis and follow-up of urolithiasis

    Energy Technology Data Exchange (ETDEWEB)

    Tenant, Sean; Pang, Chun Lap; Dissanayake, Prageeth [Peninsula Radiology Academy, Plymouth (United Kingdom); Vardhanabhuti, Varut [Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth (United Kingdom); University of Hong Kong, Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, Pokfulam (China); Stuckey, Colin; Gutteridge, Catherine [Plymouth Hospitals NHS Trust, Plymouth (United Kingdom); Hyde, Christopher [University of Exeter Medical School, St Luke' s Campus, Exeter (United Kingdom); Roobottom, Carl [Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth (United Kingdom); Plymouth Hospitals NHS Trust, Plymouth (United Kingdom)

    2017-10-15

    To evaluate the accuracy of reduced-dose CT scans reconstructed using a new generation of model-based iterative reconstruction (MBIR) in the imaging of urinary tract stone disease, compared with a standard-dose CT using 30% adaptive statistical iterative reconstruction. This single-institution prospective study recruited 125 patients presenting either with acute renal colic or for follow-up of known urinary tract stones. They underwent two immediately consecutive scans, one at standard dose settings and one at the lowest dose (highest noise index) the scanner would allow. The reduced-dose scans were reconstructed using both ASIR 30% and MBIR algorithms and reviewed independently by two radiologists. Objective and subjective image quality measures as well as diagnostic data were obtained. The reduced-dose MBIR scan was 100% concordant with the reference standard for the assessment of ureteric stones. It was extremely accurate at identifying calculi of 3 mm and above. The algorithm allowed a dose reduction of 58% without any loss of scan quality. A reduced-dose CT scan using MBIR is accurate in acute imaging for renal colic symptoms and for urolithiasis follow-up and allows a significant reduction in dose. (orig.)

  20. Reconstructing building mass models from UAV images

    KAUST Repository

    Li, Minglei; Nan, Liangliang; Smith, Neil; Wonka, Peter

    2015-01-01

    We present an automatic reconstruction pipeline for large scale urban scenes from aerial images captured by a camera mounted on an unmanned aerial vehicle. Using state-of-the-art Structure from Motion and Multi-View Stereo algorithms, we first

  1. Reconstructions with identical filling (RIF) of the heart: a physiological approach to image reconstruction in coronary CT angiography

    International Nuclear Information System (INIS)

    Reinartz, S.D.; Diefenbach, B.S.; Kuhl, C.K.; Mahnken, A.H.; Allmendinger, T.

    2012-01-01

    To compare image quality in coronary artery computed tomography angiography (cCTA) using reconstructions with automated phase detection and Reconstructions computed with Identical Filling of the heart (RIF). Seventy-four patients underwent ECG-gated dual source CT (DSCT) between November 2009 and July 2010 for suspected coronary heart disease (n = 35), planning of transcatheter aortic valve replacement (n = 34) or evaluation of ventricular function (n = 5). Image data sets by the RIF formula and automated phase detection were computed and evaluated with the AHA 15-segment model and a 5-grade Likert scale (1: poor, 5: excellent quality). Subgroups regarding rhythm (sinus rhythm = SR; arrhythmia = ARR) and potential premedication were evaluated by a per-segment, per-vessel and per-patient analysis. RIF significantly improved image quality in 10 of 15 coronary segments (P < 0.05). More diagnostic segments were provided by RIF regarding the entire cohort (n = 693 vs. 590, P < 0.001) and all of the subgroups (e.g. ARR: n = 143 vs. 72, P < 0.001). In arrhythmic patients (n = 19), more diagnostic vessels (e.g. LAD: n = 10 vs. 3; P < 0.014) and complete data sets (n = 7 vs. 1; P < 0.001) were produced. RIF reconstruction is superior to automatic diastolic non-edited reconstructions, especially in arrhythmic patients. RIF theory provides a physiological approach for determining the optimal image reconstruction point in ECG-gated CT angiography. (orig.)

  2. Research on compressive sensing reconstruction algorithm based on total variation model

    Science.gov (United States)

    Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin

    2017-12-01

    Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately